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University of Pittsburgh, 2019 

Intensive care units (ICUs) provide care for critically-ill patients who require constant monitoring 

and the availability of specialized equipment and personnel. In this environment, a high volume of 

information and a high degree of uncertainty present a burden to clinicians. In specialized cohorts, 

such as pediatric patients with congenital heart defects (CHDs), this burden is exacerbated by 

increased complexity, the inadequacy of existing decision support aids, and the limited and 

decreasing availability of highly-specialized clinicians. 

Among CHD patients, infants with single ventricle (SV) physiology are one of the most 

complex and severely-ill sub-populations. While SV mortality rates have dropped, patient 

deterioration may happen unexpectedly in the period before patients undergo stage-2 palliative 

surgery. Even in expert hands, critical and potentially catastrophic events (CEs), such as 

cardiopulmonary resuscitation (CPR), emergent endotracheal intubation (EEI), or extracorporeal 

membrane oxygenation (ECMO) are common in SV patients, and may negatively impact 

morbidity, mortality, and hospital length of stay. 

There is a clinical need of predictive tools that help intensivists assess and forecast the 

advent of CEs in SV infants. Although ubiquitous, widely adopted ICU severity-of-illness scores 

or early warning systems (EWS), e.g., PRISM and PIM, have not met this need. They are often 
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developed for general ICU use and do not generalize well to specialized populations. Furthermore, 

most EWS are developed for prediction of patient mortality. Among SV patients, however, death 

is semi-elective. On the other hand, prediction of CEs may help clinicians improve patient care by 

anticipating the advent of patient deterioration. 

In this dissertation, we aimed to develop and validate predictive models that achieve early 

and accurate prediction of CEs in infants with SV physiology. Such models may provide early and 

actionable information to clinicians and may be used to perform clinical interventions aimed at 

preventing CEs, and to reducing morbidity, mortality, and healthcare costs. We assert that our 

work is significant in that it addresses an unmet clinical need by achieving state-of-the-art, early 

prediction of patient deterioration in a challenging and vulnerable population.
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1.0  INTRODUCTION 

Children and adults with congenital heart disease (CHD) are diverse and complex populations 

whose management presents a challenge for clinicians and a heavy burden for the healthcare 

system. In the U.S., 3.7% of all pediatric hospitalizations and 15% of the total cost of pediatric 

hospitalizations are related to CHD 1.  

Infants with single-ventricle (SV) physiology are among the most complex CHD 

populations, and have high mortality and morbidity risk prior to stage-2 surgical repair 1. While 

in-hospital mortality rates have decreased, patient deterioration may happen unexpectedly during 

the course of critical-care. Even under the care of experienced critical-care teams, potentially-

catastrophic critical events (CEs), such as cardiopulmonary resuscitation (CPR), emergent 

endotracheal intubation (EEI), or extracorporeal membrane oxygenation (ECMO) are common in 

SV patients. Such events may negatively impact morbidity, mortality, and hospital length of stay 

2,3. 

To facilitate the detection of unexpected patient deterioration, early warning systems 

(EWS) assess patients’ risk of CEs in real time and provide alerts to clinicians.  Their success 

depends on their ability to (1) predict CEs accurately, (2) alert clinicians with enough time to 

respond, (3) use objective and readily-available data, and (4) function without increasing the 

workload of clinicians. 
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EWS have been used to predict mortality risk in ICUs for decades 4–7, yet there is a scarcity 

of EWS that predict CEs in pediatric ICUs for specialized populations. Several pediatric EWS 

predict combined outcomes of mortality, cardiac arrest, or transfer to an ICU in general pediatric 

populations8–10; however, only few pediatric EWS predict the risk of CEs in ICU settings11–15.  

There is very limited research focused on the prediction of CEs in SV infants. To the best 

of our knowledge, only three studies have attempted to predict CEs in this population. Gupta et al. 

proposed a model that predicts poor outcomes before or right after stage-1 surgery (Norwood 

procedure)16. This model, however, generates predictions from demographic data, baseline 

characteristics, and factors related to the Norwood operation. This is a significant limitation 

because (1) risk of CEs cannot be assessed in real-time, and (2) surgical practices change over 

time, reducing the life-span of models based on those data. Vu et al. assessed the differences in 

electrocardiogram (ECG)-lead signals before and after cardiac arrest events and found a 

statistically-significant difference in ST-vector magnitude and instability between pre and post 

arrest periods. However, this study did not evaluate this finding in the context of real-time 

prediction17. Finally, Rusin et al. developed a model that predicted CEs with high accuracy in the 

hour preceding CEs18. To the best of our knowledge, this is the only model suitable for real-time 

prediction of CEs in SV infants currently available. Nonetheless, this state-of-the-art model has 

two limitations: (1) its accuracy drops rapidly when CEs are predicted more than two hours in 

advance, and (2) it requires real-time analysis of high-frequency electrocardiogram (ECG) and 

vital-signs data, which may present technological and financial challenges for many institutions. 

To address the need of a real-time EWS for the SV population, we aim at developing and 

evaluating the Cardiac-ICU Warning INdex (C-WIN) system. This will consist of state-of-the-art 

predictive models that leverage expert knowledge as well as objective, routinely-collected data for 
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the early prediction of CEs (CPR, EEI and ECMO) in infants with SV physiology in pediatric 

ICUs (PICU, NICU, CICU). 

1.1 RESEARCH QUESTIONS 

1. Is it feasible to build a predictive model from expert clinical knowledge that predicts the 

onset of catastrophic events (CEs) in the ICU for infants with SV physiology? 

2. Can we extract temporal-abstraction features from a longitudinal dataset of objective, 

routinely-collected clinical data and use said features to build classifiers to predict CEs in 

real time? 

3. How accurately and how early can models built (1) using expert clinical knowledge, (2) 

using temporal-abstraction features extracted from EHR data, or (3) using raw time-series 

values, predict CEs? 

1.2 SPECIFIC AIMS 

We answered the research questions in this dissertation through the following specific aims. 

• Aim 1: To build an expert model based on expert clinical knowledge 

o Elicit knowledge from cardiac intensive-care expert clinicians in the form of (1) a 

list relevant of variables that may predict the onset CEs, (2) SV-specific 

discretization ranges for numeric variables, and (3) a quantification of the 

interaction between variables and the risk of CEs. 
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o Build a Naïve Bayes model from the variables, discretization ranges, and risk 

estimations elicited from experts. 

• Aim 2: To train state-of-the art models for the early prediction of CEs for SV patients. 

o Retrieve a dataset consisting of variables identified by experts for a cohort of SV 

ICU admissions. 

o Re-parametrize the expert Bayesian model built in Aim 1 based on the retrieved 

dataset. 

o Identify trend-summary and temporal-abstraction features and rank them in the 

order of predictive ability from the retrieved dataset.  

o Build classic machine-learning classifier from static, trend-summary, and 

temporal-abstraction features, and a dynamic classifier from raw time-series data 

values. 

• Aim 3: To evaluate and compare the performance of models developed in Aims 1 and 2. 

o Evaluate performance of expert, static, and dynamic models on the dataset 

retrieved from CHP. 

o Evaluate the best-performing classifier on an external dataset, retrieved from the  

Children’s Hospital of Philadelphia (CHOP). 

1.3 HYPOTHESES 

We tested three hypotheses. First, that models that encode SV-domain-specific knowledge from 

cardiac intensivists will perform better in predicting CEs than currently-available models. Second, 

that using clinical data to extract temporal features and train static classifiers will result in 
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significantly higher performance than that of expert models. Third, that dynamic models that 

leverage temporal patterns in time-series data will achieve state-of-the-art performance in early 

prediction of CEs in SV infants. 

1.4 CONTRIBUTIONS 

We assert that the work presented in this dissertation is significant in four ways. First, we filled 

the research gap and addressed the unmet clinical need of achieving accurate, early prediction of 

patient deterioration in a complex, severely-ill pediatric population. Second, we identified novel 

features that capture the temporal progression of physiological variables and may improve 

prediction of patient deterioration. Third, we studied and evaluated three modeling strategies 

including (1) the use of domain expert knowledge, (2) a combination of domain expert knowledge 

and data-driven modeling, and (3) data-driven modeling including dynamic models that capture 

the temporal dynamics of physiological data. This approach may be replicated to detect patient 

deterioration in different ICU populations and hospitals.  Fourth and final, we performed the first 

multi-site validation of models for the real-time prediction of patient deterioration in the single-

ventricle population.
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2.0  BACKGROUND 

2.1 SUPERVISED MACHINE LEARNING 

This section presents a short summary of the machine leaning methods necessary for the work in 

this dissertation.  

Machine learning is a subdiscipline of artificial intelligence in which an agent or computer 

system learns and improves its performance in any given task after making observations. There 

are three main types of machine learning depending on the kind of feedback that the learning agent 

obtains while performing the desired task. In unsupervised learning, the agent makes inferences or 

learns patterns from observed data without receiving any feedback. A common task in this type of 

learning is to identify groups of instances in observed data that are similar to each other, but differ 

from those in other groups. This technique is generally-known as clustering, and has been used in 

biomedical research in tasks such as the identification of novel cancer subtypes from gene-

expression data20. In reinforcement learning, the agent receives a “reward” or “punishment” as 

feedback when performing its task. The agent then adapts its behavior to maximize the amount of 

reward received. This style of learning has been used recently in biomedical research for real-time 

3D-landmark detection in CT scans21. Finally, the third main type of learning, which will be the 

one utilized in this dissertation, is known as supervised machine learning19. 
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In supervised machine learning, the agent observes input-output example pairs and learns 

to predict the output of future inputs. Specifically, given a training set of N input-output examples 

(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁), where the outputs 𝑦𝑖 are generated by an unknown function 𝑓, such that 𝑦𝑖 =

𝑓(𝑥𝑖), the learning task consists in finding a hypothesis function ℎ(𝑥𝑖) =  𝑦�̂� that approximates the 

unknown function 𝑓. While the agent is learning, it receives feedback in the form of the true output 

values, which it can compare to its own forecasts. Then, ideally, the learned function h will 

approximate f closely, and will accurately predict the output of input instances even in novel 

examples not seen during training. 

When the output y has values that are continuous or discrete numbers, the learning problem 

is known as regression. Alternatively, when the outcome can take one or many of a finite set of 

values (e.g., presence or absence of a disease), the learning problem is known a classification. 

In this dissertation, we will used supervised classification algorithms to predict whether 

patient states (training examples consisting of values of a set of physiological variables) 

correspond to patients who will experience critical events, namely emergent endotracheal 

intubation, extracorporeal-membrane oxygenation cannulation, or cardiopulmonary resuscitation 

in a population of single-ventricle infants. Specifically, we will use Naïve Bayes, decision trees, 

random forests, support-vector machines, and long short-term memory neural network classifiers. 

The remainder of this section provides a brief introduction of each of these learning algorithms. 

2.1.1 Naïve Bayes classifiers 

Naïve Bayes (NB) classifiers are a special case of Bayesian Networks with a strong (naïve) 

independence assumption, namely that child nodes (features) in the network are conditionally 

independent given their parent (class) node22,23. They are a type of generative model, i.e., they 
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learn a joint probability distribution 𝑃(𝑥, 𝑦) from pair of inputs 𝑥 and outputs 𝑦.  Then, they predict 

the most likely class label from a training example by using Bayes theorem to compute the 

posterior probability of the class note given an input 𝑥. 

Consider a training dataset of instance vectors 𝑿𝒊 =< 𝑥𝑖1, … , 𝑥𝑖𝑁 > where 𝑥𝑖𝑗 is the value 

of the j-th out of N random variables (features) for the i-th training instance, and each vector 𝑿𝒊 is 

associated with a label (class) 𝑦𝑖. Given the naïve independence assumption, the probability chain 

rule can be used to express the conditional probability of 𝑿𝒊 given 𝑦𝑖 with the equation below. 

𝑃(𝑋𝑖 |𝑦𝑖) = ∏ 𝑃(𝑥𝑖𝑗|𝑦𝑖)

𝑁

𝑗=1

  

For a simplified case where the class is a binary variable (i.e., it can be either True of False), 

the Bayes theorem can be used to compute the posterior probability of the class 𝑦𝑖 after observing 

an input 𝑿𝒊 as expressed in the equation below. 

𝑃(𝑦𝑖 = 𝑇𝑟𝑢𝑒|𝑿𝒊 = 𝑥𝑖1, … , 𝑥𝑖𝑁)

=
∏ 𝑃(𝑥𝑖𝑗|𝑦𝑖 = 𝑇𝑟𝑢𝑒)𝑃(𝑦𝑖 = 𝑇𝑟𝑢𝑒)𝑛

𝑗=1

∏ 𝑃(𝑥𝑖𝑗|𝑦𝑖 = 𝑇𝑟𝑢𝑒)𝑃(𝑦𝑖 = 𝑇𝑟𝑢𝑒)𝑛
𝑗=1 + ∏ 𝑃(𝑥𝑖𝑗|𝑦𝑖 = 𝐹𝑎𝑙𝑠𝑒)𝑃(𝑦𝑖 = 𝐹𝑎𝑙𝑠𝑒)𝑛

𝑗=1

 

 

Naïve Bayes models have been used in biomedical research since the 1960’s and are well-

suited for clinical applications24,25. Furthermore, although the naïve independence assumption may 

be unrealistic, empirical evaluation of naïve Bayes classifiers suggests that classification 

performance is not dependent on the degree of correlation between model features26. 
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2.1.2 Decision trees and random forest classifiers 

Decision trees are a common approach to multistage decision making, i.e., problems in which a 

complex decision is broken up into simpler decisions applied in succession. They can be seen as a 

method that combines different models and where a single model is tasked with making a 

prediction (classification or regression) for any point in the input space. 27–29 

Consider a dataset of jointly-distributed input-output pairs X and Y, where X is an input 

vector of N components (features), and Y is the class label associated with X. The process of 

choosing a model for X can be seen as a sequential decision process equivalent to the traversal of 

a binary tree, such as the one shown in Figure 1. In this example, the process of model selection 

starts at the root node, which splits the input space into two regions based on the presence of fever. 

