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The primary motor cortex (M1) is an important structure of the motor system that contributes to 

many aspects of movement.  Firing patterns of M1 neurons can be surprisingly complex, and 

there is substantial interest in understanding these patterns and their relation to behavior.  Here, 

we characterize the temporal structure of M1 activity during reaching in several ways.  First, we 

show that single neurons encode movement information in a series of discrete segments.  

Information is stably encoded during each brief segment, and the firing patterns of most neurons 

transition between segments at similar times during movement.  This pattern may therefore 

reflect transitions between different neural “states.”  Next, we establish that the sequence of 

states observed during behavior is related to a sequence of distinct drivers, including visuospatial 

information and visual feedback from a movement.  If no feedback is provided, neurons may 

produce a truncated response sequence.  Last, we link the temporal structure of firing patterns to 

the structure of reaches and demonstrate that the classical two-component model of reaching is 

reflected in M1 activity.  Our findings may help establish a useful framework for interpreting 

seemingly complex neural activity during behavior. 
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1.0  INTRODUCTION 

1.1 BACKGROUND 

Studies of the primary motor cortex (M1) have played a critical role in our understanding of the 

neural basis of movement.  Early experiments involving electrical stimulation of the cortex 

established that M1 is of special importance for generating motor output (Fritsch & Hitzig 1870).  

Investigators found they could elicit movement of different body parts by stimulating different 

parts of M1, leading to the development of somatotopic maps from cortex to the body’s effectors 

(Leyton & Sherrington 1917; Penfield & Boldrey 1937; Penfield & Rasmussen 1950; Woolsey 

1958).  Though cortical stimulation studies are often difficult to interpret (Asanuma & Sakata 

1967; Jankowska, Padel, & Tanaka 1975b), the anatomical linkage from M1 to spinal circuitry 

that commands muscle contraction has long been appreciated (Holmes & May 1909; Levin 1936; 

Lassek 1942; Lawrence & Kuypers 1965; Wiesendanger 1969).  Efferents from M1 constitute a 

large portion of the corticospinal tract (CST, Dum & Strick 1991), and a species’ manual 

dexterity is related to the density of CST terminations in the ventral horn (Heffner & Masterton 

1983; Bortoff & Strick 1993).  The primary motor cortex is thus undoubtedly an important 

structure of the motor system. 

With the advent of single-neuron recording in awake behaving monkeys, investigators 

began to characterize the functional relation between M1 and volitional behavior in great detail.  
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Evarts (1965) quickly established a link between M1 pyramidal tract neuron (PTN) discharge 

and naturalistic behaviors.  However, he recognized at the time that those types of complex 

movements were “unsuitable for precise quantitative analysis.”  Seeking a more controlled 

experiment, he then examined M1 PTN activity during simple wrist extensions (Evarts 1966).  

Firing rates tended to change shortly before contralateral movement, and response latency was 

correlated with reaction time, suggesting a causal relationship to behavior.  Evarts initially 

suspected that wrist displacement was the primary determinant of firing rate, but his subsequent 

work demonstrated a strong relation to flexion/extension force (Evarts 1968), even for isometric 

muscle contraction (Evarts 1969).  He concluded that “output of motor cortex PTNs is related to 

the patterns of muscular contraction” rather than to “joint displacement or the joint position” 

(Evarts 1969).  Still, he found that single neuron firing properties could be idiosyncratic– some 

units had a non-monotonic relation to force and some showed force-dependent response latency 

(Evarts 1968).  Complexities in the data and limitations of experimental design made it difficult 

to draw definitive conclusions.  Other investigators suggested the functional link between M1 

and motor output was rather flexible (Fetz 1969; Fetz & Finocchio 1971), or that firing patterns 

of M1 neurons covaried with several behavioral features (Thach 1978). 

Despite some disagreement between studies, most data highlighted the “directional” 

nature of M1 activity: firing rates commonly increased for motor output (displacement, force, 

etc.) in one direction, but decreased for output in the opposite direction.  A seminal work by 

Georgopoulos et al (1982) expanded this relationship to whole-arm movements using a “center-

out” reaching task.  In this now-classical paradigm, monkeys reached from a central starting 

point outward to a peripheral target, with targets arranged in a circle around the center.  Using 

this paradigm, it was shown that firing rates in M1 varied smoothly and systematically with 
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reach direction.  A broad cosine-shaped curve was a remarkably good fit for time-averaged firing 

rates as a function of movement direction.  Cosine-like directional “tuning” of neurons was 

found to be valid for movements in three dimensions (Schwartz, Kettner, & Georgopoulos 1988) 

and for isometric force production (Georgopoulos et al 1992).  Each recorded neuron seemed to 

have a different “preferred” direction (PD) in space for which peak firing was observed, a 

property that proved useful for “reading out” or “decoding” the movement from brain activity 

(Georgopoulos et al 1983; Schwartz 1994; Schwartz & Moran 1999).  Common decoders such as 

the population vector algorithm (PVA) are based on the directional tuning properties of M1 

neurons, and these algorithms hold promise as the basis of restorative prosthetic devices that 

interface between brain activity and robotic limbs (Wessberg et al, 2000; Serruya et al, 2002; 

Taylor, Helms Tillery, and Schwartz, 2002; Hochberg et al, 2006; Velliste et al, 2008; Wodlinger 

et al, 2015). 

1.2 THE RELATION BETWEEN M1 ACTIVITY AND MOVEMENT PARAMETERS 

1.2.1 Information carried by M1 neurons is diverse 

Despite the success of movement decoders and brain-computer interfaces (BCIs) in lab settings, 

there are still significant controversies surrounding the “function” of M1 and its role in 

movement generation and control.  Aside from reach direction and force production, M1 firing 

rates covary with a surprisingly large and diverse set of movement parameters, making it 

difficult to draw unitary conclusions about the drivers of this activity.  The results of numerous 

studies have argued in favor of kinematics (like direction) as the primary type of movement 
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feature “represented” or “encoded” by M1 activity.  Coding for movement velocity, which is the 

direction scaled by speed, appears to be particularly robust (Schwartz 1993; Moran & Schwartz 

1999; Wang et al 2007), and our research group recently demonstrated skilled control of velocity 

through a BCI (Inoue et al 2018).  However, M1 activity has also been related to distance or 

position (Kettner, Schwartz, & Georgopoulos 1988; Fu et al 1995), acceleration (Ashe & 

Georgopoulos 1994), and joint angular velocity (Reina, Moran, & Schwartz 2001).   

As described above, other studies have emphasized the importance of kinetic parameters 

(i.e. forces) in driving M1 activity (Evarts 1968, 1969; Cheney & Fetz 1980; Georgopoulos et al 

1992; Sergio, Hamel-Pâquet, & Kalaska 2005).  A related perspective is that M1 is best 

understood as a source of “upper motoneurons” that specify the strength of muscle contraction.   

In this view, M1 is positioned lower in the hierarchy of motor control (closer to the final 

effector) in contrast to the relatively high position assumed by advocates of kinematic coding 

(closer to an abstract movement plan).  This notion is supported functionally by studies 

demonstrating “post-spike effects” of M1 neurons on electromyograms (EMG) recorded from 

forelimb muscles (Fetz & Cheney 1980; Schieber & Rivlis 2005), and by analyses that predict 

EMG patterns from M1 firing patterns (Morrow & Miller 2003; Cherian, Krucoff, & Miller 

2011).  Yet, M1 is highly active even when muscles are not, for example while monkeys wait for 

a “go” cue in instructed-delay tasks (Tanji & Evarts 1976; Georgopoulos, Crutcher, & Schwartz 

1989; Alexander & Crutcher 1990a).  In fact, M1 PTNs exhibit directionally-tuned delay period 

activity even more commonly than non-PTNs (Tanji & Evarts 1976). 

While these experimental findings may seem in conflict, there is general agreement that 

“the search for a single, dominant, encoded movement parameter [in M1] is unlikely to be 

fruitful” (Johnson, Mason, & Ebner 2001).  Indeed, apparently strong parameter tuning can be 
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found to be invalid in new contexts (Caminiti, Johnson, & Urbano 1990; Aflalo & Graziano 

2006), single units often display “mixed” selectivity for several parameters (Lurito, 

Georgakopoulos, & Georgopoulos 1991; Shen & Alexander 1997a), and tuning properties may 

not be stationary in time (Fu et al 1995; Georgopoulos et al 1989; Churchland & Shenoy 2007; 

Churchland et al 2010).  Thus, clear and succinct descriptions of the “function” of M1 have been 

elusive. 

1.2.2 Parameter dissociation and tuning changes 

In part, controversies surrounding the specific information encoded by M1 neurons are 

complicated by the fact that many of the relevant parameters are correlated during normal 

behavior (Evarts 1968).  For example, if a neuron fires most strongly during an upward reaching 

movement, we cannot readily discern if its discharge relates to a cognitive plan specifying “move 

up,” or to the contraction of the arm muscles that counter gravity to enact this plan.  Moreover, 

arm muscles are cosine-tuned to reach direction much like M1 neurons (though with a different 

distribution of PDs, see Schwartz & Moran 1999).  Central to this difficulty as it pertains to 

neural coding is the notion of “coordinate systems” of movement parameters— that is, neurons 

may encode information in (for example) “extrinsic” coordinates of movement in a workspace, 

or “intrinsic” coordinates of an arm muscle or joint angle.   

Substantial progress in resolving the “muscles vs. movements” debate of M1 coding was 

achieved by Kakei, Hoffman, & Strick (1999) using an elegant task that dissociated three 

relevant coordinate systems.  A monkey was trained to make wrist movements in eight directions 

with the wrist oriented in different postures, and directional tuning of muscles and neurons was 

evaluated for each posture.  As the wrist was rotated from a pronated to supinated posture, the 
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PDs of several wrist and finger muscles also rotated relative to extrinsic space.  Although the 

angle of the wrist rotated a full 180°, muscle PD changes were only around 70° on average; thus, 

extrinsic movement direction was dissociated from both wrist-centric and muscle-centric 

coordinates.  Leveraging this dissociation, the PDs of M1 neurons were measured for each wrist 

posture and compared with those of the limb muscles.  Posture-related tuning changes were 

found for roughly 30% of the population, with PD shifts in a range comparable to that observed 

for limb muscles.  These neurons were considered to be “muscle-like” in their tuning properties.  

Conversely, the PDs of about half the population were found to be relatively invariant with wrist 

posture and thus considered to have “extrinsic-like” tuning properties.   

1.2.3 Motor adaptation 

Although directional tuning is clearly related to multiple movement parameters, the study by 

Kakei, Hoffman, & Strick (1999) is a potent demonstration that this tuning property is useful for 

probing neural processes, given a properly designed dissociation paradigm.  Motor adaptation is 

another scenario in which movement parameters can be dissociated.  For example, Shadmehr & 

Mussa-Ivaldi (1994) studied reaches made using a manipulandum to which they could apply a 

mechanical force field.  When the force field was applied, direction of movement was effectively 

dissociated from the direction of applied forces.  Although subjects initially produced distorted 

trajectories, they gradually adapted to the perturbation and recovered their original performance.  

Reaches are believed to involve a kinematic plan, which tends to follow a smooth, straight path 

to an end point (Morasso 1981; Flash & Hogan 1985), and an “internal model” that relates this 

plan to musculoskeletal dynamics.  Shadmehr & Mussa-Ivaldi (1994) reasoned that, to produce a 

straight trajectory under perturbed conditions, subjects would need to update an internal model of 
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the dynamics between the environment, their motor output, and their hand path.  Put another 

way, force field adaptation dissociates the kinematic plan from the “inverse model” that 

generates motor output.  Using a similar force field perturbation, Li, Padoa-Schioppa, & Bizzi 

(2001) found that M1 directional tuning in monkeys can be related to both of these aspects of 

movement. 

1.3 TEMPORAL DYNAMICS OF M1 ACTIVITY DURING BEHAVIOR 

1.3.1 Visuomotor transformations 

While many studies have focused on the relation between M1 activity and movement per se, 

others have found that visuospatial processes related to movement constitute yet a further class 

of M1 drivers.  These processes have been studied by dissociating vision and movement, often 

using a visuomotor perturbation.  As with force field perturbations, abrupt application of a 

visuomotor perturbation initially causes subjects to produce distorted trajectories, and normal 

performance is gradually recovered over repeated trials (Bossom 1965; Clower et al 1996; Yin & 

Kitazawa 2001; Krakauer, Ghez, & Ghilardi 2005).  Visuomotor perturbations can be 

implemented using prisms (Baizer, Kralj-Hans, & Glickstein 1999; Kurata & Hoshi 1999; Yin & 

Kitazawa 2001) or rotated mappings between movement and a computer cursor (i.e. “visuomotor 

rotations,” Shen & Alexander 1997a; Wise et al 1998; Krakauer et al 2000; Krakauer et al 2005).  

Results of these studies have highlighted the temporally complex nature of M1 firing: beyond 

heterogeneous or mixed parameter coding, neurons often code for different parameters in 

sequence as behavior progresses.  Although the original work on cosine tuning used firing rates 
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averaged over the whole movement (e.g. Georgopoulos et al 1982), the detailed time-course of 

firing can be much more complex than this relationship would suggest. 

In one notable experiment, Shen & Alexander (1997a) trained monkeys to make center-

out movements using a joystick that moved a computer cursor.  During a session, the mapping 

from joystick to cursor was rotated by 90° to mimic a visuomotor rotation– moving the joystick 

rightward (for example) would move the cursor downward.  Monkeys required about 80-120 

trials to recover normal performance after the mapping change.  Once vision and movement were 

dissociated, M1 directional encoding was related to one or the other (or both).  During the 

reaction time, right before movement, many neurons coded for the direction of the visual 

instruction irrespective of the upcoming joystick movement.  However, encoding properties 

gradually changed throughout movement to instead reflect joystick direction, or a combination of 

cursor and joystick direction.  This result suggested that the type of information encoded by M1 

neurons could change in sequence under certain task constraints.  Other studies that have 

dissociated vision from movement have produced similar findings.  For example, M1 neurons in 

monkeys trained to make a movement in the direction opposite to a stimulus first coded for the 

stimulus, then for the movement (Zhang et al 1997; Alexander & Crutcher 1990a).   

These coding patterns have commonly been interpreted as a hallmark of a “sensorimotor 

transformation,” which involves a serial sequence of steps to convert movement-relevant sensory 

information (i.e. visuospatial stimuli) into an appropriate motor response.  In this view, cortical 

networks transform information from sensory coordinates to motor coordinates, though Kalaska 

et al (1997) have noted that “the co-ordinate transformation model may be only a metaphorical 

description of the underlying causal mechanisms” of cortical activity.  Still, they maintain that 

the framework “retains heuristic value… [for characterizing] the properties of single cells and 
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neural circuits” and their relation to behavior.  Indeed, visuomotor dissociation tasks have 

demonstrated that time-varying encoding patterns in M1 may carry information sequentially in a 

manner that is appropriate for a given task. 

In line with this view, other studies have indicated the particular cognitive strategy used 

during a task is reflected in M1 temporal patterns.  Georgopoulos et al (1989) trained a monkey 

to make center-out reaches based on a rule determined by the brightness of a cued reach target.  

For one brightness level, the monkey reached directly toward the target as in normal center-out 

tasks.  For another brightness level, reaches were made 90° to the illuminated target.  The 

physical movement was therefore dissociated from the visuospatial stimulus.  Movement 

direction was decoded from M1 firing rates recorded during the task using the population vector 

algorithm (PVA).  As with previous studies (e.g. Georgopoulos et al 1986), when reaches were 

made toward the cued target, PVA output grew in magnitude shortly before the onset of 

movement and pointed straight toward the reach direction.  However, when reaches were made 

90° to the cue, the population vector initially pointed in the direction of the cue before rotating 

and pointing toward the actual movement direction.  This result was believed to reflect a “mental 

rotation” of an imagined vector that first pointed toward the stimulus, then toward the movement 

(Georgopoulos & Massey 1987). 

In a related experiment (Pellizzer, Sargent, & Georgopoulos 1995), a monkey was trained 

on a visuomotor “context-recall” task that required a movement direction to be chosen based on 

the temporal order of a sequence of three visuospatial cues.  When one of the cues changed 

color, the monkey reached toward the cue that followed that one in the sequence.  This rule 

meant that a reach was never made to the first target, and since no additional cues were displayed 

after the third, only the first or second cue changed color on each trial.  The correct response was 
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therefore fully specified by the second cue in the sequence.  If the second cue changed color, a 

reach was made to the third cue.  Otherwise, a reach was made to the second cue.  This task 

constraint was reflected in the of responses of M1 neurons: based on the directional tuning of 

each neuron, it was found that responses initially coded for the direction of the second cue before 

abruptly switching and coding for the upcoming movement direction.  This property could also 

be demonstrated using the PVA, as was the case with the mental rotation experiment.  However, 

rather than a gradual rotation, the context-recall task was associated with an abrupt encoding 

change, possibly reflecting the different cognitive strategies employed in the two tasks (Pellizzer 

& Georgopoulos 1993). 

1.3.2 The “dynamical systems” hypothesis of M1 activity 

Although the temporal patterning of single unit firing is especially obvious when certain task 

parameters have been dissociated from one another, encoding patterns may also be non-

stationary during normal behavior (Fu et al 1995; Churchland et al 2007; Wang et al 2007; 

Churchland et al 2010).  Some investigators have interpreted non-stationarity as an indication 

that parameter coding is not a valid or useful descriptor of firing rates.  In a recent controversial 

study, Churchland et al (2012) proposed an alternative framework that treats the activity of 

dozens or hundreds of neurons as a certain class of dynamical system in which the activity 

pattern of the population at one moment in time follows lawfully from the previous pattern.  

They argued the intrinsic properties of the neuronal network dictate a set of evolution rules, 

something akin to a central pattern generator that limits the need for input-driven changes in 

activity.  In this way, neurons need not “represent” anything; their patterning instead serves to 
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directly generate movement and any observed correlation with task parameters is incidental (cf. 

Fetz 1992).   

To substantiate their dynamical systems framework, Churchland et al (2012) developed a 

novel dimensionality-reduction method that identified a simple evolution rule for M1 activity 

during reaching.  Their method, called jPCA, is a variant of principal component analysis (PCA), 

which maps observations along many dimensions (i.e. firing rates of many neurons) to a new set 

of summary dimensions (principal components).  When the neuronal data were viewed from 

their carefully-chosen summary dimensions, the pattern of population activity appeared to rotate 

smoothly away from its starting point, and activity during each movement type traced out a 

unique rotational path.  In a two-dimensional subspace (for example), a rotational pattern is 

achieved when the observations along the two dimensions are oscillatory and out of phase.  Out-

of-phase oscillations along the top two jPCA dimensions were found to explain a moderate 

amount of variance in M1 population activity, and these patterns were hypothesized to form a 

flexible set of bases from which muscle activity could be constructed.  The authors proposed that 

rotational or oscillatory dynamics are the dominant mechanism by which M1 contributes to 

movement.  They further suggested this framework may be a more appropriate account of M1 

activity patterns than classical “representational” coding. 

Although the work of Churchland et al (2012) marked a valuable shift in analytical and 

visualization methods for neuronal data, there are several important criticisms of their approach, 

the treatment of inputs to the system, and the focus on rotational dynamics.  One study, for 

example, showed that robust rotational patterns could be found by applying jPCA to a simulated 

population of velocity-tuned neurons, with variable response onsets similar to real data 

(Michaels, Dann, & Scherberger 2016).  The authors concluded that “jPCA alone is not 
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sufficient to distinguish between a representational model with lags and the dynamical model 

proposed by Churchland et al.”  It is important to note, however, that this study also identified 

differences between a simple velocity-tuned population and real neuronal data during a reaching 

task.  Indeed, neuronal responses during reaching often do not simply rise and fall with 

movement velocity but seem to have additional response features not explained by a single 

tuning model (e.g. Churchland & Shenoy 2007). 

1.3.3 Feedback-related responses in M1 

The dynamical systems hypothesis has emphasized the dominance of intrinsic “evolution rules” 

that dictate temporal patterning.  In this view, the motor cortex is a “dynamical machine” 

(Churchland et al 2010) that relies on local recurrent circuits to operate without the influence of 

external input (Churchland et al 2012; Russo et al 2018).  However, it is well known that M1 

neurons respond to somatic input when the limb is moved passively, and responses are 

modulated by muscle stretch and tactile stimulation (Lemon & Porter 1976; Wolpaw 1980).  

Moreover, small perturbations applied to the arm during movement modulate M1 neurons at a 

short-latency (Evarts & Fromm 1977), suggesting somatic feedback can alter response dynamics. 

More recently, it has been shown that M1 activity may also carry higher-order 

information related to movement feedback.  Inoue, Uchimura, & Kitazawa (2016) recorded 

activity from M1 neurons while monkeys made reaching movements to visual targets observed 

through wedge prisms.  The prisms were adjusted on each trial to randomly change the amount 

of visual error, which caused the monkeys to make end-point errors of varying magnitude.  To 

prevent online corrective movements that would have countered the prism perturbation, the 

movement was hidden from view using a liquid crystal shutter.  The shutter was opened 
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immediately after the movement to reveal the error of the end-point relative to the visual target.  

Using an information-theoretic analysis, it was shown that the firing rates of many neurons, 

measured shortly after the shutter was opened, shared mutual information with trial-to-trial end-

point errors.  This finding suggested that visual feedback could modulate M1 encoding. 

M1 activity related to visual feedback has also been reported during ongoing behavior 

(Stavisky et al 2017).  Firing rates of single units were recorded during a reaching task in which 

the hand was not directly observed, but was instead represented by a cursor on a computer 

display.  During some trials, cursor position was displaced from its trajectory mid-reach, which 

required monkeys to make a corrective movement that countered the displacement and moved 

the cursor back toward the target.  Firing rates were analyzed using dimensionality-reduction 

methods, and population activity was found to reflect the perturbation in two separate phases.  

The first phase seemed to correspond to short-latency visuomotor feedback related to the 

unexpected cursor displacement, while the second phase was related to the subsequent corrective 

movement.  These results suggested that visual feedback could alter ongoing dynamics in M1 

during behavior, at odds with recent work suggesting M1 operates independently of external 

inputs over extended periods of time (Russo et al 2018). 

1.3.4 Discrete state changes in M1 

Though M1 activity undoubtedly evolves in time during movement, there is considerable 

evidence that firing rates do not necessarily change smoothly as predicted by the rotational 

dynamics proposed by Churchland et al (2012).  For example, Abeles et al (1995) measured the 

rates of small populations of M1 neurons while monkeys performed different reaching tasks and 

found that firing rates transitioned abruptly between “quasi-stationary states.”  Hidden Markov 
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models (HMM), which are used to model processes that transition between discrete states, were 

found to accurately describe the observed activity patterns.  State transitions identified by the 

HMMs corresponded to transitions in the monkeys’ behavior.  Further, it was shown that the 

cross-correlation patterns of pairs of responses varied considerably when computed using data 

recorded during different states, suggesting rapid network reorganization (cf. Elsayed et al 2016).  

The authors concluded that “neural networks in the brain dwell most of the time in stable 

configurations of activity (‘attractors’ or ‘states’), each having distinct firing rates and neuronal 

interactions.” 

The results of Abeles et al (1995) suggested that distinct network states are associated 

with distinct behavioral states; transitions in behavior could be recognized in the transitions of 

activity patterning.  This type of rapid activity change was also observed during the “context-

recall” task described above (Pellizzer, Sargent, & Georgopoulos 1995).  In fact, rapid change in 

M1 patterning associated with behavioral transitions has been observed in several different 

contexts: when monkeys transition from planning to executing a movement (Elsayed et al 2016; 

Lara et al 2018); from actively moving to idly sitting (Velliste et al 2014); from reaching to 

grasping (Rouse & Schieber 2016b); and from accelerating to decelerating the arm (Harpaz et al 

2018).  A smooth rotational model of M1 rates (e.g. Churchland et al 2012) may therefore 

obscure underlying single-unit dynamics. 



 15 

1.4 BEHAVIORAL STRUCTURE OF REACHING MOVEMENTS 

1.4.1 Two-component model of reaching 

Although M1 firing is temporally complex, transitions in neuronal firing patterns are correlated 

with transitions in behavioral state (Abeles et al 1995; Vaadia et al 1995; Shmiel et al 2006; 

Velliste et al 2014; Elsayed et al 2016; Rouse & Schieber 2016b; Lara et al 2018; Harpaz et al 

2018).  Therefore, in establishing a relation between M1 firing and reaching, it is pertinent to 

examine the temporal structure of reaching movements.  Classical work by Woodworth (1899) 

established that point-to-point movements consist mainly of two components.  Subjects made 

accurate drawing movements with a pencil on a roll of paper attached to a revolving drum.  

Woodworth was then able to evaluate detailed records of the time-course of movements.  In 

some experiments, subjects accurately terminated their movements at a small dot or line.  The 

initial portion of trajectories brought the hand close to the end point, and small corrective 

movements were made to accurately acquire the target.  While the initial displacement was rapid 

and stereotyped across trials, the target homing phase was slower and more variable.  He 

therefore speculated that these movements engaged two separate processes in sequence.  

Woodworth specified the movement time with a metronome and found that target homing was 

only effective for movements of sufficient duration.  He concluded that “rapid movement does 

not allow time enough for the later [trajectory] adjustments. The later adjustments are reactions 

to stimuli set up by the movement, and a rapid movement does not allow for the reaction-time.”  

In support of his two-component model of limb control, Woodworth found that very fast 

movements were about as inaccurate as those made with the eyes closed. 
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Woodworth’s observations have led to an enduring perspective that the initial part of the 

movement is ballistic– a “pre-programmed” displacement unfolds for some time before sensory 

information can be processed meaningfully.  Neurophysiological support for ballistic movement 

components has been described by Evarts & Fromm (1977), who recorded M1 firing rates in 

monkeys and applied small mechanical perturbations during movement.  The perturbations 

modulated firing rates only for small precise movements but not for large rapid movements, 

indicating that proprioceptive feedback is also probably limited during “initial displacements” of 

the arm.  These findings imply that the structure of reaching movements might be recognizable 

in the central motor system. 

1.4.2 Reaching without vision 

In Woodworth’s (1899) original experiments, the contribution of vision to reaching was studied 

by instructing subjects to close their eyes before movement.  On eyes-closed trials, the end-point 

target could not be acquired very accurately: without visual feedback, “we have no exact 

knowledge of where the goal is, and so cannot use our finer adjustments” to acquire the target 

(Woodworth 1899).  Keele & Posner (1968) instead used electronically-controlled lighting to 

randomly eliminate visual feedback without the subject’s prior knowledge.  They attempted to 

refine Woodworth’s estimate of the amount of time needed to process feedback and use it to 

improve the accuracy of their movements.  They found that movements more rapid than 190 ms 

were just as accurate in the light and dark, whereas movements at least 260 ms long were more 

accurate with the lights on.  Therefore, visual processing time was likely somewhere between 

190 and 260 ms.  Subsequent experiments demonstrated that prior knowledge of whether 

feedback would be available can influence visual processing time (Zelaznik, Hawkins, & 
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Kisselburgh 1983), though ~200 ms seems a reasonable estimate in the case that subjects are 

uncertain. 

Meyer et al (1988) studied the composition of point-to-point movements with and 

without feedback using a manipulandum-controlled cursor that could be hidden trial-to-trial.  

The initial (“primary”) sub-movements were comparable regardless of feedback, in line with the 

notion of a “pre-programmed” displacement.  Interestingly, they observed secondary sub-

movements even when the cursor was disabled, and those sub-movements were of similar 

frequency and duration as those made with cursor feedback.  This suggested that multi-

component reaches were the result of a core strategy adopted during precise movement.  

However, the accuracy of secondary sub-movements was clearly diminished without feedback, 

suggesting they occurred as part of a process that was distinct from the “pre-programmed” 

primary sub-movement, and instead “stemmed from active processing of visual feedback.”  It is 

therefore likely that these two processes are associated with distinct patterns of neural activity 

appropriate for each phase of the movement. 

1.5 SUMMARY 

The primary motor cortex is anatomically and functionally implicated in motor control, though 

its specific role is debated.  M1 activity correlates with a very large number of behavioral 

parameters, and firing patterns are temporally complex.  Given the diverse and seemingly 

contradictory nature of M1 coding, what conclusions can be drawn about the function of this 

cortical region?  How should we interpret patterned firing rates during behavior?  Fetz (1992) 

has likened the effort to “reading tea leaves.”  Yet, there are clear principles that may help parse 
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activity patterns.  For example, cosine-like directional tuning is a robust feature of M1 firing, 

even if this tuning relates to diverse behavioral parameters.  Numerous studies have leveraged 

this tuning property, along with dissociation tasks, to determine information content carried in 

M1 during behavior.  Firing patterns are often complex, but encoding changes seem to align with 

distinct components of behavior.  Johnson & Ebner (2000) comment that, while the “encoding of 

multiple parameters in a motor cortical neuron is ambiguous… these apparent ambiguities are 

dealt with by a temporal parcellation scheme in which different parameters are signaled at 

different times in the task.”  Their “temporal parcellation scheme” posits that “the various signals 

and coordinate systems [recognized in M1] vary in time and evolve throughout a behavioral 

sequence, consistent with the demands of the task and the required sensorimotor 

transformations” (Johnson, Mason, & Ebner 2001).  This framework may be good compromise 

between the various descriptions and accounts of M1 activity and function. 



