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ABSTRACT 

Introduction: 

Hospital readmissions have a great deal of public health significance, as they are burdensome 

and costly to providers, hospitals, and patients. The quality-of-care provided by hospitals is 

evaluated by comparing hospital readmission rates to national averages. Underperforming 

hospitals are penalized by the Centers for Medicare & Medicaid Services (CMS). In 2018, 2,597 

hospitals are being penalized a total of $564 million. Published studies have demonstrated a 

multitude of approaches that were successful in reducing readmission rates, but they are too 

expensive for systemic implementation within a hospital. The University of Pittsburgh Medical 

Center (UPMC) Mercy Hospital Clinical Analytics team has constructed a multiple logistic 

regression prediction model that scores patient risk factors in order to flag high risk patients who 

are most likely to experience readmission. 

Objectives/Aims: 

Primarily, this study aims to evaluate the accuracy with which the UPMC Mercy multiple 

logistic regression model correctly predicts readmission risk in a clinical application. Once 

validated, it is our secondary aim to initiate a discharge intervention specifically for patients who 

are flagged by the model. 
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Jeremy Martinson, DPhil 

Methods: 

The predictive logistic regression tool has been in use for slightly over one year at UPMC 

Mercy; daily reports score patients as ‘lowest’, ‘lower’, ‘medium’, ‘higher’, or ‘highest’ risk for 

readmission. Based on sample size calculations, about 200 individuals per predicted risk group 

were retrospectively recruited and followed for the next month in order measure readmission 

status over 7 days and 30 days. Chi-Square testing for independence and stratified one-sample 

proportion testing allowed for validation of the model’s accuracy. 

Results: 

Chi-square testing of independence demonstrated that not all risk quintiles had distinct mean 

readmission rates, contrary to our hypothesis. One-sample proportion testing further illustrated 

the poor fit for predicting 7-day readmission, with only 1/5 risk groups following expected mean 

rates of readmission. However, one-sample proportion analysis for 30-day readmission 

prediction resulted in 3/5 of the risk strata exhibiting similar mean rates of readmission as was 

expected, as well as a clinically relevant increasing trend across risk strata. 

Discussion: 

This multiple logistic regression model is not an accurate predictor of 7-day readmission. 

However, it appears that the model could be clinically relevant for predicting 30-day 

readmissions. The ‘highest’ risk strata displayed 36% 30-day readmission, which is 16-18% 

higher than the national average 30-day readmission rate. Though the model could benefit from 

optimization, it likely could be utilized in its current state to target high risk groups for 30-day 

readmission rather reliably. 
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1.0  INTRODUCTION 

1.1 SPECIFIC READMISSION MEASURE SUBTYPES 

In the growing body of literature, there is an increasingly diverse repertoire of readmission 

measures being deployed.1, 2 It is crucial to clearly define commonly utilized readmission 

subtypes because they do not all have the same implications in evaluating quality of care1. 

One of the most important factors to consider when evaluating a measure of readmission 

is the length of follow-up that is measured between discharge from the index admission (the 

original hospital stay) and the rehospitalization2. The most commonly utilized readmission 

follow-up intervals are 7-day/one week, 14-day/two weeks, 30-day/one month, 60-day/two 

months, and 90-day/three months2, 3. Readmission cases tend to cluster after discharge from the 

index admission; about ½ occur within 90 days; and about 1/3 occur within 30 days.2, 3 A longer 

readmission time interval can detect more instances of readmission than a shorter time interval2-5. 

However, shorter readmission windows are more likely to be directly related to the quality of 

care received during the index admission2-5.  

Occasionally, studies distinguish planned and unplanned readmission measures6-9. This 

readmission subtype stems from the concept of the planned readmission, in which a readmission 

is scheduled prior to a procedure7, 9. When utilizing this metric, researchers attempt to remove 

planned readmissions from their dataset, as they are not reflective of care received and are not 
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preventable7-9. For example, one vascular surgery report documented a planned readmission rate 

of 21.5%, demonstrating that studies overlooking planned readmissions can significantly 

overattribute readmission rates to poor quality of the surgery9. One major challenge of the 

preventable readmission metric is reliably reaching a consensus on which readmission measures 

are considered planned, since many studies are retrospective and observational designs6-9. As an 

example, one study focused on preventable readmissions and arbitrarily defined that any 

readmission connected with obstetrical delivery, chemotherapy, or organ transplant should 

always be classified as planned, even if a certain date is not planned7.  

Another readmission subtype found widely published within the literature is referred to as 

a potentially preventable readmission (PPR), also sometimes called a discernable readmission5, 

10. As the name implies, PPRs are readmissions that are considered to have been unnecessary 

rehospitalizations that would not have occurred in the presence of proper care, discharge 

planning, or transitory planning during the index admission5, 10. When studying readmissions, 

researchers concede that there will always be a basal level of readmissions, even under the most 

ideal circumstances, which are not associated with the index admission5, 11. Many researchers 

strongly advocate for only including PPRs when considering quality of care because they avoid 

counting the basal readmissions that are not preventable11. Relatives of the PPR readmission 

subtype are the linked and unlinked readmission measures1, 12. Linking refers to an association 

with the index admission; linked readmissions are proposed to be associated with some 

substandard practice that occurred during the index admission, whereas unlinked readmissions 

are simply coincidence rehospitalizations with no connection to the index hospitalization12. 

Finally, some studies mention all-cause or hospital-wide readmission rates, whereas 

others refer to cause-specific or disease-specific readmissions rates8, 13, 14. Studying hospital-wide 
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readmission rates is advantageous because it provides a representation of trends throughout the 

entire hospital system13, 14. Studies that focus on disease-specific readmission benefit from 

understanding how readmission affects a specific stratum of patients14-16. 

1.2 READMISSION CASE DEFINITION  

Unless otherwise specified, every occurrence of ‘readmission’ within this manuscript will refer 

to hospital-wide, all-cause readmissions without risk adjustment8, 17. This measure of 

readmissions is broadly inclusive and conservative, including all recorded instances of 

readmissions regardless of whether they were planned, linked to the index admission, or deemed 

preventable8, 17. The hospital-wide all-cause readmission measure dodges the inconsistencies, 

discrepancies, and biases that arise when panels must reach a consensus opinion in classifying 

readmissions are related or not to the index admission5, 11, 18. Observational stays that were 

recorded in medical charts are treated as admissions or readmissions in this study, despite that 

the CMS does not consider observational stays as admissions19.  

