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We develop statistical methods for two-way functional data, in which we observe a sample

of functions of two continuous variables, for example space and time. Analysis of two-way

functional data presents complexities not found in traditional one-way functional data, and

this analysis can serve as a starting point in understanding multi-way functional data. Moti-

vated by the concept of factorizing the signal into separate spatial and temporal components,

we develop the concept of weak separability of the underlying random process. Compared

to the traditional strong separability assumption, which models the covariance structure as

the product of the space and time covariances, weak separability is more flexible yet still

interpretable, modeling the covariance structure as a weighted sum of strongly separable

components.

We propose asymptotic and bootstrap testing procedures for weak separability, and their

performance is studied in simulations. We apply the testing procedures to brain imaging

data, in which functional connectivity between two brain regions is measured as a function

of frequency and time. We illustrate how, under weak separability, the functional process

can be understood in terms of products of basis functions for frequency and time. We go

on to develop methods to approximate the covariance structure using L-separability, defined

as a class of decompositions of the covariance structure under weak separability, and show

its relationship to nonnegative matrix factorization. Using psychiatric data as a case study,

we illustrate the L-separable decomposition, as well as two-way localization methods for the
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basis functions.
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1.0 INTRODUCTION

1.1 ONE-WAY AND MULTI-WAY FUNCTIONAL DATA

Functional data analysis (FDA) is the field of statistics concerned with analyzing curves or

surfaces that can be thought of as arising from some underlying random process. The data

are recorded over some continuum, often time, though other possibilities include frequency,

age, or multivariate quantities such as three-dimensional spatial location. With advances

in recent decades in data collection and storage, functional data have become increasingly

common, appearing in diverse fields such as neuroscience, economics, climatology, public

health, and physics.

Subjects’ observed functional data are regarded as independent realizations of some ran-

dom process X(t), where t may be a scalar or vector with entries taking values from a

continuous spectrum. That is, we observe realizations Xi(t), i = 1, . . . , n, of X(t) : T → R,

T ⊆ Rd, d ≥ 1. When d = 2, there is sometimes special interest in analyzing the two

arguments of the vector t, in which case we consider the data to be realizations Xi(s, t) of

a random process X(s, t) : S × T → R, S ⊆ R, T ⊆ R. We call realizations from X(s, t)

two-way functional data, whereas the conventional functional data from X(t), t ∈ R, is

called one-way functional data. Although s and t could be combined into a single vector

argument, we keep them separate due to computational and interpretational issues. That is,

there is interest in how the variables s and t individually relate to the observed functions,

and statistical modeling should give insight into each of their effects separately. Multi-way

functional data extends the concept of two-way functional data by considering two or more

arguments, i.e., denoting the process X(t1, . . . , tk) for some k ≥ 2. This thesis will develop

certain aspects of the theory of two-way functional data as a starting point in understanding
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multi-way functional data.

In recent decades, many analogs of classical statistical methods have been developed for

one-way functional data. These include PCA, regression, classification, clustering, quan-

tile analysis, and various inference procedures. Additionally, statistical methods have been

developed to analyze data from only one realization of some process X(s, t). In this case

the data are usually regarded as space-time (or spatio-temporal) data, which can include

weather patterns such as precipitation, wind speed, or temperature as functions of spatial

location and time. Examples of spatio-temporal analysis include Fuentes (2006), Nerini et al.

(2010), and Gromenko et al. (2012). Other analyses in which a single realization of X(s, t)

is observed include Hyndman & Ullah (2007), Huang et al. (2009), and Hyndman & Shang

(2009). Several works in the area of longitudinal or multilevel functional data analyze what

could be considered as i.i.d. realizations of X(s, t), but in these cases one of the arguments

takes only a few values, such as visits by a patient, and the focus is on modeling the data

as a function of the other argument (Morris & Carroll, 2006; Di et al., 2009; Greven et al.,

2011; Chen & Müller, 2012). Our interest is on data Xi(s, t), i = 1, . . . , n, where s and t are

treated as continuous arguments, as is often the case when both s and t are observed on a

dense grid.

1.2 MOTIVATION AND STRUCTURE OF THIS THESIS

We motivate our study of two-way functional data with an example of data arising from

brain imaging studies. Consider a study where n subjects undergo magnetoencephalography

(MEG), in which a large number of sensors around the head detect magnetic fields generated

within the brain. Each sensor produces an oscillatory signal with high temporal resolution,

and thus power and connectivity between signals are measured as continuous functions of

time and frequency, i.e., Xi(s, t), where i denotes the subject, s denotes frequency, and t

denotes time. An example of connectivity between two distinct regions of the brain for a

single subject is shown in Figure 1. In this thesis we analyze MEG data from the Human

Connectome Project (to be discussed in Chapter 3) and the University of Pittsburgh’s Clin-
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ical Neurophysiology Research Laboratory (to be discussed in Chapter 5). In Chapter 3 we

discuss details of how we calculate connectivity from the MEG signals.
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Figure 1: Connectivity between two regions of the brain for one MEG subject.

In the above scenario, we are able to record each subject’s connectivity on a dense grid

of p evenly spaced frequency points and q evenly spaced time points. Hence, we can store

subjects i’s connectivity Xi(s, t) as a p × q matrix. In the example plotted in Figure 1,

p = 43 and q = 101. To measure how brain connectivity varies among subjects, we wish to

estimate the covariance structure C(s, t;u, v) = cov(X(s, t), X(u, v)), which is also essential

in subsequent modeling such as functional principal component analysis (FPCA). When the

data are recorded on a dense grid, we can obtain the empirical estimator of C by stacking

the data into vectors of length p × q, calculating the sample covariance, and reorganizing

back to get the 4-dimensional covariance structure. However, the possibly large size of this

structure can present problems with slow computing. Additionally, this method does not

fully bring out the two-way nature of the data, and we would like to be able to interpret the

connectivity in terms of frequency and time.

The separable covariance assumption C(s, t;u, v) = aC1(s, u)C2(t, v), which we call

strong separability, in contrast to the weak separability that will be introduced, is a common

dimension reduction assumption. In the context of the example above, factorizing X(s, t),

the underlying process for the subjects’ connectivity, into frequency and time components

can be justified under strong separability, where the covariance function factorizes into the

3



product of the frequency covariance function and time covariance function. The eigenfunc-

tions of these covariance functions are in many ways the optimal choices of basis functions for

the frequency and time components of X(s, t). In general, factorizing the two-way process

into its two components is common, often being justified using a vague notion of “separa-

bility” of s and t, and has seen empirical success. However, rigorous justification of this

type of factorization has been limited to the scope of strong separability, which can be an

overly restrictive assumption. To address these concerns, we introduce the concept of weak

separability for the process X. The analysis of weak separability shows connections to the

usual strongly separable covariance structure, and provides insights into tensor methods for

multi-way functional data.

The rest of this thesis is organized as follows: Chapter 2 introduces the concept of

weak separability, including its relationship to two-way FPCA, its flexibility in modeling

the covariance structure, its test statistic, results of numerical experiments, and application

to a mortality dataset. Chapter 3 applies the concept of weak separability to MEG data

from the Human Connectome Project. We give an overview of the data, the calculation of

functional connectivity from MEG, results of the weak separability test, and interpretation

of the separable components of the product FPCA decomposition. Chapter 4 studies L-

separability, a class of decompositions of the covariance structure under weak separability,

and its relationship to nonnegative matrix factorization. Chapter 5 presents a case study

of psychiatric data from the University of Pittsburgh’s Clinical Neurophysiology Research

Laboratory, for which we apply the methods of Chapter 4 as well as two-way localization

methods. Proofs are given in Appendix A.
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2.0 WEAK SEPARABILITY

2.1 MOTIVATION FOR WEAK SEPARABILITY

We observe two-way functional data Xi(s, t), s ∈ Rd1 , t ∈ Rd2 , from a random process

X(s, t) with mean µ(s, t) and covariance structure C(s, t;u, v) = cov(X(s, t), X(u, v)). A

central tool in analyzing functional data is functional principal component analysis (FPCA),

which, when applied to the two-way process X, is based on the Karhunen–Loève representa-

tion X(s, t) = µ(s, t) +
∑∞

l=1 ξlhl(s, t), where ξl (l = 1, 2, . . .) are the (random) uncorrelated

coefficients, and hl(s, t) (l = 1, 2, . . .) are the eigenfunctions of the covariance operator C. To

alleviate the difficulties associated with modeling the (2d1 + 2d2)-dimensional full covariance

structure C(s, t, u, v) and characterizing its (d1 + d2)-dimensional eigenfunctions, one gener-

ally seeks dimension reduction through factorization of the signal X(s, t) into its “spatial”

s and “temporal” t components. This can be justified under a common assumption, used

particularly in the field of spatio-temporal analysis, called “separability”, which we refer to

as strong separability in contrast to the weak separability that will be introduced. Strong

separability imposes C(s, t;u, v) = aC1(s, u)C2(t, v) for some nonnegative definite functions

C1 and C2. In terms of spatio-temporal data, this means the covariance structure factorizes

into a spatial covariance function and a temporal covariance function.

There is much literature on strong separability for functional data, as well as matrix and

tensor data (Lu & Zimmerman, 2005; Fuentes, 2006; Srivastava et al., 2009; Hoff et al., 2011).

Recently, tests have been proposed for strong separability given a sample of independent two-

way functional data (Aston et al., 2017; Constantinou et al., 2017). Many works in spatio-

temporal and image analysis have used a vague notion of “separability” to justify factorizing

the spatial (row) and temporal (column) components of the functional or tensor data (Zhang
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& Zhou, 2005; Lu et al., 2008; Huang et al., 2009; Hung et al., 2012; Chen & Müller, 2012;

Allen et al., 2014; Chen et al., 2015, 2017). Although these methods have shown empirical

success, their theoretical justification is mostly restricted to strong separability.

In many applications, strong separability is an overly restrictive model of the covariance,

and several works in spatio-temporal analysis have proposed alternative models (Cressie

& Huang, 1999; Gneiting, 2002; Stein, 2005). These methods use additional assumptions

such as stationarity, or use specific parametric models. We propose a novel concept of

weak separability for the process X, which can be tested. Under weak separability, the

eigenfunctions of C(s, t;u, v) are tensor products of the eigenfunctions of the marginal kernels∫
T C(s, t;u, t)dt and

∫
S C(s, t; s, v)ds, which allows a natural factorization of X(s, t) into

spatial and temporal components. Weak separability also allows the covariance structure

to be approximated with a weighted sum of several strongly separable components, thereby

being much more flexible than strong separability, while at the same time including strong

separability as a special case.

2.2 CONCEPT AND PROPERTIES OF WEAK SEPARABILITY

Let L2(T ) denote the space of square integrable functions defined on a domain T , i.e.,

L2(T ) = {f(t), t ∈ T :
∫
T f

2(t)dt < ∞}, with inner product 〈f, g〉 =
∫
T f(t)g(t)dt and the

corresponding norm ‖ · ‖. For one-way functional data, denote the individual realizations

as Xi(t), i = 1, . . . , n, from an underlying random process X(t) ∈ L2(T ), t ∈ T ⊆ Rd,

with mean µ(t) and covariance function C(s, t) = cov(X(s), X(t)). For two-way functional

data, denote the individual realizations as Xi(s, t), i = 1, . . . , n, from an underlying random

process X(s, t) ∈ L2(S × T ), s ∈ S ⊆ Rd1 , t ∈ T ⊆ Rd2 . We assume the data have

well defined mean µ(s, t) and covariance C(s, t;u, v) = cov(X(s, t), X(u, v)). We use C to

denote both the covariance operator and its kernel function. We assume the covariance is

continuous, and S and T are compact.

One important application that relies on covariance structure estimation is functional

principal component analysis (FPCA), and this is an area where there are extra consider-
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ations that must be taken when working with two-way data as opposed to one-way data.

Principal component analysis is a classical dimension reduction technique from multivariate

analysis, which finds a small number of uncorrelated components along which the data vary

the most, based on the eigen-decomposition of the covariance matrix. One-way FPCA is

well developed (see Ramsay & Silverman (2005) for an introduction), and expands the data

as a sum of projections onto the first few eigenfunctions of the covariance operator. The

challenge of two-way FPCA is to obtain analogs of the eigenfunctions that allow one to

separately analyze the effects of the spatial (s) and temporal (t) components.

One-way FPCA can be framed in terms of the Karhunen–Loève expansion, which de-

composes the process as

X(t) = µ(t) +
∞∑
l=1

ξlhl(t),

where the hl are eigenfunctions of C, i.e.,
∫
T C(s, t)hl(s)ds = θlhl(t) for eigenvalues θ1 ≥ θ2 ≥

. . . . The ξl are the random projection scores of the process, i.e., ξl =
∫
T (X(t)−µ(t))hl(t)dt,

which can be shown to be uncorrelated. If the above sum is truncated to the first K

terms, then this approximation is optimal in that, of all expansions of X(t) − µ(t) with an

orthonormal basis truncated to K terms, the mean squared L2 norm of the difference between

X(t)− µ(t) and the expansion using h1, . . . , hK will be the smallest. That is, for any set of

orthonormal functions h∗1, . . . , h
∗
K and their corresponding projection scores ξ∗1 , . . . , ξ

∗
K , we

have E(
∫
T (X(t)−µ(t)−

∑K
l=1 ξ

∗
l h
∗
l (t))

2dt) ≥ E(
∫
T (X(t)−µ(t)−

∑K
l=1 ξlhl(t))

2dt). In other

words, the first K eigenfunctions of C form the K-term representation of X(t) − µ(t) with

the smallest unexplained variance.

Two-way data can be decomposed using the Karhunen–Loève (often abbreviated K-L)

expansion in the same way, by writing

X(s, t) = µ(s, t) +
∞∑
l=1

ξlhl(s, t),

where the hl are now eigenfunctions of the covariance operator corresponding to the four-

dimensional covariance C(s, t;u, v). There are drawbacks to this method in the two-way

case, however. For one, we wish to analyze the effects of the spatial and temporal com-

ponents (s and t) separately. Additionally, there can be computational problems with us-

ing a nonparametric estimate of the full covariance, i.e., Cn(s, t;u, v) = 1
n

∑n
i=1(Xi(s, t) −
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X̄(s, t))(Xi(u, v)− X̄(u, v)), where X̄(s, t) = 1
n

∑n
i=1Xi(s, t). When each subject’s data are

recorded on a dense regular p× q grid, Cn can be obtained by stacking the data into p× q

vectors and computing the pq × pq sample covariance. However, this is unfeasible for large

p and q (which could be hundreds or thousands in practice), causing slow computing and

storage problems.

We wish to find a suitable alternative that alleviates the difficulties associated with

modeling the full covariance function, and also brings out the effects of the space-time

interactions. Several ways of doing this are explored in Chen et al. (2017), the most easily

interpretable of which is product FPCA,

X(s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χjkψj(s)φk(t), (2.1)

where ψj and φk are eigenfunctions of the marginal kernels,

CS(s, u) =

∫
T
C(s, t;u, t)dt and CT (t, v) =

∫
S
C(s, t; s, v)ds, (2.2)

respectively (we also refer to these as “marginal covariance functions”). The χjk are the

marginal projection scores, defined as

χjk =

∫
T

∫
S
(X(s, t)− µ(s, t))ψj(s)φk(t)dsdt. (2.3)

To be precise, we should first consider expanding X(s, t) in terms of completed versions of the

bases of marginal eigenfunctions, but since it can be shown that the scores χjk associated

with the extra functions needed to complete the bases are 0, the expansion of X(s, t) in

Equation (2.1) holds.

Similar decompositions have been studied to develop PCA methods for multi-way matrix

or tensor data (Ye, 2005; Zhang & Zhou, 2005; Lu et al., 2008; Hung et al., 2012). When

strong separability is assumed, the product FPCA representation is the same as the K-L

representation. However, when strong separability does not hold, we do not know whether

the products of the marginal eigenfunctions are the optimal basis functions. Moreover,

the marginal projection scores are not necessarily uncorrelated, and FPCA scores being

uncorrelated is a property taken for granted in subsequent modeling such as functional
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regression and functional additive models. Weak separability addresses these concerns, and

gives insight into tensor methods for multi-way functional data.

Consider representing the process with a general basis of product functions. For or-

thonormal bases {fj, j ≥ 1} in L2(S) and {gk, k ≥ 1} in L2(T ), the product functions

{fj(s)gk(t), j ≥ 1, k ≥ 1} form an orthonormal basis of L2(S × T ), so we can have

X(s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χ̃jkfj(s)gk(t),

where χ̃jk =
∫
T

∫
S(X(s, t)− µ(s, t))fj(s)gk(t)dsdt.

Definition of weak separability: X(s, t) is weakly separable if there exist orthonormal

bases {fj, j ≥ 1} and {gk, k ≥ 1} such that cov(χ̃jk, χ̃j′k′) = 0 for j 6= j′ or k 6= k′, i.e., the

scores {χ̃jk, j ≥ 1, k ≥ 1} are uncorrelated with each other.

In the following, we develop important properties of weak separability, which allow it to

be useful in many applications. Detailed proofs are given in Appendix A.

Lemma 1. If X is weakly separable, the pair of bases {fj, j ≥ 1} and {gk, k ≥ 1} that

satisfies weak separability is unique up to a sign, and fj(s) ≡ ψj(s) and gk(t) ≡ φk(t),

where ψj(s) and φk(t) are the eigenfunctions of the marginal kernels CS(s, u) and CT (t, v)

as defined in Equation (2.2). Moreover,

C(s, t;u, v) =
∞∑
j=1

∞∑
k=1

ηjkψj(s)ψj(u)φk(t)φk(v), (2.4)

where ηjk = var(χjk), and the convergence is absolute and uniform.

Lemma 1 shows that when the marginal projection scores are uncorrelated, the spatial

and temporal bases are eigenfunctions of the marginal covariance functions. It also allows

us to test the weak separability assumption by considering the covariance of the marginal

projection scores (see Section 2.3). From Equation (2.4), we see that under weak separability

the eigenfunctions of C are tensor products of the marginal eigenfunctions with eigenvalues

ηjk. Thus, the product FPCA representation is the same as the K-L expansion in that the

eigenfunctions hl(s, t) from the K-L expansion will each be some product ψj(s)φk(t). When

weak separability does not hold, product FPCA can still be used as a dimension reduction

approach, but as the product FPCA scores are correlated, one expects to have to use more

terms in product FPCA than in conventional FPCA to explain the same amount of variance.
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Lemma 2. Strong separability defined as C(s, t;u, v) = aC1(s, u)C2(t, v) with identifiability

constraints
∫
S C1(s, s)ds = 1 and

∫
T C2(t, t)dt = 1 implies weak separability of X. And up

to a constant scaling, C1 and C2 are the same as the marginal kernels.

Lemma 2 shows that strong separability is a special case of weak separability. The

following lemma shows that weak separability is much more flexible than strong separability:

Lemma 3. Let V denote the array V = (ηjk, j ≥ 1, k ≥ 1). Strong separability is weak

separability with an additional assumption that rank(V ) = 1. Moreover, under strong sepa-

rability V = aΛΓT , where Λ = (λ1, λ2, . . .)
T and Γ = (γ1, γ2, . . .)

T are the eigenvalues of the

marginal kernels, and a = 1/
∫
T

∫
S C(s, t; s, t)dsdt is a normalization constant.

Define nonnegative rank as rank+(V ) = min{` : V = V1 + ... + V`, Vi ≥ 0, rank(Vi) =

1, ∀ i}, where Vi ≥ 0 means that Vi is entry-wise nonnegative. If L = rank+(V ) <∞, then V

can be decomposed as the nonnegative factorization V =
∑L

l=1 a
lΛl(Γl)T , where Λl = (λlj)j≥1

and Γl = (γlk)k≥1 are all nonnegative for l = 1, . . . , L. The constant al is for identifiability;

for example, one can require
∑

j≥1 λ
l
j = 1 and

∑
k≥1 γ

l
k = 1.

Let C l
S(s, u) =

∑
j λ

l
jψj(s)ψj(u) and C l

T (t, v) =
∑

k γ
l
kφk(t)φk(v). We can generalize

Lemma 3 by saying when L = rank+(V ) <∞ that we have L-separability, in which case we

can write

C(s, t;u, v) =
L∑
l=1

alC l
S(s, u)C l

T (t, v). (2.5)

Now the full covariance function is a sum of L strongly separable components. Strong sep-

arability corresponds to 1-separability. Note that the C l
S(s, u) have common eigenfunctions

for l = 1, . . . , L, which are also eigenfunctions of the marginal kernel CS(s, u). The case for

C l
T (t, v) is analogous.

Under strong separability, the value of C(s, t;u, v) for given t and v is the same, regardless

of the values of s and u, up to a constant, where the constant depends on s and u. By

contrast, the L-separable decomposition above allows C(s, t;u, v) for given t and v to be a

weighted sum of L covariance structures C l
T (t, v), where the weights depend on s and u. An

analogous statement can be made about C(s, t;u, v) for given s and u.

We can see that rank(V ) ≤ rank+(V ). In the case that rank(V ) < rank+(V ), find-

ing the nonnegative rank and computing the nonnegative factorization of V are challenging
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problems (Lee & Seung, 2001; Donoho & Stodden, 2003; Arora et al., 2012; Dong et al.,

2014). More details will be discussed in Chapter 4. In practice, we will truncate the prod-

uct FPCA expansion to the first P eigenfunctions of CS and the first K eigenfunctions

of CT , i.e., we approximate the spatial effect with P components and the temporal effect

with K components. The array VP,K = (ηjk, 1 ≤ j ≤ P, 1 ≤ k ≤ K) often satisfies

rank(VP,K) = rank+(VP,K) = min(P,K), in which case the decomposition of the covariance

structure into several strongly separable covariances is relatively straightforward. In this

case, assume without loss of generality that P ≤ K, so that rank+(VP,K) = P . If we impose

the condition that Λj is orthogonal to Λl for 1 ≤ j < l ≤ P , then the decomposition of

VP,K is unique (see Chapter 4), given by Λl being the lth column of the identity matrix IP ,

and al(Γl)T being the lth row of VP,K . Interestingly, with this orthogonality condition, we

can also identify this decomposition of VP,K with the truncated product FPCA expansion,

writing X(s, t) ≈ µ(s, t) +
∑P

l=1Xl(s, t), where Xl(s, t) =
∑K

k=1 χlkψl(s)φk(t). Under weak

separability, each Xl has the strongly separable covariance structure alC l
S(s, u)C l

T (t, v), and

the Xl are uncorrelated with each other. Hence, our covariance decomposition lends itself to

a simple interpretation, being the sum of covariances of uncorrelated processes. We apply

this simple decomposition in the data analysis of Section 2.5.