 19 

2.0  TEMPORALLY SEGMENTED DIRECTIONALITY IN THE MOTOR CORTEX1 

2.1 SUMMARY 

Developing models of the dynamic and complex patterns of information processing that take 

place during behavior is a major thrust of systems neuroscience. An underlying assumption of 

many models is that the same set of rules applies across different conditions. This has been the 

case for directional tuning during volitional movement; a single cosine function has been 

remarkably robust for describing the encoding of movement direction in different types of 

neurons, in many locations of the nervous system, and even across species. However, detailed 

examination of the tuning time course in motor cortex suggests that direction coding may be 

labile. Here we show that there are discrete time epochs within single reaches, between which 

individual neurons change their tuning. Our findings suggest that motor cortical activity patterns 

may reflect consistent changes in the state of the control system during center-out reaching. 

These transitions are likely linked to different behavioral components, suggesting that the task 

defines changes in the operational structure of the control system. 

                                                 

1 This chapter was published as: S.B. Suway, J. Orellana, A.J.C. McMorland, G.W. Fraser, Z. 

Liu, M. Velliste, S.M. Chase, R.E. Kass, A.B. Schwartz. Temporally Segmented Directionality in the 

Motor Cortex. Cerebral Cortex 28: 2326-2339, 2018 (Advance access June 2017).  Reproduced with 

permission of Oxford University Press. 
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2.2 INTRODUCTION 

Understanding and modeling the dynamic activation of neural ensembles is a major goal of 

systems neurophysiology. The pioneering experiments of Georgopoulos et al. (1982) in which 

monkeys reached to radial targets from a central start position showed that the tuning relation 

between single-unit neural firing rates in the motor cortex and movement direction could be fit 

with a broad cosine tuning function that spanned all movement directions. Direction was shown 

to be “encoded” in a way that was determined by a neuron’s “preferred direction” (direction of 

peak firing). These features were used in the population vector algorithm to extract movement 

direction from neural activity (Georgopoulos et al., 1983). Cosine tuning has since been shown 

to be robust for many paradigms and characterizes unit activity recorded in structures throughout 

the neural axis during movement (Schwartz, 1994; van Hemmen and Schwartz, 2008). This type 

of broad tuning has been expanded to multiple parameters describing the motion of the arm, 

wrist and fingers, and, as a general descriptor of upper limb dynamics, forms the basis for brain-

computer interfaces in which recorded neural activity drives the movement of external devices 

(Wessberg et al., 2000; Serruya et al., 2002; Taylor, Helms Tillery, and Schwartz, 2002; 

Hochberg et al., 2006; Wodlinger et al., 2015). However, evidence is accumulating that a cell’s 

preferred direction may be unstable (Churchland and Shenoy, 2007; Sergio and Kalaska, 1998; 

Suminski et al., 2015; Hatsopoulos, Xu, and Amit, 2007). Directional tuning may even change 

within the course of a single reaching movement. Because of these rapid changes in a neuron’s 

directional sensitivity, the canonical aspect of a cell’s preferred direction and the meaning of 

directional tuning have been called into question.  

We carefully examined changes of direction representation in motor cortical discharge as 

reaching takes place. In simulation, we determined that complex firing rate patterns and apparent 
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tuning lability can result from neuronal tuning to multiple kinematic variables. However, even 

though adding more kinematic parameters in the simulation could lead to tuning lability, it did 

not account for the within-trial changes observed in the actual data. Instead, we found discrete, 

consistent changes between three well-defined epochs across the population of neurons. As we 

will show, many neurons display stable preferred directions within each of these epochs. During 

the sharp transitions between tuning epochs, modulation dropped to a minimum. These 

transitions corresponded to different phases of the reach, suggesting that the tuning changes were 

driven by the behavioral structure of the task.  

The tuning functions generated in the original center-out experiments compared the mean 

discharge rate, a single number calculated across the duration of movement, to a single 

movement direction from the center position to the target. When expanding these findings to 

account for task dynamics, the simplest assumption would be that the model was stationary—the 

same model would be valid at each time point through the trial. If the hand moves in a straight 

line from the center position to the radial target, direction-induced neural modulation should be 

constant during the trial. According to the cosine tuning model, if direction is the only factor 

governing the firing rate of a neuron, a profile of firing rate versus time, throughout a movement, 

should be flat (Figure 2.1A).  

The problem can be formalized with a simple planar model used in the original 2D 

center-out task: 

𝜆 = 𝛽0 + 𝛽𝑥𝐷𝑥 + 𝛽𝑦𝐷𝑦              (2.1) 

where λ is the firing rate of a cell, Dx, Dy are coordinates of a unit vector pointing in the 

movement direction, β0 is baseline firing rate, βx and βy are the coordinates of a vector in the 
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cell’s preferred direction with modulation depth m = √𝛽𝑥
2 + 𝛽𝑦

2. If Dx and Dy are constant 

(straight movement), then the neuron’s firing rate should remain unchanged throughout the trial.  

Although the basic finding of cosine tuning has been confirmed repeatedly, motor 

cortical firing during reaching movements is rarely constant. This suggests that either a neuron’s 

discharge rate is governed by additional, non-directional factors (requiring an extension of the 

original cosine-tuning model) or that the directional specificity of each neuron changes during 

the reach (with the possibility that direction coding in general may be invalid). Trial-averaged 

firing rate profiles of motor cortical firing rates are almost always phasic, with peaks and valleys 

at different points within the reach, resembling the examples shown in Figure 2.1B or C. This 

shows that simple direction encoding by these neurons is not, by itself, an adequate description 

of motor cortical function, motivating investigators to consider the effect of movement variables 

other than direction on firing rate. The simplest of these are position and its successive 

derivatives, velocity and acceleration (Ashe and Georgopoulos, 1994). In single neurons, 

interactions between direction and these additional parameters can produce complex changes in 

firing rate with temporal instability in both the amplitudes and preferred directions of directional 

tuning. In this paper, we first confirm the temporal instability of directional tuning during single 

reaches (Figure 2.3), then show that extending the model with non-directional parameters does 

not account for this observation (Supplemental Figure 2.11). Finally, we describe distinct phases 

of the reach, defined by each neuron’s directional modulation, in which tuning is robust and 

stable (Figures 2.4, 2.5). This indicates that direction is a major determinant of firing rate, but 

suggests the existence of distinct states within a single reach. The step-changes in preferred 

direction clearly evident in our results (Figure 2.4E) signify discrete segmentation of neural 

processing during reaching. 



 23 

 

Figure 2.1 Simulated examples of tuning vs time 

Each example is composed of 8 straight, center-out, point-to-point reaches. The top row is the firing rate time course 

of the simulated neuron, with colored traces corresponding to movement in a particular direction. The bottom row 

shows the preferred direction calculated in separate bins throughout the trial. A,D. A canonical neuron that behaves 

according to the classic cosine model, in which direction is the only determinant of firing rate. Assuming a straight 

movement, the firing rate would be a step-function and constant during the movement. The preferred directions of 

tuning functions calculated in small windows throughout the trial are constant across windows. B,E. A more typical 

firing rate pattern in which the neuron shows several peaks of firing during reaching. In this case, the entire length of 

the profile is scaled uniformly by direction and the preferred direction is stationary. C,F. A neuron with varying 

modulation patterns during the trial. Neural modulation again has multiple components during the reach, but firing 

rate is both direction- and time- dependent. At each point in time, direction has a different effect on firing rate. In 

this case, the preferred direction changes continually through the trial. 
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2.3 MATERIALS AND METHODS 

2.3.1 Behavioral task, neural recording, and neural data processing 

Rhesus monkeys (Macaca mulatta, male, 3 animals) were seated in a primate chair, with one arm 

restrained. An infrared marker was attached to the free hand and three-dimensional position was 

monitored at 60 Hz using an Optotrak 3020 motion capture device (Northern Digital Inc, 

Waterloo, Ontario, Canada). The monkeys could not see their moving arm, but instead observed 

a computer monitor showing a virtual reality (VR) environment where the position of the hand 

was represented by a spherical cursor. The scene was displayed in three dimensions using a 

depth-displaying monitor (Virtual Window, Dimension Technologies Inc, Rochester, NY, USA). 

The monkeys were trained to perform a center-out reaching task in which they had to move the 

cursor from a starting location toward radial targets equidistant from the center. Workspace radii 

were 7.4, 6.5, and 8.0 cm for monkeys C, F, and N, respectively. Monkeys C and N performed a 

version of the task with targets arranged in a 2D plane, while monkey F performed the task with 

a 3D arrangement of targets (Figure 2.2). Monkeys C and F were required to hold the position of 

the target for a few hundred milliseconds. Monkey N wasn’t required to hold, but instead was 

allowed to return back to the home position immediately. All movement conditions were 

presented in a pseudo-random fashion: failed trials were returned to the queue until each set was 

completed. Monkey C performed 47 repetitions to each of 16 targets; monkey F performed 26 

repetitions to each of 26 targets; monkey N performed 40 repetitions to each of 58 targets. 

Additional information about data sets is detailed in Section 2.7.2.1. 
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Figure 2.2 Experimental design and kinematic results 

A. Monkeys reached for radial targets displayed in a 3D computer monitor. B. Representative kinematics from a 

single monkey C experiment. 1 Target display; 2 Movement onset; 3 Peak velocity; 4 End of movement; 5 Reward 

administration. C. Two-dimensional target arrangement, monkey C. Left- targets individually displayed in virtual 

reality. Right- Trajectories of the hand collected during one experiment, with all repeated movements shown (47 per 

target). D. Two-dimensional target arrangement, monkey N. E. Three-dimensional target arrangement, monkey F. 

Trial-averaged hand trajectories are shown for monkeys N and F. In panels C-E, the color of the targets corresponds 

to that of the trajectories. See also Supplemental Figure 2.9 for electrode array placement. 
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We determined five task-related and kinematic events for each trial: target show, 

movement onset, peak velocity, movement offset, and the end of a hold period (“hold off”). 

Movement onset and offset times were defined as the point when hand speed passed 15% of its 

maximum. Electrical activity from single neurons was recorded extracellularly using chronically-

implanted 96-channel ‘Utah’ electrode arrays (UEAs; Blackrock Microsystems, Salt Lake City, 

UT, USA) implanted approximately in the arm area of the pre-central gyrus (for locations see 

Supplemental Figure 2.9). 

We recorded 93, 119, 185 single units for C, F, and N. For monkeys F and N, waveform 

snippets were stored for each threshold crossing and neuronal spikes were sorted offline using 

"Offline Sorter" (Plexon Inc, Dallas, TX, USA). For monkey C, single units were sorted 

manually online, with sorts adjusted periodically to maintain isolation as needed. Neural data 

recorded from monkeys N and C were collected over one day. For monkey F, neural data were 

collected over five consecutive recording days. To average across days, units were identified as 

being the same using multi-day unit identity analysis (Fraser and Schwartz, 2012). This was 

accomplished by calculating a similarity score derived from four independent metrics: mean 

firing rate, spike waveform, auto-correlation, and cross-correlation with the rest of the population 

(see also Section 2.7.2.2). 

Spike trains from each unit were binned in 20 ms intervals to compute instantaneous 

firing rate. A Gaussian kernel with standard deviation of 50 ms was used for smoothing. The 

hand position values were resampled and interpolated to match the time steps of the firing rates 

using the function “pchip” in Matlab. On each trial, we took movement onset to be time zero and 

then aligned across trials to additional landmarks at target show, peak velocity, movement offset, 

and, for monkeys C and F, hold off. This was accomplished by choosing the number of bins 
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between each landmark so that the average bin size was 20ms, and counting the spikes within 

each bin. Thus, although a single bin spans 20ms on average, it may span more or less time on a 

given trial. Because time was normalized independently between each alignment point, each 

segment of the task was associated with different trial-to-trial variation in bin length. The 

standard deviation of the bin length during the most variable epoch across our data sets was 6 

ms.  

Lastly, we normalized firing rate by scaling its value between zero and one based on 

minimum and maximum firing rate, and subtracting the mean over targets (cross-condition 

mean) at each time step. Amplitude normalization is critical only for the population vector 

analyses (described below), but it is also convenient when comparing tuning characteristics 

between neurons with a different range of firing rates. Subtracting the cross-condition mean 

allowed us to focus on the dynamics of tuning, rather than dynamics shared across targets. All 

analyses described below used the time-normalized data. All analyses except those described in 

Supplemental Figure 2.11 used the mean-subtracted, amplitude normalized changes in firing 

rates. Analyses described for that figure relate firing rates to kinematic variables, which in 

principle may modulate spiking irrespective of target (e.g., scalar speed or displacement). These 

preprocessing steps were therefore not performed on data used in those analyses. 

We sometimes observed that neurons would fire at rates that were unexpected, based on 

their typical trial-to-trial variability. If this happened in the same trial for many of the units in the 

recorded sample, all data for that trial were removed to improve the robustness of non-linear 

model fitting (described below). The firing rate profiles from individual units were analyzed as 

vectors in time. Each trial vector was correlated with all the other trials to that target (using dot 

products) and if the mean correlation between that trial and all others was below .2, it was 
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deemed to be of ‘high variance’. This was repeated for each individual unit in that trial. If more 

than 84% (the percentile corresponding to mean+1 std on a normal distribution) of the neurons 

had high variance for that trial, the trial was excluded (for all neurons) from further analysis. 

Fewer than 15% of trials were excluded due to this criterion. Interestingly, the low firing rate 

correlation between a given trial and the mean firing rate was not strongly related to kinematic 

variability, suggesting that the high variability was due to noise, for example from movement 

artifacts in the neural recordings. Results of individual analyses did not depend critically on this 

exclusion, though the robustness of non-linear model fitting (“component fitting,” see below) 

was improved. 

2.3.2 Preferred direction stability test 

Tuning functions were calculated using the firing rates in 20 ms increments to determine 

statistical changes in directional tuning for each unit. We estimated cosine tuning functions from 

the recorded neural data using least squares linear regression based on the following model:  

𝑦𝑖 = 𝛽0 + 𝛽1 cos(𝜃𝑡𝑎𝑟𝑔 − 𝜃𝑃𝐷) + ε𝑖             (2.2) 

where 𝑦𝑖 = 𝜆̂𝑖 is the single-trial estimate of a neuron’s firing rate, 𝛽0 is baseline rate, θtarg – θPD 

is the angle between the target direction and the neuron’s preferred direction (PD), and εi is the 

noise (or error) representing the deviation from cosine tuning. We define 𝑚̂ = 𝛽1 as the 

estimated magnitude or modulation depth of the tuning function. The extension to the 3D target 

arrangement involves expressing the θtarg – θPD covariate as the dot product of two unit-length 

3D vectors. Two versions of this model were constructed assuming either that PDs are fixed in 

time (Eq. 2.3) or that PDs change over time (Eq. 2.4). We reasoned that if PDs were actually 

constant, allowing the fitted PD to vary with time would not significantly improve the likelihood 
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of the model. Furthermore, the variation in firing rate between time bins would be sufficiently 

described by a change in the modulation depth of the stable tuning function. We thus formulated 

a “restricted” model with a static PD such that: 

𝑦𝑖,𝑡 = 𝛽0,𝑡 + 𝛽1,𝑡 cos(𝜃𝑡𝑎𝑟𝑔 − 𝜃𝑃𝐷) + ε𝑖,𝑡             (2.3) 

where t denotes time. We then formulated an “unrestricted” model with time-varying PD such 

that:  

𝑦𝑖,𝑡 = 𝛽0,𝑡 + 𝛽1,𝑡 cos(𝜃𝑡𝑎𝑟𝑔 − 𝜃𝑃𝐷𝑡
) + ε𝑖,𝑡           (2.4) 

After fitting, we then summed the log-likelihoods of the model fits at each time bin. To compare 

the models’ relative goodness-of-fit, we performed a likelihood-ratio test. The test statistic is 

given as: 

D = -2ln(likelihood of restricted model) + 2ln(likelihood of unrestricted model)      (2.5) 

The null hypothesis of the test represents the case that the restricted (i.e. constant PD) model is 

as likely as the unrestricted (i.e. time-variant PD) model, given the data. The value of D under 

the null hypothesis is assumed to follow a chi-squared distribution with degrees of freedom equal 

to the difference in degrees of freedom between the two models. The restricted model had 1+T 

degrees of freedom in the 2D target case, or 2+T in the 3D case: one (or two) from θPD, and T 

from the β1,t parameters, where T is the number of time steps in the testing period. The 

unrestricted model had 2T degrees of freedom in the 2D target case, or 3T in the 3D case: T (or 

2T) from θPDt and T from the β1,t parameters. For the likelihood ratio test, this gives T – 1 dfs for 

the 2D target case, or 2T – 2 dfs for the 3D target case. We failed to reject the null hypothesis of 

“PD stability” if the p-value of this test exceeded (0.05 / number of time bins considered). To 

reduce the influence of noise, time bins for which a neuron was not significantly modulated by 

target direction (one-way ANOVA, p > .001) were excluded from the analysis. This is important 
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because it allows us to be sure that a result of “stable PD” cannot be attributed to a lack of 

tuning; a model with changing PD does not improve likelihood over a model with static PD if 

there is no task-related modulation of firing.  

We note that θtarg in Equations 2.2 – 2.4 represents the target direction (constant 

throughout a trial), rather than the instantaneous direction of the hand end-point. This is in 

contrast to the methods utilized in Supplemental Figures 2.10 and 2.11, which used the 

instantaneous hand direction. We found there was consistent modulation of many units after the 

hand had stopped, which is not expected for a model based solely on instantaneous hand 

direction (see, for example, Supplemental Figure 2.10B, left subpanel). Using the true hand 

direction was therefore only valid for part of the trial. Instead, cosine tuning to target direction 

was consistently found to be robust at most time points in the trial (Figure 2.3B). 

2.3.3 Tuning reliability over time 

Trial-to-trial reliability of preferred direction estimates (Eq. 2.2) at each 20 ms time bin was 

assessed by bootstrap. We first found the PD within each time bin for each unit using the original 

sample of data. Firing rates for each unit were then sampled with replacement across trials 1000 

times. At each time bin, a distribution of unsigned angles was formed by finding the arccosine of 

the dot product between the unit vectors representing the original PD estimate and each of the 

bootstrap estimates of PD (from the trial resampling). We then found the 95% confidence 

interval of these angles from the percentiles of this distribution. This interval is described for the 

population of neurons in Figure 2.3A. 
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2.3.4 Component fitting 

Our 20 ms tuning analysis showed that preferred directions tended to change in discrete steps 

during the reach. These steps, or segments, had durations of 100-150 ms and we used a novel 

component-fitting procedure to identify each tuning epoch (Equation 2.6). Inspection of the 

sequential tuning functions along with firing rate profiles revealed that the modulation depths 

tended to rise and fall in roughly Gaussian-shaped peaks, or components. PDs were consistent 

for the duration of a component, but could change abruptly from one component to the next. We 

therefore developed a model of firing rates that captured the observed Gaussian-shaped 

modulation and step-like cosine tuning features (Figure 2.4 A, B, E). For convenience, we chose 

to fit the modulation depth profile with a multi-component Gaussian function. Although this 

general function shape fit our data well, other forms likely could be substituted. 

This model (Equation 2.6) defines cosine-tuned Gaussian-shaped components, specified 

in part by peaks in the amplitude of the neuron’s tuning function, observed at different points in 

time through the task. The components are further defined by a PD, which was assumed to be 

constant for the duration of the component (an assumption which was subsequently tested for 

each component). Because PDs were specified separately per component, the overall PD of the 

neuron was allowed to rapidly change from one component to the next. These features were 

simultaneously captured by the following expression, which we refer to as an epoch-specific 

tuning model: 

𝑦𝑖 = 𝛽0 + ∑ 𝑎𝑗 exp {
−(𝑡−𝜇𝑗)

2

2𝑠𝑗
2 } cos (𝜃𝑡𝑎𝑟𝑔 − 𝜃𝑃𝐷𝑗

) + 𝜀𝑖
𝐽
𝑗=1           (2.6) 

Here, 𝑦𝑖 = 𝜆̂𝑖 is the expected change in single-trial firing rate at each time t, given a 

target θtarg. Baseline firing rate is denoted 𝛽0. For each of the J components, the modulation 
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depth was fitted with a Gaussian temporal profile. Thus, the jth width coefficient sj specifies the 

standard deviation of the Gaussian profile, and the time of maximum firing rate (aj) is given by 

μj. The term ε𝑖 is the noise (or error) representing the deviation from the model. Once 

initialization parameters were obtained (see Section 2.7.2.3), final estimates of each parameter 

were fit using non-linear least squares regression for the full model given in Equation 2.6.  

For neurons recorded from monkeys C and F, we often observed a period of tonic firing 

during the hold period. Monkey N was not required to hold at the target and neurons recorded 

during this task did not exhibit this activity. Although this activity was typically also cosine-

tuned, we intentionally avoided fitting components here, as this activity was not believed to be 

related to the preceding movement but rather to the act of holding at the target (Kettner, 

Schwartz, & Georgopoulos, 1988). Examples of this activity can be seen at the end of the trial 

period for units 59a and 79a from monkey C (Figure 2.4 top row) and in Supplemental Figure 

2.13. 

2.3.5 Population vector algorithm (PVA) analysis 

The population vector algorithm (PVA) was used to decode movement direction from motor 

cortical units. To assess the effect of tuning lability on our ability to decode movement, we 

reconstructed movement trajectories with three different formulations of the population vector. 

 

A) PVA using initial preferred directions. We found that tuning becomes maximally reliable 

across the population of cells shortly after target onset (Figure 2.3 A,B). In our first formulation 

of the PVA, we therefore computed a single PD for each cell using the average rates in a 100ms 

window of initial tuning. To account for small variations in tuning onset, and to ensure robust 
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cosine fits, the windows were determined for each cell by finding the first 100ms of significantly 

modulated activity. Population vectors were then computed for each trial using the equation:  

𝑃𝑡 = ∑ 𝑤𝑖𝑡𝐶𝑖
𝑁
𝑖                    (2.7) 

where Pt is the population vector at time t on a given trial, wit is the amplitude-normalized firing 

rate of the ith unit at time t, and Ci is the single preferred direction of the ith unit. To make direct 

comparisons between this analysis and a components-based analysis, units were included only if 

at least 1 component was successfully fitted (see Figure 2.5). The time series of population 

vectors was integrated and averaged over task repetitions to construct a movement trajectory for 

each reach direction.  

 

B) Components-based PVA. Our second formulation of the PVA addressed whether PDs 

determined by each component in the epoch-specific tuning model would improve trajectory 

reconstruction. In the epoch-specific tuning model (Eq. 2.6), the PD of a single cell is constant 

during a tuning component but transitions rapidly to a new value when the component switches. 

We computed these component-determined PDs at each time bin for each cell using the epoch-

specific tuning model fits. Population vectors were then computed using:  

𝑃𝑡 = ∑ 𝑤𝑖𝑡𝐶𝑖𝑡
𝑁
𝑖                 (2.8) 

Here, the preferred direction C of each unit, i, is a function of time, t. 

 

C) Bin-by-bin PVA. Finally, to determine whether PD lability at a temporal resolution higher 

than that of the components would further improve decoding, we computed a third version of the 

PVA using Equation 2.8, but, unlike the components-based method, the PDs were computed 

independently in each bin. 
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In each of these three cases, we quantified the average length of the population vectors and their 

angular deviation from a straight path to the target. The quality of decoding was summarized by 

first obtaining the length and angular deviation of the population vectors for each trial and at 

each time bin. All such values were then averaged. The variability in these estimates was 

computed via bootstrap by drawing trials randomly with replacement and re-calculating the 

measures using firing rates from the resampled trials. This process was repeated 1000 times. 

2.3.6 Offline component recognition 

In order to test the feasibility of using the component-wise preferred directions in a real-time 

population decoder, we investigated the possibility that patterns of population activity could be 

used to identify the tuning component driving a single unit at any given time point. This would 

be useful for real-time tracking of each neuron’s “current” preferred direction during online 

decoding experiments, based on the concurrent activity of each recorded neuron. We trained 

classifiers (Linear Discriminant Analysis, LDA), one separately for each unit, using the firing 

rates from every unit in the recorded population. That is, a feature vector at a given trial and time 

bin was constructed by gathering the rates of every neuron during that bin. For each unit’s 

classifier, class labels were defined by the previously identified tuning segments, as delimited by 

the intersections of the adjacent components fit for that unit. The intersections were taken to be 

the point at which one component’s amplitude became larger than the previous component’s. 

These labels were used to train the linear discriminant classifier for that unit. Once trained, the 

classifier utilized the feature vector of population rates at each 20ms sample in each trial to 
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predict the “current” segment of the neuron’s response (and thus its PD at that time). 

Classification was performed only for units with at least two components. 

2.3.7 Additional data collection 

Data from a fourth monkey (Macaca mulatta, male, monkey P) were collected to clarify the 

effect of target acquisition strategy on the observed pattern of component timing. Monkey P was 

trained to distinguish the stop-and-hold requirement by the color of the target, which was chosen 

at random for each trial. This monkey performed the task for several months prior to collecting 

these data. Behavioral setup, training, and array placement were comparable to those for the 

other three monkeys. Neural data were acquired and sorted using the procedures described for 

monkey N. Data from monkey P were pooled over three days of recording and included a total of 

139 neurons (average 46.3 per day).  

2.4 RESULTS 

2.4.1 Expanded models do not account for preferred direction lability 

Data were collected as monkeys performed center-out tasks using target arrangements in 2 and 3 

dimensions (Figure 2.2). Speed profiles over each movement were bell-shaped, displacement 

increased monotonically and acceleration profiles were biphasic, showing that these movements 

are consistent with smooth point-to-point movements typical of normal reaching (Figure 2.2B). 

To determine whether directional tuning changed within the task, we divided each trial into 20 
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ms time bins, and calculated local tuning functions for individual neurons in each bin. A 

preferred direction stability test (see Section 2.3.2) was used to determine whether local 

preferred directions, calculated in each bin, differed from the mean preferred direction taken 

from the period 100 ms prior to movement until the end of the movement. By this criterion, only 

21%, 8%, and 16% of the recorded units in monkeys C, F, and N, respectively, were found to 

have tuning functions that were stable throughout the task.  

This temporal instability could result from a statistical interaction between direction and 

parameters that take on varying values throughout the task. Displacement, speed, and 

acceleration have characteristic temporal profiles during reaching (Figure 2.2B). To explore the 

possibility that adding a combination of these kinematic terms to the regression equation could 

account for the observed instability of preferred direction, we built simulations of firing rate 

using a mixture of kinematic variables. The resulting firing rate profiles were complex and 

resulted in tuning function instability through the trial (Supplemental Figure 2.10). This 

possibility was tested on actual data, by using the firing rates of each unit in 16 different 

generalized linear models consisting of different combinations of direction, position, speed, 

velocity, and acceleration (Supplemental Figure 2.11A). Although specific parameters had a 

slight effect on model fitness, for the most part, adding additional parameters to the basic 

direction-only regression had little effect on the explanatory power of the model when used on 

actual data, as shown by the consistent goodness-of-fit (Supplemental Figure 2.11B). When 

assessed for temporal lability in the preferred directions (Supplemental Figure 2.11C) none of the 

models led to a decrease in the magnitude of preferred direction changes. Furthermore, 

accounting for additional kinematic terms had little effect on our statistical assessments of tuning 

stability for each individual neuron (Supplemental Figure 2.11D). 
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The large majority of deviations from stability in our data were small (20-40 degrees), 

but significant. Although our simulations showed that including a mixture of kinematic 

parameters could lead to directional instability, this analysis, performed on the collected data, 

suggests that simply expanding the basic model with more terms cannot explain the observed 

changes in preferred direction. 

2.4.2 Cosine tuning is robust throughout trials, even in the presence of preferred 

direction lability 

We characterized tuning function stability during the task with a number of analyses. Trial-to-

trial directionality in each bin was examined by selecting randomly (with replacement) firing 

rates from different trials and calculating preferred directions repeatedly in a bootstrap procedure 

(Figure 2.3A). Early in the trial, preferred direction estimates for each neuron were highly 

unreliable (large confidence intervals), with a rapid increase in reliability about 100 ms before 

movement onset. A similar trend was found for the cosine tuning regression fit in each bin, 

where R2 increased steeply just before movement onset (Figure 2.3B). Instead of assessing 

directional tuning independently in separate bins, tuning stability across bins was assessed in 200 

ms (10-bin) sliding windows with the preferred direction stability test (Figure 2.3C). The 

percentage of cells with constant preferred directions in the 200 ms window was relatively high 

(approx. 75%) early in the trial and then decreased to a minimum (approx. 25%) around 

movement onset, before increasing as the movement progressed. While directional tuning may 

not be robust early in the reach (large confidence intervals), the decrease in preferred direction 

stability near movement onset occurred when the data fit the cosine tuning model well and with 



 38 

high reliability (Figure 2.3A,B). The instability of preferred directions by this point in the reach 

therefore cannot be explained by unreliable tuning or low R2 of a cosine fit. 