The region where fever is absent can be further sub-divided into two regions based on the presence 

of cough, and the process can continue recursively after either all possible sub-divisions have been 

exhausted or a stopping criterion is met. 
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Figure 1. Decision tree for influenza case detection. This decision tree depicts a hypothetical 

decision process that may be used by clinicians to ascertain whether patients’ symptoms are 

indicative an influenza case (adapted from 30). The input space in this example consists of four-

dimensional Boolean vectors such that each dimension corresponds to symptoms (fever, cough, 

fatigue, diarrhea). The output space consists of a Boolean variable indicating whether influenza is 

True of False. 

 

The process of learning the structure of a decision tree model from (X, Y) can be described 

as a two-phase process, namely growing and pruning. During the growing phase, the input space 

is partitioned recursively until either (1) the process reaches a decision tree in which every leaf 

node is associated with instances of the same class, or (2) a stopping criterion is met, e.g., further 

partitioning of the training data would result in leaves with a number of instances lower than a 

specified threshold. This process is described in Figure 2. The pruning phase consists of collapsing 
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branch splits into a single node (leaf), and testing whether the resulting tree improves a given 

metric, e.g., complexity cost or classification error27,31. 

 

 

Figure 2. Pseudo code of the growth phase of the induction of a decision tree classifier 

 

 

As seen in Figure 2, during the tree growth phase, a goodness metric is used to select the 

feature used to partition the input space at any given node (and in the case of continuous inputs, 

also to select the threshold for partitioning based on said feature). Two common choices of feature-

selection metrics are the information gain score and Gini impurity, as shown in the equations 

below. 

• Information gain 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)
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Where S is the set of training instances at the node being split, 𝑆𝑣 is the set of 

instances s.t. 𝐴 = 𝑣, and Entropy is defined in the equation below. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  − ∑ 𝑃(𝑣) log2 𝑃(𝑣)

𝑣 ∈𝑣𝑎𝑙𝑢𝑒𝑠(𝑌)

 

Where 𝑃(𝑣) is the probability of class 𝑣 in 𝑆  

• Gini impurity 

𝐺𝑖𝑛𝑖(𝑆) =  ∑ 𝑃(𝑣)(1 − 𝑃(𝑣))

𝑣 ∈𝑣𝑎𝑙𝑢𝑒𝑠(𝑌)

 

Where S is the set of training instances at the node being split and  𝑃(𝑣) is the 

probability of class 𝑣 in 𝑆  

Random forests32 are an ensemble method classifier built from multiple decision trees. 

These classifiers predict the class of training instances by aggregating the output of 𝑁𝑡𝑟𝑒𝑒  

individual decision trees. These trees are inducted from 𝑁𝑡𝑟𝑒𝑒 bootstrap samples of the training 

dataset, respectively, and at every split node the best splitting variable is selected from a random 

set of all available features. 

2.1.3 Support vector machines 

Support vector machines (SVMs)29 are a decision-margin maximization classifier. Consider a 

training dataset of 𝑁 input vectors 𝑋1, … , 𝑋𝑁 with corresponding class labels 𝑦1, … , 𝑦𝑁 ∈ {1, −1}, 

and suppose that there exists a linear classifier whose output is given by the expression below. 

𝑓(𝑥) = 𝑊𝑇𝜙(𝑥) + 𝑏 

Where 𝜙 is a function that transforms the feature space and 𝑏 is a bias term.  
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Assuming that the dataset is linearly separable in its feature space, there may exist multiple 

solutions for 𝑊 and 𝑏 that satisfy the constraint that 𝑦𝑖 ∗ 𝑓(𝑥𝑖) > 0. Support vector machines strive 

to minimize generalization error by maximizing the distance between training distances and a 

hyperplane that separates said instances according to their class label, also known as the decision 

boundary depicted in Figure 3. Specifically, SVMs maximize the distance from the decision 

boundary to the closest training instances (support vectors). 

 

 
 

Figure 3. Decision boundary representation for a binary classification task. The solid diagonal 

line is a hyperplane that separates data instances according to class label 𝑦 ∈ {−1, 1}, known as 

the decision boundary. Support vector machines minimize generalization error by maximizing the 

minimum perpendicular distance between the decision boundary and data instances closest to it. 

This distance is known as the classification margin. 
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Generally, data instances may not be linearly separable in their original feature space. 

SVMs then rely on kernel functions that map instances into a higher-dimensional space such that 

linear separation is achieved. Common choices of kernel functions include the linear, radial basis 

function, and sigmoid kernels. In this general scenario, SVMs assign a class label to an input data 

instance 𝒙 with the expression below33. 

𝑓(𝒙) = 𝑠𝑖𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝒙𝒊𝒙) + 𝑏

𝑁

𝑖=1

) 

Where 𝑥𝑖 and 𝑦𝑖  are the training instances and their associated class labels, 𝐾 is the kernel 

function, and 𝛼 and 𝑏 are learned model parameters. 

2.1.4 Long short-term memory neural networks 

Long short-term memory (LSTM)34 networks are a variant of recurrent neural networks (RNN). 

RNNs are well-suited for learning from temporal data because through their feedback connections 

they can store evolving representations of input sequences. However, there is a limit to the length 

of dependencies that RNNs can learn from sequential data. In the process of ‘back propagation 

through time’ (BPTT), i.e., the iterative optimization process by which RNN weights are learned35, 

gradients (errors being propagated) tend to increase or decrease exponentially. When this happens, 

the network loses its ability to learn from new inputs, a phenomenon known as the ‘vanishing and 

exploding gradients’ problem36.  
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Figure 4. Long short-term memory neural network architecture. The forget (ft), input (it), and 

output (ot) gates, as well as the candidate cell state (𝐶�̃�) are fully-connected layers whose input 

comprise the input data (xt) and a feedback connection to the previous hidden state (ht-1).  

Activations of the cell state and the hidden state are computed via point-wise product, addition, 

and tanh operations. The LSTM gates use sigmoid and tanh activations functions, as depicted in 

the figure. The dimensions of all quantities are available in Definition 1. 

 

The LSTM architecture addresses this limitation by guarantying a constant flow of 

gradients through the use of special ‘units’34. These include the cell state, hidden state, input gate, 

output gate, and forget gate, as depicted in Figure 4. At a given time 𝑡 (where 𝑡 indexes data 

sequentially), the ‘cell state’ 𝐶𝑡 stores an evolving representation of the data and acts as ‘long-
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term’ memory. Analogous to long-term memory in humans, 𝐶𝑡 it’s not used in its entirety to 

respond to new inputs. Instead, the LSTM unit relies on the hidden state ℎ𝑡, which acts like short-

term or ‘working’ memory by storing a transformation of the cell state dependent upon input data. 

When an LSTM network receives a new input at time 𝑡, it evolves in three different ways 

based on the input 𝑥𝑡 and the last activations of the hidden state ℎ𝑡−1. First, the forget gate 𝑓𝑡 

determines what should be forgotten from the long-term memory 𝐶𝑡. Second, the input gate 𝑖𝑡 

determines which elements of a candidate cell state 𝐶�̃� should be committed to long memory. Third 

and finally, the output gate 𝑜𝑡 determines which elements of the cell state should be ‘loaded’ into 

the hidden state. The hidden state may be then connected to a classifier layer to generate 

predictions based on all previous inputs. The mathematical definitions of the units in the LSTM 

cell are described in Definition 1. 

Definition 1. Long short-term memory units 

Let 𝑋 be a dataset of sequential data instances, 𝑇 be the size of sequential batches 

of data instances, 𝑡 be the index of the t-th batch of data instances 𝑥𝑡 ⊂ 𝑋, and 

𝑃 be the number of features of 𝑥𝑡. Let also |𝐶| be the cardinality (number of 

neurons) of 𝐶𝑡,  𝐶𝑡 be the cell state, ℎ𝑡 the hidden state, 𝑓𝑡 the forget gate, 𝑖𝑡 the 

input gate, 𝐶�̃� the candidate cell state, and 𝑜𝑡 the output gate of the LSTM cell at 

time 𝑡. Unit activations are determined by the following expressions: 

𝑓𝑡 = 𝜎(𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑊𝑥𝑓 ∗ 𝑥𝑡 + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊ℎ𝑖 ∗ ℎ𝑡−1 + 𝑊𝑥𝑖 ∗ 𝑥𝑡 + 𝑏𝑖) 
𝐶�̃� = tanh(𝑊ℎ𝑐 ∗ ℎ𝑡−1 + 𝑊𝑥𝑐 ∗ 𝑥𝑡 + 𝑏𝑐) 

 𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶�̃� 
𝑜𝑡 = 𝜎(𝑊ℎ𝑜 ∗ ℎ𝑡−1 + 𝑊𝑥𝑜 ∗ 𝑥𝑡 + 𝑏𝑜) 
ℎ𝑡 = 𝑜𝑡 ⋅ tanh (𝐶𝑡) 

Where {𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 , 𝐶�̃� , 𝐶𝑡 , ℎ𝑡} ∈ ℝ𝑇𝑥|𝐶|, 𝑥𝑡 ∈ ℝ𝑇𝑥𝑃, {𝑊𝑥𝑓, 𝑊𝑥𝑖 , 𝑊𝑥𝑜} ∈ ℝ𝑃𝑥|𝐶|, and 

{𝑊ℎ𝑓, 𝑊ℎ𝑖 , 𝑊ℎ𝑜} ∈ ℝ|𝐶|𝑥|𝐶| 

 

As seen in the equations above, LSTM units use sigmoid and tanh activation functions. 

Although the selections of activations or parameter initialization strategies are known to influence 
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the predictive performance of neural networks, the original LSTM architecture specification has 

not been surpassed by alternative configurations 37. 

2.2 FREQUENT TEMPORAL PATTERN MINING (FTP) 

The FTP mining process can be broadly summarized into four steps: (1) temporal abstraction, (2) 

state sequence representation, (3) temporal-pattern representation, and (4) FTP mining. Below, we 

present each step in detail, as available in 38–40. 

2.2.1 Temporal abstraction (TA) 

TA is the process of mapping a timestamped series of variable values into a sequence of higher-

level concepts that represent some temporal aspect of the original series. 

Definition 2. Temporal abstraction 

TA is a sequence < 𝑣𝑖[𝑠𝑖 , 𝑒𝑖]: 𝑠𝑖 ≤ 𝑒𝑖 ∧  𝑖 ∈ ℕ >, where 𝑣𝑖 ∈ ∑ is an abstraction 

valid between times 𝑠𝑖 and 𝑒𝑖. 

 

TAs can be categorized in terms of their duration. Interval (trend) TAs hold during a 

specified interval (𝑠𝑖 > 𝑒𝑖), while point (value) TAs hold only at a specified time point (𝑠𝑖 = 𝑒𝑖). 

Figure 5 shows a time series of diastolic blood pressure values (Figure 5(a)), as well as examples 

of possible interval and point TAs. These include a “gradient” TA, which indicates whether values 

in the series are increasing, decreasing, or remain constant during a specified interval (Figure 

5(b)). While this gradient TA maps value changes to a discrete, 3-value set {-1, 0, 1}, indicating 

the value-change direction, an alternative gradient TA could compute the slope of two continuous 
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measurements. Figure 5(c) and Figure 5(d) show point TAs that discretize instant variable values 

into {Low, Normal, High} or {Normal, Abnormal} values, respectively. 

It is evident that TAs can be used to explicitly introduce expert knowledge into the FTP-

extraction process. For instance, a point TA could use expert-defined cut-points to discretize 

diastolic pressure values into {Low, Normal, High} bins, as was done in Figure 5(c). 

 

Figure 5. Temporal abstractions from time-series data 
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2.2.2 State-sequence representation 

A multivariate state sequence (MSS) is an ordered sequence that aggregates all time-series-

variables’ TAs into a single array. 

Definition 3. Multivariate state sequence (MSS) 

A MSS is a finite sequence 𝑍 =< 𝐸𝑖 : 𝑖 ∈ ℕ ∧ 𝐸𝑖 . 𝑠 ≤ 𝐸𝑖+1. 𝑠 >, Where 𝐸𝑖 is a  

state interval (𝐹, 𝑉, 𝑠, 𝑒), 𝐹 is a time-series variable (e.g., blood pressure), and 

𝑉 ∈ Σ  is an abstraction function that holds in the interval between times 𝑠 and 

𝑒.s 

 

It follows from Definition 3 that state intervals in an MSS are ordered by their start time, 

regardless of their end time, i.e., 𝐸𝑖+1 may start before the end time of 𝐸𝑖.  Once the time-series 

for each variable have been abstracted individually, a patients’ record can be represented by a 

single MSS. Figure 6 shows TAs for heart rate and oxygen saturation time-series values from the 

same patient. The resulting MSS from these TAs would be 𝑍 =< (𝐻𝑅, 𝐻𝑖𝑔ℎ, 0, 3),

(𝑂2𝑠𝑎𝑡, 𝑁𝑜𝑟𝑚𝑎𝑙, 1, 4), (𝐻𝑅, 𝑁𝑜𝑟𝑚𝑎𝑙, 3, 5), (𝑂2𝑠𝑎𝑡, 𝐻𝑖𝑔ℎ, 4, 6), (𝐻𝑅, 𝐿𝑜𝑤, 5, 7),

(𝑂2𝑠𝑎𝑡, 𝑁𝑜𝑟𝑚𝑎𝑙, 6, 9), (𝐻𝑅, 𝐻𝑖𝑔ℎ, 7, 9) >. 
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Figure 6. Multivariate temporal abstractions 

2.2.3 Temporal-pattern representation 

Temporal patterns (TP) are sequence of states, i.e., (𝐹, 𝑉) pairs (see Definition 3) ordered in terms 

of their temporal relations. The most widely-adopted set of temporal relations were proposed by 

James Allen in a seminal publication of a formalism based on temporal logic40. Allen proposed a 

total of seven possible relationships, which are based on the start and end times of state intervals. 