In applications where one relies on the separable structure of the covariance for ease

of computation and interpretation, for example in applications involving the inverse of the

covariance, it is not clear whether and how one can modify the concept to work under the

weak separability assumption (L additive separable terms). We defer this to future research.

2.3 TEST OF WEAK SEPARABILITY

By the definition of weak separability and Lemma 1, testing weak separability is equivalent to

testing the covariance structure of the marginal projection scores, i.e., H0 : cov(χjk, χj′k′) = 0

for j 6= j′ or k 6= k′. Assume we have a sample of smooth processes Xi(s, t)
i.i.d.∼ X(s, t). For

subject i, the marginal projection scores are χi,jk =
∫
T

∫
S(Xi(s, t) − µ(s, t))ψj(s)φk(t)dsdt,

where ψj(s) and φk(t) are the eigenfunctions of the marginal covariances.
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Hypothesis testing of a covariance structure is a classic problem in multivariate analysis.

Suppose we have n i.i.d. copies of a p-variate random vector, from a distribution with mean

µ and covariance matrix Σ, and we want to test the null hypothesis that Σ is diagonal, i.e.,

the p variables are uncorrelated. Under the traditional multivariate setting where p is fixed

and does not increase with n, likelihood ratio methods can be used to test the diagonality

of Σ (Anderson, 1984). Note that these methods require distributional assumptions. The

high-dimensional problem has been studied in the context that p/n→ γ ∈ (0,∞) or even for

p much larger than n (Ledoit & Wolf, 2002; Liu et al., 2008; Cai et al., 2011; Lan et al., 2015).

Recently, Chang et al. (2017) applied the wild bootstrap procedure (Chernozhukov et al.,

2017) for hypothesis testing of large covariance matrices with few distributional assumptions.

However, unlike in the traditional covariance testing problem, we do not observe the

individual values χi,jk. Instead they must be estimated from the sample curves Xi(s, t),

i = 1, . . . , n, as

χ̂i,jk =

∫
T

∫
S
(Xi(s, t)− X̄(s, t))ψ̂j(s)φ̂k(t)dsdt, (2.6)

where X̄(s, t) = (1/n)
∑n

i=1Xi(s, t) and ψ̂j and φ̂k are eigenfunctions of the estimated

marginal covariances, ĈS(s, u) = (1/n)
∑n

i=1

∫
T (Xi(s, t)− X̄(s, t))(Xi(u, t)− X̄(u, t))dt, and

ĈT (t, v) = (1/n)
∑n

i=1

∫
S(Xi(s, t)− X̄(s, t))(Xi(s, v)− X̄(s, v))ds. In practice, if the data for

each subject are observed on dense and regularly spaced grid points and recorded in matrices

Xi, i = 1, . . . , n, the above estimators can be simplified as ĈS = (1/n)
∑n

i=1(Xi − X̄)(Xi −

X̄)T , and ĈT = (1/n)
∑n

i=1(Xi− X̄)T (Xi− X̄). In the case, for example, that the argument

s has dimension greater than 1, the data cannot immediately be written as matrices, but as

long as the observations are dense in S one can vectorize them along a certain ordering of

s, compute the marginal covariances, and reorganize back accordingly. From ĈS and ĈT ,

we obtain the estimated eigenfunctions φ̂j and ψ̂k by standard eigen-decomposition methods

for functional data (Chen et al., 2017), and we estimate the marginal projection scores by

numerical approximation of the integrals. Note that we do not have to estimate the full

covariance C(s, t;u, v).

Although we can prove that the χ̂i,jk are
√
n-consistent estimators of the χi,jk, most test

statistics based on the χ̂i,jk have different null distributions from their counterparts using

the χi,jk, and this prevents us from directly using the testing procedures mentioned above.
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In the following, we develop a test for weak separability based on the empirical correlations

between the estimated scores χ̂i,jk and χ̂i,j′k′ (i = 1, . . . , n; (j, k) 6= (j′, k′)). The proofs

involve expansions of the differences between the estimated marginal eigenfunctions and

their true values, i.e., ψ̂j −ψj and φ̂k−φk, as well as multi-way tensor products with indices

(j, k, j′, k′). The asymptotic null distribution of the test statistic is found to be a χ2-type

mixture. No Gaussian assumption on X is imposed.

2.3.1 The test statistic and its properties

Some notation: Let H be a real separable Hilbert space, with inner product 〈·, ·〉. Following

standard definitions, we denote the space of bounded linear operators on H as B(H), the

space of Hilbert–Schmidt operators on H as BHS(H), and the space of trace-class operators

on H as BTr(H). For any trace-class operator T ∈ BTr(H), we define the trace as Tr(T ) =∑
i≥1〈Tei, ei〉, where (ei)i≥1 is an orthonormal basis of H. It is clear that this definition is

independent of the choice of basis.

For H1 and H2 two real separable Hilbert spaces, we use ⊗ as the standard tensor

product, i.e., for x1 ∈ H1 and x2 ∈ H2, (x1 ⊗ x2) is the operator from H2 to H1 defined by

(x1 ⊗ x2)y = 〈x2, y〉x1 for any y ∈ H2. Let H = H1 ⊗H2 denote the tensor product Hilbert

space, which contains all finite sums of x1 ⊗ x2, with inner product 〈x1 ⊗ x2, y1 ⊗ y2〉 =

〈x1, y1〉〈x2, y2〉, for x1, y1 ∈ H1 and x2, y2 ∈ H2. For C1 ∈ B(H1) and C2 ∈ B(H2), we let

C1⊗̃C2 denote the unique bounded linear operator on H1 ⊗H2 satisfying

C1⊗̃C2(x1 ⊗ x2) = C1x1 ⊗ C2x2, for all x1 ∈ H1, x2 ∈ H2.

We consider a statistic based on the sample covariance of the estimated marginal pro-

jection scores:

Tn(j, k, j′, k′) =
1√
n

n∑
i=1

χ̂i,jkχ̂i,j′k′ , for j 6= j′ or k 6= k′. (2.7)

Also define Zn =
√
n(Cn − C), where the sample covariance operator is defined as

Cn = (1/n)
n∑
i=1

(Xi − X̄)⊗ (Xi − X̄).
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The following two conditions are needed for the theorem below and the corollary following

it:

Conditions:

Condition I: For some orthonormal basis (ej)j≥1 of L2(S × T ),
∑

j(E(〈X, ej〉4))1/4 <∞.

Condition II: For some integers P and K, we have min1≤j≤P (λj − λj+1) > 0 as well as

min1≤k≤K(γk − γk+1) > 0.

Remark: According to Proposition 5 of Mas (2006), Condition I implies that Zn con-

verges to a Gaussian random element in BTr(L2(S × T )).

We use similar notation and conditions as used by Aston et al. (2017). However, we note

that to derive the asymptotic distribution of their test statistic for strong separability, they

focus on deriving the asymptotic distribution of the difference between the sample covariance

operator and its strongly separable approximation. Then by projecting onto the estimated

marginal eigenfunctions, they check the requirement for strong separability that ηjk = aλjγk.

They do not need further results on the estimation errors of the marginal eigenfunctions and

marginal projection scores besides that they are consistent. By contrast, our proofs involve

the expansion of ψ̂j −ψj and φ̂k−φk, and four-way tensor products with indices (j, k, j′, k′).

This requirement also differentiates our proofs from those of Fremdt et al. (2013), in which

a test of equality of covariances for two functional samples is presented.

Theorem 4. Assume Conditions I and II hold, and that X is weakly separable. For j, j′ =

1, . . . , P and k, k′ = 1, . . . , K as defined in Condition II, we have

(i) for j 6= j′ and k 6= k′,

Tn(j, k, j′, k′) = Tr
(
((ψj ⊗ ψj′)⊗̃(φk ⊗ φk′))Zn

)
+ op(1),

(ii) for j = j′ and k 6= k′,

Tn(j, k, j, k′) =Tr
(
((ψj ⊗ ψj)⊗̃(φk ⊗ φk′))Zn

)
+Tr

(
(Id1⊗̃(ηjk′(γk − γk′)−1φk ⊗ φk′))Zn

)
+Tr

(
(Id1⊗̃(ηjk(γk′ − γk)−1φk′ ⊗ φk))Zn

)
+ op(1),
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(iii) for j 6= j′ and k = k′,

Tn(j, k, j′, k) =Tr
(
((ψj ⊗ ψj′)⊗̃(φk ⊗ φk))Zn

)
+Tr

(
((ηjk(λj′ − λj)−1ψj′ ⊗ ψj)⊗̃Id2)Zn

)
+Tr

(
((ηj′k(λj − λj′)−1ψj ⊗ ψj′)⊗̃Id2)Zn

)
+ op(1),

where Id1 and Id2 are identity operators on L2(S) and L2(T ), respectively.

Remark: Since
√
nTr

(
(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)C

)
is zero under the null hypothesis, the

first term is the same as
√
nTr

(
(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)Cn

)
= 1√

n

∑
i χi,jkχi,j′k′ , i.e., the coun-

terpart of Tn as if we had the true marginal projection scores. The second and third terms,

if they exist, are the non-negligible estimation errors.

Corollary 5. Assume Conditions I and II hold, and that X is weakly separable. For dif-

ferent sets of (j, k, j′, k′) satisfying 1 ≤ j, j′ ≤ P , 1 ≤ k, k′ ≤ K, and (j, k) 6= (j′, k′), the

Tn(j, k, j′, k′) are asymptotically jointly Gaussian with mean zero and covariance structure

Θ. The formula for Θ is given in the proof.

2.3.2 Tests based on χ2-type mixtures

Lemma 6. For j 6= j′,
∑

k E(χjkχj′k) = 0, and for k 6= k′,
∑

j E(χjkχjk′) = 0. This also

holds in the empirical version such that for j 6= j′,
∑

k Tn(j, k, j′, k) = 0, and for k 6= k′,∑
j Tn(j, k, j, k′) = 0.

The above lemma does not assume weak separability. Recall that principal component

scores in traditional one-way FPCA are uncorrelated. This lemma is a generalized result for

the marginal projection scores in the product FPCA representation.

Due to this linear relationship between the different terms of Tn, the asymptotic covari-

ance Θ will be degenerate, and thus the statistic we consider is the sum of squares of Tn

without normalizing by the estimated covariance. In practice, for suitably chosen Pn and

Kn, we use the statistic defined as

Sn =
∑

1≤j,j′≤Pn; 1≤k,k′≤Kn; (j,k)<(j′,k′)

(Tn(j, k, j′, k′))2, (2.8)
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where (j, k) < (j′, k′) means (j − 1) ∗Kn + k < (j′ − 1) ∗Kn + k′. This is used due to the

symmetry Tn(j, k, j′, k′) = Tn(j′, k′, j, k), so that we only include the “upper diagonal” part

of the covariance among the marginal projection scores.

Take Tn to be a long vector of length m = PnKn(PnKn − 1)/2 created by stacking all

of the Tn(j, k, j′, k′), 1 ≤ j, j′ ≤ Pn, 1 ≤ k, k′ ≤ Kn, (j, k) < (j′, k′). Then by Corollary 5,

Tn ∼ Nm(0,Θ) under H0, where we now take Θ to be a covariance matrix. Define the spectral

decomposition of Θ as Θ = UQUT , where Q is diagonal with diagonal entries σ1, . . . , σm,

which are the eigenvalues of Θ ordered from largest to smallest, and U = [u1 u2 . . . um],

where the ui are orthonormal column vectors. Note that by Lemma 6, some of the σi are 0.

Since Sn = ‖Tn‖2 = ‖UTTn‖2 and UTTn ∼ Nm(0, Q), we can write Sn =
∑m

i=1 σiAi where

the Ai are i.i.d. χ2
1, i.e., the null distribution of Sn is a weighted sum of χ2 distributions,

which we call a χ2-type mixture.

The Welch–Satterthwaite approximation for a χ2-type mixture (Zhang, 2013) approxi-

mates Sn ∼ βχ2
d and determines β and d from matching the first 2 cumulants (the mean

and the variance). This results in β = var(Sn)/(2E(Sn)) = Tr(Θ2)/Tr(Θ) and d =

2(E(Sn))2/var(Sn) = (Tr(Θ))2/Tr(Θ2). By using a plug-in estimator of Θ, we can approx-

imate the P-value for our test as an upper tail probability of βχ2
d. When the first (Pn, Kn)

terms do not satisfy weak separability, we have Sn
p→∞, by noticing that for at least one set

of (j, k, j′, k′), the first term in Equation (A.1) (in the proof of Theorem 4) is on the order

of
√
n.

The consistent selection of (Pn, Kn) for hypothesis testing is a challenging problem.

The optimal choice of (Pn, Kn) needs to be defined according to the problem at hand and

subsequent analysis of interest. Here we focus on the subspace where the subsequent product

FPCA is going to be carried out. A criterion we will use to evaluate a given choice of Pn

and Kn is the “fraction of variance explained” (FVE) by the first Pn and Kn components,

defined as

FVE(Pn, Kn) =
1
n

∑n
i=1

∑Pn

j=1

∑Kn

k=1 χ̂
2
i,jk

1
n

∑n
i=1

∑∞
j=1

∑∞
k=1 χ̂

2
i,jk

. (2.9)

This definition can be justified by noting its relation to the normalized mean squared L2
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loss of the truncated process X̃(s, t) = µ(s, t) +
∑Pn

j=1

∑Kn

k=1 χjkψj(s)φk(t). In particular,

E(‖X − X̃‖2)
E(‖X − µ‖2)

= 1−
∑Pn

j=1

∑Kn

k=1 ηjk∑∞
j=1

∑∞
k=1 ηjk

.

The latter term is approximated by our definition of FVE. The above equality only relies

on the orthogonality of the eigenfunctions, not the weak separability assumptions. Thus, it

still makes sense to consider this definition of FVE even when H0 is not true.

We also define the “marginal FVEs” FVES(Pn) =
∑Pn

j=1 λ̂j/
∑∞

j=1 λ̂j and FVET (Kn) =∑Kn

k=1 γ̂k/
∑∞

k=1 γ̂k, where the λ̂j are the eigenvalues of ĈS and the γ̂k are the eigenvalues

of ĈT . In practice the infinite sums in the denominators of FVE(Pn, Kn), FVES(Pn), and

FVET (Kn) will have to be replaced with the largest number of terms that can reasonably

be considered nonzero.

Without assuming weak separability, we can derive that
∑

j Eχ2
jk = γk,

∑
k Eχ2

jk = λj

and
∑

j,k Eχ2
jk =

∑
j λj =

∑
k γk (to see, for example, that

∑
k Eχ2

jk = λj, take j = j′ in the

proof of Lemma 6). Hence, we have

FVE(Pn, Kn) & FVES(Pn) + FVET (Kn)− 1,

subject to estimation error. Therefore, we propose the following procedure to choose Pn and

Kn: First choose Pn and Kn such that the marginal FVEs are at least 90%. If this choice

results in FVE(Pn, Kn) ≥ 90%, use these values of Pn and Kn. If not, use the values of Pn

and Kn that have marginal FVEs at least 95%, in which case FVE(Pn, Kn) is expected to

be above 90%.

2.3.3 Bootstrap approximation

As an alternative to the χ2-type mixture approximation, we can consider a bootstrap ap-

proach to approximate the distribution of the test statistic. Theorem 4 provides theoretical

support for the empirical and parametric bootstrap procedures of this section (Van Der Vaart

& Wellner, 1996). Our simulations (see Section 2.4) show that the asymptotic approximation

based on the χ2-type mixture has very satisfactory performance and appears to be superior
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to the bootstrap approximation. We still present the bootstrap procedure here since it is ap-

plicable in concept to similar tests where the asymptotic null distributions do not have closed

form. Additionally, we have found the computational time of the empirical bootstrap can

be lower than that of the χ2-type mixture approximation as Pn and Kn become moderately

large.

Empirical bootstrap: At each step, draw a random sample from the data X1, . . . , Xn with

replacement. Denote this sample as X∗1 , . . . , X
∗
n. Let

χ̂∗i,jk =

∫
T

∫
S
(X∗i (s, t)− X̄∗(s, t))ψ̂∗j (s)φ̂∗k(t)dsdt, (2.10)

where X̄∗ is the sample mean of the X∗i , and the ψ̂∗j and φ̂∗k are the eigenfunctions of the

estimated marginal covariances of the X∗i . The signs of the ψ̂∗j and φ̂∗k are chosen to minimize

‖ψ̂∗j − ψ̂j‖ and ‖φ̂∗k − φ̂k‖, respectively. Let

T ∗n(j, k, j′, k′) =
1√
n

n∑
i=1

χ̂∗i,jkχ̂
∗
i,j′k′ . (2.11)

The empirical bootstrap test statistic is calculated as

S∗n =
∑

1≤j,j′≤Pn; 1≤k,k′≤Kn; (j,k)<(j′,k′)

(T ∗n(j, k, j′, k′)− Tn(j, k, j′, k′))2.

This procedure is repeated B times, and the P-value is approximated as the proportion of

bootstrap test statistics S∗n that are larger than the test statistic Sn.

Validity: Theorem 3.9.13 in Van Der Vaart & Wellner (1996) can be used to prove

the validity of the bootstrap procedure, i.e., the conditional random laws (given data) of

S∗n are asymptotically consistent almost surely for estimating the laws of Sn, under the null

hypothesis. By Theorem 4, we have that under the null hypothesis, Tn can be written as

Φ′P (
√
n(Pn−P ))+o(1) and T ∗n −Tn can be written as Φ′P (

√
n(P∗n−Pn))+o(1), where Φ′P is

a linear continuous mapping that depends on the three different cases in Theorem 4. Thus,

Theorem 3.9.13 applies.

Other than the above non-studentized empirical bootstrap based on Sn, we have also

considered a bootstrap procedure based on a marginally studentized test statistic, in which we
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divide each term of Sn by its corresponding estimated variance θ̂(j, k, j′, k′) (which is the plug-

in estimate of θ(j, k, j′, k′), the diagonal entry of Θ corresponding to the asymptotic variance

of Tn(j, k, j′, k′)). However, we have found this procedure is much more time consuming,

and requires substantially higher sample size to achieve high power, in comparison to the

non-studentized empirical bootstrap method (see Section 2.6). This is not unexpected, since

the form of θ(j, k, j′, k′) is very complicated and plug-in estimation adds extra variability.

Therefore, we do not recommend the marginally studentized empirical bootstrap method.

Parametric bootstrap: While the empirical bootstrap procedure requires no distribu-

tional assumptions on X, the parametric bootstrap procedure assumes X ∼ F (µ,C). We

perform the parametric bootstrap procedure as follows: At each step, generate independent

χ∗i,jk ∼ F (0, 1
n

∑n
i′=1 χ̂

2
i′,jk) and then define X∗i (s, t) = X̄(s, t) +

∑∞
j=1

∑∞
k=1 χ

∗
i,jkψ̂j(s)φ̂k(t).

In practice, the infinite sums will have to be replaced with the largest number of terms that

can reasonably be considered nonzero. Note that, conditional on the data X1, . . . , Xn, the

X∗i have a weakly separable covariance structure. Calculate the χ̂∗i,jk and T ∗n(j, k, j′, k′) as in

Equation (2.10) and Equation (2.11), respectively. The parametric bootstrap test statistic

is calculated as

S∗n =
∑

1≤j,j′≤Pn; 1≤k,k′≤Kn; (j,k)<(j′,k′)

(T ∗n(j, k, j′, k′))2.

This procedure is repeated B times, and the P-value is approximated as the proportion of

bootstrap test statistics S∗n that are larger than the test statistic Sn. It is common to take

F to be normal when performing this procedure, and we shall do so in our simulations (see

Section 2.6).

2.4 NUMERICAL STUDY

To numerically evaluate our test of weak separability for finite sample sizes, we perform the

test on simulated data. We generate independent samples of data

Xi(s, t) =
P∑
j=1

K∑
k=1

χi,jkψj(s)φk(t) (i = 1, . . . , n),
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where the scores χi,jk are mean 0 random variables that we generate directly. We use

P = K = 8 to evaluate the χ2-type mixture and (non-studentized) empirical bootstrap pro-

cedures. For this setting, we do not consider the more time-intensive parametric bootstrap,

which we defer to Section 2.6.

We let s and t take values from 0 to 1 on an evenly spaced grid of 20 points. We use

ψj(s) = −21/2 cos{π(j + 1)s} for j odd and ψj(s) = 21/2 sin(πjs) for j even, and we define

the φk by taking the first 3 B-spline functions produced by Matlab’s “spcol” function using

order 4 with knots at 0, 0.5, and 1, combining these with the first 5 ψj, and orthonormalizing

using Gram–Schmidt.

Let χi be the vector of χi,jk for j = 1, . . . , P ; k = 1, . . . , K. We simulate each χi

independently from either N(0,Σ) or the multivariate t distribution. In the latter case, we

first simulate a vector x of length PK from N(0,Σ). One standard definition of a multivariate

t vector is x/(u/v)1/2, where u is a chi-squared random variable with v degrees of freedom

that is independent of x. However, we use x/{u/(v − 2)}1/2 as our multivariate t vector so

that its covariance matrix is Σ. We take v = 6 in our simulations.

The diagonal values of Σ, the covariance matrix of the χjk, are determined by the matrix

V = {var(χjk), j = 1, . . . , P ; k = 1, . . . , K}. We consider two choices for V , which we denote

as V1 and V2. We choose V1 and V2 such that under H0 (when all of the off-diagonal values of

Σ are 0), V1 corresponds to a strongly separable covariance structure, while V2 corresponds

to a weakly separable structure that is not strongly separable.