When testing for changes in preferred directions during the behavioral trials, it would 

appear that directional stability is related to separate portions of the task. For instance, if only the 

firing rates prior to movement onset are considered (-150 to -50 ms), 90%, 81%, and 74% of the 

units (monkeys C, F, and N) had stable preferred directions. However, immediately after 

movement onset (0 – 100 ms), only 35%, 72%, and 50% of units were stable, respectively. 
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Figure 2.3 Stability vs time for the population 

A. Reliability of preferred direction estimates. To determine trial-to-trial variability (width of confidence interval) 

for each neuron and at each time bin, PDs were repeatedly estimated using a bootstrap method (see Materials and 

Methods). Black lines show the population median for width of PD confidence intervals (95%) computed by the 

bootstrap; gray lines show quartiles (Q1, Q3) for the population. The distribution began narrowing 200 ms before 

movement onset, with tuning becoming maximally reliable for most neurons about 50 ms after the movement began. 

B. The same reliability trend was found when using R2 for the cosine tuning regression. Tuning functions for each 

neuron were calculated in each 20 ms bin by averaging firing rates over task repetitions and fitting a cosine. Black 

and grey lines show the population median, Q1, and Q3 R2 of the cosine fits to each neuronal tuning curve. C. 

Preferred direction stability was assessed within 200 ms overlapping windows that were incremented by 20 ms bins. 

The stability test, used previously for the whole trial, was then applied to each 200 ms window for each analyzed 

cell. To decrease the influence of noise, bins with poor tuning (R2 < 0.6) were excluded. The percentage of units 

with stable preferred directions peaked 100 ms before movement onset, decreased to the beginning, and then 

gradually increased toward the end of the movement when the cursor was in the target. Square markers in panel C 

correspond to target show, movement onset, peak velocity, movement offset, and reward administration.  
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2.4.3 Episodic modulation determines changes in preferred direction 

As shown in Figure 2.1, the temporal profile of firing rate can be a determinant of directional 

stability. Therefore, we analyzed the modulation patterns of the recorded activity for consistent 

features that may be related to directional tuning. We characterized direction-related modulation 

by using the amplitude of the tuning function (modulation depth) calculated in each 20 ms bin 

throughout the task. Tuning function amplitude is shown in the second row of Figure 2.4 for four 

different neurons. The neuron in the first column had one clear modulation peak, the neurons in 

the second and third columns had an early peak followed by a later peak in modulation, and the 

cell in the fourth column showed three distinct modulation components. For each neuron, we 

modeled this modulation with an epoch-specific tuning model (Equation 2.6) and the resulting 

Gaussian-shaped components are shown in the third row of Figure 2.4. Preferred directions 

calculated within the timespan of each component were found to be stable, but these directions 

changed rapidly between epochs (Figure 2.4, bottom row).  

We next used principal components analysis (PCA) to find components of each unit’s 

firing rate profile that covaried. This allowed us to examine prominent temporal features in the 

firing rate profiles without making assumptions about tuning curve shape (i.e. a cosine). 

Averaging across trials, we constructed a vector for each bin with components of firing rate to 

each target condition. We then used PCA on an T x T covariance matrix where T was the 

number of bins in the trial (this is sometimes referred to as “functional” PCA). The resulting 

eigenvectors are a function of time and represent orthogonal patterns of firing rate modulation 

taking place during the trials. Note that there is no consideration of directionality here, as this 

PCA was based solely on the variation of the observed firing rates, in contrast to the epoch-

specific tuning model which was based explicitly on the typical cosine-tuning model. The two 
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approaches gave very similar results: the first few eigenvectors from our PCA captured 

variability that was described well by the epoch-specific tuning model (Figure 2.4, fourth row).  

 

 

Figure 2.4 Episodic modulation patterns 

Firing rate patterns of four different neuronal units are shown in columns. A. The first row shows trial-averaged 

firing rate profiles for each target direction. Square markers correspond to alignments on target show, movement 

onset, peak velocity, and movement offset. B. Tuning function amplitudes (estimated modulation depth) calculated 

in each bin are shown in the second row. C. Gaussian-shaped components fit to the tuning amplitudes are shown in 

the third row. D. Eigenvectors calculated from correlation matrices across bins are shown in the fourth row (darker 

line intensity for eigenvectors with more explanatory power). E. Preferred directions computed repeatedly over the 

course of the trial are shown in the fifth row. The darkened portions highlight the 100ms period centered on each 

Gaussian-shaped component and which was tested for PD stability. Error bars show the 95% CI (computed using 

bootstrap). 
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Dividing each reach into segments determined by the epoch-specific tuning fits showed 

that within those segments, preferred direction was typically constant for at least 100 ms (5 time 

bins) as defined by our preferred direction stability test (Figure 2.5A). Within each segment, 

firing rates were well described by cosine tuning (Supplemental Figure 2.12A). Further, the trend 

towards stability was evident even when considering only the components with very good fits to 

a cosine function (proportion of yellow to blue in rightmost bars in Supplemental Figure 2.12A). 

A majority of the neurons had a single stable component and units with three stable components 

were rare (Figure 2.5B). When unstable components were analyzed, the amount of PD change 

was found to be quite modest despite being statistically significant (Supplemental Figure 2.12B). 

Possible reasons for this finding (e.g. a conservative stability criterion) and further discussion are 

given in Supplemental Figure 2.13. 

 

 

Figure 2.5 Preferred direction stability during component times 

A. Component-wise directional stability. The majority of fitted components for each monkey were found to have 

stable PDs for the 100 ms period centered on the component peak. B. Number of stable components fit per neuron. 

The majority of components had stable preferred directions for at least 100 ms. When considering the number of 

components fit per neuron, regardless of stability, the breakdown was similar. From 0 to 3 components, the 

percentages for monkey C were 27, 33, 35, 4; for monkey F 6, 56, 34, 3; and for monkey N 39, 42, 18, 0. Total 

number of components fit for monkeys C, F, and N was 109, 161, and 146, respectively.  
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The PD differences between successive components in the example neuron displayed in 

the fourth column of Figure 2.4 were approximately 180º. Although the difference in PD 

between components was most often statistically significant (Supplemental Figure 2.12C, blue vs 

yellow), this extreme change in preferred direction was rare. For cells with multiple components, 

the angles between them (Supplemental Figure 2.12C) tended to be small, with 37% having 

values below 45º and only 11% in the 135-180º interval.  

We next considered the effect of smoothing the recorded firing rates prior to using the 

preferred direction stability test. Since the test evaluates sequential time bins, smoothing the rates 

decreases the effective number of degrees of freedom. Given the same test statistic (Equation 

2.5), the frequency of type II statistical error would then increase, inflating the reported number 

of “stable” components. However, smoothing also reduces the amount of noise in the firing rates, 

which in turn changes the value of the test statistic and has the opposite effect on the outcome of 

the statistical test. To directly assess these opposing effects of smoothing, we again used the PD 

stability test on the component data, but without applying any smoothing to the firing rates (aside 

from binning in 20 ms bins). We found that smoothing had very little effect on the results of the 

stability test. For components from monkey C, we found 65% to be stable after smoothing, and 

69% stable without smoothing; from monkey F, we found 87% stable after smoothing and 80% 

stable without smoothing; from monkey N, we found 70% stable after smoothing and 71% stable 

without smoothing. 

To assess the sensitivity of our stability test to different amounts of PD variation in the 

presence of realistic noise, we generated simulated firing rates with a preset amount of PD 

change (Supplemental Figure 2.14A). To approximate the characteristics of our experimental 

data, simulated rates were matched to each recorded neuron in terms of cosine-tuning modulation 
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depth and trial-to-trial firing rate variability. To directly compare our simulation to the 

experimental data, we restricted the test to 100ms (5 bin) windows centered on each of the 

Gaussian-shaped components that were fit to the real data using the epoch-specific tuning model. 

Therefore, the simulation results are best compared to those reported in Figure 2.5A. Modest 

changes in the simulated PDs were consistently identified as “unstable” by our test 

(Supplemental Figure 2.14B). Given that our simulated rates were carefully matched to the real 

data in noise and tuning depth, this finding suggests that change in the actual PDs during these 

components is minimal. Indeed, if the PDs within components do change, those changes are 

considerably smaller than those typically observed between components (Supplemental Figure 

2.12C).  

Although a cosine function described the firing rate data well at most time points, it is 

possible that our PD stability test was biased by imperfect fits. We therefore utilized another 

method for evaluating tuning stability based on the correlation between target-specific firing 

rates, which doesn’t assume any parametric shape. We used this correlation metric to 

characterize our data in several ways, and found strong evidence for periods of stable 

directionality punctuated by rapid changes in tuning, without the assumption of cosine-tuning. 

These analyses and findings are described in detail in Supplemental Figures 2.15 – 2.18.  

2.4.4 Segments of tuning occur at similar task times across the population of neurons 

Next we asked whether the timing of components was consistent across the population of 

recorded cells. The times in the trial of each stable component (specified by the time of the 

Gaussian-shaped modulation peak) were used to build histograms separately for each monkey 

(Figure 2.6). Analysis of the histograms showed that the collective components from individual 
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cells tended to cluster into three epochs within the reach trial. The timing of these global epochs 

was consistent across monkeys, and tuning functions calculated throughout the trial tended to 

have maximum amplitude and consistent preferred directions within these three epochs. 

Interestingly, the clustering we observed for monkeys C and F was clearly more distinct than for 

monkey N, and for this monkey, the probability of observing components later in the task 

decreased. Monkeys C and F were required to stop and hold in the target before being rewarded, 

while monkey N was rewarded as soon as the cursor touched the target. The behavioral 

significance of this event therefore differed across monkeys. Because the third directional epoch 

is centered around the time the target was acquired, and was less prominent in monkey N, the 

directionality reflected at that time may be related to arresting the movement.  

To test this hypothesis, we trained a fourth monkey (“P”) to perform a center-out task in 

which the stop-and-hold requirement was cued by target color. The monkey performed this task 

for several months prior to collecting behavioral and neuronal data over three days. We then 

repeated our component-fitting procedure separately for “hold” and “no hold” reach trials, fitting 

a total of 265 components in the “hold” task and 184 components in the “no hold” task (231 

stable in the “hold” task; 143 in the “no hold” task). We found that the number of neurons with 

components observed in the third epoch was markedly decreased in “no hold” trials (Figure 2.6, 

histograms for monkey P in panels A and B). Further, the separation in time of the three epochs 

was enhanced in the “hold” trials compared to “no hold” trials. This dissociation was most 

obvious when we combined data from the four monkeys and built histograms separately for the 

two task requirements (Figure 2.6 A,B bottom row). Requiring an accurate target acquisition 

prolonged the last phase of the reach, as we found that monkey P entered the target zone 43ms 

sooner in the “no hold” trials than in the “hold” trials, measured relative to movement onset (t-
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test, p = 3.3x10-79, t = 19.4, df = 3391, 95% CI = [38ms, 47ms]). These results support the idea 

that the third component is associated with the terminal portion of the reach. 

 

 

Figure 2.6 Temporal distribution of tuning components 

The time of Gaussian-shaped peaks from “stable” components was used to make histograms of component 

occurrence for each monkey (left columns in A and B). Gaussian mixture models (GMMs) were fit to component 

times, and the Akaike information criterion (AIC) was computed for fits with 1 through 5 clusters (right columns in 

A and B). We consistently observed a minimum AIC for 3 clusters, suggesting components fall into one of three 

epochs, which are similar across monkeys. A. Stable component times observed during “hold” tasks. B. Stable 

component times observed during “no hold” tasks. Histograms in the bottom row of A and B represent data pooled 

from each preceding histogram. The three epochs are most distinctive in the “hold” task, but can also be observed in 

the “no hold” task. Movement begins at Time = 0 and the filled square symbols denote the behavioral events of 

target show, peak velocity, movement offset, and end of hold (if relevant). The time scales in the left column have 

been scaled linearly between event times to match those of monkey C; time scales in the right column have been 

scaled to match monkey N. 
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Regardless of task type, the earliest period of stable tuning began about 100 ms before 

movement onset, and peaked about 50 ms later. The timing of the second epoch peaked later in 

the reach, about 50 ms before the arm reached its peak velocity. The third epoch began around 

peak velocity and peaked approximately at the end of the movement. Most cells had a single 

modulation peak that contributed to one of the three epochs, although some cells had multiple 

directional components that fit into these epochs. Those cells with directional firing in an epoch 

tended to have stable preferred directions within that period. As shown by our tuning function 

analyses (Figure 2.3A,B), directional tuning is not evident early in the trial. The sharp increase in 

tuning function fit about 100 ms before movement onset corresponds to the beginning of the first 

global tuning component which peaks about 50 ms before movement onset (Figure 2.6). A 

second, separate directional feature peaks subsequently, overlapping the first, so that two strong 

and sequential directional signals in the neural population are evident during the reach. Single 

neurons driven by both signals could be found to have temporally-distinct tuning functions with 

different preferred directions (for example, the units in the middle two columns of Figure 2.4). 

2.4.5 Accounting for tuning changes can be important for accurately decoding reach 

trajectory 

The concept of directional tuning in the motor cortex has received a great deal of support since 

its introduction in the early 1980s (for a review- Georgopoulos and Carpenter, 2015). One of the 

first population vector demonstrations showed that the representation of direction evolved and 

pointed consistently to the target during center-out reaches (Georgopoulos et al., 1984). 

Following that work, neural trajectories were constructed by adding the time-series of population 

vectors tip-to-tail, and were found to closely match the trajectory of the arm when reaching to 
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targets (Georgopoulos, Kettner, and Schwartz, 1988) and when drawing a variety of figures 

(Schwartz, 1993; Schwartz, 1994; Moran and Schwartz, 1999; Schwartz and Moran, 1999). 

How could such a large body of work, based on the idea of a fixed preferred direction, 

produce successful movement predictions if the tuning function is labile? Because the typical 

tuning model is a cosine, the firing rate average over multiple epochs of cosine tuning is also 

well-described by a cosine, even if PD changes occur between epochs (Supplemental Figure 

2.19). As is the case with many center-out reports, using this average PD in the population vector 

algorithm yields accurate decoding, tending to minimize the errors due to PD changes between 

epochs. We found that directional tuning begins 100 ms before movement onset and extends 

beyond the end of movement. Using the amplitude of directional tuning, we identified three 

separate epochs. Within each epoch, preferred direction was constant. The first two epochs 

spanned the initial portion of the reach. A change in preferred direction within this span is rare; 

most cells had only one modulation component (occurring in the first or second global epoch) in 

this peri-movement period. Indeed, when we restricted our data sample to this portion of the task, 

trajectories decoded with population vector analysis were accurate (Supplemental Figure 2.20B). 

Because confining the data to this portion of the task is common practice, the issue of labile 

preferred direction has not been identified as a major problem in decoding experiments. Most of 

the directional lability found in our data samples came from the early reaction time portion of the 

task when directional drive was weak, or later in the task as the target was acquired and held, 

which may be a phase distinct from the initial portion of the movement. It should be noted that 

our analyses focused on directional modulation and this may differ substantially from overall 

firing rate modulation. Casual examination of our data suggests that that firing rate modulation 

tends to decrease through the reach, while directional modulation (e.g. in the third component) 
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may still be significant. Since the population vector algorithm is based on firing rate modulation, 

distortions of the neural trajectory toward the end of the reach due to changes in preferred 

direction may be marginalized by lower firing rates. 

As a linear decoder, the population vector is optimal when neurons have cosine tuning 

functions and the recorded sample has a uniform distribution of preferred directions (Salinas and 

Abbott, 1994; Kass et al., 2005). Deviations from cosine-tuning will lead to inaccuracies in the 

decoded movement. Furthermore, when the preferred direction of a neuron changes during a 

movement, trajectories decoded from a time-series of population vectors can be distorted if these 

non-stationarities are not taken into account. Population vector trajectories were constructed for 

the reaches performed by each monkey (see Section 2.3.5). Results from monkey C are shown in 

Figure 2.7. When neural trajectories were constructed with a single preferred direction taken as 

the initial occurrence of significant tuning, the neural trajectories were distorted and shortened in 

the 10 and 4 o’clock directions (Figure 2.7A). However, use of component-wise preferred 

directions in the corresponding portion of each trial led to more accurate population vectors 

(Figure 2.7B, Supplemental Figure 2.20A). It could be argued that if a cell’s directionality 

changed constantly during a reach, the most accurate reconstruction could be achieved using 

preferred directions with a high temporal resolution. To test this idea, we calculated preferred 

directions in each bin for every cell in the sample, and computed the trajectories in Figure 2.7C. 

These reconstructed trajectories were only slightly better than those generated with the 

component-wise PDs (Figure 2.7B), suggesting that the components adequately captured the 

changes in directionality that lead to decoding errors. It should be noted however, that these 

considerations apply mostly to the last portion of the trajectory. If the analysis is confined to the 

portion of each trial defined by the first two global components (Figure 2.6) around the time of 
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movement, using a single preferred direction for that epoch was almost as effective as using 

separate components (Supplemental Figure 2.20B).  

 

 

 

Figure 2.7 Population vector reconstructions of cursor trajectories to 16 center-out targets for monkey C 

Neural trajectories were generated by calculating population vectors in each bin (from 100 ms prior to movement 

until 100 ms prior to end of trial) and adding the vectors tip-to-tail. A. The population vectors were calculated using 

a single, initial preferred direction for each neuron. This method resulted in highly distorted trajectories. B. Preferred 

directions from within each component were used to construct the population vectors. This method largely remedied 

the distortions seen in A. C. Tuning functions were calculated in each time bin and their preferred directions were 

used for the neural trajectories. This method yielded only modest improvements over the method used in B. 
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2.4.6 Offline identification of system state enhances accurate decoding 

Assuming that the directional components effect changes in directionality simultaneously for 

many neurons, it should be possible to identify, at any point in time, which component is acting 

as the current driver on a neuron. The identity of the component could then be used as an index 

to the unit’s component-wise preferred direction. Using each cell’s segment-specified preferred 

direction would be expected to generate a more accurate readout of the arm’s direction than a 

prediction produced with a single preferred direction. This real-time readout would be useful, for 

instance, in neural prosthetics. To demonstrate the utility of this approach, the “current” tuning 

segment of each neuron was detected on each trial and in each time bin by using the concurrent 

activity of all simultaneously recorded units in a linear-discriminant analysis. This showed that 

the individual components of neurons could be identified with high accuracy for the three 

monkeys (Figure 2.8).  

To illustrate the feasibility of real-time decoding of movement trajectory using the 

components model, we performed an additional PVA analysis (based on Equation 2.8). In this 

version, the PD at every time step in each individual trial was defined by the PD of the 

component detected by the LDA for that sample. The identified components, when used to 

specify each neuron’s preferred direction (per trial and time bin), produced population vectors 

that were comparable to those in Figure 2.7B. We used a bootstrap procedure to compare the 

magnitude and angular accuracy of population vectors computed this way with those computed 

using the true labels. The results of this method did not significantly differ from those using each 

cell’s “ground truth” components (bootstrap test, p > 0.05 for each monkey). 
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Figure 2.8 Offline component recognition 

We investigated the possibility that patterns of population activity could be used to identify the tuning segment 

(component) of each single unit at any given moment in a trial. We trained classifiers (Linear Discriminant Analysis, 

LDA), one for each unit, using the concurrent firing rate samples from every simultaneously recorded unit. For each 

unit’s classifier, samples in each bin were labeled based on their timing, relative to the unit’s previously fitted 

components, with transitions delimited by the point at which one component’s amplitude became larger than the 

previous component’s. These labels were used to train the linear discriminant classifier for that unit, which was then 

used to predict the “current” temporal epoch for each 20 ms sample during each trial. Five-fold cross-validated 

success rates for units with at least two components were high: 94.7 ± 1.4%, 95.2 ± 1.6%, and 92.5 ± 2.0% for 

monkeys N, F, and C, respectively. Histograms of success rate per unit are displayed for each monkey. Success rate 

by chance was computed by randomly shuffling the group labels prior to training the classifiers, and yielded much 

worse classification: 50.1% ± 0.3, 48.8 ± 5.1%, and 48.2 ± 5.4% for monkeys N, F, and C. 
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2.5 DISCUSSION 

Although the center-out task invariably shows that the mean discharge rate of neurons is tuned to 

movement direction, variations of this task, in which consideration of speed/amplitude 

(Churchland and Shenoy, 2007), shifts in workspace location (Caminiti, Johnson, and Urbano, 

1990), movement fragments (Hatsopoulos, Xu, and Amit, 2007), isometric hand forces (Sergio 

and Kalaska, 1998, 2003), arm posture (Scott and Kalaska, 1995), limb biomechanics (Suminski 

et al., 2015), and covert encoding perturbations during brain-controlled tasks (Jarosiewicz et al., 

2008) have shown that directional tuning functions are labile. Since some of this directional 

instability has been found within single reaches, concerns have been raised that the apparent 

representation of movement direction may be secondary to other aspects of motor control such as 

force generation (Sergio, Hamel-Pâquet, and Kalaska, 2005), oscillatory dynamics (Shenoy, 

Sahani, and Churchland, 2013), or intrinsic skeletal-muscular action (Suminski et al., 2015). One 

of these papers (Suminski et al., 2015), using a center-out task, reported rapid changes in motor 

cortical preferred directions around movement onset, a finding that is congruent with the 

transition between components one and two found in our work. Instead of attributing this 

transition to behavioral aspects of the task, these investigators suggested that the preferred 

direction changes were related to successive recruitment of different muscles during the task, 

with the argument that the primary determinant of a motor cortical neuron’s preferred direction is 

the set of muscles to which it is connected. The primacy of motor cortical activity as a driver of 

muscle contraction has been controversial since the original characterization of this cortical 

structure (Fritsch and Hitzig, 1870). While motor cortical output undoubtedly has a role in 

altering muscle excitability, it is equally clear that there is no simple correspondence between a 

neuron’s firing rate and the excitability of its “muscle field” (i.e., “upper motoneurons”), even 
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for the small portion of the corticofugal output that projects monosynaptically to spinal 

motoneurons (Griffin, Hoffman, and Strick, 2015). The historic issue of whether the motor 

cortex operates as a direct link to muscles or has a large role in movement planning is rooted in 

the assumption that a single function needs to be assigned to this anatomical structure. 

Current theories of motor control link displacement, the generation of muscle activity, 

and behavioral output into a cohesive scheme (for a review see Diedrichsen, Shadmehr, and Ivry, 

2010). In this approach, the intended state of the arm (e.g., position and velocity) is transformed 

by an “internal model” to a set of muscle activations, which, in turn, displace the limb as an 

action on the external world. Sensation from the movement is then fed back to the system. The 

modeled transformations are serial with the expectation that they correspond to the purported 

hierarchical anatomical connectivity between brain structures. Advocates of direct cortical 

participation in muscle contraction equate the motor cortex with the internal model, as the place 

where kinematics are transformed to muscle activation. Despite the attraction of these control 

schemes, neurophysiological results do not support the correspondence between separate brain 

structures and the discrete operational components used to construct these models. Multiple brain 

structures at different levels of the proposed hierarchy have similar directional characteristics 

(Suminski et al., 2015; Kalaska, Caminiti, and Georgopoulos, 1983; Johnson, Mason, and Ebner, 

2001; Turner and Anderson, 1997; Kutz et al., 1997). Describing specific aspects of function is 

useful for framing concrete motor control issues, but localizing function to specific portions of 

the neural substrate may have less utility. The assignment of a single specific role to the motor 

cortex may be incompatible with the functional dynamics of the motor system. 

There has been renewed interest in treating point-to-point reaches in the context of a 

dynamical system. The original idea was that an equilibrium position, defined by the joint angle 
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where the forces of opposing muscles balance, could be preset before the movement began 

(Feldman, 1966; Polit and Bizzi, 1978). When the arm was released, achieving this equilibrium 

would require no further input. A definitive experiment (Bizzi, Acconero, Chapple, and Hogan, 

1984) disproved this idea, although modifications based on the idea of stable equilibria (Flash, 

1987; Hogan, 1984) have since gained traction. More recently the ‘set and forget’ control 

concept of reaching has been revived (Churchland, et al. 2012). This recent rendition posits that 

trajectory specification takes place during the pre-movement period, and upon movement 

initiation the inherent properties of the system move the arm to a target. This concept can be 

described by a dynamical system formalism: 

𝜆̇ = 𝐶𝜆 + 𝐷𝑢; 

where λ is firing rate (the system’s state variable) and u is the trajectory specification (the 

system’s input). The term 𝐶 transforms the current firing rate to a change in firing rate; 𝐶𝜆 

describes the component of firing rate change that depends on the current firing rate itself. 

Similarly, 𝐷 transforms the intended trajectory 𝑢 to a change in firing rate. The integral of the 

first term, ∫ 𝐶𝜆  𝑑𝑡, is referred to as the “natural response” and that of the second term, ∫ 𝐷𝑢  𝑑𝑡, 

as the “forced response”. In the recent “set and forget” concept, 𝑢 = 0 during the movement; 

desired velocity acts as an input before the movement begins with subsequent movement 

executed by the “engine of movement” in the absence of input. Indeed, we see non-step like 

modulation of firing rate during the reaching task (e.g. Figure 2.1A). Since this is not accounted 

for by different combinations of movement parameters, our results suggest that there is a system-

dependent structure to motor cortical activity. While this suggests that a putatively constant 

direction signal can elicit a time-varying change in firing rate, our results also show that 

encoding of directional input is consistently maintained during discrete epochs of stable 



 56 

directional tuning throughout the movement. While this study cannot rule out the possibility that 

these directional signals are components of the natural response, our results are consistent with 

control linked to behavioral drivers associated with separate states occurring during the task.  

Neural operations are likely to be determined by the different control criteria needed 

during behavior. For instance, reaching is characterized by a set of invariants or “neural 

constraints” (Bernstein, 1984). A behavioral perspective can help link our findings of directional 

states in neural populations to global control issues. For goal-directed reaching, an initial phase, 

characterized by a stereotypical bell-shaped velocity profile (Morasso, 1981), during which the 

hand moves almost to the target, is too rapid for visual feedback to act concurrently (Hollerbach, 

1982). Subsequently, a distinct terminal phase takes place, during which the hand and target are 

foveated together (Soechting and Lacquaniti, 1981; Meyer et al., 1988; Milner, 1992). Different 

cortical mechanisms may operate in these phases (Paillard, 1982; Brinkman, 1972). The first 

directional epoch we identified corresponds to the reaction time, the second peaks in the initial 

transport phase, and the last component is linked to target acquisition. Recent studies based on 

correlational structure between units within a recorded population suggest that this structure 

changes at the onset of an arm movement (Sussillo et al., 2015; Kaufman et al., 2014). Another 

experiment using a reach-to-grasp task has shown that there is a clear transition in motor cortical 

activity correlation from object location to object type at the end of the reach (Rouse and 

Schieber, 2016). Analysis of firing rates using Hidden Markov Models during a reaching task 

supports the idea of stable regimes and sharp state transitions taking place in the control system 

(Abeles et al., 1995). Together, these findings support the concept of discrete processes taking 

place sequentially through a task. By recognizing consistent non-stationarities in the time-
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varying patterns of neural activity associated with motor control, we can better describe details 

of the processing used to generate behavior. 
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2.7 SUPPLEMENTAL MATERIAL 

2.7.1 Supplemental Figures 

 

Figure 2.9 Electrode array placement 

CS: central sulcus; SPS: superior pre-central sulcus; AS: arcuate sulcus; PS: principal sulcus; IPS: intraparietal 

sulcus. Black boxes represent Utah arrays (4 x 4 mm, drawn to scale). Small black lines connected to arrays 

represent wire bundles. Array placement for monkey N is approximate. 
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Figure 2.10 Simulation demonstrating static encoding of kinematic parameters and apparent tuning lability 

For many neurons, there is a large amount of temporal variation that cannot be fit with a static directional model. 

Here, we used a simulation to test whether additional terms in the fitting model could account for the temporal 

variation in the data. The three columns in each panel describe the simulation and analysis of firing rates generated 

using different combinations of kinematic data collected from monkey C. From left to right, the simulation models 

are 1) direction-only; 2) velocity and position; 3) direction, position, and speed. A. Simulation models and examples 

of their inputs. λt is the neuron’s firing rate at time t, b0= baseline, D = direction, V = velocity, P = position, s = 

speed. The remaining terms are model coefficients that were chosen randomly and were kept constant at each time 

step. Lowercase letters indicate scalar quantities, and capitals indicate vector quantities. Examples of the trial-

averaged x- and y-components of each kinematic term are shown for a single reach target. B. Outputs of simulations 

in A. Left, simulated rates using a direction-only generative model. The cosine tuning is expressed as step-function, 
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much like the idealized diagram in Figure 2.1A. Middle and right, encoding of multiple kinematic parameters 

produces more complicated firing rate profiles. C. Analysis of simulation outputs in B. The simulated firing rates 

were analyzed at each time step in two ways: 1) using the classical direction-only regression model (top row), or 2) 

using the regression model that matched the generative model (bottom row). Top left, the PD estimates of the 

simulated direction-only neuron are constant over time, as expected. Top middle and right, the PD estimates of these 

simulated neurons are temporally complex. This is because the generative model contained additional kinematic 

terms which were not included in the regression model. Bottom middle and right, if the regression model matches 

the generative model, an accurate estimate of the PD (constant over time as simulated) is recovered, despite the 

complex firing rate profile (panel B, middle and right).  



