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Phosphatidylinositide-3-Kinases (PI3Ks) are a family of lipid kinases that play important 

intracellular signaling roles in cellular functions such as cell proliferation, motility, growth, 

intracellular trafficking, differentiation and survival. PI3K produces PIP3 which further facilitates 

the activation of downstream effectors such as Akt and PDK1. These effectors facilitate the cellular 

processes associated with PI3K activity. Conversely, because of the nature of PI3Ks roles, 

dysregulation of PI3K, leading to over-activity of the PI3K pathway is implicated in many cancers. 

PTEN, SHIP and INPP4B are negative regulators of PI3K activity that function downstream of 

PI3K and have been shown to act as tumor suppressors. Recently, PI3K Interacting Protein 1 

(PIK3IP1) or TrIP (Transmembrane Inhibitor of PI3K), a novel negative regulator that functions 

upstream and proximal to PI3K, has been identified. TrIP, is a transmembrane protein and has 

been shown to down regulate PI3K activity leading to reduction of phosphorylation on Akt in 

carcinoma cell lines. Our lab was the first to show that TrIP can inhibit TCR signaling and TCR 

activation, in T cell lines. Here I have shown that both the extracellular kringle domain and 

intracellular p85-like domain are required for TrIP to inhibit PI3K and T cell activation. 

Interestingly, I have also found that cell surface expression of TrIP is acutely down-regulated 

during T cell activation. Furthermore, my results indicate that TrIP oligomerizes in order to inhibit 
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PI3K signaling. Using knockout mice lacking expression of TrIP in T-cell compartments, I have 

been able to better define the requirements for TrIP in primary T cells upon TCR activation and in 

response to infection. Finally, I have developed a TrIP ecto-domain hIgG1 Fc fusion protein. This 

fusion protein has been used as an immunogen for the development of antibodies against TrIP in 

mice.  This fusion protein has also been used to evaluate a possible ligand for TrIP. 
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1.0  INTRODUCTION 

1.1 T CELL ACTIVATION AND THE PI3K PATHWAY 

 T cell activation and signaling pathways 

Ligand binding by the T cell receptor leads to the activation, growth and translation of function in 

T cells. Upon ligand binding, the protein tyrosine kinases (PTKs) located close to the TCR are 

phosphorylated. These PTKs in turn phosphorylate other downstream cellular proteins. The 

biochemical reactions that proceed from these events connect the TCR to multiple pathways that 

lead to varying degrees of protein expression that eventually allow the T cell to respond to external 

stimuli in a variety of ways. In this section, I will discuss some known TCR pathways and highlight 

their relevance to T cell development and/or function. 

The Mitogen-activated protein kinase (MAP) pathway is activated when MAP-kinase 

kinases (such as MEK1/2)) are phosphorylated on threonine and tyrosine residues in processes 

regulated by G proteins associated with the membrane. These in turn phosphorylate MAP-kinases 

such as Extracellular signal related kinase (ERK) and Jun kinase (JNK) (which all also bear 

threonine and tyrosine motifs that are phosphorylated) [1, 2]. During T cell development in the 

thymus, activation of the ERK pathway has been found to be necessary for positive selection and 

lineage commitment [2-5] while JNK signaling has been implicated in negative selection [2, 6]. 
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Downstream of the signaling cascade, MAPKs activate transcription factors in the nucleus. For 

example, ERK phosphorylates Elk-1 which forms a complex with serum response factor to 

transcribe the Fos gene. Jun which is produced by JNK then forms a heterodimer with fos. This 

heterodimer AP-1 acts with NFAT as transcription factor that regulates expression of cytokines 

such as IL-2, IL-4 and TNFα [1, 7].  

The activation of PLC-γ during T cell activation leads to the breakdown of PIP2 into 

diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). IP3 binds to calcium channels on the 

endoplasmic reticulum (ER) membrane and causes the release of calcium from the ER into the 

cytosol.  The high concentration of calcium on the cytosol side of the cell leads to the opeining of 

calcium channels on the cell membrane which allow the flow of calcium from the extracellular 

area into the cell. Increased concentration of calcium in the cell leads to the dephosphorylation of 

nuclear factor of activated T cells (NFAT). This dephosphorylation event allows NFAT to 

translocate from the cytosol to the nucleus [1, 7]. The importance of NFAT in T cell activation is 

highlighted in early immunosuppressive drugs cyclosporin A and FK506 which are sometimes 

used in preventing rejection of a transplant. These drugs inhibit T cell activity by inhibiting the 

NFAT activator, calcineurin [8].  

Another pathway that can be activated during T cell activation is the Phosphatidylinositol 

3-kinase or Phosphoinositide 3 -kinase (PI3K)/Akt pathway. The PI3K/Akt pathway is particularly 

interesting because its dysregulation has been highlighted as the culprit in a number of autoimmune 

and cancerous conditions. This pathway can be activated by a host of signals such as growth factors 

and RTKs and is ubiquitous in cells. It is known as the PI3K/Akt pathway because of the significant 

involvement of the kinase, Akt, in downstream signaling events. PI3K catalyzes the 

phosphorylation of the 3’ hydroxyl group of the inositol ring of phosphoinsotides. In T cells, PI3K 
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phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) and produces phosphatidylinositol 3, 

4, 5-triphosphate (PIP3). This product acts a second messenger which recruits and activates other 

enzymes leading to the activation of Akt. Activation of Akt leads to activation of the mTOR 

pathway which translates into protein production, an increase in cell survival signals and cell 

proliferation among other functions [9-12]. The functions associated with this pathway are an 

indication as to why dysregulation of this pathway results in severe health diagnosis in patients. 

The central aim of this thesis is to show how the novel protein discovered by Dr. Marie DeFrances- 

PI3K interacting protein 1 (PIK3IP1) plays a role in the regulation of the PI3K pathway. For ease 

of communication, we have renamed the protein- Transmembrane inhibitor of PI3K (TrIP).  

 The PI3K Superfamily 

Phosphatidylinositide-3-Kinases (PI3Ks) are a ubiquitous family of intracellular lipid kinases that 

phosphorylate the 3’ hydroxyl group of the inositol ring of phosphatidylinositols (PtdIns) and 

phosphoinositides. The second messengers produced by this activity play a major role in many 

cellular functions such as metabolism, cellular motility, cell proliferation, intracellular trafficking, 

and survival. There are three main classes of PI3K and some classes have different isoforms. Class 

IA and Class IB PI3Ks comprise the Class I PI3Ks. The Class I PI3Ks contain both regulatory and 

catalytic subunits and are activated by G-Protein Coupled Receptors (GPCRs) or Receptor 

Tyrosine Kinases (RTKs). Class Ia PI3Ks are activated by RTKs while Class Ib PI3Ks are 

activated by GPCRs. Apart from being subject to different types of activation, the two subtypes of 

Class I PI3Ks are also composed of different heterodimers that make up the regulatory and 

catalytic subunits. Class Ia consists of a regulatory subunit that has different isoforms that are of 

three different sizes, 85kDa, 55kDa or 50kDa. These isoforms are generally called the p85 
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regulatory subunit. The catalytic subunit of Class Ia is composed of a 110kDa protein of which 

there are three isoforms (p110α, p110β and p110δ). The main structure of the p85 subunit consists 

of a p110 binding domain, also known as the inter-SH2 domain because this domain is flanked by 

two SH2 domains. The longer p85 isoforms also have a Src-homology 3 (SH3) domain and a BH 

domain flanked by proline residues. The catalytic subunits consist of a p85 binding domain on the 

N-terminal, followed by a Ras-binding domain, a C2 domain, a phosphatidylinositol kinase 

homology domain and a C-terminal catalytic domain [9, 10, 13]. 

The Class IB PI3Ks also consist of a regulatory subunit that is of different isoforms. A 

longer 101kDa subunit (p101) and two other subunits (p84 and p87) [14, 15]. The catalytic subunit 

of Class IB is p110γ and is highly homologous with the Class IA p110 isoforms. The regulatory 

subunits of Class IB possess a p110γ binding domain as well as a Gβγ binding domain. It is via 

this latter domain that Class IB PI3Ks bind the Gβγ subunits of G proteins and p110γ is activated. 

Class I PI3Ks phosphorylate phosphatidylinositol-4,5-bisphosphate (PIP2) and produce 

phosphatidylinositol-3,4,5-trisphosphate [13, 16]. 

The Class II PI3Ks consist of only a catalytic subunit, of which there are three isoforms 

(PIK3C2α, PIK3C2β and PIK3C2γ). Class II PI3Ks can be activated by cytokine receptors, 

receptor kinases and integrins. The preferred substrates for this class are phosphatidylinositol and 

phosphatidylinositol-4-phosphate [13, 16]. Recent work on Class II PI3Ks has suggested critical 

in vivo roles. Deletion of the PI3KC2α gene in mice resulted in embryonic lethality, suggesting 

that the kinase is important for embryonic development [17-19]. Furthermore, PI3KC2γ deletion 

resulted in insulin resistance as mice aged [20]. These data suggest that there are a wide variety of 

cellular functions regulated by the Class II PI3Ks that are as yet unknown. The Class III PI3K 

consists of only the vacuolar protein-sorting defective 34 (Vps34) enzyme which, like the Class II 



 5 

PI3Ks, is composed of only a catalytic subunit. The main substrate of Vps34 is 

phosphatidylinositol. This enzyme has been shown to be required for efficient autophagy in cells 

as well as endocytic trafficking [21]. Due to the range of isoforms within the PI3K family, a host 

of substrates within different pathways can be activated to achieve different functions [9, 13, 22]. 

 

 

Figure 1 Domain structures of various PI3K isoforms 

Nat Rev Genet, 2006. 7(8): p. 606-19. 
 

 The Class IA PI3K subfamily in T cells 

Due to the dysregulation of the Class IA PI3Ks in a host of ailments ranging from cancer to 

autoimmunity, many studies have focused on this class and subfamily [11, 13, 22-24]. These PI3Ks 

are composed of a 110kDa catalytic subunit (of which there are three isoforms: α, β, and δ) and a 

regulatory subunit which may be p85α, p55α, p50α, p85β or p55γ. The p85α subunit as well as 

p110δ are highly expressed in T lymphocytes [13, 22]. The regulatory subunit contains a p110 

binding domain (otherwise known as the inter-SH2 domain) through which the p110 catalytic 
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subunit is bound and maintained in an inactive state in the cell. Upon T cell activation, class IA 

PI3K is recruited to the plasma membrane by binding to tyrosine-phosphorylated proteins via the 

SH2 domains of p85. Binding of the p85-SH2 domains to phosphotyrosines triggers a 

conformational change in the regulatory subunit that results in the release of the catalytic subunit. 

The catalytic subunit is then free to phosphorylate PtdIns via the lipid kinase domain located on 

its C-terminus [25, 26]. 

 TCR activation of the PI3K pathway 

On a physiological level, binding of the TCR to peptide and MHC complexes on antigen presenting 

cells results in the activation of several intracellular signaling cascades, ultimately leading to T-

cell activation. First, LCK is activated and phosphorylates CD3 immunoreceptor tyrosine-based 

activation motifs (ITAMs). Phosphorylated ITAMs recruit zeta-chain associated protein of 70kD 

(zap70) which in turn phosphorylates a variety of downstream proteins including adaptor proteins 

LAT, SLP76 and PLCγ1 [27, 28]. This cascade results in the activation of transcription factors 

leading to T cell responses such as cytokine secretion, down regulation of adhesion markers, cell 

proliferation etc. After high avidity/affinity peptide:TCR interactions, the TCR is capable of 

producing a potent signal cascade to generate a response. Often times however, a co-stimulatory 

signal is required to generate a significant signal in order to avoid producing a non-responsive state 

(anergy) that may even result in T cell death. CD28 is the most prominent co-stimulatory signaling 

molecule expressed on the T cell.  Upon TCR activation, CD28, via LCK phosphorylated tyrosine 

and proline motifs, bind to SH2 and SH3 domains of intracellular signaling proteins. For the 

PI3K/Akt pathway to get underway, PI3K is recruited to the membrane via the SH2 domain of the 

p85 subunit. The SH2 domain of the p85 subunit of PI3K binds to a phosphorylated tyrosine motif 
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in the tail of CD28. As mentioned above, p110, the catalytic subunit then converts PIP2 to PIP3 

by phosphorylating the 3’ hydroxyl subunit of the PtdIn. The PIP3 lipid acts as a second messenger, 

binding to and activating pleckstrin homology (PH) domain proteins such as PDK1 and AKT. 

Interaction of AKT, via its PH domain, with PIP3, causes a conformational change in AKT which 

allows PDK1 to partially activate AKT by phosphorylation at T308. Full activation of AKT is 

achieved by mTORC2 mediated phosphorylation at S473. Activated AKT goes on to 

phosphorylate FOXO, pro-caspase 9, Bad, IKK and CREB. These phosphorylation events promote 

cell survival by blocking transcription of pro-apoptotic proteins [13, 22, 29]. In addition, AKT 

regulates cytoplasmic and nuclear localization of proteins like B-catenin, which are known to 

activate transcription factors that facilitate functions such as cell cycle progression. This signaling 

cascade continues, leading to protein synthesis, cell proliferation and cell survival, among other 

events. 
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Figure 2 Schematic of TCR activation of the PI3K pathway 

 

 Regulators of the PI3K/Akt Pathway 

PTEN was discovered when groups working on various forms of cancer discovered a region of 

chromosome 10 (10q23) was frequently deleted [30, 31]. PTEN (phosphatase and tensin homolog 

deleted on chromosome 10) was thus identified as a tumour suppressor gene. The PTEN gene 

encodes a phosphatase that in earlier experiments was found to deplete phosphate groups from 

both proteins [31, 32] and lipids [33]. However, conclusive evidence on PTEN substrate specificity 

was observed on phosphatidylinositols (PtdIns) wherein overexpression of PTEN reduced PtdIn 

phosphorylation and an accumulation of phosphorylated PtdIns was observed when an inactive 

mutant PTEN was overexpressed [33].  
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PTEN structure consists of an N-terminal phosphatase domain (which contains the active 

site), a C2 domain (which aids in binding to the phospholipid), a tail region with phosphorylation 

sites (which promote stability and activity of PTEN) and a PDZ-B domain (for anchoring the 

protein to cytoskeletal components)[34-36]. PTEN is also considered as a member of the protein 

tyrosine phosphatase (PTP) superfamily as it bears the active site sequence Cys-X5-Arg [C(X)5R] 

(an active site motif present in other PTPs). Within this motif in PTEN, the cysteine attacks and 

breaks the bond between the hydroxyl group and the phosphate group on the inositol ring of the 

lipid [35]. It is via this mechanism that PTEN dephosphorylates phosphatidylinositol 3, 4, 5-

triphosphate (PIP3). As previously discussed, PIP3 is an important second messenger in the 

PI3K/AKT pathway which activates pathway components such as PDK1 and AKT, eventually 

leading to such processes as cell protein synthesis, cell proliferation and cell survival. Due to the 

important role PTEN plays in the regulation of the PI3K pathway, mutation or dysregulation of 

PTEN function has been shown to be a major factor in several forms of cancer and autoimmunity 

[29, 36-38]. 

Other regulators of the PI3K/Akt Pathway include SH2-containing Inositol 5’-Phosphatase 

(SHIP). The motifs within the structure of SHIP allow for several types of protein-protein 

interactions. As the name suggests, there is a Src homology 2 (SH2) domain present on the N-

terminus. The SH2 domain allows for interaction of SHIP with phosphorylated tyrosines on other 

intracellular proteins. The phosphatase domain (inositol 5’ phosphatase domain) located in the 

middle of the protein catalyzes the dephosphorylation of inositol rings at the 5’ position. Thus, 

SHIP acts on PIP3 by removing the phosphate group from the 5’ position and converts PIP3 to 

phosphatidylinositol (3,4)-bisphosphate [39]. On the carboxy-terminal end are an NPXY motif and 

a PxxP motif. The NPXY motifs serve as an interaction site for phosphotyrosine binding domains 
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and other SH2 proteins. The PxxP motif contains proline and serves as binding sites for SH3 

domain containing proteins [40].  

Compared to PTEN, the dephosphorylation of PIP3 by SHIP has been observed to not be 

critical to PI3K activation of most downstream processes. In both cell lines and null mice, deletion 

of PTEN resulted in embryonic lethality (mice) and inhibition of Akt phosphorylation and thus 

cell growth, and SHIP overexpression could not rescue these conditions [41, 42]. Furthermore, the 

phosphatidylinositol 3,4-bisphosphate, the initial product of SHIP dephosphorylation of PIP3 was 

found to be a substrate capable of binding and activating PDK1 and Akt [9]. The discovery of 

inositol polyphosphate 4-phosphatase type II (INPP4B) suggested a mechanism by which SHIP 

could be important for regulation of the PI3K pathway. While INPP4B was also found to be unable 

to act on PIP3, INPP4B dephosphorylates the 4’position and converts phosphatidylinositol (3,4)-

bisphosphate into phosphatidylinositol 3-phosphate [43, 44]. Thus a pathway was proposed 

wherein the actions of first SHIP on PIP3 and then INPP4B on the product of SHIP 

dephosphorylation of PIP3, leads to the production of a monophosphate substrate:  

phosphatidylinositol 3-phosphate and the regulation of PI3K through the turnover of a viable 

second messenger in PIP3 [45].  
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Figure 3 Model of regulation of Class IA PI3K signaling 

Cancer Cell, 2009. 16(2): p. 115-25. 