As was previously mentioned, 7-day readmissions and 30-day readmissions can offer 

different information with regards to quality-of-care; 7-day readmissions are more likely to be 

linked to index cases, whereas 30-day readmissions provide a follow-up window that tracks most 

of the patient readmissions that occur1-4. Both measures are important to the research questions 

of interest, so 7-day and 30-day readmissions are both recorded and specified accordingly within 

this study.  
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1.3 READMISSIONS AND QUALITY OF CARE 

In the 1990’s many studies began associating hospital readmissions with potential substandard 

clinical quality of care11, 20, 21. One of the original studies to identify this correlation did so by 

measuring quality of care with a metric that they titled ‘readiness-for discharge’21. In this section, 

clinical staff were scored for how well patients and their families were educated and informed, 

how clinically stable the patient was upon discharge, and what follow-up medical care was 

provided post-discharge21. Patients with heart failure or diabetes who scored in the lowest 

quartile in readiness-for-discharge surveys were twice as likely to be readmitted for the same 

condition compared to those who did not score in the lowest quartile21. Two years following the 

initial study, the same group conducted a meta-analysis of sixteen different clinical quality 

studies, where quality of care was ranked as substandard, normative, or exceptional20. This 

landmark study revealed that care categorized as relatively low quality increased the odds of 

readmission by a factor of 55 when compared with care categorized as higher quality20, 22. 

Within the past decade, readmissions have emerged as a standard method of evaluating 

clinical quality of care11, 18, 23-28.Unlike many measures, readmission statistics concentrate on 

patients at their highest vulnerability, who are attempting to transition from inpatient care back to 

a healthy lifestyle5. Though readmissions can arise naturally through unavoidable, natural 

sequalae of disease or patient frailty, the variability of readmissions between different hospitals 

indicates that some facilities are operating at a higher standard than others5, 29, 30. Programs have 

identified that strictly implementing aseptic protocols, educating patients prior to discharge, 

planning transitory care, focusing on medication needs, and communicating clearly with patients 

decreases readmission rates significantly7, 16, 28-30. In a trial studying the effects of nosocomial 

infections, researchers concluded that surgical site infections increase the rate of 30-day 
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readmission by about 2-5.5 times compared to patients who did not suffer from hospital acquired 

infections22.  Patients who experienced unplanned 30-day readmission were 55% more likely to 

have experienced poor quality of care during their index admission22. 

1.4 HOSPITAL READMISSION INDUCED BURDEN 

Repeated rehospitalizations are burdensome to patient recovery due to placing patients at 

heightened risk of developing adverse complications14, 23, 31. Many patients experience some 

degree of ‘post-hospital syndrome’, which is a period of increased vulnerability after discharge 

from a hospitalization resulting from increased stress, poor sleep, interrupted nutritional intake, 

and adverse drug effects14, 31, 32. A 2011 study of colon cancer patients found that patients who 

were readmitted within 30 days experienced 16% mortality compared to a 7% rate in those who 

did not experience 30-day readmission3. Another research group directly compared newly 

admitted acute ischemic stroke (AIS) patients to patients being re-hospitalized for AIS33. In this 

observational study, researchers concluded that readmitted patients had higher mean length of 

stays (LOS), mortality rates, and medical costs than index cases33. 

Hospital readmissions are incredibly costly to patients, providers, and hospitals. In one 

study that matched cases of Clostridium difficile Associated Diarrhea (C. diff) to patients who 

did not have C. diff, researchers concluded that C. diff increased patient length of stay by an 

average of 4.7 days, translating to an additional cost of about $7,28634. In another publication 

associating hospital quality and cost of stay, the authors determined that patients attending 

hospitals ranking in the highest quintile of complication rates paid an average of $2,400-$5,400 

more for their stay35. In 2013 estimates, index admissions cost patients and providers about 
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$13,100, whereas the average cost of readmission was $13,800 in addition to the cost of the 

index stay36. In 2013, the Healthcare Cost and Utilization Project (HCUP) calculated that the 

average cost of readmission for Medicaid or privately insured patients was about $3,000 more 

than the cost of the corresponding index admission36. In 2011, HCUP estimated $41.3 billion in 

direct hospital costs associated with 3.3 million adult all-cause 30-day readmission cases8. 

For Medicare covered patients, Heart Failure, pneumonia, and septicemia result in the 

three most frequent causes of 30-day readmissions, resulting in about 316,000 readmissions and 

$4.3 billion in hospital costs8. In Medicaid covered patients, the three most frequent conditions 

associated with readmissions are mood disorders, schizophrenia, and diabetes, which resulted in 

about 101,000 cases of 30-day readmission and about $839 million in hospital costs8. In privately 

insured patients, the three most common 30-day readmission cases were related to maintenance 

chemotherapy, mood disorders, or surgical or medical complications, resulting in about 63,000 

readmissions totaling $785 million in healthcare costs8. Finally, there are indirect burdens that 

readmissions cost patients, such as loss of income, loss of career/future employment, and quality 

of life factors like spending time away from family. One example is that about 1/5 of 

readmissions are at a different healthcare facility than the original hospitalization, which often 

leads to duplicate testing, unnecessary interventions, or delayed treatment and diagnosis27.  

Additionally, indirect impact readmissions can harm employers, who spend $260 billion in work 

related losses every year37, 38. Aside from readmission induced financial burdens, unplanned 

readmissions also disrupt clinical healthcare systems, unnecessarily diverting resources away 

from other patients who need medical attention6. 
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1.5 HOSPITAL READMISSIONS REDUCTIONS PROGRAM (HRRP) 

1.5.1 HRRP Aims 

At the end of every fiscal year, the Center for Medicare & Medicaid Services (CMS) financially 

reimburses hospitals for Medicare and Medicaid insured patients that received care15. It is 

estimated that the CMS spends over $17 billion annually reimbursing hospitals specifically for 

costs associated with unplanned readmissions, which is 17% of the total CMS reimbursement 

budget26, 28. Of the CMS money spent on readmissions, it is further estimated that $12 billion is 

wasted on ‘potentially preventable’ readmissions16. Some theorize that since hospitals receive the 

same amount of money for treating a readmitted patient as they do for treating an index case, 

readmissions perversely benefit hospitals financially16.  

Given this information, the Affordable Care Act (ACA) was enacted into United States 

law in 2010, which contained the blueprint for the Hospital Readmissions Reductions Program 

(HRRP), though it would not take full effect until 201215, 19, 24. The HRRP relies on evaluating 

hospitals based on readmission rates; a hospital with unusually high readmission rates likely is 

not performing the same standard of care as a hospital with low readmission rates15. The Hospital 

Readmissions Reductions Program aims to improve patient outcomes, decrease inefficient 

Medicare expenditures, and establish hospital culpability and transparency15, 19, 24.  