 61 

 

Figure 2.11 Least squares regression models of kinematic encoding 

As shown in Supplemental Figure 2.10, tuning lability in simulated neurons can be observed if their kinematic 

drivers are not accounted for in the regression analysis. To assess the extent to which the inclusion of additional 

kinematic terms in the decoding model could account for tuning lability in experimental data, units’ firing profiles 

were fit using general linear models including many combinations of kinematic parameters. Using the experimental 

data, we constructed 16 static models from combinations of five kinematic parameters of the hand end-point 
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(direction or velocity, position, speed, and acceleration) plus a baseline firing rate. Data were not trial-averaged prior 

to model fitting. A. Code syntax diagram describing model composition. Models are constructed by following the 

arrows; vertically stacked elements (the directional terms) represent mutually exclusive options. λt is the neuron’s 

theoretical firing rate at time t, lowercase letters indicate scalar quantities, and capitals indicate vector quantities. bk 

= baseline, D = direction, V = velocity, P = position, s = speed, A = acceleration. The remaining terms are 

coefficients fit using least squares regression analysis. Analyses included units with an average cosine tuning 

function R2 > .6, and spanned the time period from 50 ms after target show until 100 ms after movement offset. B. 

Goodness-of-fit of models using a variety of kinematic parameters and static preferred directions (BD and BV in 

panel A). Box plots represent the distributions over units of adjusted R2 values for each model. Including additional 

kinematic terms in the decoding model did not greatly improve model fits. One exception is the position term (P), 

which appears to slightly improve the fits for some neurons. This improvement can be attributed in part to the tonic 

discharge of neurons during the target hold period of the task; this period of tonic discharge is known to correlate 

strongly with position (Kettner, Schwartz, & Georgopoulos, 1988). Additionally, because position and direction are 

correlated in the center-out task, a change in PD for neurons in our dataset can be coarsely modelled using the kDP 

or kVP models, even if the directional terms are held static (see, for example, the middle panel in Supplemental 

Figure 2.10B). In general, however, the gains in model fit are modest. C. PD lability estimated using each model. To 

directly assess the impact of model parameters on PD excursion, we fit versions of each model in which the 

directional terms were allowed to vary in time (BDt and BVt in A). Direction and velocity were mutually exclusive in 

our models, and each model included one or the other. Each regression thus yielded a time series of direction or 

velocity coefficients that could then be compared to those from the corresponding time-invariant model. The 

average of these PD deviations was computed for each unit. In contrast to the direction or velocity terms, non-

directional parameters (baseline, position, speed, or acceleration) were fit with single coefficients. That is, the 

relationship between firing rate and non-directional parameters was always assumed to be static in time. If the 

additional kinematic parameters explained the observed tuning lability, then the PD at each time point would remain 

relatively constant. Furthermore, there should be little difference between the PDs at each time point and the single 

PD estimated using the corresponding time-invariant model. To summarize this effect, we computed the mean of 

these PD deviations for each neuron and pair of models. As shown in C, this measure of PD deviation was largely 

unaffected by the additional kinematic parameters. The PD deviations of the simple direction-only model (“kD”) 

and each of the more complex models were of similar magnitude across the population, suggesting that complex 

kinematic tuning cannot explain the observed PD lability. D. Tuning stability significance test carried out for each 

model. The tuning stability test described in Materials and Methods (main text) was expanded to include each 

kinematic parameter. This allowed us to test the hypothesis that a complex kinematic model with constant PD was as 

likely given the data as one with a time-varying PD. This hypothesis was tested for each combination of kinematic 

terms. Additional terms in the model in general did not have a large effect on the proportion of neurons judged to be 

stable by the hypothesis test. However, there is a clear influence of the position term on tuning stability estimates, 

particularly for monkey C. We attribute this effect to the same principles discussed for the similar effect of position 

on model fit described for panel B. 
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Figure 2.12 Analysis of firing rates during and between component times 

To characterize firing rates during the epochs defined by our component fits, we applied regression analysis to 

snippets of firing rates spanning 100ms (5 bins) centered on each component peak.  A. Quality of cosine fit to trial-

averaged firing rates across targets.  Rates from the snippets were averaged over task repetitions, and a single cosine 

function was fit using regression.  Based on the large R2 values, components’ tuning functions are well-described by 

a cosine.  B. A measure of within-component PD change.  Two versions of the direction-only model were fit: one in 

which the PD was constant and one in which the PD could vary in time.  We then measured the deviation between 

the PD fit using the constant model and each of the PDs fit for the 5 time bins.  This deviation, averaged over the 5 

bins, is displayed for each component.  As shown by the consistently small deviation, PDs change very little for the 

duration of the component.  Regardless of the outcome of the stability metric, mean PD deviation was below 10 

degrees over 100 ms for 93% of the fitted components.  In A and B, “stable” components are displayed in yellow; 

“unstable” components are displayed in blue.  Data are pooled from all components fit to all neurons from monkeys 
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C, F, and N.  C.  PD changes between components.  Although the intra-component change in PD was found to be 

very small, inter-component changes could be much larger.  We thus characterized the distribution of these changes 

and tested each change for statistical significance.  For each neuron with two or more adjacent components, we 

analyzed firing rates in 60 ms windows centered on each component peak.  The trial- and time-averaged PD within 

each 60 ms window was then calculated.  For each pair of sequential components, we estimated a 95% confidence 

interval for the difference in the two PDs.  Confidence intervals were computed using a bootstrap procedure: trials 

were chosen randomly with replacement and firing rates from these trials were analyzed within the same 60 ms 

windows.  These rates were used to re-estimate the average PDs for each component, and this procedure was 

repeated 1000 times to form PD distributions.  Lastly, we computed the angular differences between the 

distributions of sequential components, and the 95% confidence intervals were determined by rank-ordering these 

angular differences and finding the 2.5th and 97.5th percentiles (horizontal bars).  Data are shown for pairs of 

components adjacent in time, rank-ordered by PD change, and pooled over monkeys.  The bootstrapped distributions 

were used to test the statistical significance of PD changes between adjacent components.  The null hypothesis of a 

zero-degree PD difference between adjacent components was tested (yellow vs. blue in C). In 2D, it is possible to 

evaluate the signed difference between PD distributions and determine whether this difference overlaps zero.  This is 

not possible for 3D PDs without imposing an arbitrary frame of reference.  We therefore implemented a test that 

would generalize between both the 2D and 3D PD measurements.  This was achieved by rotating the bootstrapped 

PD distributions of sequential component pairs to a common mean direction.  Put differently, we shifted the two PD 

distributions to the same mean PD, while preserving the shape of each distribution.  A null distribution was then 

created to describe the uncertainty in zero overlap due to the width of the two PD distributions.  This was achieved 

by computing the angular differences between the rotated PDs, and a critical value for this null distribution was 

obtained by rank-ordering the differences and finding the 95th percentile.  The p-value of the hypothesis test was 

computed as the proportion of true angular deviations that exceeded this critical value.  Results across monkeys 

were highly comparable. 



 65 

 

Figure 2.13 Example of firing rate “misalignment” and the effect on PD stability 

Although components were most often “stable,” the proportion of “unstable” PDs for components with the highest 

R2 cosine fits was somewhat larger than expected (blue portions of bars in Supplemental Figure 2.12A).  A possible 

explanation for this observation is imperfect alignment between firing rates recorded during reaches to different 

targets.  A key assumption of the PD stability test (see Section 2.3.2) is that the time-normalized firing rates will 

follow a similar time course for reaches to different targets.  Although time scaling based on behavioral events 

typically works well, it is not perfect.  The neuron shown here, for example, exhibited small time-shifts across 

conditions that could not be remedied by alignment.  For this neuron, we found patterns of multi-phasic activity that 

corresponded to the two peaks in the modulation depth function.  The change in PD between the peaks was large and 

abrupt as predicted by our model.  The R2 values for a cosine fit during each component were very large, reaching 

above 0.96 at each peak.  However, because the firing rate traces were not perfectly aligned (e.g. orange vs. red 

traces), the measured PDs within the components (bottom panel, darkened portion) showed a slight 

counterclockwise change over time.  Further, because the signal-to-noise ratio for this unit is large (small confidence 

band around PDs, bootstrap method), the small PD change within each component was statistically significant.  Both 

components for this neuron were found to be “unstable” by our test, even though the change in PD was very small 

(approximately 15 degrees over 100 ms, about 3º/bin).  Details of the analyses in each panel in this figure follow the 

descriptions in Figure 2.4. 
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Figure 2.14 Sensitivity of stability test 

To validate the tuning stability test, we simulated firing rates for each trial for every neuron from monkeys C, F, and 

N.  Simulated rates were matched to the modulation depth and amount of noise in each time bin.  For each simulated 

neuron, we then specified changes in preferred direction that occurred at different constant rates through the trial. 

The simulation was performed in two stages.  1) In the first stage, we applied the cosine-tuning regression model to 

each neuron at each time step, and used the resulting modulation depth function to reconstruct the expected rates at 

each time step.  However, rather than using the estimated preferred direction at each time step, we specified a PD 

change over time.   2) In the second stage, we estimated the trial-to-trial variability of each neuron at each time bin 

by computing the standard deviation of the rates over task repetitions.  We simulated this trial-to-trial variability by 

drawing samples, for each simulated trial at each time bin, from a normal distribution with standard deviation 

matched to the experimental data in that bin.  The mean of the distribution on each trial and time step was 
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determined in the first simulation stage.  The number of simulated trials was matched to the experimental data.  A. 

top, real data from a neuron recorded from monkey C.  The remaining sub-panels in A are simulated rates based on 

Unit 88a (prior to adding trial-to-trial noise), with modulation depth matched to the real neuron.  The amount of PD 

change over time was different for each iteration of the simulation (shown for 0º change/bin, 3º/bin, and 10º/bin). B. 

Results of the tuning stability test applied to the simulated data, for each amount of simulated PD change.  We 

applied the stability test to each simulated neuron, restricting the analysis to the times of the Gaussian-shaped 

components (fit to the real data).  The test was applied to 100ms (5 bin) windows centered on each of the 

components. 
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Figure 2.15 Time course of tuning correlation 

An approach to evaluating tuning similarity without assuming any parametric form is to compute the correlation 

between pairs of tuning patterns.  Each tuning pattern is considered a vector, the elements of which are the firing 

rates observed during each task condition.  The correlation between two such vectors is a metric of tuning similarity; 

values near 1 indicate highly similar tuning, while values near 0 indicate dissimilar tuning.  Here, we applied this 

metric for each neuron by correlating the tuning vectors of adjacent time points throughout the task to produce a 

time course of tuning similarity.  This was accomplished by taking the rates in a 60 ms time window (averaged over 

trials and time) and correlating them with the mean rates in the subsequent 60 ms window, and repeating the 

procedure in steps of 20 ms.   Each subpanel shows the firing rate of a single neuron (colored traces) above the 

corresponding tuning correlation curve (black traces).  Comparing the time course of local tuning correlation with 

the time course of firing rate revealed plateaus of high correlation during periods of modulation, suggesting tuning 

was relatively stable at those times.  The local correlations dropped sharply at the transitions between modulation 

components, indicating a period of rapid tuning change.  Critically, this pattern was evident regardless of the 

goodness-of-fit of a cosine to the tuning pattern.  Each firing rate plot has been marked in one or more places and 

labeled with the R2 of a cosine fit to mean rates at that time point.  Neurons grouped in the left column have high R2 



 69 

values (>= 0.5) at each modulated peak (component).  Neurons grouped in the right column have at least one 

component with an R2 less than 0.5.  These examples demonstrate that periods of highly similar tuning (the 

correlation plateaus) are punctuated by rapid changes in tuning (sharp troughs), and that this phenomenon is not 

dependent on the quality of a cosine tuning fit.  Note that each ordinate is plotted on a different scale.  Since broad 

cosine-like tuning is a prominent feature of most components, the minimum correlation value at a transition is 

related to the magnitude of the PD change between components.  For example, cosine tuning functions with a PD of 

0º and a PD of 45º have a correlation of about 0.7. 
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Figure 2.16 Component-centered tuning correlation 

To summarize the pattern of peri-component tuning similarity, we correlated the across-target rates (averaged over 

trials) centered on each identified component.  This was accomplished by correlating the mean rates in a 60 ms 

window at the center of the component with the mean rates in 60 ms windows before and after, again stepping in 20 

ms increments.  Time 0 represents the center of the component.  Data are pooled from monkeys C, F, and N.  Solid 

black trace, median across all components; dashed gray traces, first and third quartile.  For each component-centered 

correlation profile, values were amplitude-normalized between 0 and 1 and time-normalized to the average 

component duration.  Bounds of components were defined by the sharp troughs observed in Supplemental Figure 

2.15 (black traces).  A minimum trough value of 0.85 was chosen, although a wide range of cutoffs gave highly 

comparable results.  If a trough was not found before or after a component center (e.g. Units C22b and F173a, 

respectively), a fixed period of 100 ms was taken in that direction.  The exact duration was not critical, and 

excluding these data entirely did not qualitatively change the result.  The pattern of tuning in the center bin was 

highly similar to the pattern observed for 50 to 100 ms before and after.  At longer intervals, the correlation values 

tended to be much lower, dropping abruptly before the onset or after the offset of the component.  For the majority 

of the identified components, the pattern of tuning observed at the peak remained consistent for approximately 100-

200 ms.  This is in good agreement with the duration of the plateaus observed in Figure S7, in which the tuning 

reference point was sliding rather than fixed to each component center. 
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Figure 2.17 Analysis of abrupt changes in tuning correlation 

To study tuning transitions in more detail, we isolated each tuning-correlation trough before and after a component 

(black traces in Supplemental Figure 2.15).  The first and second time derivatives of each trough were then used to 

find the duration of the tuning transition.  Troughs were included if their minimum value dropped below 0.85, 

although a wide range of cutoffs gave similar results.  Data are pooled from monkeys C, F, and N.  Solid black 

traces, median; dashed gray traces, first and third quartile for the population.  A. Time-course of tuning transition.  

Each occurrence has been scaled between 0 and 1. Solid gray horizontal bars, median times of features described for 

subsequent subpanels.  B. First time derivative of data shown in A.  Two symmetric extrema are evident and mark 

the bounds of the most rapid period of tuning change.  C. Second time derivative of data shown in A.  The extrema 

seen in panel B were identified by the zero-crossings marked by the inner pair of gray bars (median distance, 64 

ms).  Before and after this rapid transition, the rate of correlation change slowed to zero.  This second, slower 

feature was identified by the symmetric minima of the second derivative (outer pair of gray bars), which have a 

median distance of 120 ms.  These analyses show that the transitions between components are relatively brief and of 

a consistent shape. 
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Figure 2.18 Variability in the duration of rapid phases of tuning change 

To assess variability in the duration of tuning transitions, we measured the time between the two extrema of each 

trough’s first derivative as shown in Figure S9.  These times had a median value of 64 ms and were relatively 

consistent across occurrences.  As examples, this timing for the prominent transitions of the three units in the first 

column of Supplemental Figure 2.15 was 58 ms, 62 ms, and 64 ms, respectively.  Data in this figure are pooled from 

monkeys C, F, and N. 
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Figure 2.19 Averaging periods of cosine tuning also results in cosine tuning 

Colored traces bottom panel: firing rates from a neuron that exhibits two epochs of modulation, marked by the two 

shaded gray boxes over the firing rates.  Upper panels: Cosine tuning functions estimated from different time 

windows.  The two tuning functions shaded in gray (middle row) correspond to the shaded gray boxes on the firing 

rate plot (bottom row).  The tuning function in the top row corresponds to the period marked by the long black bar 

above the firing rates. Early work characterizing cosine tuning in motor cortex typically reported tuning curves 

calculated using firing rates averaged over relatively long periods of time.  We found that fitting a cosine function to 

rates averaged in this way typically yields very high R2 values, even for neurons with labile PDs.  This is likely due 

to a property of cosines well known from the theory of Fourier series: summing two cosines of equal frequency but 

different phase (i.e. PD) results in a third cosine of the same frequency, with different amplitude and phase.  Only in 

the event that the two tuning functions are 180º apart and of equal amplitude, complete cancellation of the tuning 

will be observed.  Suppose the firing rate of a neuron at each time step can be described by a cosine tuning function:  

 λt = mt cos(θreach - θPDt) 

The average of rates across time steps can be described with a cosine tuning function as well.  If we represent this 

mean tuning function as a vector pointing towards the mean PD, 𝜃̅𝑃𝐷, the x and y Cartesian coordinates of the vector 

are related to the tuning functions at each time step as follows:  

𝑥 =  𝑁𝑡
−1 ∑ 𝑚𝑡 cos(𝜃𝑃𝐷𝑡

)

𝑁𝑡

𝑡=1

 

𝑦 =  𝑁𝑡
−1 ∑ 𝑚𝑡 sin(𝜃𝑃𝐷𝑡

)

𝑁𝑡

𝑡=1

 

The resultant preferred direction and modulation depth are 𝜃̅𝑃𝐷 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) and m̅ = √x2 + y2, respectively.  As 

shown in this figure, when cosine-tuned epochs in real data are averaged together, their mean is well fit by a cosine. 
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Figure 2.20 Quality of PVA results using three different methods and two time periods 

Values are mean over targets, trials, and time, plus/minus SD.  Angular error is reported in degrees; vector 

magnitude is reported in arbitrary units.  Methods were compared using a bootstrap test over task repetitions.  As a 

correction for multiple comparisons, we chose an alpha level of 0.01; “n.s.” indicates not significant at this alpha.  

A. Analysis spanning the period from 100ms prior to movement until 100ms prior to end of trial.  Generally, 

accounting for tuning lability improved decoding. Using the component PDs rather than the early PD resulted in the 

largest improvement; smaller gains were observed by re-fitting the PDs at each time point. B. Analysis restricted to 

the period from -150ms to 100ms relative to movement onset.  When just this initial portion of the population vector 

is considered, the difference between PVA methods is small. 
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2.7.2 Supplemental Experimental Procedures 

2.7.2.1 Additional information about data sets 

Mean reaction times for monkeys C, F, and N were 220, 236, and 290 ms, respectively.  In the 

same order, mean movement times were 250, 318, and 304 ms. For the three monkeys, cursor 

radii were 10, 8-9, and 10 mm.  For monkeys C and F, target diameters were 10 and 8-9 mm.  

Target sizes varied for monkey N.  We sorted 93, 119, 185 single units for C, F, and N.  Using 

our component fitting procedure (see Section 2.3.4), we fit 65, 98, and 119 units. 

2.7.2.2 Control for multiunit activity 

It is possible that multi-phasic firing could be an artifact of multi-unit, rather than single-unit 

activity.  To examine this possibility, we analyzed the action potential waveforms of the same 

unit recorded in different epochs of the task.  We performed an analysis using data from monkey 

N for each unit with two components (n = 34 units) using a binary classification problem for 

each unit using the sampled waveforms recorded during 2320 trials (58 targets, 40 repetitions per 

target).  A Naive Bayes classifier was trained to discriminate spike waveforms according to two 

classes: occurrence before and after peak velocity. Waveforms from these two classes were 

sampled randomly with replacement to obtain a matching number of samples in each class.  This 

was repeated 2500 times.  Then, we computed the cross-validated decoding accuracy of the 

classification.  The decoding accuracy was near 0.5 for each cell, suggesting that the spike 

waveforms did not change between the two epochs. Spike sorting errors are unlikely to account 

for tuning changes in our data. 
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2.7.2.3 Additional details on fitting the epoch-specific tuning model 

Equation 2.6 describes the epoch-specific tuning model used to characterize segments of cosine 

tuning.  This model relies on nonlinear least-squares fitting, which requires reasonable 

initialization parameters.  We implemented a two-step procedure to obtain initialization 

parameters for each of the coefficients in Equation 2.6.  In the first initialization step, we 

repeated our preliminary analysis by fitting a cosine tuning function at each time bin.  As before, 

this yielded a time-series of preferred directions and associated modulation depths.  We refer to 

the time-course of the estimated modulation depth as 𝑚̂𝑡 (e.g. Figure 2.4B).  The second step 

involved fitting 𝑚̂𝑡  with a multi-component Gaussian function.  This fit required initialization 

parameters as well:  we obtained the local maxima of 𝑚̂𝑡 using the “findpeaks” function in 

Matlab, and the amplitude and location of these peaks served to prime the multi-component 

Gaussian fit. 

We never observed more than three prominent peaks in 𝑚̂𝑡.  Therefore, to choose the 

number of components to fit, we evaluated up to three versions of the fit, composed of 1, 2, and 

3 Gaussian components, rank-ordered by amplitude.  We then chose the optimal number of 

components based on the cross-validated mean-squared-error of each fit.  Thus, the second step 

yielded the number of components to fit, as well as initial estimates of the parameters 

corresponding to the Gaussian-shaped modulation depth of each component.  An initial estimate 

of each component’s PD was then computed using the firing rates in the segment of time 

spanning μj±sj (see Eq. 2.6, main text). 

We asked whether the use of a 50 ms SD Gaussian smoothing kernel affected our ability 

to observe additional peaks in the modulation depth functions of each neuron.  To address this 

question, we examined versions of firing rate profiles after smoothing with a 30ms SD kernel 
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and observed highly comparable results.  Additionally, we estimated the firing rates from spike 

counts in 2 ms bins using a generalized linear model and natural regression splines, rather than 

using Gaussian kernel smoothing (20 ms bins).  We controlled the level of smoothing by 

changing the number of equally spaced knots over time.  The knots were spaced from 30 to 80 

ms apart and the results were highly comparable to those obtained using Gaussian kernels.  

Spacing at smaller intervals increased the variance of the fit, but the number of high amplitude 

modulation depth peaks was not changed. 

  



 78 

3.0  ACTIVITY IN PRIMARY MOTOR CORTEX RELATED TO VISUAL 

FEEDBACK2 

3.1 INTRODUCTION 

The primary motor cortex (M1) is thought to play a critical role in volitional movement, and the 

activity of M1 neurons is known to vary strongly with features of behavior.  Georgopoulos et al 

(1982) demonstrated that most neurons in M1 are “tuned” to the direction of arm movement 

during reaching.  These experiments showed that the relationship between a neuron’s firing rate 

and the direction of movement is described by a cosine function.  The robustness of this 

relationship has been taken as evidence that M1 “encodes” simple representations of movement.  

However, critics of representational models have argued that responses of single neurons can be 

complex, and simple models often do not account for the temporal details of neuronal activation 

(Churchland & Shenoy 2007).  Further, the responses of M1 neurons covary with a wide range of 

behavioral parameters, beyond what would be captured by a unitary tuning model (Georgopoulos 

et al 1992; Kakei, Hoffman, & Strick 1999; Caminiti, Johnson, & Urbano 1990; Zhang et al 

1997).  Investigators have attempted to improve these simple representational models by 

                                                 

2 This chapter was submitted for publication as Suway & Schwartz, Activity in primary motor 

cortex related to visual feedback. 
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including additional features of movement, but gains in explanatory power have been modest 

(Paninski et al 2004; Aflalo & Graziano 2006; Suway et al 2017).  Although the early directional 

tuning work (Georgopoulos et al 1982; Schwartz, Kettner, & Georgopoulos 1988) used firing 

rates averaged over the entire movement with the implicit assumption of stationary preferred 

directions, a number of studies have revealed time-dependent processing in M1 during reaching 

(Georgopoulos et al 1989; Pellizzer, Sargent, & Georgopoulos 1995; Fu et al 1995; Zhang et al 

1997; Churchland et al 2012; Velliste et al 2014; Rouse & Schieber 2016).  Recent work (Suway 

et al 2017; Harpaz et al 2018) has shown that these changes in directional tuning may take place 

at discrete points in the behavioral task, suggesting that they are linked to changes in the state of 

the system.  Identifying these state changes using M1 firing rates and linking them to behavioral 

features important for reaching can help us understand the factors that govern information 

processing in the motor cortex.   

Recently, investigators demonstrated that M1 neurons abruptly change their firing 

properties when monkeys transition from planning a movement to executing the movement 

(Churchland et al 2010, Kaufman et al 2014, Elsayed et al 2016; Lara et al 2018).  This finding 

was taken as evidence that the same population of neurons performs separate functions before 

and after movement initiation.  Results from our lab, and others, indicate that similar abrupt 

transitions in firing pattern occur at multiple points during the movement (Suway et al 2017, 

Harpaz et al 2018).  In contrast to a static relation to behavior, this temporal structure suggests 

M1 undergoes changes in functional state in conjunction with transitions between behavioral 

components.  Some authors have referred to this concept as a “temporal parcellation scheme” 

(Johnson & Ebner, 2000), though the specific parameters that drive neurons remain a topic of 
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debate.  Importantly, the sequences of neural states that can be recognized in motor areas are 

likely to depend on the specific behavioral components required by a task. 

Reaching to an object or target is strongly dependent on vision.  Subjects focus on the 

target they are reaching toward while the moving hand is registered in the peripheral visual field 

(Paillard 1982, Paillard 1996).  Accurate target acquisition takes place as a series of visually 

guided sub-movements as the hand’s image enters the macular retina (Soechting & Lacquanti 

1981; Meyer et al 1988; Milner 1992; Novak, Miller, & Houk 2002).  Experiments dissociating 

vision from movement have provided evidence for visuospatial coding in M1 and premotor 

cortex, particularly before the movement begins (Georgopoulos et al 1989; Pellizzer et al 1995; 

Zhang et al 1997; di Pellegrino & Wise 1993).  However, relatively little is known about the 

relation between M1 activity and ongoing visual feedback during movement (although see 

Schwartz, Moran, & Reina 2004, and Inoue, Uchimura, & Kitazawa 2016).  One possibility is 

that the sequence of neuronal states is determined, in part, by visual information related to the 

task.  Here, we hypothesized that components of the M1 response during reaching might be 

related to visual feedback. 

To test this hypothesis, we implemented several variations of the classical center-out 

reaching task.  We first required monkeys to adapt to a perturbation that dissociated vision from 

movement.  Although the arm movements were similar in the perturbed condition, we found 

clear components of M1 activity that changed after the monkey adapted to the visual 

perturbation.  In roughly half the trials in both the normal and perturbed conditions, the 

monkey’s reach trajectory was hidden from view before the movement began.  By comparing 

neuronal responses across these trial types, we found that the visibility of the reach is important 

for driving a component of M1 activity.  The relation between this activity and movement 
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changed after the perturbation, and the activity was much weaker when feedback was not 

provided.  Responses following this pattern occurred toward the end of the movements, possibly 

consistent with a feedback signal.  In fact, the timing of putatively feedback-related firing 

relative to reach initiation was remarkably similar to estimates of the minimum processing time 

for visual feedback from a movement (Keele & Posner 1968).  Our findings confirm that M1 

plays a highly diverse set of roles in motor control and suggest that M1 may be driven in part by 

visual feedback. 

3.2 MATERIALS AND METHODS 

3.2.1 Behavioral Task 

Two adult male monkeys (Macaca mulatta, R and P) were trained to perform reaches with their 

right arms while viewing a virtual reality (VR) environment through a depth-displaying monitor 

(Virtual Window, Dimension Technologies Inc.).  The monkeys could not see their own arms 

during the task; instead, they were shown a spherical cursor in VR representing their arm 

positions.  Cursor radii were about 0.3 cm (all such measures refer to length in physical space).  

Position was tracked optically at 50 Hz using an Optotrak 3020 motion capture system (Northern 

Digital Inc.).  The monkeys performed several variations of the classical center-out reaching 

task.  In each task, monkeys began a trial by holding their arms steady for 500-700 ms in the 

center of the workspace volume, marked by a spherical target with a radius of 0.6 cm.  A 

peripheral target of the same size then appeared, cueing the monkey to begin moving.  Targets 

could appear at one of 16 evenly spaced positions around the home position, forming a circle 
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with a 6 cm radius.  The targets were arranged in the vertical plane, though the task required 3D 

movement control; reaches in front of or behind a target were not rewarded.  Monkeys were 

permitted 600-800 ms to reach the target and received a liquid reward for each successful trial. 

We leveraged the VR paradigm to impose a visual perturbation during behavior.  Each 

session was split into two blocks with a roughly equal number of trials.  In the first block, no 

visual perturbation was applied (“standard block”).  At the end of this block, we gradually 

altered the mapping from hand position to VR cursor position such that the movement direction 

of the cursor was rotated clockwise relative to the movement direction of the hand.  This 

paradigm is commonly referred to as a “visuomotor rotation.”  The angle of rotation was 

increased over the course of 15-25 trials, and then remained fixed at its final value for the entire 

second block (“rotated block”).  The final rotation angle varied day to day and could be one of 

45°, 67.5°, or 90°.  Each of these angles is an integer multiple of the target spacing (22.5°), 

which ensured the same physical targets were reached in both task blocks.  The scene displayed 

in VR did not change in the rotated block, and monkeys were required to learn the new hand-to-

cursor mapping through trial and error over task repetitions.  Initially, monkeys made large 

angular errors that had to be corrected, but performance gradually recovered as they adapted to 

the perturbation.  This adaptation period was usually completed within about 100 trials, which 

were excluded from analysis. 