 

 Effects of PI3K on T cell development 

The role of PI3K in immune cell development has been highlighted in several studies. Deletion of 

the gene encoding p85α and the isoforms p55α and p50α (by injection of ES cells containing these 

deletions into a RAG 2 deficient background) has been shown to lead to a reduction in mature B 

cell numbers as well as reduced antibody production. However, in the same studies, T cell 

development appeared unaffected [46, 47].  Studying the role of PI3K in T cell development has 
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been complicated due to the various isoforms of both the regulatory and catalytic subunits. 

Deletion of one isoform has been observed to bring about compensatory function and over-

experession by other isoforms [48, 49]. Researchers have attempted to avoid this complication by 

evaluating PI3K through mutation or deletion of PTEN, a master regulator of PI3K. In studies 

focused on the regulation of PI3K, PTEN null mice (PTEN-/-) have been found to be embryonically 

lethal. Interestingly, even though they survive longer than PTEN-/- mice, PTEN+/- mice eventually 

develop lethal autoimmune disorders [50, 51]. These observations hint at the important role PI3K 

plays in various cells as well as in immune cells (and further complicates studying the role of PI3K 

in T cell development). 

T cell development occurs in the thymus and is characterized by lineage determination 

(through the expression of the TCR and lineage markers) and thymic education (negative and 

positive selection that bring about self-tolerance). This development requires appropriate 

integration of signals throughout the different stages of thymocyte development. Since activation 

of the PI3K pathway results in cell survival and proliferation, researchers have been interested in 

the role of PI3K in T cell development. Indeed, Ciofani and colleagues have shown that the 

relevance of Notch to pre-T cell survival depends on the PI3K/Akt pathway [52]. Akt promotes 

cell survival by inhibiting proapoptotic factors such as Bad, caspase 9 and the Foxo transcription 

factors. They found that in DN3 cells, Akt phosphorylation was significantly reduced in the 

absence of Notch signaling and cells deprived of Notch signaling underwent significant apoptosis. 

This cell death was rescued when an active Akt construct was transfected into the cells [52]. In the 

absence of PTEN, PI3K activity is higher and PIP3 production is increased [53]. This leads to 

higher Akt activation, reduced apoptosis and higher proliferation in T cells. Supporting these 
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findings, in studies targeting Akt to the membrane in mice (in order to bypass second messenger 

requirements), mature T cells were found to be more resistant to apoptosis [54-56]. 

Even more conclusive evidence for the role PI3K plays in T cell development was found 

when the Cantrell lab manipulated phosphoinositide dependent kinase 1 (PDK1) expression in 

mice. PDK1 is located upstream in the PI3K pathway and upon recruitment and activation by PIP3, 

activates Akt at T308. Mice lacking PDK1 show reduced numbers of cells in the thymus. These 

PDK1 null mice were also observed to have an inhibited progression from the DN to DP stage 

during T cell development [57].   

 

These data suggest that PI3K plays a major role in T cell development and function as well 

as cell homeostasis. In deciphering how TrIP regulates PI3K activity, it is important to consider 

how T cell development may be affected by manipulation of TrIP expression. 

 Effects of PI3K on T cell differentiation  

In order to further understand how expression of TrIP affects the PI3K pathway in T cells, it is 

important to consider the various subsets of T cells and how PI3K activity affects differentiation 

into these subsets. CD4 T cells have been extensively studied due to their role in many immune 

responses such as adaptive immunity to pathogens as well as allergic response and autoimmunity. 

These studies have uncovered several lineages T cells may differentiate into in order to function 

in varying microenvironments. The T cell subsets have to be specialized for particular situations 

in order to bring about appropriate responses. In addition, these cells have to recognize targets and 

be specific so as not to cause severe injury to the surrounding “bystander” areas of the 
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environment. Finally, there has to be a mechanism of “shut off” after generation of an appropriate 

response and elimination of an immune threat. 

T cell subset differentiation is characterized by the expression of unique transcription 

factors along with the secretion of specific cytokines. Th1 cells express Tbet and secrete IFNγ; 

Th2 cells express GATA3 and secrete IL-4 and IL-13; Th17 cells express RORγT and secrete IL-

17 and Tregs express Foxp3 and secrete IL-10 and TGFβ. The significant evidence for the role of 

PI3K in T cell development and lineage determination, coupled with this pathways involvement 

in T cell lymphomas, researchers have also looked at the possible role this pathway plays in T cell 

differentiation. In order to understand how TrIP regulates PI3K activity in T cells, it is important 

to elaborate on how regulation of PI3K activity in naïve and lineage differentiated cells, may affect 

subset differentiation. As previously stated, p110δ is highly studied in T cells due to the prevalent 

expression profile of Class I PI3Ks and the disease relevance associated with Class IA. For 

example, an overactive p110δ gene can result in T cell senescence and immunodeficiency which 

leads to chronic viral infections [58]. Studies focused on p110δ, have shed light on how PI3K 

affects T cell function but as previously mentioned, deletion studies are complicated due to the 

possibility of catalytic subunit isoform substitutions. The conserved DFG motif which is located 

in the catalytic domain of PI3Ks helps to determine lipid substrate specificity [59]. By carrying 

out a point mutation whereby the DFG motif was mutated to AFG, Okkenhaug and colleagues 

were able to disrupt p110δ function without deletion of the gene [49]. Here, I have termed these 

mice “D910A mice”. 

The advent of the D910A mice has allowed for more specific evaluation of p110. While T 

cells from D910A mice do not exhibit any apparent differences in development (CD4 and CD8 

ratios were similar in lymph node compartments), it was found that phosphorylation of both Akt 



 15 

and Foxo were reduced upon activation. Okkenhaug and colleagues also found that D910A T cells 

proliferated at a lower rate than WT mice. Furthermore, while IL-2 production was not severely 

affected, secretion of IFNg and IL-4 by antigen stimulated cells was greatly reduced compared to 

WT. These results suggested that activation of the PI3K pathway may be necessary for Th1 and 

Th2 differentiation and function [49, 60].  

The use of PI3K inhibitors has also helped to shed more light on the requirements for PI3K 

signaling with respect to Treg and Th effector differentiation. For example, work by Soond et al 

supported the theory that PI3K signaling was responsible for Th1 and Th2 phenotypes. By 

employing the use of IC87114, the p110δ specific chemical inhibitor, release of a host of cytokines 

including IFNg and IL-17 in stimulated T cells was blocked [61]. In other work, Rapamycin was 

found to block the formation of the mTORC1 complex by preventing Raptor and mTOR from 

binding. This prevents activation of S6 kinase and results in reduced proliferation [62]. Rapamycin 

inhibition experiments also found that T cell differentiation was affected by attenuating mTOR. 

Naïve T cells activated in the presence of rapamycin were observed to upregulate Foxp3 and were 

functional in in vivo allograft suppression assays [63]. It is important to note that in these 

rapamycin experiments, the PI3K pathway was only partially inhibited as rapamycin does not 

affect phosphorylation of PDK1 or T308 of Akt.  Thus, these experiments had begun to define the 

requirements of PI3K signaling for Treg differentiation compared to Teff differentiation.  

Supporting evidence was provided by Delgoffe and colleagues who utilized mice with 

conditional deletion of mTOR (via a CD4-Cre flox system). They observed that stimulation of 

naïve T cells lacking mTOR resulted in a reduction of Th1, Th2 and Th17 differentiation potential. 

Interestingly, the absence of mTOR also led to an increase in Treg differentiating potential. These 

latter results whilst helping to explain the rapamycin data, suggested that different degrees of PI3K 
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signals corresponded with cytokine and transcription factors to dictate T cell subset determination 

[64].  In fact, Faeder et al have shown that this theory is accurate. Via a logic circuit model and 

experiments to validate the model, they show that a low TCR signal strength favours Foxp3 Treg 

cell induction and high TCR signal favours mTOR activation which leads to inhibition of Foxp3 

and T effector phenotypes [65].  

In order to follow up on these findings, I have evaluated how the absence of TrIP affects T 

cell differentiation both in in vitro differentiation assays and in the generation of an immune 

response to an infection. 

 The PI3K pathway in human disease 

The PI3K pathway is present in all tissue types studied so far. Dysregulation of the PI3K pathway 

can lead to several ailments such as cancer, autoimmune disorders, pathogen response disorders, 

neurological disorders and cardiovascular disease. Thus, this pathway has been one of the main 

focuses of medicinal research. Several tools have been developed, targeting different aspects of 

the pathway. There are PI3K inhibitors such as rapamycin (sirolimus an mTOR pathway inhibitor) 

and Cal-101/IC87114 (a specific p110δ inhibitor) which have been used in both basic research and 

clinical studies [66, 67]. There are also several elegant mouse models- for example, mouse models 

featuring a loss of PTEN heterozygous knockouts (PTEN +/-) show the development of tumours 

in several tissues [68]. But there are several types of PI3Ks and though substrate specificity appears 

to define the functions of the different classes (see section 1.1.2), most classes have several 

isoforms. These factors combined make it particularly challenging to use inhibitors against the 

pathway due to the possibility of non-specific inhibition in “un-erring” cells. Targeting mutations 

is one way to get around this. Also, increasing knowledge of the different classes and isoforms can 
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allow for more specific targeting. Here I will briefly highlight the impact of PI3K dysregulation 

on human disease and advances made in the field in dealing with these conditions.  

Genomic studies have revealed that mutations, which lead to increased PI3K signaling is 

one of the hallmarks of cancer [69]. These mutations can either be inactivating regulatory factors 

or leading to gain of function in catalytic factors that favour progression of the pathwat. For 

example, loss of PTEN function is associated with high degrees of metastases [30]. While 

activating mutations in the class IA PI3K have been identified in several types of cancer (e.g. 

epithelial, breast, colon, prostate). The loss of PI3K regulatory factor functions or gain of function 

mutations in the pathway lead to an increase in lipid kinase activity, maintenance of signaling and 

stimulation of growth and proliferation of cancerous cells. In fact, clinical studies show that 

hyperactivation of Akt is an indicator of poor prognosis [70].  

Basic research also strongly supports this assertion. Clues for the effects of overeactive 

PI3K signaling on T cell development and function have come from deletion/mutation 

experiments. Mice lacking PTEN develop T cell lymphoma and are also characterized by highly 

active T cells which secrete inflammatory cytokines that result in significant autoimmunity [71]. 

This phenotype is replicated in mice with a p85a mutation that renders the regulatory subunit 

unable to bind the p110 catalytic subunit [72]. In evaluating effector T cell response to infection, 

researchers have also found that loss of the transcription factor Foxo1, leads to a loss of secondary 

response to Listeria infection [73]. These latter findings further highlight the relevance of the PI3K 

pathway in autoimmunity and infectious diseases. 

Activated phosphoinositide 3-kinase-d syndrome (APDS) is a recently identified primary 

immunodeficiency resulting from dysregulation of the p110d catalytic subunit. Clinical features 

of APDS include: persistent infections of viruses such as CMV, EBV and HSV, defective killing 
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of mycobacteria, juvenile arthritis and lymphomas [74]. APDS is caused by a gain of function 

mutation in the gene encoding p110d (PIK3CD) or a mutation that leads to a dysfunctional 

regulatory subunit p85a, unable to bind p110d [58, 75, 76]. This leads to increased activity of 

p110d resulting in hyper-phosphorylation of Akt and hyperactivation of the mTOR pathway. The 

result appears to be that initially responsive T cells end up exhausted and patients are then subject 

to infections and immunodeficiencies [58]. Loss of function mutations in humans also lead to 

severe immune consequences. Patients have been reported with recurrent pneumonia and 

development of colitis. These latter conditions have been suggested to be due to stunted B cell 

development and low T reg cell numbers [77]. These observations are also in line with mouse 

model data and further highlight the relevance of such models. 

For over two decades, several studies and developments have been targeting the PI3K 

pathway as a means of alleviating immune and cancerous ailments. Below are some of the methods 

employed.  

LY294002 a pan PI3K inhibitor developed by the Eli Lilly company has been used as a 

research tool to further understanding of this pathway in basic sciences as well as a potential 

inhibitor in cancer and inflammatory disease studies. But as a small molecule inhibitor, LY294002 

carries high potential for non-specific effects. Thus, there has been limited use of this compound 

in clinical treatment [70]. 

Physicians have employed the use of popular PI3K/mTOR inhibitors in treating patients. 

Sirolimus, also known as Rapamycin is an mTOR inhibitor that has shown some promise in 

immunodeficiency treatments  [78, 79]. However, the various feedback loops associated with the 

mTOR pathway appear to prevent complete inhibition by sirolimus. Thus, sirolimus is often 

applied in combination therapy whereby multiple targets associated with cell survival and cell 
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growth as well as the mTOR pathway are targeted.  In some circles however, the use of rapamycin 

is cautioned and its long-term use is still under evaluation considering the role of the mTOR 

pathway in efficient immune cell development and function as well as its various roles in other 

cell types.  

Targeting specific PI3K isoforms that are implicated in cell type lymphomas and 

autoimmune conditions is also an option that is being evaluated [80]. For example, Idealisib, 

developed by Gilead, is a more specific inhibitor targeting PI3Kd and has been licensed for use in 

chronic leukemia and in certain lymphomas (e.g. non-hodgkins lymphoma). It works by inhibiting 

the catalytic domain of p110d and thereby inducing apoptosis and preventing proliferation in tumor 

cells. This drug comes with significant side-effects however. After treatment, patients have 

presented with conditions suggesting immune deficiency. Indicating that the specificity of the drug 

renders other would be “good cells” ineffective towards invading pathogens and normal 

homeostasis. This highlights one of the greatest difficulties researchers have faced in tackling PI3K 

pathway dysregulation. More clinical trials are underway investigating dosage with respect to 

severity of disease.  

In some cases, experimental treatment involving haematopoeietic stem cell transplants 

have been attempted as it carries the added benefit of treating malignancies[74, 81, 82]. 

Finally, research has suggested that targeting receptor tyrosine kinase activity as well as 

factors within the PI3K pathway will result in more efficient anti-tumour medication and therapy 

[10, 83-88]. But cancer cells have proven to be effective at resisting PI3K inhibition. Most cancers 

drive PI3K activation in cells through multiple RTKs, thus cancer cells are resistant to single RTK 

or signaling factor targeting. Cancer cells have also been observed to undergo genomic evolution 

whereby loss of regulatory factors in the cell help to create resistance in the face of inhibitors [89]. 
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Upregulation of pro-survival mechanisms in cancer cells also leads to drug resistance [90]. Thus, 

combination therapy whereby clinicians use a combination of drugs so as to prevent development 

of resistance is presently being employed.  

In light of these studies, it is indeed exciting to be part of the pioneering team that has 

begun to elucidate the role of TrIP in PI3K regulation. Especially as TrIP presents a new avenue, 

upstream of the PI3K/Akt pathway that can be targeted for the development of new treatment 

regimen. 

1.2 PI3K INTERACTING PROTEIN 1 (PIK3IP1): A NOVEL PI3K REGULATOR 

In a search for kringle-bearing transmembrane proteins, De Frances and colleagues identified a 

transmembrane protein, PI3K interacting protein 1 (PIK3IP1) (which we have renamed 

Transmembrane Inhibitor of PI3K (TrIP)), with a motif similar to the inter-SH2 (iSH2) domain of 

PI3K regulatory subunit- p85 [91]. This motif was located in the cytoplasmic portion of the protein. 

In T cells, the SH2 domains of p85 are known to bind the adaptor binding domain (ABD) of p110δ. 

Whilst the iSH2 domain binds p110δ, the nSH2 and cSH2 stabilize p110δ. Only after 

phosphorylation of the nSH2 and cSH2 is p110δ activated [26, 92, 93]. Thus, the presence of this 

iSH2 domain on the newfound PIK3IP1 protein piqued interest. In further experiments, the 

DeFrances lab found that not only was the expression of PIK3IP1 associated with attenuated PI3K 

activity, but knock-down of PIK3IP1 led to enhanced PI3K activity in fibroblasts [94]. 

Furthermore, the p85-like domain of PIK3IP1 was shown to bind to p110δ [91]. Not only did the 

early work of DeFrances et al demonstrate a role for PIK3IP1 in regulation of PI3K signaling in 

fibroblasts, but they also showed that PIK3IP1 can act as a tumour suppressor. Mice transgenic for 
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PIK3IP1 in hepatocytes were able to reduce hepatocyte proliferation and showed significant 

survival compared with controls [94]. However, nothing was yet known about a possible role of 

this novel protein in the immune system. In work done in collaboration with the DeFrances group, 

we showed that when PIK3IP1 is silenced by siRNA, PI3K downstream activity is increased. 