We choose V1 and V2 to both give λj = exp{1.2(9−j)}/
{∑8

j′=1 exp(1.2j′)
}

(j = 1, . . . , 8)

and γk = exp{1.6(9 − k)}/
{∑8

k′=1 exp(1.6k′)
}

(k = 1, . . . , 8) as the eigenvalues of the

marginal covariances CS and CT , respectively. V1 is defined as the rank 1 matrix computed

from the outer product of the vectors of λj and γk, i.e.,

V1 =



0.6989
0.2105
0.0634
0.0191
0.0058
0.0017
0.0005
0.0002


[0.7981 0.1611 0.0325 0.0066 0.0013 0.0003 0.0001 0.0000]
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= 10−3 ×



557.7586 112.6095 22.7355 4.5902 0.9267 0.1871 0.0378 0.0076
167.9937 33.9173 6.8478 1.3825 0.2791 0.0564 0.0114 0.0023
50.5987 10.2157 2.0625 0.4164 0.0841 0.0170 0.0034 0.0007
15.2400 3.0769 0.6212 0.1254 0.0253 0.0051 0.0010 0.0002
4.5902 0.9267 0.1871 0.0378 0.0076 0.0015 0.0003 0.0001
1.3825 0.2791 0.0564 0.0114 0.0023 0.0005 0.0001 0.0000
0.4164 0.0841 0.0170 0.0034 0.0007 0.0001 0.0000 0.0000
0.1254 0.0253 0.0051 0.0010 0.0002 0.0000 0.0000 0.0000


.

V2 is a rank 2 matrix with first 2 rows multiples of each other and rows 3 through 8 multiples

of each other:

V2 =



0.6989 0
0.2105 0

0 0.0634
0 0.0191
0 0.0058
0 0.0017
0 0.0005
0 0.0002


[
0.8680 0.0955 0.0280 0.0072 0.0011 0.0002 0.0000 0.0000
0.0971 0.8194 0.0778 0.0003 0.0038 0.0011 0.0003 0.0001

]

= 10−3 ×



606.5983 66.7490 19.5788 5.0235 0.7557 0.1277 0.0193 0.0008
182.7039 20.1044 5.8970 1.5131 0.2276 0.0385 0.0058 0.0002
6.1565 51.9470 4.9350 0.0221 0.2398 0.0710 0.0202 0.0069
1.8543 15.6461 1.4864 0.0067 0.0722 0.0214 0.0061 0.0021
0.5585 4.7125 0.4477 0.0020 0.0218 0.0064 0.0018 0.0006
0.1682 1.4194 0.1348 0.0006 0.0066 0.0019 0.0006 0.0002
0.0507 0.4275 0.0406 0.0002 0.0020 0.0006 0.0002 0.0001
0.0153 0.1288 0.0122 0.0001 0.0006 0.0002 0.0001 0.0000


.

To study power, for a given choice of V1 or V2, we take cov(χi,12, χi,21) to be the largest

positive value such that Σ is positive definite, and we also consider half of this value. Al-

ternatively, we let 3 off-diagonal terms, cov(χi,12, χi,21), cov(χi,11, χi,22), and cov(χi,13, χi,31),

take their largest positive values such that Σ is positive definite.

For each of 200 trials, we simulate data Xi(s, t) (i = 1, . . . , n) in the manner described

above, estimate the marginal projection scores, calculate the test statistic, and obtain P-

values from the test procedures described in Section 2.3, using B = 1000 for the bootstrap

procedure. We show simulation results with (Pn, Kn) chosen by the FVE procedure described

in Section 2.3.2, and this procedure ends up choosing Pn = 3 and Kn = 2 in most trials. We

also consider using set values of (Pn, Kn) = (2, 2), (3, 3), or (4, 4) for all trials. Empirical

rejection rates at the .05 significance level with n = 50, 100, 500 are shown in Tables 1

through 4.

We see that both the χ2-type mixture approximation and the empirical bootstrap pro-

cedure are able to control the Type I error under all scenarios and achieve very good power
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as n or the signal increase, with the χ2-type mixture having slightly higher power than the

empirical bootstrap for smaller n. Note that even when the chosen nonzero off-diagonal

covariance terms are set to their maximum values, the other off-diagonal covariance terms of

Σ are zero, and so the signal is moderate. The test procedures are slightly less powerful in

the multivariate t case for smaller n, as the asymptotics likely come into play more quickly

for the normal data. The rejection rates are in general stable across different choices of

(Pn, Kn); although (Pn, Kn) = (2, 2) seems to have higher power in some cases, the power

stabilizes to a reasonable value for larger (Pn, Kn).

Table 1: Rejection rates for the χ2-type mixture weak separability test procedure, using V1

and choosing (Pn, Kn) with the fraction of variance explained procedure (FVE) or as (2, 2),

(3, 3), or (4, 4).

Normal Multivariate t

FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)

n = 50

H0 0.055 0.020 0.020 0.040 0.025 0.020 0.005 0.045

cov(χ12, χ21) = 0.065 0.715 0.785 0.740 0.755 0.440 0.445 0.395 0.370

cov(χ12, χ21) = 0.13 1.000 1.000 1.000 1.000 0.935 0.965 0.940 0.940

3 nonzero terms 1.000 1.000 1.000 1.000 0.960 0.990 0.990 0.965

n = 100

H0 0.035 0.075 0.045 0.050 0.025 0.040 0.020 0.010

cov(χ12, χ21) = 0.065 0.985 0.985 0.985 0.985 0.800 0.810 0.785 0.710

cov(χ12, χ21) = 0.13 1.000 1.000 1.000 1.000 1.000 0.990 0.990 0.990

3 nonzero terms 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000

n = 500

H0 0.060 0.060 0.040 0.055 0.020 0.045 0.020 0.045

cov(χ12, χ21) = 0.065 1.000 1.000 1.000 1.000 0.995 0.995 1.000 0.990

cov(χ12, χ21) = 0.13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 nonzero terms 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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2.5 MORTALITY DATA APPLICATION

We apply our test of weak separability to a longitudinal mortality dataset, which has pre-

viously been discussed in Chen & Müller (2012). The data are obtained from the Human

Mortality Database (www.mortality.org; Wilmoth et al. (2007)), and consist of period lifeta-

bles of different countries from around the world. These lifetables show mortality rates

across age for a specific period of time, giving surfaces of the form Xi(s, t), i = 1, . . . , n,

where Xi(s, t) denotes the mortality rate of country i in calendar year t for subjects of age

s. n = 27 countries were considered, and we assume the data from these countries to be

independent. Each country in the dataset has mortality rates measured on the same equally

spaced grid, where t takes integer values from 1960 to 2006, and s takes integer values from

60 to 100 (chosen since the interest is on death rates of older individuals). Mortality rates

tend to increase with age and decrease with year.

The covariance structure C(s, t;u, v) is of interest in studying changes in mortality over

age and year, and also is essential in subsequent modeling and analysis such as FPCA.

Note that C has dimension 41 × 47 × 41 × 47, resulting in about 3.7 × 106 entries. Direct

nonparametric estimation and visualization of C may be challenging. Looking to represent C

with separate components for age and year, we apply our test of weak separability using the

procedures from Section 2.3. The values of Pn and Kn are selected to be Pn = 2 and Kn = 4

by the FVE procedure described in Section 2.3.2, which gives FVE(Pn, Kn) = 0.9102. We

obtain a P-value of 0.0623 from the χ2-type mixture approximation and a P-value of 0.1160

from the empirical bootstrap procedure with B = 1000. These results are borderline, and

different choices of (Pn, Kn) result in similar P-values. The higher P-value for the empirical

bootstrap could reflect the trend we saw in the simulations for the empirical bootstrap to be

conservative in comparison to the χ2-type mixture. For illustrative purposes, we will assume

the data to be weakly separable.

We also apply the test of strong separability proposed by Aston et al. (2017) to this

dataset via their R package “covsep” (Tavakoli, 2016). We use their empirical bootstrap

test function with no studentization and B = 1000 to get a P-value of 0.011 for Pn = 2 and

Kn = 4. Since this P-value is low, we can conclude that strong separability is rejected for

23



the dataset.

Following Equation (2.5), we can approximate the covariance structure C(s, t;u, v) with

two strongly separable terms,

Ĉ(s, t;u, v) = a1Ĉ1
S(s, u)Ĉ1

T (t, v) + a2Ĉ2
S(s, u)Ĉ2

T (t, v).

Here, a1 = 0.2520 × 10−3 and a2 = 0.0167 × 10−3. The components of the two separable

covariance structures are plotted in Figure 2. Here, Ĉ l
S(s, u) and Ĉ l

T (t, v) are the estimated

versions of C l
S(s, u) and C l

T (t, v), respectively, calculated using the estimated versions of the

marginal eigenfunctions and marginal projection scores. The covariance between mortality

rates in years t and v is a weighted sum of two covariance structures, Ĉ1
T (t, v) and Ĉ2

T (t, v),

which both show that the cross covariance decays as the two years t and v move further apart.

The first component Ĉ1
T (t, v) indicates increased covariation around 1980-1990, possibly

pointing to widespread societal changes during those years. The second component Ĉ2
T (t, v)

shows increasing covariation in more recent years. Ĉ1
T (t, v) is weighted more heavily than

Ĉ2
T (t, v) as determined mainly by a1 and a2, but we also observe from Ĉ2

S(s, u) that the

weights on Ĉ2
T (t, v) increase for the oldest ages (post 90).

The covariance between mortality rates for two ages s and u is also a weighted sum of two

covariance structures. The first component Ĉ1
S(s, u) captures the main trend of an increased

covariance as age increases. The second component Ĉ2
S(s, u) characterizes a low negative

cross covariance between the oldest (post 90) and less old mortalities. The first component

Ĉ1
S(s, u) captures the main covariance structure over age, but the relative weights on Ĉ2

S(s, u)

(as determined by the values of Ĉ2
T (t, v)) increase in recent years (after 2000).

2.6 ADDITIONAL SIMULATIONS

In Section 2.3.3 we have mentioned a possible studentized version of the empirical bootstrap

test statistic. Let θ(j, k, j′, k′) be a diagonal term of the asymptotic covariance Θ from
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Corollary 5, so that θ(j, k, j′, k′) is the asymptotic variance of Tn(j, k, j′, k′). We now consider

a marginally studentized test statistic defined as

S̃n =
∑

1≤j,j′≤Pn, 1≤k,k′≤Kn, (j,k)<(j′,k′)

(Tn(j, k, j′, k′))2/θ̂(j, k, j′, k′),

where θ̂(j, k, j′, k′) is the plug-in estimate of θ(j, k, j′, k′), calculated using the procedure

described in the proof of Corollary 5. Analogous to the procedure of Section 2.3.3, we

approximate the distribution of S̃n using an empirical bootstrap procedure, with bootstrap

test statistic defined as

S̃∗n =
∑

1≤j,j′≤Pn, 1≤k,k′≤Kn, (j,k)<(j′,k′)

(T ∗n(j, k, j′, k′)− Tn(j, k, j′, k′))2/θ̂∗(j, k, j′, k′),

where θ̂∗(j, k, j′, k′) is the version of θ̂(j, k, j′, k′) calculated using the resampled data. We

repeat several of the simulations from Section 2.4 using this marginally studentized empir-

ical bootstrap method, and empirical rejection rates at the .05 significance level from 200

simulation runs are shown in Table 5 using V2 (the results for V1, not shown, were sim-

ilar). Compared to the non-studentized empirical bootstrap method presented in Section

2.4, the marginally studentized empirical bootstrap requires substantially higher sample size

to achieve high power, and is much more time consuming. Its inferior performance is not

surprising, as the form of θ(j, k, j′, k′) is very complicated and plug-in estimation adds extra

variability.

Although the performance of our weak separability testing procedures cannot be directly

compared with existing strong separability testing procedures, we apply the strong separabil-

ity test of Aston et al. (2017) to our simulations to illustrate some aspects of the simulation

design. We perform their test using their R package “covsep” (Tavakoli, 2016). In Table 6

we include the results from 200 simulation runs for n = 100 and V2 (H0 corresponds to weak

separability but not strong separability), using their asymptotic χ2 test and bootstrap tests

(with B = 1000). As expected, the strong separability tests reject with high power under

H0 and all cases of Ha. In Table 7, we show results for the case of V1 (H0 corresponds to

strong separability), again using 200 trials. Here, their asymptotic χ2 test, which relies on

Gaussian assumptions, is invalid for the multivariate t setting, and requires large n (n = 500
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in our simulations) to respect the .05 significance level under H0 for the normal setting.

Their empirical bootstrap procedures control the Type I error under H0 when n = 100 for

both normal and multivariate t data.

However, as shown in Table 7, the Aston et al. (2017) strong separability test does not

achieve high power under the Ha cases with V1. Under this scenario, the array V = V1

does have rank one, but the covariance is not strongly separable since Σ has nonzero off-

diagonal values (our Lemmas 2 and 3 show that strong separability is weak separability plus

rank(V ) = 1). The tests proposed by Aston et al. (2017) are based on the terms TN(r, s) =
√
N
(

1
N

∑N
k=1〈Xk − X̄N , v̂i ⊗ ûj〉2 − λ̂rγ̂s

)
(defined in their Equation 2.4 and after), which

in our understanding mainly characterize the difference between the empirical V and the

outer product of the marginal eigenvalues ΛΓT (Aston et al. (2017) normalize their marginal

covariances so that a from our Lemma 3 is 1). Therefore, it is not unexpected that their

test has very low power of detecting deviations from strong separability under this setting,

where the deviation occurs in the off-diagonal terms of Σ.

To evaluate the parametric bootstrap weak separability testing procedure, we consider

a setting that uses P = K = 3 instead of P = K = 8. We generate the marginal pro-

jection scores analogously to Section 2.4, defining the marginal eigenfunctions as ψ1(s) =

−21/2cos(2πs), ψ2(s) = 21/2sin(2πs), and ψ3(s) = −21/2cos(4πs), and setting the φk to be

the first 3 B-spline functions produced by Matlab’s “spcol” function using order 4 with knots

at 0, 0.5, and 1. We consider for the variances of the scores an analog of V2 defined as

V3 =

[
1 0
0 .6
0 .4

] [
.6652 .2447 .0900
.7856 .1753 .0391

]
=

[
0.6652 0.2447 0.0900
0.4714 0.1052 0.0235
0.3142 0.0701 0.0156

]
.

Under H0, like V2, V3 corresponds to a weakly separable structure that is not strongly

separable. Using V3, the leading eigenvalues of the marginal covariances CS and CT are

(1.0000, 0.6000, 0.4000) and (1.4508, 0.4200, 0.1291). To study power in this setting, we

take all off-diagonal values of Σ to be zero except cov(χi,12, χi,21) = c, where c is some

constant. c = 0 indicates that H0 is true, while |c| > 0 indicates that H0 is violated, and H0

is violated to a larger degree for larger |c|. We take c to be the largest positive value, rounded

down to the nearest hundredth, such that Σ is positive definite. We also do simulations with

c taken to be half of this value. Alternatively, we consider a covariance structure with

26



cov(χi,11, χi,12) = b, cov(χi,21, χi,22) = −3b/4, and cov(χi,31, χi,32) = −b/4, where b is some

constant. Note that these covariance terms satisfy Lemma 6. We do simulations where b is

chosen as the largest positive value, rounded down to the nearest hundredth, such that Σ is

positive definite, as well as half of this value.

In Table 8, we show simulation results from 200 trials using P = K = 3 and V3. (Pn, Kn)

is chosen by the FVE procedure described in Section 2.3.2, and this procedure ends up

choosing Pn = 3 and Kn = 2 in most trials. In performing the parametric bootstrap, using

the notation of Section 2.3.3, we generate the resampled data by generating independent

χ∗i,jk ∼ N(0, 1
n

∑n
i′=1 χ̂

2
i′,jk), j = 1, . . . , 3, k = 1, . . . , 3, and then setting X∗i (s, t) = X̄(s, t) +∑3

j=1

∑3
k=1 χ

∗
i,jkψ̂j(s)φ̂k(t). As in Section 2.4, the χ2-type mixture and empirical bootstrap

respect the null and achieve high power as n or the signal increase, though here the empirical

bootstrap is more noticeably less powerful than the χ2-type mixture for smaller n. The

parametric bootstrap performs comparably to the χ2-type mixture approximation for the

normal data, but is invalid for multivariate t data. We observed similar results when we

performed these simulations using a 3× 3 analog of V1 (not shown).

As an alternative simulation method, we generate the data Xi(s, t) (i = 1, . . . , n) i.i.d.

directly from a distribution with mean 0 and covariance structure C, defined as follows:

C(s, t;u, v) =
1

(t− v)2 + 1
exp

(
− (s− u)2

(t− v)2 + 1

)
. (2.12)

This covariance structure is taken from Example 1 in Gneiting (2002). It is a stationary

covariance structure, meaning it depends only on the differences s − u and t − v, and it

is not strongly separable. Gneiting (2002) suggests covariance structures of this type to

model space-time data, for example those pertaining to environmental factors such as wind

speed. This covariance structure is also used by Aston et al. (2017) in their simulations as

an example of a non-strongly separable covariance structure.

For 200 trials, we simulate data Xi(s, t) (i = 1, . . . , n) from either multivariate normal

or multivariate t with 6 degrees of freedom, using the above covariance structure. Table

9 shows the simulation results for the weak separability testing procedures. The rejection

rates (excluding those of the parametric bootstrap procedure for multivariate t data, which as

discussed above are invalid in this case) are near or below .05, suggesting that this covariance
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structure, though not strongly separable, is weakly separable. Using the FVE-based rule of

thumb described in Section 2.3.2, most trials in these simulations end up with Pn = 2 and

Kn = 2.

We visualize a few slices of C(s, t;u, v) from Equation (2.12) in Figure 3, and compare

these to the weakly separable approximation

Ĉ(s, t;u, v) =
2∑
j=1

2∑
k=1

(
1

n

n∑
i=1

χ̂2
i,jk)ψ̂j(s)ψ̂j(u)φ̂k(t)φ̂k(v),

which is also plotted in Figure 3. Here, the estimated eigenfunctions and scores are obtained

from a sample Xi(s, t), i = 1, . . . , 500, that are generated i.i.d. normal with mean 0 and

covariance structure C, with s and t taking values from 0 to 1 on an evenly spaced grid of

100 points. We see that C(s, t;u, v) and Ĉ(s, t;u, v) are fairly similar, supporting the results

of the test of weak separability.
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Table 2: Rejection rates for the χ2-type mixture weak separability test procedure, using V2

and choosing (Pn, Kn) with the fraction of variance explained procedure (FVE) or as (2, 2),

(3, 3), or (4, 4).

Normal Multivariate t

FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)

n = 50

H0 0.030 0.025 0.030 0.025 0.015 0.030 0.015 0.005

cov(χ12, χ21) = 0.055 0.515 0.845 0.440 0.465 0.305 0.555 0.225 0.205

cov(χ12, χ21) = 0.11 0.995 0.995 0.995 0.990 0.850 0.955 0.825 0.770

3 nonzero terms 1.000 1.000 1.000 1.000 0.965 0.985 0.950 0.970

n = 100

H0 0.045 0.055 0.035 0.040 0.010 0.050 0.040 0.020

cov(χ12, χ21) = 0.055 0.920 0.990 0.930 0.920 0.625 0.900 0.605 0.500

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 0.990 1.000 0.965 0.955

3 nonzero terms 1.000 1.000 1.000 1.000 0.995 1.000 1.000 0.980

n = 500

H0 0.045 0.065 0.025 0.040 0.025 0.065 0.050 0.035

cov(χ12, χ21) = 0.055 1.000 1.000 1.000 1.000 0.970 1.000 0.995 0.995

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.995

3 nonzero terms 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3: Rejection rates for the non-studentized empirical bootstrap weak separability test

procedure, using V1 and choosing (Pn, Kn) with the fraction of variance explained procedure

(FVE) or as (2, 2), (3, 3), or (4, 4).

Normal Multivariate t

FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)

n = 50

H0 0.035 0.025 0.035 0.025 0.010 0.010 0.005 0.005

cov(χ12, χ21) = 0.065 0.670 0.680 0.650 0.640 0.350 0.375 0.330 0.300

cov(χ12, χ21) = 0.13 1.000 1.000 1.000 1.000 0.890 0.900 0.885 0.880

3 nonzero terms 1.000 1.000 1.000 1.000 0.920 0.920 0.920 0.915

n = 100

H0 0.070 0.060 0.060 0.060 0.015 0.010 0.015 0.015

cov(χ12, χ21) = 0.065 0.990 0.995 0.985 0.985 0.735 0.785 0.700 0.680

cov(χ12, χ21) = 0.13 1.000 1.000 1.000 1.000 0.970 0.970 0.965 0.960

3 nonzero terms 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n = 500

H0 0.065 0.050 0.060 0.060 0.055 0.050 0.055 0.055

cov(χ12, χ21) = 0.065 1.000 1.000 1.000 1.000 0.995 0.995 0.995 0.995

cov(χ12, χ21) = 0.13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 nonzero terms 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: Rejection rates for the non-studentized empirical bootstrap weak separability test

procedure, using V2 and choosing (Pn, Kn) with the fraction of variance explained procedure

(FVE) or as (2, 2), (3, 3), or (4, 4).

Normal Multivariate t

FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)

n = 50

H0 0.065 0.045 0.050 0.045 0.015 0.020 0.010 0.010

cov(χ12, χ21) = 0.055 0.420 0.785 0.390 0.380 0.220 0.395 0.160 0.150

cov(χ12, χ21) = 0.11 0.970 1.000 0.965 0.965 0.730 0.865 0.690 0.675

3 nonzero terms 1.000 1.000 1.000 1.000 0.895 0.925 0.885 0.885

n = 100

H0 0.025 0.010 0.020 0.020 0.035 0.035 0.030 0.020

cov(χ12, χ21) = 0.055 0.950 1.000 0.955 0.955 0.585 0.855 0.575 0.515

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 0.980 0.995 0.980 0.975

3 nonzero terms 1.000 1.000 1.000 1.000 0.985 0.990 0.985 0.985

n = 500

H0 0.030 0.065 0.030 0.030 0.010 0.035 0.005 0.000

cov(χ12, χ21) = 0.055 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 nonzero terms 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 2: Plot of the components of the decomposition of C(s, t;u, v) for the mortality data.

To improve visibility, slight smoothing was done on Ĉ1
T and Ĉ2

T .
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Table 5: Rejection rates for the marginally studentized empirical bootstrap weak separability

test procedure, using V2 and choosing (Pn, Kn) with the FVE procedure or as (2, 2), (3, 3),

or (4, 4).