About 20% of Medicare beneficiaries experience 30-day hospital readmission, and about 

34% experience 90-day hospital readmission26. With regards to Medicare 30-day readmissions, 

rates range from 14% to 22% in the lowest and highest performing deciles of states respectively; 

this variation reinforcing the inconsistencies in care quality and opportunity for improvement14, 

39. Approximations posit that a reduction of only 10% of avoidable readmissions would save the 
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CMS $1 billion dollars yearly28. If all hospitals achieved the levels of the current highest 

performers, there would be $1.9 billion in annual savings30, 39 

1.5.2 HRRP Methodology 

Because of the basal level of unpreventable readmissions that potentially have nothing to do with 

the index admission or quality of care received, the HRRP initially only targeted three very 

frequent cause-specific readmission rates that the Center for Medicare & Medicaid Services 

(CMS) deemed to have high rates of preventable readmission in 2012: Acute Myocardial 

Infarction, Heart Failure, and Pneumonia5, 15. In the years since the HRRP’s inception, yearly 

revisions have added the following diseases to the cause-specific readmission rates that are 

monitored: acute exacerbation of chronic obstructive pulmonary disease, elective total hip 

arthroplasty, elective total knee arthroplasty, and coronary artery bypass graft surgery.  

Upon its ratification, the HRRP section of the ACA established that these measures 

would be measured immediately and published each fiscal year15. In theory, by risk adjusting 

hospital readmission rates and comparing them nationally, underperforming hospitals can launch 

initiatives to reduce the readmission rates16. These readmission rates are also posted publicly in 

an act of transparency from the CMS so that patients can compare hospitals based on quality of 

care before choosing one15.  

1.5.3 HRRP Financial Incentivization 

The final, and most crucial section of the HRRP is the incentive for hospitals to participate15, 19, 

24. Beginning in 2013, a hospital’s prior three years of unplanned cause-specific 30-day 
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readmission rates were risk adjusted for factors such as age and sex, and then compared 

nationally to other hospitals. In 2013, a hospital could be fined a maximum of 1% of its total 

CMS reimbursement.15 In 2014 the cap was raised to 2%, and from 2015 onwards it has been 

capped at 3%15, 19, 24. Financial incentives are essential to ensuring cooperation in efforts to 

improve national clinical quality of care16, 28. 

These calculations rely on a measure referred to as the standardized readmission ratio 

(SRR), also called the excess readmission ratio (ERR)15, 19, 24. The ERR is calculated individually 

for each cause specific readmission that the CMS chooses to track19. Essentially the ERR is a 

ratio that evaluates how a hospital is performing compared to how similar hospitals performed; 

any ratio over 1 indicates higher than expected readmission rates for that specific disease19. 

Then, these ERRs are then considered together in the total payment adjustment factor 

calculation, which determines how much a hospital is penalized (Figure 1)15, 19, 24.  

 

 

Figure 1. HRRP Payment Adjustment Calculation 

 

Payment adjustment factors (P) are hospital specific calculations19. In Figure 1, dx 

represents the disease specific readmission cohorts that the CMS monitors (AMI, COPD, HF, 

Pneumonia, CABG, and THA/TKA)15, 24. Payment dx, is the full CMS reimbursement to a 

hospital for a specific disease, prior to any assessed penalties15, 24. We can see that if a hospital 

has an excessive readmission rate, payment dx is multiplied by the ERR. However, if the ERR ≤ 

1, then the disease specific term is dropped from the calculation. When all of the disease specific 

readmission terms are summed together, the payment adjustment factor is equal to 1 minus the 
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sum of those terms. The term ‘min .03’ seen in Figure 1 signifies that if readmission terms add 

up to greater than .03, P is simply equal to 97%, representing the 3% cap on HRRP hospital 

fines15, 19, 24. Beginning in FY 2019, this formula also will weigh the case mix that a hospital 

faces, and only compare the ERR to other hospitals with a similar case mix24. This new 

stratification will adjust for socioeconomic status (SES), and ensure that hospitals are penalized 

for suboptimal quality of care rather than treating lower SES populations who are more 

vulnerable to readmission24.  

1.6 READMISSION TRENDS SINCE HRRP IMPLEMENTATION 

In a 2018 survey, 66% of interviewed hospital administrators believed that HRRP 

implementation had altered systemic efforts to reduce readmissions within their hospital40. 

However, the best way to evaluate the impact of the HRRP initiative is to observe the change in 

readmission trends since its implementation. Between 2009-2013, readmission for Medicare 

patients 65 and older dropped to 16.2% from 17.3%36. In 2013, the CMS reported that the all-

cause 30-day readmission rate, which had been fixed on 19% for five years, dropped to 

17.8%28.The observed reductions in readmission rates primarily stemmed from improvements in 

HRRP targeted diseases, which declined sharply within the first two years after the 

implementation of the HRRP40-42. Nonetheless, there was also an observed spillover effect, in 

which nontargeted readmission rates fell by about 1%25, 33, 41-43. Interestingly, Desai et al. 

describe that no change in readmissions was observed in the two-year window of public 

reporting prior to the CMS monetary penalization43. However, after the fines began, the sharp 

declines were observed43. 
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Of note, there are a few concerns that researchers and healthcare professionals are 

monitoring. First, a 34% increase of the use of observational stays occurred close in proximity to 

the onset of the HRRP program28. Similarly, in 2010 and 2011, the top 10% of hospitals with the 

biggest improvement in hospital readmission reduction were discovered to have increased their 

usage of observational stays in the same period by about 25%28. By utilizing observational stays, 

a patient is not truly admitted, so their return the hospital does not count as readmission against 

that hospital28. Another concern arises when readmission calculations lump surgery in with 

medical admissions. Unlike with medical hospitalizations, the surgical procedure and 

unavoidable surgical complications are a major risk factor for readmission10. This is 

demonstrable in that the spillover effect that was discussed previously was not observed in 

surgery patients40. Finally, policymakers are focused on monitoring hospital practices to ensure 

that readmission reductions are truly related to improvements in patient outcomes, while 

minimizing unintended consequences28. 