Conversely, overexpression of PIK3IP1 resulted in decreased downstream signaling in T cells 

[95]. These results strongly supported the model that PI3K can be negatively regulated by 

PIK3IP1. These studies also indicated that PIK3IP1 can regulate T cell activation, possibly through 

the inhibition of PI3K signaling. The presence of the kringle domain  also implied the possibility 

of ligand interaction. How these findings affect T cell development and activation in different 

scenarios in the immune system was of interest to us. This required a better understanding of the 

structure of PIK3IP1. 

 Kringle Domains 

Named after a Scandinavian pastry due to their secondary structure, these domains are typically 

about 80 amino acids in length and consist of two antiparallel β-sheets with 3 disulphide bridges. 

The cysteine residues that form the disulphide bonds are highly conserved and typically connected 

pairwise as follows: 1-80, 22-63 and 51-75 (based on 80 amino acid kringles) [96, 97]. These 

disulphide bridges give the kringle its characteristic fold by forming three loops that restrict the 

domain into the pastry like shape when viewed by planar projection [98]. Functionally, kringles 

are structural domains that mediate binding with other proteins and ligands. The basic kringle 

structure, though present on different types of proteins is mostly conserved but has evolved to bind 

different types of proteins or ligands as dictated by the functions of its parent protein [99-101].  
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Several proteins have been identified with kringle domains. The majority of these proteins 

are involved in blood clotting and fibrinolysis. It appears that depending on the function of the 

domain within a protein, kringle containing proteins can possess varying numberss of kringle 

domains. Some examples include: prothrombin (two kringles), plasminogen (five kringles), 

urokinase (one kringle) and tissue-type plasminogen activator (two kringles) [99, 101, 102].  

An example of how kringle domains function in physiology outside the immune system 

can be seen in the blood clotting pathway. Plasmin is a fibrolytic protein that dissolves blood clots 

and prevents obstruction of blood flow. Plasmin levels are therefore carefully regulated, as the 

presence of an excess of active plasmin could lead to excessive bleeding, while a shortage of 

plasmin could lead to thrombosis. Plasmin circulates in the blood as the inactive precursor 

plasminogen. Depending on the pathway, plasminogen activation can be carried out by a host of 

factors including tissue-type plasminogen activator (tPA) and urokinase-type plasminogen 

activator (uPA) [103, 104]. Plasminogen has five kringle domains, which mediate substrate 

binding, membrane association and activation and inhibition [105]. Several other kringle domain-

containing proteins also show substrate specificity via the kringle domain. For example, uPA has 

been shown to bind αvβ3 integrins, resulting in an inflammatory response to LPS in neutrophils, 

while tPA binds fibrin and plasminogen during the activation of plasmin [106, 107]. In fact, recent 

work has shown that kringle domains can be engineered to make functional agonists/antagonists 

[96]. 

Based on these observations, the presence of the kringle domain on TrIP suggests not only 

the possibility of homotypic or heterotypic protein:protein interactions as a means of TrIP 

regulation of PI3K but also as a means by which TrIP itself may be regulated during PI3K driven 

T-cell activation. 
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 The p85-like Domain. 

As previously stated, the p85 regulatory subunit of PI3K associates with p110d via the inter SH2 

(iSH2) domain. DeFrances and colleagues found a region close to the C-terminus of TrIP with 

70% and 65% homology to p85β and p85α iSH2 domains respectively. This iSH2-like domain 

was termed the p85-like region of TrIP. The presence of a transmembrane domain  suggested that 

TrIP is a transmembrane protein with an ecto-kringle domain and a p85-like domain in the cytosol. 

The importance of the structure was highlighted by the finding that TrIP was able to bind p110α 

only when this p85-like region was present [91]. 

 

Figure 4 Schematic of PIK3IP1 highlighting homology of the p85-like domain to hp85a iSH2 domain 

Biochem Biophys Res Commun, 2007. 358(1): p. 66-72. 

 

 The Importance of the Transmembrane Domain in PIK3IP1 

All the previously mentioned regulators of the Class Ia PI3K pathway are intracellular regulatory 

factors. Structural analysis indicates that TrIP contains a transmembrane domain between amino-
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acids 161-192. The presence of a transmembrane in TrIP indicates that this novel protein is 

expressed on the cell surface. This further suggests that TrIP functions upstream of other known 

regulators of the PI3K pathway.  
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2.0  STATEMENT OF THE PROBLEM 

Regulation of the PI3K signaling pathway is important for proper control of cellular activation, 

metabolism, survival and proliferation. Abnormal activation of this pathway can lead to the 

development of cancer, as observed, with activating mutations in PI3K or Akt or inactivating ones 

in negative regulators of PI3K such as PTEN.  In a search for kringle bearing transmembrane 

proteins, DeFrances and colleagues identified PIK3IP1 (PI3K Interacting Protein 1), which we 

have renamed TrIP (Transmembrane Inhibitor of PI3K). TrIP possesses a motif similar to the inter-

SH2 (iSH2) domain of PI3K subunit p85. This motif is located in the cytoplasmic portion of TrIP. 

These findings suggested that TrIP might represent a novel regulator of the PI3K signaling 

pathway. The iSH2 domain of p85 is known to bind the adaptor binding domain (ABD) of p110. 

Indeed, this novel protein was able to bind to p110 subunit of PI3K in vivo and in vitro. In addition, 

DeFrances and colleagues showed that expression of TrIP was associated with attenuated PI3K 

activity, while conversely knock-down of TrIP led to enhanced PI3K activity, in fibroblasts.  

While the early work of the DeFrances lab demonstrated a role for TrIP in regulation of 

PI3K signaling in fibroblasts and in the liver, nothing was yet known about a possible role of this 

novel protein in the immune system. In work done in collaboration with the DeFrances lab we 

showed that when TrIP is silenced by siRNA in T cells, downstream signaling associated with 

PI3K activation (e.g. Akt) is upregulated. An increase of approximately 50% in activity was 

observed when an NFAT/AP-1 luciferase reporter was transfected with siRNA specific for TrIP, 
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in Jurkat T cells. In a similar experiment, IL-2 secretion was increased in the presence of TrIP 

siRNA, compared to control siRNA. Conversely, overexpression of TrIP resulted in decreased 

downstream signaling in T cells. These results strongly support the model that PI3K is negatively 

regulated by TrIP.  

These previous studies showed that TrIP has the ability to regulate T cell activation, 

possibly through inhibition of PI3K signaling. However, it is still not known how TrIP expression 

is regulated during T cell development and activation. In addition, although TrIP is a 

transmembrane protein with a defined ecto kringle domain, it is not known whether TrIP is 

regulated by interaction with any corresponding ligands. Finally, the in vivo function of TrIP has 

yet to be defined by any knock-out models.  

We hypothesized that both the kringle and the p85-like domains are necessary for the 

inhibitory function of TrIP on the PI3K/Akt pathway. In particular, our hypothesis tested if ligand 

binding on the kringle domain was essential for TrIP function and if the p85-like domain of TrIP 

interacts with p110δ in T cells. Furthermore, using a conditional knock-out mouse model, we 

hypothesized that the absence of TrIP in T cells would lead to early activation kinetics which 

would translate into a heightened immune response in the case of an infection. The studies 

described here begin to answer these questions regarding TrIP function in T cells and would shed 

more light on the PI3K/Akt pathway in conditions such as autoimmunity, cancer and infectious 

diseases. 

 

Portions of the following chapters were compiled and submitted to the Journal of Experimental 

Medicine in the following manuscript [108]: 
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Uzodinma U. Uche, Ann R. Piccirillo, Shunsuke Kataoka, Stephanie J. Grebinoski, Louise M. 

D’Cruz and Lawrence P. Kane (2018). “PIK3IP1/TrIP restricts activation of T cells through 

inhibition of PI3K/Akt.” Journal of Experimental Medicine 215 (12) 3165-3179. 

DOI:10.1084/jem.20172018. 
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3.0  TRIP INHIBITS PI3K/AKT/MTOR PATHWAY SIGNALING AND BOTH THE 

EXTRACELLULAR AND INTRACELLULAR DOMAINS OF TRIP ARE REQUIRED 

FOR INHIBITION OF PI3K/AKT PATHWAY  

3.1 INTRODUCTION 

In order to study the structure of TrIP with respect to T cell function, I evaluated the effect 

overexpression of TrIP would have on activated D10 T cells. The D10 cell line is derived from 

pooled lymph node T cells of chicken conalbumin-primed AKR/J mice [109] and has no apparent 

aberration in T cell signaling [110, 111]. Through the use of alternate readouts suitable for T cell 

activation, I sought to replicate previous results from both the Kane lab [95] and DeFrances [91] 

which showed that TrIP regulates PI3K activation.  

Activation of the PI3K pathway leads to protein synthesis via Akt activation of the mTOR 

pathway. The phosphorylation of ribosomal S6 (pS6) is important for the translation of mRNA 

transcripts and is downstream of Akt in the PI3K signaling pathway. In light of the function of 

TrIP as an inhibitor of the PI3K/Akt pathway, reduction of S6 phosphorylation was an ideal 

readout for T cell activation studies. 

Another method employed was evaluation of FoxO nucleus exit after T cell stimulation. 

Pro-survival and anti-apoptotic gene expression are ways by which the PI3K pathway induces cell 

proliferation. Nuclear localization of FoxO leads to cell cycle arrest and apoptosis as FoxO binds 
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to the promoters of pro-apoptotic factors such as Bim and BAD as well as promotes the 

upregulation of factors such as the cyclin dependent kinase inhibitor, p27 (a cell cycle regulator) 

[112-114]. In response to TCR activation, phosphorylation of FoxO by Akt can result in Foxo 

exclusion from the nucleus and the inactivation of these negative cell-cycle components. 

I validated these assays by comparing results to the previously established T cell luciferase 

readout in our lab. This method requires the use of a luciferase reporter plasmid, wherein the 

luciferase gene is under the control of an NFAT reporter. 

Once I had established viable methods for PI3K activity evaluation in the presence or 

absence of TrIP, I examined the role of the kringle and p85-like domains in TrIP function. This 

was done by making constructs containing TrIP mutants with the extracellular kringle domain 

deleted (∆kringle-TrIP), the cytoplasmic region deleted (∆cyto-TrIP) or only the p85-like domain 

deleted (∆p85-like-TrIP). These constructs were then transfected into D10 cells and evaluated in 

pS6 and luciferase assays. 

3.2 METHODS AND MATERIALS 

Cell lines, transfections and activation.  The D10 Th2 T cell clone (D10.G4.1; ATCC TIB-224) 

was maintained in RPMI media supplemented with 10% bovine growth serum (BGS; Hyclone), 

penicillin, streptomycin, glutamine and 25 U/ml recombinant human IL-2. Using a BIO-RAD 

GenePulser Xcell, D10 cells were individually electroporated with control plasmid or flag-tagged 

WT TrIP constructs, along with pMaxGFP plasmid (encoding GFP from copepod Pontellina p.). 

One day after transfection, cells were evaluated by flow cytometry for GFP expression and TrIP 

expression (by anti-Flag staining) using anti-DYKDDDDK APC clone L5 (BioLegend #637308). 
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Transfected D10 cells were stimulated in RPMI with 3 µg/ml biotinylated anti-CD3 and 

anti-CD28 in the presence of 15 µg/ml streptavidin (anti-mCD3ε biotin, clone 145-2C11, Tonbo 

Biosciences #30-0031-U500; anti-mCD28 biotin, clone 37.51, BD Biosciences #553296; 

streptavidin, MilliporeSigma #189730). Cells were activated for 15, 30 or 60 mins. Activation was 

stopped with 1 ml of cold PBS, followed by centrifugation and aspiration of media.  

 

Luciferase Assays. D10 T cells were transfected with 10µg of control or flag-tagged TrIP along 

with 15 ug of NFAT luciferase reporter vector by electroporation, cultured in complete medium 

(RPMI, 5% BGS and penicillin/ streptomycin) for 16-20 hrs. Cells were then stimulated with 3 

µg/ml biotinylated anti-CD3 and anti-CD28 in the presence of 15 µg/ml streptavidin, or PMA and 

ionomycin for six hours. Luciferase assays were performed as previously described [115]. 

 

Flow cytometry. Before staining, cells were washed in staining buffer (1% Bovine Growth Serum-

supplemented PBS). For extracellular staining, cells were stained at 4˚C with antibodies re-

suspended in staining buffer. For intracellular staining, cells were washed three times to remove 

excess extracellular staining and then fixed and permeablized with the BD Biosciences 

cytofix/perm kit (#554714) for cytosol analysis. Fixed and permeablized cells were then stained at 

4˚C with antibodies re-suspended in permeablization buffer from the kit.  

 

Imaging flow cytometry.  For FoxO1 assays, D10 cells were individually electroporated (as 

described above in “Cell lines, transfections and activation”) with control plasmid or flag-tagged 

WT TrIP constructs, along with pMaxGFP plasmid (encoding GFP from copepod Pontellina p.). 

One day after transfection, cells were evaluated by flow cytometry for GFP expression and TrIP 
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expression (by anti-Flag staining) using anti-DYKDDDDK APC clone L5 (BioLegend #637308). 

Transfected D10 cells were then sorted for GFP positive cells on a BD FACS ARIA IIu using the 

70µm nozzle at 70psi. GFP was excited by the 488nm laser and read using a 530/30 filter. Sorted 

D10 cells were stimulated as described in “Cell lines, transfections and activation” (above). 

Activation was stopped with 1 ml of cold PBS, followed by centrifugation and aspiration of media. 

Sorted D10 cells were then fixed and intracellularly stained as described above.  

For intracellular staining, cells were washed three times to remove excess extracellular 

staining and then fixed and permeablized with the eBioscience Foxp3/Transcription factor staining 

buffer set (#00-5523-00). Fixed and permeablized cells were then stained at 4˚C with antibodies 

re-suspended in permeablization buffer from the same eBioscience Foxp3/Transcription factor 

staining kit. The following intracellular stains were used: FoxO1 (C29H4) Rabbit mAb (Cell 

Signaling #2880S) with Alexa Fluor 594 donkey anti-rabbit IgG (clone: Poly4064; Cat#406418) 

as a secondary stain. DAPI dilactate (Molecular Probes Ref#D3571) was used for DNA/nuclear 

staining. 

Imaging cytometry data on fixed and stained cells were acquired on an Amnis 

ImageStreamX Mark II running INSPIRE® software (Millipore). Analysis was performed using 

IDEAS® software (Millipore). First, focused cells, based on the gradient root mean square feature, 

were identified. Singlets were identified by the aspect ratio and area of bright field data. A nucleus 

intensity mask was made from DAPI staining. This mask was used to determine FoxO1 intensity 

in the nucleus. A gate of low FoxO1 nuclear signal was then set based on the unstimulated control 

samples. Approximately 3000-4000 cells are represented in the D10 T cell data.  
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3.3 RESULTS 

 TrIP inhibits PI3K/Akt/mTOR pathway signaling 

We have previously shown that ectopic expression of TrIP in T cells can inhibit the 

phosphorylation of Akt and thus its activation [95]. A more sensitive readout of PI3K/Akt/mTOR 

activity is analysis of ribosomal protein S6 phosphorylation (pS6) by flow cytometry (Fig. 5A). In 

order to study the structural requirements of TrIP for modulation of T cell function, we evaluated 

pS6 in D10 T cells, a cell line with apparently normal PI3K signaling [116], in the context of 

ectopically expressed WT or mutant TrIP. The domain structure of TrIP is illustrated in Fig. 5B. 

In the absence of a suitable antibody for detecting TrIP by flow cytometry, I transfected D10 T 

cells with control plasmid or Flag-tagged TrIP (WT TrIP) and monitored TrIP expression using α-

Flag antibody (Fig. 5C). One day after transfection, cells were stimulated with α-CD3/CD28 and 

analyzed by gating on GFP expressing cells at various time points (Fig. 5D-E). At all time points 

evaluated cells with ectopic TrIP expression displayed lower pS6, compared with empty vector-

transfected cells. I also noted that, in the absence of stimulation, ectopic expression of TrIP resulted 

in lower basal pS6. In these experiments, and those shown below, I have focused on the percentage 

of pS6+ cells, as this event appears to mainly manifest as a digital response. As an additional 

readout for PI3K/Akt activity, I also measured the effect of ectopic TrIP on nuclear exclusion of 

FoxO1, which occurs after Akt-mediated phosphorylation [117]. Thus, as shown by imaging flow 

cytometry, while CD3/CD28 stimulation resulted in rapid nuclear exit (and apparent degradation) 

of FoxO1, this effect was dramatically impaired in D10 cells expressing ectopic TrIP (Fig. 5F-G). 

These results are consistent with previous data suggesting that TrIP inhibits PI3K activation in 

fibroblasts and with our earlier finding that TrIP inhibits Akt activation in T cells [91, 95]. 
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Figure 5 TrIP inhibits PI3K signaling. 