Normal Multivariate t

FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)

n = 100

H0 0.030 0.060 0.020 0.000 0.000 0.015 0.000 0.000

cov(χ12, χ21) = 0.11 0.405 0.550 0.265 0.035 0.140 0.265 0.045 0.000

n = 500

H0 0.040 0.065 0.040 0.010 0.025 0.025 0.020 0.000

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 0.970 0.980 0.935 0.675

n = 1000

H0 0.070 0.060 0.060 0.030 0.040 0.030 0.020 0.010

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 0.970 0.970 0.970 0.930
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Table 6: Rejection rates for the strong separability test procedures of Aston et al. (2017),

using V2 and n = 100, and choosing (Pn, Kn) with the FVE procedure or as (2, 2), (3, 3),

or (4, 4). The test procedures include asymptotic χ2, non-studentized empirical bootstrap

(“non-studentized”), and marginally studentized empirical bootstrap (“marginal”).

Normal Multivariate t

FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)

asymptotic χ2

H0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

cov(χ12, χ21) = 0.055 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 nonzero terms 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

non-studentized

H0 1.000 1.000 1.000 1.000 1.000 0.985 1.000 1.000

cov(χ12, χ21) = 0.055 1.000 1.000 1.000 1.000 0.990 0.985 0.990 0.990

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 0.975 0.950 0.975 0.975

3 nonzero terms 1.000 1.000 1.000 1.000 0.975 0.955 0.990 0.990

marginal

H0 1.000 1.000 1.000 1.000 0.995 0.970 0.995 1.000

cov(χ12, χ21) = 0.055 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000

cov(χ12, χ21) = 0.11 1.000 1.000 1.000 1.000 0.975 0.905 0.990 0.995

3 nonzero terms 1.000 1.000 1.000 1.000 0.975 0.915 0.990 1.000
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Table 7: Rejection rates for the strong separability test procedures of Aston et al. (2017),

using V1 and choosing (Pn, Kn) with the FVE procedure or as (2, 2), (3, 3), or (4, 4). The test

procedures include asymptotic χ2, non-studentized empirical bootstrap (“non-studentized”),

and marginally studentized empirical bootstrap (“marginal”). The asymptotic χ2 procedure

uses n = 500, while the bootstrap procedures use n = 100.

Normal Multivariate t

FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)

asymptotic χ2

H0 0.050 0.035 0.050 0.040 0.290 0.285 0.380 0.560

cov(χ12, χ21) = 0.065 0.045 0.040 0.050 0.040 0.320 0.295 0.415 0.610

cov(χ12, χ21) = 0.13 0.080 0.085 0.095 0.090 0.290 0.230 0.360 0.545

3 nonzero terms 0.135 0.140 0.105 0.090 0.370 0.305 0.405 0.535

non-studentized

H0 0.055 0.055 0.060 0.060 0.055 0.060 0.055 0.055

cov(χ12, χ21) = 0.065 0.070 0.070 0.070 0.070 0.060 0.060 0.060 0.060

cov(χ12, χ21) = 0.13 0.065 0.065 0.065 0.065 0.055 0.055 0.055 0.055

3 nonzero terms 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055

marginal

H0 0.045 0.050 0.060 0.040 0.035 0.040 0.060 0.035

cov(χ12, χ21) = 0.065 0.050 0.050 0.040 0.040 0.040 0.050 0.035 0.030

cov(χ12, χ21) = 0.13 0.055 0.060 0.055 0.045 0.045 0.050 0.050 0.050

3 nonzero terms 0.025 0.045 0.030 0.025 0.050 0.045 0.050 0.035
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Table 8: Rejection rates for the weak separability test procedures using P = K = 3 and V3.

“χ2” denotes the χ2-type mixture approximation, “Emp” denotes the empirical bootstrap,

and “Para” denotes the parametric bootstrap.

Normal Multivariate t

χ2 Emp Para χ2 Emp Para

n = 50

c = 0, b = 0 0.040 0.000 0.060 0.015 0.000 0.330

c = .165, b = 0 0.610 0.100 0.775 0.295 0.015 0.875

c = .33, b = 0 0.985 0.530 1.000 0.910 0.210 1.000

c = 0, b = .145 0.710 0.230 0.875 0.470 0.060 0.905

c = 0, b = .29 0.960 0.475 1.000 0.850 0.340 1.000

n = 100

c = 0, b = 0 0.055 0.010 0.090 0.020 0.000 0.345

c = .165, b = 0 0.960 0.690 0.995 0.700 0.250 0.980

c = .33, b = 0 1.000 0.905 1.000 0.985 0.695 1.000

c = 0, b = .145 0.990 0.760 0.995 0.785 0.325 0.985

c = 0, b = .29 1.000 0.865 1.000 0.945 0.620 1.000

n = 500

c = 0, b = 0 0.035 0.040 0.045 0.030 0.015 0.445

c = .165, b = 0 1.000 1.000 1.000 1.000 0.980 1.000

c = .33, b = 0 1.000 1.000 1.000 1.000 1.000 1.000

c = 0, b = .145 1.000 1.000 1.000 0.995 0.955 1.000

c = 0, b = .29 1.000 1.000 1.000 1.000 0.960 1.000

Table 9: Rejection rates for the weak separability test procedures using the covariance

structure from Equation (2.12). “χ2” denotes the χ2-type mixture approximation, “Emp”

denotes the empirical bootstrap, and “Para” denotes the parametric bootstrap.

Scenario n=100 n=500

χ2 Emp Para χ2 Emp Para

Normal 0.045 0.055 0.060 0.050 0.035 0.045

Multivariate t 0.020 0.050 0.215 0.025 0.035 0.210
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Figure 3: Plots of C(s, t;u, v) and Ĉ(s, t;u, v) for fixed values of u and v, where C is the

covariance structure from Equation (2.12).
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3.0 BRAIN IMAGING DATA ANALYSIS

3.1 BACKGROUND

Brain imaging analysis is an area where functional data increasingly arise. In particular,

there is an increasing interest in statistical modeling in studies using Functional Magnetic

Resonance Imaging (fMRI) and Magnetoencephalography (MEG) data (Lindquist et al.,

2008; Chavez et al., 2010; Larson-Prior et al., 2013; Eloyan et al., 2014). An important

goal in these studies is to analyze functional connectivity, which “is defined as the temporal

dependency of neuronal activation patterns of anatomically separated brain regions” (Van

Den Heuvel & Pol, 2010). We focus on MEG, which measures neuronal activity by record-

ing magnetic fields generated within the brain. Due to the high temporal resolution and

oscillatory nature of the MEG signal, MEG-based connectivity measures are calculated as

functions of time and frequency, and thus can naturally be analyzed as two-way functional

data. In this chapter we show how our methods can be applied to MEG data to analyze

functional connectivity between two chosen regions of the brain.

We use MEG data collected through the Human Connectome Project (HCP), a study

that has compiled a large amount of high quality multi-modal neural data (Van Essen et al.,

2013). The project, which started in 2009, is led by groups from Washington University,

University of Minnesota, and Oxford University. It has obtained fMRI and MEG scans

for resting state and task experimental designs using 1200 human subjects, which include

healthy adults with ages ranging from 22 to 35 years old. 100 subjects have MEG data,

and these subjects are comprised of 50 monozygotic twin pairs (Larson-Prior et al., 2013),

but in our analyses we do not use the pair info. Much of the data, both raw and processed

to varying degrees, have been made freely accessible through the HCP’s ConnectomeDB
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database. Additionally, the HCP has continuously carried out analyses of the data, one of its

aims being to generate a “parcellated connectome” of networks within the brain (Van Essen

et al., 2013).

MEG uses a helmet of magnetometers around the subject’s head to record magnetic

fields generated within the brain. This gauges current density from within the brain that

can represent neuronal activity. The temporal resolution of MEG is about 1 millisecond.

Functional connectivity between spatially separated regions of the brain has been shown to

change over time, and the high temporal resolution of MEG is useful in detecting coupling

of distinct regions at various frequencies (Pizzella et al., 2014). However, because of the

distance of the sensors from the brain (a few centimeters), the spatial resolution of MEG

is no more than 10 millimeters at the surface of the brain (Larson-Prior et al., 2013), and

source reconstruction methods are often used to try to recover the true signal originating at

the cortical surface (see Section 3.2.2). We will focus on source-reconstructed data, but in

Section 3.3.2 we will also consider analyses using only the raw signals from the sensors.

MEG data from the HCP is collected using a whole head MAGNES 3600 in a magnetically

shielded room (Larson-Prior et al., 2013). Each scan uses around 250 magnetometer sensors,

as well as around 20 reference sensors placed far from the head to estimate ambient noise

levels. Different types of MEG studies have been done as part of the HCP, and we will focus

on the motor and working memory tasks due to their relatively simple designs and numerous

trials.

The MEG session in which motor task data is collected is split into several blocks, each

with 10 trials. The subjects face a screen, and in each trial they are directed by an arrow

on the screen to move a body part. Depending on the block, this body part is either the

right hand, left hand, right foot, or left foot. In each trial of the working memory session,

an image is displayed for 2 seconds, after which the subject has 0.5 seconds to indicate,

with the push of a button, whether the image matches a “target” image that was shown

earlier. In each trial of the “0-back” blocks, the subject must decide whether the displayed

image matches the image that was shown at the beginning of the block. In each trial of the

“2-back” blocks, the subject must decide whether the displayed image matches what was

shown 2 images prior. More details about the tasks can be found in WU-Minn HCP (2017).
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3.2 PROCESSING THE DATA

3.2.1 HCP preprocessed data

We start with the sensor-level preprocessed MEG data from the HCP’s “tmegpreproc”

pipeline, where the signal from each sensor has been separated into trials as described above.

Faulty sensors have been removed, as well as trials/sensors with excessive noise or artifacts

due to head motion (WU-Minn HCP, 2017). The sensor time series are demeaned and fil-

tered through a band-pass filter of 1.3-150 Hz, and components of the signal resulting from

artifacts such as cardiac pulsation or eye movement have been classified and removed using

independent component analysis (Van Essen et al., 2013; WU-Minn HCP, 2017).

We download the data from the HCP Amazon S3 bucket using the “hcp” package of the R

platform Neuroconductor (Muschelli, 2017). Credentials for access to the Amazon S3 bucket

can be obtained from the HCP ConnectomeDB website (https://db.humanconnectome.org).

3.2.2 Source reconstruction

From the preprocessed MEG data, we derive two-way functional connectivity data using

the Matlab package FieldTrip (Oostenveld et al., 2010). We are interested in calculating

connectivity between different regions of interest (ROIs) of the brain. As the sensors are

distant from the brain, using their signals to represent ROIs can lead to spurious connectivity

measurements. This is due to the volume conduction/field spread problem, in which each

sensor picks up the activity of several sources, as well as the common input problem, in

which a common source provides input to a pair of signals that do not directly interact

(Larson-Prior et al., 2013; Bastos & Schoffelen, 2015). With this in mind, we use source

reconstruction to estimate the signals that we imagine directly arising at the locations of

the ROIs. Source reconstruction is common in MEG analysis, but it is an inverse problem

on which constraints must be placed to obtain a unique solution (Pizzella et al., 2014). The

problem either models the sources as a few current dipoles corresponding to a few brain

regions, or considers a grid of current dipoles across the brain. We will take the latter

approach, generating signals for dipoles distributed across the cortical surface, and then
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averaging the signals of all the dipoles within each ROI.

The source reconstruction method we use is Minimum Norm Estimation (MNE). This is

a widely used method that is implemented in FieldTrip, but it should be noted that many

competing source reconstruction methods exist, and each has strengths and drawbacks (Ou

et al., 2009; Jensen & Hesse, 2010). We observe signals xi(t), i = 1, . . . , N , where N is

the number of sensors. We wish to determine the current magnitudes yj(t) of the dipoles,

j = 1, . . . ,M , where M is the number of dipoles in a dense grid on the cortical surface, and

M is usually much larger than N . We denote the signals of the sensors at time t as a vector

x = [x1(t), . . . , xN(t)]T and the current magnitudes as y = [y1(t), . . . , yM(t)]T . Given a model

of the grid of dipoles and a volume conduction model of the head, Maxwell’s equations in the

quasistatic case can be used to derive the linear relationship x = Ay, known as the forward

model, where A is a known N ×M matrix (which is derived independently of x and does

not depend on t) called the lead field (Dale & Sereno, 1993; Hämäläinen & Ilmoniemi, 1994;

Jensen & Hesse, 2010). The forward model presents an underdetermined system of linear

equations.

A more general version of the problem takes x = Ay + n, where n is a vector of inde-

pendent measurement errors. y is taken to be a random vector, the covariance matrices of

y and n are assumed to be known, and the solution is taken to be of the form ŷ = Wx for

some M ×N matrix W (Dale & Sereno, 1993; Dale et al., 2000; Lin et al., 2004). FieldTrip

uses the formulation of Lin et al. (2004), which, for estimates C and R of the covariance

matrices of n and y, respectively, and a scaling parameter λ related to the signal-to-noise

ratio, minimizes

‖C−1/2(x− Ay)‖22 + λ2‖R−1/2y‖22

over y, where ‖ · ‖2 denotes the L2 norm. This has the solution W = RAT (ARAT + λ2C)−1.

Note that in practice, the forward model takes the current at each dipole to be a vector

quantity, and models the x, y, and z components of each current dipole separately, so M is

actually 3 times the number of current dipoles. Thus, for each dipole we end up with 3 time

series, and to get a single time series we project the current vector at each time point onto

the orientation that was found to be the strongest over time.

For each subject, the HCP provides a volume conduction model of the head, and a source
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model which defines positions of 8004 dipoles on the surface of the brain. The positions of

the dipoles have been registered across subjects so that each dipole is comparable (WU-Minn

HCP, 2017). FieldTrip provides an atlas file that assigns each of these dipoles to a region

based on Glasser et al. (2016), and from this we choose which source reconstructed signals

to average to generate a time series for a given ROI.

3.2.3 Time-frequency representation

MEG signals are inherently oscillatory, and synchronization at certain frequency ranges of

the activity in different ROIs has been shown to be related to tasks performed by the brain

(Pizzella et al., 2014). This synchronization is generally not captured by simple connectivity

measures like Pearson correlation, as they ignore the temporal nature of the signals (Bastos

& Schoffelen, 2015). To study how frequency-based coupling between ROIs changes over the

course of a task, we calculate the time-frequency representations (TFRs) of their signals.

The TFR of a signal is its representation at time t and frequency s as a complex number

A(s, t)eiB(s,t), where A(s, t) is the amplitude and B(s, t) is the phase.

There are several ways to calculate the TFR, including Fourier decomposition, wavelet

analysis, and Hilbert transformation, and these methods have been found to produce similar

results (Le Van Quyen et al., 2001; Quiroga et al., 2002; Bastos & Schoffelen, 2015). We use

the method of Morlet wavelets, which is implemented in FieldTrip’s ft freqanalysis function.

For each pair of time and frequency points (s0, t0) of interest, we consider a window of

time points around t0 whose size depends on s0, using a larger window for smaller s0. We

construct a complex Morlet’s wavelet function (also known as a complex Gabor wavelet) as

w(s0, t) = A exp(−t2/(2σ2)) exp(i2πs0t), where A = (σ
√
π)−1/2 is a normalization constant

and σ = m/(2πs0) determines how wide a time window around t0 is considered, where m is

a constant. Denoting our signal as x(t), the TFR at (s0, t0) is calculated as the convolution

of x with the wavelet, i.e.,
∫∞
−∞ x(t)w(s0, t0− t)dt. Following Chavez et al. (2010), we choose

m = 7, which is also FieldTrip’s default value. This choice indicates the time window

around t0 includes approximately 7 cycles of the frequency s0 (although the convolution is

over infinity, the values of the wavelet function outside this window are seen as negligible).

42



For the motor data, the signal for each trial is recorded from -1.2 to 1.2 seconds in

intervals of about 2 ms, where time 0 corresponds to the start of an Electromyographic

(EMG) signal, which indicates motion of the body part using electrodes attached to the

hands and feet. From plotting examples of the EMG signal, we find the motion usually lasts

no longer than about .75 seconds. The signal at a time period shortly before time 0 is of

interest, as it can represent brain activity when the subjects have received the movement

cue but have not yet reacted to it. However, the trials are not disjoint, so the signal at times

further before 0 overlaps with the signal from the end of the previous trial. Thus, in our

analysis we consider times for each trial in the range of -.25 to .75 seconds. We only consider

trials in which the right hand moved. In the preprocessed data, there are 61 subjects with

motor data, and the subjects have an average of 75.38 of these trials.

For the working memory data, the signal for each trial is recorded from -1.5 to 2.5

seconds in intervals of about 2 ms, where time 0 is defined to be when the image is shown.

The image is shown for 2 seconds before the subjects can respond by pushing the button,

so we will consider times for each trial on the range of 0 to 2 s, since this is when subjects

are using their working memory. We will consider two datasets, one using the 2-back trials,

and another using the 0-back trials. In each, we will only use the trials where the subjects

answered correctly. In the preprocessed data, there are 83 subjects with working memory

data, and the average number of correct trials is 68.83 and 68.71 for the 2-back and 0-back

designs, respectively.

MEG studies often group activity into 8 bands of frequencies, which are defined in Table

10, with task-based MEG usually modulating power within the theta through gamma bands

(Larson-Prior et al., 2013). Because we calculate the time-frequency representation using

wider time windows for lower frequencies, we are limited in how low of frequencies we can

consider. Our preliminary results for power (see Section 3.2.4) show a lack of activity above

50 Hz in our data. With these considerations, we calculate the TFRs using frequencies from

the alpha to gamma low bands, i.e., 8 to 50 Hz. We use a spacing of 1 Hz between frequency

points, and .01 s between time points. Thus, the TFRs (and hence the connectivity functions

of the following section) are calculated on 43× 101 grids for the motor dataset and 43× 201

grids for the working memory datasets.
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Table 10: Frequency bands.

Frequency band Frequency range (Hz)

Delta 1.5-4

Theta 4-8

Alpha 8-15

Beta low 15-26

Beta high 26-35

Gamma low 35-50

Gamma mid 50-76

Gamma high 76-120

3.2.4 Connectivity analysis

We construct two-way functional data as connectivity between the signals representing ROIs.

Many functional connectivity measures are based on an analog of the cross-correlation func-

tion called the coherence (Bastos & Schoffelen, 2015). Given TFRs A1,k(s, t)e
iB1,k(s,t) and

A2,k(s, t)e
iB2,k(s,t) for two signals recorded at trial k, k = 1, . . . , nT , the coherence is calculated

as
(1/nT )

∑nT

k=1A1,k(s, t)A2,k(s, t)e
i(B1,k(s,t)−B2,k(s,t))√

{(1/nT )
∑nT

k=1A
2
1,k(s, t)}{(1/nT )

∑nT

k=1A
2
2,k(s, t)}

.

We consider the Phase Locking Value (PLV) (Lachaux et al., 1999), which disregards the

amplitudes and considers only the magnitude of the average of the phase differences as unit

vectors in the complex plane. It is defined as

PLV(s, t) = (1/nT)

∣∣∣∣∣
nT∑
k=1

ei(B1,k(s,t)−B2,k(s,t))

∣∣∣∣∣ .
The PLV takes values from 0 to 1, with 1 indicating complete phase synchrony over trials

and 0 indicating no phase synchrony. The PLV has gained popularity due to the belief

that phase differences reveal more about functional connectivity than changes in amplitude

(Lachaux et al., 1999; Aydore et al., 2013; Bastos & Schoffelen, 2015). A downside of the

PLV is that mixing of the signals due to field spread can lead to artificially high connectivity
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at 0 phase lag (Aydore et al., 2013). However, field spread should be less of an issue when

source reconstruction is used. The imaginary part of the coherence has been proposed as

an alternative connectivity measure that removes the 0 phase part of the signal (Bastos &

Schoffelen, 2015), but it is harder to interpret due it taking on values between -1 and 1,

where the sign depends on which signal is defined to be the first.

A conceptual illustration of what PLV measures can be seen in Figure 3 in Bastos &

Schoffelen (2015). This figure shows 3 examples, denoted (A), (B), and (C), of 2 waveforms

of frequency f over 4 trials, plotting their imaginary parts as well as the complex exponential

of their phase difference, i.e., ei(B1,k(f,t)−B2,k(f,t)). The latter is plotted as a vector in the

complex plane. The waveforms can be thought of as TFRs with their amplitudes removed,

both evaluated at frequency f . In (A), the 2 waveforms have 0 phase lag, i.e., B1,k(f, t) −

B2,k(f, t) = 0, over all trials. In (B), the waveforms have a phase lag of π/2 radians, i.e.,

B1,k(f, t)−B2,k(f, t) = π/2, over all trials. In (C), the phase lags over the 4 trials are 0, π/2,

π, and 3π/2, respectively. (A) and (B) would both result in PLVs of 1 at frequency f , since

in both examples ei(B1,k(f,t)−B2,k(f,t)) is the same over all trials. (C) would result in a PLV of

0 at frequency f , since the vectors representing ei(B1,k(f,t)−B2,k(f,t)) cancel out when summed

over all trials.

Our connectivity analysis will focus on two regions that are spatially separated, likely

activated during the task, and potentially functionally connected. For the motor data, these

will be the left primary motor cortex (M1) and the right inferior parietal lobule (IPL). For

the working memory data, we will use the left dorsolateral prefrontal cortex (DLPFC) and

the left inferior parietal lobule (IPL). The DLPFC lies within the prefrontal cortex (PFC),

and the IPL lies within the posterior parietal cortex (PPC). The M1, forming a ridge down

the frontal lobe, is central in planning and enacting movement. Studies in humans and

monkeys have shown the PPC to be functionally connected to the M1, and the IPL to be

activated during motor tasks (Mattingley et al., 1998; Guye et al., 2003; Fogassi et al., 2005).