1.7 TRENDS IN HRRP INDUCED HOSPITAL FINES 

In the first year that fines were levied against hospitals for excess readmission rates (FY 2013), 

hospitals were fined a total of $290 million15. In FY 2018, that has climbed to 80% of hospitals 

that are being fined a total of $564 million15. Table 1 demonstrates how even a small percentage 

of reimbursement withholding can impact a large hospital system like UPMC. In FY 2013 and 

FY 2014, the UPMC hospital system was fined less than $1 million. However, by FY 2017 and 

FY 2018, UPMC is being fined close to $7 million annually. 
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Table 1. UPMC Readmission Penalties Since the Introduction of HRRP Penalizations 
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1.8 INTERVENTIONS TO REDUCE READMISSION RATES 

There are a plethora of successful programs that have reduced hospital readmission rates in the 

body of literature. These interventions generally fall into three broad categories: pre-discharge 

interventions, post-discharge interventions, and bridge interventions that act before and after 

discharge to bridge the two44.  Successful pre-discharge interventions tend to focus on 

standardized discharge procedures that act like a checklist to ensure a patient is receiving all 

pertinent information14, 18, 26, 30, 45.Other pre-discharge interventions can include improving 

nursing-to patient-ratios, focusing on patient understanding and education, or improving clear 

communication to the patient14, 46. Transitory interventions concentrate on providing outpatient 

care, education of adverse symptom monitoring, and patient resources external to the hospital18, 

33, 47, 48. Telephone check-in calls are a very simple and common successful post-discharge 

intervention that is found widespread throughout the literature46, 49. 

1.9 PREDICTIVE MODELING TO LOWER READMISSION RATES 

Despite the variety of proven intervention strategies that exists, to implement them a hospital 

must sacrifice a large, upfront financial investment in the payment of additional personnel, cost 

of training programs, and the coordination of care6, 13, 35, 50-52. Hospital administrators are faced 

with the task of minimizing readmissions and associated HRRP penalties whilst simultaneously 

maximizing patient outcomes and saving money13, 44, 53, 54. Predictive modeling allows 

researchers to identify high-risk populations and focus interventions on a specific stratum of 

patients rather than implementing them systemically1, 13, 55. 
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There are many patient risk factors that have been statistically associated with heightened 

risks of hospital readmissions. The most frequent risk factors in readmission models are age, 

gender, number of comorbidities, prior hospital/ED visits, Medicare insurance, and LOS4, 18, 47, 50, 

52, 54, 56, 57. Primary illness is a unique risk factor that can be utilized to estimate likelihood of 

readmissions; a 2013 Healthcare Cost and Utilization Project (HCUP) report on readmissions 

determined that the five highest rates of 30-day disease-specific readmissions were associated 

with sickle cell anemia (31.9%), gangrene (31.6%), hepatitis (30.9%), diseases of the white 

blood cells (30.9%), and chronic renal failure (27.4%)58. Aside from disease specific traits, SES 

is a commonly included risk factor in predictive readmissions modeling50. Patient labs were 

another frequently utilized risk factor in modeling, which included things such as hemoglobin 

counts and white blood cell counts50. Mental health conditions also were included in many of the 

readmission models, specifically including depression, anxiety, schizophrenia, and Bipolar 

Disorder among others13, 53, 59. 

Many predictive models for hospital readmission have been synthesized for the exact 

purpose of targeting high risk individuals for treatment. Kansangara et al., 2011 reviewed 26 

unique predictive readmission models from various publications, and concluded that all models 

poorly predicted high risk patients18. Zhou et al., 2016 then furthered pursued this study with the 

same analysis of predictive readmission models that were published after the Kansangara et al. 

review. After reviewing 73 models, the Zhou et al. concluded that only two models, both based 

on potentially preventable readmissions, achieved high discriminative ability in their 

predictions50. 

One of the key contributions from the Kansangara et al. systematic review is a list of 

criteria that the authors identify as the necessary components of an ideal predictive model for 
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readmissions. They describe that an optimal clinical readmission predictive model should be able 

to provide data prior to healthcare administrators and physicians prior to discharge, should 

reliably discriminate high-risk and low-risk patients, and should be adapted to the specific setting 

in which it is used18. 
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2.0  PROJECT AIMS 

Hospital readmissions are burdensome and costly to providers, hospitals, and patients; financial 

penalties and loss of beds and staff damage hospitals, loss of income and poorer prognoses 

impact patients, and the excess costs of hospital stays harm insurers. Given that no party benefits 

from readmissions, there have been numerous efforts to reduce them. However, the major 

setback in reducing readmission is determining how the interventions are employed within 

healthcare systems. Because hospitals have finite resources, interventions must focus on certain 

risk groups, comorbidities, hospital units, etc. 

To address this issue within the UPMC hospital system, UPMC clinical analytics team 

analyzed past patient data to synthesize a real-time logistic regression model that weighs patient 

traits, such as age, gender, whether a patient had experienced an admission in the past year, etc. 

The model then considers these patient traits and scores patients in risk quintiles ranging from 

‘lowest’ risk to ‘highest’ risk for future readmission. The ultimate goal of the prediction tool is to 

alert healthcare workers to which patients are the most likely to be readmitted. Nurses and 

physicians can then flag high risk patients for strategic and cost-effective discharge 

interventions. Reports with patients’ predicted readmission scores are compiled daily and 

emailed to physicians at UPMC Mercy. This system has been active within UPMC Mercy for 

slightly over one year. Unfortunately, the validity of the model’s predictions remains unknown, 

so it is not utilized routinely as a diagnostic tool like it was intended to be. 
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Our primary aim within this study is to analyze the accuracy of this clinical prediction 

model and to validate this instrument for reliable usage in clinical care. In the primary step, we 

aim to ensure that individuals across risk quintiles have distinct patterns of readmission. We 

hypothesize that the five risk quintiles to which patients are assigned will exhibit statistically 

different mean 7 and 30-day readmission rates from each other. Second, we aim to compare the 

model’s predicted mean readmission rates to the observed mean readmission rates for each 

assigned risk group within our cohort. We hypothesize that none of the five assigned risk groups 

will have significantly different observed and expected 7-day or 30-day mean readmission rates. 
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3.0  METHODS 

 

Figure 2. Experimental Design Flowchart 
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3.1 MULTIPLE LOGISTIC REGRESSION 

3.1.1 Introduction to Logistic Regression 

 

 
Figure 3. Logistic Regression Calculations 

 

Multiple logistic regression is an integral analytic technique, used to estimate the 

probability that a binary event will occur based on weighing multiple covariates or risk factors. 

Figure 3 details the various formulae that are associated with logistic regression. Figure 3A 

displays how the log probability ( ), referred to as ‘logitP’, is calculated. β0 is the y 

intercept, and broadly can be interpreted as the log odds of the binary outcome when none of the 

risk factors are present, though exceptions to this interpretation arise when a risk factor is 

continuous (i.e. age of 0 isn’t really possible). There are k variables/risk factors that are included 

in a multiple logistic regression model. Xj represents each variable value that is factored into the 

model, and βj is the associated coefficient for each variable. Based on all of the terms described 

thus far, Figure 3A for LogitP can be rewritten more simply as  in which each 

individual risk factor is associated with its own  term. The sum of all k risk factor terms and 
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the y intercept then provides the estimated logitP. Once all of the risk terms and the intercept are 

summed, the logitP can be transformed into a probability through the equation detailed in Figure 

3B. If the logitP value is calculated in part 1A, it can be substituted into exponential term that’s 

in Figure 1B, such that: p(x) =  .  