(A) D10 T cells were stimulated with anti-CD3/CD28 Ab’s for the indicated times, plus either vehicle control 
or indicated concentrations of the PI3Kδ inhibitor IC-87114. Cells were then permeablized, stained with mAb 
to pS6, and analyzed by flow cytometry. Representative of three experiments. (B) Domain structure of TrIP, 
indicating the kringle, transmembrane and p85-like domains. (C) Expression of Flag-tagged WT TrIP on 
transiently transfected D10 T cells. (D) Flow cytometric analysis of pS6 activation in control (vector) or WT 
TrIP-transfected D10 T cells, stimulated with anti-CD3/CD28 for the indicated times. (E) Quantitation of 
pS6 activation as shown in panel D. (F) D10 T cells were transfected with empty vector or TrIP and stimulated 
the next day with anti-CD3/CD28 Ab’s for the indicated times. Cells were anayzed with an Amnis 
ImageStreamX MarkII imaging cytometer. Representative images are shown in panel F. Compiled data from 
600-800 gated (focused singlets) cells with low FoxO1 in the nucleus are shown in panel G. The yellow scale 
bar in C represents 10 µM. p values (for TrIP vs. vector) were calculated using two-way ANOVA with 
Sidak’s multiple comparisons test. p values are represented with the following symbols: *0.01-0.05, **0.001-
0.01, ***<0.001. 

 The Kringle and cytoplasmic domains are required for TrIP activity 

The importance of the kringle domain as a ligand-binding domain in other proteins [100, 101, 

118], and the degree of homology between the p85-like domain and the inter-SH2 domain of the 

p85 regulatory subunit of PI3K, suggests that these two domains may play important roles in the 

inhibition of PI3K by TrIP. To address this, I designed Flag-tagged TrIP variants lacking either 

the extracellular kringle domain (∆kringle-TrIP), the entire cytoplasmic region (∆cyto-TrIP) or 

only the p85-like domain (∆p85-like-TrIP). These constructs were transfected, along with a GFP 

transfection control, into D10 T cells (Fig. 6A) which were then stimulated with α-CD3/CD28 and 

analyzed by flow cytometry (after gating on GFP positive cells; see Fig. 6B) for S6 

phosphorylation (Fig. 6C-D). While WT TrIP led to the attenuation of pS6, deletion of either the 

p85-like domain alone or the entire cytoplasmic region abolished the ability of TrIP to suppress 

pS6. Interestingly, expression of the kringle domain-deleted construct (which still possesses the 

p85-like domain) did not attenuate pS6.  

To further validate this data, I transfected the Flag-tagged TrIP constructs (WT-TrIP, 

∆kringle-TrIP and ∆cyto-TrIP) into D10 cells along with a luciferase reporter driven by the NFAT 
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promoter. I confirmed expression of the flag tagged constructs by flow cytometry (Fig. 6E). Cells 

were then stimulated with α-CD3/CD28 for 6 hrs and relative luciferase units were measured. I 

found that as observed in the pS6 assay, cells overexpressing WT-TrIP attenuated NFAT activity. 

Whereas, the absence of either the p85-like or kringle domains rescued the effects of TrIP on 

NFAT (Fig. 6F).  
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Figure 6 The Kringle and Cytoplasmic domains are required for TrIP activity.  

(A) Expression of WT and mutant Flag-tagged TrIP constructs on transfected D10 cells. (B) Representative 
expression of a co-transfected eGFP plasmid in D10 cells transfected with control vector or TrIP constructs. 
GFP-positive cells were analyzed by flow cytometry for Flag and pS6 expression (C) Representative 
histogram of pS6 staining in D10 cells transiently transfected with Flag-tagged TrIP constructs and activated 
with anti-CD3/CD28. (D) Quantitation of pS6 activation obtained from flow cytometric analysis of activated 
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D10 cells transfected with Flag-tagged TrIP constructs, as shown in panel C. P values (for TrIP versus vector) 
were calculated using two-way ANOVA with Sidak’s multiple comparisons test. (E) Expression of WT and 
mutant Flag-tagged TrIP constructs on transfected D10 cells. Cells were co-transfected with TrIP constructs 
along with a Luciferase plasmid,. (F) Quantitation of relative luciferase units from activated D10 cells 
transfected with Flag-taged TrIP constructs and luciferase plasmid, as shown in panel E. Data in each panel 
are representative of at least three experiments. P values (for TrIP variants versus vector) were calculated 
using two-way ANOVA with Dunnett’s multiple comparisons test. P values are represented with the 
following symbols: *, P = 0.01-0.05; **, P = 0.001-0.01; ***, P = 0.0001-0.001; and ****, P < 0.0001.  

3.4 DISCUSSION 

TrIP is a transmembrane protein that contains two identifiable domains: an extracellular kringle 

domain, implicated in ligand interaction in related proteins [100, 101, 119], and an intracellular 

‘p85-like’ domain. An initial study showed that PI3K was inhibited by TrIP through its interaction 

with the catalytic subunit of PI3K via the p85-like domain [91]. We also showed previously that 

silencing TrIP in T cells leads to upregulation of T cell signaling [95]. Here I sought to obtain a 

more complete understanding of TrIP structure and function in an immune context. Our results 

showed that overexpression of WT TrIP in D10 cells resulted in impaired phosphorylation of 

ribosomal S6 protein, reduced NFAT activity (via luciferase readout Fig 6F), as well as impaired 

nuclear exclusion of FoxO1 (a direct Akt target), further validating the model that TrIP inhibits 

the PI3K/Akt pathway.  

In my analysis of the importance of the two domains, I hypothesized that the kringle 

domain might serve to modulate the activity of TrIP via protein-protein interactions as has been 

observed in order kringle bearing proteins[105]. Indeed, the kringle domain appears to be essential 

for TrIP inhibitory function. A TrIP construct in which the kringle domain was deleted led to 

higher induction of pS6 and NFAT activity than was observed in T cells transfected with WT TrIP.  

The initial description of TrIP revealed a sequence in the cytoplasmic tail that bears 

homology to the inter-SH2 domain of the PI3K adaptor protein p85 (Fig. 4), which regulates 
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activation of catalytic p110 subunits [91]. Extending the findings of Zhu et al., I show here that 

deletion of the cytoplasmic tail or the p85-like domain of TrIP leads to higher induction of pS6 

and NFAT activity. These results suggest that both the kringle and p85-like domains are essential 

for optimal TrIP inhibitory function. 
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4.0  TRIP IS DOWN REGULATED UPON TCR STIMULATION THROUGH 

CLEAVAGE OF THE KRINGLE DOMAIN 

4.1 INTRODUCTION 

Our data strongly support an inhibitory role for TrIP in T cells. The role of inhibitory factors in T 

cells is to regulate TCR activation and prevent undue or excess immune responses. In most cases, 

these factors antagonize T cell signaling and thus, require downregulation or a temporary “shut 

down” in order for the cell to generate an appropriate response to a valid stimulation. For example, 

Programmed cell death protein 1 (PD1) receptor is an immune checkpoint receptor expressed on 

activated immune cells (T cells, B cells, NK cells and Dendritic cells) that plays an important role 

in the maintenance of self-tolerance. Deletion of the gene encoding this protein resulted in 

significant autoimmune phenotypes, which included arthritis in mice [120-122].  PD1 appears to 

function by interacting with its ligands (PD-L1/PD-L2) which are also expressed on immune cells. 

This interaction leads to the recruitment and activation of phosphatase factors, eventually leading 

to attenuating signaling of the PI3K pathway as well as the Ras/Erk pathway [123, 124]. The result 

is the inhibition of cell proliferation, loss of effector functions, as well as promotion of apoptosis. 

In fact, one of the hallmarks of continued PD-1 expression is T cell exhaustion, a condition 

characterized by the inability of effector T cells to produce cytokines and kill tumor or virus loaded 

cells [125].  Regulation of PD-1 activity is achieved by proteolytic cleavage of the extracellelular 
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regions of PDL-1 and PDL-2. Recently, matrix metalloproteinase 13 (MMP-13) was observed to 

cleave the PD-1 binding domain on PDL-1/PDL-2 resulting in a nullification of apoptotic signals 

on activated T cells.  

Lymphocyte activation gene-3 (LAG-3) is another inhibitory molecule that is upregulated 

upon T cell stimulation [126]. While the mechanism of action of LAG-3 is presently unknown, the 

Vignali group has shown that expression of a non-cleavable form of LAG-3 blocks cytokine 

production and T cell proliferation [127]. In further research, Li et al. showed that regulation of 

LAG-3 function on T cells is mediated by two transmembrane metalloproteases, ADAM 10 and 

ADAM 17 (ADAM- a disintegrin and metalloproteinases).  

Given these data and the knowledge that certain other negative regulators of T cell 

signaling (e.g. PTEN) are actively down-regulated to promote T cell activation [128, 129], we 

examined how TCR activation might affect expression of TrIP protein and based on our knowledge 

of TrIP structure, what proteinase groups may mediate regulation of TrIP.  

4.2 MATERIALS AND METHODS 

Cell lines, transfections and activation.  The D10 Th2 T cell clone (D10.G4.1; ATCC TIB-224) 

was maintained in RPMI media supplemented with 10% bovine growth serum (BGS; Hyclone), 

penicillin, streptomycin, glutamine and 25 U/ml recombinant human IL-2. Human embryonic 

kidney (HEK) 293 cells were maintained in DMEM media supplemented with 10% bovine growth 

serum (BGS), penicillin, streptomycin and glutamine. CH27 mouse lymphoma cells 

(RRID:CVCL7178) were maintained in RPMI media supplemented with 10% bovine growth 

serum (BGS), penicillin, streptomycin and glutamine. Using a BIO-RAD GenePulser Xcell, D10 
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cells were individually electroporated with control plasmid, flag-tagged WT TrIP or Flag-tagged 

mutant TrIP constructs, along with pMaxGFP plasmid (encoding GFP from copepod Pontellina 

p.). One day after transfection, cells were evaluated by flow cytometry for GFP expression and 

TrIP expression (by anti-Flag staining) using anti-DYKDDDDK APC clone L5 (BioLegend 

#637308). 

Transfected D10 cells were stimulated in RPMI with 3 µg/ml biotinylated anti-CD3 and 

anti-CD28 in the presence of 15 µg/ml streptavidin (anti-mCD3ε biotin, clone 145-2C11, Tonbo 

Biosciences #30-0031-U500; anti-mCD28 biotin, clone 37.51, BD Biosciences #553296; 

streptavidin, MilliporeSigma #189730). Cells were activated for 15, 30 or 60 mins. Activation was 

stopped with 1 ml of cold PBS, followed by centrifugation and aspiration of media. For 

ADAM10/17 inhibition studies, 1 µM of a dual ADAM 10 and ADAM 17 inhibitor GW280264X 

(AOBIOUS #AOB3632) was incubated with cells for 30 minutes before stimulation. 

 

T cell/APC co-cultures.  CH27 cells were pulsed with 100 µg/ml chicken conalbumin (Sigma 

#C7786) one day before mixing with D10 cells. D10 cells were mixed in a 1:1 ratio with either 

pulsed or unpulsed CH27 cells for 15, 30 and 60 mins. Reactions were quenched by placing cells 

on ice, adding 1 ml of PBS and centrifugation to settle cells and decant activation media. Cells 

were then stained with anti-DYKDDDDK APC clone L5 (BioLegend #637308), anti-mouse CD19 

violetFluor 450 (clone 1D3; Tonbo Biosciences #75-0193-U025) and anti-mouse CD4 Brilliant 

Violet 510 (clone GK1.5; BioLegend #100449). Cells were washed three times in PBS and then 

fixed and permeabilized with eBioscience Foxp3/transcription factor staining buffer (cat # 00-

5523-00), then stained with anti-pS6 (S235/236) Alexa Fluor 647 (clone D57.2.2E; Cell Signaling 

#5316S).  
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Flow cytometry.  Before staining, cells were washed in staining buffer (1% Bovine Growth 

Serum-supplemented PBS). For extracellular staining, cells were stained at 4˚C with antibodies 

re-suspended in staining buffer. For intracellular staining, cells were washed three times to remove 

excess extracellular staining and then fixed and permeablized with the BD Biosciences 

cytofix/perm kit (#554714) for cytosol analysis. Fixed and permeablized cells were then stained at 

4˚C with antibodies re-suspended in permeablization buffer from the kit.  

 

Western blotting analysis and immunoprecipitations.  Cells were lysed in ice-cold NP-40 lysis 

buffer (1% NP-40, 1 mM EDTA, 20 mM tris-HCL pH 7.4), 150 mM NaCl) for both protein 

analysis and immunoprecipitation. Immunoprecipitation was performed by mixing lysate with 20 

µl of M2 anti-Flag agarose beads for 3 hrs at 4o C. Proteins were eluted from beads by mixing 

Lysate with 1X SDS (containing 5% β-mercaptoethanol) and boiling at 95 deg. C for 10 mins. For 

western blot analysis, proteins were resolved by 10% SDS-polyacrylamide gel electrophoresis and 

were transferred onto polyvinylidene difluoride membranes which were then blocked in 4% BSA. 

The membranes were then incubated with the primary antibodies overnight. This was followed by 

incubating the membrane with HRP-conjugated secondary antibodies for 2 hours before detection 

with the SuperSignal West Pico ECL substrate (Thermo Fisher Scientific) and imaging on a 

Protein Simple FluorChem M.  

Western blot and CoIP reagents: Anti-HA (12CA5) (Roche #11-583-816-001); anti-Flag 

M2 Affinity Gel (Sigma #A2220); direct-Blot HRP anti-DYKDDDDK (Clone L5; BioLegend 

#637311). 
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4.3 RESULTS 

 Cell-surface TrIP is down-regulated upon T cell activation 

In order to replicate T cell stimulation in the presence of an antigen presenting cell (APC), we used 

the mouse B cell lymphoma line CH27 [130] to stimulate D10 cells. CH27 cells were either pulsed 

with cognate antigen (chicken conalbumin) or left unpulsed, and then mixed with D10 T cells 

transfected with Flag-tagged TrIP. There was a notable decrease over time in Flag-TrIP expression 

on the surface of D10 cells (Fig. 7A-B). Interestingly, this decreased expression corresponded with 

an increase of pS6 expression (Fig. 7C-D). As observed when D10 T cells were stimulated with 

α-CD3/CD28 (Fig. 7), antigen-pulsed CH27 cells induced a more immediate and robust pS6 signal 

in T cells transfected with empty vector, compared to those transfected with WT TrIP (Fig. 7E). 

These results support the model that T cells acutely modulate the expression of TrIP to promote 

the activation of TCR-induced PI3K signaling. 
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Figure 7 Cell-surface TrIP is downregulated during T cell activation 

D10 cells transfected with WT TrIP were mixed with CH27 B cells as APCs (+/- conalbumin antigen) for 
the given time points. (A) Representative flow cytometry analyzing cell-surface expression of Flag-tagged 
WT TrIP on D10 cells stimulated with CH27 B cells alone (top row) or plus antigen (bottom row). (B) 
Quantitation of data shown in panel A. (C) Representative flow cytometry analyzing pS6 staining in D10 
cells transfected with Flag-tagged WT TrIP and stimulated with CH27 B cells alone (top row) or plus antigen 
(bottom row). (D) Quantitation of data shown in panel C.  (E) Representative flow cytometry of direct 
comparison of pS6 induction in empty vector vs. TrIP-transfected D10 T cells stimulated with APC’s + Ag; 
(F) Quantitation of data shown in panel E. Data are representative of three experiments. p values (compared 
to time 0) were calculated using two-way ANOVA with Sidak’s multiple comparisons test. p values are 
represented with the following symbols: *0.01-0.05, **0.001-0.01, ***<0.001. 

 The kringle domain is important for TrIP ligand/protein interaction and function 

In order to probe the relevance of the kringle domain for TrIP expression and function, I used the 

CH27/D10 system with D10 cells expressing either Flag-tagged WT or ∆kringle-TrIP T cells and 

monitored Flag-TrIP expression and S6 phosphorylation. Since ∆kringle-TrIP transfected cells 

showed a recovery in TCR-dependent pS6 (Fig. 6C-D), I suspected that the absence of the kringle 

domain would lead to maintenance (and not down-regulation) of TrIP. As shown above, D10 cells 

transfected with WT TrIP and stimulated with CH27 B cells alone (without antigen) did not show 

significant loss of TrIP expression over time. However, when mixed with antigen-pulsed CH27 

cells, WT TrIP-expressing D10 T cells showed a significant loss of TrIP expression (Fig. 8A, top 

row and 8B). In contrast, D10 cells transfected with the ∆kringle-TrIP mutant did not lose surface 

TrIP expression when stimulated with CH27 cells (with or without antigen) (Fig. 8A, bottom row 

and 8B). Consistent with the results above, upon mixing with antigen-pulsed CH27 cells, ∆kringle-

TrIP-expressing D10 T cells actually showed a more rapid increase in pS6 than cells transfected 

with WT TrIP (Fig. 8C-D). These results further confirm that the kringle domain is important for 

the inhibitory function of TrIP and suggest the possibility that TrIP is regulated by interaction with 

a ligand. 
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Figure 8 The Kringle domain is relevant for TrIP inhibitory function 

D10 cells transiently transfected with Flag-tagged WT or Δkringle TrIP were mixed with CH27 B cells plus 
antigen, for the indicated times. (A) Representative flow cytometry analyzing cell-surface expression of Flag-
tagged WT (top row) or Δkringle (bottom row) TrIP on D10 cells stimulated with CH27 B cells plus antigen. 
(B) Quantitation of data shown in panel A. (C) Representative flow cytometry analyzing pS6 staining in the 
same cells as in panel A. (D) Quantitation of data shown in panel C. Data are representative of three 
experiments. p values (compared to time 0) were calculated using one-way ANOVA with Dunnett’s multiple 
comparisons test. p values are represented with the following symbols: *0.01-0.05, **0.001-0.01, ***<0.001 

 

In the absence of a known ligand, I designed a hCD8-TrIP chimera to investigate possible 

effects of ligand engagement on TrIP function. The extracellular and transmembrane regions of 

human CD8 were fused with the cytoplasmic tail of TrIP, expressed in D10 T cells and detected 

at the cell surface with hCD8 antibody (Fig. 9A). Using a luciferase reporter driven by the NFAT 

promoter, I observed that expression of hCD8-TrIP on D10 T cells was not sufficient to inhibit 

TCR signaling (Fig. 9B). Similarly, expression of the chimera itself did not inhibit anti-

CD3/CD28-induced pS6 (Fig. 9C-D). However, upon crosslinking of hCD8-TrIP with varying 
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concentrations of anti-hCD8, I observed a decrease in anti-CD3/CD28-induced pS6 (Fig. 9C-D). 