We choose the left M1 because we use trials where the right hand moved, and we choose the

right IPL because the left IPL is spatially close to the left M1. Working memory task studies

in humans and monkeys have found the tasks activate the DLPFC (Friedman & Goldman-

Rakic, 1994; Levy & Goldman-Rakic, 2000; Owen et al., 2005; Mars & Grol, 2007), as well
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as the IPL (Friedman & Goldman-Rakic, 1994; LaBar et al., 1999; Owen et al., 2005). The

locations of our ROIs on the cortical surface are plotted in Figure 4. There are 101 dipoles

comprising the left M1, 299 comprising the right IPL, 325 comprising the left IPL, and 268

comprising the left DLPFC.

Figure 4: Plot of the positions of the ROIs in the left hemisphere. Dark green points represent

the M1, dark blue points represent the DLPFC, and light green points represent the IPL.

In Figure 5, we plot the power of the source-reconstructed signal corresponding to each

ROI, averaged over all trials and all subjects (including the motor subjects for the left M1

and right IPL, and the working memory subjects for the left DLPFC and left IPL). Power

is defined as the squared amplitude of the TFR, and it gives an idea of the overall level of

activity at different frequencies. These plots show that there is little activity as the frequency

nears 50 Hz.

The PLV matrices are noisy, so we do smoothing on each subject’s PLV values using a

multivariate local linear regression estimator (Fan & Gijbels, 1996). This requires specifying

some bandwidths bws and bwt in the frequency and time directions, respectively. Denote
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Figure 5: Plots of the power averaged over all trials and subjects. The rows from top to

bottom correspond to the motor, 2-back, and 0-back data, respectively.
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subject i’s PLV as Xi(s, t), and denote the grid points on which Xi(s, t) is recorded as

(sj, tk), j ∈ {1, . . . , p}, k ∈ {1, . . . , q}. For each grid point (s, t), the smoothed PLV value is

calculated as the intercept â0 in the following weighted least squares problem:

(â0, â1, â2) = argmin

p∑
j=1

q∑
k=1

[Xi(sj, tk)−a0−a1(sj−s)−a2(tk−t)]2K
(
sj − s
bws

)
K

(
tk − t
bwt

)
.

Here, K(t) is a kernel function that is 0 for |t| > 1. We choose bws and bwt as 15% of the

lengths of their respective grids, rounded to the nearest Hz for s and nearest .01 s for t.

This gives bws = 6 Hz, bwt = .15 s for the motor data, and bwt = .30 s for the working

memory data. This choice was made by visual comparison, and an example of the PLVs for

one subject using smoothing bandwidths of 10%, 15%, and 20% is shown in Figure 6.

Figure 7 shows PLV matrices smoothed with a bandwidth of 15% for the 3 datasets

(motor, 2-back, and 0-back), for each of 3 example subjects. The level of activity seems to

vary between subjects, as seen by the second subject’s relatively high values for all tasks.

Figure 8 shows the averages of these PLV matrices over all subjects. The average motor

PLV displays higher synchrony near the beginning of the movement (time 0) in the alpha

and beta bands, and the individual subjects’ plots also show higher values near time 0. The

working memory data show some peaks in PLV at the lowest frequencies. However, for all

the tasks the averages have small values overall, which indicates high variability between

subjects, and points to the need to study covariance structure and eigen-decomposition.

3.3 WEAK SEPARABLE ANALYSIS AND PRODUCT FPCA

3.3.1 Source-level analysis

For the source-reconstructed datasets described above, we use product FPCA to find the

components along which subjects’ functional connectivity varies the most during the tasks.

We justify this with weak separability, which provides the theoretical framework for the

products of the marginal eigenfunctions to be our choice of basis functions. Using the

FVE procedure described in Section 2.3.2, we choose the number of estimated marginal
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Figure 6: Plots of the source-level PLV for one subject using different levels of smoothing.

The rows from top to bottom correspond to the motor, 2-back, and 0-back data, respectively.

The columns from left to right show smoothing with bandwidths of 10%, 15%, and 20%,

respectively.
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Figure 7: Plots of the source-level PLV using smoothing with a bandwidth of 15% for 3

subjects. The rows from top to bottom correspond to the motor, 2-back, and 0-back data,

respectively. The columns from left to right correspond to the 3 subjects.
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Figure 8: Plots of the average source-level PLV using smoothing with a bandwidth of 15%.

The plots from left to right show the averages for the motor, 2-back, and 0-back data,

respectively.

eigenfunctions to be Pn = 7 and Kn = 7 for the motor data, Pn = 6 and Kn = 7 for the

2-back data, and Pn = 6 and Kn = 6 for the 0-back data. Using these values, we apply the

weak separability test using both the χ2-type mixture approximation and empirical bootstrap

(see Section 2.3). We also apply the strong separability test of Aston et al. (2017) via their

R package “covsep” (Tavakoli, 2016). We use their empirical bootstrap test function with

B = 1000 and no studentization, which can be viewed as the strong separable analog of our

weak separable empirical bootstrap test. We also consider their asymptotic χ2 test, though

it should be noted that, unlike our χ2-type mixture test for weak separability, this test is

only valid for Gaussian data.

The P-values obtained for these tests are shown in Table 11. For all 3 datasets, the weak

separability test does not reject the null hypothesis of weak separability. As was observed

in the simulations and data example of Chapter 2, the empirical bootstrap procedure is

conservative compared to the χ2-type mixture approximation. The strong separability test

rejects strong separability at the 5% significance level for all but the motor dataset.

Product FPCA, which decomposes the process as in Equation (2.1), is based on separable

products ψj(s)φk(t) of the marginal eigenfunctions, where the ψj(s) represent the frequency

components and the φk(t) represent the time components. For the values of Pn and Kn we are
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Table 11: P-values for the source-level datasets for the test of weak separability, as well as the

test of strong separability from Aston et al. (2017). “Weak χ2” denotes the weak separability

test using the χ2-type mixture approximation, “Weak Emp” denotes the weak separability

test using the empirical bootstrap, “Strong χ2” denotes the strong separability asymptotic

χ2 test with Gaussian assumptions, and “Strong Emp” denotes the strong separability test

using the non-studentized empirical bootstrap.

Dataset Weak χ2 Weak Emp Strong χ2 Strong Emp

Motor 0.5293 0.926 1.198e-4 0.080

2-back 0.2050 0.637 8.634e-11 0.000

0-back 0.3228 0.575 1.409e-45 0.000

using, there will be many such products. We consider their relative importance by looking

at their individual contributions to the FVE (see Section 2.3.2). Below, we show matrices

(FVE)j,k with entries η̂jk/
∑

j′
∑

k′ η̂j′k′ , 1 ≤ j ≤ Pn, 1 ≤ k ≤ Kn, where the η̂jk = 1
n

∑n
i=1 χ̂

2
jk

are the empirical variances of the estimated marginal projection scores. We see that the 3

eigenfunction products that account for the most variance (in order) are ψ̂1φ̂1, ψ̂2φ̂1, and

ψ̂3φ̂1 for the motor and 2-back data, and ψ̂1φ̂1, ψ̂2φ̂1, and ψ̂2φ̂2 for the 0-back data. Note

that the variance explained by ψ̂1φ̂1 is by far the largest, especially for the 0-back data, and

the FVE values for the second product onward fall off gradually.

Motor data:

(FVE)j,k =


0.1453 0.0473 0.0311 0.0281 0.0238 0.0157 0.0092
0.0531 0.0325 0.0277 0.0256 0.0222 0.0162 0.0062
0.0516 0.0439 0.0242 0.0196 0.0153 0.0134 0.0048
0.0362 0.0196 0.0282 0.0185 0.0127 0.0077 0.0044
0.0255 0.0147 0.0203 0.0124 0.0082 0.0065 0.0039
0.0130 0.0082 0.0092 0.0052 0.0048 0.0033 0.0020
0.0070 0.0041 0.0059 0.0032 0.0035 0.0022 0.0017
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2-back data:

(FVE)j,k =


0.2347 0.0278 0.0278 0.0236 0.0187 0.0119 0.0077
0.0669 0.0327 0.0324 0.0239 0.0173 0.0095 0.0068
0.0541 0.0387 0.0300 0.0166 0.0141 0.0096 0.0073
0.0262 0.0239 0.0175 0.0134 0.0093 0.0067 0.0058
0.0156 0.0161 0.0153 0.0097 0.0062 0.0040 0.0029
0.0098 0.0087 0.0072 0.0057 0.0052 0.0030 0.0021


0-back data:

(FVE)j,k =


0.4716 0.0257 0.0222 0.0184 0.0121 0.0063
0.0368 0.0331 0.0224 0.0155 0.0097 0.0064
0.0286 0.0237 0.0205 0.0163 0.0113 0.0070
0.0200 0.0156 0.0115 0.0115 0.0070 0.0037
0.0105 0.0083 0.0078 0.0074 0.0063 0.0028
0.0076 0.0064 0.0049 0.0040 0.0036 0.0025


The estimated marginal eigenvalues λ̂j and γ̂k are plotted in Figure 23 in Appendix B.

These reflect the trends seen above, with the first eigenvalue dominating and the others

falling off gradually. For the motor and 2-back data, there is also a slight drop between the

second two λ̂j and the rest, reflecting the fact that ψ̂2φ̂1 and ψ̂3φ̂1 are the products that

explain the second and third highest amounts of variance, respectively.

The 3 product functions that explain the most variance for each the 3 datasets are plotted

in Figure 12. The eigenfunctions that comprise these products are plotted for the motor,

2-back, and 0-back data in Figures 9, 10, and 11, respectively. For the motor dataset, these

products capture modes of variation mainly around -.2 to .2 s, when the subject receives

the cue to move to when they just start moving. This variation can be seen in φ̂1, which

peaks slightly after 0 s. ψ̂1φ̂1 shows that, within this time range, subjects generally vary

in synchrony from the alpha band to the beginning of the gamma low band (see Table 10),

peaking within the beta band around 20-30 Hz. ψ̂2φ̂1 shows a contrast between the beta low

band and gamma low band. That is, subjects with higher χ21 values have lower synchrony

in the beta low band and higher synchrony in the gamma low band. ψ̂3φ̂1 shows a contrast

between the alpha band (possibly lower), and the beta high band.

For the 2-back dataset, φ̂1 shows a mode of variation at low and high time points,

corresponding to when the subject is presented with the image and just before the subject

has to choose if the image matches the target, respectively. ψ̂1φ̂1 shows that, within these
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two time ranges, subjects generally vary in their synchrony within the beta low band. ψ̂2φ̂1

shows a contrast between the lowest frequencies and the gamma low band. ψ̂3φ̂1 shows a

mode of variation that is positive for the lowest and highest frequencies, and negative for a

small range from around 20-25 Hz.

For the 0-back dataset, φ̂1 is relatively flat, representing a mode of variation in subjects’

overall activity across time, with slightly less importance in the range of time points from

.5 to 1 s. Because ψ̂1 has a small peak within the beta low band, ψ̂1φ̂1 shows a mode of

variation within this range of frequencies, though less so from .5 to 1 s. ψ̂2φ̂1 gives a mode of

variation around the lowest frequencies across all time points, contrasted with frequencies in

mid-beta and above. ψ̂2φ̂2 contrasts the connectivity at the lowest frequencies between the

first .5 seconds and the very end of the task, and also presents a less stark contrast between

these time ranges for higher frequencies.

3.3.2 Sensor-level analysis

We compare our results from source analysis to a more naive method of generating connec-

tivity between pairs of ROIs. In this method, for each ROI, we average the signals of a

select few sensors found to be closest to the center of that ROI. Using Montreal Neurological

Institute (MNI) coordinates, which are based on a standard template of the brain, we find

the center coordinates for the DLPFC and IPL in Cohen et al. (2014), and the coordinates

of the left M1 corresponding to the right hand in Landi et al. (2011).

In the HCP, sensor positions are given in BTI coordinates, in which each subject’s coor-

dinate system varies based on external landmarks of the head. For each subject, the HCP

provides a homogenous transformation matrix from BTI to MNI coordinates, and we use this

to find the MNI coordinates of the sensors. For each ROI within each subject, we take the

sensor that is closest (in Euclidean distance based on the MNI coordinates) to the center of

the ROI, and obtain its neighbors based on a template of MEG sensors using the FieldTrip

function ft prepare neighbours. To represent each ROI, we use the sensors that are found to

be closest (including the closest sensor and its neighbors) to that ROI in at least 80% of the

subjects. This procedure results in 4, 5, 4, and 5 sensors representing the left M1, right IPL,
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Figure 9: Plots of the estimated eigenfunctions ψ̂j(s) and φ̂k(t) whose products explain the

most variance for the source-level motor data.
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Figure 10: Plots of the estimated eigenfunctions ψ̂j(s) and φ̂k(t) whose products explain the

most variance for the source-level 2-back data.
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Figure 11: Plots of the estimated eigenfunctions ψ̂j(s) and φ̂k(t) whose products explain the

most variance for the source-level 0-back data.
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Figure 12: Plots of the products of the estimated eigenfunctions ψ̂j(s)φ̂k(t) that explain the

most variance (decreasing from left to right) for the source-level data. The rows from top to

bottom correspond to the motor, 2-back, and 0-back data, respectively.
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left IPL, and left DLPFC, respectively. For each subject, the signal we use for each ROI is

the average of the signals of the group of sensors representing that ROI.

This method is less justified than source analysis because of the low spatial resolution of

the sensor signals, as well as the possible contaminating effects of field spread. Additionally,

unlike for source-level data, in which the source space is aligned across subjects so that the

position of each dipole is comparable, the position of a given sensor here will not necessarily

be at a comparable location around each subject’s head. These issues could be especially

worrisome when trying to define sensors to represent an ROI with thin area, such as the M1.

We proceed to calculate PLV from the sensor-level signals to derive motor, 2-back, and

0-back datasets, just as for the source-reconstructed data, and we again use smoothing with

a 15% bandwidth. The means of these datasets are plotted in Figure 13. They look different

than those of the source-level data, particularly for the motor data, in which the sensor-level

mean has consistently higher synchrony at lower frequencies.
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Figure 13: Plots of the average sensor-level PLV using smoothing with a bandwidth of

15%. The plots from left to right show the average for the motor, 2-back, and 0-back data,

respectively.

Using the FVE procedure described in Section 2.3.2, we find Pn = 5 and Kn = 5 for all

3 sensor-level datasets. As shown in Table 12, weak separability seems to hold for all the

datasets, while strong separability is rejected. Based on their contribution to the FVE, the

three product functions in the product FPCA decomposition that explain the most variance

are (in order) ψ̂1φ̂1, ψ̂2φ̂1, and ψ̂3φ̂1 for all 3 datasets. Note that these are also the first 3
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product functions for the motor and 2-back source-level data. The values of (FVE)j,k are

shown below, and the estimated eigenvalues are plotted in Figure 24 in Appendix B.

Table 12: P-values for the sensor-level datasets for the test of weak separability, as well as the

test of strong separability from Aston et al. (2017). “Weak χ2” denotes the weak separability

test using the χ2-type mixture approximation, “Weak Emp” denotes the weak separability

test using the empirical bootstrap, “Strong χ2” denotes the strong separability asymptotic

χ2 test with Gaussian assumptions, and “Strong Emp” denotes the strong separability test

using the non-studentized empirical bootstrap.

Dataset Weak χ2 Weak Emp Strong χ2 Strong Emp

Motor 0.5044 0.688 1.385e-69 0.000

2-back 0.1126 0.231 7.816e-147 0.000

0-back 0.1831 0.358 1.458e-92 0.000

Sensor-level motor data:

(FVE)j,k =


0.4970 0.0364 0.0249 0.0177 0.0095
0.1436 0.0243 0.0223 0.0082 0.0059
0.0379 0.0106 0.0141 0.0075 0.0058
0.0219 0.0086 0.0055 0.0062 0.0039
0.0101 0.0052 0.0053 0.0033 0.0024



Sensor-level 2-back data:

(FVE)j,k =


0.4446 0.0374 0.0224 0.0079 0.0074
0.1849 0.0170 0.0180 0.0089 0.0049
0.0678 0.0136 0.0076 0.0061 0.0045
0.0399 0.0083 0.0067 0.0068 0.0035
0.0133 0.0051 0.0032 0.0024 0.0025



Sensor-level 0-back data:

(FVE)j,k =


0.4537 0.0437 0.0272 0.0130 0.0087
0.1656 0.0182 0.0155 0.0089 0.0053
0.0593 0.0123 0.0093 0.0062 0.0037
0.0371 0.0077 0.0075 0.0048 0.0031
0.0150 0.0053 0.0041 0.0033 0.0026
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The 3 product functions that explain the most variance are plotted for the 3 sensor-level

datasets in Figure 14, with the individual eigenfunctions plotted in Figures 25, 26, and 27

in Appendix B. These show fairly different patterns than the components of the source-

level data. While the ψ̂1φ̂1 show a mode of variation at lower and higher time points, the

other products seem homogeneous across time. Unlike in the source-level data, the product

functions of the 2-back and 0-back datasets look quite similar, and the values of ψ̂2φ̂1 and

ψ̂3φ̂1 look quite similar across all the datasets. Generally, ψ̂2φ̂1 represents a contrast between

the alpha band and higher frequencies, and ψ̂3φ̂1 represents a contrast between the beta low

band and the other frequency ranges.
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Figure 14: Plots of the products of the estimated eigenfunctions ψ̂j(s)φ̂k(t) that explain the

most variance (decreasing from left to right) for the sensor-level data. The rows from top to

bottom correspond to the motor, 2-back, and 0-back data, respectively.
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4.0 L-SEPARABILITY

4.1 MOTIVATION FOR L-SEPARABILITY AND RELATED

APPROXIMATIONS OF THE COVARIANCE

In Section 2.2 we developed the concept of weak separability for two-way functional data. In

general, when the data are weakly separable, the covariance structure C can be written as

a weighted sum of infinitely many strongly separable components, as in Equation (2.4). In

this chapter, as a means to more easily interpret the weakly separable covariance structure

C, we study ways to represent C, either exactly or approximately, as the sum of only a few

strongly separable components. Equation (2.5) shows a representation of C with L terms,

where L is the nonnegative rank of V , the array of variances of the marginal projection

scores. When L is finite, we say we have L-separability.

This approach still presents interpretational pitfalls, as L may be large, and the L-

separable decomposition is not in general unique. In this chapter, we show that the problem

of approximating the covariance structure with L or fewer terms is tied to the problem of

nonnegative matrix factorization (NMF; Lee & Seung (2001)) on V . NMF is a difficult

problem in that it is NP-hard (Arora et al., 2012; Dong et al., 2014), and has issues with

identifiability (Donoho & Stodden, 2003; Gillis, 2012). We simplify the problem by imposing

restrictions based on the orthogonal NMF of Ding et al. (2006). These allow for a global

minimum to be computed, and we give an algorithm to do so that is feasible when the size

of V is not too large. We also show that the orthogonal NMF restrictions allow for a more

easily interpretable decomposition of C.
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4.2 PROPERTIES OF L-SEPARABILITY

Using the notation of Section 2.2, assume we have a process X(s, t) that is weakly sep-

arable, with covariance function C(s, t;u, v). In this case we can represent X(s, t) using

product FPCA as in Equation (2.1), where the marginal projection scores χjk are uncorre-

lated. In the case that the nonnegative rank L of V = (var(χjk) : j ≥ 1, k ≥ 1) is finite,

Equation (2.5) gives a representation of C as a sum of L strongly separable terms, where

we set the spatial and temporal covariance structures comprising each term to have the

eigenfunctions {ψj, j ≥ 1} and {φk, k ≥ 1}, which are the eigenfunctions of the marginal

covariances CS and CT , respectively. This choice is justified by the following lemma, where

we denote the matrix Frobenius norm as ‖ · ‖F , and the norm of a covariance structure as

‖C‖2 =
∫
T

∫
S

∫
T

∫
S C(s, t;u, v)2dsdtdudv. Also, for an array F , we take F ≥ 0 to mean F is

entry-wise nonnegative, in which case we call F a nonnegative array.

Lemma 7. Consider the problem of approximating C(s, t;u, v) with a sum of d strongly

separable covariance structures, i.e., minC1,...,Cd ‖C −
∑d

l=1C
l‖ such that C l(s, t;u, v) =

C l
1(s, u)C l

2(t, v), where d ≤ L and the structures C l
1 and C l

2 are nonnegative definite. A

solution to this problem sets C l
1(s, u) =

∑
j Fj,lψj(s)ψj(u) and C l

2(t, v) =
∑

kGk,lφk(t)φk(v),

l = 1, . . . , d, where Fj,l is the (j, l)th entry of a nonnegative array F , Gk,l is the (k, l)th entry

of a nonnegative array G, and F and G are solutions to minF≥0, G≥0 ‖V − FGT‖F .

This lemma implies that C(s, t;u, v) cannot be decomposed exactly into a sum of fewer

than L strongly separable terms, but this lemma also gives a method to approximate

C(s, t;u, v) using fewer than L strongly separable terms. For the rest of this chapter, in

order to make finding solutions to minF≥0, G≥0 ‖V − FGT‖F practical, we assume V is of

finite dimension P × K, where P,K < ∞. This can result from truncating the product

FPCA expansion in Equation (2.1) to the first P and K terms, i.e., using the truncated

process X(s, t) = µ(s, t) +
∑P

j=1

∑K
k=1 χjkψj(s)φk(t). When we are working with data and

have to estimate the marginal eigenfunctions, marginal projection scores, and V , we are

always limited to using a finite number of of terms, which we have denoted Pn and Kn (see

Section 2.3.2).
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In general, for a P×K nonnegative matrix V , the problem of finding a P×d nonnegative

matrix F and a K × d nonnegative matrix G that solve

min
F≥0, G≥0

‖V − FGT‖F

is known as nonnegative matrix factorization (NMF; Lee & Seung (2001)). Equivalently,

NMF seeks a sum of matrices V1+· · ·+Vd, where rank(Vl) = 1 and Vl ≥ 0 for all l ∈ {1, . . . , d},

that minimizes ‖V − (V1 + · · ·+ Vd)‖F . We take 1 ≤ d ≤ L. The special case when d = L is

referred to as exact NMF, in which we can find a solution such that V = FGT . Also, when

d = P , setting F = IP and G = V T gives an exact NMF solution; and when d = K, setting

F = V and G = IK gives an exact NMF solution. From these observations, we note that

rank(V ) ≤ rank+(V ) ≤ min(P,K).