The inclusion of a visuomotor rotation was intended to provide a way of identifying 

“higher-order” neural responses, i.e. responses that don’t covary strictly with motor output.  A 

perturbation-related response in our task could be driven by at least two distinct processes.  One 

process may be related to the perceptual adaptation that occurs early in the rotated block, usually 

completed within tens or hundreds of trials after the rotation is applied (Wise et al 1998; 
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Krakauer et al 2000).  This adaptation is marked behaviorally by a gradual decrease in the 

angular error of the reach, and neurophysiologically by changes in neuronal activity relative to 

the unperturbed condition (Shen & Alexander 1997a).  The processing of the scene displayed in 

VR during a reach may be another factor driving changes in M1 firing patterns.  To dissociate 

these processes, we randomly selected 50% of the trials in both the standard and rotated blocks, 

and disabled the cursor display before the movement began, 140 ms after the target appeared 

(“invisible trials”).  The monkeys were not cued before the cursor disappeared, and the cursor 

did not reappear until the start of the subsequent trial.  The target remained visible even when the 

cursor was not.  Center-out reaching tasks commonly require stopping and holding within a 

target zone, which is difficult without visual feedback.  In the tasks described here, we therefore 

omitted the terminal hold period; monkeys were rewarded upon touching the target with the 

cursor. 

3.2.2 Neuronal Recordings 

Monkeys were chronically implanted with 96-channel microelectrode “Utah” arrays (Blackrock 

Microsystems), which were inserted into the arm area of the primary motor cortex.  Monkey R 

was implanted with two arrays; units were recorded from a single array in monkey P.  

Extracellular voltage signals measured from the electrode arrays were amplified, filtered, and 

digitized using either a Plexon MAP system (Plexon Inc.) or a Blackrock Cerebus system 

(Blackrock Microsystems).  Spike waveforms were sorted manually offline using Plexon Offline 

Sorter (OFS, Plexon Inc.).  Unit isolation was judged based on waveform, cluster separation, 

inter-spike interval histogram, autocorrelation, and cross-correlation with other units on the same 

electrode.  Only well-isolated units were saved for further analysis. 
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3.2.3 EMG Recordings 

Intramuscular EMG activity was recorded from several arm muscles, including the anterior 

deltoid, medial deltoid, biceps, triceps, flexor carpi radialis, and extensor carpi ulnaris.  EMG 

electrodes consisted of 38-gauge multi-stranded stainless-steel wires with Teflon insulation 

(Cooner Wire, Chatsworth, CA).  A 25-gauge needle was used to insert the wires 

transcutaneously.  Pairs of wires were used in each muscle for bipolar recordings.  After each 

experiment, the arm was wrapped in a semi-rigid cast to preserve the electrode insertions for a 

few consecutive days.  Raw EMG signals were differentially amplified and sampled at 

approximately 2 kHz using a Tucker-Davis Technologies recording system.  The recorded 

signals were bandpass-filtered between 100 Hz and 1000 Hz, rectified, and lowpass filtered at 7 

Hz to compute the envelope.  Lastly, the EMG data were downsampled to 50 Hz to match our 

other data signals.  For monkey R, neurophysiological data were collected simultaneously with 

EMG data.  EMG data from monkey P were collected in sessions separate from those in which 

M1 unit activity was recorded.  For monkey P, the wrist extensor was not consistently activated 

over trial repetitions and was excluded from analysis. 

3.2.4 Data Preprocessing 

We computed neuronal firing rates by counting the number of spikes in 20 ms bins and dividing 

by the bin width to yield spikes/s (Hz).  Rates were square-root transformed (Ashe & 

Georgopoulos 1994; Moran & Schwartz 1999) and smoothed using a Gaussian kernel with a 50 

ms SD.  For each neuron, we subtracted the across-target mean at each time bin to give a target-

dependent change in rate.  This procedure allowed us to focus on tuning properties, rather than 
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on target-independent dynamics (Churchland et al 2012, Suway et al 2017).  For visualization 

only, we applied “PC smoothing” (Churchland et al 2010; Churchland et al 2012).  This was 

applied to neuronal responses separately within each task type to prevent artificially mixing 

response properties. 

For each trial, we identified the time of the target’s appearance, the onset of the 

movement, the peak velocity, and the offset of the movement.  Movement onset and offset were 

defined as the times when the arm reached 20% of its maximum speed for each trial.  Neuronal 

firing rates, hand kinematics, and EMG signals were normalized in time and aligned using these 

behavioral landmarks.  This was accomplished by setting a fixed number of time bins between 

epochs and interpolating each trial to match this number (using the “pchip” function in Matlab, 

MathWorks, Natick, MA).  The kinematics of each trial were inspected to ensure that reaches 

were straight and accurate, with bell-shaped velocity profiles.  Excessively curved reaches (e.g. 

during the adaptation period between blocks) were discarded. 

For monkey P, we analyzed four neurophysiological and behavioral datasets, as well as 

EMG data recorded over two days. For this monkey, we were only able to record meaningful 

neurophysiological data during sessions with a 45° visuomotor rotation due to degradation of the 

array signal for later sessions.  We analyzed five neurophysiological and behavioral datasets 

from monkey R, including three sessions with a 90° perturbation, one session with a 67.5° 

perturbation, and one with a 45° perturbation.  Two of the 90° sessions for this monkey also 

included simultaneously recorded EMG activity.  Sessions from monkey R included 143 neurons 

per day on average (SD = 43.6 neurons, 715 total observed neurons).  Sessions from monkey P 

included 35.5 neurons on average (SD = 5.8 neurons, 142 total observed neurons).  Because so 

few neurons were observed daily for monkey P, we combined these datasets before analysis. 
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3.2.5 Tuning Curve Analysis 

We computed cosine tuning functions using the recorded neuronal firing rates and hand 

movement directions.  These were calculated using ordinary least-squares linear regression and 

the following cosine tuning model: 

(3.1) y = k + B•cos(θ − θPD) + ε 

where y is the estimate of a neuron’s firing rate, k is the baseline rate, B is the amplitude of the 

tuning function (modulation depth), θ is the physical movement direction, θPD is the preferred 

direction (PD), and ε is the noise or fitting error.  Since the firing rates were mean-subtracted 

(see above), the baseline term was always zero.  The θ parameter refers to instantaneous hand 

direction, which was shifted back in time by 140 ms relative to neuronal responses.  We also 

applied Equation 3.1 to EMG activations in place of firing rates.  In that case, direction was 

shifted backwards by 100 ms.  We note that preferred directions computed by this method are 

expressed relative to physical space, rather than VR space.  This distinction is important when 

describing PDs before and after the visuomotor perturbation. 

 To compare PDs in the standard and rotated blocks, we computed the angular difference 

between the two tuning curves.  The statistical significance of this difference was found using a 

bootstrap procedure.  Trials were resampled with replacement 1000 times, and the angular 

difference was computed for each iteration.  We then computed the 95% confidence interval of 

this difference over the 1000 iterations.  If the confidence interval overlapped 0, the PD 

difference was not considered to be significantly different.  This test is thus two-tailed, with an 

alpha level of 0.05.  When comparing PDs, we required that the firing rates during both blocks 

were fit by a cosine function with an R2 of at least 0.5.  We used a significant change in PD as an 
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operational definition for patterns of neuronal firing potentially related to adaptation to the 

perturbation. 

3.2.6 Trial Segmentation 

For some analyses, trials were segmented into several epochs.  We used factor analysis (FA) to 

identify independent components of firing across time for all recorded neurons.  Typically, FA is 

applied to neuronal data by treating each neuron as a “dimension,” and reducing the 

dimensionality to a few summary components.  Here, we instead used time bins as the 

dimensions input to FA, with each neuron contributing observations along those dimensions.  

This process may be familiar as a spike-sorting method where principal components calculated 

from a temporal sample of voltage are used to separate different spike waveforms.  Here, we use 

the method to find temporal features of neurons’ firing rate pattern that covary across reaches to 

different targets.  These temporal features occurred sequentially and were used to segment the 

trial.  Since we were interested in tuning patterns regardless of magnitude, we normalized firings 

rates by their range at each time bin prior to applying FA.  In practice, this step did not 

substantially alter the results.   

3.2.7 Reverse Regression Analysis 

We used reverse regression to find linear combinations of the neural data that could decode 

behavioral variables of interest.  More common decoding methods such as the Population Vector 

Algorithm (PVA) or Optimal Linear Estimator (OLE) rely on explicit tuning model fits for each 

recorded unit, but here we sought to avoid these assumptions about encoding.  Reverse 
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regression is a simple multiple regression approach that treats each neuron’s firing rate as an 

explanatory variable, and a variable of interest as the dependent or response variable (Kass, 

Ventura, & Brown 2005; Inoue et al 2018).  In our case, the variables to decode were the x- and 

y-components of the displayed direction.  The following equations describe the relationship: 

(3.2) Vx = kx + BxR + ε 

(3.3) Vy = ky + ByR + ε 

where Vx and Vy are the x- and y-components of the displayed direction, kx and ky are constant 

offsets, Bx and By are 1-by-N vectors of regression weights (one weight for each of the N 

neurons), R is a matrix of firing rates with size N-by-(time*conditions), and ε is the noise or 

fitting error.  The regression weight vectors represent scaled axes in neural space, chosen such 

that orthogonal projections onto these axes best correlate with the x- and y-components of the 

displayed movement direction.  The free parameters in Equations 3.2 and 3.3 were fit using ridge 

regression rather than ordinary least squares regression.  Ridge regression is useful in the case 

that regression terms are correlated with one another, as is often true for firing patterns of 

different neurons.  Typically, the regularization parameter for ridge regression is chosen to 

maximize cross-validation performance.  However, we found that performance was very similar 

over a large range of values, with no clear maximum.  We therefore arbitrarily chose a 

regularization strength of 1.  That is, in the regression loss function, we assigned equal weighting 

to the sum of squared residuals and the regularization term.  

 We applied Equations 3.2 and 3.3 to neural data from the start of the trial until 100 ms 

after movement offset.  The V variables were set to zero until 50 ms after the target appeared.  

These pre-target time bins were included as an additional constraint on fitting, which ensured 

that the decoder output was near zero when there was not yet any direction displayed.  As with 
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the trial segmentation procedure described above, we normalized firings rates by their range at 

each time bin prior to fitting, though this step was not critical. 

3.3 RESULTS 

3.3.1 Single-unit directional encoding changes after visuomotor adaptation 

Neurons in M1 are directionally tuned.  Here, we used this property to examine possible effects 

of visuomotor adaptation on neural firing.  Monkeys made reaches to the same physical targets 

before and after adaptation (Figure 3.1 A-B).  An example neuron recorded during those trials 

was found to fire strongly during upward reaches (Figure 3.1C, blue rasters).  If this tuning 

property was related to the direction of movement in physical space, one would expect to see the 

same response for an upward reach before and after the monkey adapted to the perturbation.  

However, during the rotated block, this neuron fired at a much lower rate for upward reaches 

compared to the standard block (Figure 3.1D, blue rasters).  One possibility is that this neuron 

was directionally tuned in VR space, rather than physical space.  In that case, one would expect 

the highest firing rate during trials when the target cue (and displayed reach trajectory) was 

upward, even if the monkey didn’t physically reach in that direction.  This tuning property is, in 

fact, what was observed for the example response in Figure 3.1.  In this session, the perturbation 

was 90° clockwise.  Therefore, in the rotated block, a target cue upward always elicited a reach 

to the left (Figure 3.1B, red traces and red circle).  These leftward reach trials had rates that were 

similar to those for upward reaches in the standard block (red vs. blue rasters, Figure 3.1 C-D), 

suggesting that cursor-related information was encoded in this neuron’s activity. 
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We next examined the smoothed, trial-averaged firing rate profile of this neuron across 

targets, and found the response had a similar shape and timing in both blocks (Figure 3.1 E-F, 

different colored traces).  Note that the color scheme used for firing rate plots was defined 

relative to physical movement direction in both blocks; the encoding properties previously seen 

for the raster plots can therefore be recognized qualitatively in the ordering of rates across targets 

in panels E-F (e.g. light blue vs. dark red traces).  Across-target rates averaged over the period 

marked in Figure 3.1E (black bar) were fit well by cosine functions in each task block (Figure 

3.1G).  The preferred directions (PDs) of the fits, computed relative to physical space, had an 

angular difference of about 105° between blocks.  The PD in the standard block was subtracted 

from that in the rotated block, rather than the other way around, which yielded a positive 

difference for responses that were sensitive to the visuomotor rotation like the example in Figure 

3.1.  A negative change in PD between blocks was also possible, though we will show below that 

this pattern was less common. 

Using a bootstrap procedure, we evaluated the across-trial consistency of the PD change 

shown in Figure 3.1G by resampling individual trials with replacement and recomputing PD 

change for each bootstrap iteration.  The 95% confidence interval over bootstrap iterations was 

[96°, 113°], meaning the PD change was consistent over trials within about 17°.  This 

consistency suggests the effect demonstrated in panels C-G is likely related to the task design.  

To better illustrate this relationship, we replotted the tuning curves in each block relative to VR 

cursor movement direction, rather than hand direction (Figure 3.1H).  The similar phase of the 

cosine functions in panel H indicates that tuning was similar before and after adaptation when 

computed relative to cursor direction, in contrast to the large difference observed with respect to 

hand direction.  This observation further supports the idea that this neuron’s tuning was driven 
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by cursor-related information.  For subsequent figures, firing rates and tuning curves will be 

plotted with respect to physical movement. 

 

 

Figure 3.1 Firing rate properties change after visual adaptation. 

A) Five repetitions of upward reaches (blue traces) and five of leftward reaches (red traces) in the standard block.  

The traces represent the physical location of the hand in space, and the red and blue circles represent the displayed 

position of the targets in VR, which match the hand endpoints in this block.  B) Same as in A but for the rotated 

block (90° in this session).  Note that the positions of the displayed targets are rotated clockwise relative to the hand 

endpoints in this block.  C) Raster plot for one neuron during the same trials in A, using the same color scheme.  

Time 0 marks movement onset.  D) Same as in C but for the trials shown in B.  E) Smoothed, trial-averaged firing 

rates for the same neuron during the standard block, with responses plotted for all 16 reach directions (different 

colored traces). Black square markers along the abscissa mark the time of target show, the onset of movement, and 

the offset of movement, respectively.  F) Same as in E but for the rotated block.  The color scheme is defined with 

respect to hand direction, not cursor direction.  G) Tuning curves relative to hand direction, computed for the 

responses in E and F averaged over the period marked by the black bar in E.  Solid lines are model fits (Eq. 3.1), 

dashed lines are observed rates.  Number over black bar in E reports the angular PD difference between cosine fits.  

H) Same as in panel G but with tuning expressed relative to cursor direction rather than hand direction.  The PDs of 

the responses in panels E-F were very similar when expressed in cursor-centric coordinates. 
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The activity displayed in Figure 3.1 had only a single modulation peak.  However, M1 

neurons often fire with multiple modulation peaks during reaching (Churchland & Shenoy 2007; 

Churchland et al 2012; Suway et al 2017).  We observed many neurons with multiple modulation 

peaks in our datasets.  Interestingly, individual modulation peaks of single neurons often showed 

a variety of patterns following adaptation (Figure 3.2).  Sometimes patterns displayed an early 

modulation component related to the adaptation, while a subsequent component remained 

unchanged (Figure 3.2 A,C).  Other examples showed the opposite temporal pattern (Figure 3.2 

B,D).  Figure 3.2E and 3.2F show activity patterns with both components affected by adaptation, 

but each to a different degree.  Figure 3.2G shows a unit response with an early component 

unaffected by adaptation, and a second component with a highly reduced amplitude after 

adaptation.  These observations may support the hypothesis that distinct peaks of modulation can 

correspond to distinct encoding epochs.  We also observed responses with no significant relation 

to the adaptation (not shown), indicating a constant encoding of the physical movement 

direction.  Although the example response shown in Figure 3.1 had a tuning change of similar 

magnitude to the visuomotor perturbation, the examples in Figure 3.2 indicate the magnitude of 

change was variable across responses. 
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Figure 3.2 Components of single unit responses are independently affected by visuomotor adaptation. 

Each column represents the response of a single neuron for all reach directions in the standard block (top row) and 

rotated block (bottom row).  The responses in panels A-D were from 45° sessions; the response in panel E was from 

a 67.5° session; the responses in F and G were from 90° sessions.  Black bars above response components mark time 

periods where we applied the same tuning comparison method as in Figure 3.1E-G (i.e. tuning compared between 

blocks, computed using hand direction).  Numbers above bars show the angular difference in PD between blocks, 

and imply that this difference was statistically significant (p < 0.05); n.s. indicates no significant difference (p >= 

0.05). 

 
 

3.3.2 Adaptation effects are widespread and depend on rotation magnitude 

We next sought to summarize the effects described in the previous section for each neuron in our 

dataset.  Since the effect of adaptation had a strong time-dependent effect on single-neuron firing 

rates (Figure 3.2), we first segmented trials into several epochs using factor analysis (FA, see 

Methods).  We chose to identify four factors from our data, representing prominent firing 

patterns over four epochs (Supplemental Figure 3.9).  The epochs were distributed roughly 

evenly through the trial.  Previously, our group identified similar epochs based on the timing of 

modulation peaks of single neurons (Suway et al 2017).  Using that approach, we identified three 

distinct epochs roughly corresponding to the second, third, and fourth epochs shown in 

Supplemental Figure 3.9.  The additional epoch in the current FA procedure targeted activity 
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during the reaction time and early movement.  This factor explained the least amount of variance 

of the four, but we retained it for additional temporal resolution.  The trial epochs corresponded 

to similar behavioral events in both monkeys, although the first two epochs for monkey P were 

slightly shifted forward in time compared to monkey R (Supplemental Figure 3.9A vs B).  This 

could possibly be related to performance differences between monkeys; reaction time and reach 

duration were both longer for monkey P. 

Once the epochs were defined using FA, we considered firing rates averaged over 100 ms 

-windows centered on each factor’s peak.  Within each of the four windows, we identified 

neurons with responses well-fit by cosine functions (R2 > 0.5) in both the standard and rotated 

blocks.  We then computed PD differences between the two blocks for each neuron and epoch 

and produced an angular histogram of these differences (Figure 3.3).  The solid black traces in 

Figure 3.3 represent statistically significant changes, while the dashed gray lines show non-

significant changes.  We found that the PD-difference between standard and rotated blocks was 

related to the magnitude of the visuomotor perturbation.  Differences in PD tended to be much 

larger for 90° sessions than for 45° sessions (Figure 3.3 A vs B).  This property can also be seen 

in the single- unit responses in Figure 3.2 (A-D vs E-F).  The proportion of neurons with a 

significant PD change (regardless of magnitude) after adaptation was also larger for 90° sessions 

(black vs. gray histograms, 3.3 A-B).  This may be due to the generally larger changes in PD in 

those sessions; assuming similar statistical power to detect these changes, one would expect a 

higher detection rate for larger changes.  The majority of PD differences were in the positive 

direction, like the responses shown in Figures 3.1 and 3.2.   

For responses following this pattern, the most common observation was a PD change of 

roughly half the perturbation angle.  This intermediate-valued change could possibly reflect an 
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incomplete adaptation process.  To test this possibility, we re-computed PD changes using only 

trials from either the first or second half of the rotated block.  If the intermediate-valued PD 

changes reflected incomplete adaptation, we would expect those changes to more closely match 

the perturbation angle following additional exposure, i.e. during the second half of the block.  

However, we found the distributions of changes were very similar to those in Figure 3.3 

regardless of which half of the block trials were sampled from.  This consistency suggests the 

intermediate-valued PD changes reflect “mixed” selectivity for visuospatial and physical 

movement parameters (Lurito, Georgakopoulos, & Georgopoulos 1991; Shen & Alexander 

1997a), rather than an incomplete adaptation process. 

To compare M1 responses to the concurrent motor output, we repeated the tuning 

comparison procedure for EMG activity recorded from each muscle in our dataset (Figure 3.3C).  

EMG data were analyzed during the epochs defined by the neuronal data.  However, we also re-

computed the factors from the EMG data and found three clear epochs around movement onset, 

peak velocity, and movement offset.  A fourth factor computed from the EMG data had small 

loadings and contained several noisy peaks, suggesting three factors were sufficient for 

describing these data.  When PDs of EMG data were computed within the first three EMG 

epochs, results were not substantially different than when computed within the epochs defined by 

the neuronal data.  To provide a more direct comparison to the analysis of neuronal data, we 

retained the neuronal epochs for analysis of the EMG data.  The PDs computed from EMG 

activity tended to be similar between the two task blocks, though some differences were 

observed.  Interestingly, those differences were almost always in the negative direction, opposite 

from most changes in neuronal PDs.  There was little difference in this pattern between 

individual muscles, with two exceptions: 1) for the rare case that a significant PD change was 
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observed for the anterior deltoid, the change was slightly positive; 2) a significant PD change in 

either direction was almost never observed for the medial deltoid.  For both 45° and 90° sessions, 

a small subset of the neuronal responses also had negative PD differences between blocks, with a 

similar magnitude as those observed for EMG activity.  This subpopulation may therefore be 

considered “muscle-like” (Kakei, Hoffman, & Strick 1999).  Responses with a positive PD 

change between blocks may be considered related to or affected by the visuomotor perturbation. 

As a control to confirm the observed PD changes were task-driven, we performed a 

similar PD analysis using only data from the standard block.  Trials within that block were 

partitioned into two groups, and the PD difference between the two groups was computed for 

each trial epoch.  We then repeated the procedure 1000 times with new randomly chosen 

partitions and displayed the PD differences as angular histograms (Supplemental Figure 3.10).  

We found that these differences were always near-zero, suggesting the larger changes seen 

between blocks (Figure 3.3) were related to the task. 

 

Figure 3.3 Neuronal PD changes depend on rotation magnitude, but muscle PDs are similar after adaptation 

Black traces show significant PD changes, gray dashed traces show non-significant changes.  Neurons and muscles 

could contribute up to four counts to a histogram (one for each epoch).  A) PD differences for 45° sessions.  Data 

from both monkeys were comparable and were pooled. B) Same as in A but for 90° sessions (monkey R only).  C) 

Same as in A and B but for EMG activity instead of neuronal responses.  Data from both monkeys (and rotation 

angles) were comparable and were pooled. 
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3.3.3 Features of M1 responses are related to reach visibility 

In the previous sections, we described substantial effects of visuomotor adaptation on the firing 

patterns of M1 neurons.  However, these results potentially represent a mixture of properties 

related either to the adaptation process, or to the mismatch between the observed movement and 

the physical movement.  Here, we compare “visible” to “invisible” trials and show that a 

component of firing related to the perturbation is also related to visibility.  Figure 3.4 shows the 

firing rates of two example neurons during the four different task conditions: the top row shows 

rates in the standard block, and the bottom row shows rates in the rotated block; for each 

subpanel, the left column shows rates in the visible trials, and the right column shows those for 

the invisible trials.  For the response in Figure 3.4A, during visible trials, we observed one 

modulation peak that changed PD after the adaptation (left column).  The rate of this neuron’s 

firing was greatly decreased when reaches were not visible (right column).  Another example is 

shown in Figure 3.4B.  This response showed two modulation peaks during the visible trials (left 

column).  Both peaks were affected by the visual perturbation, although the second peak was 

affected to a greater degree (46° vs 70°).  Interestingly, the second modulation peak was absent 

when the cursor was invisible (right column).  The first modulation peak was similar regardless 

of cursor visibility, and a similar PD change was observed following adaptation (38° vs 46°, 

black bars above peaks).  
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Figure 3.4 Reach visibility affects neuronal firing. 

A) Firing rates of the same unit shown in Figure 3.1.  The top row shows the standard condition; the bottom row 

shows the rotated condition.  The left column shows visible trials; the right column shows invisible trials.  The 

amplitude of firing was strongly decreased for this neuron when reaches were not visible.  B) Same as in A but for a 

different neuron.  This example response exhibited two modulation peaks when reaches were visible, but only one 

when reaches were not visible. 

 

The example responses in Figure 3.4 exhibit two interesting patterns.  First, for visible 

trials, there was a strong effect of the perturbation on their tuning functions late in the movement.  

Second, this tuning was weak or absent when feedback was not displayed.  We asked if this 

phenomenon was common across the subpopulation of neurons with perturbation effects on 

firing rates.  Because the visibility-related changes appeared to occur within a specific time span, 

we again utilized the trial segmentation procedure shown in Supplemental Figure 3.9.  Within 

each of the four trial epochs, we computed the percentage of neurons with a significant PD 

change in the positive direction between blocks.  These percentages were computed separately 

for visible and invisible trials and are plotted in Figure 3.5A (blue lines, solid and dashed 

respectively).  The factor loadings marking the four trial epochs are also displayed for reference, 
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with scale on the right ordinate.  If the visibility-related firing patterns shown in Figure 3.4 were 

common across the population, we would expect to find more neurons with significant PD 

changes between blocks for visible trials compared to invisible trials, particularly late in the 

movement.  We found that regardless of reach visibility, the percentage of neurons with a 

significant PD change was large early in the trial, during the reaction time (first epoch).  This 

percentage dropped after the movement was initiated (second epoch).  The third and fourth 

epochs occurred around peak movement velocity and the offset of movement.  During those 

epochs, the percentage of neurons with a PD change after adaptation increased when the monkey 

could see the cursor motion, but decreased when he could not.  Activity related to the 

perturbation but not to visual feedback may be a hallmark of the adaptation process.  Activity 

related to both task parameters, occurring towards the end of behavior, may be consistent with a 

feedback signal. 

The example responses in Figure 3.4 showed decreased modulation amplitude around the 

end of the movement when reaches were not visible.  If this pattern was common, that might 

explain why fewer PD changes were observed towards the end of invisible trials.  To address this 

possibility, we focused on the fourth epoch of visible trials, and selected neurons with a positive 

PD change after adaptation.  We then computed the percent change in modulation depth between 

those trials and invisible trials (Figure 3.5B).  We found that tuning amplitude commonly 

decreased in the invisible trials, relative to visible trials, with the firing of many units showing a 

nearly complete loss of modulation. This pattern is consistent with the example responses shown 

in Figure 3.4. 

The results in Figure 3.5 A-B were computed using a 90° session recorded from monkey 

R.  A strikingly similar time course of effects was observed for monkey P (45° sessions, Figure 
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3.5C).  The overall percentage of PD changes after adaptation was smaller, as expected for 45° 

sessions (Figure 3.3 A-B).  Changes in modulation depth were also similar between monkeys: 

neurons with a positive PD change in epoch four of visible trials commonly showed lower tuning 

modulation during invisible trials (Figure 3.5D).  From these results, it appears that reach 

visibility is important for driving M1 activity toward the end of a reach.  This component is 

affected by the perturbation during visible trials, and is not as strongly modulated when feedback 

is absent.  However, we also found other patterns.  From Figure 3.5, it is clear that some 

responses maintain a relation to the perturbation with strong modulation late in the movement, 

even when the movement was not visible.  Examples of different types of patterning are 

illustrated in Supplemental Figure 3.11. 
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Figure 3.5 Visibility-related tuning changes occur towards the end of movement. 

A) Percentage of neurons exhibiting PD change (p < 0.05) in the positive direction between standard and rotated 

blocks, computed for visible and invisible trials (blue traces, solid and dashed respectively. Scale on left ordinate).  

Percentage was computed within the four epochs (black Gaussian-shaped traces, scale on right ordinate). One 90° 

session from monkey R is shown. B) Change in modulation depth between visible and invisible trials for epoch #4 

(black bar in panel A). Histogram includes responses with a positive significant PD change between blocks in the 

visible condition.  Data in this panel were pooled over 90° sessions from monkey R. C) Same as in A, but for 

monkey P (45° sessions). D) Same as in B, but for monkey P. 
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3.3.4 Decoding cursor direction captures activity related to reach visibility 

In the previous section, we measured each neuron’s PD before and after adaption to identify 

firing patterns potentially related to reach visibility.  We then determined how those patterns 

changed when monkeys could not see their reaches.  Here, we extend this approach to a 

population-level analysis that does not rely on tuning models.  Since many responses were 

affected by the perturbation, we hypothesized that the displayed movement direction could be 

extracted or decoded from the population’s activity.  We then reasoned that this procedure would 

perform poorly during the invisible trials if any component of the response was related to reach 

visibility.  Reverse regression was used to build a decoder by finding linear combinations of the 

neural data that captured the displayed movement direction (see Methods).  All units were 

included in the analysis regardless of their relation to the visuomotor perturbation; that is, we did 

not pre-select responses with significant adaptation-related tuning changes.  Instead, our 

regression procedure naturally weights responses with this property more heavily than those 

without. This procedure yielded two linear combinations of rates: one for decoding the x-

component, and one for the y-component of the displayed direction. 