This was in contrast to the effects of a previously described CD8-ζ chimeric construct [131], which 

upon crosslinking with anti-hCD8, modestly enhanced the pS6 signal (Fig. 9C-D). These results 

suggest that the kringle domain of TrIP could regulate oligomerization of the protein, either after 

interaction with a distinct ligand or through homo-oligomerization. To investigate the latter 

possibility, I co-expressed Myc-tagged WT-TrIP with Flag-tagged WT-TrIP in 293T cells and 

used anti-Flag beads to immunoprecipitate (IP) Flag-tagged TrIP (Fig. 9E). Upon blotting with 

anti-Myc, I found that Flag-tagged WT-TrIP was able to co-IP Myc-tagged WT-TrIP (Fig. 9E). 

This suggests that TrIP oligomerizes upon expression, which promotes its ability to inhibit PI3K 

signaling (as evidenced by my results from Fig. 9). However, this finding does not rule out the 

possibility of a trans-interacting ligand for TrIP on the APC’s. 
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Figure 9 TrIP oligomerizes via the kringle domain and this promotes its inhibition of PI3K signaling 

A) Structure of ecto hCD8-mPIK3IP cytoplasmic chimera and its expression on transfected D10 cells. (B) 
D10 cells were transfected with the indicated TrIP constructs, plus an NFAT/AP1-luciferase construct, 
stimulated the next day with anti-CD3/CD28, followed by determination of luciferase activity. p values 
(compared to vector) were calculated using one-way ANOVA with Dunnett’s multiple comparisons test. (C) 
Flow cytometry analysis of pS6 after stimulation of D10 cells transiently transfected with hCD8-TrIP in the 
presence of 10 µg/ml anti-hCD8. (D) Quantification of pS6 after stimulation of hCD8-TrIP transfected D10 
cells in the presence of varying concentrations of anti-hCD8. p values (compared to vector) were calculated 
using one-way ANOVA with Dunnett’s multiple comparisons test. (E) Detection of TrIP dimerization. 293T 
cells were transfected with Flag-tagged TrIP +/- Myc-tagged TrIP. Whole cell lysates (WCL; left panels) or 
anti-Flag IP’s (right panels) were blotted with anti-Myc (upper panels) or with anti-Flag mAb (lower panels). 
p values (comparted to time 0) were calculated using two-way ANOVA with Tukey’s multiple comparisons 
test. Data are representative of three experiments (A-E). p values are represented with the following symbols: 
*0.01-0.05, **0.001-0.01, ***<0.001, ****<0.0001. 

 ADAM10/17 mediate cleavage of TrIP during T cell activation 

To further probe the function of the kringle domain, I next returned to the apparent down-

regulation of TrIP from the surface of activated T cells. One possible mechanism that I considered 

for this is through metalloprotease-mediated cleavage of the ecto domain (including the kringle) 

of TrIP, based on past work on T cell regulators like LAG-3 and Tim-3 [127, 132, 133]. I 

transfected D10 T cells with Flag-tagged WT TrIP, then stimulated these cells with anti-

CD3/CD28 mAb’s, with or without an inhibitor of ADAM family metalloproteases 10 and 17, 

which were previously shown to mediate cleavage of LAG-3 and Tim-3. A constitutively 

expressed GFP construct was co-transfected to further track the transfected cells. As shown in the 

representative flow cytometry data in Figure 10A, stimulation of control vehicle-treated cells led 

to loss of cell-surface Flag staining, while the cells treated with an inhibitor of ADAM10/17 

maintained Flag expression after stimulation. These results are quantified in Figure 10B. Thus, 

one mechanism for down-regulation of TrIP after T cell activation appears to be through 

ADAM10/17-mediated shedding of the kringle domain. 
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Figure 10 ADAM10/17 mediate cleavage of TrIP during T cell activation 

(A-B) D10 T cells were transfected with Flag-TrIP plus a plasmid encoding eGFP. The next day, cells were 
stimulated with anti-CD3/CD28 Ab’s for the indicated times, with or without 1 μM GW280264X, an inhibitor 
of ADAM10/17. Flag staining and GFP expression were determined by flow cytometry. Representative data 
are shown in panel A, and average data of quadruplicate samples are in panel B. p values (comparted to time 
0) were calculated using two-way ANOVA with Tukey’s multiple comparisons test. Data are representative 
of two experiments (A-B). p values are represented with the following symbols: *0.01-0.05, **0.001-0.01, 
***<0.001, ****<0.0001. 

 Mediators of TrIP cleavage are expressed on T cells  

To determine whether inducible down-regulation of TrIP only occurs in the context of stimulation 

by antigen and APCs (which may express a ligand for TrIP), we stimulated transfected D10 cells 

with α-CD3/CD28 and evaluated the surface expression of TrIP at various time points in the 

absence of APC and cognate antigen using the α-Flag antibody. Thus, we observed that even after 

CD3/CD28 stimulation, without APC’s, WT TrIP expression was still down-regulated (Fig. 11A-

B) with a concomitant upregulation of pS6 (Fig. 11C). In contrast, neither ∆cyto-TrIP (Fig. 11A-

B), ∆kringle-TrIP or ∆p85-TrIP (Fig. 11D) expression was down-regulated by stimulation with 
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CD3 and CD28 Ab’s. However, despite the fact that these TrIP mutants were not down-regulated 

from the cell surface, they still failed to inhibit pS6 (Fig. 11C&E), suggesting additional levels of 

regulation.  
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Figure 11 Mediators of TrIP cleavage are expressed on T cells 

D10 cells were transfected with control, WT TrIP or Δcyto-TrIP and stimulated with anti-CD3/CD28. (A) 
Representative flow cytometric analysis of Flag-tagged TrIP and pS6 expression of cells transfected with 
WT TrIP (top row) or Δcyto-TrIP (bottom row). (B) Quantitation of Flag expression over the course of 
stimulation. p values (compared to time 0) were calculated using two-way ANOVA with Holm-Sidak’s 
multiple comparisons test. (C) Corresponding pS6 data for Flag-TrIP staining in panel (B). (D) TrIP surface 
expression and (E) pS6 staining of cells expressing WT, Dkringle or Dp85-like TrIP, after stimulation with 
anti-CD3/CD28, as in panels A-C. p values (compared to time 0) were calculated using one-way ANOVA 
with Dunnett’s multiple comparisons test. 
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4.4 DISCUSSION 

In these studies, the inhibitory activity of TrIP was inversely correlated with surface expression of 

the protein, as I only observed significant upregulation of pS6 when TrIP expression had been 

mostly down-regulated, suggesting that this down-regulation is required for efficient signaling 

immediately following TCR activation. While the mechanisms behind this down-regulation have 

not been full elucidated here, I present evidence that ADAM family metallopreoteases are required 

for the loss of cell-surface TrIP after T cell activation. There is also precedent for acute down-

regulation of other immune checkpoint molecules. For example, Lag3 and Tim-3 can be inducibly 

cleaved from the cell surface by metalloproteases, resulting in enhanced T cell activation [127, 

133], while PTEN, an intracellular inhibitor of the PI3K pathway, is down-regulated by multiple 

mechanisms, including post-translational modification and degradation [128]. Thus, while I have 

implicated ADAM family proteases in TrIP down-regulation, I cannot rule out roles for additional 

mechanisms. 

As previously mentioned, kringle domains in other proteins can serve regulatory functions, 

including acting as sites for protein-protein interactions [105, 134-136]. Further supporting my 

hypothesis that the kringle domain modulates the activity of TrIP, substitution of the kringle 

domain with the extracellular region of hCD8, and subsequent crosslinking by α-CD8, led to 

diminished induction of pS6 and NFAT after TCR stimulation. I show that cell-surface TrIP 

expression is down-regulated during the course of TCR stimulation, even in the absence of APCs, 

and only occurs with WT TrIP and not the truncated variants, leading me to conclude that one or 

more ligands that activates TrIP inhibitory activity is present on T cells. How binding of a ligand, 

expressed by either an APC or the T cell itself, might regulate TrIP function is not clear at this 

point. One possibility is that the kringle domain is required for recruitment of TrIP into proximity 
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of the TCR and/or CD28 during synapse formation. Another possible mechanism for which I did 

obtain evidence is that TrIP may undergo homotypic oligomerization, which itself could alter TrIP 

localization and/or activity. 
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5.0  THE P85-LIKE DOMAIN OF TRIP INTERACTS WITH P110δ PI3K 

5.1 INTRODUCTION 

My data up till this point suggests that the kringle domain and p85-like domains are important for 

TrIP function. Experiments earlier on (Fig 6) showed that in the absence of either the kringle or 

the p85-like domains in overexpressed TrIP, T cell signaling was rescued compared to when WT 

TrIP is overexpressed. Results from T cell-APC conjugation experiments highlighted the 

possibility of regulatory mechanisms whereby TrIP is cleaved extracellularly, thereby removing 

the kringle domain to allow the progression of signaling. These experiments have led to the 

discovery that the kringle domain facilitates TrIP oligomerization and this oligomerization appears 

to be essential for TrIP function (Fig 9). Interestingly, my data also showed that in the absence of 

the p85-like domain but with the kringle domain still expressed, the ∆p85-TrIP does not lose flag 

expression. Suggesting that both domains function cooperatively in the inhibition of TrIP. 

This has led me to speculate that oligomerization facilitates an increase in affinity/avidity 

for PI3K p110 by TrIP, via the p85-like domain located in the cytoplasmic region.  The interSH2 

domain of p85 is necessary for p85 to bind with p110 [137, 138]. Previous work by the DeFrances 

lab showed that TrIP indeed interacts with p110α in MEFs and in in vitro binding assays, p110α 

did not associate with a TrIP mutant lacking the p85-like domain  [91]. Since the prevalent catalytic 
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subunit of PI3K in T cells is p110δ, I sought to understand if TrIP associates with p110δ in a 

similar fashion as observed by Zhu et al. with p110α [91]. 

5.2 MATERIALS AND METHODS 

Cell lines, transfections and activation. For p110δ interaction assays, flag-tagged TrIP variants 

and HA-tagged p110δ were transfected into HEK293 cells using TransIT-LT1 (Mirus) according 

to the manufacturer’s protocol. Cells were evaluated by western blot for expression using Roche 

anti-HA (clone 12CA5; #11-583-816-001) and BioLegend Direct-Blot HRP anti-DYKDDDDK 

(Clone L5; #637311).  

 

Western blotting analysis and immunoprecipitations.  Cells were lysed in ice-cold NP-40 lysis 

buffer (1% NP-40, 1 mM EDTA, 20 mM tris-HCL pH 7.4), 150 mM NaCl) for both protein 

analysis and immunoprecipitation. Immunoprecipitation was performed by mixing lysate with 20 

µl of M2 anti-Flag agarose beads for 3 hrs at 4o C. Proteins were eluted from beads by mixing 

Lysate with 1X SDS (containing 5% β-mercaptoethanol) and boiling at 95 deg. C for 10 mins. For 

western blot analysis, proteins were resolved by 10% SDS-polyacrylamide gel electrophoresis and 

were transferred onto polyvinylidene difluoride membranes which were then blocked in 4% BSA. 

The membranes were then incubated with the primary antibodies overnight. This was followed by 

incubating the membrane with HRP-conjugated secondary antibodies for 2 hours before detection 

with the SuperSignal West Pico ECL substrate (Thermo Fisher Scientific) and imaging on a 

Protein Simple FluorChem M.  
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Western blot and CoIP reagents: Anti-HA (12CA5) (Roche #11-583-816-001); anti-Flag 

M2 Affinity Gel (Sigma #A2220); direct-Blot HRP anti-DYKDDDDK (Clone L5; BioLegend 

#637311). 

 

5.3 RESULTS 

 The p85-like domain of TrIP interacts with p110δ PI3K  

TrIP has been shown to interact with the PI3K catalytic subunits p110α/β in mouse embryonic 

fibroblast (MEF) cells, via a ‘p85-like’ domain with approximately 80% homology to the inter-

SH2 domain of the PI3K regulatory subunit p85 [91]. However, it is not known whether TrIP can 

also interact with p110δ, which is the main catalytic subunit of PI3K activated by TCR signaling 

[139]. To test a possible interaction of p110δ with the p85-like domain of TrIP, I transiently 

transfected 293 cells with Flag-tagged WT TrIP or ∆p85-TrIP, along with HA-tagged p110δ, and 

performed co-IP and western blot analysis (Fig. 12, top panel). Thus, WT TrIP could co-IP p110δ-

PI3K; however, there was a significant reduction in the ability of ∆p85-TrIP to co-IP p110δ (Fig. 

12 top panel, last lane). These results are consistent with a previous report that examined the 

interaction of TrIP with other p110 isoforms in fibroblasts [91], and suggest that TrIP may inhibit 

T cell activation through effects on p110δ. 
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Figure 12 TrIP interacts with p110δ via the p85-like domain 

The cytoplasmic p85-like domain of TrIP binds to p110δ. 293 cells were transiently transfected with Flag-
tagged WT TrIP and p85∆-TrIP along with HA-tagged p110δ, as indicated. Top: co-immunoprecipitation 
and western blot analysis of TrIP and p110δ; Middle: IP fractions showing IP’d Flag-tagged (TrIP) protein; 
Bottom: whole cell lysate (WCL) showing HA-tagged (p110δ) protein expression.  

 

5.4 DISCUSSION 

Confirming the findings of Zhu et al., I show here that TrIP can co-IP the p110δ protein, which is 

the dominant isoform of PI3K regulating T cell activation [140]. With this evidence and the data 

in Chapter 4, I can further speculate that binding of a ligand, expressed by either an APC or the T 

cell itself, may cause a conformational change in TrIP which promotes the binding, and 

inactivation, of PI3K. My operative model is that binding of TrIP interferes with the allosteric 

activation of p110 by p85. Although I cannot rule out the possibility that TrIP might regulate p110 
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stability, the kinetics with which PI3K activation recovers after TrIP downregulation suggest that 

this is not the dominant mechanism. Yet another possible mechanism underlying TrIP function is 

through effects on the subcellular localization of p110, which could impact the accessibility of 

p110 to either upstream activators or substrates. Although the precise mechanism by which PI3K 

is activated in the immune synapse have been controversial [141], such a mechanism for TrIP 

function could result in decreased recruitment of PI3K to CD28 and/or the TCR/CD3 complex 

(see model in Fig. 13). 

 

 

Figure 13 Model for the regulation and function of TrIP during T cell activation 
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6.0  DELETION OF TRIP ON PRIMARY T CELLS LEADS TO DYSREGULATION 

OF T CELL ACTIVATION 

6.1 INTRODUCTION 

While cell lines provided us with the convenient basis to evaluate how the structure of TrIP relates 

to its function, it was important to also ascertain the physiological relevance of TrIP in the context 

of a T cell. Mouse models have proven to be especially relevant to PI3K studies as most knockout 

models of the pathway exhibit phenotypes that are similar to clinical manifestations observed in 

patients. For example, mice lacking PTEN or expressing mutant forms of p85 that lack the ability 

to bind p110 display hyperactive T cell phenotypes are characterized by premature death due to T 

cell lymphomas, autoreactivity and enhanced secretion of T effector cytokines [71]. Most of these 

phenotypes are replicated in patients with primary immunodeficiencies such as APDS [58].  

In order to assess the function of TrIP in T cells in vivo, we generated mice with LoxP-

flanked (floxed) Pik3ip1 alleles (Pik3ip1fl/fl) and bred them to mice with a CD4-driven Cre 

recombinase transgene. Mice with CD4-Cre alone were used as controls. After confirming our 

breeding strategy had yielded the desired genotype, we compared tissue compartments (such as 

the thymus and spleen) from KO mice (CD4-Cre Pik3ip1fl/fl) to those from control mice (CD4-Cre 

x Pik3ip1wt/wt) to see what effects loss of TrIP may have on T cell development.  
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6.2 MATERIALS AND METHODS 

Mice.  Mice with a floxed Pik3ip1 gene (Pik3ip1fl/fl) were generated by inGenious Targeting 

Laboratory Inc., using C57BL/6 ES cells. CD4-Cre mice on a C57BL/6 background were 

originally purchased from Taconic (previously back-crossed for >9 generations to C57BL/6), then 

maintained by breeding to C57BL/6J mice (Jackson), and were used as WT controls. All control 

animals were either littermates of KO mice or derived from in-house breeding in the same facility 

and room. Mice were age-matched within experiments, with approximately equal numbers of male 

and female animals. Animals were maintained in facilities of the University of Pittsburgh Division 

of Laboratory Animal Resources. All animal studies were performed in accordance with 

University of Pittsburgh Institutional Animal Care and Use Committee procedures. 