They are listed below. 

• X before Y: X ends before Y starts 

• X equals Y: X and Y have the same start and end times 

• X meets Y: Y starts at the same time that X ends 

• X overlaps Y: X starts before Y, and there is a non-zero overlap between X’s and 

Y’s intervals. 

• X during Y: X starts after and ends before Y. 

• X starts Y: Y starts at the same time as but ends before Y. 
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• X finishes Y: X starts after and ends at the same time as Y. 

Typically, only a subset of these temporal relations is used in the context of TP mining. 

For instance, due to documentation lags in clinical time-series data, asserting that two state 

intervals end at the same time is not a reliable statement. Furthermore, some of the relations 

described above may lead to the extraction of different patterns with very similar clinical 

interpretations, a phenomenon known as pattern fragmentation38. Hence, a simplified 

subset of temporal relations is often used. Specifically, we will use the following two 

temporal relations. 

• X before (b) Y: X starts before Y, regardless of their end times. 

• X and Y co-occur (c): X starts before Y. There is a non-zero overlap between X’s 

and Y’s time intervals. 

Definition 4. Temporal pattern 

A temporal pattern (TP) is a sequence 𝑃 = (< 𝑆𝑖 : 𝑖 ∈ ℕ ∧ 𝑆𝑖 . 𝑠𝑡𝑎𝑟𝑡 ≤
𝑆𝑖+1. 𝑠𝑡𝑎𝑟𝑡 >, 𝑅), where 𝑆𝑖 is a temporal-abstraction state. Consecutive states in 

a TP are temporally related, and their relationships are specified by an upper-

triangular matrix 𝑅𝑁𝑥𝑁, where N is the number of states 𝑆𝑖, and 𝑅𝑖𝑗 ∈
{𝑏𝑒𝑓𝑜𝑟𝑒 (𝑏), 𝑐𝑜 − 𝑜𝑐𝑐𝑢𝑟 (𝑐)} is the temporal relationship between states 𝑆𝑖 and 

𝑆𝑗. A k-TP is a TP of length k. 

 

A MSS Z  is said to contain a temporal pattern TP 𝑃 if all states in 𝑃 exist in Z, and all 

temporal relations R in 𝑃 are satisfied in Z. For instance, consider two MSS 𝑍1 =<

(𝐻𝑅, 𝑁𝑜𝑟𝑚𝑎𝑙, 0, 2), (𝐵𝑃, 𝑁𝑜𝑟𝑚𝑎𝑙, 3, 5), (𝐻𝑅, 𝐻𝑖𝑔ℎ, 4, 7) > and 𝑍2 =< (𝐻𝑅, 𝑁𝑜𝑟𝑚𝑎𝑙, 0, 2.5),

(𝐵𝑃, 𝑁𝑜𝑟𝑚𝑎𝑙, 3, 4), (𝐻𝑅, 𝐻𝑖𝑔ℎ, 5, 8) >, and two TPs 𝑃1 =< (𝐻𝑅, 𝑁𝑜𝑟𝑚𝑎𝑙)𝒄(𝐵𝑃, 𝑁𝑜𝑟𝑚𝑎𝑙) > 

and 𝑃2 =< (𝐵𝑃, 𝑁𝑜𝑟𝑚𝑎𝑙)𝒃(𝐻𝑅, 𝐻𝑖𝑔ℎ) >, where 𝒃 and 𝒄 are the before and co-occur temporal 

relations, respectively, HR is heart rate, and BP is blood pressure. We can assert that both 𝑍1 and 

𝑍2 contain 𝑃1. However, only 𝑍2 contain 𝑃2, because while the before relationship between 
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(𝐵𝑃, 𝑁𝑜𝑟𝑚𝑎𝑙) and (𝐻𝑅, 𝐻𝑖𝑔ℎ) is satisfied, in 𝑍2, it is not in 𝑍1, where the co-occur relation exist 

between those two states. 

Definition 5. Recent temporal pattern 

Let P be a TP (< (𝑆𝑖): 𝑖 = 1, 2, … , 𝑛 >, 𝑅), and 𝑔 be a quantity of time units, or 

gap. P is a recent temporal pattern (RTP) in a MSS 𝑍 =< (𝐸𝑖: 𝑖 = 1, 2, … , 𝑘) >, 

if for a specified 𝑔, all the following conditions are met: 

1. Z contains P 

2. 𝑆𝑛 can be mapped to a recent state interval in Z, i.e., ∃𝐸𝑖 =
(𝑆𝑛, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑): 𝐸𝑖 . 𝑒𝑛𝑑 ≤ 𝐸𝑘 . 𝑒𝑛𝑑. 

3. Every consecutive pair of sates 𝑆𝑖 and 𝑆𝑖+1 can be mapped to a pair of 

consecutive state intervals 𝐸𝑙 , 𝐸𝑙+1 ∈ 𝑍: 𝐸𝑙 . 𝑒𝑛𝑑 − 𝐸𝑙+1. 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑔 

Definition 6 Horizontal and vertical support 

Let 𝐷 be a dataset of N patient records, abstracted into a sequence of MSS, i.e., 

𝐷 =< 𝑀𝑆𝑆𝑖 : 𝑖 = 1,2, … , 𝑁 >, 𝐷𝑦 be the subset of MSS in 𝐷 labeled with class 

𝑦, and 𝑔 the maximum gap to define TPs as RTPs. The horizontal support of a 

RTP 𝑃 in 𝑀𝑆𝑆𝑖  is the count of times that 𝑃 is contained in 𝑀𝑆𝑆𝑖 , noted as 

ℎ𝑠𝑢𝑝𝑔(𝑃, 𝑀𝑆𝑆𝑖). Similarly, the vertical support of 𝑃 in 𝐷𝑦, or 𝑣𝑠𝑢𝑝𝑔(𝑃, 𝐷𝑦) is 

the number of 𝑀𝑆𝑆𝑖  in 𝐷𝑦 that contain 𝑃 at least once. 

 

From Definition 5 and Definition 6, it follows that a recent frequent temporal pattern 

(RFTP), is a RTP such that 𝑣𝑠𝑢𝑝𝑔(𝑃, 𝐷𝑦) ≥ 𝛿. 

2.2.4 FTP mining and vectoral feature representation 

FTP mining is a two-stage process. First, all possible FTPs from a dataset 𝐷 of 𝑁 𝑀𝑆𝑆 are 

identified by means of a pattern-generation routine. Second, the horizontal and vertical support of 

each FTP is computed, and a matrix 𝑀𝑁𝑥𝐾 is generated, where 𝐾 is the number of FTPs whose 

vertical support is above a pre-specified threshold 𝛿, and 𝑀𝑖𝑗 quantifies the association between 
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the i-th MSS and the j-th FTP. This quantification may be defined in several ways, including a 

binary indication (1 if a MSS contains a FTP and 0 otherwise), or a real-valued metric such as 

horizontal support or FTP mean-duration for each MSS. Detailed routines for pattern-candidate 

generation and FTP-mining are available in 38.
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3.0  AIM 1: EXPERT MODEL DEVELOPMENT 

In Aim 1 we focused on two goals. First, the elicitation of knowledge from pediatric cardiologists 

that specialize in the treatment of infants with SV physiology. Second, we developed a predictive 

Bayesian model that encodes the knowledge elicited from experts.

3.1 METHODS 

3.1.1 Expert knowledge elicitation 

We consulted experts including two pediatric cardiologists and two critical-care nursing 

specialists. Elicited expert knowledge was comprised of (1) a list of all clinical variables that 

experts believed are relevant for the prediction of CEs, (2) a list of discretization ranges for each 

numeric variable, and (3) a quantification of the interaction between expert-selected variables and 

the risk of experiencing CEs. 

Expert variables 

We asked experts to individually answer the following question: “Based on your clinical 

experience, what variables do you rely on when assessing a patient’s risk of experiencing a CE, 

i.e., EEI, ECMO, or CPR?” Then, we conducted an interview with all experts present where they 

reviewed each variable and determined if they could be used in real time for assessing patient 
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deterioration. Discussion was encouraged during this session for experts to identify new variables 

that were not included in their original answers. 

Discretization ranges and risk estimation 

When dealing with SV patients, what is considered an abnormal value for a physiological variable 

may differ from the general infant population. For example, whereas an oxygen saturation of 85% 

in a SV infant who has undergone stage 1 palliative surgery may be considered favorable, it would 

be considered a hypoxemic event for an infant without SV physiology. After compiling the final 

list of expert variables, we asked the two senior experts (pediatric cardiologists) to provide a list 

of meaningful value ranges for all numeric variables. 

Quantification of interaction between expert variables and risk of CEs 

We elicited from each senior expert via a self-administered, computer-assisted questionnaire their 

expert estimation of the distribution of values for each expert variable in a hypothetical cohort of 

100 cases (patients at risk of CEs) and 100 controls. For the remainder of this dissertation, we will 

refer to these experts as ‘expert 1’ and ‘expert 2’. Each expert answered the questionnaire 

individually without discussing their answers with each other. A sample of the questionnaire is 

shown in Figure 7. 
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Clinical 

variable 

In a group of 100 patients at risk of critical 

events, how many are expected to have the 

following values? 

In a group of 100 patients at NO risk of 

critical events, how many are expected to 

have the following values? 

Heart rate 

(bpm) 

HR ≤ 120 120 < HR ≤ 160 HR > 160 HR ≤ 120 120 < HR ≤ 160 HR > 160 

40 20 40 15 70 15 

Systolic blood 

pressure 

(mmHg) 

SBP < 60 60 < SBP ≤ 90 SBP > 90 SBP < 60 60 < SBP ≤ 90 SBP > 90 

40 20 40 10 80 10 

Oxygen 

saturation (%) 

O2sat ≤ 70 70 < O2sat ≤ 85 O2sat > 85 O2sat ≤ 70 70 < O2sat ≤ 85 O2sat > 85 

40 20 40 15 70 15 

Instructions: Answers should be based on infants with SV, younger than 6 months of age, before undergoing 

state 2 palliative surgery. Critical events (CEs) include emergent intubation, ECMO cannulation, and 

administration of cardiopulmonary resuscitation (CPR) outside the operating room. For each row of 

answers, orange cells (case group) and green cells (control group) must each add to 100. 

 

Figure 7. Self-administered questionnaire used to elicit experts’ estimation of interaction 

between expert variables and the risk of experiencing critical events. This sample includes 

three out of 54 variables identified by experts as relevant for the prediction of critical events for 

infants with SV physiology. 

3.1.2 Expert model construction 

We built a Naïve Bayesian network model (NB) from the answers provided by experts to the 

questionnaire described in Figure 7. This was achieved by first using questionnaire answers as 

discrete conditional probability tables (CPTs) and then using said CPTs to parametrize a discrete 

NB network as shown in Figure 8. This process was repeated for each senior expert, resulting in 

two expert models, NB-expert-1 and NB-expert-2. 
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Figure 8. Construction of naïve Bayes model from experts’ questionnaire answers. 

3.2 RESULTS 

Expert variables 

Experts identified a total of 52 variables as relevant for the prediction of CEs in SV infants. These 

variables include laboratory test results (e.g., creatinine, bicarbonate ion), blood gasses (e.g., 

carbon dioxide, oxygen saturation), vital signs (e.g., respiratory rate, diastolic blood pressure), 

surgical-related factors (e.g., sternal closure time, Blalock-Taussig shunt abnormalities), and 

imaging-test-related variables (e.g., chest X-ray effusion, electrocardiogram ST-segment elevation 

or depression greater than 1 mm). These variables were deemed relevant for predicting a combined 

outcome of EEI, ECMO, and CPR events. Although outside of the scope of this dissertation, 

experts also identified a subset of variables that they considered important for the prediction of 

each type of event individually. Finally, experts identified sixteen variables as the minimum set of 

relevant predictors of CEs. A complete list of variables, as well as details of variables relevant for 

individual CE types is available in Table 14. 
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 Quantification of interaction between expert variables and risk of CEs 

Each expert provided contingency tables for each variable for a combined outcome of EEI, ECMO, 

and CPR. The full list of variables, as well as the contingency tables for expert 1 are presented in 

Table 14.
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4.0  AIM 2: DEVELOPMENT OF STATE-OF-THE-ART MODELS FOR 

PREDICTION OF CRITICAL EVENTS IN SV INFANTS 

Aim 2 had four main objectives. First, the retrieval of a longitudinal dataset of SV ICU admissions 

containing the variables identified by experts as relevant in Aim 1. Second, the re-parametrization 

of expert models using the retrieved SV dataset. Third, the derivation of two sets of features, 

namely trend-summary and temporal-abstraction features. Fourth and final, the development of 

static and dynamic classifiers from derived features and raw time-series data, respectively.

4.1 METHODS 

4.1.1 Retrieval of SV cohort and expert-identified variable values from CHP’s EHR 

system 

After approval by the institutional review board (PRO17020157), which included a waiver of 

collection of informed consent, we retrieved clinical data from infants admitted to the CICU, 

PICU, and NICU units at the Children’s Hospital of Pittsburgh of UPMC (CHP). The inclusion 

criteria were (1) age less than six months, (2) hospital admission between January 1, 2014 and 

August 30, 2017, and (3) a primary diagnosis of single ventricle (SV) physiology, i.e., any 

diagnostic ICD-9 code amongst 745.3, 746.1, 746.3, 746.5, 746.7, 746.01, 747.22, or any ICD-10 
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code amongst Q22.0, Q23.4, Q20.4, Q22.6, Q23.2. We excluded hospital admissions of patients 

that had already undergone second surgical palliation (Bidirectional Glenn) at the time of 

admission. Hence, clinical data used for model development an evaluation only included ICU 

encounters of SV patients prior to second-stage repair. 