We identified these decoder weights using only the visible trials and verified that the 

displayed direction was decoded accurately.  Figure 3.6 A-B shows one set of decoder outputs, in 

this case for the y-component of displayed direction.  In the standard condition, shortly after the 

target appeared, decoder output was positive for upward reaches (Figure 3.6A, blue traces), and 

negative for downward reaches (red and orange traces).  This is the expected pattern for a 

representation of the y-axis.  In the rotated condition, the activation pattern changed (Figure 

3.6B).  Note that the color scheme of the different colored traces is defined with respect to 

physical space, such that blue traces (for example) always indicate upward movement, even if 
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the VR cursor was moving in a different direction.  The example in Figure 3.6 shows data from a 

90° session; in the rotated block, leftward physical reaches were associated with upward 

displayed movement.  Since the decoder should track the displayed direction, we would then 

expect positive output for leftward reaches.  Indeed, during the rotated block, output was 

positive-going for leftward reaches (Figure 3.6B, dark blue and red traces), and negative-going 

for rightward reaches (light orange and light blue traces).  Although the same decoder (built from 

the visualized cursor directions) was used in both Figure 3.6A and 3.6B, the decoded 

components were nearly orthogonal, matching the y-component of displayed movement direction 

closely in both blocks: the five-fold cross-validated R2 values were 0.91 and 0.94 in the standard 

and rotated blocks, respectively.  A similar result was found for the x-component decoder, 

yielding cross-validated R2 values of 0.90 and 0.94 in the standard and rotated blocks.  The high 

degree of accuracy over cross-validated iterations indicates these results were consistent over 

trials when the movement was visible.  
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Figure 3.6 Accurate decoder readout of displayed direction depends on cursor visibility. 

A) Decoder output for the y-component of displayed direction, shown in the standard block.  Different colored 

traces show output for reaches to each target.  B) Same as in A, but during the rotated block.  Note the ordering 

across targets has changed, though the decoder weights were the same.  C,D) Same as in A,B, but for invisible trials.  

Output amplitude became weaker and ordering of targets became less clear late in the movement.  E) Integrated 

trajectories from the decoder shown in A-D (ordinate) and a second decoder for the x-component of displayed 

direction (abscissa).  This panel shows trajectories during the standard block, for visible trials.  Different colored 

circles around the edges mark the physical target position.  F) Same as in E, but for the rotated block.  Note the 

trajectories have rotated 90° clockwise in this block, though the physical targets are the same.  G,H) Same as in E,F, 

but for invisible trials.  Trajectories during invisible trials were shortened and distorted towards the end of 

movement, relative to visible trials. 
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Next, the rates recorded during invisible trials were used in the decoder constructed from 

the visible trials (Figure 3.6 C-D).  For those invisible trials, the decoder result was comparable 

to that for visible trials shortly after the target appeared, during the early part of the movement.  

Over that time span, the across-target output pattern was comparable in both trial types, as was 

the output amplitude.  However, later in the invisible trials, decoder output decreased in 

amplitude and the ordering across targets became less clear (Figure 3.6 C-D).  This pattern 

matches closely with that described for the tuning analysis of single-unit responses in Figure 3.5: 

effects related to the perturbation were strong early in the trial regardless of reach visibility 

(possibly an effect of adaptation), but weaker late in the trial when reaches were not visible 

(possibly related to lack of feedback). 

Thus far, we have focused on only one of the decoded directions, in this case, the y-

component.  To better visualize the output of both decoders (one for the x- and one for the y-

component), we integrated their values over time and plotted the resulting trajectories for each 

condition (Figure 3.6 E-H).  This integration procedure is very similar to that used in the 

classical population vector algorithm (Schwartz 1994; Schwartz & Moran 1999).  In the standard 

block, the trajectories were relatively straight and accurate (Figure 3.6E).  A similar result was 

found during the rotated block, though some skewing of the trajectories is apparent (Figure 

3.6F).  In this block, the trajectories were rotated nearly 90° relative to those in the standard 

block, closely matching the displayed direction.  For example, the lightest orange trace points 

rightward in Figure 3.6E, and downward in Figure 3.6F.  Following the same procedure for 

invisible trials initially resulted in trajectories similar to those in the visible trials (Figure 3.6 G-

H).  However, in both the standard and rotated blocks, the trajectories did not extend as far, and 

became distorted toward the end of movement. 
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We next evaluated the consistency of the results for invisible trials and utilized the trial 

segmentation from previous analyses to examine differences across epochs (Figure 3.7).  

Because the targets were arranged in a circle, decoder output for each axis should be sinusoidal 

over targets.  The example shown in Figure 3.6C decoded the y-axis in the standard block, so the 

peak of this sinusoid should be centered on 90° (upward).  Indeed, averaged over the period 

spanning epochs one and two (see Supplemental Figure 3.9), the across-target activation closely 

fit a sine function, peaking near 90° in the standard block (Figure 3.7A, blue traces).  The phase 

of this sinusoid was shifted during the rotated block, and was instead centered near 180° 

(leftward, Figure 3.7A, red traces).  The difference in phase between these two sinusoidal 

patterns was found to be consistent over trials.  We used a bootstrap procedure to repeatedly 

resample invisible trials with replacement before repeating the procedure and re-computing the 

phase difference during epochs one and two (Figure 3.7B).  This difference was about 85° (95% 

CI = 78°, 92°).  In contrast, when we analyzed the period of time during epoch four, across-target 

activation was poorly fit by sinusoidal functions, and was very inconsistent across trials (Figure 

3.7 C-D). 

The results presented in Figure 3.6 and Figure 3.7 A-D were computed using neural data 

from a 90° session performed by monkey R.  For monkey P, we recorded similar data for 45° 

sessions, but were unable to record meaningful neurophysiological data during 90° sessions.  In 

principle, the same analysis can be applied to the 45° sessions.  In that case, however, physical 

and displayed movement are not perfectly orthogonal.  The correlation between them (ρ ≈ 0.7) 

likely causes the decoder output to represent more of a mixture of activity related to displayed 

and executed movement.  Nonetheless, the same analysis is presented in Figure 3.7 E-H for 

monkey P, and a similar trend emerged.  These panels show decoder output for the x-component 
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of displayed direction.  During the period spanning epochs one and two, across-target activation 

was well-fit by a sinusoid centered near 0° (rightward) in the standard block (Figure 3.7E, blue 

traces).  The phase of this sinusoid shifted during the rotated block (Figure 3.7E, red traces).  The 

difference in phase between blocks was consistent, and centered on 25°, undershooting the 45° 

rotation (Figure 3.7F, 95% CI = 12°, 37°).  This undershoot could be due to the smaller number 

of rotation-sensitive responses in 45° sessions (Figure 3.3, A vs. B). When the analysis was 

applied during the fourth epoch, this phase change between blocks was not observed, instead 

centered on 0° (Figure 3.7 G-H, 95% CI = -19°, 21°).   

 

 

Figure 3.7 Decoder output is inconsistent late in the movement for invisible trials. 

A) Same decoder output shown in Figure 3.6C and 3.6D, averaged over epochs 1 and 2, and plotted against physical 

reach direction.  Blue traces are from the standard block (i.e. 3.6C), red traces from the rotated block (i.e. 3.6D).  

Dashed traces show observed data, solid traces show model fits (Eq. 3.1).  B) Phase difference between the two 

model fits in A, shown over bootstrap iterations.  The difference was consistently near 90°.  C,D) Same as in A,B, 

but averaged over epoch 4.  Late in invisible trials, the readout was noisy and inaccurate.  E-H) Same as in A-D, but 

for monkey P (45° visuomotor rotation).  These panels show readout for the x-component of displayed direction. 
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During the fourth epoch for monkey P, across-target decoder output was slightly noisier, 

lower in amplitude, and less consistent across trials than during epochs one and two.  However, 

compared to the results for the 90° session, these effects were more moderate (compare Figure 

3.7 C-D to G-H).  It may be that these decoders do not as fully dissociate displayed and executed 

movement when using data from 45° sessions.  Similar results were observed for a 45° session 

from monkey R, including a slight undershoot of the rotation angle between blocks for the early 

epochs.  Broadly speaking, however, the results from both monkeys and rotation angles are in 

line with the single-neuron analyses presented in Figure 3.5: late in the movement, a component 

of the response related to the perturbation is less prominent if the movement is hidden from 

view. 

3.3.5 Physical reach direction is well-represented in firing rates regardless of task 

condition 

Although many neurons responded in different ways before and after adaptation, and in visible 

and invisible trials, we wondered if signals related to the physical movement could still be 

extracted accurately in each case.  We therefore repeated the analysis in the previous section but 

used the reverse regression procedure to decode the physical reach direction, rather than the 

displayed reach direction (Figure 3.8).  As before, all units were included regardless of whether 

their responses had adaptation-related tuning changes.  Regression was again performed using 

only visible trials, and we again used five-fold cross-validation to confirm the accuracy of this 

readout.  Accuracy was relatively high: the cross-validated R2 values for the y-component were 

0.89 and 0.93 in the standard and rotated blocks, respectively.  For the x-component decoder, 

cross-validated R2 values were 0.87 and 0.93 in the standard and rotated blocks. 
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Figure 3.8A shows decoder output for the y-component of physical reach direction.  

During the standard block, physical and displayed direction were identical; decoder output 

should then be comparable to that shown in Figure 3.6A.  Indeed, the ordering of outputs across 

targets was similar (blue traces were positive-going, red and orange were negative-going).  

However, unlike the decoder for displayed direction, the output pattern shown here did not 

change after adaptation (Figure 3.8B, compare to 3.6B).  Further, output in both blocks was 

relatively consistent even during invisible trials (Figure 3.8 C-D).  One exception is that 

activation was weaker for invisible trials in the standard block, but only slightly (Figure 3.8C).  

When we integrated these activations, as well as those for the decoded x-component, the 

trajectories were relatively straight and accurate in each condition (Figure 3.8E-H).  For invisible 

trials, the trajectories were slightly shorter for some targets, but not to the extent observed for 

readout of displayed direction (Compare 3.8G-H to 3.6G-H).  These results suggest that the 

physical movement is consistently represented in M1 activity regardless of visual context, in line 

with the finding that a considerable portion of responses do not change PD in the rotated block 

(Figure 3.3 A-B). 
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Figure 3.8 Neural readout of physical direction is accurate regardless of cursor visibility. 

A-D) Same as in Figure 3.6A-D, but for the decoded y-component of physical direction.  Decoder output was 

comparable in each trial type.  One exception is for invisible trials in the standard block, where the output amplitude 

was slightly smaller towards the end of the reach, relative to visible trials.  E-H) Same as in Figure 3.6E-H, but for 

decoded physical reach direction.  Trajectories were reasonably accurate in each trial type. 

3.3.6 Kinematics and muscle activity were generally comparable across task conditions 

If movement kinematics were similar across task conditions, the associated EMG patterns should 

also be similar.  However, state-related effects in M1 might impact EMG patterns directly or 

indirectly via projections to the spinal cord.  Investigators have identified a variety of 

relationships between M1 activity and muscle activity (Cheney & Fetz 1980; Rathelot & Strick 

2009; Kakei, Hoffman, & Strick 1999, Griffin, Hoffman, & Strick 2015; Schieber & Rivlis 

2005).  We found that the movement kinematics were highly comparable across task conditions.  

We quantified this using vector field correlation to measure the similarity between the time series 

of velocity vectors during movement for each pair of conditions (Shadmehr & Mussa-Ivaldi, 

1994).  Since there were four conditions, there were six possible pairs considered (n choose k: 
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= 6).  These correlations were very high: across all sessions, pairwise 

correlations between the six pairs of trial types ranged from 0.96 to 0.99.  In general, the patterns 

of muscle activation in our datasets were also comparable across conditions.  Several examples 

are shown in Supplemental Figure 3.12.  As with earlier figures, the top and bottom rows show 

the EMG recorded during the standard and rotated conditions, respectively.  The left and right 

columns of each subpanel show activity during visible and invisible trials, respectively.  From 

Figure 3.3C, we would expect the EMG data to have relatively similar tuning properties, relative 

to kinematic direction, before and after adaptation.  Indeed, the across-target ordering of activity 

was comparable in both blocks (Supplemental Figure 3.12, top vs. bottom rows).  An exception 

can be seen in the antagonist burst of the medial deltoid.   

Differences in activity between visible and invisible trials were also generally subtle (left 

and right columns in each panel).  One important exception can be seen in the second agonist 

burst for some muscles.  For example, the activity of the triceps around movement offset was 

weaker during invisible trials than during visible trials (Supplemental Figure 3.12C).  This can be 

seen to a lesser degree in the medial deltoid (Supplemental Figure 3.12A) and wrist flexor 

(Supplemental Figure 3.12B).  One possibility is that the larger EMG activity during visible trials 

is related to online error-correction or trajectory stabilization.  Reaching movements are 

composed of a primary displacement of the arm followed by one or more corrective sub-

movements.  These secondary sub-movements are thought to be modulated by “active processing 

of visual feedback” (Meyer et al 1988), a view supported by our EMG data.   

The decrease in late-movement EMG modulation during invisible trials is also 

noteworthy because we observed weaker modulation in the neuronal population around 

movement offset for those trials.  However, those decreases in modulation were associated with 
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PD changes in the positive direction following adaptation when reaches were visible, which was 

not a prominent feature of EMG patterns (Figure 3.3C).  Further, the magnitude of modulation 

change between trial types was not as large for EMG activity.  To quantify this, we computed the 

tuning functions of each muscle during epochs 3 and 4 (see Supplemental Figure 3.9 for epoch 

timing) and compared their amplitudes in visible and invisible trials (Supplemental Figure 3.13).  

Although many muscles were less strongly activated when reaches were not visible, this decrease 

tended to be small: about 14% smaller on average across all observations.  When we restricted 

the analysis to just the fourth epoch, the decrease was slightly larger, about 23% on average.  

This relatively small decrease may not be surprising given that the physical movement direction 

was well-represented in firing rates throughout both visible and invisible trials (Figure 3.8).  

Nonetheless, it is possible that the decreased neuronal modulation we observed around 

movement offset for invisible trials was in part related to the decreased EMG modulation around 

the same time. 

Previously, our group found that the tuning patterns of single neurons changed 

sequentially and discretely during normal center-out reach trials (Suway et al 2017).  Here, we 

found that these tuning changes were commonly associated with a transition in encoding 

properties.  For example, Figure 3.2 shows several responses with multiple modulation epochs, 

and these could be differently impacted following visuomotor adaptation.  Figure 3.4 and 

Supplemental Figure 3.11 show multi-peaked responses that were differently impacted by the 

visibility of the reach.  Although EMG activity patterns were also multi-phasic during our 

reaching tasks, their patterns did not change as abruptly.  To illustrate the nature of neuronal 

encoding changes, and to contrast them with EMG patterns, we compared activity of each 

between task types using a sliding correlation analysis (Supplemental Figure 3.14).  We found 
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that abrupt changes in the correlation of neuronal responses between tasks were common, while 

this was not true for the recorded EMG activity. 

3.4 DISCUSSION 

Numerous lines of experimentation show that M1 modulation is correlated with surprisingly 

diverse aspects of motor control.  This activity is related to muscle excitability (Fetz & Cheney 

1980; Schieber & Rivlis 2005; Griffin, Hoffman, & Strick 2015), force production (Cheney & 

Fetz 1980; Kalaska et al 1989; Georgopoulos et al 1992), limb kinematics and geometry 

(Georgopoulos et al 1982; Moran & Schwartz 1999; van Hemmen & Schwartz 2008), 

visuospatial processing and visuomotor transformation (Zhang et al 1997; Alexander & Crutcher 

1990a, Shen & Alexander 1997a), and cognitive processing (Georgopoulos et al 1989; Pellizzer, 

Sargent & Georgopoulos 1995).  Several investigators have examined firing rates in M1 during 

movements for which the stimulus or visuospatial properties of the task were dissociated from 

physical movements.  For example, Georgopoulos et al (1989) used a “mental rotation” task in 

which a monkey reached 90° counterclockwise to a stimulus/cue direction.  They found that the 

population vector calculated from M1 firing rates initially pointed in the stimulus direction 

before rotating toward that of the movement.  A subsequent study utilized a “context recall” 

version of the task in which the monkey relied on a sequence of stimuli to determine the correct 

movement direction (Pellizzer, Sargent, & Georgopoulos 1995).  In this task, M1 neurons first 

coded for the direction of the stimulus in the sequence that signaled the correct response, and 

then abruptly changed 100-150 ms later to code the direction of the upcoming movement.  A 

similar type of encoding change was commonly observed during the tasks described here, though 
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we found these changes occurred at multiple points during a movement (Figures 3.2, 3.4, and 

Supplemental Figures 3.11 and 3.14). 

Other related dissociation paradigms have involved comparing neuronal responses during 

two types of movements: those made towards a stimulus/cue (“compatible” or “congruent” 

conditions), and those made in the direction opposite from the stimulus (“incompatible” or 

“incongruent” conditions).  For flexion and extension of the wrist (Zhang et al 1997) or elbow 

(Alexander & Crutcher 1990a), many M1 neurons initially coded the stimulus direction and later 

coded the movement direction, a finding comparable to those from the “mental rotation” and 

“context recall” tasks.  A similar trend was observed for M1 activity during the tasks presented 

here.  For example, after monkeys adapted to a visuomotor rotation, the largest percentage of 

neurons with significantly altered tuning was observed during the reaction time and very early in 

the movement (Figure 3.5 A,C).  This percentage declined about 150 ms later, consistent with 

the previous studies.  In that work, the dissociation between the stimuli and physical movement 

ended before the movement began, and the movement was essentially unaltered by any of the 

preceding events.  Correspondingly, effects of those events on neuronal firing were not observed 

throughout the movement.  During the rotated block in the tasks presented here, the dissociation 

between vision and movement was constant, and tuning changes related to this dissociation were 

common late in the movement, particularly when the cursor motion was visible (Figure 3.5 A,C, 

blue solid traces).  A similar result was found in a four-target joystick-controlled movement task 

with a similar type of visuomotor rotation (Shen & Alexander 1997a), suggesting this type of 

encoding in M1 is not related only to movement initiation. 

Regardless of the time course of perturbation-related PD changes, we found the 

magnitude of those changes tended to be larger for larger perturbations (Figure 3.3 A-B).  Most 
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of the observed tuning changes were in the positive direction, corresponding to adaptation to the 

perturbation.  For example, the neuronal response in Figure 3.1 had an upward PD during the 

standard block, but a leftward PD during the rotated block (a counterclockwise rotation is 

positive by convention).  Cursor movement displayed in VR was upward during the standard 

block for upward physical movements and upward during the rotated block for leftward physical 

movement– this property was apparently reflected in the firing of the neuron.  Though most of 

the observed PD changes followed this pattern, those changes were often smaller than the angle 

of the perturbation.  This may be in line with results of previous studies showing “mixed” 

selectivity for visuospatial and physical movement parameters, rather than “pure” selectivity for 

one or the other (Lurito, Georgakopoulos, & Georgopoulos 1991; Shen & Alexander 1997a). 

Activity in M1 related to visuospatial task features has commonly been interpreted as a 

hallmark of a “sensorimotor transformation” (Kalaska et al 1997).  This process is hypothesized 

to involve a serial sequence of steps that converts movement-relevant sensory information (i.e. 

visuospatial stimuli) into an appropriate motor response.  In the experiments described here, we 

used a VR system to dissociate vision and movement rather than simply cueing an “incongruent” 

response, raising the possibility that the observed tuning changes were related to some adaptation 

process following the dissociation.  It may be that the observed tuning changes represent a 

mixture of both visuospatial-related coding and adaptation-related effects on firing properties, 

though our experiments did not dissociate these possibilities.  We have presented evidence here 

that tuning changes late in the movement are related to the visibility of the cursor trajectory.  

Although much of the empirical evidence for “sensorimotor transformation” in M1 has focused 

on the neural events around movement initiation, some work has also examined feedback-related 

firing during or following behavior.  In one study, wedge prisms were used to induce visual error 
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prior to movement, and the firing of many M1 neurons was found to share mutual information 

with this error following the movement (Inoue, Uchimura, & Kitazawa 2016).  Another study 

introduced a “cursor jump” perturbation mid-movement, in which the random displacement of a 

feedback cursor necessitated a corrective movement (Stavisky et al 2017).  Shortly after that 

perturbation, putative feedback-related responses in M1 firing rates were found.  In the present 

study, a component of M1 activity, normally observed late in the movement, was weak or absent 

if the cursor trajectory was not displayed, consistent with a feedback-driven neural response 

(Figures 3.4 through 3.7).  This tuning of this response component was also related to the 

visuomotor rotation when the cursor trajectory was visible, as would be expected for a signal 

related to monitoring the VR scene.  When responses during visible and invisible trials were 

compared, this component appeared to constitute a discrete phase or epoch of single unit firing 

(Figure 3.4, and Supplemental Figures 3.11 B-C and 3.14C). 

The observation that many neurons changed their encoding properties discretely during 

movements is of interest in light of recent efforts to elucidate the “dynamics” of M1 activity 

during behavior (Churchland et al 2010; Churchland et al 2012; Shenoy, Sahani, & Churchland 

2013; Russo et al 2018).  These efforts have routinely been implemented using dimensionality-

reduction techniques to visualize the temporal evolution of firing rates from a large population of 

neurons.  A common result from these methods is that population activity appears to trace out a 

smooth trajectory as it evolves in time, leading to the hypothesis that firing rates are subject to a 

set of dynamical rules that govern the way the pattern at one moment follows lawfully from the 

previous pattern.  We used related methodology here to find dimensions in our data that were 

useful for decoding the displayed cursor movement (Figure 3.6) or the physical movement 

(Figure 3.8).  During invisible trials, activation along the displayed movement dimensions began 



 117 

decreasing gradually 100-150 ms after movement onset, reaching near-zero around the time the 

movement ended (Figure 3.6 C-D).  Although this visualization conveyed a relatively gradual 

evolution toward zero, the underlying changes in single-unit firing were often abrupt (see 

especially Figures 3.4B, and Supplemental Figures 3.11 B-C and 3.14C).  This rapid change 

found in individual units was likely obscured in population-level analyses because of slight 

changes in the timing of single-unit responses (Georgopoulos et al 1982; Moran & Schwartz 

1999; Cisek & Scott 1999). 

The concept of smoothly evolving, lawful neuronal dynamics is appealing for the simple 

manner in which it captures temporally changing responses, though this simplicity could be 

associated with a tradeoff in flexibility.  Traditional “representational” tuning models of firing 

tend to generalize poorly over extended time periods, although tuning is stable and robust within 

discrete epochs.  A “temporal parcellation scheme” may constitute a useful compromise between 

these two descriptions of M1 activity (Johnson, Mason, & Ebner 2001).  Much like the 

“dynamical systems” perspective, this scheme predicts that firing rates covary with task-related 

parameters in a time-varying sequence (Shenoy, Sahani, & Churchland 2013).  However, 

information encoded in this sequence is likely determined by the particular set of kinematic 

parameters (Fu et al 1995), visuospatial features (Georgopoulos et al 1989; Pellizzer, Sargent, & 

Georgopoulos 1995; Zhang et al 1997; Alexander & Crutcher 1990a), reach-to-grasp 

requirements (Rouse & Schieber 2016), or feedback constraints (Inoue, Uchimura, & Kitazawa 

2016; Stavisky et al 2017) of a given behavior, rather than by evolution rules.  The common 

interpretation of M1 as a dynamical system focuses on the locally-driven network state, but 

excludes the influence of input (Churchland et al 2012; Russo et al 2018).  In contrast, the abrupt 

changes in state signified by changes in tuning are likely input-driven, suggesting this 



 118 

perspective is incomplete.  In principle, neurons need not transition abruptly from the encoding 

of one parameter to the next, though examples of abrupt patterning in M1 have been reported in 

several contexts: at the transition from planning a movement to starting the movement (Elsayed 

et al 2016, Lara et al 2018); upon selecting the correct movement response from a sequence 

(Pellizzer, Sargent, & Georgopoulos 1995); when monkeys transition between distinct modes of 

behavior (Abeles et al 1995; Velliste et al 2014); and during single reaching movements (Suway 

et al 2017; Harpaz et al 2018).  Discrete, step-like transitions in firing have also been reported in 

other brain regions (Latimer et al 2015) and motor systems (Hahnloser, Kozhevnikov, & Fee 

2002).  This type of patterning has been suggested as a general “neural syntax” for brain 

operations (Buzsáki 2010). 

We found that firing patterns of many single units in M1 reflected the behavioral 

parameters of each task.  Given that M1 is a major source of corticospinal efferents (Porter & 

Lemon 1993), we might expect that some aspects of these observed changes would also be found 

in muscle activity.  This was generally not the case for tuning changes following adaptation, 

which were largely dissimilar for firing rates and EMG (Figure 3.3 A-B vs C).  Specifically, 

neuronal tuning changes were most often in the positive direction and could be very large, while 

tuning changes for EMG activations were almost always in the negative direction and tended to 

be relatively small.  However, for a small subset of neuronal responses, we did observe PD 

changes following adaptation that could be considered “muscle-like” (Kakei, Hoffman, & Strick 

1999).  We also observed changes in modulation strength from “visible” to “invisible” trials for 

both firing rates (Figure 3.5 B,D) and EMG activity (Supplemental Figure 3.13), although those 

decreases were typically much larger for neurons.  Classically, reaching movements have been 

viewed as composed of two phases: an initial “transport” phase that largely does not depend on 
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visual feedback, and a target-homing phase that depends heavily on visual feedback (Woodworth 

1899).  Meyer et al (1988) found that the initial “transport” phase of reaching was invariant in 

the absence of visual feedback, while this was not true of secondary corrective sub-movements.  

It is therefore likely that the enhanced EMG activation observed during visible trials was related 

to visually guided sub-movements.  It could be argued that changes in neuronal activation in the 

absence of feedback were also related to the absence of visually guided sub-movements, and not 

related directly to vision.  However, this hypothesis would require that M1-specified corrective 

signals during visible trials take place in “visual” coordinates, given that the associated tuning 

functions changed following adaptation.  This property would be at odds with recent findings 

suggesting feedback-related and correction-related signals in M1 are distinct (Stavisky et al 

2017).  If these adaptation-sensitive M1 response components are converted to muscle 

commands by other neural structures, this additional processing step is not likely to be linear: 

after adaptation, the relationship between the tuning functions of many neuronal responses and 

muscle activations was found to be nearly 90° out of phase, indicating that they were linearly 

independent (Figure 3.3 B-C).  This observation poses a problem for the common assumption of 

linear mapping from M1 activation to EMG patterns (Kaufman et al 2014; Russo et al 2018).  

Indeed, although both types of signals tended to have multiple phases or modulation peaks over a 

trial, encoding differences of neuronal activity between tasks were large and their relationship 

often changed abruptly, while EMG activations tended to be similar between tasks 

(Supplemental Figures 3.12 and 3.14).   

These findings are compatible with the general concept that the motor system is driven by 

latent sources related to behavioral events (Johnson et al 2001).  From a dynamical systems view 

of M1 activity, this could be interpreted as input-generated changes in neural state.  Our results 
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suggest that at least one input is derived from visual feedback associated with the moving cursor.  

The sequences of discrete encoding patterns imply the system is governed by “attractor states” 

(Abeles et al 1995) in addition to or instead of smooth rotational dynamics (Churchland et al 

2012).  Future work could be focused on identifying other drivers and characterizing how they 

act as input to alter system state. 

3.5 SUPPLEMENTAL FIGURES 

 

Figure 3.9 Trial segmentation using FA defined four sequential task epochs. 

Black Gaussian-shaped traces show the factor loadings over time.  The factors correspond roughly to 1. reaction 

time and movement onset, 2. early movement, 3. late movement, and 4. movement offset.  A) Data from monkey R.  

B) Data from monkey P. 

  



 121 

 

Figure 3.10 PDs of neurons and muscles are consistent during the standard block 

Trials during the standard block were partitioned into two groups, and PD changes were computed between the two 

partitions for each trial epoch.  The procedure was repeated 1000 times with new randomly chosen partitions.  

Changes between partitions were always very close to zero, suggesting that PDs were consistent within the standard 

block.  See Figure 3.3 (main text) for between-block PD changes.  A) Neuronal data from 45° sessions.  B) Neuronal 

data from 90° sessions.  C) EMG data from 45° and 90° sessions.   
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Figure 3.11 Single unit responses had varied relationships to reach visibility. 

A) Unit response with two modulation components, and the second component changed PD following adaptation.  

This component maintained the PD change regardless of reach visibility (left vs. right columns, 55° during visible 

trials, 54° during invisible trials). B) Another response with two components, and again the second one changed PD 

following adaptation.  However, the magnitude of change depended on reach visibility (64° during visible trials, 37° 

during invisible trials). C) Response following the same feedback-related pattern as the examples in Figure 3.4 

(main text).  The examples in panels B and C of this figure also appear in Figure 3.2 (main text). 
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Figure 3.12 EMG activity was similar during each task condition. 

Top and bottom rows show activity in standard and rotated blocks, respectively.  In each subpanel, left and right 

columns show activity for visible and invisible trials, respectively.  A) Medial deltoid.  B) Flexor carpi radialis.  C) 

Triceps.  Activity was generally comparable across conditions, though some muscles had a weaker burst of activity 

late in the movement. 
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Figure 3.13 EMG modulation depth decrease for invisible trials tended to be small. 

Modulation depth was computed in the 3rd and 4th trial epochs (see Supplemental Figure 3.9).  We then computed 

the percent change in modulation depth from visible to invisible trials.  This procedure was done for the standard 

and rotated blocks in each of two epochs; each muscle therefore contributed 4 counts to a histogram.  A) Data from 

monkey R.  B) Data from monkey P. 
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Figure 3.14 Neuronal patterns changed discretely between tasks, while EMG was consistent. 