 

qPCR.  RNA was extracted using the Qiagen RNeasy Mini Kit (#74106) and reverse-transcribed 

to generate cDNA with the Applied Biosystems High Capacity cDNA Reverse Transcription Kit 

(#4368813). Quantitative real-time polymerase chain reaction assays were performed with Power 

SYBR Green PCR Master Mix (Applied Biosystems #4367659) on a Step-One Plus Real Time 

PCR system. The abundance of TrIP mRNA was normalized to that of mGAPDH as calculated 

with the 2-∆∆CT method. The following primers were used: forward: 5’-

ATGCTGTTGGCTTTGGGTACAC-3’; reverse: 5’-CGGCAGTAGTTGTGGTTGC-3’. 

 

T cell activation.  Splenocytes and lymphocytes obtained from WT and conditional TrIP KO mice 

were stimulated in complete RPMI with 3 µg/ml biotinylated anti-CD3 and anti-CD28 in the 

presence of 15 µg/ml streptavidin (anti-mCD3ε biotin, clone 145-2C11, Tonbo Biosciences #30-
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0031-U500; anti-mCD28 biotin, clone 37.51, BD Biosciences #553296; streptavidin, 

MilliporeSigma #189730). Cells were activated for 15, 30 or 60 mins or 4 hrs. Activation was 

stopped with 1 ml of cold PBS, followed by centrifugation, aspiration of media and lysis or 

fixation.  

The following antibodies and dyes were used for flow cytometry: Anti-mCD4 Brilliant Violet 510 

(clone GK1.5; BioLegend #100449); anti-mCD8α v450 (clone 53-6.7; Tonbo Biosciences #75-

0081-U100); anti-pS6 (S235/236) Alexa Fluor 647 (clone D57.2.2E; Cell Signaling #5316S); anti-

mCD69 FITC (clone H1.2F3; BD Biosciences #557392); Ghost Dye Red 780 (Tonbo Biosciences 

#13-0865-T100). 

 

Flow cytometry.  Before staining, cells were washed in staining buffer (1% Bovine Growth 

Serum-supplemented PBS). For extracellular staining, cells were stained at 4˚C with antibodies 

re-suspended in staining buffer. For intracellular staining, cells were washed three times to remove 

excess extracellular staining and then fixed and permeablized with the BD Biosciences 

cytofix/perm kit (#554714) for cytosol analysis. Fixed and permeablized cells were then stained at 

4˚C with antibodies re-suspended in permeablization buffer from the kit.  

 

Imaging flow cytometry.  For FoxO1 assays, splenocytes from WT and conditional TrIP KO 

mice were stimulated as described in “T cell activation” (above) for the listed time points. 

Activation was stopped with 1 ml of cold PBS, followed by centrifugation, aspiration of media, 

staining and fixation.  

For extracellular staining, cells were stained with staining buffer (1% Bovine Growth 

Serum-supplemented PBS) using the following antibodies: anti-mCD4 PE-Cyanine7 (clone GK 
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1.5; Tonbo Biosciences #60-0041-U100). For intracellular staining, cells were washed three times 

to remove excess extracellular staining and then fixed and permeablized with the eBioscience 

Foxp3/Transcription factor staining buffer set (#00-5523-00). Fixed and permeablized cells were 

then stained at 4˚C with antibodies re-suspended in permeablization buffer from the same 

eBioscience Foxp3/Transcription factor staining kit. The following intracellular stains were used: 

FoxO1 (C29H4) Rabbit mAb (Cell Signaling #2880S) with Alexa Fluor 594 donkey anti-rabbit 

IgG (clone: Poly4064; Cat#406418) as a secondary stain. DAPI dilactate (Molecular Probes 

Ref#D3571) was used for DNA/nuclear staining. 

Imaging cytometry data on fixed and stained cells were acquired on an Amnis 

ImageStreamX Mark II running INSPIRE® software (Millipore). Analysis was performed using 

IDEAS® software (Millipore). First, focused cells, based on the gradient root mean square feature, 

were identified. Singlets were identified by the aspect ratio and area of bright field data. In 

analyzing primary T cell data, we gated on CD4 T cells via the intensity of that channel. A nucleus 

intensity mask was made from DAPI staining. This mask was used to determine FoxO1 intensity 

in the nucleus. A gate of low FoxO1 nuclear signal was then set based on the unstimulated control 

samples. Approximately 1000 cells are represented in the summary histograms and bar graphs of 

primary cells. The typical spread of the data is illustrated by the histograms in Fig. 15G.  

 

Western blotting analysis.  Cells were lysed in ice-cold NP-40 lysis buffer (1% NP-40, 1 mM 

EDTA, 20 mM tris-HCL pH 7.4), 150 mM NaCl) for protein analysis. For western blot analysis, 

proteins were resolved by 10% SDS-polyacrylamide gel electrophoresis and were transferred onto 

polyvinylidene difluoride membranes which were then blocked in 4% BSA. The membranes were 

then incubated with the primary antibodies overnight. This was followed by incubating the 
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membrane with HRP-conjugated secondary antibodies for 2 hours before detection with the 

SuperSignal West Pico ECL substrate (Thermo Fisher Scientific) and imaging on a Protein Simple 

FluorChem M.  

 

6.3 RESULTS 

 No obvious T cell developmental defects in TrIP KO mice 

In the absence of a suitable TrIP antibody, T cells from spleen and lymph nodes of naïve 

homozygous (CD4-Cre x Pik3ip1fl/fl) and heterozygous (CD4-Cre x Pik3ip1fl/wt) TrIP conditional 

knockout mice were screened by RT-PCR for TrIP mRNA expression and compared to wild type 

mice (CD4-Cre x Pik3ip1wt/wt) (Fig. 14A). Analysis of thymus and spleen from these mice showed 

similar percentages of CD4 and CD8 T cells in all compartments as well as normal numbers of 

nTreg (Foxp3+CD25+), suggesting that T cell development was largely normal (Fig. 14B-C). 

Although we did not note any obvious signs of widespread basal inflammation, we assessed more 

directly whether deletion of TrIP might result in spontaneous activation of peripheral T cells, by 

staining for the early activation markers CD69 and CD25. As shown in Figure 14D, these markers 

were expressed at equivalent, minimal, levels in TrIP-deficient vs. WT T cells. Thus, T cell-

specific deletion of TrIP does not grossly affect T cell development or homeostasis.  
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Figure 14 No obvious T cell development defects in CD4-cre conditional TrIP KO mice 

A) After confirmation of CD4-Cre and Pik3ip1 flox by tail snip genotyping, spleen and lymph node cells 
from naïve mice of indicated genotypes were screened by RT-PCR for the presence of Pik3ip1 mRNA. B) 
Characterization of thymocytes and (C) splenocytes from WT, HET and KO mice. (D) Steady-state levels of 
CD69 (top panels) and CD25 (bottom panels) on splenic CD4+ and CD8+ T cells.  
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 Enhanced T cell activation in the absence of TrIP 

Based on data shown in the preceding chapters and previously published findings [91, 95], we 

predicted that deleting TrIP in primary T cells would lead to enhanced TCR signaling, especially 

through the PI3K/Akt pathway. We thus stimulated lymphocytes from wild type (WT) and 

conditionally-deleted TrIP (KO) age-matched mice with α-CD3/CD28 for varying times and 

evaluated early T cell activation by pS6 and CD69 expression. Following stimulation, TrIP KO T 

cells showed significantly higher pS6 at later time points (1-4 hrs.) (Fig. 15A-B; representative 

histograms in Fig. 15C) These data are consistent with our observation of more robust Akt 

phosphorylation at T308 and especially S473 in peripheral T cells lacking TrIP (Fig. 15D-E). As 

with ectopic expression of TrIP in D10 T cell (Fig. 5 F-G), we measured the effect that deletion 

of TrIP would have on nuclear exclusion of FoxO1, a direct target of Akt phosphorylation. Using 

imaging flow cytometry, we noted that even resting, unstimulated, TrIP KO T cells displayed a 

significant reduction in nuclear FoxO1, compared to WT T cells (Fig. 15F-G). Furthermore, while 

WT T cells displayed a loss of nuclear FoxO1 after anti-CD3/CD28 stimulation, TrIP KO T cells 

exhibited an even more rapid exclusion of FoxO1 from the nucleus, with an accompanying 

decrease in total FoxO1 staining, consistent with the lower stability of cytoplasmic FoxO1 [117]. 

Taken together, these results demonstrate that the loss of TrIP in primary T cells promotes more 

efficient TCR signaling and early T cell activation, especially through the PI3K/Akt/mTOR 

signaling pathway. 
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Figure 15 Enhanced pAkt and pS6 activation in TrIP-deficient T cells 

Splenocytes and lymphocytes were isolated from WT and KO mice and stimulated with anti-CD3/CD28 for 
the indicated times. (A) Flow cytometric analysis of pS6 expression on stimulated CD4+ T cells. (B) 
Quantitation of data shown in panel A. (C) Representative histograms of pS6 data corresponding to the four-
hour stimulation time point in panel A-B. CD8 data included to show similarity in activation. (D-E) T cells 
were purified from spleen and lymph nodes of WT or TrIP KO mice and stimulated with anti-CD3/CD28 
antibodies for the indicated times. Lysates were analyzed by western blot for phospho-Akt (T308-left; S473-
right) and β-actin as a loading control. p values were calculated using two-way ANOVA with Sidak’s 
multiple comparisons test. p values are represented with the following symbols: *0.01-0.05, **0.001-0.01, 
***<0.001. Data in panels A-B & D-E are representative of three experiments each. (F-G) WT and TrIP KO 
CD4+ T cells were analyzed for nuclear FoxO1 staining by imaging cytometry. (F) Representative images 
showing FoxO1, CD4 and nuclear (DAPI) staining of resting and stimulated T cells. The yellow scale bar 
represents 10 µM. (G) Left – histograms displaying the magnitude of nuclear FoxO1 in WT vs. TrIP KO T 
cells, before and after anti-CD3/CD28 stimulation; right – graphical representation of the percentage of cells 
falling in the nuclear FoxO1Lo gate from the left histograms. Data in panel G represent approximately 1000 
CD4+ T cells per condition, from a single experiment, representative of two that were performed. 

6.4 DISCUSSION 

To probe the function of TrIP in primary T cells, we generated an inducible knockout model which 

we crossed to CD4-Cre transgenic mice, to delete TrIP in all α/β T cells. T cells from these mice 

did not exhibit any developmental defects. CD4 and CD8 percentages in the thymus were similar 

in WT and KO mice. Though we observed a slight difference in Treg numbers, not enough mice 

were evaluated to make this observation significant. A similar trend was observed in the spleen 

where single positive CD4 and CD8 percentages were quite similar between the genotypes.  

Though there were no obvious developmental defects or spontaneous inflammation in TrIP KO 

mice, this does not rule out the possibility that TrIP may play a role in TCR repertoire selection or 

T cell homeostasis.  

Ex vivo, T cells from these animals did not show upregulation of early activation markers 

like CD69 or CD25 prior to stimulation. However, KO T cells were hyper-sensitive to stimulation 
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through the TCR and validated my finding that S6 phosphorylation and FoxO1 exit from the 

nucleus are relevant downstream readouts for monitoring TrIP activity. The sum of the differences 

between WT and KO T cells in pAkt, pS6 and FoxO1 nuclear content strongly support previous 

observation of the physiological relevance of TrIP [94, 142]. 
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7.0  DELETION OF TRIP ENHANCES TH1 CELL INDUCTION AND INHIBITS 

TREG INDUCTION 

7.1 INTRODUCTION 

Previous research suggested that higher PI3K signaling may lead to enhanced Th1 potential, while 

lower levels of PI3K would favor generation of iTreg [94, 143]. Based on my findings, I reasoned 

that T cell polarization towards a pro-inflammatory phenotype would be enhanced in TrIP KO T 

cells. To test this theory, I used well established Th differentiation protocols [144-148] and focused 

on the effect loss of TrIP would have on subsets likely to be involved in an inflammatory response 

(Th1, Tregs and perhaps Th17).   

In order to confirm that any changes observed were due to loss of TrIP regulation of the 

PI3K pathway, I also carried out Th differentiation in the presence of established PI3K pathway 

inhibitors of varying substrate specificity. Thereby enabling targeting of the pathway at different 

stages. During differentiation I used the following inhibitors: the isoform specific PI3Kδ inhibitor, 

IC87114, to block the predominant p110 catalytic unit in T cells; Akt1/2 kinase inhibitor to 

obstruct Akt phosphorylation which occurs somewhat early on in the pathway, LY294002 the pan-

PI3K inhibitor.   
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7.2 MATERIALS AND METHODS 

Mice.  Mice with a floxed Pik3ip1 gene (Pik3ip1fl/fl) were generated by inGenious Targeting 

Laboratory Inc., using C57BL/6 ES cells. CD4-Cre mice on a C57BL/6 background were 

originally purchased from Taconic (previously back-crossed for >9 generations to C57BL/6), then 

maintained by breeding to C57BL/6J mice (Jackson), and were used as WT controls. All control 

animals were either littermates of KO mice or derived from in-house breeding in the same facility 

and room. Mice were age-matched within experiments, with approximately equal numbers of male 

and female animals. Animals were maintained in facilities of the University of Pittsburgh Division 

of Laboratory Animal Resources. All animal studies were performed in accordance with 

University of Pittsburgh Institutional Animal Care and Use Committee procedures. 

 

T cell purification and differentiation.  Total or CD4+ α/β T cells from spleens and lymph nodes 

of naïve mice were purified by magnetic separation using T cell isolation kits from Miltenyi Biotec. 

The purity of the final cell population was >90%. T cells were activated with plate-bound anti-

CD3 (clone 145-2C11; Bio X Cell InVivoMab BE0001-1), along with soluble anti-CD28 (clone 

37.51 eBioscience #14-0281-85), in complete (RPMI medium supplemented with 10% bovine 

growth serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 50 µM 2-

mercaptoethanol, HEPES and sodium pyruvate). For Th1 differentiation, cells were cultured in the 

presence of recombinant murine IL-12 (10 ng/ml), anti-IL-4 (10 µg/ml) and recombinant human 

IL-2 (50 U/ml). For Th17 differentiation, cells were cultured in the presence of recombinant hTGF-

β (2.5 ng/ml), recombinant mIL-6 (20 ng/ml), plus anti-IFNγ (10 µg/ml), anti-IL-4 (10 µg/ml) and 

anti-IL-2 (20 µg/ml) neutralizing antibodies. For iTreg differentiation, cells were cultured in the 
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presence of anti-IL-4 and anti-IFNγ neutralizing antibodies (10 µg each) plus recombinant 

hTGFβ2 (10 ng/ml) and recombinant hIL-2 (50 U/ml), with varying concentrations of anti-CD3 

(0.25µg/ml, 0.5µg/ml, 1.0µg/ml and 5.0µg/ml) and 1µg/ml anti-CD28. Cells were cultured for 3 

days under Th differentiation conditions and then stimulated for 4h with PMA (50 ng/ml) and 

ionomycin (1.33 µM) in the presence of Golgi Plug (BD biosciences #51-2301KZ). Cells were 

then harvested and analyzed by flow cytometry. 

T helper cell differentiation reagents: Murine IL-12 (Miltenyi Biotec #130-096-707); 

murine IL-6 (Miltenyi Biotec #130-094-065); recombinant hTGF-β (Sigma SRP3170-5UG); anti-

mouse IL-4 clone 11B11(Bio X Cell #BE0045); anti-mIL-2 clone S4B6-1 (Bio X Cell #BE0043); 

anti-mIFN-γ clone XMG1.2 (Bio X Cell #BE0055). 

The following antibodies and dyes were used for flow cytometry: anti-mCD4 Brilliant 

Violet 510 clone GK1.5 (BioLegend #100449); Ghost Dye Red 780 (TONBO biosciences #13-

0865-T100); V450-anti-mFoxp3 clone MF23 (BD Horizon #561293); anti-mouse RORγt-PE 

(clone Q31-378; BD Biosciences #562607); anti-mouse IL-17A PerCP-Cy5.5 (clone eBio17B7; 

eBioscience 45-7177-80); anti-mFoxp3 APC (clone FJK-16s; eBioscience 17-5773-82); anti-

mTbet eFluor 660 (clone eBio4B10; eBioscience 50-5825-82); anti-m IFN-γ PE-Cy7 (clone 

XMG1.2; Tonbo Biosciences 60-7311-U025); anti-mouse CD25 FITC (clone PC61.5; Tonbo 

Biosciences 35-0251-U100). 