4.1.1.1 Outcome definitions 

Critical event (CE) cases 

We defined cases as any instance of EEI, ECMO cannulation, or CPR that occurred while patients 

were admitted to the CICU, PICU, or NICU, and that occurred at least eight hours after patients’ 

first ICU admission. We considered multiple CEs experienced by the same patient as separate 

cases if they occurred at least eight hours after the end time of any previous CE. We excluded 

cases that happened within less than eight hours after ICU admission or the end of another CE for 

evaluation purposes. Thus, we ensure that predictive performance comparisons between different 

prediction horizons (e.g., at 2 hours vs at 8 hours before CEs) are made on the same set of instances. 

We defined the start and end times of CEs by means of timestamps that we retrieved 

retrospectively from the Cerner® EHR system at CHP. For intubation events, we defined the start 

time (intubation) as the time when a change of airway from natural to artificial was documented 

in nursing charts, and the end time (extubation) as the time when a change of air-way from artificial 

to natural was documented. Airway changes were documented manually by nurses as part of 

routine care. For ECMO events, we defined start and end times as the times of cannulation and de-

cannulation, respectively. For CPR events, we defined start times as the time when any keyword 

amongst arrest, arrest sheet, arrest code, chest compressions, condition A, or CPR were 

documented in nursing arrest sheets.  
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Non-event controls 

We defined controls as periods of ICU stays longer than 24 hours from patients who did not 

experience CEs during their hospital admission. We divided long ICU stays into multiple 24-hour 

period windows and considered each window as a distinct control. The data retrieval and the case 

and control definition processes are summarized in Figure 9. 
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Figure 9. Data retrieval and case/control definition process. Data retrieval and case-control 

definition process. Multiple critical events (CE) during the same ICU stay were considered as 

different cases if they occurred at least eight hours after either ICU admission or the end of a 

previous CE. Non-eventful ICU stays of at least forty hours of duration were selected as controls. 

Long ICU stays were divided into 24-hour windows, and all windows considered as separate 

controls. We randomly selected 132 control windows to match the number of CE cases 
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4.1.1.2 Mapping of clinical events in EHR data to expert variables 

With help from the Information Technology team at CHP, we compiled a list of codes from the 

EHR’s clinical event table that could represent any expert variable. We then asked experts to 

validate the code list. 

We found that several EHR event codes may represent a single expert variable. For 

example, diastolic blood pressure (DBP) was represented by at least two local EHR event codes: 

‘arterial diastolic pressure’, which represents an invasive DBP measurement, and ‘diastolic blood 

pressure’ which represents a noninvasive measurement. We identified all local EHR codes that 

represented every expert-identified variable and aggregated their measurements.  

The concurrent availability of multiple EHR codes for a single expert variable presented a 

practical problem, i.e., how to select a single value for a variable at any given time. We addressed 

this issue by defining priority levels for each variable in consultation with experts. We then used 

priority levels to choose a single value whenever values for multiple EHR codes were available 

for the same expert variable simultaneously. Following the previous example, when both invasive 

and non-invasive DBP were available simultaneously, we used invasive DBP values and discarded 

non-invasive measurements; if only non-invasive DBP was available, we used it as the value for 

the DBP variable. 

4.1.1.3 Processing of expert variable values 

Uniform time interval resampling 

Clinical variables are usually measured at irregular time intervals (frequencies).  While some 

variables (e.g., blood pressure, heart rate) are measured approximately every hour, other variables 

(e.g., lactate, base excess, creatinine, BUN, BNP) may be measured at irregular intervals of several 

hours. To estimate the risk of a critical event regular time intervals, we resampled variable values 
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in uniform steps of 30 minutes, ending at the time of presentation of CEs for cases and at the time 

of ICU discharge for controls. When multiple values for the same variable were available within 

the same 30-minute window, we used their mean value. 

Missing value imputation 

Unavailability of variable values during each 30-minute window leads to missing data issues, 

caused by the nature of how clinical information becomes available. We imputed missing values 

with first the last known value for the same variable up to six hours in the past, and second with 

the variable’s mean value if no previous observations were available for any given case or control. 

We assumed that variable values measured within the last six hours still reflected the state of a 

patient and could be used in the model to compute the risk of critical events. 

4.1.2 Re-parametrization of expert model using clinical data 

The baseline expert model used CPTs defined by domain experts as described in section 3.1.2. 

This had the purpose of explicitly encoding expert knowledge into predictive models. However, 

expert-defined CPTs are susceptible to cognitive biases. We re-parametrized CPTs with 

maximum-likelihood estimates derived from retrieved clinical data. Additionally, we used 

information gain scores41 with an empirical threshold of 0.01 to perform feature selection. Thus, 

we created four additional models, NB-ML-full-1 and NB-ML-full-2 which used all available 

features, and NB-ML-lean-1 and NB-ML-lean-2 which used features selected with information 

gain scores. The ‘1’ and ‘2’ suffixes denote the discretization bins used in each model, i.e., variable 

ranges defined by experts 1 and 2, respectively.  
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4.1.3 Derivation and ranking of temporal features 

The expert models developed in Aim 1 used mostly instantaneous, cross-sectional measurements 

(the last value known for each variable at the time of prediction). However, experts indicated that 

variable value trends are also important for clinical judgment, and suggested the inclusion of two 

trend variables, namely creatinine and SvO2 changes from baseline values. 

We aimed at improving upon the feature space utilized to evaluate our baseline (expert) 

and re-parametrized NB models by extracting temporal-abstraction features from time-series data. 

First, we generated trend-summary features. Then, we identified multivariate frequent temporal 

patterns. We describe these two approaches below. 

4.1.3.1 Univariate trend-summary features 

In the first level of temporal abstraction, we derived a subset of the univariate trend-summary 

features proposed by Valko and Hauskrecht42 from the SV dataset. These features summarize the 

time-series data available in a patient’s EHR into an a-temporal vector representation suitable for 

static machine-learning classifiers.  

The original set of trend-summary features was validated in two contexts, namely, the 

prediction of physician orders42, and the detection and alerting of anomalous patient-management 

decisions.43 Although related, these prediction tasks are different to the prediction of CEs insofar 

they are affected by routine-care processes. For instance, the time since a laboratory test was last 

ordered may predict that the same laboratory is likely to be ordered again because some tests are 

ordered periodically. This feature however, does not reflect the state or progression of an individual 

patient. In contrast, the last value of a laboratory test result, or the highest observed value of said 

test does reflect the state of individual patients. Hence, we focused on the extraction of summary 



 36 

features that reflect patient states and ignore those that may be indicative of routine-care 

workflows. Table 1 lists and defines 14 trend-summary features that we extracted from numeric 

variables. An example of a time series for this data type is shown in Figure 10.  

 

Table 1. Trend-summary feature definitions for numeric variables 

Feature Description Definition 

y_last Last value 𝑦𝑓 

y_diff_last2 Last value difference 𝑦𝑓 − 𝑦𝑓−1 

y_diff_percent_last2 Last percentage change 𝑦𝑓 − 𝑦𝑓−1

𝑦𝑓−1
 

y_nadir Nadir (lowest value) 𝑦𝑚𝑖𝑛 

y_diff_nadir Nadir difference 𝑦𝑓 − 𝑦𝑚𝑖𝑛 

y_diff_percent_nadir Nadir percentage difference 𝑦𝑓 − 𝑦𝑚𝑖𝑛

𝑦min
 

y_apex Apex (highest value) 𝑦𝑚𝑎𝑥 

y_diff_apex Apex difference 𝑦𝑓 − 𝑦𝑚𝑎𝑥 

y_diff_percent_apex Apex percentage difference 𝑦𝑓 − 𝑦𝑚𝑎𝑥

𝑦max
 

y_first Baseline (first value) 𝑦0 

y_diff_first Drop from baseline 𝑦𝑓 − 𝑦0 

y_diff_percent_first Drop from baseline percentage 𝑦𝑓 − 𝑦0

𝑦0
 

y_avg_lastwindow Average of the 𝑁 values observed 

during the last 𝑊-hours window, 

where W is the window’s width 

∑ 𝑦𝑖
𝑁
𝑖=1

𝑁
 

y_slope_last2 Slope of the last 2 values 𝑦𝑓 − 𝑦𝑓−1

𝑥𝑓 − 𝑥𝑓−1
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Figure 10. Diastolic blood pressure time series. BP: blood pressure; 𝑥0, 𝑦0: time and value of 

first BP measurement; 𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 time and value of the minimum BP measurement (nadir); 

𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑎𝑥 time and value of the maximum BP measurement (apex); 𝑥𝑓, 𝑦𝑓: time and value of last 

BP measurement; 𝑥𝑓−1, 𝑦𝑓−1: time and value of the next-to-last BP measurement. 

4.1.3.2 Extraction of multivariate frequent temporal patterns 

We extracted multivariate frequent temporal patterns (FTP) as a second level of temporal 

abstraction. The building blocks for this technique were proposed by Yuval Shahar in his seminal 

publication44, which provided a domain-independent framework for the abstraction of temporal 

concepts from time-series data. In recent years, FTP-mining algorithms have been proposed and 

evaluated in the clinical domain in the context of prediction of heparin-induced thrombocytopenia 

38,45, disease diagnoses in diabetic patients46,  hepatitis type after diagnosis47,48, and administration 

of outcome-event procedures49. A detailed description of the temporal abstraction (TA) and FTP 
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extraction methodology is available in section 2.2, and a high-level description of the mining 

process is shown in Figure 11. 

 

 

Figure 11. High level description of the recent temporal pattern mining process. Temporal 

patterns are comprised of a sequence of temporal-abstraction states P and a temporal-relations 

matrix R that specifies the temporal relations between any two states in P. Recent frequent 



 39 

temporal patterns (FTPs) are those whose last state is at most g time unites from the time of 

prediction. An FTP is consistent is there is at least one multivariate state sequence MSS in the 

training set such that MSS contains all the states in P and those states satisfy the temporal relations 

in R. The support of an FTP is the number of instances in the training set for which the pattern is 

consistent. The Bayesian score of an FTP measures how predictive a pattern is for a class data 

instances of label y compared to a more general group of instances (e.g., complete training dataset). 

This Bayesian score was first proposed by Batal et al.50 and subsequently applied to the scoring of 

FTPs in clinical datasets38. 

 

We utilized three types of temporal abstractions, namely (1) discretization of variable 

values into bins using the expert-defined ranges identified in section 3.1.1, which we will refer to 

as ‘ExpertBins’, (2) indicators of whether variable values are increasing, decreasing, or stable, as 

depicted in Figure 5(b), which we will refer to as ‘DiscreteGradient’, and (3) discretized number 

of standard deviations away from the mean, which we will refer to as ‘NDeviations’. Abstractions 

of the type NDeviations were discretized by rounding to the nearest integer value and were capped 

at two deviations. Thus, values of this abstraction may take one of five values, i.e., {≤ −2, , −1,

0, 1, >= 2}. We mined FTPs using each abstraction type separately, and also combining 

ExpertBins and DiscreteGradient, and ExpertBins and NDeviations abstractions, respectively. 

4.1.4 Predictive model training 

After we built our baseline expert models, which we improved by using retrieved clinical data to 

re-compute said models’ CPTs, we built predictive models for four additional sets of features, 

namely (1) static, cross-sectional variable values known at the time of prediction, which we will 
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refer to as ‘LastNumericValues’; (2) static, cross-sectional variable values plus the trend-summary 

features described in section 4.1.3.1, which we will refer to as ‘TrendSummaries’; (3) binary 

features from mined frequent temporal patterns as described in Figure 11, which we will refer to 

as ‘FTPs’; and (4) raw time-series data for each variable up until the time of prediction, which we 

will refer to as ‘TimeSeries’. From LastNumericValues, TrendSummaries, and FTPs features, we 

trained naïve Bayes (NB), decision trees (DT), random forests (RF), and support vector machine 

(SVM) classifiers. Additionally, for those classifiers, we performed feature selection by ranking 

features using reliefF51, information gain41, and feature-importance score derived from a fitted 

random-forest classifier with Gini-index splitting52, and then selecting the best k features for model 

training. From TimeSeries data, we trained long short-term memory networks (LSTMs) without 

prior feature selection. A high-level description of the model building process is shown in Figure 

12. 

 

 



 41 

 
Figure 12. Predictive-model building process. We trained and evaluated predictive models in 

nested cross-validation. We measured performance in the outer 10-fold cross-validation, and 

performed classifier hyper-parameter optimization in the inner 5-fold cross-validation. We trained 

NB, RF, DT, and SVM classifiers from three different types of features, namely 

‘LastNumericValues’, which are cross-sectional a-temporal patient states; Trend-summaries, 

which are static vectoral representation of training instances that include features that summarize 

temporal trends; and frequent temporal patterns, which are multi-variate sequence of variable 

states and corresponding temporal relations. SV: Single-ventricle physiology; O2Sat: oxygen 
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saturation; HR: heart rate; NB: naïve Bayes; DT: decision tree; RF: random forest; SVM: support 

vector machine. 

 

For static classifiers (NB, DT, RF, SVM) we pre-processed data as follows: 

• We standardized variable values to the [0, 1] range by using the following 

expression 

𝑓(𝑥) =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

• We Imputed missing variable values with previously-known values within the 

previous six hours. If previous values were not available, we imputed the mean of 

the variable in the training dataset. 

For dynamic (LSTM) classifiers, we pre-processed data as follows: 

• We transformed data into sequential instances, i.e., a 3-dimensional dataset of shape 

DxTxQ, where the D is the number of data instances (cases or controls), T is the 

number of time steps allowed in each instance (30-minute windows), and Q is the 

number of variables available for training. 

• We standardized variable values to the [0, 1] range as described above. 

• We imputed missing values with -1. The rationale for this is that given that all 

values were scaled to the [0, 1] range, an LSTM classifier, through 

backpropagation, should learn that -1 has a special meaning, i.e., missing data.  
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4.2 RESULTS 

4.2.1 Retrieval of SV cohort 

During the study period, we identified 146 hospital admissions of patients with SV diagnosis, of 

age of less than six months, and with ICU admissions before stage-2 palliation. These 

corresponded to 120 patients who experienced 261CEs. Ninety-five patients and 132 CEs met our 

inclusion criteria for analysis, i.e., they occurred in the ICU at least eight hours after patients’ first 

ICU stay during a hospital admission or after previous CEs. The set of included CEs was comprised 

of 119 EEIs, 9 ECMO, and 4 CPR events. 