For each time bin, two vectors of rates or EMG were assembled, one for each trial type of interest.  Each vector was 

composed of 16 values, one for each target.  The correlation between the two vectors was then computed for each 

bin.  A) Single unit response in the standard block (top row) and rotated block (middle row).  Sliding correlation was 

computed between these responses (bottom row).  Solid black trace represents the median correlation over 1000 

bootstrap iterations.  Dashed traces represent the 95% CI.  These responses (which also appeared in Figure 3.2) had 

an early modulation component with a very large PD change between blocks (122°), and a later component with a 

smaller change (64°).  During the first component, the correlation between blocks was negative.  Midway through 

the reach, however, the amount of PD change was smaller, and the correlation abruptly became positive.  B) Similar 

to A but for the activation of the extensor carpi ulnaris.  Across-target activation was highly correlated between 

blocks throughout the entire trial (bottom row).  C) An example unit response that had two modulation components 

during visible trials (top row), but only one component during invisible trials (middle row). The across-target 

correlation was very high (about 0.96) around movement onset before dropping in a step-like manner towards zero.  

D) Similar to C but for activity of the biceps.  As with the wrist extensor, biceps activity was highly correlated 

between conditions throughout the reach, though activation appeared less consistent over trials toward the end of the 

reach (wider confidence band).  The second agonist burst of this muscle was substantially weaker during invisible 

trials compared to visible trials, but the across-target activation patters remained comparable.  This is in contrast to 

the unit response in panel C. 
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4.0  ACTIVITY IN PRIMARY MOTOR CORTEX DURING REACHES WITH 

DIFFERENT TARGET ACQUISITION REQUIREMENTS 

4.1 INTRODUCTION 

Classical perspectives on limb control posit that reaches consist of multiple behavioral 

components (Woodworth 1899; Keele & Posner 1968; Soechting & Lacquaniti 1981; Meyer et al 

1988; Novak, Miller, & Houk 2002).  First, there is a relatively ballistic “initial transport” phase 

that brings the limb toward the general location of a target.  Subsequently, there is a “target 

homing” phase involving one or more corrective sub-movements made with the aid of visual 

feedback.  In Chapter 2, we reported that tuning of single M1 units changed discretely during 

movement, and we suggested these changes were related to transitions between the phases of 

reaching.  In support of this hypothesis, we found that unit activity could be weaker toward the 

end of movement if monkeys were not required to stop accurately, indicating late-movement 

encoding was related to halting the arm or acquiring the target.  In Chapter 3, we showed that 

late-movement encoding could also be related to visual feedback, further linking M1 activity to 

classical notions of reach structure. 

Here, we repeated and expanded on our previous work by recording M1 activity while 

monkeys made center-out reaches that differed in the way they were terminated.  For one reach 

type, movements were accurately stopped and the arm was held within a target zone, as is typical 
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for center-out reaching tasks.  For a second reach type, monkeys only needed to touch the target 

and were rewarded immediately.  This design imposed a clear difference in the control 

requirements of target acquisition.  We found that single unit encoding was initially comparable 

between reach types but was distinct later in the movement depending on the need to stop and 

hold.  When there was no hold period, we often observed weaker modulation late in the 

movement.  However, responses were diverse and it was not uncommon to observe late-

movement encoding unique to either reach type.  This pattern suggests M1 engages in separate 

processes depending on the way targets are acquired. 

Previous work has shown that EMG activity can be markedly different when movements 

are not terminated accurately (Waters & Strick 1981).  Although the stopping requirements of 

reaches differed in our tasks, we found EMG activity recorded from several arm muscles during 

the two types was surprisingly comparable, even late in the movement.  We therefore wondered 

what factors might drive the encoding differences seen for single units.  Since visual feedback is 

critical for stopping accurately, we hypothesized that late-movement encoding would covary 

with visuospatial information more strongly for accurately stopped reaches.  To examine this 

possibility, we dissociated vision from movement using the same visuomotor rotation described 

in Chapter 3 and identified adaptation-related responses as previously described.  Contrary to our 

hypothesis, late-movement encoding related to the adaptation was somewhat more common 

when reaches were not stopped accurately.  Our findings suggest that processes related to target 

acquisition drive M1 activity differently depending on their specific control requirements.  
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4.2 MATERIALS AND METHODS 

Details of the experimental setup, basic task parameters, neuronal and EMG data collection and 

pre-processing have been described in Chapter 3.   

4.2.1 Behavioral task 

Monkeys performed center-out reaching movements in the same virtual reality (VR) 

environment as described previously.  Typically, center-out reaching tasks require a subject to 

accurately terminate movements inside a target zone and hold steady for a short period of time.  

Here, we sought to study M1 encoding related to this control requirement.  We therefore 

included two trial types in each session: 1) a “hold” trial type in which reaches were stopped 

accurately and held within a target zone for 600-800 ms, and 2) a “no hold” trial type in which a 

reward was delivered upon touching the target with the cursor.  The two trial types were 

randomly interleaved, and monkeys were trained to distinguish them based on the color of the 

home position and peripheral target.   

As in Chapter 3, we leveraged the VR paradigm to impose a visuomotor rotation during 

behavior.  Each session was split into two blocks (“standard” and “rotated”), and the two reach 

types (“hold” and “no hold”) were performed in each.  We analyzed five neurophysiological and 

behavioral datasets from each monkey.  For monkey P, we analyzed EMG data recorded over 

two additional sessions.  For monkey R, two of the five datasets included simultaneously 

recorded EMG activity.  Sessions from monkey R included 143 neurons per day on average (SD 

= 43.6 neurons, 715 total observed neurons).  Sessions from monkey P included 31.8 neurons on 

average (SD = 11.6 neurons, 159 total observed neurons). 
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4.2.2 Kinematic tuning analysis 

For some analyses, we applied the standard cosine tuning model to neuronal firing rates as 

described in Chapter 3.  For reference, the same tuning model is defined here: 

(4.1) y = k + B•cos(θ − θPD) + ε 

where y is the estimate of a neuron’s firing rate, k is the baseline rate, B is the amplitude of the 

tuning function (modulation depth), θ is the physical movement direction, θPD is the preferred 

direction (PD), and ε is the noise or fitting error.  Although cosine tuning is a robust descriptor of 

M1 activity during reaching, single unit firing is also known to covary with movement velocity 

and speed (Moran & Schwartz 1999; Inoue et al 2018).  The simpler cosine tuning model can be 

extended to account for these kinematic parameters.  To show this relationship, we first give an 

alternative expression for the cosine tuning model in Equation 4.1: 

(4.2) y = k + BxDx + ByDy + ε 

where y, k, and ε are as defined previously, Bx and By are regression coefficients, and Dx and Dy 

are the x and y components of movement direction, respectively.  The PD of the cosine fit (θPD in 

Eq. 4.1) is then arctan(By / Bx), and the modulation depth (B in Eq. 4.1) is √𝐵𝑥
2 + 𝐵𝑦

2.  Movement 

direction is defined as a vector with unit length, whereas velocity is defined as the direction 

vector scaled by movement speed: 

Vx = SDx 

Vy = SDy 

and, 

S = √𝑉𝑥
2 + 𝑉𝑦

2 
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Where Vx and Vy are the x and y components of velocity, and S is scalar speed.  M1 firing rates 

covary with both vectorial velocity and scalar speed (Moran & Schwartz 1999), as follows: 

(4.3) y = k + BxVx + ByVy + BsS + ε 

where Bs is a regression coefficient and all other terms have been defined previously.  Equations 

4.2 and 4.3 are thus related: speed acts as both a gain and an offset to the standard cosine tuning 

function.  Equations 4.2 and 4.3 will be referred to as the “direction-only” model and the 

“velocity-speed” model, respectively.  Because speed is a non-directional value, we did not 

subtract the across-target firing rate mean from unit responses prior to fitting kinematic models 

as was done elsewhere. 

In some analyses, each kinematic model was fit to firing rates and a choice was made as 

to the “better” fit.  The velocity-speed model is more complex than the direction-only model, so 

a concern is that greater explanatory value could simply be attributed to greater model flexibility.  

To address this concern, we utilized the Akaike Information Criterion (AIC) to select a model.  

The AIC reflects a balance between a model’s explanatory value and its complexity, such that a 

more complex model would be preferred if the gains in explanatory value justified the additional 

degrees of freedom.  We defined the “preferred” model as the one that minimized the AIC. 

4.2.3 Vector field correlation 

To compare sets of scalar quantities, a typical approach is to compute correlation or covariance 

values.  In several analyses, we wished to assess the similarity of two sets of vectors, rather than 

scalars.  For this purpose, we relied on a “vector field correlation” method described by 

Shadmehr & Mussa-Ivaldi (1994).  The following notation is modified from the original citation.  

Consider two sets of vectors, arranged into matrices: 
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𝐴 ∈ ℝ𝑁𝑥𝑇 

𝐵 ∈ ℝ𝑁𝑥𝑇 

where N is the number of elements in each of the T vectors.  For example, if A and B are data 

matrices representing time series (sets) of velocity vectors, N would represent the number of 

spatial dimensions (two or three for movement in a plane or volume) and T would represent the 

number of time points in each set.  We seek an expression for the correlation between these sets: 

(4.4)    𝜌(𝐴, 𝐵) =
𝐶𝑜𝑣(𝐴, 𝐵)

𝜎(𝐴)𝜎(𝐵)
   

Note that this expression differs from standard correlation in that A and B are data matrices.  The 

operation denoted by Cov is nonetheless meant to indicate computation of scalar covariance, 

rather than a covariance matrix.  To yield this scalar, we defined the operation as follows: 

(4.5)    𝐶𝑜𝑣(𝐴, 𝐵) =
1

𝑇
∑ 𝑎𝑗 ⋅ 𝑏𝑗

𝑇

𝑗=1

 

where aj and bj are the mean-subtracted jth columns of A and B, respectively, and the symbol ⋅ is 

the dot product operator.  The σ operator was defined as: 

(4.6)    𝜎(𝐴) = √
1

𝑇
∑ 𝑎𝑗 ⋅ 𝑎𝑗

𝑇

𝑗=1

  

For some analyses, we relied on the expression in Eq. 4.5 as a measure of both the similarity and 

magnitude of A and B (“vector field covariance”).  For other analyses, we used the scaled version 

of this metric described by Eq. 4.4 to consider only the similarity between sets without regard to 

magnitude (“vector field correlation”). 
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4.3 RESULTS 

4.3.1 Movements were similar across task conditions 

Monkeys made straight and accurate reaches to each of the 16 targets (Figure 4.1).  Aside from 

slight differences in curvature or extent of movement, these trajectories were highly comparable 

in “hold” and “no hold” trials, and before and after the visuomotor adaptation.  We quantified 

similarity using vector field correlation, computed for the trial-averaged velocity vectors during 

movement for each pair of conditions (Shadmehr & Mussa-Ivaldi, 1994, see methods).  Since 

there were four conditions, there were six possible pairs of conditions (n choose k: (𝑛
𝑘

) = (4
2
) =

4!

2!(4−2)!
= 6).  Correlations between each pair were very high: over all datasets and condition-

pairs for both monkeys, values ranged from 0.95 to 0.99.  Although the velocity measurements 

were well-correlated, a notable difference between certain conditions was the peak velocity, 

which tended to be higher during “no hold” trials.  On average over all trials in our datasets, 

reaches were 33.56% and 22.14% faster for monkeys R and P respectively during “no hold” 

trials, relative to “hold” trials.  This difference is likely due to a tradeoff between speed and 

accuracy depending on the stop-and-hold requirement.  Note that although peak velocity was 

different between these two reach types, data from each trial were aligned based on the kinematic 

time-course (see Section 3.2.4) to ensure comparability across conditions. 

We next compared EMG activity across each task condition.  Average activity of several 

example muscles is shown in Figure 4.2.  Although activity was generally comparable between 

task types, there were also some notable differences.  One difference can be seen in the initial 

burst of activity around the onset of movement, which was often stronger during “no hold” 
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reaches due to the faster movement velocity for those trials.  We also found that the second phase 

of the typical tri-phasic EMG pattern (i.e. the antagonist burst) was sometimes stronger for 

“hold” trials (e.g. Figure 4.2 A-B, left vs. right columns).  This increase could be related to the 

need to more accurately “brake” the arm’s movement in those trials (Waters & Strick 1981).  

Another difference can be seen for the third phase of the tri-phasic EMG pattern, occurring 

around the offset of movement, and which was often more tonically sustained during “hold” 

trials than “no hold” trials.  A clear example of this pattern can be seen in Figure 4.2B (left vs. 

right columns).  This pattern is not surprising given the need to keep the arm stationary and 

outstretched at the end of “hold” trials.  Despite these differences, activity patterns of the 

muscles in our datasets were well-correlated across task types.  We computed correlations 

between the trial-averaged EMG activity of each muscle, for each of the six pairs of conditions.  

Correlations computed for activity during movement were high: the median correlation values 

over muscles and conditions were 0.86 and 0.92 for monkeys R and P, respectively, indicating a 

reasonably high degree of similarity between task types.   

These summary statistics were computed over all possible task pairs, but we might expect 

greater differences in EMG activity between “hold” and “no hold” trials than between “standard” 

and “rotated” trials.  However, when we restricted the analysis only to “hold” and “no hold” 

comparisons, the median correlation did not change for monkey R and decreased only slightly 

for monkey P (0.90, down from 0.92).  Because these reach types might be expected to be most 

different toward the end of movement, we wondered if EMG activity was less consistent across 

tasks specifically during that period.  We therefore repeated the correlation analysis using 

activity from the time of peak velocity until movement offset.  Over this period, the median 

correlation increased slightly to 0.88 for monkey R and decreased slightly for monkey P to 0.89.  
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As an additional comparison, we also considered a 100 ms window centered on movement 

offset, and found the median correlations were 0.90 and 0.89 for monkeys R and P, respectively.  

Although these correlation measures do not capture the moderate task-related differences in 

EMG amplitude we have described, our data broadly suggest the muscles in our datasets had 

comparable activity patterns during the terminal phase of both reach types. 

 

 

 

Figure 4.1 Average reach trajectories during each task type 

Average reach trajectories are shown for each of the 16 targets (different colored traces) in the “standard” and 

“rotated” blocks (top and bottom rows), and “hold” and “no hold” trials (left and right columns).  Trajectories start 

at movement onset and stop at movement offset.  A) Data from one monkey R session with a 45° rotation.  B) Data 

from one monkey P session with a 90° rotation. 
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Figure 4.2 Example EMG activity during each task type 

Trial-averaged EMG activity for each reach direction (different colored traces) in each task type.  Top and bottom 

rows show the “standard” and “rotated” blocks, left and right columns in each subpanel show “hold” and “no hold” 

trials. The black square markers along the abscissa indicate the time of target show, movement onset, and movement 

offset.  A) Medial deltoid activity recorded from monkey R. B) Wrist flexor activity recorded from monkey R. C) 

Biceps activity recorded from monkey P.  EMG activity was generally comparable between task types, though some 

differences were apparent (see main text). 

4.3.2 Firing rate patterns could be very different during “hold” and “no hold” reaches 

Although movement kinematics and EMG activity were similar across task conditions, neuronal 

firing patterns during each could vary drastically.  These differences were often most obvious 

when comparing “hold” and “no hold” trials.  Previously, we reported that a firing component 

late in the movement was less common when monkeys did not need to stop and hold in the target 

zone (see Chapter 2).  Several examples of this patterning difference are illustrated in Figure 4.3 

A-C.  As seen for those examples, late-trial firing often appeared to constitute a discrete phase or 

epoch that depended on reach type, while earlier activity was very similar regardless of the hold 

requirement.  This discreteness contrasts with the differences in EMG activity observed between 

the two reach types (e.g. Figure 4.2B, left vs. right columns).  The firing pattern difference is not 

likely related to the tonic activity sometimes seen during hold periods (Kettner, Schwartz, & 



 136 

Georgopoulos 1988; Wang et al 2007), since encoding patterns diverged much earlier in the 

movement (for comparison see Chapter 2, Figure 2.4 third and fourth columns, and 

Supplemental Figure 2.13).  Figure 4.3D shows the response of another unit with a late-

movement firing component only during “hold” trials, although interestingly this unit was not 

modulated at all during the other reach type.  These data, along with those presented in Chapter 

2, suggest that a component of M1 activity is associated with the need to stop accurately in a 

target zone.  This component appeared to constitute a discrete response feature that was absent 

during “no hold” trials. 

Interestingly, the opposite pattern was also sometimes observed: a response component of 

some units was specific to “no hold” trials.  This pattern can be seen for the examples illustrated 

in Figure 4.4 A-B.  Like the examples in Figure 4.3 A-C, the early response components of these 

neurons did not vary much between reach types, while the later components were reach-specific.  

Another interesting pattern is illustrated in Figure 4.4C, again with a firing component late in the 

movement only during “no hold” trials.  For both reach types, this unit was modulated around 

movement onset, though the directional tuning at that time changed slightly from down and left 

during “hold” trials (top row, red and dark orange traces) to down and right during “no hold” 

trials (bottom row, light orange and light blue traces).  The unit response shown in Figure 4.4D 

was strongly modulated around both movement onset and offset during “no hold” trials, and only 

weakly during the entire time span of “hold” trials.  These data suggest that a component of M1 

activity is associated with a terminal reach phase that lacks an accurate stopping event. 
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Figure 4.3 Example neuronal responses with a firing component specific to "hold" trials 

Average firing rates recorded from example single units (columns) during “hold” and “no hold” trials (top and 

bottom rows).  Color scheme matches previous figures.  A-C) Unit responses that had two firing components during 

“hold” trials but only one during “no hold” trials.  D) Unit response that had two firing components during “hold” 

trials but was not strongly modulated during “no hold” trials. 

 

 

 

Figure 4.4 Example neuronal responses with a firing component specific to "no hold" trials 

Additional example single unit responses (columns) during “hold” and “no hold” trials (top and bottom rows).  A-C) 

Unit responses that had one firing component during “hold” trials and two during “no hold” trials.  D) Unit response 

that was not strongly modulated during “hold” trials and had two firing components during “no hold” trials. 
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4.3.3 Correlation of encoding patterns between reach types is epoch-specific 

In the previous section, we found that firing patterns were often similar between reach types 

early in the movement, before abruptly diverging mid-reach based on the hold requirement.  To 

visualize and quantify this pattern, we applied a sliding correlation analysis to the rates of single 

units.  For each time bin, we assembled two vectors of rates, one for each reach type.  Each 

vector was composed of 16 firing rate values, one for each target.  We then computed the 

correlation between the two vectors.  In other words, we correlated the units’ tuning at each time 

bin.  As expected from casual inspection of response patterns, we commonly observed that 

activity was initially highly correlated between reach types, but poorly correlated late in the 

movement (Figure 4.5, bottom row).  The change from high to low correlation often occurred 

abruptly in a step-like manner, in line with the hypothesis that there is a relatively discrete 

encoding phase that varies depending on the stopping requirement. 
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Figure 4.5 Sliding correlation analysis of encoding patterns between reach types 

Additional single unit responses (columns) recorded during “hold” and “no hold” trials (top and middle rows).  

Bottom row shows a sliding correlation analysis in which the pattern of rates across targets was correlated between 

reach types, for each time bin.  Trials were resampled with replacement 1000 times to assess variability.  The 

median (solid black traces) and 95% confidence interval (dashed traces), computed over the 1000 bootstrap 

repetitions, are shown in each subpanel in the bottom row.  For these example responses, across-target firing was 

highly correlated early in the trial and abruptly became poorly correlated later in the trial. 
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To summarize the time-varying correlation patterns for all units, we first segmented trials 

into a few epochs using factor analysis (FA, see Methods), and correlations were computed 

within these epochs.  As in Chapter 3, we chose to identify four factors from our data, 

representing prominent firing patterns over the four epochs (Figure 4.6).  The timing of factors 

was similar to that found previously (see Chapter 3).  Once the epochs were defined using FA, 

we considered firing rates averaged over 100 ms windows centered on each factor’s peak.  

Within each of the four windows, we correlated the 16-element vectors (one value per reach 

target) of each unit’s firing rates in “hold” and “no hold” trials (Figure 4.7).  Because unit 

responses are not always consistently modulated during behavior, a concern is that low 

correlation values might not reflect a genuine encoding change but may be attributed to noise.  

We therefore defined an inclusion criterion for each comparison.  For a given epoch, the 

response of a unit during at least one of the reach types was required to be sufficiently consistent 

over trials.  Consistency was assessed by dividing trials within a single reach type (“hold” or “no 

hold”) into two equal parts and computing the trial-averaged tuning correlations between the two 

partitions.  This procedure was repeated 1000 times with new randomly chosen partitions.  

Responses with a median correlation over these repetitions of less than 0.7 for both reach types 

were excluded from the analysis. 
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Figure 4.6 Trial epochs defined by factor analysis 

Trial segmentation using FA.  Black Gaussian-shaped traces show the four factor loadings over time.  The factors 

correspond roughly to 1. reaction time and movement onset, 2. early movement, 3. late movement, and 4. movement 

offset.  A) Factor loadings computed using data from monkey R.  B) Factor loadings computed using data from 

monkey P. 

 

 

 

We found that the pattern illustrated for single units in Figure 4.5 was broadly applicable 

to most neuronal responses: in the first two epochs, correlations between reaches were high for 

most units.  In the later two epochs, these correlations could be much lower (Figure 4.7).  

Responses were most often similar between reach types during the earliest epoch, with 

correlation values greater than 0.7 for 86% and 89% of units (monkeys R and P, respectively).  

Many units maintained this high degree of correlation during the second epoch, although fewer 

for monkey R (65%) than for monkey P (87%).  The percentage of units surpassing the 0.7 

correlation threshold declined about 15-25% in each remaining epoch for both monkeys.  Given 

the stringent inclusion criterion for this analysis, these low correlations cannot be attributed to 

noisy responses.  In summary, activity in M1 appears to be similar during roughly the first half 

of both reach types but diverges during the second half depending on the hold requirement.   
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As a final demonstration of the prominence of this pattern, we used principal component 

analysis (PCA) to find linear combinations of the neuronal data that captured a large amount of 

population firing rate variance during a single reach type.  We reasoned that, if a linear 

combination explained much of the variance for one reach type, it would do so for the other type 

as well, but only during the early part of the movement when responses were similar.  We 

therefore computed principal components (PCs) using data from “hold” trials only, and projected 

data from both reach types onto the top PC (Supplemental Figure 4.12A).  As expected, 

activation along this PC was consistently high during movement for “hold” trials (left column), 

since the PC was chosen to maximize variance for that reach type.  Activation along the same PC 

for “no hold” trials was high during the early part of movement, but declined toward near-zero 

values starting about halfway through the reach, mirroring results of the epoch-based correlations 

(Figure 4.7).  The same analysis was next carried out using EMG rather than neuronal data 

(Supplemental Figure 4.12B).  Activation along the top EMG PC (computed using data only 

from “hold” trials) was similar for both reach types, in line with the correlation results reported 

earlier (Section 4.3.1). 
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Figure 4.7 Tuning correlations between reach types during four epochs 

Across-target firing rates from each unit were correlated between “hold” and “no hold” trials using rates averaged 

over 100 ms windows centered on each factor peak (see Figure 4.6).  Histograms show correlation values during 

each epoch (columns) for all units recorded from A) monkey R and B) monkey P.  Correlations of responses 

between reach types were high for most units during early epochs and lower during later epochs. 

4.3.4 Reach-dependent neuronal encoding is not trivial 

Might the response features unique to “no hold” trials (e.g. Figure 4.4) be trivially related to the 

upcoming return movement, which was delayed for “hold” trials?  In that case, during “no hold” 

trials, the ordering of firing rates across targets early in the movement should be reversed from 

that seen late in the movement (Georgopoulos, Kalaska, & Caminiti 1985).  Based on the single 

unit examples in Figures 4.4 (bottom row) and 4.5 (middle row), there seems to be a wide range 

of changes in firing pattern between the early and later phases of unit responses.  This diversity 
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was quantified by measuring the preferred direction (PD) of each unit during an early and late 

epoch of “no hold” trials and comparing the two measurements.  If late-movement PDs were 

related to returning to the home position, we would expect PD differences to cluster around 180°.  

Because the timing of modulation phases could vary from unit to unit, we repeated the 

comparison for average rates during each non-adjacent pair of FA epochs (first vs. third or 

fourth, and second vs. fourth).  Angular PD changes between epochs were found to be broadly 

distributed around the unit circle for the population, with a slight bias toward smaller changes: 

for all comparisons, a majority of responses had PD changes smaller than 90° (Table 4.1).  This 

pattern is not consistent with the hypothesis that late-movement encoding during “no hold” trials 

was simply related to the upcoming return movement. 

 

 Monkey R Monkey P 

First vs. Third 71% 78% 

First vs. Fourth 53% 52% 

Second vs. Fourth 61% 55% 

Table 4.1 Percent of units with less than 90° PD change between epochs of "no hold" trials 

PDs of single unit responses were compared during non-adjacent trial epochs.  PD changes between epochs were 

broadly distributed around the unit circle, with a slight bias toward smaller changes (less than 90°).  Results pooled 

over datasets for each monkey. 

4.3.5 Velocity encoding is prevalent early in the movement 

What is the consistent M1 driver during the early part of “hold” and “no hold” trials?  There is 

considerable evidence that M1 activity correlates strongly with reach velocity starting shortly 

before movement onset (Schwartz 1992, 1993; Moran & Schwartz 1999; Wang et al 2007; Inoue 
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et al 2018), so perhaps this kinematic signal drives unit activity in both reach types.  The datasets 

used in the present study were well suited to testing this hypothesis because of the consistent 

difference in velocity between “hold” and “no hold” trials.  To assess possible velocity encoding, 

we fit two different kinematic tuning models to single-unit rates, combining data from both reach 

types.  The first model was the standard directional tuning model (Equation 4.2), while the 

second included velocity rather than direction, plus a scalar term for speed (Equation 4.3).  For 

each unit’s response, we evaluated each model and compared goodness-of-fit.  We reasoned that 

the more complex velocity-speed model would be preferable to the direction-only model if the 

temporal profile and magnitude of firing rates and velocity measurements covaried.  Model 

preference was determined by comparing the Akaike Information Criterion (AIC) of the two 

model fits.  The AIC reflects a balance between a model’s explanatory value and its complexity, 

such that a more complex model would be preferred if the gains in explanatory value justified the 

additional degrees of freedom. 

Previous studies have shown that M1 activity best correlates with velocity when the 

movement is shifted back in time ~150 ms (Moran & Schwartz 1999; Churchland & Shenoy 

2007).  A similar time lag could be achieved with our data by shifting the movement start to the 

start of the first FA epoch (time of 20% max factor loading).  To compare fits at different lags of 

interest, we repeated this procedure by shifting the start of the movement to the beginning of 

each of the four FA epochs.  We found a clear pattern of lag-dependent velocity encoding that 

was consistent for data from both monkeys: when the movement was aligned to the start of the 

first epoch, the velocity-speed model was preferred for about 80% of units based on AIC.  This 

value dropped to about 40-50% for each of the remaining epochs.  It is not surprising that the 

velocity-speed model was still preferred over the direction-only model for many units later in the 
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movement, given previous reports of this effect (Churchland & Shenoy 2007).  However, the 

effect of velocity on firing rates was clearly largest immediately before the movement began, in 

line with the hypothesis that a dominant kinematic signal drives early-movement firing for both 

reach types. 

4.3.6 Neuronal covariance patterns match the movement velocity profile 

In the previous section, we concluded that a velocity-like signal is present in firing rates during 

both reach types.  The high correlations of responses between reach types early in the movement 

(Figures 4.5, 4.7, Supplemental Figure 4.12) were therefore likely related to this consistent 

kinematic encoding.  Another way to illustrate this signal without using explicit models is to 

compute the bin-by-bin covariance of responses between reach types, in a similar manner to the 

sliding correlation analysis used previously (i.e. Figure 4.5).  Covariance reflects the similarity of 

encoding patterns as well as their magnitudes, so we would expect the temporal profile of this 

measure to reflect the envelope of whatever signal (if any) is shared between tasks.  This 

measure is illustrated for one set of example responses in Figure 4.8A.  The top and middle 

panels show the response of one unit for “hold” and “no hold” trials, respectively, while the 

bottom panel shows the covariance between the two reach types at each time bin.  The 

covariance profile rises and falls along with the first response phase, which was similar for both 

reach types.  Importantly, covariance remained low during the second response phase, which 

differed between reach types.  Qualitatively, the covariance profile looks similar to the 

stereotyped bell-shaped velocity profiles characteristic of reaching movements. 
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Figure 4.8 Bell-shaped covariance profiles of responses in "hold" and "no hold" trials. 

A) Single unit response in “hold” (top panel) and “no hold” (middle panel) trials.  Bottom row shows a sliding 

covariance analysis.  This analysis is similar to the correlation analysis shown in Figure 4.5 but is unscaled so as to 

reflect the magnitude of responses as well as their similarity across targets.  This unit response also appears in 

Figure 4.4.  B) Same as in the bottom row of panel A, but shown for all unit responses recorded from monkey R.  C) 

Same as in panel B, but for data from monkey P.  For most units, the temporal profile of the covariance between 

reach types was bell-shaped. 
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Bell-shaped covariance profiles were very common for unit responses recorded from both 

monkeys.  Figure 4.8 B-C shows these profiles overlaid for all recorded units (black traces).  