 

Flow cytometry.  Before staining, cells were washed in staining buffer (1% Bovine Growth 

Serum-supplemented PBS). For extracellular staining, cells were stained at 4˚C with antibodies 

re-suspended in staining buffer. For intracellular staining, cells were washed three times to remove 

excess extracellular staining and then fixed and permeablized with the eBioscience 
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Foxp3/Transcription factor staining buffer set (#00-5523-00) for transcription factor and cytosol 

analysis. Fixed and permeablized cells were then stained at 4˚C with antibodies re-suspended in 

permeablization buffer from the kit. 

 

qPCR.  RNA was extracted using the Qiagen RNeasy Mini Kit (#74106) and reverse-transcribed 

to generate cDNA with the Applied Biosystems High Capacity cDNA Reverse Transcription Kit 

(#4368813). Quantitative real-time polymerase chain reaction assays were performed with Power 

SYBR Green PCR Master Mix (Applied Biosystems #4367659) on a Step-One Plus Real Time 

PCR system. The abundance of TrIP mRNA was normalized to that of mGAPDH as calculated 

with the 2-∆∆CT method. The following primers were used: forward: 5’-

ATGCTGTTGGCTTTGGGTACAC-3’; reverse: 5’-CGGCAGTAGTTGTGGTTGC-3’. 

 

7.3 RESULTS 

 Deletion of TrIP enhances Th1 T cell polarization and inhibits Treg generation 

I isolated naïve CD4+ T cells from WT and KO mice and cultured them with  α-CD3/CD28 mAbs 

for three days under neutral (no polarization), Th0 (suppression of all polarization), Th1, Th17 and 

iTreg skewing conditions. At the end of culture, cells were re-stimulated with PMA/ionomycin for 

four hours and then evaluated for Th1 (T-bet and IFN-γ), Th17 (RORγt and IL17a) and iTreg 

(CD25 and Foxp3) phenotype. Thus, we noted a significant increase in the number of cells 

producing IFN-γ in TrIP KO T cell cultures, compared to WT cells, especially under Th0 and Th1, 
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and even iTreg, conditions (Fig. 16A). Interestingly, we observed a smaller, but reproducible, 

decrease in the number of TrIP KO T cells making IL-17a, specifically under Th17 polarization 

conditions (Fig. 16B). More strikingly, we found that TrIP-deficient T cells cultured under iTreg-

generating conditions were significantly less efficient at producing Foxp3+CD25+ iTreg (Fig. 16C-

D). This result is consistent with previous findings that PI3K/Akt/mTOR signaling suppresses the 

generation of iTreg [143]. Interestingly, when we assessed the expression of Pik3ip1 mRNA after 

culturing under various Th polarization conditions, we found that Pik3ip1 was severely down-

regulated in Th0 and Th1cells. By contrast, Pik3ip1 was maintained at a somewhat higher level in 

iTreg, although still not as high as naïve cells (Fig. 16E), consistent with an apparent requirement 

for weaker PI3K signaling in Treg [149].  
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Figure 16 High Th1 and low iTreg differentiation potential in TrIP KO T cells  

Naïve T cells from WT and KO mice were cultured under neutral, Th0, Th1, Th17 and iTreg conditions for 
three days, re-stimulated and analyzed for (A) IFNg and T-bet expression, (B) IL-17a and RORgt expression, 
and (C-D) Foxp3 and CD25 expression. (E) Naïve CD4+ T cells from the indicated mice were stimulated 
under the indicated conditions and RNA was extracted and analyzed by qPCR for PIk3ip1 message. Data 
shown are normalized to naïve WT T cells.  p values were calculated using two-way ANOVA with Sidak’s 
multiple comparisons test. p values are represented with the following symbols: *0.01-0.05, **0.001-0.01, 
***<0.001. Data in each panel are representative of at least three experiments. 
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 KO TrIP preference for Th1 polarization is due to enhanced PI3K activity 

In order to determine whether the difference in Th1 polarization was actually due to enhanced 

PI3K activity, we performed the Th1 differentiation assay with the addition of moderate 

concentrations of PI3K/Akt pathway inhibitors. Specifically, we employed an Akt1/2 inhibitor 

(Akti-1/2), a pan-PI3K inhibitor (LY294002) and a selective p110δ inhibitor (IC-87114). Cells 

were stimulated with α-CD3/CD28 as in Fig. 16 and cultured under Th1 conditions in the presence 

of varying concentrations of the PI3K inhibitors. At the end of culture, cells were re-stimulated 

with PMA/Ionomycin and evaluated by flow cytometry for IFN-γ expression. We found that IFN-

γ production by KO cells was significantly inhibited by all three inhibitors tested, at concentrations 

as low as 0.5 µM (Fig. 17A-B). Consistent with p110δ being the most prevalent catalytic subunit 

of PI3K linked to TCR signaling, IC-87114 was the most potent inhibitor at all concentrations. 

Overall, we observed a reduction of IFN-γ production by both WT and TrIP KO T cells in the 

presence of inhibitors, but this inhibition was more distinct with the KO cells. These results support 

the idea that the high IFN-γ production by TrIP KO T cells is due to a loss of TrIP inhibition of 

PI3K. 
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Figure 17 TrIP KO T cell preference for Th1 polarization is due to enhanced PI3K signaling 

(A) Naïve T cells from WT and KO mice were cultured under Th1 conditions for three days in the presence 
of PI3K inhibitors (Akti, LY294002 and IC-87114), re-stimulated with PMA/Ionomycin and analyzed for 
IFNγ and CD25 expression. (B) Quantitation of A. p values (comparing WT to KO) were calculated using 
two-way ANOVA with Sidak’s multiple comparisons test. p values are represented with the following 
symbols: *0.01-0.05, **0.001-0.01, ***<0.001. Data in each panel are representative of at least three 
experiments. 

7.4 DISCUSSION 

When I differentiated naïve CD4+ T cells from TrIP KO mice, I noted increased production of 

IFNγ by Th1 cells compared to WT. In fact, across the Th subsets looked at, TrIP KO T cells 

tended to produce higher amounts of IFNγ (even in Tregs). My use of PI3K pathway inhibitors 

confirmed that the phenotypes observed here are as a result of unchecked PI3K activity (due to 

loss of TrIP). While we saw no obvious developmental defects or spontaneous inflammation in 

mice with T cell-specific TrIP deficiency, these results support the theory that TrIP plays a role in 

PI3K pathway driven Th subset polarization.  

It is curious that Tregs derived from KO mice express higher amounts of IFNγ compared 

to WT. Even more puzzling is that these mice do generate Tregs, especially since we observe that 

TrIP is moderately expressed in WT Treg cells. Thus, inferring a role for TrIP in maintenance of 

multiple Treg subsets [150]. These observations imply that under certain conditions, TrIP can be 

downregulated in Tregs and that TrIP deficient Tregs are at least functional in the production of 

inflammatory cytokines. Clues for how such Tregs may arise in a physiological state have come 

from graft versus host disease transplant studies. While Tregs derived from WT mice prevented 

disease, those Tregs derived from Ifnγ-/- mice did not inhibit GVHD disease progression [151]. In 

fact, a recent report by Overacre-Delgoffe et al. shows that IFNγ producing Tregs drives loss of 
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suppressive activity of tumour resident Tregs and creates Treg fragility that can lead to tumour 

clearance [152]. Future work should evaluate the expression of TrIP in IFNγ producing Tregs in 

an in vivo setting. 
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8.0  ENHANCED ACTIVATION AND IN VIVO FUNCTION OF TRIP KO T CELLS 

8.1 INTRODUCTION 

PI3K dysregulation affects the immune system in terms of response to pathogens, autoimmunity 

and cancer. While recent research has implicated TrIP as playing a role in tumour suppression [94, 

142, 153] no data has been presented on the role of TrIP during infection. Our data shown here 

strongly supports the theory that high PI3K signaling induces a strong Th1 phenotype and leads to 

lower Treg induction. This supports the theory that the regulation of PI3K by TrIP could play a 

role in the immune inflammatory response to certain pathogens. 

In responding to invading microbes T cells should undergo activation and rapid 

proliferation [154]. Thus, I compared early and late activation markers on in vitro stimulated WT 

and KO T cells. I also used the cell proliferation dye eFluor 450 to monitor proliferation of in vitro 

activated cells. We then chose the well established listeria infection model [155] in order to 

evaluate the in vivo functionality of T effector cells from TrIP KO mice. 

Listeria monocytogenes is a Gram-positive intracellular bacterial pathogen that causes 

listeriosis. It is a food-borne human pathogen that can cause severe clinical manifestations such as 

sepsis and meningitis in immunocompromised individuals, infants, elderly patients and pregnant 

individuals. It is primarily transmitted via ingestion of contaminated foods whereby the bacterium 

is able to cross several barriers thereby lodging in the cytosol of cells. In particular, the bacteria 
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can be found in the spleen and liver of infected hosts as they invade splenic and hapatic 

macrophages [154]. While the initial response to L. monocytogenes infection is via innate 

immunity [156, 157] early work in the field showed that clearance of an L. monocytogenes 

infection is T cell mediated [158]. Further work has shown that CD8 T cells play a role in eventual 

clearance and provide long term protective immunity.  

Secretion of proinflammatory cytokines such as IFNg and TNFa are important for 

combating infection of listeria monocytogenes [155, 159, 160].  Early resistance to L. 

monocytogenes infection has been attributed to CD4 T cells activating macrophages [154]. Based 

on our data in presented in Figure 15, we therefore hypothesized that our TrIP KO mice would 

clear the bacteria at a faster rate than the WT mice due to high activation of IFNg potential. 

8.2 MATERIALS AND METHODS 

Mice.  Mice with a floxed Pik3ip1 gene (Pik3ip1fl/fl) were generated by inGenious Targeting 

Laboratory Inc., using C57BL/6 ES cells. CD4-Cre mice on a C57BL/6 background were 

originally purchased from Taconic (previously back-crossed for >9 generations to C57BL/6), then 

maintained by breeding to C57BL/6J mice (Jackson), and were used as WT controls. All control 

animals were either littermates of KO mice or derived from in-house breeding in the same facility 

and room. Mice were age-matched within experiments, with approximately equal numbers of male 

and female animals. Animals were maintained in facilities of the University of Pittsburgh Division 

of Laboratory Animal Resources. All animal studies were performed in accordance with 

University of Pittsburgh Institutional Animal Care and Use Committee procedures.  
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Listeria monocytogenes infection.  Control WT (CD4-Cre alone) and Pik3ip1fl/fl x CD4-Cre mice 

were infected intravenously with 15,000 CFU L. monocytogenes in 200µl of PBS. Bacterial titers 

were quantified by lysing whole livers in PBS, plating of a 1:10 dilution on brain-heart infusion 

agar plates, and culturing overnight. Cells were stained with the following antibodies and dyes and 

analyzed by flow cytometry: Ghost Red 780 viability dye (Tonbo Biosciences #13-0865-T100); 

anti-mCD4 Brilliant Violet 510 (clone GK1.5; BioLegend #100449); anti-mCD8α PE (clone 53-

6.7; Tonbo Bioscience 50-0081-U100); anti-mCD62L PerCP-Cy5.5 (clone MEL-14; eBioscience 

45-0621-80); anti-mKLRG1 FITC (clone 2F1; Tonbo Biosciences 35-5893-U100); anti-mCD127 

PE-Cy7 (clone A7R34; Tonbo Biosciences 60-1271-U025); anti-mCD44 violetFluor 450 (clone 

IM7; Tonbo Biosciences 75-0441-U025). All Ab staining was performed at 4˚C in PBS containing 

1% Bovine Growth Serum and 0.1% sodium azide. GP33 tetramers were provided as APC 

fluorophore-conjugated tetramers by the NIH tetramer core facility and used for identification of 

gp33-specific CD8+ and CD4+ T cells. 

 

T cell proliferation.  CD4 T cells from spleens of naïve mice were purified by magnetic separation 

using the Miltenyi Biotec naïve CD4 T cell isolation kit (#130-104-453). The purity of the final 

cell population was >90%. Prior to activation, T cells were labeled with cell proliferation dye 

efluor 450 (eBioscience #65-0842) following the manufacturer’s protocol. T cells were then 

activated with plate-bound anti-CD3 (clone 145-2C11; Bio X Cell InVivoMab BE0001-1) in 

complete RPMI medium (supplemented with 10% bovine growth serum, 2 mM L-glutamine, 100 

U/ml penicillin, 100 µg/ml streptomycin, 50 µM 2-mercaptoethanol, HEPES and sodium 

pyruvate) in the presence or absence of 1 µg/ml anti-CD28 (clone 37.51 eBioscience #14-0281-

85). Cells were then cultured for 3 or 5 days before harvesting and analysis by flow cytometry. 
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Flow cytometry.  Before staining, cells were washed in staining buffer (1% Bovine Growth 

Serum-supplemented PBS). For extracellular staining, cells were stained at 4˚C with antibodies 

re-suspended in staining buffer. For intracellular staining, cells were washed three times to remove 

excess extracellular staining and then fixed and permeablized with either the eBioscience 

Foxp3/Transcription factor staining buffer set (#00-5523-00) or the BD Biosciences cytofix/perm 

kit (#554714) for transcription factor and cytosol analysis, respectively. Fixed and permeablized 

cells were then stained at 4˚C with antibodies re-suspended in permeablization buffer from the 

respective kits.  

8.3 RESULTS 

 TrIP KO T cells upregulate activation markers and proliferate at a higher rate than 

control.  

I returned to the question of how TrIP regulates early T cell activation and whether this translates 

to downstream effects on proliferation and pathogen clearance. Thus, naïve T cells from TrIPfl/fl x 

CD4-Cre mice were purified from spleen and lymph node and stimulated with anti-CD3 +/- anti-

CD28. One of the earliest cell-surface changes after T cell activation is upregulation of CD69, a 

sensitive marker of TCR signaling that plays a role in delaying trafficking of nascently activated 

T cells out of the lymph node [161]. Thus, we noted that TrIP-deficient T cells upregulated CD69 

more robustly than did WT T cells (Fig. 18A). A somewhat later event is the upregulation of CD25, 

which is a component of the high-affinity IL-2 receptor. We noted higher expression of CD25 in 
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TrIP-deficient T cells at both days three and five after stimulation (Fig. 18B), specifically on cells 

stimulated with anti-CD3 alone, which is intriguing because CD25 is a known target of CD28 co-

stimulation [162]. Importantly, basal expression of both CD69 and CD25 was identical in naive 

TrIP KO vs. WT T cells (Fig. 14D). I did note a slight, but reproducible, decrease in basal levels 

of CD62L on naïve CD8+ T cells lacking TrIP, which was eventually normalized over the course 

of initial T cell activation (Fig. 18C). I also collected supernatants from stimulated T cells and 

measured secretion of IL-2 by ELISA. Thus, I observed significantly more IL-2 production from 

TrIP-deficient T cells, compared with WT cells, with or without CD28 co-stimulation (Fig. 18D). 

The PI3K pathway plays a major role in triggering T cell response to antigen via a number 

of processes, including proliferation. The effects on early activation discussed above, especially 

the increases in CD25 and IL-2, suggested that TrIP loss might also impact T cell proliferation. 

Naïve T cells were isolated from WT and KO mice, stained with cell trace violet and cultured on 

anti-CD3 coated plates in the presence or absence of anti-CD28. Cells were analyzed for 

proliferation at days three and five after stimulation. I found that at both time points, KO T cells 

had proliferated to a greater extent than WT T cells, after stimulation with either anti-CD3 alone 

or anti-CD3/CD28 (Fig. 18E-F). These findings further support the model that TrIP restricts T cell 

activation.  

 TrIP KO mice are less susceptible to L. monocytogenes infection  

To explore the role of TrIP function in vivo, we infected mice with Listeria monocytogenes, a 

disease model that requires effective CD8+ and Th1 T cell responses for clearance of pathogen and 

generation of immune memory [154, 163]. We infected mice with a relatively high dose (15,000 

CFU) of L. monocytogenes , as we hypothesized that TrIP KO mice would be able to clear the 
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infection more efficiently, based on the in vitro data detailed above. Thus, we observed 

significantly lower bacterial load from the livers of TrIP KO mice, compared to WT mice, at day 

four after infection (Fig. 18G). Thus, the enhanced sensitivity of TrIP KO T cells described above 

does indeed translate to more robust in vivo activity of these cells in response to an intracellular 

bacterial infection.  