3.1.2 Accounting for Various Variable Types 

 can take on a different meaning based on the type of variable that x codes for. When 

considering nominal categorical variables, such whether a patient has diabetes (Y/N), it is 

standard practice to code ‘1’ for yes and ‘0’ for no. If the patient has diabetes, the term 

 is included in the model, and the term will equal the beta coefficient for diabetes. 

However, if the patient does not have diabetes, the term  would be included in the 

model, cancelling out the diabetes term in this calculation. When x is a continuous variable, such 

as age, x simply will equal the patient’s age. If a patient’s age is 50 years old, the age term will 

be . Finally, there are situations in which ordinal variables are considered, like with 

systolic blood pressure ranges:  

<120mmHg = normal 

 120-129mmHg = elevated,  

130-139mmHg = stage 1 hypertension,  

>140mmHg = stage 2 hypertension.  
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It would be standard practice in this example to code normal blood pressure as ‘0’, 

elevated as ‘1’, stage 1 hypertension as ‘2’, and ‘stage 2 hypertension as ‘3’. When 

(  ) is then calculated for a patient who falls within normal range of blood 

pressure, (0 *  ) drops the term from the model. When  takes on the other 

potential values (In the blood pressure example 1,2, or 3),  simply compounds by each 

additional level of ordinality. 

3.1.3 Creation of the Readmission Multiple Logistic Regression Model 

Within the context of the current study, the binary outcome of interest is whether or not a patient 

is readmitted during the follow-up time of 7 or 30 days. The UPMC clinical analytics team 

initially considered over 100 covariates within univariate analyses that were based on forest plots 

synthesized from systematic review of readmission literature. These covariates were evaluated 

for significance within a training dataset of 1,000,000 prior UPMC patients. Variables that were 

statistically significant within the univariate analyses were then considered for multiple logistic 

regression. Covariates found to be significant in the multiple logistic regression analysis then 

were analyzed for multicollinearity, and were combined or dropped from the model if covariates 

were significantly related with each other. This final model had strong specificity, sensitivity, 

and c-statistic scores.  

Unfortunately, many of the covariates considered in this regression model were extracted 

from patient labs, diagnostic factors, and complications that were not added to the patient’s chart 

for at least 3 days post-discharge. For example, the literature states that about 30% of patients 
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admitted for Sickle Cell Anemia are readmitted within 30 days, and the initial regression model 

found that it was a very reliable predictor of readmission58. However, blood cultures are not 

analyzed and added to the EPIC electronic medical records until at least 3 days post-admission, 

and sometimes one-week post-admission. Though many of these covariates that were dropped 

increased the validity and reliability of the logistic regression model’s predictions, the model 

itself is not clinically useful if scores cannot be obtained until after a patient is discharged. Due 

to this, the UPMC clinical analytics team dropped all of the covariates that would not be 

available during the first 24 hours of a patient’s index admission from the final multiple logistic 

regression model. 

3.2 SAMPLE SIZE CALCULATIONS 

Following standard practices, it was determined that our type I error would be held fixed at 5%. 

In order to minimize the risk of type II error, the number of participants needed per risk group 

was calculated based on 80% power. Because sample size calculations are dependent on the 

primary outcome analysis, the aforementioned calculations were based on the one-sample 

proportion testing. Single proportion sample size calculations were based on the formula:  

n ≥  

n = the number of people needed per group 

M = Margin of error 

 = Estimated probability of readmission 
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However, the expected proportion of readmissions is not consistent across risk strata. 

Because the  term is mathematically maximized with a value of 0.5, all sample size 

calculations conservatively set the likelihood of readmission under the null hypothesis to 50%. 

3.3 STUDY DESIGN AND ENROLLMENT 

At the onset of this study, the logistic regression tool had predicted patient readmission risks at 

UPMC Mercy for slightly over one year. This type of data lends itself to a retrospective cohort 

design. Because the model’s past predictions were made in real-time and recorded in a 

spreadsheet, the quality of the predictions could be evaluated by searching those patients’ 

Electronic Medical Records (EMRs) to determine if patients were actually readmitted within 7 or 

30-days. Figure 4 details both the study design and the timeline. 

 

 

Figure 4. Retrospective Cohort Design and Timeline 

 

Based on the sample size calculations, it was determined that about one month of logistic 

regression predictions would suffice to ensure the appropriate study power. Because the study 
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began in July 2018, predictions from the most recent month with a full 30-days of follow-up time 

were recruited and analyzed. 

3.4 STATISTICAL ANALYSES 

All analyses were conducted with a fixed alpha of .05 in order to minimize the risk of Type I 

error. Calculated p-values were then directly compared to this fixed alpha value to determine 

significance. All statistical tests were calculated using Stata SE 14 or SAS 9.4. 

3.4.1 Demographic Analysis 

Demographic analysis was necessary to ensure that the recruited sample population did not 

significantly differ from the 25,000-person training set. It is worth noting that since age and sex 

are weighted in the model, they cannot be adjusted for if significant differences exist in the 

testing population and the actual patient population. Nonetheless, it is absolutely crucial to carry 

out demographic analysis to ensure that the training set mirrors the demographics of the patients 

in this study. Otherwise the model’s coefficients will be tailored to a different population, and 

the predictions will not be accurate. Age, sex, and length of stay were compared between 

predicted risk groups. All continuous means were tested for significance with ANOVA, and all 

categorical hypothesis testing relied on chi-square analysis. 
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3.4.2 Chi-Square Analysis 

Chi-square testing is essential in determining that the predicted risk groups actually experience 

distinct mean proportions of readmission. Initial chi-square analysis tested the alternative 

hypothesis that at least one risk group was distinct from the others: 

 

H0: plowest = plower = pmedium = phigher = phighest 

H1: At least one risk group’s mean proportion of readmission is significantly different 

from    

the other risk groups’ mean proportions of readmission. 