 Patients did not experience any CEs in 37 of the included hospital admissions. We 

identified 33 ICU stays during these hospital admissions that lasted 24 hours or longer. We divided 

long ICU stays into 24-hour control periods, and randomly-selected 132 controls to match the 

number of included CEs, as shown in Figure 9. The case and control groups were comprised of 

77 and 26 unique patients, respectively. Eight patients were present in both the case and control 

groups. This occurred because these patients had at least two hospital admissions, among which 

there was at least one admission with CEs and one admission without CEs. 

While most patients had one CE while admitted to the ICU, some patients experienced up 

to eight CEs during a single hospital admission. Figure 13 shows the distribution of the number 

of CEs per hospital admission as well as the number of eligible cases depending on the amount of 

available data, i.e., the amount of time from patient’s first ICU or a previous CE, and the onset of 

a given CE. 
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Figure 13. Distribution of critical events by data availability and inpatient encounter. A) 

Number of cases (critical events) available for analysis depending on data availability, i.e., the 

time between the first ICU admission or the end of a previous critical event and the onset of a 

critical event. B) Distribution of the number of included critical events by hospital admission. 

 

Hypoplastic left heart syndrome was the most common primary diagnosis (42.1% of study 

population) followed by mitral stenosis (19%), as shown in Table 2. Among patients’ palliation 
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procedures, Norwood was the most common (28.4% of study population) followed by Blalock-

Taussig shunt (15.8%), as shown in Table 3. The majority (37.4%) of included CEs occurred seven 

or more days after patients underwent palliative procedures. Figure 14 shows the distribution of 

times when CEs occurred relative to palliative procedures. 

 

Table 2. Distribution of primary diagnosis among included single ventricle patients 

 

Diagnosis Number of patients (%) 

Hypoplastic left heart syndrome 40 (42.1%) 

Congenital mitral stenosis 18 (19%) 

Pulmonary valve atresia 12 (12.7%) 

Congenital atresia and stenosis of aorta 7 (7.4%) 

Hypoplastic right heart syndrome 6 (6.3%) 

Tricuspid atresia and stenosis, congenital 5 (5.3%) 

Common ventricle 3 (3.2%) 

Congenital stenosis of aortic valve 2 (2.1%) 

Double inlet left ventricle 2 (2.1%) 

Total 95 (100%) 

 

Table 3. Classification of single-ventricle patients in the study population by type of palliative 

surgical procedure 

Type of procedure Number of patients (%) 

Norwood 27 (28.4%) 

Modified Blalock-Taussig shunt 15 (15.8%) 

Other 15 (15.8%) 

Pulmonary artery banding 9 (9.5%) 

Hybrid 7 (7.4%) 

Bi-directional Glenn 2 (2.1%) 

Non-surgical 20 (21%) 

Total 95 (100%) 

 

Patients in the non-surgical category met the inclusion criteria for analysis but did not undergo 

palliative procedures during the study period. Two patients underwent bi-directional Glenn as their 
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first palliative procedure. However, only ICU admissions before patients’ stage-2 repair were used 

for model development and evaluation. Procedures in the ‘other’ category included aortic arch re-

pair, tetralogy of Fallot repair after Blalock-Taussig shunt, right ventricle to pulmonary artery 

conduit repair, aortopexia, valvuloplasty, stent placement in catheterization laboratory, 

atrioventricular septal defect repair after pulmonary artery banding and aortic arch repair, and 

Nikaidoh after Blalock-Taussig shunt. 
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Figure 14. Time of presentation of critical events relative to the time of palliative procedures. 

Critical events included 132 emergent endotracheal intubations, extracorporeal-membrane 

oxygenation cannulations, and cardiopulmonary resuscitations experienced by single-ventricle 

infants before stage-2 palliative surgery. The non-surgical category corresponds to critical events 

experienced by patients who did not undergo palliative procedures during the study period. The 

black line shows a cumulative percentage of critical events. 
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4.2.2 Mapping of clinical events in CHP’s EHR data to expert variables 

We identified 68 concepts in CHP’s Cerner® EHR system that mapped to 34 of the 52 variables 

identified by clinical experts. The 18 variables that could not be retrieved retrospectively included 

mainly imaging and surgery-related variables, e.g., echocardiogram coarctation of the aorta, 

electrocardiogram ST segment elevation or depression greater than 1 mm, or chest X-ray 

cardiomegaly. Table 14 and Table 15 include the full list of expert variables, as well as the list of 

variables that could be mapped to EHR concepts. Table 15 also includes the priority rules used to 

choose variable values when multiple EHR were available simultaneously.
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5.0  AIM 3: EVALUATION OF PREDICTIVE MODELS 

 

In this specific aim, we measured and compared the predictive performance of the models trained 

in Aims 1 and 2, namely (1) models based exclusively on expert knowledge (Expert), (2) models 

combining expert knowledge and data-derived CPTs (ExpertRetrained), (3) models based on a-

temporal, cross-sectional patient states (LastValsNumeric), (4) models incorporating trend-

summary features (TrendSummaries), (5) models based on frequent temporal pattern mining, and 

(6) dynamic (LSTM) models based on the time series data (TimeSeries).

5.1 METHODS 

5.1.1 Internal validation 

We measured the performance of the models built in chapters 3.0 and 4.0 in nested cross-

validation, as shown in Figure 12. The outer validation was performed with stratified 10-fold 

cross-validation, and estimated model performance. The inner validation was performed in 

stratified 5-fold cross-validation and was used for model hyper-parameter optimization and model 

selection. 
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We measured model discrimination with the area under the receiver operating 

characteristic curve (AUC), sensitivity, specificity, f-measure, and accuracy metrics, and we 

measured the statistical significance between AUC differences by means of false discovery rate 

(FDR)-corrected53 two-sided DeLong tests54. We assessed model calibration with the Brier skill 

score55, Hosmer-Lemeshow test56, and calibration curves. Table 4 shows the list of experiments 

conducted in this evaluation. 
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Table 4. Experiments for evaluation of predictive models 

Experiment Name Description of feature set Models Experiment description 

Expert Cross-sectional patient states 

with the last value available 

at the time of prediction for 

each variable. Variables were 

discretized with expert-

defined bins 

NB-Expert 

Models built from expert knowledge. 

Full and Lean models used all 

available features or a minimal set of 

features identified by experts, 

respectively. 

ExpertRetrained NB-ML 

Models built with expert-discretization 

and CPTs estimated from clinical data. 

Full and Lean models used all 

available features, or features selected 

based on information gain, respectively 

LastValsNumeric 

Cross-sectional patient states 

with the last value available 

at the time of prediction for 

each variable. All variable 

values are continuous. 

NB, DT, RF, SVM 

Models built with a-temporal, cross-

sectional representations of patient 

states 

TrendSummaries 

Cross-sectional patient states 

with last variable values 

augmented with features that 

summarize temporal trends 

NB, DT, RF, SVM 

We developed models with two feature 

sets, (1) with_filter: Last values + 

trend-summary features from variables 

for which at least 25% of the training 

dataset had at least two available 

values; (2) no_filter: Last values + 

trend-summary features from all 

variables. 

FTPs 

Vectoral binary indication of 

whether training instances 

contained mined FTPs 

NB, DT, RF, SVM 

We built models from FTPs mined 

from five sets of temporal abstractions: 

ExpertBins, DiscreteGradient, 

NDevaitions, ExpertBins + 

DiscreteGradient, and NDeviations + 

DiscreteGradient. 

TimeSeries 

Sequential time series where 

all variables are uniformly 

sampled and all instances 

have the same sequence 

length 

LSTM 

We trained recurrent (LSTM) neural 

networks from continuous time-series 

data. 

 

We implemented Expert and ExpertRetrained models using the WEKA data mining 

software57. We implemented NB, DT, RF, and SVM models in the LastValsNumeric, 

TrendSummaries, and FTPs experiments using the SciKit-learn machine learning framework58. 

We implemented LSTM models in the TimeSeries experiment using the Keras deep-learning 

framework59. We computed AUCs and conducted DeLong tests with the pROC R package60. We 
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computed BSSs and Hosmer-Lemeshow values with the Verification and ResourceSelection R 

packages, respectively61,62. 

5.1.2 External validation of predictive models 

We measured the AUC of the predictive models developed from data from UPMC Children’s 

Hospital of Pittsburgh (CHP) and that were evaluated in section 5.1.1 on an external dataset of SV 

admissions to the Children’s Hospital of Philadelphia (CHOP). This dataset was comprised of 

hospital admissions to CHOP between January 1, 2015 and September 30, 2018. During this 

period, 466 patients were admitted to an ICU before undergoing bidirectional Glenn surgery. We 

identified 385 CEs, of which 164 happened at least eight hours after patients’ first ICU admission 

or presentation of a previous CE, and were included in the test set for external validation. These 

CEs included 161 EEIs and 3 ECMO events. In the same fashion as in the models trained with 

CHP data, we selected 164 controls to match the number of cases in the CHOP dataset. 

5.2 RESULTS 

5.2.1 Performance of predictive models trained on CHP data 

5.2.1.1 Expert models 

Expert-based models achieved modest performance from one to four hours before CEs, as shown 

in Table 5. With the exception of the full models at 6 hours before CEs, the NB-expert-1 model 

achieved equal or higher AUCs than those of the NB-expert-2 model for all prediction horizons 



 53 

except for four hours before CEs. Full and lean models for both experts lost all predictive ability 

at six hours before CEs. 

All expert models exhibited poor calibration, as indicated by the Brier skill scores and 

Hosmer-Lemeshow test p-values shown in Table 5. The calibration curves of the NB-expert1-full 

model for all prediction horizons are shown in Figure 15. 
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Table 5. Prediction performance of Expert Naïve Bayes models 

Metric Horizon NB-Expert1-Full NB-Expert2-Full NB-Expert1-Lean NB-Expert2-Lean 

AUC -1 0.67 (0.6-0.74) 0.58 (0.51-0.65) 0.6 (0.53-0.67) 0.5 (0.43-0.57) 

-2 0.71 (0.64-0.77) 0.61 (0.54-0.67) 0.64 (0.57-0.71) 0.54 (0.46-0.61) 

-4 0.58 (0.51-0.65) 0.57 (0.51-0.64) 0.48 (0.41-0.56) 0.5 (0.43-0.58) 

-6 0.52 (0.45-0.59) 0.54 (0.47-0.61) 0.45 (0.38-0.52) 0.49 (0.42-0.56) 

-8 0.49 (0.42-0.56) 0.46 (0.39-0.54) 0.41 (0.34-0.48) 0.42 (0.36-0.49) 

BSS -1 -0.73 -0.36 -0.70 -0.41 

-2 -0.77 -0.15 -0.70 -0.32 

-4 -0.80 -0.53 -0.78 -0.68 

-6 -0.78 -0.60 -0.77 -0.69 

-8 -0.80 -0.58 -0.75 -0.65 

HL -1 0 0 0 0 

-2 0 0 0 0 

-4 0 0 0 0 

-6 0 0 0 0 

-8 0 0 0 0 

Best f1 -1 0.67 0.67 0.67 0.67 

-2 0.68 0.67 0.67 0.67 

-4 0.67 0.67 0.67 0.67 

-6 0.67 0.67 0.67 0.67 

-8 0.67 0.67 0.67 0.67 

f1 at 0.5 -1 0.07 0.28 0.13 0.23 

-2 0.03 0.49 0.10 0.33 

-4 0.01 0.19 0.04 0.03 

-6 0.03 0.14 0.06 0.03 

-8 0.02 0.11 0.07 0.09 

Best 

accuracy 

-1 0.68 0.62 0.62 0.58 

-2 0.69 0.65 0.66 0.59 

-4 0.59 0.60 0.55 0.55 

-6 0.56 0.58 0.52 0.56 

-8 0.53 0.56 0.52 0.53 

Values in parentheses show 95% confidence intervals computed with 2000 bootstrap replicates. 

Bold-face values show the best AUCs for each prediction horizon, i.e., the number of hours before 

critical events when predictions were generated; NB: Naïve Bayes; AUC: Area under the receiver 

operating characteristic curve; BSS: Brier skill score; HL: p-value of Hosmer-Lemeshow test. 
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Figure 15. Calibration curves of the NB-expert-1 model across different prediction horizons 

5.2.1.2 ExpertRetrained models 

The re-parametrized expert models achieved moderate discrimination. As shown in Table 6, the 

NB-ML-1-full model, which used the full list of 34 variables identified by clinical experts and 

expert bins provided by Expert 1, achieved AUCs between 0.74-0.88. Similarly, the NB-ML-1-

lean model, which used variables selected with information gain scores and a threshold of 0.01, 

achieved AUCs between 0.74-0.87, matching the AUC of the full model with a reduced feature 

space of 24 variables. Compared to the discrimination performance of the expert models described 

in Table 5, both NB-ML models had consistently higher AUCs than those of the NB-expert-1. In 

all cases, the difference was statistically significant (adjusted p-value < 0.01). 
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Table 6. Prediction performance of re-calibrated Naïve Bayes models 

Metric Horizon NB-ML-1-Full NB-ML-1-Lean NB-ML-2-Full NB-ML-2-Lean 

AUC -1 0.88 (0.83-0.92) 0.87 (0.83-0.91) 0.87 (0.82-0.91) 0.87 (0.82-0.91) 

-2 0.87 (0.82-0.91) 0.87 (0.82-0.91) 0.86 (0.81-0.9) 0.86 (0.81-0.9) 

-4 0.79 (0.73-0.84) 0.79 (0.74-0.85) 0.78 (0.73-0.84) 0.79 (0.73-0.84) 

-6 0.74 (0.68-0.8) 0.74 (0.68-0.8) 0.74 (0.68-0.8) 0.73 (0.67-0.79) 

-8 0.74 (0.67-0.8) 0.74 (0.68-0.8) 0.74 (0.68-0.8) 0.74 (0.68-0.8) 

BSS -1 0.40 0.37 0.36 0.34 

-2 0.38 0.37 0.35 0.34 

-4 0.21 0.22 0.19 0.20 

-6 0.13 0.17 0.12 0.14 

-8 0.10 0.13 0.08 0.10 

HL -1 0.00 0.00 0.00 0.00 

-2 0.00 0.00 0.00 0.00 

-4 0.00 0.00 0.00 0.00 

-6 0.00 0.00 0.00 0.00 

-8 0.00 0.00 0.00 0.00 

Best f1 -1 0.82 0.82 0.82 0.82 

-2 0.81 0.81 0.80 0.81 

-4 0.75 0.74 0.74 0.74 

-6 0.71 0.72 0.71 0.72 

-8 0.72 0.73 0.73 0.72 

f1 at 0.5 -1 0.78 0.77 0.77 0.76 

-2 0.79 0.79 0.78 0.78 

-4 0.72 0.71 0.70 0.70 

-6 0.68 0.68 0.68 0.68 

-8 0.63 0.64 0.63 0.65 

Best 

accuracy 

-1 0.83 0.82 0.81 0.81 

-2 0.81 0.82 0.80 0.80 

-4 0.75 0.75 0.75 0.75 

-6 0.72 0.73 0.73 0.73 

-8 0.73 0.73 0.72 0.72 

Values in parentheses show 95% confidence intervals computed with 2000 bootstrap replicates. 