 

 

 

Figure 18 TrIP KO T cells display increased proliferation and activation and T cell specific TrIP KO 

mice are less susceptible to L. monocytogenes infection 

(A-B) WT or TrIP naïve T cells were stimulated as indicated for 24 hours (A) or 3-5 days (B), then analyzed 
by flow cytometry for expression of CD69 (A) or CD25 (B). (C) Steady-state and stimulation-dependent 
CD62L expression on splenic CD8+ T cells. (D) WT or TrIP KO T cells were stimulated for three days and 
supernatants were analyzed by ELISA for IL-2. (E-F) WT or TrIP KO CD8+ T cells were labeled with 
eFluor450 cell proliferation dye and stimulated with anti-CD3 +/- anti-CD28 mAb for the indicated times. 
Representative flow cytometry histograms for anti-CD3 stimulation are shown in panel E. Compiled data 
from triplicate wells are shown in panel F. (G) Liver extracts from WT (CD4-Cre only) and TrIP KO mice 
infected with L. monocytogenes were obtained four days after infection and plated to measure bacterial 
burden. p values in panels A-D and F (WT vs. KO) were calculated using two-way ANOVA with Sidak’s 
multiple comparisons test; in panel G, a two-tailed unpaired t test was used. p values are represented with the 
following symbols: *0.01-0.05, **0.001-0.01, ***<0.001.  
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8.4 DISCUSSION 

The high PI3K activity, induction of early activation markers as well as the tendency of the TrIP 

KO T cells to differentiate into pro-inflammatory Th1 cells suggested that these cells would be 

readily activated for response to an infection.  Adhesion molecules such as CD62L are 

constitutively expressed on naïve cells and allow these cells to migrate into secondary lymphoid 

organs [164, 165]. Upon immune activation, CD62L is rapidly downregulated in order for the now, 

T effector cells, to home to sites of inflammation [166]. CD62L expression has been shown to be 

subject to PI3K signaling in two ways. First, shedding of CD62L occurs via cleavage which begins 

after TCR activation [167, 168]. The factors that govern cleavage, such as ADAM 17 are controlled 

by PI3K activity [169]. Secondly, KLF2, the transcription factor that regulates CD62L expression, 

is downregulated upon TCR activation (also via the PI3K pathway) [169]. Thus, my observation 

that CD62L exhibited a lower degree of expression, at the naïve state suggests that the TrIP KO T 

cells are “poised” for activity when compared to the WT T cells.  The high rate of proliferation 

observed in vitro supports this theory.  

Previous work by others has shown that L. monocytogenes replicates for three days after 

infection of mice [170]. Here we observed that by day four, TrIP knockout mice had cleared the 

infection, compared to wild type mice that still had significant bacterial burden. Based on the 

typical immune response to L. monocytogenes infection [154, 170], clearance of bacteria correlates 

with the peak of the immune response. Taken together, our results suggest that with the increased 

T cell signaling in the absence of TrIP, CD8 T cells from KO mice were acutely activated, leading 
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to more rapid expansion of responding cells. Thus, due to this faster rate of expansion of effector 

cells, KO mice cleared bacteria faster.  
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9.0  CONCLUSION 

Overall, our results reveal TrIP as a potential target for modulating immune responses under 

conditions of infection, cancer or autoimmunity. In the former settings, reducing the TrIP 

inhibitory pathway could promote more effective clearance of pathogens or tumors. Conversely, 

increasing TrIP activity or expression may be an effective strategy for combating pathological 

immune responses such as autoimmune diseases. 

 

9.1 SUMMARY AND FUTURE DIRECTIONS 

 Importance of the Kringle and p85-like domains 

The discovery by DeFrances et al which showed that TrIP interacts with and inhibits PI3K activity, 

followed by the subsequent findings by the same group and others, that TrIP acts as a tumour 

suppressor has alerted the field of tumour immunology to a new avenue of cancer therapy. While 

DeFrances et al highlighted the importance of the p85-like domain as relevant to PI3K binding and 

inhibition, it was still unclear what the function of the kringle domain at the extracellular region 

of the protein was and how its function coordinated with the p85-like domain in the overall 

inhibitory function of TrIP with respect to PI3K.  
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Here I show that both the kringle and p85-like domains are necessary for TrIP inhibition 

of PI3K. I reiterate the findings of the DeFrances group and show that in T cells, the p85-like 

domain interacts with the prevalent catalytic subunit of PI3K, p110δ. Through mutation of either 

the kringle or the p85-like domain, I show that in either instance, PI3K inhibition is nullified on 

TrIP. By substituting the kringle domain for hCD8 and leaving the p85-like domain intact, I was 

able to crosslink TrIP with a monoclonal anti-hCD8. This crosslinking led to the inhibition of TCR 

activation. In the absence of anti-hCD8 crosslinking, TCR activation was observed to progress 

similarly to controls. These results, indirectly suggested that the role of the kringle domain on TrIP 

involves interaction with ligands or other TrIP molecules leading to a possible increase in  p110δ 

binding. By differentially tagging TrIP with a flag tag or a myc tag, I was able to observe co-

immunoprecipitation of the myc tagged full length TrIP by the flag tagged full length TrIP. Thus 

showing that, TrIP molecules expressed on the surface of cells interact with each other and this 

interaction indeed leads to an increase in the binding affinity of the p85-like domain for p110δ. 

The proposed model is shown below (Fig. 19).  
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Figure 19 Model for the regulation and function of TrIP during T cell activation 

 

The latter finding however does not rule out the possibility of there being other species or 

modes of interaction with the kringle domain. Especially as my studies on T cell activation by 

antigen primed antigen presenting cells (APC) showed that the kringle domain is lost in order for 

T cell activation to progress. I have found that the loss of the kringle domain during T cell 

activation is probably due to proteolytic cleavage which may involve interaction with another cell 

surface protein. In fact, I have data suggesting that at least one type of proteolytic enzyme capable 

of cleaving TrIP is expressed on the T cell itself. This is because in experiments with anti-

CD3/CD28 stimulation (that is, without antigen primed APCs), TrIP loss on the T cell was 

observed after TCR activation. Interestingly in both APC-Ag and antibody stimulation 

experiments, TCR activation only proceeded after TrIP loss. My experiments have implicated the 

metalloproteinases, ADAM10 and ADAM 17 as T cell based regulators of TrIP. Using an inhibitor 
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specific for both ADAM proteins, I was able to prevent loss of TrIP after TCR activation. Overall, 

these data further highlights the importance of TrIP to PI3K regulation.   

 Future directions in evaluation of the TrIP domains 

Throughout the course of this project, the lack of a suitable antibody for the detection of TrIP has 

been a significant challenge. An antibody would greatly help to detect TrIP at steady state, during 

T cell activation and in concert with would be binding partners in both cell line and primary T 

cells. An antibody would also help ascertain the protein expression profile of TrIP in a variety of 

cells. Presently, our best knowledge of the range of cellular expression of TrIP comes from the on-

line gene expression database- BioGPS [171, 172]. While antibodies which recognize TrIP have 

been used in western blot assays [91], new lots of those antibodies have proven to be less effective 

at binding TrIP in my hands. Our lab has recently set out to design a recombinant mouse TrIP 

protein with binary objectives. The first being to be used as an immunogen in rodents so as to 

generate antibodies against the extracellular region of mouse TrIP. The second objective is to use 

the recombinant protein to detect possible ligands of TrIP. 

We have termed this recombinant protein- EctoPIK3IP1 or EctoTrIP. EctoTrIP was created 

using the plasmid, pFuse-hIgG1-Fc2. This plasmid is a member of the family of plasmids 

developed by InvivoGen to facilitate the construction of Fc-fusion proteins [173]. In particular for 

our needs, this plasmid features a) IL2ss- the IL-2 signal sequence to allow secretion of the protein. 

B) human IgG1-Fc with flexible CH2 and CH3 domains. The human IgG1-Fc would potentially 

allow the use of the fusion protein as a primary binder against TrIP ligands that recognize TrIP 

kringle domain. I successfully cloned and expressed this protein (Fig20A) and we have started 

generating monoclonal antibodies through an agreement with Rockland antibodies and assays 
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[174] (Fig 20C-D). Initially, antibodies obtained were of an IgM isotype. While these IgM 

antibodies recognized TrIP, all clones exhibited relatively low binding affinity for TrIP (Fig 20C). 

A second round of antibody generation with Rockland has yielded several IgG antibodies that 

have, in early tests, shown relatively high affinity for TrIP (Fig 20D).    

Testing our theory of the mechanism of TrIP regulation of PI3K would be possible with an 

antibody against TrIP. Using imaging flow cytometry, we could visualize TrIP oligomerization 

and loss before and after TCR activation or synapse formation.  

 

Figure 20 Generation of antibodies directed at mouse TrIP 

(A)Production of TrIP-Ig fusion protein. Supernatants obtained from transfected 293 cells were separated 
from solution using Protein A beads. After elution, supernatants were serially diluted (1:3), run on a 10% 
reducing gel and detected with Protein A HRP. Ecto-mouse TrIP expected size is 42.85kD. pFuse Empty 
vector Fc protein expected size is 27kD. (B) Schematic of 293 cells transfected with mTrIP-GFP. GFP is 
located intracellularly and acts as a marker for TrIP in the assay. (C-D) IgM (C) and IgG (D) monoclonal 
antibody supernatants obtained from hybridomas were used to stain 293 cells transfected with mTrIP-GFP. 
Hybridomas were generated by using Ecto-mouse TrIP as an immunogen in rats.  
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Apart from TrIP itself, there may be other ligands that can bind to TrIP, especially via the 

kringle domain. In previous studies, Crabtree and colleagues identified TrIP in the media of a 

breast cancer cell line, MCF7. They carried out a phage screen and identified a protein they termed 

CRKR (calcineurin regulated kringle domain protein receptor) that recognized TrIP [175]. This 

protein was later termed TremL6 (Triggering receptor expressed on myeloid cells like 6). TremL6 

is a 33kDa protein with an IgV extracellular domain (Fig 21A). Data from Biogps suggests that 

TremL6 is significantly expressed on macrophages [171, 172]. In preliminary experiments, I 

expressed TremL6 on 293 cells and used the EctoTrIP fusion protein to test for binding with 

TremL6 (Fig 21B). I did observe significant binding to TremL6 expressing cells compared to 

control transfected 293 cells (Fig 21D). These results highlight the possibility that there could be 

other ligands that recognize TrIP via the kringle domain. Further experiments in the Kane lab will 

look at the potential effects of TremL6 binding to TrIP in a T cell line. 

 

Figure 21 Binding of TrIP Fusion protein to TremL6 

(A) Schematic of TremL6. A 33kDa transmembrane protein with an extracellular IgV domain. (B) 293 cells 
were transfected with Myc-tagged TremL6. (C) TremL6 expression on transfected 293 cells was detected 
using anti-myc antibody (clone 9B11). (D)  Parental and TremL6 expressing 293 cells were stained with 
EctoTrIP. EctoTrIP staining was detected using anti-human Fc-FITC antibody. 
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In our evaluation of flag tagged ∆kringle-TrIP and ∆p85-like-TrIP, unlike WT-TrIP, in the 

absence of either domain during TCR activation, the flag tag was still intact. While this highlighted 

the importance of each domain to the function of TrIP, it has confounded us as to how TrIP is 

downregulated. What we know is that it occurs upon TCR activation and either or both 

ADAM10/17 play a role in regulating TrIP expression. Due to there being no cleavage of the flag 

tag observed with ∆p85-like-TrIP, we cannot rule out endocytic or proteasomal degradation 

pathways in TrIP regulation. A possible future direction would entail cloning a none cleavable 

TrIP variant (resistance to cleavage can be confirmed by an ADAM10/17 assay) and observing for 

extracellular loss. The effects such a non-cleavable TrIP clone would have on T cell activation and 

effector functions would also be of interest. Especially with regards accumulation of p110δ on 

non-cleavable TrIP after activation. 

As of now we have only tested the ∆p85-like-TrIP and ∆kringle-TrIP variants in D10 cell 

lines. It would be interesting to see what effects these mutants would have as T cell specific 

transgenes in a mouse. This bears physiological relevance since TrIP has been identified as a 

tumour suppressor [94, 176] and mouse models have been valuable in cancer studies [30, 177]. A 

potential clinical manifestation could be as a result of a loss of function mutation on one of the two 

domains of TrIP.  

 Summary of TrIP KO mice data 

Following up on their in vitro studies on TrIP, the DeFrances lab has shown that TrIP is indeed a 

tumour suppressor. Mice specific for the TrIP transgene in the liver showed reduction of PI3K 
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activity in the form of reduced PIP3 production and phosphorylation of Akt [94]. When these mice 

were crossed onto a spontaneous hepatocellular carcinoma background, incidence of liver tumours 

were significantly reduced. Others have since shown that increasing tumour growth is associated 

with transcriptional downregulation of TrIP in a range of human cancers [176]. Thus, highlighting 

the relevance of a mouse model to our studies.  

Here, our lab has generated a mouse with TrIP specifically deleted in T cells. In evaluating 

these mice, I found no obvious T cell developmental defects. Similar percentages of CD4 and CD8 

T cells were observed in thymic and spleen compartments. In addition, these KO mice did not 

show any adverse autoimmune conditions or spontaneous tumour growth.  

Activation of T cells from these mice however yielded results that correlated with my in 

vitro studies. Upon TCR activation, TrIP KO mice expressed higher levels of phosphorylated Akt 

and S6 and exhibited earlier exit of FoxO1 from the nucleus when compared to WT. This translated 

into high levels of CD69 activation (a costimulatory molecule that leads to high proliferation) 

[178]. Indeed, when proliferation was evaluated, I found that KO T cells did proliferate faster than 

WT cells. This high activation and proliferation potential translated into higher levels of pro-

inflammatory T cells. My Th subset differentiation experiments showed that KO T cells tended to 

produce significantly higher percentages of active Th1 cells as evidenced by secretion of IFNγ. In 

contrast, these same cells produced less Tregs. Interestingly, Tregs produced by KO T cells also 

secreted a high amout of IFNγ (though IFNγ from KO Tregs was much less compared to that 

produced by KO Th1 cells). Based on this latter finding, I used the well-established listeria mouse 

model to evaluate TrIP KO mice. I found that these mice were less susceptible to L. monocytogenes 

and were able to clear the infection by day four. This was in stark contrast to infected WT mice 

that still had significant levels of the pathogen in their liver by day four.  
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It is important to note that I did observe slightly lower levels of CD62L in unstimulated 

KO T cells.  Given the role of CD62L in restriction of naïve T cells to secondary lymphoid 

compartments and findings that show CD62L expression is controlled by PI3K activity, my 

observation implies that KO T cells, due to higher levels of PI3K, appear to be more “poised” for 

effector status. The initial response to listeria is through the innate immune system and the 

pathogen usually replicates for three days. Clearance of the bacteria has been shown to correlate 

with the peak of the immune response. The model for “poised” effector status is thus supported by 

the early clearance of the pathogen in KO mice. 

 Future directions with the TrIP KO mouse model 

A more complete characterization of TrIP KO mice is underway. The slight but consistent 

differences in CD62L expression that was observed between KO and WT T cells suggests that loss 

of TrIP affects at least one of the pathways for CD62L regulation (shedding or transcription). RNA 

sequencing of steady state and stimulated T cell samples could enable us identify any changes in 

transcription that may affect KLF2 (the factor responsible for CD62L upregulation) [179]. 

Comparing the TCR repertoire of conventional and regulatory T cells from WT and KO would 

also be of interest. As previously mentioned, though we do not notice any developmental defects, 

it is possible that subtle differences in the T cell selection process can occur due to signaling 

differences. This possibility is heightened by our observation that in vitro derived Tregs from KO 

mice secreted significantly higher amounts of IFNγ compared to WT. 

The CD8 T cells implicated in mediating clearance of L. monocytogenes can be divided 

into two types based on MHC class restrictions: MHC class Ia and MHC class Ib or H2-M3 [154]. 

The H2-M3 restricted CD8 T cells have been found to expand early on during the infection. These 
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cells produce IFNg and are cytolytic [180]. As our data shows that the loss of TrIP affects functions 

in both CD4 and CD8 T cells, it is possible that H2-M3 restricted CD8 T cells in KO mice respond 

earlier and begin clearance of the bacteria compared to WT mice. It has also been shown that 

although class Ia restricted cells respond later than H2-M3 restricted CD8 T cells, the class Ia 

CTLs have a significantly higher response to secondary L. monocytogenes infection compared to 

H2-M3 restricted CTLs [180, 181]. It would be interesting to evaluate if these findings translate in 

our present model. Whereby class Ia restricted CTLs in KO mice would mount a significantly 

higher secondary response compared to WT counterparts.  

Studies have also shown that CD4 T cells are required for efficient response to L. 

monocytogenes infection in mice [158, 182, 183]. Infected macrophages secrete IL-2 which leads 

to the expansion and differentiation of Th1 T cells. The Th1 cells then secrete IFNg which activates 

the macrophages and leads to early anti-bacterial functions [182]. A potential future direction 

would be to evaluate the activity of macrophages in TrIP KO mice compared to those in WT mice 

after infection with L. monocytogenes. Based on the high potential for Th1 differentiation in KO 

mice, I expect that macrophages would be activated earlier and/or to a higher degree in KO mice 

compared to WT counterparts. This could be why early clearance of the bacteria is observed. 

Finally, our data support the notion that TrIP is a viable target for therapeutic research. Our 

use of the hCD8-TrIP construct suggests a way TrIP could be employed as a chimeric antigen 

receptor to inhibit errant PI3K signaling and some of our collaborators have begun to clone CAR 

molecules based on this theory. Data from biogps [171, 172] shows a high expression of TrIP in 

Mast cells. Researchers are still uncovering how degranulation and cytokine release by mast cells 

can be better regulated in cases of severe allergies. Given that the PI3K pathway plays a major role 
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in mast cell function [184-186], studying TrIP in the context of Mast cells is another avenue we 

are looking at.  
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