 

Testing were conducted independently for 7-day and 30-day readmission. The initial chi-

square tests were followed by post-hoc testing, utilizing pairwise comparisons to identify which 

risk groups were and were not significantly distinct from each other. Because pairwise tests rely 

on multiple comparisons, adjustments must be made to make α more conservative. While 

Bonferroni tests are often a strong adjustment tool for multiple comparisons, it is not an 

appropriate technique in this scenario. Bonferroni adjustments divide the α value by the number 

of pairwise comparisons. Because our analysis includes all ten pairwise comparisons, the alpha 

value considered for rejection would be 0.005, which is overly conservative in this context. A 

Tukey’s adjustment for multiple comparisons is a more appropriate statistical technique for this 

analysis, because all pairwise tests are considered in a single step and control for standard error 

between mean proportion rates. All crude p-values and Tukey adjusted p-values are provided in 

the χ2 results section so that the effect of the adjustment is visible. 
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3.4.3 One-Sample Proportion Testing 

When the multiple logistic regression model was applied to the 25,000-person dataset of past 

UPMC Mercy patients, mean proportion rates of 7 and 30-day readmission were calculated for 

each stratified risk group. Each risk group’s mean proportion of readmission was utilized as an 

expected rate in a one-sample proportion test. Hypothesis testing was conducted at 7-days and 

30-days: 

 

H0: pKobs = pKexp 

H1: pKobs ≠ pKexp 

 

In this testing, k designates the kth risk group. In this study, k will be one of the 

following: lowest, lower, medium, higher, or highest. Obs represents the observed mean 

proportion for the kth stratum in our retrospective cohort, while exp designates the expected 

proportion of readmission based on the training dataset. Testing concluded whether or not 

observed stratum specific mean proportion rates of 7 and 30-day readmission significantly 

differed from the expected stratum specific mean proportion readmission rates. 
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4.0  RESULTS 

4.1 LOGISTIC REGRESSION MODEL 

Patient predictions for likelihood of readmission were calculated from covariate coefficients and 

p-values that are listed in Figure 5A. As is observable from Figure 5A, a patient having 

experienced a hospital admission within the previous year is by far the largest predictor of 

readmission within the context of this model; so much so that there are two separate equations 

with different coefficients depending on whether a patient was or was not readmitted within the 

past year. Aside from prior admissions, low SES population (Lpop: yes/no) was another 

covariate that explained a large proportion of readmission predictions. If not admitted within the 

past year, patients who are from low SES population experience 2.06 times greater odds of 

experiencing readmission compared to those who are not low SES population and were not 

readmitted in the past year. If patients were admitted within the past year, being of low SES 

makes them 1.55 times more likely to be readmitted compared to those who are not low SES. 

Other significant risk factors included within the model were age, gender, whether a patient was 

transferred from a skilled nursing facility (SNF), whether a patient was a transfer from another 

hospital, if a patient had visited the emergency department within the past year, and if the patient 

carried Medicare insurance (commercial rollup). The category titled Transformed Previous 
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Hospital Visit, indicates that the readmission is directly related to the prior hospital visit, which 

is why it is only applicable to the model in which a prior hospital visit had occurred. 

Because patient charts are maintained in an electronic medical record (EMR), XJ patient risk 

factors from Figure 5A are automatically collected from patient charts via the logistic regression 

tool. In this sense, the tool creates patient readmission risk scores in real-time based on passively 

collected data from patient charts. Instead of directly being quantified as a probability of 

readmission, the calculated logitP probability is translated into categorical risk quintiles: Lowest, 

Lower, Medium, Higher, and Highest risks. In order to determine the cutoffs for the quintiles, 

data researchers on the UPMC Clinical Analytics team rigorously conducted and calculated 

analyses of sensitivity, specificity, ROC curves, c statistics, and confusion matrices to maximize 

accuracy of the model. Of particular note, this team trained the model to more accurately predict 

readmissions in the highest and lowest quintiles, since the extremes were of highest interest for 

clinical application. 

Figure 5C demonstrates the final cutoffs that were set in order to transform a calculated 

logitP into a risk score. These cutoffs were tested for accuracy within a 25,000 person test dataset 

of past UPMC Mercy patients that is pictured in Figure 5B, and quantified in 5C. From the 

graphical data in Figure 5B, it is evident that not all quintiles share an equal range; the ‘lower’ 

(quintile 2) has very narrow range, especially in comparison to the ‘highest’ (quintile 5) risk 

group, which ranges across more than half of the chart. As was expected, readmission rates 

amplified respectively across increasing risk quintiles (Supplemental Table 1).  
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Figure 5. Multiple Logistic Regression Model and Cutoffs Utilized to Make Readmission Predictions 
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4.2 SAMPLE SIZE CALCULATIONS 

Because the testing dataset confirmed that the model was accurate under ideal conditions, the 

next step was to test the real-time accuracy of the model in a clinical setting. In order to approach 

this research question, sample size calculations were performed first at 80% power and 5% type I 

error. These were calculated for the primary outcome of interest, the one-sample proportion tests:  

H0: pexp = pobs 

H1: pexp ≠ pobs 

 

Figure 6A highlights an ideal sample size of recruiting 800 people per risk quintile, 

which would allow a ≥ 5.5% difference in expected and observed readmission rate to reject the 

null hypothesis. For this initial proof of concept study, we include 200 people per risk group, 

yielding a minimum rejectable difference between expected and observed of slightly under 10% 

(Figure 6B). While not as reliable of a range, it is worth noting that these projections are 

conservative. Figures 6A and 6B were calculated under the null hypothesis of pexp = 50%, which 

maximizes the number of people needed. In reality, no expected readmission rate was 50%, and 

most were around 15-20%, so these are conservative estimates to power the study. Figure 6C 

demonstrates this concept by putting different null hypotheses on the x-axis to display how the 

minimum detectable difference changes with n fixed at 200 people per group. 
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Figure 6. Minimum Detectable Difference and Sample Size Calculations 
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4.3 DEMOGRAPHIC ANALYSIS 

Given that 200 people per risk group was the targeted sample size, a window of predictions that 

were made between April 7, 2018 and May 30, 2018 was chosen, consisting of 1,192 total 

patient predictions. Unfortunately, about 350 recruited individuals were censored prior to 

analysis due to duplicate predictions, missing patient information, and because some admissions 

were actually internal ‘step-down’ transfers without a true discharge. In the actual analyzed 

dataset, 858 patients remained, with only one risk group containing 200 patients. However, 

because the sample size calculations were overly conservative and that this was a proof of 

concept study, it was determined that the cohort was still of a sufficient sample size to continue 

onwards. After patient data was sorted from this time period, a brief demographic analysis was 

considered. It is important to note that no stratification can occur, because the logistic regression 

is already weighing these covariates. However, it still is very important to observe trends in 

covariates so that potential anomalies can be explained. 

 

Table 2. Demographic Analysis By Risk Group Assignment 
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Table 2 provides a cursory demographic analysis amongst the predicted readmission 

quintiles. Gender, age, and length of stay were all determined to be very significantly different 

across risk strata. The most glaring contributor to this observation is that 94.4% of the lowest risk 

strata consisted of male patients, which is highly unexpected. Supplemental Table 2 includes 

post-hoc ANOVA testing for LOS. Interestingly, all pairwise comparisons of the medium group 

had some level of significance. Supplemental Table 3 displays post-hoc ANOVA testing for 

Age, in which there are many significant pairwise comparisons. Simply looking at the trend 

however, the lowest risk strata has the highest mean age, and the medium risk strata has the 

lowest mean age, which again is unexpected.  