NMF, finding the nonnegative rank L, and exact NMF (even when the nonnegative rank

is known), are all NP-hard problems (Arora et al., 2012; Dong et al., 2014). Algorithms that

have been proposed for exact and non-exact NMF (Lee & Seung, 2001; Dong et al., 2014;

Vandaele et al., 2015) are iterative and not guaranteed to converge to a global minimum.

Even if we find solutions F and G, it is clear that there are infinitely many other choices F ′

and G′ such that F ′G′T = FGT , or more broadly, ‖V −F ′G′T‖F = ‖V −FGT‖F . Donoho &

Stodden (2003) and Gillis (2012) have attempted to make the NMF problem more well-posed

by adding restrictions to the structures of F , G, and V , but these restrictions are unintuitive

in our setting, and the sense in which their solutions are unique is complicated. To simplify

the problem, in the following section we consider a constraint known as orthogonal NMF

(Ding et al., 2006). We show that solutions to this problem have a natural interpretation

in our setting, we introduce a new algorithm that finds a global minimum, and we prove

uniqueness in the exact case.
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4.3 ORTHOGONAL NMF

Orthogonal NMF, as defined in Ding et al. (2006), seeks a P × d nonnegative matrix F and

a K × d nonnegative matrix G that solve

min
F≥0, G≥0

∥∥V − FGT
∥∥
F
s.t. F TF = Id.

Equivalently, orthogonal NMF seeks a sum of matrices V1 + · · ·+ Vd; where rank(Vl) = 1 for

all l ∈ {1, . . . , d}, Vl ≥ 0 for all l ∈ {1, . . . , d}, and V T
l Vm = 0 for all l 6= m; which minimizes

‖V − (V1 + · · · + Vd)‖F . We will consider d ≤ min(P,K). When considering a d such that

there is a solution with V = FGT , we denote the problem as exact orthogonal NMF.

Condition A: We take the entries of V to be strictly positive.

This condition is natural since, in our context, the entries of V are variances of the

marginal projection scores.

The following lemma shows that exact orthogonal NMF has a unique solution:

Lemma 8. Under Condition A, when using the smallest d such that there exists a P × d

nonnegative matrix F with F TF = Id and a K×d nonnegative matrix G such that V = FGT ,

F and G are unique up to a column-wise permutation.

When we say the solution is unique up to a column-wise permutation, we mean that

given F and G that solve the exact orthogonal NMF problem, for any d × d permutation

matrix P , FP and GP will also give a solution. It is clear that FGT = (FP )(GP )T , and

doing a column-wise permutation will not change the values of the corresponding rank-one

matrices V1, . . . , Vd.

Remark: Proposition 1 of Ding et al. (2006) proves that an exact orthogonal NMF

solution FGT is unique up to a column-wise permutation among all solutions of the form

F ′G′T where F ′ = FA, G′ = GB, and ABT = Id (the authors show A = B = P for P some

permutation matrix). However, F ′ = FA implies that F ′ has the same support (the same

positions of nonzero entries) as F , while our Lemma 8 puts no additional assumptions on

F ′ or G′. Additionally, Proposition 1 of Ding et al. (2006) implicitly assumes Condition A,

since their proof takes each row of F to have exactly one nonzero element.
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When P ≤ K, there will always exist an exact orthogonal NMF solution with d ≤ P ,

since we can set F = IP and G = V T . We denote this as the “trivial decomposition.”

When P ≤ K and V has full rank, i.e., rank(V ) = P , the trivial decomposition will be

the unique exact orthogonal NMF solution. When K < P , we can get an analogous trivial

decomposition by considering orthogonal NMF on V T (see the end of this section).

An advantage of orthogonal NMF is that it allows for the corresponding decomposition

of C(s, t;u, v) to be interpreted as a sum of covariance structures of d uncorrelated processes

Xl(s, t), where X(s, t) − µ(s, t) =
∑d

l=1Xl(s, t). Write an orthogonal NMF solution as

FGT =
∑d

l=1 Vl, where Vl is the nonnegative rank-one matrix obtained by taking the outer

product of the lth columns of F and G. Note that F can have no more than one nonzero

entry in each row, so we can define Bl to be the set of indices corresponding to the rows

of F that have their nonzero element in column l. Under Condition A, the Bl will be

nonempty, disjoint, and will have union {1, 2, . . . , P} (see the proof of Lemma 8). Set

Xl(s, t) =
∑

j∈Bl

∑K
k=1 χjkψj(s)φk(t). From the product FPCA expansion X(s, t) = µ(s, t)+∑P

j=1

∑K
k=1 χjkψj(s)φk(t), we see that X(s, t) − µ(s, t) =

∑d
l=1Xl(s, t). Since under weak

separability the χjk are uncorrelated, the Xl(s, t) are uncorrelated. Let C l(s, t;u, v) denote

the covariance structure of Xl(s, t). Then

C l(s, t;u, v) =
∑
j∈Bl

K∑
k=1

ηjkψj(s)ψj(u)φk(t)φk(v),

and hence C(s, t;u, v) =
∑d

l=1C
l(s, t;u, v).

Setting C l
S(s, u) =

∑P
j=1 Fjlψj(s)ψj(u) and C l

T (t, v) =
∑K

k=1Gklφk(t)φk(v) as in Lemma

7, we see C l(s, t;u, v) ≈ C l
S(s, u)C l

T (t, v) (which holds exactly in the exact orthogonal

NMF case), and hence the Xl are strongly separable in the exact orthogonal NMF case,

and “approximately strongly separable” otherwise. Also, as in Section 2.2, we can write

C(s, t;u, v) ≈
∑d

l=1 a
lC l
S(s, u)C l

T (t, v), where the constant al allows for scaling of F and G

to make C l
S(s, u) and C l

T (t, v) comparable; for example, we can scale F and G so that the

entries in each of their columns add to 1, so that Tr(C l
S) = Tr(C l

T ) = 1.

We also consider orthogonal NMF on V T , which is equivalent to the variant of orthogonal

NMF on V where we impose GTG = Id instead of F TF = Id. This leads to an analogous
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decomposition of X(s, t) into terms X ′l(s, t) =
∑P

j=1

∑
k∈B′l

χjkψj(s)φk(t), where B′l is the set

of indices corresponding to the rows of G that have their non-zero element in column l. This

decomposition can be interpreted in the same manner as above, being a sum of uncorrelated

and approximately strongly separable processes. For non-exact orthogonal NMF, there seems

to be no way to know beforehand whether orthogonal NMF on V or orthogonal NMF on

V T will give a smaller error. However, we may be interested in one more than the other for

interpretational reasons when working with a given dataset. Orthogonal NMF on V gives

Xl (and hence C l) that are composed of only a few distinct s components, while orthogonal

NMF on V T gives X ′l that are composed of only a few distinct t components, and one of

these may be more desirable given the meanings of s and t in the context of the problem.

4.4 ALGORITHM FOR ORTHOGONAL NMF

We give an algorithm to find a global minimum of the orthogonal NMF problem for a given d.

Our algorithm is not iterative, and only involves calculating singular value decompositions.

We first consider orthogonal NMF for a fixed support of F , i.e., the problem where the

positions of the nonzero entries of F are fixed. We show that this problem has a unique

minimizing solution. Once we solve the problem for fixed support, we get a global minimum

for orthogonal NMF by taking the minimizing solution over all possible supports of F . Note

that we cannot guarantee that there is only one globally minimizing solution (except in the

exact orthogonal NMF case, as described in Lemma 8), though we will have finitely many

candidates that we can compare, subject to roundoff error.

Each support of F corresponds to a choice of sets Bl, l = 1, . . . , d, where Bl is defined as

in Section 4.3. Let (V )Bl
be the P ×K matrix with rows corresponding to Bl equal to those

of V , and all other entries 0. The following lemma gives the unique solution to orthogonal

NMF for a fixed support of F :

Lemma 9. Under Condition A, the solution to orthogonal NMF with fixed support is unique

and, for l = 1, . . . , d, sets column l of F to be ul and column l of G to be σlvl, where σl is

the largest singular value of (V )Bl
, and ul and vl are its corresponding left and right singular
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vectors, respectively.

To find the support of F that gives the orthogonal NMF solution with the smallest error,

we only need to consider supports where the following are true:

(1) F has no columns of all zeros.

(2) F has no rows of all zeros.

(3) The columns of F are ordered according to their lowest-numbered row with a nonzero

entry. That is, the first entry of the first column of F is nonzero; the second column of F

has its jth entry nonzero, where j is the smallest integer such that the jth entry of the first

column is 0; the third column of F has its kth entry nonzero, where k is the smallest integer

such that the kth entries of the first two columns are both 0; and so on.

(1) follows from the fact that a solution where F has a column of zeros corresponds to

a solution with a smaller value of d. (2) is implied by Condition A (see the proof of Lemma

8). (3) follows from the fact that column-wise permutations will give equivalent solutions.

To enumerate all the possible supports of F , we can do the following: First, enumerate

all the possible numbers of nonzero entries in each column. For instance, if P = 6 and

d = 3, we could have (1, 1, 4) (1 nonzero entry in the first column, 1 in the second, and 4 in

the third), (1, 2, 3), (1, 3, 2), etc. There will be
(
P−1
d−1

)
of these choices. For a specific choice

(i1, i2, . . . , id) of nonzero entries, the number of possible supports (following the 3 properties

above) will be(
P − 1

i1 − 1

)(
P − i1 − 1

i2 − 1

)(
P − i1 − i2 − 1

i3 − 1

)
. . .

(
P − i1 − i2 − · · · − id−1 − 1

id − 1

)
.

Table 13 shows the total number of supports that need to be searched for selected values

of P and d. As functional data is usually well approximated by only a small number of

components, and only small values of d are of interest, we expect this algorithm to be

computationally feasible for the purposes of two-way functional data.

Note that Lemma 8 gives uniqueness of orthogonal NMF in the exact case, while Lemma

9 gives uniqueness of general (not necessarily exact) orthogonal NMF only for a fixed support

of F . To see that we cannot remove the fixed support requirement in Lemma 9, consider

the following examples where two different solutions (with different supports of F ) can be

the globally minimizing solutions and have the same error: Denote Vj· as the jth row of
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Table 13: The number of supports of F that need to be considered for selected values of P

and d.

d=2 d=4 d=6 d=8 d=10 d=12 d=14

P=2 1

P=4 7 1

P=6 31 65 1

P=8 127 1701 266 1

P=10 511 34105 22827 750 1

P=12 2047 611501 1323652 159027 1705 1

P=14 8191 10391745 63436373 20912320 752752 3367 1

the P × K nonnegative matrix V . Consider the d = 2 case for a V that is 3 × 3 with

V3· = V1· + V2·. By symmetry it is clear that an F with first column [1 0 0]T will give a

minimizing value with the same error as an F with second column [0 1 0]T . By inspection

of output from our orthogonal NMF algorithm, we can find cases where these two values of

F give the minimizing solution, for example when V1· = [2 1 1] and V2· = [1 1 2]. We can

find other counterexamples by setting V3· = f(V1·, V2·) for f some symmetric function.

We note that Ding et al. (2006) propose an algorithm for orthogonal NMF that is it-

erative, taking initial values F0 and G0 for F and G, respectively, and on each iteration

using element-wise multiplicative update rules to obtain new values of F and G. They prove

that their update rules converge to a local minimum, but they do not guarantee a global

minimum. It can be shown that each update gives an F with the same support as F0.

Presumably, Ding et al. (2006) are interested in much larger P and K than we are, making

searching over all supports impractical, and they expect the user to try many different initial

values with different supports. However, our Lemma 9 gives a unique, explicit minimizing

solution for orthogonal NMF with a fixed support, so we have improved on their method.

Furthermore, for moderate P and K, we have described how to search over all supports to

get an overall minimizing solution.

70



4.5 CHOOSING THE NUMBER OF TERMS IN THE ORTHOGONAL

NMF DECOMPOSITION

In this section we discuss possible ways to choose the number of terms d to use in the

orthogonal NMF decomposition. At the end of this section, we note the relationship between

choosing d and choosing the number of clusters in clustering problems. This is an open

problem, and likewise we do not present a definitive solution. One tactic is to, for each

value of d, do a full search over all B1, . . . , Bd to get the globally minimizing solution, and

then compare the solutions for different d using some measurement of error, for instance the

relative error ‖V −FGT‖F/‖V ‖F . The relative error is guaranteed to decrease as d increases.

The issue here is that there is no clear bound to put on the difference between consecutive

error terms to decide whether the error is low enough. One approach could be to plot the

error as a function of d and look for an “elbow.”

A possibly more rigorous method for our setting would be to decide whether our d-term

approximation is sufficient by testing whether each process Xl(s, t), l = 1, . . . , d, as defined

in Section 4.3, is strongly separable. To test the null hypothesis that Xl(s, t) is strongly

separable, we cannot directly apply the test of strong separability from Aston et al. (2017),

since we do not have the true values of Xl(s, t) for each subject. We could apply their test to

estimated versions of the Xl(s, t), calculated as
∑

j∈Bl

∑K
k=1 χ̂i,jkψ̂j(s)φ̂k(t) for each subject

i. However, a simpler testing procedure can be derived using the test statistic

T ′n(j, k) =
√
n(η̂jk −

∑
j′∈Bl

K∑
k′=1

η̂jk′ η̂j′k/
∑
j′∈Bl

K∑
k′=1

η̂j′k′),

where j ∈ Bl and η̂jk = (1/n)
∑n

i=1 χ̂
2
i,jk. This is related to the test statistic from Aston et al.

(2017), which in our notation, when applied to the process X(s, t), is
√
n(η̂jk− λ̂j γ̂k/ ˆTr(C)),

where λ̂j and γ̂k are the eigenvalues of the estimated marginal covariances. We can de-

rive the joint asymptotic null distribution of the T ′n(j, k) over all pairs (j, k) by showing
√
n(η̂jk − 1

n

∑n
i=1 χ

2
i,jk) = op(1) and then using the multivariate delta method to find the

joint distribution of the T ′n(j, k) under the null hypothesis that Xl(s, t) is strongly separable,

in which case ηjk =
∑

j′∈Bl

∑K
k′=1 ηjk′ηj′k/

∑
j′∈Bl

∑K
k′=1 ηj′k′ by Lemma 3. The asymptotic

covariance of the T ′n(j, k) will be degenerate, which can be seen by noting
∑

j∈Bl
T ′n(j, k) = 0
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and
∑K

k=1 T
′
n(j, k) = 0. Thus, as for our test of weak separability, we compute the P-value

of the test from a χ2-type mixture approximation.

For each possible d, starting with d = 1, we could find the choice of B1, . . . , Bd that

minimizes the objective function of orthogonal NMF, and then decide to use this solution if

the P-values for the corresponding Xl are above some cutoff.

We could also consider the following two greedy algorithms:

Forward: Starting with d = 1, 1) Apply the test of strong separability to all the Xl. 2)

If, for all Xl, the test fails to reject, stop and use the current clustering. If not, consider all

possible ways to split one of the sets Bl into two. 3) Choose the split that gives the smallest

value of the objective function. d has increased by 1. Repeat.

Backward: Starting with d = P , 1) Apply the test of strong separability to all the Xl.

2) If the test rejects for some Xl, stop and use the previous clustering. If not, consider all

possible combinations of two Bl. 3) Choose the combination that gives the smallest value of

the objective function. d has decreased by 1. Repeat.

We finally note that choosing d in orthogonal NMF can be thought of as a clustering

problem in which we seek to cluster the rows of V into d clusters. Denote Vj· as the jth row

of V . It can be shown that under Condition A, orthogonal NMF is equivalent to minimizing

d∑
l=1

∑
j∈Bl

‖Vj·‖2
(

1−
(

1

‖Vj·‖
Vj·vl

)2
)

over d nonnegative unit vectors vl of length K and d sets B1, . . . , Bd that partition {1, . . . , P}.

As in Section 4.4, let (V )Bl
be V with the rows not corresponding to Bl set to 0. For

B1, . . . , Bd fixed, it can be shown that the minimizing value for the above problem sets each

vl to be the first right singular vector of (V )Bl
, and using Lemma 9 one can show that

this problem is equivalent to orthogonal NMF. From this result, we note the resemblance

of orthogonal NMF to the problem of spherical clustering (Dhillon & Modha, 2001; Buchta

et al., 2012) on the rows of V , which minimizes

d∑
l=1

∑
j∈Bl

(1− cos(Vj·, vl)) =
d∑
l=1

∑
j∈Bl

(1− 1

‖Vj·‖
Vj·vl)
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over d nonnegative unit vectors vl of length K and d sets B1, . . . , Bd that partition {1, . . . , P}.

We additionally note that orthogonal NMF on V T can be thought of as an analogous clus-

tering problem on the columns of V .
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5.0 CASE STUDY: PSYCHIATRIC DATA

5.1 EXPERIMENTAL DESIGN AND STRUCTURE OF THE DATA

We apply and extend the ideas of the previous chapters to MEG data collected by the Uni-

versity of Pittsburgh’s Clinical Neurophysiology Research Laboratory, of which the mem-

bers with whom we worked most closely were Brian Coffman (Post-Doctoral Researcher)

and Dean Salisbury (Professor of Psychiatry). The data comes from task-based studies

using psychologically normal control subjects, as well as patients diagnosed with schizophre-

nia, schizoaffective disorder, schizophreniform disorder, or psychotic disorder: not otherwise

specified (hereafter, we refer to these simply as “schizophrenia”). During the experiment,

each subject faces a screen that directs them to perform a simple attention-based task over

many trials. The structure of each trial is illustrated in Figure 15. Each trial begins with the

screen showing a cross for 500 ms, after which a cue appears for 500 ms. The cue consists of

a circle of a given color (green in Figure 15). After the cue, the subject is shown 6 rings in

a hexagonal arrangement, with three on each side of a central cross, only one of which (the

“target”) has a color matching that of the cue. Each ring is open on either its left or right

side. The rings are shown for 500 ms, after which the subject must choose (with a button

press) whether the target was open on its left or right side.

Two types of trials are considered, which we denote as “popout” and “flex.” For popout,

all of the rings besides the target are of the same color, while for flex the rings are all different

colors. Flex is meant to be the more difficult design in that it requires greater attention.

These tasks were designed to explore how connectivity differs between the control subjects

and patients with schizophrenia among three ROIs, including the primary visual cortex (V1),

the posterior parietal cortex (PPC), and the DLPFC. It is hypothesized that for the pairs
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V1 vs. PPC and PPC vs. DLPFC, the connectivity in the patient group will be impaired

compared to the control group, and this will be more prominent in the flex trials.

Fixation Cue

Popout

Flex
500 ms 500 ms

500 ms

500 ms

Time 0

Figure 15: Illustration of the MEG trials.

There are 63 subjects in the data, 27 of whom are psychologically normal, and 36 of

whom have schizophrenia. Source reconstruction was performed on the sensor-level MEG

trials as in Section 3.2.2, and the PLV between the two pairs of ROIs was calculated on a

grid of time and frequency points as in Section 3.2.4. Hence, the processed data consist of a

PLV matrix for each combination of subject, design (popout or flex), ROI pair (from both

sides of the brain), and visual field in which the target ring appeared (right or left). Based

on preliminary results for overall levels of MEG activity, we focus our attention on trials

that involve the left visual field, and we consider ROIs from the right hemisphere. Only the

trials where the subjects answered correctly are used, and there is an average of 58.05 of

these trials over all the subjects and the two designs. Each PLV matrix is recorded on 77

frequency points from 4 to 80 Hz (in increments of 1 Hz), and 176 time points from -200

to 500 ms (in increments of 4 ms), where time 0 corresponds to the switch from the cue to

the 6 rings. As in Section 3.2.3, we truncate the PLV to 50 Hz based on visualization of the

power. We smooth each subject’s PLV using a 15% bandwidth as in Section 3.2.4.

From plotting the PLV for each individual subject, one subject with schizophrenia stands

out as a possible outlier, as this subject has fairly uniformly high PLV across all frequencies

for a large portion of the beginning of the time period. This subject’s PLV matrices for the
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two ROI pairs and designs are shown in Figure 16. In the analysis in the following sections,

we remove this subject from the dataset.
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Figure 16: PLV for the outlier subject. The two columns correspond to flex (left) and popout

(right), and the two rows correspond to V1 vs. PPC (top) and PPC vs. DLPFC (bottom).

5.2 CONFIDENCE BAND FOR DIFFERENCE IN MEANS

Figures 17 and 18 show, for the popout and flex data, respectively, side-by-side plots of the

means for the two groups (those who have schizophrenia vs. those who are psychologically

normal). Generally, it seems that the subjects without schizophrenia have slightly higher

connectivity than the subjects with schizophrenia on average, though the average overall

PLV is fairly low. To attempt to formally identify differences in mean PLV between the

two subject groups, we calculate simultaneous confidence bands for the difference in mean

functions of two independent samples of two-way functional data. In doing this, we do not

assume weak separability, and we simply recast the method for functional data with one
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input variable (Cao et al., 2012; Degras, 2017) in terms of two-way functional data.
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Figure 17: PLV for the popout data averaged over (from left to right) the subjects without

schizophrenia, the subjects with schizophrenia, and all of the subjects. The rows correspond

to V1 vs. PPC (top) and PPC vs. DLPFC (bottom).

For a given dataset (i.e., a given ROI pair and design), define µ1(s, t) and µ2(s, t) to be

the mean PLV functions for the subjects with and without schizophrenia, respectively. Let

C1(s, t;u, v) and C2(s, t;u, v) be their respective covariance functions, let µ̂1(s, t) and µ̂2(s, t)

be their respective sample mean functions, and let n1 and n2 be their respective sample sizes.

With regularity conditions on the observations, grid points, error, and smoothing, there is

a functional central limit theorem
√
n1(µ̂1 − µ1)

d→ G(0, C1) (and similarly for µ̂2), where

G denotes a two-way Gaussian process, defined as the joint distribution of a collection of

random variables indexed by s, t such that the joint distribution of any finite collection of

these variables is multivariate normal. We hence have µ̂1 − µ̂2 ∼ G(µ1 − µ2, C1/n1 +C2/n2)

approximately.