Bold-face values show the best AUCs for each prediction horizon, i.e., the number of hours before 

critical events when predictions were generated. The NB-ML-Full model used the full set of 34 

variables identified by expert clinicians as relevant for the prediction of critical events in single-
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ventricle infants. The NB-ML-lean model used a subset of those variables selected with 

information gain scores with a threshold of 0.01. Both models were trained and evaluated on a 

cohort of 95 patients and 132 critical events in 10-fold cross-validation. NB: Naïve Bayes; AUC: 

Area under the receiver operating characteristic curve; BSS: Brier skill score; HL: p-value of 

Hosmer-Lemeshow test. 

 

Hosmer-Lemeshow p-values for re-parametrized models suggest that calibration was still 

poor. However, the NB-ML models had positive BSS values in all prediction horizons, while all 

NB-expert models had negative BSS values. The calibration curves shown in Figure 16 also show 

that calibration of NB-ML models is better (closer to the diagonal line) than that of the NB-expert 

models for all prediction horizons.  
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Figure 16. Calibration curves of the NB-ML-1-Full model across different prediction 

horizons 

 

Receiver operating characteristic (ROC) analysis showed that the NB-ML-1-Full model 

had a sensitivity of 83.3% at the 81.1% specificity level one hour before CEs. Eight hours before 

CEs, it had a sensitivity of 56.8% at the 80.3% specificity level. Selecting a prediction threshold 

that resulted in a specificity level of 95%, the BN-ML-1 model had sensitivities of 48.5% and 

25.8% one and eight hours before CEs, respectively. Figure 17 shows specificity, sensitivity, and 

f1 values one hour before CEs for the best expert and re-parametrized models. 
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Figure 17. Comparison of performance metrics of the Expert and ExpertRetrained models 

at one hour before critical events. PPV: positive predictive value. 
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forest models outperformed NB, DT, and SVM models at every prediction horizon, and also 

achieved higher BSS values. As seen in the calibration curves in Figure 19, RF models in this 

experiment tended to be under-confident for all prediction horizons, in contrast to the 

ExpertRetrained curves in Figure 16, which exhibited over-confidence in all prediction horizons. 
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Random forest models in this experiment had sensitivities of 89% and 56% at the 82% and 95% 

specificity levels at the one-hour prediction horizon, respectively. At eight hours before CEs, they 

had sensitivities of 61% and 36% at the 79% and 95% specificity levels, respectively. A detailed 

description of the behavior of the best models at one and eight hours before CEs for all prediction 

thresholds is shown in Figure 18. 
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Table 7. Prediction performance of LastValsNumeric models 

Metric Horizon NB SVM DT RF 

AUC -1 0.84 (0.79-0.89) 0.81 (0.76-0.87) 0.76 (0.7-0.82) 0.91 (0.88-0.95) 

-2 0.82 (0.77-0.87) 0.73 (0.67-0.79) 0.83 (0.78-0.87) 0.89 (0.85-0.93) 

-4 0.7 (0.64-0.76) 0.6 (0.53-0.67) 0.72 (0.65-0.78) 0.78 (0.72-0.83) 

-6 0.68 (0.61-0.74) 0.61 (0.54-0.67) 0.72 (0.66-0.78) 0.78 (0.72-0.83) 

-8 0.67 (0.6-0.73) 0.54 (0.48-0.61) 0.63 (0.57-0.7) 0.77 (0.71-0.82) 

BSS -1 0.17 0.28 0.20 0.46 

-2 0.14 0.16 0.30 0.42 

-4 -0.14 0.03 0.10 0.19 

-6 -0.41 0.05 0.10 0.19 

-8 -0.34 -0.01 -0.05 0.16 

HL -1 0.00 0.22 0.00 0.00 

-2 0.00 0.25 0.00 0.00 

-4 0.00 0.01 0.00 0.00 

-6 0.00 0.03 0.00 0.00 

-8 0.00 0.44 0.00 0.00 

best f1 -1 0.81 0.76 0.77 0.86 

-2 0.78 0.71 0.78 0.82 

-4 0.69 0.67 0.70 0.74 

-6 0.69 0.68 0.70 0.72 

-8 0.67 0.67 0.67 0.72 

f1 at 0.5 -1 0.73 0.75 0.76 0.86 

-2 0.71 0.65 0.76 0.82 

-4 0.58 0.61 0.70 0.72 

-6 0.48 0.62 0.68 0.72 

-8 0.50 0.55 0.58 0.69 

best 

accuracy 

-1 0.80 0.76 0.75 0.86 

-2 0.78 0.70 0.75 0.83 

-4 0.69 0.61 0.70 0.74 

-6 0.65 0.59 0.69 0.74 

-8 0.64 0.57 0.61 0.72 

Values in parentheses show 95% confidence intervals computed with 2000 bootstrap replicates. 

Bold-face values show the best AUCs for each prediction horizon, i.e., the number of hours before 

critical events when predictions were generated. Models were trained and evaluated on a cohort of 
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95 patients and 132 critical events in 10-fold cross-validation. NB: Naïve Bayes; DT: Decision 

Tree; SVM: Support Vector Machine; RF: Random Forest. 

Figure 18. Performance metrics of LastValsNumeric models at one and eight hours before 

critical events. LastValsNumeric models presented in the graph are random forest classifiers 

trained with cross-sectional patient states without any temporal (longitudinal) trend features. PPV: 

positive predictive value. 
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Figure 19. Calibration curves of random forest models trained with continuous-valued a-

temporal patient states 

5.2.1.4 Models including trend-summary features 

Table 8 shows the performance of models trained with the TrendSummaries feature set, which 
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TrendSummaries from features for which two or more values were available for at least 25% of 

the training dataset. AUCs in this experiment ranged from 0.73 (0.67-0.79) to 0.87 (0.83-0.91) at 
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eight and one hours before CEs. Discrimination was lower in this experiment compared to the 

LastValsNumeric models with the exception of the model trained at four hours before CEs (AUC 

0.80 vs 0.78). Again, RF classifiers achieved the highest discrimination, and had good calibration 

as shown by positive BSS values and HL values greater than 0.05 in four out of five prediction 

horizons. As seen in Figure 20, the best-performing RF models in this experiment tended to be 

slightly under-confident. 
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Table 8. Prediction performance of TrendSummary models 

Metric Horizon NB SVM DT RF 

AUC -1 0.82 (0.77-0.87) 0.8 (0.74-0.85) 0.8 (0.75-0.85) 0.87 (0.83-0.91) 

-2 0.85 (0.8-0.9) 0.79 (0.74-0.84) 0.73 (0.66-0.79) 0.88 (0.84-0.92) 

-4 0.69 (0.62-0.75) 0.63 (0.56-0.69) 0.72 (0.65-0.78) 0.8 (0.74-0.85) 

-6 0.69 (0.62-0.75) 0.64 (0.57-0.71) 0.64 (0.56-0.7) 0.75 (0.69-0.81) 

-8 0.64 (0.57-0.71) 0.63 (0.56-0.69) 0.6 (0.53-0.67) 0.73 (0.67-0.79) 

BSS -1 0.10 0.29 0.28 0.39 

-2 0.16 0.25 0.11 0.40 

-4 -0.21 0.06 0.04 0.25 

-6 -0.28 0.05 -0.05 0.16 

-8 -0.38 0.06 -0.13 0.14 

HL -1 0.00 0.01 0.00 0.13 

-2 0.00 0.00 0.00 0.02 

-4 0.00 0.02 0.00 0.08 

-6 0.00 0.00 0.00 0.06 

-8 0.00 0.18 0.00 0.14 

best f1 -1 0.79 0.78 0.78 0.79 

-2 0.80 0.76 0.73 0.82 

-4 0.68 0.67 0.69 0.75 

-6 0.68 0.67 0.67 0.72 

-8 0.68 0.67 0.67 0.72 

f1 at 50 -1 0.73 0.76 0.77 0.77 

-2 0.73 0.75 0.73 0.78 

-4 0.61 0.62 0.67 0.73 

-6 0.57 0.62 0.65 0.69 

-8 0.50 0.60 0.57 0.67 

best 

accuracy 

-1 0.79 0.78 0.77 0.80 

-2 0.79 0.77 0.71 0.81 

-4 0.67 0.64 0.68 0.73 

-6 0.66 0.63 0.67 0.72 

-8 0.64 0.61 0.61 0.69 

Values in parentheses show 95% confidence intervals computed with 2000 bootstrap replicates. 

Bold-face values show the best AUCs for each prediction horizon, i.e., the number of hours before 

critical events when predictions were generated. Models were trained and evaluated on a cohort of 
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95 patients and 132 critical events in 10-fold cross-validation. NB: Naïve Bayes; DT: Decision 

Tree; SVM: Support Vector Machine; RF: Random Forest. 

Figure 20. Calibration curves of random forest classifiers trained with static cross-sectional 

patient states augmented with trend-summary features 
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Figure 21. Performance metrics of TrendSummaries models at one and eight hours before 

critical events. TrendSummaries models presented in the graph are random forest classifiers 

trained with cross-sectional patient states and temporal features derived from longitudinal data 

(e.g., difference between apex and last value). PPV: positive predictive value. 

5.2.1.5 Models based on frequent temporal patterns 

Table 9 shows the performance of models trained with the FTPs feature set. In this table we present 

the results of the ExpertBins experiment, in which we only derived FTPs using expert-defined 

discretization bins to derive temporal abstractions. AUCs in this experiment ranged from 0.7 (0.64-

0.76) to 0.84 (0.79-0.89) at eight and one hours before CEs. Models derived from FTPs achieved 

the highest AUC across all experiments at four hours before CEs, but had lower AUCs than the 

LastValuesNumeric models for all other prediction horizons. RF classifiers achieved the highest 

discrimination with the exception of the two hours prediction horizon. Models based on FTPs 

exhibited positive BSS for all prediction horizons and HL values greater than 0.05 from four to 

eight hours before CEs. As seen in Figure 22, the best-performing RF models in this experiment 

tended did not show a consistent under or over-confidence behavior. 
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Table 9. Prediction performance of FTP models 

 Metric Horizon NB SVM DT RF 

AUC -1 0.84 (0.79-0.89) 0.82 (0.77-0.87) 0.84 (0.79-0.88) 0.84 (0.79-0.89) 

-2 0.82 (0.76-0.87) 0.8 (0.75-0.86) 0.75 (0.69-0.81) 0.79 (0.74-0.85) 

-4 0.77 (0.71-0.82) 0.79 (0.73-0.85) 0.8 (0.74-0.85) 0.82 (0.76-0.87) 

-6 0.73 (0.67-0.79) 0.65 (0.58-0.72) 0.68 (0.61-0.73) 0.74 (0.67-0.79) 

-8 0.68 (0.61-0.75) 0.66 (0.6-0.73) 0.67 (0.6-0.73) 0.7 (0.64-0.76) 

BSS -1 0.17 0.32 0.39 0.37 

-2 0.12 0.30 0.17 0.30 

-4 -0.10 0.29 0.28 0.31 

-6 0.05 0.08 0.05 0.17 

-8 -0.06 0.07 -0.01 0.12 

HL -1 0.00 0.33 0.00 0.00 

-2 0.00 0.80 0.00 0.02 

-4 0.00 0.09 0.00 0.67 

-6 0.00 0.24 0.00 0.23 

-8 0.00 0.13 0.00 0.79 

Best f1 -1 0.80 0.78 0.80 0.79 

-2 0.76 0.76 0.69 0.75 

-4 0.72 0.74 0.73 0.76 

-6 0.72 0.68 0.69 0.71 

-8 0.68 0.68 0.67 0.68 

f1 at 50 -1 0.76 0.71 0.80 0.76 

-2 0.71 0.71 0.68 0.71 

-4 0.64 0.73 0.72 0.71 

-6 0.66 0.50 0.63 0.67 

-8 0.62 0.60 0.62 0.63 

best 

accuracy 

-1 0.80 0.77 0.81 0.79 

-2 0.78 0.76 0.75 0.76 

-4 0.71 0.77 0.73 0.74 

-6 0.69 0.62 0.63 0.73 

-8 0.67 0.64 0.64 0.66 

Values in parentheses show 95% confidence intervals computed with 2000 bootstrap replicates. 

Bold-face values show the best AUCs for each prediction horizon, i.e., the number of hours before 

critical events when predictions were generated. Models were trained and evaluated on a cohort of 

95 patients and 132 critical events in 10-fold cross-validation. Features used for model training 
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included frequent temporal patterns mined from the training dataset and based on expert-defined 

discretization abstractions.  NB: Naïve Bayes; DT: Decision Tree; SVM: Support Vector Machine; 

RF: Random Forest. 