4.4  χ2 TESTING FOR INDEPENDENCE 

The initial analysis intended to test if the assigned risk groups truly had distinct readmission rates 

from each other. Clinically, this test is incredibly important because if two risk groups 

experience overlapping mean readmission rates, then the predicted quintiles are not clinically 

useful for implementing interventions. First, a χ2 test of independence was conducted separately 

for 7-day and 30-day readmissions: 

 

H0: p1 = p2 = p3 = p4 = p5 

H1: At least one risk quintile has a different mean proportion of readmission 
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Table 3.   χ2 Testing for Independence of Readmission Rates 

 

As was hypothesized, Table 3 strongly favors the alternative hypothesis that for both 7-

day and 30-day readmissions, at least one risk group experienced different rates of readmission 

than the rest. 

Next, post-hoc analysis was conducted for 7-day readmissions. Crude p-values and 

Tukey adjustments for multiple comparisons are both shown in Table 4.  

 

Table 4. 7-day Readmission χ2 Post-Hoc Analysis 

 

 

Table 4 disputes hypotheses that all groups are distinct from one another, rather 

suggesting the opposite. When considering the adjustments for multiple comparisons, there are 

only 2/10 (20%) comparisons that are significantly different in mean 7-day readmission rates, 
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which both involved the ‘highest’ risk group. This suggests that the model is not an accurate 

predictor of 7-day readmission rates. 

Following this analysis, 30-day readmission post-hoc χ2 analysis was considered. Table 5 

demonstrates that the logistic regression model was much more accurate in predicting 30-day 

readmission, though still not all groups are distinct as was hypothesized. In Table 5, 5/10 (50%) 

head-to-head comparisons resulted in discrete mean rates of 30-day readmission. In examining 

which head-to-head comparisons are statistically significant, it is clear that the ‘lowest’ and 

‘highest’ strata both overlap with other risk groups but remain distinct from each other as would 

be expected. 

 

Table 5. 30-day Readmission χ2 Post-Hoc Analysis 
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4.5 ONE-SAMPLE PROPORTION TESTS 

Finally, one-sample proportion tests were conducted to assess how accurately the model’s 

predictions followed patterns observed from the 25,000-person test dataset: 

 

H0: pExp = pObs 

H1: pExp ≠ pObs 

 

All expected mean readmission rates originate from analysis of the test dataset, which are 

chronicled in Supplemental Table 1. 

First, observed 7-day readmission rates were compared to expected 7-day readmission 

rates. Table 6 demonstrates again that the logistic regression model is a poor predictor of 7-day 

readmission. Only the ‘lowest’ risk group did not show a statistically different rate of observed 

and expected readmission. Moreover, what is alarming about Table 6 is that observed 

readmission does not follow an increasing trend across higher strata, further highlighting that the 

7-day risk groups do not have statistical or clinical significance. However, one positive aspect of 

Table 6 is the observed rate of the ‘highest’ risk group. Though not statistically similar to the 

expected mean rate of readmission, the ‘highest’ risk group still displayed a markedly higher 

mean rate of 7-day readmission than the other risk quintiles. From a clinical perspective, it is 

encouraging that the model can correctly predict the highest risk group for 7-day readmissions. 
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Table 6. 7-day Readmission One-Sample Hypothesis Test of Proportions 

 

Next, 30-day expected and observed readmissions were compared to each other. Table 7 

reinforces that the 30-day risk group predictions have much higher accuracy than the 7-day 

predictions. Statistically, the observed ‘lowest’, ‘lower’, and ‘higher’ risk strata are not 

significantly different from the expected rates of 30-day readmission. More encouragingly, there 

is high clinical relevance present here; observed 30-day readmissions increase across strata in an 

expected pattern with the exception of the ‘medium’ risk group. For example, the observed 

‘highest’ risk group has a significantly different mean 30-day readmission from the expected 

value. However, clinically 36% is by far the highest observed readmission rate across all strata, 

and is much higher than the average rate of readmission. In this sense, the logistic regression 

model provides clinically useful predictions in regard to 30-day readmissions. 
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Table 7. 30-day Readmission One-Sample Hypothesis Test of Proportions 
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5.0  DISCUSSION 

5.1 CONCLUSIONS 

In a readmission prediction modeling validation study amongst patients at UPMC Mercy who 

were admitted between April 7 – May 3, 2018, we found mixed results with regards to the 

accuracy of the logistic regression readmission prediction tool. We hypothesized that this tool 

would successfully assign risk predictions such that increasing risk quintiles would experience 

increasing and distinct rates of 7-day and 30-day readmission. We also hypothesized that the risk 

quintiles in the retrospective cohort would experience similar mean rates of 7-day and 30-day 

readmission to the mean rates of readmission from the training dataset. 

Sample size calculations determined that for a pilot study such as this, recruiting about 

200 people per risk group would conservatively provide enough people to power the study at 

80%, with a minimum detectable difference slightly below 10%. Patients who were admitted at 

UPMC Mercy Hospital between April 7, 2018 and May 30, 2018 were recruited to the study. 

Though seasonal variability in hospital visits could explain a small portion of the variation that 

exists within this study, it would be a source of nondifferential bias across the risk groups. 

Furthermore, it would not legitimately explain some of the extreme and unexpected observations 

such as the high male percentage in the ‘lowest risk group’ or the very low rates of readmissions 

within the ‘medium’ risk group. 
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Chi-square analyses of independence were conducted to test if the different risk quintiles 

experienced different mean rates of readmission from each other. When it was confirmed that the 

quintiles did have at least one risk group with different 7-day and 30-day readmissions from the 

others, pairwise post-hoc testing was considered. 7-day readmission post-hoc testing determined 

that there was a large amount of overlap in mean readmission rates amongst risk groups, with 

only 20% of comparisons showing a significantly different rate of readmission. When 30-day 

readmission underwent post-hoc chi-square testing, more groups were significantly distinct, 

though half of comparisons still overlapped with each other. 

Finally, one-sample proportion tests were conducted for each individual stratum to 

compare expected rates of readmission from the training dataset and observed rates of 

readmission within this cohort. When 7-day readmissions were analyzed, only one risk quintile 

exhibited similar characteristics as the training dataset, further demonstrating that the model is 

not accurate when predicting 7-day readmissions. However, analysis of 30-day readmissions 

displayed mixed results. Statistically, only 60% of the quintiles followed readmission rates that 

were similar to the expected rates of readmission, which is still less than ideal. Nonetheless, 30-

day readmission rates increased across risk groups as would be expected, with exception of the 

‘medium’ risk group. 