Define the standard deviation functions for the two groups as σ1(s, t) = C1(s, t; s, t)
1/2
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Figure 18: PLV for the flex data averaged over (from left to right) the subjects without

schizophrenia, the subjects with schizophrenia, and all of the subjects. The rows correspond

to V1 vs. PPC (top) and PPC vs. DLPFC (bottom).
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and σ2(s, t) = C2(s, t; s, t)
1/2. If we denote the correlation function of µ̂1 − µ̂2 as

ρ(s, t;u, v) =
C1(s, t;u, v)/n1 + C2(s, t;u, v)/n2√

(σ1(s, t)2/n1 + σ2(s, t)2/n2)(σ1(u, v)2/n1 + σ2(u, v)2/n2)
,

then we have the approximate distribution

(µ̂1 − µ̂2)− (µ1 − µ2)√
σ2
1/n1 + σ2

2/n2

∼ G(0, ρ). (5.1)

Define the quantile zα,ρ such that, for Z ∼ G(0, ρ), P (sups,t |Z(s, t)| ≤ zα,ρ) = 1 − α.

Also define σ̂1(s, t), σ̂2(s, t), and ρ̂(s, t;u, v) to be the estimated versions of the standard

deviation and correlation functions calculated from the empirical covariances Ĉ1(s, t;u, v)

and Ĉ2(s, t;u, v) (which we calculate simply by vectorizing the two-way data). Then an

approximate 1− α confidence band for µ1 − µ2 is

µ̂1(s, t)− µ̂2(s, t)± zα,ρ̂
√
σ̂1(s, t)2/n1 + σ̂2(s, t)2/n2.

The quantile zα,ρ̂ is estimated using the following process, which can be thought of as

a parametric bootstrap of the standardized estimator in Equation (5.1): We consider the

FPCA decomposition Ĉ1(s, t;u, v)/n1 + Ĉ2(s, t;u, v)/n2 ≈
∑K

k=1 θkζk(s, t)ζk(u, v) for some

integer K. If we define

hk(s, t) =
√
θkζk(s, t)/

√
σ̂1(s, t)2/n1 + σ̂2(s, t)2/n2,

and let Zk, k = 1, . . . , K, be a sequence of i.i.d. N(0, 1) random variables, then
∑K

k=1 Zkhk ∼

G(0, ρ̂) approximately. For B simulated sets of standard normal random variables Zk, k =

1, . . . , K, we calculate sups,t |
∑K

k=1 Zkhk(s, t)|, and we estimate zα,ρ̂ as the 1 − α sample

quantile of this value. Additionally, we use
∑K

k=1 θkζk(s, t)
2 to approximate σ̂1(s, t)

2/n1 +

σ̂2(s, t)
2/n2. We use B = 10000 and K = 20. Using this moderate value of K can be seen

as a “smoothing” procedure for the covariances, removing the “noise” terms that contribute

less to the variability.

When we calculate 95% confidence bands for mean difference (schizophrenia minus no

schizophrenia) for each ROI pair and design, we find that none of these confidence bands

have their lower bounds rise above 0, and only the flex and PPC vs. DLPFC dataset has

its upper bound fall below 0. The portion of this upper bound that is below 0 is plotted in
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Figure 19. We see that it is only a small portion near the low frequency boundary where

the subjects without schizophrenia seem to have a significantly higher mean PLV than the

subjects with schizophrenia.
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Figure 19: The portion of the upper bound of the 95% confidence band for difference in

mean PLV (mean for schizophrenia minus mean for no schizophrenia) that falls below 0 for

the flex and PPC vs. DLPFC data.

5.3 STRONG AND WEAK SEPARABILITY TESTS

Since there is little difference in the means of the two groups of subjects, we investigate

their modes of variation. We justify the use of product FPCA by applying our test of

weak separability. As before, we consider the sets of the subjects’ PLV matrices for each

combination of ROI pair and design to be separate datasets, and we apply the testing

procedures to these 4 datasets separately. We use our χ2-type mixture and non-studentized

empirical bootstrap testing procedures, with the number of components Pn and Kn chosen

using the FVE procedure described in Section 2.3.2, and the results are shown in Table 14.

This table also shows the results of selected strong separability testing procedures from Aston

et al. (2017), using the same values of Pn and Kn as for the weak separability procedures.

For the empirical bootstrap procedures, we use B = 1000. We see that while the P-values

for strong separability are low in all cases, the P-values for weak separability are moderately

80



high. Hence, in the following sections, we take weak separability to hold, and analyze the

scores from product FPCA.

Table 14: For each dataset, the Pn and Kn from the FVE procedure, the weak separabil-

ity P-values from the χ2-type mixture (“Weak χ2”) and non-studentized empirical bootstrap

(“Weak Emp”) procedures, and the strong separability P-values from the Aston et al. (2017)

asymptotic χ2 (“Strong χ2”) and non-studentized empirical bootstrap (“Strong Emp”) pro-

cedures. ROI pair 1 refers to V1 vs. PPC, and ROI pair 2 refers to PPC vs. DLPFC.

Design ROI

pair

Pn Kn Weak

χ2

Weak

Emp

Strong χ2 Strong

Emp

Popout 1 5 6 0.3214 0.395 6.974e-22 0.011

2 5 6 0.1488 0.242 1.292e-23 0.000

Flex 1 5 6 0.2097 0.354 8.272e-25 0.000

2 5 6 0.0826 0.367 2.655e-12 0.000

Figure 20 shows the 3 products of estimated eigenfunctions ψ̂j(s)φ̂k(t) that explain the

most variance for the popout and V1 vs. PPC dataset. These products, which include

ψ̂1φ̂1, ψ̂2φ̂1, and ψ̂1φ̂2, contribute proportions of 0.4706, 0.0713, and 0.0643 to the FVE,

respectively. Compared to ψ̂1 and ψ̂2, φ̂1 is a fairly static function, so ψ̂1φ̂1 and ψ̂2φ̂1 mainly

characterize variation based on frequency. ψ̂1φ̂1 shows a mode of variation around the beta

band (see Table 10). ψ̂2φ̂1 shows a contrast between alpha and below, and beta high and

above. ψ̂1 is fairly static in comparison to φ̂2, so ψ̂1φ̂2 shows a contrast between the time

period before 0 (when the subjects are viewing the cue), and the time period after around

200 ms (which may correspond to when subjects have reacted to the change from the cue to

the rings).

5.4 CLASSIFICATION OF SUBJECTS

To determine if the leading scores from product FPCA are associated with schizophrenia, we

use these scores as features in binary classification models for schizophrenia. This strategy of
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ψ̂1(s)φ̂1(t)
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Figure 20: Plots of the products of estimated eigenfunctions ψ̂j(s)φ̂k(t) that explain the

most variance (decreasing from left to right) for the popout and V1 vs. PPC data.

using FPCA scores in classification models has been used, for example, in Müller (2005). For

a given dataset (ROI pair and design), we train a classification model using the first 6 product

FPCA scores for each subject, where the scores are calculated using the combined data

from both groups (those with and without schizophrenia). We consider linear discriminant

analysis (LDA), logistic regression, and k-nearest neighbors using the R functions lda (from

the package MASS), glm, and knn (from the package CLASS), respectively.

Table 15 shows the misclassification rates from 10-fold cross-validation for each method

and dataset. None of the methods perform much better than random assignment, the lowest

misclassification rate being 0.412 for 1-nearest neighbor on the flex and V1 vs. PPC data.

5.5 COVARIANCE DECOMPOSITION BASED ON L-SEPARABILITY

Here, we use the orthogonal NMF methods from Section 4.3 to approximate the covariance as

a sum of d strongly separable components, C(s, t;u, v) ≈
∑d

l=1 a
lC l
S(s, u)C l

T (t, v), for some

small d. Recall from Section 4.3 that applying orthogonal NMF to V , the variance matrix

of the marginal projection scores, gives C l
S(s, u) that are each composed of a few distinct

frequency components ψj(s)ψj(u), providing a more interpretable view of the covariation of
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Table 15: Misclassification rates for schizophrenia using the first 6 scores from product

FPCA. Here, k-NN 1 uses 1 nearest neighbor, k-NN 3 uses 3 nearest neighbors, etc. ROI

pair 1 refers to V1 vs. PPC, and ROI pair 2 refers to PPC vs. DLPFC.

Design ROI

pair

LDA Logistic

regression

k-NN

1

k-NN

3

k-NN

5

k-NN

10

Popout 1 0.577 0.583 0.513 0.522 0.555 0.615

2 0.518 0.525 0.512 0.575 0.632 0.572

Flex 1 0.467 0.472 0.412 0.415 0.450 0.472

2 0.483 0.490 0.513 0.427 0.458 0.443

subjects’ connectivity at different frequency ranges. Also recall that each term in the de-

composition of C can be thought of as the covariance of an approximately strongly separable

process Xl, l = 1, . . . , d. For each design and ROI pair, we choose d by, starting with d = 1,

finding an orthogonal NMF solution. We use this solution if the P-values from the strong

separability test for the Xl (introduced in Section 4.5) are all above .05; otherwise, we repeat

the procedure for the next integer value of d.

Denote Ĉ l
S(s, u) =

∑Pn

j=1 Fjlψ̂j(s)ψ̂j(u) and Ĉ l
T (t, v) =

∑Kn

k=1Gklφ̂k(t)φ̂k(v) as the esti-

mated versions of C l
S(s, u) and C l

T (t, v), where the matrices F and G are from orthogonal

NMF applied to V̂ , the empirical version of V with dimension Pn × Kn. Figure 21 plots

each Ĉ l
S(s, u) and Ĉ l

T (t, v) for the popout and V1 vs. PPC data, for which we have chosen

d = 3. Here, we scale F and G so that the entries in each of their columns add to 1, so that

Tr(Ĉ l
S) = Tr(Ĉ l

T ) = 1. In this case, we have a1 = 47.5996, a2 = 10.2464, and a3 = 15.1119

in the decomposition C(s, t;u, v) ≈
∑3

l=1 a
lĈ l
S(s, u)Ĉ l

T (t, v). The Ĉ l
T (t, v) all look fairly sim-

ilar, which could be expected since they are linear combinations of all the φ̂k(t)φ̂k(v), and

they show fairly uniformly high covariance near the diagonal (with the exception of the low

and high time boundaries). On the other hand, we get Ĉ l
S(s, u) with more distinct features,

as Ĉ1
S(s, u) = ψ̂1(s)ψ̂1(u), Ĉ2

S(s, u) = ψ̂2(s)ψ̂2(u), and Ĉ3
S(s, u) is a linear combination of

the remaining ψ̂j(s)ψ̂j(u). Ĉ1
S(s, u) shows high positive covariance between connectivity at
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frequencies within the beta low to gamma low bands. Ĉ2
S(s, u) shows high positive covari-

ance within the theta to alpha bands, and negative covariance between this frequency range

and beta high to gamma low. Ĉ3
S(s, u) shows high positive covariance among the lowest

frequencies (which may be due to boundary effects), and negative covariance between these

frequencies and slightly higher frequencies (within alpha to beta low).

5.6 PRODUCT FPCA WITH LOCALIZATION

In this section, we use the product FPCA setting to develop an interpretable and easily

computable localization method for eigenfunctions of two-way functional data. For one-way

functional data, localization modifies the eigenfunctions to have restricted support regions,

i.e., limited intervals of the domain where they are nonzero, thus sacrificing variance ex-

planation to allow for greater interpretability. We adapt the recent procedure for one-way

localization developed in Chen & Lei (2015). This method, named localized functional prin-

cipal component analysis (LFPCA), generates a sequence of orthogonal eigenfunctions that

can have differing support regions. Using the data of this chapter, we apply LFPCA to the

two marginal covariance functions separately to get localized marginal eigenfunctions ψ̂j(s)

and φ̂k(t), and product FPCA functions ψ̂j(s)φ̂k(t) that are localized to rectangular support

regions. In particular, the product functions ψ̂j(s)φ̂k(t) are 0 at a point (s, t) if and only if

they are 0 at (s, t′) for all t′ ∈ T , or 0 at (s′, t) for all s′ ∈ S. We thus have a simple and

interpretable framework for two-way localization that would not be guaranteed if we were to

simply apply one-way localization or sparse PCA methods to the vectorized versions of the

two-way data.

Here we give a brief description of LFPCA, further details of which can be found in

Chen & Lei (2015): Essentially, for dense, regular one-way functional data, LFPCA adds

a localization penalty to the eigenvalue problem for the discretized covariance matrix S

(there is also the option for a smoothing penalty, but we do not use this). For a given

localization parameter ρ2, LFPCA modifies the eigenvalue problem on S by way of a convex

relaxation involving the deflated Fantope to formulate the problem as a convex optimization.
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Figure 21: Estimated components of the covariance from orthogonal NMF on V̂ using the

popout and V1 vs. PPC data.
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The eigenvectors vj, which are discretized versions of the localized eigenfunctions, are esti-

mated sequentially using an iterative algorithm based on the alternating direction method

of multipliers (ADMM, Boyd et al. (2011)). The localization parameter ρ2 can take values

from 0 to 1, with higher values imposing more localization. LFPCA, as implemented in the

accompanying MATLAB code for Chen & Lei (2015), allows for a different choice of local-

ization parameter in estimating each eigenfunction. Let ρ2,j be the localization parameter

used to obtain the jth eigenvector vj. Chen & Lei (2015) give two methods of obtaining

a suitable ρ2,j. One method involves cross validation, and is shown to work well when the

true eigenfunctions are localized. The other method, which we consider, chooses the most

localized eigenfunctions that account for a fixed level of variance. That is, for some choice of

a ∈ [0, 1], ρ2,j is chosen as the largest ρ ∈ [0, 1] such that
vj

T (ρ)Svj(ρ)

vjT (0)Svj(0)
≥ 1− a, where vj(ρ) is

the estimated value of vj using ρ as the choice of localization parameter. Chen & Lei (2015)

show that this method is most useful when the true eigenfunctions are not localized but we

wish to gain more interpretable results while explaining a certain proportion of the variance.

Note that higher values of a will give more localization.

Figure 22 shows localized versions of the 3 leading terms from product FPCA for the

popout and V1 vs. PPC data. Compare these to the non-localized versions shown in Figure

20. Three levels of localization are considered, determined using a = 0.1, 0.2, 0.3. Most of

the resulting products share the same basic features as their corresponding non-localized

versions. Localization on ψ̂1(s)φ̂1(t) seems to mostly have the effect of setting the lowest

and highest frequency values to be 0. Localization on ψ̂2(s)φ̂1(t) using a = .1 or a = .2

makes this product a contrast between theta to low alpha and beta high. For higher values

of a, all the higher frequency values for this product are set to 0, which may be undesirable

as this removes the interpretation of this product as a contrast. As a increases, ψ̂1(s)φ̂2(t)

becomes a contrast between times nearer to 0 and times nearer to the end of the trial,

focused more on frequencies from beta low to gamma low. We see localization has the effect

of narrowing the focus to a smaller range of time and frequency values, which can provide a

simpler interpretation of the components of product FPCA.
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Figure 22: Leading products ψ̂j(s)φ̂k(t) for the popout and V1 vs. PPC data, localized using

LFPCA with (from top row to bottom) a = 0.1, 0.2, 0.3.
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5.7 DISCUSSION

In Sections 5.2 through 5.4, we were for the most part unable to differentiate the two groups

of subjects (psychologically normal vs. schizophrenia) using the MEG connectivity data.

The collaborators from the Clinical Neurophysiology Research Laboratory noted that both

subject groups in both the popout and flex trials had success rates of over 95% in choosing

whether the target opened on the left or right. Although flex was designed to be harder, it

seems both designs may have been too easy and/or not different enough from each other,

leading to a lack of difference in the observed brain connectivity. Additionally, the ROIs we

have considered are fairly large, and the collaborators now hypothesize that the activity of

interest during the tasks can be pinpointed to smaller subregions.

Based on our discussions with the collaborators, there are two possible issues in the

processing of the data, and there are continuing efforts to investigate these problems, which

are beyond the scope of this thesis. One potential issue is the lack of baseline correction.

Baseline correction normalizes each subject’s PLV values using data from the subject outside

of the time period of the task, with the goal of capturing the change in PLV induced by the

task and accounting for between-subject differences in overall PLV levels. This could possibly

be implemented using data from the fixation period, but then an issue arises from the fact

that the time during which the subject responds with the button press at the end of a given

trial overlaps with the fixation period of the following trial. Another issue present in the

processed data could be lack of correction for eye movement. Since the task involves focusing

on stimuli that are assigned to a given hemifield, eye movements could give a misleading

response in the brain.
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APPENDIX A

PROOFS

Proof of Lemma 1

Let fj (j = 1, 2, . . .) and gk (k = 1, 2, . . .) be a pair of bases that satisfies weak separability.

For (j, k) 6= (j′, k′), we have 〈Cfj ⊗ gk, fj′ ⊗ gk′〉 = E (〈X − µ, fj ⊗ gk〉〈X − µ, fj′ ⊗ gk′〉) =

E(χ̃jkχ̃j′k′) = 0. The removal of the expectation from the inner product is allowed by the

Fubini–Tonelli theorem, since S and T are compact and E(|X(s, t) − µ(s, t)||X(u, v) −

µ(u, v)|) ≤
√
C(s, t; s, t)C(u, v;u, v) for all s, u ∈ S and t, v ∈ T by the Cauchy–Schwarz

inequality. Since the covariance operator C is diagonalized under the orthonormal basis

fj ⊗ gk (j = 1, 2, . . . ; k = 1, 2, . . .), by Mercer’s theorem,

C(s, t;u, v) =
∞∑
j=1

∞∑
k=1

ηjkfj(s)gk(t)fj(u)gk(v),

where ηjk = 〈Cfj⊗gk, fj⊗gk〉 = var (〈X − µ, fj ⊗ gk〉), and the convergence is absolute and

uniform.

The marginal kernel CS(s, u) can then be written as

CS(s, u) =

∫
T

∞∑
j=1

∞∑
k=1

ηjkfj(s)gk(t)fj(u)gk(t)dt

=
∞∑
j=1

(
∞∑
k=1

ηjk

)
fj(s)fj(u).
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The exchange of the integral and sums is allowed by the Fubini–Tonelli theorem, by noticing

that ∫
T

∞∑
j=1

∞∑
k=1

|ηjkfj(s)gk(t)fj(u)gk(t)|dt

≤
∫
T

{
∞∑
j=1

∞∑
k=1

ηjkf
2
j (s)g2k(t)

}1/2{ ∞∑
j=1

∞∑
k=1

ηjkf
2
j (u)g2k(t)

}1/2

dt

=

∫
T
C(s, t; s, t)1/2C(u, t;u, t)1/2dt

≤
∫
T

sup
s,t
|C(s, t, s, t)|dt <∞,

where we use the Cauchy–Schwarz inequality.

Thus, we see that the fj are eigenfunctions of CS with eigenvalues λj =
∑∞

k=1 ηjk.

An analogous computation shows that the gk are eigenfunctions of CT with eigenvalues

γk =
∑∞

j=1 ηjk.

Proof of Lemma 2

Under strong separability, we have C(s, t;u, v) = aC1(s, u)C2(t, v). From the definition

of CS we have

CS(s, u) =

∫
T
C(s, t;u, t)dt = aC1(s, u)

∫
T
C2(t, t)dt = aC1(s, u).

An analogous argument shows CT (t, v) = aC2(t, v). Note that a =
∫
T

∫
S C(s, t; s, t)dsdt. We

can rewrite C(s, t;u, v) as

C(s, t;u, v) =
1

a
CS(s, u)CT (t, v).

Therefore,

cov(χjk, χj′k′) = 〈Cψj ⊗ φk, ψj′ ⊗ φk′〉 =
1

a
〈CSψj, ψj′〉〈CT φk, φk′〉.

When j 6= j′ or k 6= k′, it is easy to see that cov(χjk, χj′k′) = 0. Thus, we have weak

separability.

Proof of Lemma 3
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When V is of rank 1, V can be written V = WZT , where W and Z are column vectors

with entries (w1, w2, . . .) and (z1, z2, . . .), respectively. Thus, ηjk = wjzk, and under weak

separability, Equation (2.4) can be written

C(s, t;u, v) =
∞∑
j=1

∞∑
k=1

wjzkψj(s)ψj(u)φk(t)φk(v)

=

{
∞∑
j=1

wjψj(s)ψj(u)

}{
∞∑
k=1

zkφk(t)φk(v)

}
.

The above can be normalized to fit the definition of strong separability in Lemma 2.

Under strong separability, from the proof of Lemma 2 we have

C(s, t;u, v) =
1∫

T

∫
S C(s, t; s, t)dsdt

CS(s, u)CT (t, v),

so ηjk = {1/
∫
T

∫
S C(s, t; s, t)dsdt}〈CSψj, ψj〉〈CT φk, φk〉 = {1/

∫
T

∫
S C(s, t; s, t)dsdt}λjγk,

and then V = {1/
∫
T

∫
S C(s, t; s, t)dsdt}ΛΓT .

Proof of Theorem 4

We use the notation from Section 2.3.1. For H1 and H2 two real separable Hilbert spaces,

we further define the partial trace with respect to H1 as the unique bounded linear operator

Tr1 : BTr(H1 ⊗ H2) → BTr(H2) satisfying Tr1(C1⊗̃C2) = Tr(C1)C2 for all C1 ∈ BTr(H1),

C2 ∈ BTr(H2). The partial trace with respect to H2 is defined symmetrically and denoted

by Tr2. With the notation of partial trace, we can see that CT = Tr1(C) and CS = Tr2(C).

The estimated marginal covariance operators can also be written as ĈS = Tr2(Cn) and

ĈT = Tr1(Cn). We use these equalities in proofs but not in computation. In practice, the

estimated marginal covariances are calculated without having to calculate Cn.

From Condition I in Section 2.3.1 and the remark following it, Zn = n1/2(Cn − C)

converges to a Gaussian random element in BTr{L2(S × T )} with mean 0 and covariance

structure ΣC = E[{(X − µ)⊗ (X − µ)− C}⊗̃{(X − µ)⊗ (X − µ)− C}].

For Tn as defined in Equation (2.7),

Tn(j, k, j′, k′) =
√
n〈Cn(ψ̂j ⊗ φ̂k), ψ̂j′ ⊗ φ̂k′〉 =

√
nTr((ψ̂j ⊗ ψ̂j′)⊗̃(φ̂k ⊗ φ̂k′)Cn).
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Using (5.1.8) in Hsing & Eubank (2015), we have

(ψ̂j − ψj) =Mj(ĈS − CS)ψj + op(ψ̂j − ψj),

where Mj =
∑

m 6=j(λj − λm)−1ψm ⊗ ψm ∈ BTr(S) and λj is the jth eigenvalue of CS .