Figure 22. Calibration curves of random forest models derived from frequent temporal 

patterns with expert-binning temporal abstractions 
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Figure 23. Performance metrics of FTP models at one and eight hours before critical events. 

Frequent temporal pattern (FTP) models presented in the graph are random forest classifiers 

trained with temporal features derived from longitudinal data. PPV: positive predictive value. 

5.2.1.6 TimeSeries models 

Table 10 shows the performance of models trained with time-series data. In this, experiments, 

LSTM classifiers achieved high AUCs ranging from 0.77 (0.71-0.82) to 0.9 (0.86-0.94) at eight 

and one hours before CEs. Models derived from time-series data achieved the highest AUC across 

all experiments at four and eight hours before CEs, but had lower AUCs than the 

LastValuesNumeric models at all other prediction horizons. LSTM Models had positive BSS for 

all prediction horizons but lack of fit as indicated by HL values. As seen in Figure 24, LSTM 

models in this experiment tended to be over-confident. 

  



 71 

Table 10. Performance of long short-term memory models trained from time series data 

Horizon AUC BSS HL Highest f1 F1 at 0.5 Accuracy 

-1 0.9 (0.86-0.94) 0.49 0.00 0.84 0.83 0.84 

-2 0.88 (0.83-0.91) 0.42 0.00 0.80 0.79 0.81 

-4 0.82 (0.76-0.87) 0.28 0.00 0.78 0.75 0.77 

-6 0.75 (0.69-0.8) 0.13 0.00 0.73 0.67 0.71 

-8 0.77 (0.71-0.82) 0.18 0.00 0.73 0.71 0.74 

Values in parentheses show 95% confidence intervals computed with 2000 bootstrap replicates. 

Bold-face values show the best AUCs for each prediction horizon, i.e., the number of hours before 

critical events when predictions were generated. Models were trained and evaluated on a cohort of 

95 patients and 132 critical events in 10-fold cross-validation. NB: Naïve Bayes; DT: Decision 

Tree; SVM: Support Vector Machine; RF: Random Forest. 
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Figure 24. Calibration curves of LSTM models trained from time-series data 
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Figure 25. Performance metrics of TimeSeries models at different prediction thresholds. 

TimeSeries models presented in the graph are long short-term memory classifiers trained from 

time-series data. PPV: positive predictive value. 

5.2.1.7 Performance summary 

Among all feature sets, models trained from continuous-valued, a-temporal patient states 

(LastValsNumeric) achieved the best AUC in most prediction horizons, with the exception of four 

hours before CEs. At that horizon, the FTPs and TimeSeries models achieved the highest 

discrimination performance. In most experiments, random forest classifiers achieved the best 

performance. Details about individual classifier performance are available in Table 7 - Table 10. 
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Table 11. Predictive performance for each feature set and prediction horizon 

Horizon Expert ExpertRetrained LastValsNumeric TrendSummaries FTPs TimeSeries 

-1 0.67 (0.6-

0.74) 

0.88 (0.83-0.92) 0.91 (0.88-0.95) 0.87 (0.83-0.91) 0.84 (0.79-

0.89) 

0.9 (0.86-

0.94) 

-2 0.71 (0.64-

0.77) 

0.87 (0.82-0.91) 0.89 (0.85-0.93) 0.88 (0.84-0.92) 0.83 (0.78-

0.87) 

0.88 (0.83-

0.92) 

-4 0.58 (0.51-

0.65) 

0.79 (0.73-0.84) 0.78 (0.72-0.83) 0.81 (0.75-0.86) 0.82 (0.76-

0.87) 

0.82 (0.77-

0.87) 

-6 0.54 (0.47-

0.61) 

0.74 (0.68-0.8) 0.78 (0.72-0.83) 0.75 (0.69-0.81) 0.74 (0.67-

0.79) 

0.75 (0.69-

0.81) 

-8 0.49 (0.42-

0.56) 

0.74 (0.67-0.8) 0.77 (0.71-0.82) 0.74 (0.68-0.8) 0.7 (0.64-

0.76) 

0.77 (0.7-

0.82) 

Values in parentheses show 95% confidence intervals computed with 2000 bootstrap replicates. 

Bold-face values show the best AUCs for each prediction horizon, i.e., the number of hours before 

critical events when predictions were generated. Models were trained and evaluated on a cohort of 

95 patients and 132 critical events in 10-fold cross-validation. For each feature set except for time-

series data, we trained naïve Bayes, decision trees, random forests, and support-vector machine 

classifiers. This table shows the best performing model for each prediction horizon. The values in 

the TimeSeries column correspond to long short-term memory classifiers. 

 

Table 12. Statistical comparison between best AUCs per feature set 

Horizon Expert ExpertRetrained LastValsNumeric TrendSummaries FTPs TimeSeries 

-1 5.1e-9* 0.012* N/A 0.007* 0.002* 0.53 

-2 1.1e-5* 0.16 N/A 0.58 0.002* 0.56 

-4 5.4e-7* 0.59 0.49 0.65 N/A N/A 

-6 1.7e-6* 0.13 N/A 0.42 0.29 0.42 

-8 2.5e-8* 0.3 N/A 0.31 0.08 N/A 

Values are two-sided DeLong p-values of comparisons between the AUC of the best performing 

model at each horizon and all other (lower) AUCs. Cells with N/A values represent the highest-

performing model in each prediction horizon. P-values were FDR corrected by prediction horizon. 

*P-values < 0.05; AUC: Area under the receiver operating characteristics curve; FDR: False-

discovery rate. 
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5.2.2 Validation of CHP models on CHOP data 

The expert models achieved higher AUCs in the CHOP dataset than in the CHP dataset at six and 

eight hours before CEs. Otherwise, all classifiers had lower AUCs at all prediction horizons when 

tested on the CHOP dataset. FTP models had the highest AUCs at one and six hours before CEs, 

and LastValsNumeric values had the highest AUCs at two, four, and eight hours before CEs, as 

shown in Table 13. Among all external validation experiments, the LastValsNumeric at two hours 

before CEs achieved the highest performance, with an AUC of 0.79 (0.74-0.84). 

Table 13. AUCs of models trained with PGH data when tested on CHOP data 

Horizon Expert ExpertRetrained LastValsNumeric TrendSummaries FTPs TimeSeries 

-1 0.62 (0.56-

0.69) 

0.58 (0.52-0.64) 0.63 (0.57-0.68) 0.6 (0.54-0.66) 0.66 (0.6-0.72) 0.55 (0.49-

0.61) 

-2 0.61 (0.55-

0.67) 

0.56 (0.49-0.62) 0.79 (0.74-0.84) 0.6 (0.54-0.66) 0.61 (0.54-0.67) 0.55 (0.49-

0.61) 

-4 0.59 (0.53-

0.65) 

0.56 (0.5-0.63) 0.66 (0.6-0.72) 0.57 (0.51-0.63) 0.63 (0.57-0.7) 0.53 (0.47-

0.59) 

-6 0.57 (0.51-

0.63) 

0.62 (0.56-0.68) 0.61 (0.55-0.66) 0.58 (0.53-0.64) 0.69 (0.63-0.75) 0.56 (0.5-

0.62) 

-8 0.58 (0.51-

0.64) 

0.63 (0.57-0.69) 0.64 (0.59-0.7) 0.58 (0.51-0.64) 0.61 (0.55-0.67) 0.56 (0.49-

0.62) 

Values in parentheses show 95% confidence intervals computed with 2000 bootstrap replicates. 

Bold-face values show the best AUCs for each prediction horizon, i.e., the number of hours before 

critical events when predictions were generated. Models were trained on a cohort of 95 patients 

and 132 critical events, and validated on an external dataset comprised of 164 cases and 164 

controls. For each feature set except for time-series data, we evaluated naïve Bayes, decision trees, 

random forests, and support-vector machine classifiers. For TimeSeries data, we trained and 

evaluated long short-term memory models. This table shows the best performing model for each 

horizon.
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6.0  DISCUSSION 

Hospital care of SV infants is complex because of their unique physiology, elevated severity of 

illness, and unpredictable clinical deterioration. In this dissertation, we developed the C-WIN 

models, which achieved early and accurate prediction of CEs in this population. We addressed this 

need by developing predictive models that use objective and routinely-collected data that can be 

retrieved automatically from an EHR system. Rather than following a completely data-driven 

approach, we incorporated expert knowledge into our models, which we believe is important to 

facilitate the adoption of predictive models into clinical workflows. 

We tested the hypothesis that models that encode SV-domain-specific knowledge from 

cardiac intensivists would perform better in predicting CEs than currently-available models.   We 

found that purely-expert-derived models achieved modest performance from one to four hours 

prior to CEs. However, they lost predictive power after six hours prior to CEs. A possible 

explanation for this behavior is that the CPTs provided by clinicians reflect the characteristics of 

patients close to the time of decompensation. Moreover, unlike models developed later on in this 

dissertation, the expert models predicted CEs at all prediction horizons with fixed CPTs. However, 

we found that applying machine-learning techniques increased expert-model performance 

significantly. Computing CPTs from retrieved training data and using the same variables and 

discretization ranges provided by experts in a naïve Bayes model (ExpertRetrained models) 

resulted in statistically-significantly-higher performance compared to using expert-defined CPTs. 
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Furthermore, using information gain reduced model complexity. With a conservative selection 

threshold, the NB-ML-lean models achieved similar performance than that of NB-ML-full models 

using fewer variables. 

ExpertRetrained models achieved slightly lower AUCs than that to the state-of-the-art 

model for our prediction task18 in the hour preceding critical events (0.88 vs. 0.91). However, 

clinical experts considered that patient deterioration may already be expected at that time. In 

contrast, our ExpertRetrained models achieved higher performance than that of the state-of-the-art 

model from two to eight hours before CEs. 

Our second hypothesis was that using clinical data to extract temporal features and train 

static classifiers would result in significantly higher performance than that of expert models. We 

found that all models trained from trend-summary features and frequent temporal patterns 

achieved statistically-significantly-higher AUCs than those of the expert models for all prediction 

horizons. However, we found that classifiers that used continuous-valued variables without any 

longitudinal-changes or temporal information (LastValsNumeric) achieved the highest prediction 

among all experiments for all prediction horizons except for that at four hours before CEs. 

Our third hypothesis was that dynamic models that leverage temporal patterns in time-

series data would achieve state-of-the-art performance in early prediction of CEs in SV infants. 

Long short-term memory models trained from longitudinal data sequences achieved the highest 

AUCs at four and eight hours before CEs, and their AUCs were not statistically-significantly lower 

than the highest performing models for any other prediction horizon. 

In our final experiment, we conducted an external validation of our models on dataset 

retrieved from a different institution and geographical location. We found that model performance 

was lower when applied at a different site, and that LastValsNumeric models were again the best 
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performing, achieving the highest AUC in three out of five prediction horizons. AUCs in the 

external validation ranged between 0.64 and 0.79, whereas when they were evaluated at the same 

site where data was retrieved for training, their AUCs were in the 0.77-0.91 range. This can be 

attributed to several factors. First, we could not retrieve urine output values in normalized units by 

weight and time since last measurement, and we did not include this variable in our evaluation. 

Second, some variables, such as SVO2 values are not frequently used at the external validation site, 

as expressed by clinicians in said institution. Finally, peri-operative management and SV patient 

characteristics are variable across sites, making model generalization challenging. 

We used naïve Bayes classifiers for developing the expert models and as a baseline for all 

other experiments. While naïve Bayesian networks are relatively simple compared to other 

modeling strategies (e.g., deep artificial neural networks, support vector machines), we believe 

that they are an appropriate baseline for this work. They have been used in biomedical research 

since the 1960’s and are well-suited for clinical applications24,25. Their computation is efficient, 

they can operate with missing and categorical data explicitly, and can incorporate prior knowledge 

from clinicians or clinical data. Moreover, their simple structure and small number of parameters 

are beneficial in the absence of a large training dataset, which is especially challenging in specific 

populations such as SV infants.  

In recent years there has been an increased interest in early warning systems and a variety 

of predictive models being used in clinical settings. These models are often validated in the adult 

population, and there have been efforts to adapt them to pediatric patients. However, the 

performance of generic early warning systems has suffered in certain populations where specific 

scores are better suited10,63,64. To the best of our knowledge, the model by Rusin et al. is the only 

model available for real-time prediction of CEs in SV infants18. Our best performing model 
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achieved the same performance as this model in the hour preceding CEs, and achieved higher 

performance from two to eight hours before CEs. We achieved this while using variables that are 

routinely available in most hospital EHR systems. Therefore, our models could be more feasibly 

implemented in institutions that do not have the technological or financial resources required to 

collect and analyze data such as ECG waveforms in real time. Finally, we retrieved data from a 

larger cohort to develop our models, including 95 patients and 132 CEs. 

6.1 LIMITATIONS 

The work presented in this dissertation had limitations. First, we could not retrospectively retrieve 

some variables that experts believed to be relevant, including electrocardiography, 

echocardiography, and X-ray imaging. However, those additional data may not be readily available 

in many hospitals and EHR systems. Nevertheless, it may be feasible to develop a more 

comprehensive model that leverages both routinely-collected and high-frequency ECG data in the 

future. Thus, the same model may be applied in hospitals with varying levels of technological 

resources. Second, we imputed missing values with data available within a six-hour period. While 

this may be a reasonable assumption, some variables may change rapidly and more elaborate 

imputation techniques may improve performance. Third, our test set included a limited number of 

ECMO and CPR events and we were not able to ascertain the performance of our models for these 

events separately. Fourth, we did not include variables related to clinical interventions. Although 

it is true that some interventions may signal imminent deterioration (e.g., order of ADAMTS13 

activity test), for the first iteration of our models we decided to focus exclusively on physiological 
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variables. Finally, event times and variable values collected from EHRs were often entered 

manually as part of routine care and may have been subject to potential data-entry errors. 