The multiple logistic regression model certainly did not perform to hypothesized 

expectations, and would likely benefit from another round of analyses that tweak the value of the 

beta coefficients and the cutoffs between quintiles. It is significant to note that when setting the 

cutoffs for the risk groups, the UPMC clinical analytics team concluded that there was high 

sensitivity and specificity for both the model’s 7-day and 30-day readmission predictions. Before 

moving forward with the model, it is very important to understand why the model was accurate 
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with its 7-day readmission predictions in the training dataset, but not in our cohort. It is plausible 

that 7-day readmission is more variable than 30-day readmission because it involves a smaller 

follow-up time. Like with all statistics, as the sample size increases, the variation within the 

observations narrow. So, as the follow-up time increases, it is more likely that a study will detect 

more reliable mean rates of readmission.  

The model in its current state clearly identifies the ‘highest’ risk group for both 7-day and 

30-day readmissions. Because the intended purpose of the model is to target the highest risk 

patients for intervention, it may not be necessary to improve the accuracy of the model within 

lower risk groups. In its current iteration, these analyses support that the predictive model can 

effectively target the highest risk populations. 

5.2 LIMITATIONS & POTENTIAL SOURCES OF BIASES 

One potential source of bias is the discrepancies that may arise between the model and human 

data entry. Misclassification of outcome could affect the data here, because data entry may score 

readmissions differently than the model. For example, data entry could rate an internal transfer 

across UPMC as no readmission, whereas the model may score that as discharge and 

readmission on the same day. Another example could be different scoring of observational stays. 

Data entry was not checked by a panel, so it is also subject to human error. 

Another limitation of the study could result from different hospitals treating the same 

patient. Studies have documented that between 20-40% of readmission occur at a different 

hospital from the index case16, 20, 26, 27. Additionally, if patients feel they received suboptimal care 

during an index admission, they will likely seek a different hospital upon readmision27. Hospitals 
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are only capable of tracking readmissions back to themselves, so there is likely a differential 

underestimate of readmission rates within this study27. However, because there are only two 

major healthcare systems in the greater Pittsburgh area, it is likely that it this underestimation is 

mild. 

The demographic table provides a look at a few troubling sources of bias in our study. 

The medium risk group in our study consistently exhibited the lowest rate of 7-day and 30-day 

readmission. In the demographic analysis, the medium risk group also had the lowest male 

population percentage, shortest length of stay average, and youngest average age. It is worth 

further investigating why this occurred, and if it contributed to any introduction of bias. 

One final source of bias could be an existing intervention effort at UPMC Mercy. There 

was a belief among some clinical and analytics professionals that people belonging to the lowest 

risk group did not need any special attention, and that those in the highest risk group were too 

unlikely to actually improve. With that methodology, a transitory care intervention was begun at 

UPMC Mercy that focused on patients identified as medium risk. Though further analysis needs 

to be conducted, a successful intervention effort potentially is what caused to the unexplained 

low trends in readmission rates in the medium risk group that is observed throughout the entirety 

of this study. 
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5.3 FUTURE DIRECTIONS 

5.3.1 Potential Ways to Improve Model Accuracy 

In order to improve the accuracy of the model, the first ideal step would be to continue recruiting 

more participants to the current study. The training dataset enrolled 25,000 patients in 

comparison to our 858 patients enrolled. There is a high likelihood that as we continue to add 

patients to the current trial, we would begin to normalize on the true mean readmission rates that 

are closer to the rates observed in the training dataset. Additionally, instead of relying on 

arbitrary cutpoint categorizations, it likely could be beneficial to conduct similar analyses that 

classify patients based on their exact continuous P(x) likelihoods for readmission. 

The other potential way to improve the model would be to consider nontraditional risk 

factors in univariate and multivariate analyses. Both Kansangara et al. and Zhou et al. performed 

systematic reviews to characterize successful predictive models for readmission and found very 

limited success with very similar risk factors considered in each model, similar to what was 

utilized in our own model18, 42, 50. They suggest that overlooked aspects such as health literacy, 

family support, and availability of transportation can be combined with traditional measures such 

as LOS to generate a more accurate representation of predictive health18. 

5.3.2 Discharge Intervention Experimental Design 

The next step in this study is to link specific transitory discharge interventions with predicted 

risk groups. This study can be completed in two different ways, which are both outlined in 

Figure 7. The most ideal scenario would be to conduct a randomized controlled trial (RCT), in 
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which patients within the same strata are matched for confounding risk factors, and then 

randomized to receive standard discharge protocols or the intervention discharge procedures. 

Following 30-days post-discharge, the 7-day and 30-day readmission rates can be calculated and 

analyzed. With this experimental design, the differences in readmissions rates across strata can 

be attributed to the intervention, allowing researchers to determine which readmission risk group 

intervention efforts benefit the most. If the resources are not available to conduct an RCT, a very 

similar analysis is detailed in Figure 4 utilizing a prospective cohort design.   
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Figure 7. Future Discharge Intervention Experiment 
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6.0  PUBLIC HEALTH IMPACT 

Readmissions are burdensome to patients, providers, and hospitals. Because hospital resources 

are limited, any model that can target high risk individuals is beneficial to public health 

outcomes. Frequent readmissions can be deleterious to a patient, causing a post-hospital 

syndrome in patients that results in heightened vulnerability for adverse outcomes, stemming 

from sleeplessness, anxiety, and stress associated with hospital admissions. Furthermore, the 

average cost of an admission is $13,100. But, the average cost of a readmission is $13,800 in 

addition to the cost of the index stay, which can further add stress and vulnerability to a patient.  

Numerous interventions have demonstrated marked decreases in readmissions rates, but 

in most instances hospitals do not have the staffing resources to carry out discharge interventions 

systemically. Due to this, an accurate model that can target high risk patients would very likely 

improve patient outcomes and reduce readmission rates. Our prediction model specifically 

operates in real-time, which provides it a genuine opportunity to be utilized as a diagnostic tool. 

Since the intention of the prediction model is to aid decisions prior to patient discharge, a flagged 

high-risk patient can receive heightened patient education, medication reviews, planned 

transitory care, and communication with a healthcare professional.  
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APPENDIX:  SUPPLEMENTAL TABLES 

Supplementary Table 1. Readmission Rates from Test Dataset 

 

 

Supplementary Table 2. LOS Demographics ANOVA Post-Hoc Testing 
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Supplementary Table 3. Age Demographics ANOVA Post-Hoc Testing 
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