Analogously,

(φ̂k − φk) =M′
k(ĈT − CT )φk + op(φ̂k − φk),

whereM′
k =

∑
m6=k(γk−γm)−1φm⊗φm ∈ BTr(T ) and γk is the kth eigenvalue of CT . Here,

Condition II is used to guarantee thatMj andM′
k exist for j = 1, . . . , P and k = 1, . . . , K.

Using ĈS −CS = Tr2(Cn−C) and ĈT −CT = Tr1(Cn−C), we can write Tn(j, k, j′, k′)

as

Tn(j, k, j′, k′) =
√
nTr

(
(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)C

)
(A.1)

+
√
nTr

(
(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)(Cn − C)

)
+
√
nTr

(
(ψj ⊗ ψj′)⊗̃(φk ⊗ (M′

k′Tr1(Cn − C)φk′))C
)

+
√
nTr

(
(ψj ⊗ ψj′)⊗̃((M′

kTr1(Cn − C)φk)⊗ φk′)C
)

+
√
nTr

(
(ψj ⊗ (Mj′Tr2(Cn − C)ψj′))⊗̃(φk ⊗ φk′)C

)
+
√
nTr

(
((MjTr2(Cn − C)ψj)⊗ ψj′)⊗̃(φk ⊗ φk′)C

)
+ op(1).

Note that the first term in the above equation is zero under H0, since under H0 we have

the representation C(s, t, u, v) =
∑∞

j=1

∑∞
k=1 ηjkψj(s)ψj(u)φk(t)φk(v), where ηjk = var(χjk).

Also, by Proposition C.1 in Aston et al. (2017), we have that Tr(ATr1(T )) = Tr((Id1⊗̃A)T ),

where Id1 is an identity operator on S, A ∈ B(T ), and T ∈ BTr(S × T ). An analogous

identity holds for Tr2(T ). Using these facts, we give a simplified form of Tn(j, k, j′, k′) under

H0 for 3 cases:

Case (i): For j 6= j′ and k 6= k′,

Tn(j, k, j′, k′) = Tr
(
((ψj ⊗ ψj′)⊗̃(φk ⊗ φk′))Zn

)
+ op(1).

92



Case (ii): For j = j′ and k 6= k′,

Tn(j, k, j′, k′) =Tr
(
((ψj ⊗ ψj′)⊗̃(φk ⊗ φk′))Zn

)
+Tr

(
(Id1⊗̃(ηjk′(φk ⊗ φk′)M′

k))Zn
)

+Tr
(
(Id1⊗̃(ηjk(φk′ ⊗ φk)M′

k′))Zn
)

+ op(1).

Case (iii): For j 6= j′ and k = k′,

Tn(j, k, j′, k′) =Tr
(
((ψj ⊗ ψj′)⊗̃(φk ⊗ φk′))Zn

)
Tr
(
((ηjk(ψj′ ⊗ ψj)Mj′)⊗̃Id2)Zn

)
+Tr

(
((ηj′k(ψj ⊗ ψj′)Mj)⊗̃Id2)Zn

)
+ op(1).

In each of the above cases, two or more of the terms in Equation (A.1) end up being

zero due to the orthogonality of the eigenfunctions. The latter 2 cases can be simplified to

get the result in the statement of the theorem by noting that ηjk′(φk ⊗ φk′)M′
k = ηjk′(γk −

γk′)
−1φk ⊗ φk′ and ηjk(ψj′ ⊗ ψj)Mj′ = ηjk(λj′ − λj)−1ψj′ ⊗ ψj.

Proof of Corollary 5

From Theorem 4, we can see that all the terms of Tn(j, k, j′, k′) can be written in the

form Tr(A1⊗̃A2Zn) for some A1 ∈ B(S) and A2 ∈ B(T ). Since Zn converges to a Gaussian

random element and Tr(A1⊗̃A2Zn) is a continuous linear mapping, the Tn(j, k, j′, k′) are

asymptotically jointly Gaussian for different sets of (j, k, j′, k′). Let Θ be the covariance

structure of the asymptotic joint distribution of the Tn(j, k, j′, k′), and define Z to be a

Gaussian random element with the limiting distribution of Zn. By the continuous mapping

theorem, Θ can be calculated from terms of the form

E(Tr(A1⊗̃A2Z)Tr(B1⊗̃B2Z)) = Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
, (A.2)

where ΣC is defined as in the proof of Theorem 4.
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Recall the K-L expansion of the process X(s, t) = µ(s, t) +
∑∞

j=1

∑∞
k=1 χjkψj(s)φk(t).

We define uij = ψi⊗ψj ∈ BHS(S), vij = φi⊗φj ∈ BHS(T ), βi,i′,j,j′,k,k′,l,l′ = E(χii′χjj′χkk′χll′)

and ηii′ = E(χ2
ii′). With weak separability, we have

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
=

∑
i,i′,j,j′,k,k′,l,l′

βi,i′,j,j′,k,k′,l,l′Tr[A1uij]Tr[A2vi′j′ ]Tr[B1ukl]Tr[B2vk′l′ ]

−
∑
i,i′,j,j′

ηii′ηjj′Tr[A1uii]Tr[B1ujj]Tr[A2vi′i′ ]Tr[B2vj′j′ ].

Each of the trace terms in the above equation can be evaluated using Tr[Id1uij] = I(i = j),

Tr[Id2vi′j′ ] = I(i′ = j′), Tr[(ψj1 ⊗ ψj′1)uij] = I(i = j1)I(j = j′1), and Tr[(φk1 ⊗ φk′1)vi′j′ ] =

I(i′ = k1)I(j′ = k′1). From these identities and the possible forms of A1, A2, B1, and B2 given

in Theorem 4, it follows that the second sum is always 0. The first sum can be simplified by

considering 9 cases, as follows:

Case (1): For A1 = a1ψj1 ⊗ ψj′1 , A2 = a2φk1 ⊗ φk′1 , B1 = b1ψj2 ⊗ ψj′2 , B2 = b2φk2 ⊗ φk′2 ,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a1a2b1b2βj1,k1,j′1,k′1,j2,k2,j′2,k′2 .

Case (2): For A1 = Id1, A2 = a2φk1 ⊗ φk′1 , B1 = b1ψj2 ⊗ ψj′2 , B2 = b2φk2 ⊗ φk′2 ,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a2b1b2

∞∑
i=1

βi,k1,i,k′1,j2,k2,j′2,k′2 .

Case (3): For A1 = a1ψj1 ⊗ ψj′1 , A2 = Id2, B1 = b1ψj2 ⊗ ψj′2 , B2 = b2φk2 ⊗ φk′2 ,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a1b1b2

∞∑
i′=1

βj1,i′,j′1,i′,j2,k2,j′2,k′2 .

Case (4): For A1 = a1ψj1 ⊗ ψj′1 , A2 = a2φk1 ⊗ φk′1 , B1 = Id1, B2 = b2φk2 ⊗ φk′2 ,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a1a2b2

∞∑
k=1

βj1,k1,j′1,k′1,k,k2,k,k′2 .

Case (5): For A1 = a1ψj1 ⊗ ψj′1 , A2 = a2φk1 ⊗ φk′1 , B1 = b1ψj2 ⊗ ψj′2 , B2 = Id2,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a1a2b1

∞∑
k′=1

βj1,k1,j′1,k′1,j2,k′,j′2,k′ .
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Case (6): For A1 = Id1, A2 = a2φk1 ⊗ φk′1 , B1 = Id1, B2 = b2φk2 ⊗ φk′2 ,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a2b2

∞∑
i=1

∞∑
k=1

βi,k1,i,k′1,k,k2,k,k′2 .

Case (7): For A1 = Id1, A2 = a2φk1 ⊗ φk′1 , B1 = b1ψj2 ⊗ ψj′2 , B2 = Id2,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a2b1

∞∑
i=1

∞∑
k′=1

βi,k1,i,k′1,j2,k′,j′2,k′ .

Case (8): For A1 = a1ψj1 ⊗ ψj′1 , A2 = Id2, B1 = Id1, B2 = b2φk2 ⊗ φk′2 ,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a1b2

∞∑
i′=1

∞∑
k=1

βj1,i′,j′1,i′,k,k2,k,k′2 .

Case (9): For A1 = a1ψj1 ⊗ ψj′1 , A2 = Id2, B1 = b1ψj2 ⊗ ψj′2 , B2 = Id2,

Tr

(
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

)
= a1b1

∞∑
i′=1

∞∑
k′=1

βj1,i′,j′1,i′,j2,k′,j′2,k′ .

In the above, a1, a2, b1, and b2 are scalar constants. Using the above, all the terms in Θ

can be obtained from straightforward but tedious calculations.

To illustrate the calculation of Θ(j, k, j′, k′, l,m, l′,m′), the term in Θ corresponding to

the asymptotic covariance of Tn(j, k, j′, k′) and Tn(l,m, l′,m′), we consider as an example

the case where j 6= j′, k 6= k′, l 6= l′, and m 6= m′. Here,

Θ(j, k, j′, k′, l,m, l′,m′)

by Thm. 4 (i)
= E

(
Tr
[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)}Z

]
Tr
[
{(ψl ⊗ ψl′)⊗̃(φm ⊗ φm′)}Z

])
by Eq. (A.2)

= Tr

[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)}

⊗̃
{(ψl ⊗ ψl′)⊗̃(φm ⊗ φm′)}ΣC

]
by Case (1)

= βj,k,j′,k′,l,m,l′,m′ = E(χjkχj′k′χlmχl′m′),

where we have used A1 = ψj ⊗ ψj′ , A2 = φk ⊗ φk′ , B1 = ψl ⊗ ψl′ , and B2 = φm ⊗ φm′ .

Proof of Lemma 6

Let X∗N(s, t) = µ(s, t) +
∑N

j=1

∑N
k=1 χjkψj(s)φk(t), and let C∗N denote the covariance

structure of X∗N . Thus,

C∗N(s, t;u, v) =
N∑
j=1

N∑
j′=1

N∑
k=1

N∑
k′=1

cov(χjk, χj′k′)ψj(s)ψj′(u)φk(t)φk′(v).
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It is easy to show that C∗N converges to C in Hilbert–Schmidt norm. Let CS,N = Tr2(C
∗
N),

which converges to CS because Tr2 is continuous and linear. We know that 〈CSψj, ψj′〉 = 0

for j 6= j′, and therefore limN〈CS,Nψj, ψj′〉 = 0. By definition,

〈CS,Nψj, ψj′〉 =

∫
S

∫
S

{∫
T
C∗N(s, t;u, t)dt

}
ψj(s)ψj′(u)dsdu

=

∫
S

∫
S

∫
T

N∑
l=1

N∑
l′=1

N∑
k=1

N∑
k′=1

cov(χlk, χl′k′)ψl(s)ψl′(u)φk(t)φk′(t)ψj(s)ψj′(u)dtdsdu

=
N∑
k=1

cov(χjk, χj′k).

Therefore, limN

∑N
k=1 cov(χjk, χj′k) = 0, i.e.,

∑∞
k=1 cov(χjk, χj′k) = 0 for j 6= j′.

The same argument holds for the empirical version as follows: Let

Ĉ∗N(s, t;u, v) =
N∑
j=1

N∑
j′=1

N∑
k=1

N∑
k′=1

1√
n
Tn(j, k, j′, k′)ψ̂j(s)ψ̂j′(u)φ̂k(t)φ̂k′(v).

We can write the empirical covariance as

Cn(s, t;u, v) =
1

n

n∑
i=1

(Xi(s, t)− X̄(s, t))(Xi(u, v)− X̄(u, v))

=
1

n

n∑
i=1

∞∑
j=1

∞∑
j′=1

∞∑
k=1

∞∑
k′=1

χ̂i,jkχ̂i,j′k′ψ̂j(s)ψ̂j′(u)φ̂k(t)φ̂k′(v)

=
∞∑
j=1

∞∑
j′=1

∞∑
k=1

∞∑
k′=1

1√
n
Tn(j, k, j′, k′)ψ̂j(s)ψ̂j′(u)φ̂k(t)φ̂k′(v),

and it is clear that Ĉ∗N converges (with respect to N) to Cn in Hilbert–Schmidt norm. Let

ĈS,N = Tr2(Ĉ
∗
N), which converges to ĈS because Tr2 is continuous and linear. We know

that 〈ĈSψ̂j, ψ̂j′〉 = 0 for j 6= j′, and therefore limN〈ĈS,N ψ̂j, ψ̂j′〉 = 0. By definition,

〈ĈS,N ψ̂j, ψ̂j′〉 =

∫
S

∫
S

{∫
T
Ĉ∗N(s, t;u, t)dt

}
ψ̂j(s)ψ̂j′(u)dsdu

=

∫
S

∫
S

∫
T

N∑
l=1

N∑
l′=1

N∑
k=1

N∑
k′=1

1√
n
Tn(l, k, l′, k′)ψ̂l(s)ψ̂l′(u)φ̂k(t)φ̂k′(t)ψ̂j(s)ψ̂j′(u)dtdsdu

=
N∑
k=1

1√
n
Tn(j, k, j′, k).

Therefore, limN

∑N
k=1 Tn(j, k, j′, k) = 0, i.e.,

∑∞
k=1 Tn(j, k, j′, k) = 0 for j 6= j′.
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Analogous calculations can be done for k 6= k′ to show that
∑∞

j=1 cov(χjk, χjk′) = 0 and∑∞
j=1 Tn(j, k, j, k′) = 0.

Proof of Lemma 7

Expand the C l
1 and C l

2 terms using the marginal eigenfunctions. That is, write

C l
1(s, u) =

∑
j

∑
j′

αljj′ψj(s)ψj′(u)

and

C l
2(t, v) =

∑
k

∑
k′

βlkk′φk(t)φk′(v).

Under weak separability we can then write

‖C −
d∑
l=1

C l‖2 =

∫ ∫ ∫ ∫
[
∑
j

∑
k

ηjkψj(s)ψj(u)φk(t)φk(v)

−
d∑
l=1

∑
j

∑
k

∑
j′

∑
k′

αljj′β
l
kk′ψj(s)ψj′(u)φk(t)φk′(v)]2dsdtdudv

=
∑
j

∑
k

η2jk +
∑
j

∑
k

∑
j′

∑
k′

(
d∑
l=1

αljj′β
l
kk′

)2

− 2
∑
j

∑
k

ηjk

d∑
l=1

αljjβ
l
kk

=
∑
j

∑
k

(
ηjk −

d∑
l=1

αljjβ
l
kk

)2

+
∑
j 6=j′

∑
k 6=k′

(
d∑
l=1

αljj′β
l
kk′

)2

.

Note that for each l, the arrays of αljj′ and βlkk′ must be nonnegative definite. Hence, the

αljj and βlkk must be nonnegative, and it is clear that the minimizing value of ‖C−
∑d

l=1C
l‖

can be attained by setting αljj′ = 0 for j 6= j′ and βlkk′ = 0 for k 6= k′. Then ‖C−
∑d

l=1C
l‖2 =

‖V −FGT‖2F , where F is a nonnegative array with (j, l)th entry αljj and G is a nonnegative

array with (k, l)th entry βlkk.

Note that if the sets (ψj)j>1 or (φk)k>1 do not form complete bases, we have to consider

expanding C l
1 or C l

2 using completions of them. However, for ψj′ one of the functions added

to complete the set (ψj)j>1, we will have ηj′k = 0 for all k, so αlj′j′ = 0. Likewise, we will

have βlk′k′ = 0 for φk′ added to complete the set (φk)k>1, so the result does not change.

Proof of Lemma 8

Some notation: For a matrix A, denote Ajk as its (j, k)th entry, Aj· as its jth row, and

A·k as its kth column.
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Consider an exact orthogonal NMF solution V = V1 + · · · + Vd = FGT , where F ≥ 0 is

P × d, G ≥ 0 is K × d, and F TF = Id. By Condition A we are guaranteed, for orthogonal

NMF in general, that each row of F will have exactly one nonzero entry. To see this, note

that when Fj· = 0, for all l ∈ {1, . . . , d} row j of Vl will be all zeros. For some Vl, we could

replace this row of zeros with another row of Vl multiplied by a scalar small enough to make

each of its entries smaller than the corresponding entries of Vj·. Doing this would give a

smaller error ‖V − (V1 + · · ·+ Vd)‖F , and would be equivalent to changing one of the entries

of Fj· to be nonzero.

Hence, we define πj to be the column number of the nonzero entry in Fj·. Using the

notation of Section 4.3, Bl = {j : πj = l}. Note that the Bl will be disjoint and have union

{1, 2, . . . , P}. Each Bl will be nonempty, since otherwise F·l would be all zeros, which would

correspond to a solution with a smaller d.

For any j ∈ {1, . . . , P}, an exact orthogonal NMF solution will have Vj· = FjπjG
T
·πj .

Define aj = ‖G·πj‖Fjπj , and for all l ∈ {1, . . . , d}, define vl = G·l
‖G·l‖

, where ‖ · ‖ is the

vector L2 norm. Then for any j ∈ {1, . . . , P}, Vj· = ajv
T
πj

. That is, there exist unit vectors

v1, v2, . . . , vd of length K such that, for all j ∈ {1, . . . , P}, Vj· is a scalar multiple of vπj .

Note that, when we use the smallest possible d that gives an exact orthogonal NMF

solution, the unit vectors v1, v2, . . . , vd are distinct. To see this, note that if we had vl = vl′

for some l 6= l′, then G·l′ would be a scalar multiple of G·l. Thus, we could move the nonzero

entries of F·l′ (scaled by ‖G·l′‖/‖G·l‖) into their corresponding rows of F·l, remove F·l′ and

G·l′ , and rescale to get an exact orthogonal NMF solution with a smaller d.

Suppose we had another solution V = V ′1 + · · · + V ′d = F ′(G′)T , where F ′ ≥ 0 is P × d,

G′ ≥ 0 is K × d, and F ′TF ′ = Id. Define π′j to be the column number of the nonzero entry

in F ′j·. Since for any j ∈ {1, . . . , P}, Vj· = F ′jπ′j
(G′·π′j

)T , the columns of G′ must be scalar

multiples of the unit vectors v1, v2, . . . , vd. Permute the columns of F ′ and G′ so that for

all l ∈ {1, . . . , d}, G′·l is a scalar multiple of vl. Then for all j ∈ {1, . . . , P}, Vj· is a scalar

multiple of both vπj and vπ′j , and since the vl are distinct this implies πj = π′j. That is, F

and F ′ have the same supports. But by Lemma 9 (which does not depend on the results of

this lemma), the orthogonal NMF solution for a fixed support is unique, so V ′1 + · · ·+ V ′d is

the same solution as V1 + · · ·+ Vd (that is, the V ′l can be reordered such that V ′l = Vl for all
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l ∈ {1, . . . , d}). Equivalently, F and G are unique up to a column-wise permutation.

Proof of Lemma 9

Define (V )Bl
as in Section 4.4. Define Vl to be the rank-one matrix obtained by taking

the outer product of the lth columns of F and G, i.e., Vl = F·lG
T
·l . For a fixed support,

i.e., fixed sets Bl, l = 1, . . . , d, Vl is restricted to having entries of 0 in all rows but those

corresponding to Bl. Since (V )Bl
also only has nonzero entries in rows corresponding to Bl,

we can write

‖V − (V1 + · · ·+ Vd)‖2F = ‖
d∑
l=1

((V )Bl
− Vl)‖2F =

d∑
l=1

‖(V )Bl
− Vl‖2F .

Define (V )−Bl
and V −l to be (V )Bl

and Vl, respectively, but with their rows of zeros

removed. Then minimizing the above sum is equivalent to minimizing ‖(V )−Bl
− V −l ‖2F for

each l. The optimal rank-one approximation of (V )−Bl
(in terms of minimizing the Frobenius

norm) is given by the Eckart-Young-Mirsky theorem to be σlu
−
l v

T
l , where σl is the largest

singular value of (V )−Bl
, and u−l and vl are its corresponding left and right singular vectors,

respectively. By Condition A, (V )−Bl
only has positive entries, so by Perron’s theorem, u−l

and vl have only positive entries, σl is positive, and the minimizing value σlu
−
l v

T
l is unique

(Lax, 2007). Thus, the unique solution to orthogonal NMF with a fixed support is given by

setting Vl = σlulv
T
l for each l, where ul is the vector of length P that has the entries of u−l

in the rows corresponding to Bl, and zeros elsewhere. It is clear that this solution satisfies

the orthogonality requirement V T
l Vm = 0 for all l 6= m, and it is clear that σl, ul, and vl

are the largest singular value of (V )Bl
and its corresponding left and right singular vectors,

respectively. To satisfy ‖F·l‖2 = 1 for each l, we must have F·l = ul, and G·l = σlvl.
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APPENDIX B

ADDITIONAL FIGURES

Here we include additional figures referenced in Chapter 3.
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Figure 23: Plots of the first 20 estimated marginal eigenvalues λ̂j (left column) and γ̂k (right

column) for the source-level datasets. The rows from top to bottom correspond to the motor,

2-back, and 0-back data, respectively.
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Figure 24: Plots of the first 20 estimated marginal eigenvalues λ̂j (left column) and γ̂k (right

column) for the sensor-level datasets. The rows from top to bottom correspond to the motor,

2-back, and 0-back data, respectively.
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Figure 25: Plots of the estimated eigenfunctions ψ̂j(s) and φ̂k(t) whose products explain the

most variance for the sensor-level motor data.

103



0 10 20 30 40 50

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ψ̂1

0 10 20 30 40 50

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ψ̂2

0 10 20 30 40 50

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ψ̂3

0 0.5 1 1.5 2
0.06

0.065

0.07

0.075

0.08

0.085

φ̂1

Figure 26: Plots of the estimated eigenfunctions ψ̂j(s) and φ̂k(t) whose products explain the

most variance for the sensor-level 2-back data.
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Figure 27: Plots of the estimated eigenfunctions ψ̂j(s) and φ̂k(t) whose products explain the

most variance for the sensor-level 0-back data.
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