6.2 CONCLUSIONS 

Early, real-time prediction of CEs may help clinicians reduce morbidity, mortality, length of stay, 

healthcare costs, and the suffering of patients and guardians. However, to fully realize the benefits 

of implementing such systems in clinical practice, they should be specific enough to minimize 

alert fatigue, and should not increase the burden of clinicians or divert resources from other aspects 

of care. From a clinical standpoint, our models may enable early interventions and avoidance of 

up to 56% of CEs with a specificity of 95% (based on performance one hour before CEs). This 

would allow clinicians to focus on patients truly at risk of CEs while minimizing alert fatigue. 

Furthermore, because our models utilize physiological variables that may be extracted 

automatically from an EHR system, an early warning system based on our models may operate 

autonomously and at low operational cost without disrupting clinicians’ workflow. 

We envision a potential implementation of our models as an alert-triggering system with a 

two-tiered set of responses.  First,  a model calibrated for increased sensitivity and earliest response 

may be monitored via virtual surveillance in the Tele-ICU setting, following a well-established 

model in adult patients65.  Then, a second model calibrated for high specificity may be used to 

prompt a rapid response from bedside clinicians. 
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APPENDIX 

Table 14. Variables identified by pediatric cardiologists as relevant for the prediction of 

critical events in SV infants 

Clinical variable In a group of 100 patients at risk of 

critical events, how many are expected 

to have the following values? 

In a group of 100 patients at NO risk of 

critical events, how many are expected 

to have the following values? 

Heart rate a, b, c, d <120 120-160 >160 
 

<120 120-160 >160 
 

40 20 40 
 

15 70 15 
 

Respiratory 
rate a, b, c, d 

<35 35-60 >60 
 

<35 35-60 >60 
 

40 20 40 
 

15 70 15 
 

Oxygen 
saturation a, b, c, d 

<70% 70-85% >85% 
 

<70% 70-85% >85% 
 

40 20 40 
 

15 70 15 
 

Lactate a, b, c, d <1.5 >1.5  
 

<1.5 >1.5  
 

20 80  
 

80 20  
 

Mixed venous 
saturation a, b, c, d 

<50% 50-60% >60% 
 

<50% 50-60% >60% 
 

85 5 10 
 

10 80 10 
 

Partial pressure of 
oxygen a, b, c, d 

<30 30-44 >44 
 

<30 30-44 >44 
 

40 5 55 
 

10 80 10 
 

Systolic blood 
pressure a, b, c, d 

<60 60-90 >90 
 

<60 60-90 >90 
 

40 20 40 
 

10 80 10 
 

Diastolic blood 
pressure a, b, c, d 

<30 30-60 >60 
 

<30 30-60 >60 
 

50 20 30 
 

10 80 10 
 

Extubation time <=4 days 
postop 

>4 days 
postop 

 
 

<=4 days 
postop 

>4 days 
postop 

 
 

20 80  
 

80 20  
 

Sternal closure <=3 days 
postop 

>3 days 
postop 

 
 

<=3 days 
postop 

>3 days 
postop 

 
 

20 80  
 

80 20  
 

Residual lesions, 
common b, c, d 

no yes  
 

no yes  
 

20 80  
 

80 20  
 

Blood urea 
nitrogen a, c, d 

<=40 >40  
 

<=40 >40  
 

60 40  
 

40 60  
 

Brain natriuretic 
peptide b, c, d 

<100 >100  
 

<100 >100  
 

20 80  
 

80 20  
 

Chest X-ray 
effusion b, c, d 

no yes  
 

no yes  
 

40 60  
 

60 40  
 

Chest X-ray 
cardiomegaly b, c, d 

No mild severe 
 

No mild severe 
 

10 20 70 
 

70 20 10 
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Table 14 continued 

Chest X-ray 
congestive lungs b, c, d 

no Yes  
 

no yes  
 

30 70  
 

70 30  
 

Echocardiogram 
ventricular 
dilation b, c, d 

No Yes  
 

No Yes  
 

40 60  
 

60 40  
 

Echocardiogram 
diastolic flow 
reversal in 
descending 
aorta b, c, d 

No Yes  
 

No Yes  
 

40 60  
 

60 40  
 

Echocardiogram 
ventricular 
dysfunction b, c, d 

No Yes  
 

No Yes  
 

40 60  
 

60 40  
 

Echocardiogram 
atrioventricular 
valve regurgitation 

No - mild Mod - 
severe 

 
 

No - mild Mod - 
severe 

 
 

40 60  
 

60 40  
 

Echocardiogram 
systemic ventricle 
outflow 
obstruction b, c, d 

No Yes  
 

No Yes  
 

40 60  
 

60 40  
 

Echocardiogram 
coarctation of the 
aorta b, c, d 

No Yes  
 

No Yes  
 

30 70  
 

70 30  
 

Electrocardiogram 
ST 
elevation/depressio
n > 1mm 

No Yes  
 

No Yes  
 

20 80  
 

80 20  
 

Electrocardiogram T-
wave inversion 

No Yes  
 

No Yes  
 

20 80  
 

80 20  
 

Electrocardiogram 
decreased R-R 
variability 

No Yes  
 

No Yes  
 

60 40  
 

60 40  
 

Necrotizing 
enterocolitis 

No Yes  
 

No Yes  
 

20 80  
 

80 20  
 

Carbon dioxide b, c, d <30 30-55 >55 
 

< 30 30-55 >55 
 

80 10 10 
 

10 80 10 
 

Bicarbonate 
ion a, b, c, d 

<20 20-32 >32 
mEq/L 

 
<20 20-32 >32 

mEq/L 

 

70 20 10 
 

10 70 20 
 

Sodium <128 
mEq/L 

128-146 
mEq/L 

>146 
mEq/L 

 
<128 mEq/L 128-146 

mEq/L 
>146 

mEq/L 

 

40 20 40 
 

10 80 10 
 

Potassium <2.5 mEq/L 2.5-5.5 
mEq/L 

>5.5 
mEq/L 

 
<2.5 mEq/L 2.5-5.5 

mEq/L 
>5.5 

mEq/L 

 

40 20 40 
 

20 60 20 
 

Calcium c, d <1.0 
mmol/L 

1-1.4 
mmol/L 

>1.4 
mmol/L 

 
<1.0 mmol/L 1.1-1.4 

mmol/L 
>1.4 

mmol/L 

 

40 20 40 
 

10 80 10 
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Table 14 continued 

Glucose <40 mg/dl 40-180 
mg/dl 

>180 
mg/dl 

 
<40 mg/dl 40-180 

mg/dl 
>180 
mg/dl 

 

40 20 40 
 

10 80 10 
 

Hemoglobin b, c, d <9 mg/dL 9-16 
mg/dl 

>16 mg dl 
 

<9 mg/dL 9-16 
mg/dl 

>16 mg 
dl 

 

40 20 40 
 

10 80 10 
 

Hematocrit b, c, d <30 30-50 >50 
 

<30 30-50 >50 
 

40 20 40 
 

10 80 10 
 

International 
normalized ratio c, d 

<1 1-1.4 >1.4 
 

<1 1-1.4 >1.4 
 

20 20 60 
 

10 80 10 
 

Partial 
thromboplastin 
time c, d 

<22 22-60 >60 
 

<22 22-60 >60 
 

20 20 60 
 

10 80 10 
 

Platelets c, d <100 100-400 >400 
 

<100 100-400 >400 
 

60 20 20 
 

10 80 10 
 

Fibrinogen <200 mg/dl 200-500 
mg/dl 

>500 
mg/dl 

 
<200 mg/dl 200-500 

mg/dl 
>500 
mg/dl 

 

60 10 30 
 

10 80 10 
 

Creatinine a, c, d <0.5 0.5-0.9 >0.9 
 

<0.5 0.5-0.9 >0.9 
 

10 10 80 
 

80 10 10 
 

Alanine 
aminotransferase c, d 

<50 U/L 50-200 >200 
 

<50 U/L 50-200 >200 
 

20 40 40 
 

80 10 10 
 

Total bilirubin c, d <=3 >3  
 

<=3 >3  
 

20 80  
 

80 20  
 

Anti-Xa c, d <0.3 0.3-0.7 
IU/ml 

>0.7 
 

<0.3 0.3-0.7 
IU/ml 

>0.7 
 

80 10 10 
 

10 80 10 
 

ADAMTS-13 activity <=57% >57% 
  

<=57% >57% 
  

80 20 
  

20 80 
  

Urine output 
cc/Kg/Hr a, b, c, d 

<1 cc/hr/kg 1-2 
cc/hr/kg 

>2 
cc/kg/hr 

 
<1 cc/hr/kg 1-2 

cc/hr/kg 
>2 

cc/kg/hr 

 

60 20 20 
 

10 10 80 
 

Near-infrared 
spectroscopy a, b, c, d 

<40 40-50 >50 
 

<40 40-50 >50 
 

70 20 10 
 

5 15 80 
 

Preoperative 
intubation 

yes no  
 

yes no  
 

80 20  
 

20 80  
 

Central venous 
pressure a, b, c, d 

<5 5-12 12-15 >15 <5 5-12 12-15 >15 

10 20 40 30 50 30 15 5 

Base excess a, b, c, d <-5 -3 to -5 -3 to 0 >0 <-5 -3 to -5 -3 to 0 >0 

70 10 10 10 3 7 20 70 

Fraction of inspired 
oxygen a, b, c, d 

<21% 21-30% 30-60% >60% <21% 21-30% 30-60% >60% 

35 15 15 35 40 40 10 10 
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Table 14 continued 

Pulmonary artery 
abnormalities 

No Yes  
 

No Yes  
 

5 95  
 

95 5  
 

Blalock-Taussig 
shunt 
abnormalities b, c, d 

No Yes  
 

No Yes  
 

5 95  
 

95 5  
 

Mixed venous 
saturation change 
from baseline 

<25% 25-50% >50% 
 

<25% 25-50% >50% 
 

10 30 60 
 

80 10 10 
 

Creatinine increase 
from baseline 

<25% 25-50% >50% 
 

<25% 25-50% >50% 
 

10 30 60 
 

90 8 2 
 

aExperts considered this variable as part of the minimal set of variables necessary to predict 

critical events; bExperts considered this variable relevant for prediction of emergent endotracheal 

intubation; cExperts considered this variable relevant for the prediction of extracorporeal-

membrane oxygenation; dExpert considered this variable relevant for the prediction of 

cardiopulmonary resuscitation 
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Table 15. Mapping of clinical variables to available electronic health record concepts 

Model variable EHR clinical concept Priority 

ADAMTS 13 Activity ADAMTS 13 Activity 1 

ALT ALT/SGPT 1 

Anti-Xa Anti Xa Unfract Heparin 1 

Anti -Xa Assay for 

Enoxaparin 
1 

Base excessa Base Excess, Arterial 1 

Base Excess, Capillary 1 

Base Excess, Venous 1 

Base Excess, Oxygenator 1 

Base Deficit Oxygenator 1 

Base Deficit Capillary 1 

Base Deficit, Venous 1 

Base Deficit Arterial 1 

Base Deficit Venous 1 

Bicarbonate aniona HCO3a 1 

HCO3v 2 

Blood urea nitrogena BUN 1 

Brain natriuretic peptide B-Type Natriuretic Peptide 1 

Carbon dioxide PaCO2 1 

PvCO2 2 

Central venous pressurea Central Venous Pressure 1 

Creatininea Cr 1 

Creatinine change from 

baselineb 
N/A N/A 

Diastolic blood pressurea Arterial Diastolic Pressure 1 

Diastolic BP 3 

Arterial Diastolic Pressure #2 2  

Fibrinogen Fibrinogen Level 1 

Fraction of inspired oxygena FiO2 1 

FiO2 (oxygen %) 2 

Glucose Glucose Meter 1 

Glucose, Whole Blood 2 

Glucose 3 

Heart ratea Heart Rate 1 

Heart Rate - SPO2 2 

Pulse 3 

Hematocrit Hct, Whole Blood 1 

Hct Derived- Venous 2 

Hct Derived - Arterial 2 

Hct 3 
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Table 15 continued 

Hemoglobin Hgb 1 

Hgb, Venous 2 

Hgb, Arterial 2 

International normalized ratio INR 1 

Ionized Calcium Ionized Ca, Whole Blood 1 

Lactatea Lactate 1 

Lactate, Whole Blood 2 

Mixed venous oxygen 

saturationa 

O2 sat-Mixed Venous 1 

SvO2 1 

Mixed venous oxygen 

saturation change from 

baselineb 

N/A N/A 

Near infrared spectroscopya NIRS Cerebral Oxygenation-

L 
1 

NIRS Cerebral Oxygenation-

R 
1 

NIRS Tissue Oxygenation 2 

NIRS Cerebral Oxygenation 3 

NIRS Cerebral Oxygenation 

#2 
3 

Oxygen saturationa SaO2 1 

SpO2 Bedside Monitor 1 

Partial pressure of oxygen in 

arterial blood* 
PaO2 1 

Partial thromboplastin time PTT 1 

Platelets Platelets 1 

Potassium K, Whole Blood 1 

K 2 

Respiratory ratea Respiratory Rate 1 

Sodium Na, Whole Blood 1 

Na 2 

Systolic blood pressurea Arterial Systolic Pressure 1 

Arterial Systolic Pressure #2 2 

Systolic BP 3 

Total Bilirubin Bili, Total 1 

Bilirubin 1 

Urine output cc/Hg/Hra Urine Output 24 hour (weight 

based) 
1 

Urine Output 8 hour (weight 

based) 
1 

Model variables were identified by cardiac intensivists. The EHR clinical concept column shows 

the hospital-specific codes that represent variables in the dataset used for model development and 
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evaluation. The priority values were used to select variable values when multiple EHR-event-code 

values were available simultaneously. a Variables included in the minimal subset that experts 

identified as essential for the prediction of critical events; b Variable derived from another variable 

in this table. 
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