Because covariance depends on absolute response magnitude, rates were first normalized by 

their range so that data from each unit could be displayed on the same scale.  Most of the 

covariance between reach types appeared early in the movement and had a bell-shaped temporal 

profile.  High covariance later in the movement was uncommon, as expected from the 

correlation-based analyses described previously (Figure 4.7).  To summarize the covariance data 

over the population of units, we added their values together bin-by-bin.  This operation is 

equivalent to computing the vector field covariance (Eq. 4.5, see Section 4.2.3) of the population 

response between reach types, separately for each time bin.  That is, for each time bin, we 

computed Cov(A,B) where A and B are N-by-C matrices of rates during “hold” and “no hold” 

trials, N is the number of units, and C is the number of reach directions.  The result of this 

operation is illustrated in Figure 4.9A-B (blue traces) along with the speed profile, which was 

scaled and time-shifted for comparison (black traces).  The correspondence between the 

covariance and speed profiles is quite good, indicating a kinematic-like signal is shared between 

reach types.  For both monkeys, the match between the two profiles was somewhat worse toward 

the end of movement, likely because a small portion of responses were well-correlated between 

reach types at that time (Figure 4.7, fourth column).   

Although units were typically well-modulated throughout a trial’s duration, firing rates 

tended to be largest early in the movement.  Therefore, a concern is that the bell-shaped 

covariance profile might simply reflect the modulation envelope within a single reach type, 

rather than the envelope of shared encoding between each type.  To address this possibility, we 

repeated the analysis using only rates from the “no hold” trials.  That is, we computed Var(B) 
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instead of Cov(A,B), with variables defined as before (Figure 4.9 C-D, dark gray traces).  The 

use of data from “no hold” trials was conservative, in that late-trial activation tended to be 

stronger for “hold” trials (see Chapter 2).   The resulting variance profiles for both monkeys were 

found to be largest around movement onset and initially matched speed profiles well.  However, 

variance did not subsequently drop to the same extent as covariance, suggesting the drop in the 

latter was driven in part by dissimilar encoding patterns (e.g. Figure 4.7, Supplemental Figure 

4.12). 

As an additional comparison, we also computed the covariance profile of EMG activity 

between reach types (Figure 4.9 C-D, light gray traces).  As expected, the initial rise in the 

covariance profile was comparable to that for both the neural covariance and the movement 

speed profiles (see Moran & Schwartz, 1999).  However, the EMG covariance profile had a 

second large peak later in the movement, indicating a similar modulation pattern for “hold” and 

“no hold” trials.  This result is in line with the correlation analyses described in Section 4.3.1, 

which suggested the muscles in our datasets were active in a comparable way during both reach 

types, even during the terminal reach phase. 
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Figure 4.9 Population covariance profiles closely match speed profiles. 

A) Vector field covariance (blue trace, see Equation 4.5) for firing rates computed between “hold” and “no hold” 

trials.  The covariance temporal profile closely matched the movement speed profile (black trace, scaled and time-

shifted for comparison).  Data from monkey R.  B) Same as in A but for data from monkey P.  C) Light gray trace: 

vector field covariance for EMG activity computed between “hold” and “no hold” trials.  Dark gray trace: vector 

field variance for firing rates computed during “no hold” trials.  Neither measure matched the speed profile (black 

trace) as well as the measure in A-B.  Data from monkey R.  D) Same as in C but for monkey P.  Dashed traces in 

each panel show 95% confidence interval computed over 1000 bootstrap iterations. 
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4.3.7 Visuomotor adaptation affected firing rates differently according to reach type 

We have presented evidence that early-movement encoding is related to velocity regardless of 

how a reach is terminated, but the drivers of subsequent encoding differences have not been 

clarified.  In Chapter 3, we found that directional tuning changed after monkeys adapted to a 

visuomotor rotation, and here we used this property to probe encoding differences during “hold” 

and “no hold” trials.  Before comparing adaptation effects between the two reach types, we first 

examined results for a single type.  As previously reported, we found clear encoding changes 

after monkeys adapted to the rotation (Supplemental Figure 4.13).  Moreover, adaptation effects 

could differently impact each response component of single units, as previously observed 

(Supplemental Figure 4.14).  Interestingly, when we compared these effects for the two reach 

types, we found a clear interaction between adaptation-related tuning changes and the hold 

requirement (Figure 4.10).  For example, the response illustrated in Figure 4.10A had a single 

modulation component during “hold” trials and two components during “no hold” trials (left vs. 

right columns).  The PD of the first component did not change after adaptation for either reach 

type (black bar above rates).  However, the PD of the second response component, which was 

unique to “no hold” trials, changed by 43° after adaptation.  Other examples of reach-specific 

adaptation effects can be seen in Figure 4.10 B-C.  Those responses had two modulation 

components for each reach type, but the second component was adaptation-sensitive only during 

“no hold” reaches.   

It is worth noting that the two reach types were randomly interleaved in both the 

“standard” and “rotated” blocks.  Therefore, it appears that adaptation effects could change trial-

to-trial depending on the hold requirement.  These data provide further evidence that information 

encoded during each epoch could change discretely.  A striking example of this patterning is 



 152 

illustrated in Supplemental Figure 4.15, which replicates the sliding correlation technique used 

previously.  Correlations of responses for three pairs of conditions (different colored traces) are 

shown for the unit response in Figure 4.10B.  In each case, the correlation patterns plateaued 

during modulation components at values determined by task features. 

 

 

Figure 4.10 Single unit responses with an adaptation-sensitive component only during “no hold” trials. 

Example single unit responses in all four task conditions.  Top and bottom rows show responses during the 

“standard” and “rotated” blocks; left and right columns in each panel show responses in “hold” and “no hold” trials.  

Each panel shows a response with an adaptation-sensitive firing component only during “no hold” trials.  Black bars 

above response components mark time periods where we compared tuning between standard and rotated blocks.  

Numbers above bars show the angular PD-difference between blocks, and imply that this difference was statistically 

significant (p < 0.05); n.s. indicates no significant difference (p >= 0.05).  The response in panel B also appears in 

Figure 4.5. 

 

4.3.8 Adaptation effects late in the movement were more common during “no hold” trials 

In the previous section, we described several example responses with adaptation-sensitive tuning 

late in the movement, but only during “no hold” trials.  To determine how prevalent this pattern 

was across the population, we computed the percentage of units with an adaptation-related tuning 

change separately for each reach type.  Since there was a time-dependent effect of adaptation 

(e.g. Figure 4.10 and Supplemental Figure 4.14), we utilized the FA trial segmentation and 
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evaluated tuning of rates averaged over 100 ms windows centered on each factor peak (Figure 

4.11).  As reported in Chapter 3, the percentage of adaptation-sensitive responses was larger for 

90° than 45° sessions (panel A vs. B).  For both monkeys, we observed a moderately higher 

proportion of adaptation-related tuning changes during the third and fourth epochs for “no hold” 

reaches, compared to “hold” reaches (yellow and blue traces, respectively).  For monkey R only, 

we observed a slightly larger percentage of adaptation-sensitive responses for “hold” reaches 

during the second epoch.  This may explain the somewhat lower correlations between “hold” and 

“no hold” responses during that epoch for monkey R relative to monkey P (Figure 4.7 A vs. B, 

second column).  In summary, our data suggest that encoding differences between reach types 

are partially explained by a difference in the degree of visuospatial encoding present for each 

type. 

 

 

Figure 4.11 Percentage of adaptation-sensitive responses in "hold" and "no hold" trials 

Tuning curves for each unit response were compared before and after adaptation for rates averaged over 100 ms 

windows centered on each factor peak (black Gaussian-shaped traces, scale on right ordinate).  The percentage of 

units with a significant PD change was computed for “hold” and “no hold” trials separately (blue and yellow traces, 

scale on left ordinate).  A) Data from monkey R (90° rotation).  B) Data from monkey P (45° rotation).  For both 

monkeys, adaptation-related PD changes were somewhat more common late in the trial for the “no hold” reach type. 
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4.4 DISCUSSION 

In Chapter 2, we found that late-movement encoding was weaker when monkeys did not need to 

stop and hold at a target.  We suggested this activity was therefore related to stopping the arm.  

Reaching is believed to consist of multiple discrete behavioral phases (Woodworth 1899; 

Soechting & Lacquaniti 1981; Meyer et al 1988), and each may be associated with different 

patterns of neural activity.  Here, we found that late-movement encoding seemed to constitute a 

discrete component of single-unit firing, suggesting reach structure can be recognized in M1 

activity.  During “no hold” reaches, some units seemed to omit a response component that was 

seen during “hold” reaches (Figure 4.3), and this omission could be visualized as a sharp, abrupt 

change in tuning correlation between the responses.  One might interpret this observation to 

mean that M1 was simply less engaged when reaches were not accurately stopped.  However, we 

also observed units with response components unique to “no hold” reaches.  Sometimes those 

components were appended to the response seen for “hold” reaches (Figure 4.4 A-C), and 

sometimes we found two distinct sequences depending on reach type (Figure 4.5 B-D).  This 

pattern suggests M1 was differently engaged for “no hold” reaches, rather than simply less 

engaged. 

In contrast to these late-movement differences, we found reaction-time and early 

movement activity was well-matched regardless of how a reach was terminated.  This could be 

seen qualitatively for unit responses (Figures 4.3 and 4.4) and quantitatively using correlation-

based analyses (Figures 4.5 and 4.7, and Supplemental Figure 4.12).  This result is interesting 

given that M1 reaction-time activity is widely hypothesized to directly drive subsequent activity 

patterns, possibly via local recurrent circuits (Churchland & Shenoy 2007; Churchland et al 

2010; Afshar et al 2011; Churchland et al 2012; Shenoy et al 2013; Ames, Ryu, & Shenoy 2014; 



 155 

Sussillo et al 2015; Elsayed et al 2016; Lara et al 2018; Russo et al 2018).  Under this 

“dynamical systems” hypothesis, pre-movement activity sets the “initial conditions” of a 

deterministic self-driven system; the early reach-independent patterns we observed therefore 

should not have diverged depending on the hold requirement.  There are several possible 

conclusions to be drawn from our data.  One possibility is that pre-movement M1 activity is 

simply not directly causal to subsequent activity.  This perspective is supported by recent 

optogenetic work in rodents that used a laser to hold M1 in a “known” initial state, which then 

led to divergent activity patterns trial-to-trial when the laser was turned off (Sauerbrei et al 

2018).  Another possibility is that the small percentage of pre-movement responses that were 

weakly correlated between reach types (Figure 4.7 A-B, left-most column) was sufficient to 

generate divergent patterns.  However, this explanation is at odds with experimental work 

suggesting the acceptable range of “initial conditions” is broad (Ames, Ryu, & Shenoy 2014; 

Michaels et al 2015).  Alternatively, it may be that task-dependent inputs alter the time course of 

responses as behavior progresses.  In that case, earlier activity may still play some causal role in 

determining later activity but would not be the sole driver of ongoing dynamics. 

A related view is that response sequences reflect the behavioral structure of the task: the 

different target acquisition requirements of reaches may have driven the divergent neuronal 

responses.  This divergence might be expected if there were large differences in motor output for 

the two reach types, but arm trajectories (Figure 4.1) and EMG activity (Figure 4.2) were 

comparable in each type (Section 4.3.1).  Moreover, correlation and covariance structure of 

EMG patterns was similar across reach types, while the same was not true for neuronal data 

(Figure 4.7, 4.9, and Supplemental Figure 4.12).  Although return movements back to the home 

position were necessarily delayed during “hold” trials, we did not find evidence that monkeys 
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were simply planning a return movement earlier for “no hold” trials (Table 4.1).  Nor were 

encoding differences likely related to the tonic firing sometimes observed during hold periods 

(Kettner, Schwartz, & Georgopoulos 1988; Wang et al 2007), since encoding patterns diverged 

much earlier in the movement.  Instead, our data are consistent with a two-component model of 

reaching (e.g. Woodworth 1899): the initial displacement may be “pre-programmed” and is 

associated with similar M1 activity across contexts, while subsequent target homing occurs as a 

distinct process that may be associated with different activity depending on target acquisition 

requirements. 

The importance of visual feedback during the target-homing phase is well-established 

(Woodworth 1899; Keele & Posner 1968; Meyer et al 1988), and we therefore wondered if a 

difference in visuospatial encoding might help explain the different activity patterns we observed 

in each reach type.  Indeed, when monkeys adapted to a visuomotor rotation, the prevalence of 

rotation-related tuning changes differed between the two types (Figures 4.10, 4.11, and 

Supplemental Figure 4.15).  We anticipated a larger adaptation effect for “hold” trials since 

target-homing is reliant on vision, though we actually found the effect was slightly weaker for 

those trials relative to “no hold” reaches (Figure 4.11, blue vs. yellow traces).  Although target 

acquisition occurs along with visual processing, corrective sub-movements must then be 

generated to carefully stop inside a target zone.  Our data suggest that the “more motoric” 

aspects of those sub-movements may be preferentially encoded in M1 when a more accurate 

terminal phase is imposed by the task (cf. Rouse 2018).  It is important to stress that “adaptation 

effects” on M1 coding do not necessarily imply a direct effect of visual feedback, though we 

presented evidence in Chapter 3 that visual feedback can drive M1 firing. 
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Numerous studies have shown that early-movement M1 activity correlates with 

upcoming reach velocity (Schwartz 1992; Moran & Schwartz 1999; Wang et al 2007; Inoue et al 

2018), and we found this was true for our data as well (Section 4.3.5, Figures 4.8 and 4.9).  To a 

lesser extent, late-movement encoding could also reflect velocity, a result previously reported by 

Churchland & Shenoy (2007).  Their study replicated an analysis from Moran & Schwartz 

(1999) that showed the non-directional (across-target average) firing rate profile matched the 

movement velocity profile.  In the original analysis, data collection stopped before the entire 

movement was completed; an extended analysis in Churchland & Shenoy (2007) found the 

relationship was less robust than originally reported, leading to the conclusion that M1 velocity 

encoding was incidental or secondary to network dynamics.  Our finding that early- and late-

movement responses are distinct may clarify the discrepancy between studies.  That is, we found 

the velocity profile was most strongly represented in the early-movement response, and we 

leveraged the different late-movement responses in “hold” and “no hold” trials to accurately 

extract the kinematic signal (Figure 4.9).  Computing non-directional firing rate is not sufficient 

to parse this signal from subsequent response components– as Churchland & Shenoy (2007) 

commented, the poor match with velocity was “largely caused by the ensemble neural response 

being broader than the velocity trace (many neurons showed response patterns that lasted longer 

than the movement itself).”  Indeed, we observed a similar pattern when we considered only the 

activity for one reach type (Figure 4.9 C-D, dark gray traces, compare with Figure 8 in 

Churchland & Shenoy 2007). 

Interestingly, a large percentage of responses during the early trial epochs showed tuning 

changes after monkeys adapted to the visuomotor rotation (Figure 4.11).  This observation is 

important given our results suggesting reach velocity is strongly encoded during those early-trial 
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epochs.  It may be that kinematic and visuospatial information simultaneously drive firing in M1.  

This hypothesis would be in line with previous reports of “mixed” single-unit tuning to multiple 

parameters (Lurito, Georgakopoulos, & Georgopoulos 1991; Shen & Alexander 1997a).  A 

related possibility is that some neurons encode a kinematic signal in visuospatial rather than ego-

centric coordinates.  This would be useful, for example, for keeping a subject’s “internal model” 

updated following adaptation (Shadmehr & Mussa-Ivaldi 1994; Miall & Wolpert 1996; Mehta & 

Schaal 2002). 

As with previous studies, our data suggest that M1 encoding is not unitary but may relate 

to multiple distinct processes, concurrently and in sequence.  Although single-unit firing was 

often temporally complex and heterogeneous, we also observed consistent structure that related 

to behavioral events and task constraints.  Our findings support the view that M1 activity follows 

a “temporal parcellation scheme” as described by Johnson, Mason, & Ebner (2001).  They 

suggest that “parameters are processed independently” in M1, and “the directional signal 

[observed in firing rates] is not only task dependent but also varies over time and behavioral 

sequence.”  We conclude that a behavioral perspective is useful for parsing seemingly-complex 

neuronal firing, and that reach structure is an important driver of M1 activity. 
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4.5 SUPPLEMENTAL FIGURES 

 

 

Figure 4.12 Principal component analysis of firing rates and EMG. 

Principal components (PCs) were computed using data from only “hold” trials for firing rates (top row) or EMG 

data (bottom row).  Data from “hold” or “no hold” trials were then projected onto the top PC (left and right columns, 

respectively).  A) Firing rate data.  Activation along the top PC was high throughout movement for “hold” trials, 

which was expected since the PC was computed to maximize variance explained for that reach type (left panel).  

Activation along this PC was high only during the early movement for “no hold” trials (right panel), indicating 

encoding patterns differed between reaches later in the movement.  B)  Same as in panel A but for EMG data.  

Activation along the top PC was comparable for both reach types, even though the PC was computed only for 

“hold” trials.  Data in each panel from monkey R. 
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Figure 4.13 Example unit response showing tuning change following visuomotor adaptation. 

A) Firing rates of one unit during the “standard” block.  B) Firing rates of the same unit during the “rotated” block.  

C) Tuning curves computed relative to hand direction for the rates in A (blue traces) and B (red traces), averaged 

over the period marked by the black bar in panel A.  Dashed traces show recorded rates, solid traces show cosine 

tuning fits (see Equation 4.1).  D) Angular difference in degrees between the PDs of the cosine fits in panel C, 

computed 1000 times using a bootstrap procedure.  PD difference was consistent over bootstrap iterations (vertical 

black bars bound 95% of the iterations).  The median difference was 34° and is reported over the black bar in panel 

A. 
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Figure 4.14 Example unit responses showing component-specific tuning related to adaptation. 

Example multi-component single unit responses (columns) during the “standard” and “rotated” task blocks (top and 

bottom rows, respectively).  PDs were compared between blocks over the periods marked by the black bars above 

each panel in the top row.  A numerical value indicates that there was a significant difference (p < 0.05, bootstrap 

test, see methods); n.s. indicates no significant difference.  A) A single unit response with a PD change after 

adaptation for an early firing component and not a later one.  B) A response with a PD change for a late component 

and not an early one.  C) A response with a PD change for both firing components, but each to a different degree.  

D) A response with two firing components, neither of which changed PD after adaptation. 
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Figure 4.15 Correlation patterns change abruptly and depend on task parameters. 

Sliding correlation analysis for selected pairs of conditions for the unit response shown in Figure 4.10B (main text).  

That response had an adaptation-sensitive firing component late in the trial only during “no hold” reaches.  Since 

there was no PD change after adaptation for “hold” trials, correlation of responses between task blocks was high 

during the whole trial for that reach type (blue traces).  The late-trial component during “no hold” trials was 

different from that during “hold” trials and changed PD after adaptation.  The correlation between responses for the 

two reach types was therefore different before (yellow traces) and after (red traces) adaptation.  Correlation patterns 

appeared to change in a step-like manner, suggesting the responses encoded information discretely depending on the 

task type. 

 



 163 

5.0  CONCLUSIONS 

5.1 SUMMARY OF FINDINGS 

5.1.1 Firing patterns during reaching are structured 

The central finding of the work presented here is that M1 firing patterns during reaching are 

structured as a sequence of discrete states, each with different encoding properties appropriate 

for a given behavior.  In Chapter 2, we carefully characterized this structure during normal 

center-out reaching based on the changing directional tuning of single neurons.  Using a novel 

statistical approach, we first confirmed that directional tuning is labile over the course of a reach.  

Tuning lability was not related to noise, nor was it related to poor assumptions about neurons’ 

kinematic encoding properties.  Yet, a cosine tuning function was a good approximation of firing 

rates throughout the entire movement, even if the PD of the tuning function was not consistent at 

different times in a trial.  Close inspection of the time-course of single-unit tuning revealed a 

somewhat paradoxical property: PDs actually were, in fact, stable, but only for relatively brief 

(~100-200 ms) epochs.  After a period of stable tuning, firing patterns could change abruptly and 

then stabilize again with a different PD.  When rates for each movement direction were plotted 

together over time, we observed a coherent change in patterning that occurred around the same 

time during movement regardless of reach direction.  Further, these abrupt, across-target pattern 
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changes tended to occur at similar times for most neurons in the population.  We concluded that 

this widespread reorganization of firing patterns likely reflected a change in behavioral state as 

the movement unfolded.  

5.1.2 Encoding structure and behavioral structure are linked 

As striking as the observed pattern changes were, the strength of our conclusions in Chapter 2 

was limited in a few important ways.  We took single units’ segmented tuning as evidence of 

separate, sequential neural drivers, but the independence of those segments could not be 

determined without additional experiments.  Multi-phasic tuning changes would also be expected 

if oscillatory dynamics were the dominant neural driver (e.g. Churchland et al 2012), so perhaps 

the apparently discrete patterns were simply an artifact or epiphenomenon.  In Chapter 3, we 

described the results of a visuomotor adaptation paradigm and found strong evidence that 

encoding segments were indeed related to distinct neural drivers.  The dissociation between 

vision and movement allowed us to better characterize tuning within each response segment, and 

we could show clearly that each was independently impacted by the adaptation process.  If 

segmented tuning was secondary to continuous evolution rules (for example), we would not 

expect to see such clear demarcation in information content between each segment.  We next 

varied visual feedback during movement trial-to-trial and found further evidence that sequential 

response segments are associated with distinct drivers.  For many single units, a late-movement 

firing component that was observed during normal reaches (i.e. with visual feedback) was weak 

or absent when no feedback was provided, while early-movement activity did not depend on 

feedback.  This pattern suggested the drivers of the late- and early-movement response 

components were distinct. 
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 In Chapter 4, we more directly linked segmented tuning to the structure of reaching 

movements.   Point-to-point reaches consist of at least two phases, and accurate target acquisition 

occurs as a process separate from the initial arm displacement.  We found that response 

sequences of M1 neurons depended on the target acquisition requirements of the task.  Initially, 

sequences were very similar regardless of these requirements, in line with the idea that the initial 

part of movement is relatively pre-programmed.  However, firing patterns abruptly diverged 

approximately midway through movement depending on the way the target was acquired.  

Accurate target acquisition relies on visual feedback, and we found that visuospatial encoding 

during the later part of movement also depended on the way targets were acquired.  We suggest 

that reach structure is a major driver of M1 firing patterns. 

5.2 RELATION TO CONTEMPORANEOUS WORK 

Multiple studies have highlighted the temporal complexity of M1 firing during behavior (Sergio 

& Kalaska 1998; Hatsopoulos, Xu, and Amit, 2007; Churchland & Shenoy 2007; Churchland et 

al 2010; Suminski et al., 2015), and recent work has attempted to define simple rules that explain 

this complexity (Churchland et al 2012; Ames et al 2014; Russo et al 2018).  Analysis of real M1 

responses and simulated neuronal networks has suggested that activity patterns evolve smoothly 

in time, and that rotational dynamics dominate the population response (Churchland et al 2012; 

Sussillo et al 2015).  Here, we found that discrete state transitions were a common feature of M1 

responses, seemingly in contrast to smooth dynamics.  However, these state changes are not 

necessarily incompatible with the rotations described by Churchland et al (2012); large-scale 

changes in encoding pattern (i.e. from one state to the next) would almost certainly produce a 



 166 

shift in “state-space” position when population activity is visualized using dimensionality-

reduction methods.  It may be that these “summary” subspaces blur underlying discrete 

transitions, possibly due to variable timing of single-unit responses (e.g. Cisek & Scott 1999).  

Interestingly, some of the rotational state-space trajectories reported by Churchland et al (2012) 

actually appear to sharply transition at right angles, rather than smoothly evolve in time (see for 

example their Figure 3d, black traces).  Similar abrupt state-space transitions have also been 

found using M1 activity during reach-to-grasp movements (Rouse & Schieber 2018, their Figure 

3).  Other analytical approaches may be better suited to highlighting these sharp transitions (e.g. 

Abeles et al 1995; Seidemann et al 1996; Latimer et al 2015). 

A common hypothesis of advocates of smooth evolution rules in M1 is that intrinsic 

connectivity of local circuits is the primary determinant of firing rates.  A related concept is that 

neuronal activity is confined to an intrinsic “manifold” of activity patterns (Sadtler et al 2014; 

Gallego et al 2017).  Our work indicates that such a manifold may need to be fairly large to 

accommodate the encoding flexibility we observed depending on task structure (cf. Johnson & 

Ebner 2000).  This flexibility somewhat contrasts with work described by Gallego et al (2017) 

suggesting that population-level activity patterns in M1 are comparable over a wide range of 

different tasks.  It is important to note a major methodological difference between their study and 

ours: we typically subtracted off the condition-independent response component prior to 

analysis, as in Churchland et al (2012), while Gallego et al (2017) did not.  Critically, this 

component of the response carries more variance than the condition-dependent (i.e. tuned) 

component (Kaufman et al 2016; Rouse & Schieber 2018).  Indeed, Gallego et al (2017) reported 

that the vast majority of variance shared between disparate tasks did not appear tuned.  Thus, our 

findings may not be at odds; perhaps the condition-independent response is shaped by intrinsic 



 167 

connectivity, while the tuned response is more flexible and task-dependent.  This knowledge 

could be important for developing novel control algorithms for brain-computer interfaces (BCIs). 

5.3 CLINICAL IMPLICATIONS 

Through much research involving BCIs, investigators have found that signals from the primary 

motor cortex afford the best opportunity to “read out” movement commands.  In lab settings, 

these devices function reasonably well for computer cursor and anthropomorphic robotic limb 

control (Velliste et al, 2008; Wodlinger et al, 2015; Gilja et al 2012).  However, speed, accuracy, 

and dexterity are often limited.  Recent efforts to provide tactile feedback via intracortical 

microstimulation hold great promise for improving control, but limitations of decoding 

algorithms may impose a ceiling on performance.  Many novel decoders have been proposed 

(Kemere et al 2008; Li et al 2011; Kim et al 2011; Gilja et al 2012), typically with limited 

performance gains over the decades-old population vector algorithm (PVA, Collinger, Gaunt, & 

Schwartz 2018).  Yet, the PVA assumes each neuron contributes a constant directional signal– 

fundamentally, this assumption is incorrect.  In one striking demonstration of decoding 

limitations, a human subject with tetraplegia controlled a prosthetic limb with ten degrees of 

freedom using the optimal linear estimator (OLE), which is a variant of the usual PVA 

(Wodlinger et al 2015).  Although the subject achieved good performance in translating, 

orienting, and shaping the hand, her ability to interact with objects was severely limited.  It is 

likely that non-stationarities in neural encoding, probably related to object information, 

interfered with the decoding process (e.g. Vargas-Irwin et al 2015; Rouse & Schieber 2016b).  

Investigators were able to use ad hoc re-calibration methods to improve performance, but they 
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made no attempt to make the decoder “aware” of neuronal temporal dynamics.  It is possible that 

a novel decoder that explicitly models the state transitions we have described would afford 

subjects better, more flexible BCI control. 

In support of this idea, recent work from our lab (Suway et al 2013) demonstrated that 

explicit state-modeling improved continuous BCI control and eliminated the need for 

investigator-defined task epochs.  We leveraged the observation that M1 firing patterns change 

abruptly when subjects transition from actively moving to idly waiting (Velliste et al 2014), and 

this transition was detected online from firing rates using linear discriminant analysis (LDA).  

When the LDA reported that monkeys did not intend to move, output to the prosthetic limb was 

halted.  Without this output-gating method, we found that, when monkeys became distracted or 

disinterested in the task, the usual decoder erroneously reported non-zero velocity and the arm 

moved in unpredictable and potentially dangerous ways.  Although we calibrated the LDA to 

recognize only two states (active and idle), the work presented here suggests that the “active” 

state is not unitary but consists of several distinct components.  In Chapter 2, we explicitly 

classified these different “active” states from firing rates, again using LDA, and found that we 

could robustly detect each state in sequence.  This process was useful for updating the state-

specific PD of each neuron for offline decoding with the PVA.  Future experiments may be able 

to replicate this approach online as was done for idle state detection (Suway et al 2013). 

5.4 LIMITATIONS AND FUTURE DIRECTIONS 

We have repeatedly referred to segmented encoding epochs as neural “states,” but this term is 

admittedly informal.  Numerous analytical methods can be used to characterize functional 



 169 

connectivity between neurons (e.g. Vaadia et al 1995; Okatan, Wilson, & Brown 2005; Dann et 

al 2016), and these methods may be valuable for formalizing our notion of functional states.  For 

example, Abeles et al (1995) found that pairwise cross-correlations between neurons could 

change on short timescales along with transitions in behavioral state.  These changing 

interactions between neurons likely reflected changes of network state, and similar measures 

could be assessed for the “states” we have described here.  Elsayed et al (2016) reported a related 

phenomenon as monkeys transitioned from planning to executing a movement.  Their method 

was based on relatively long periods of time-averaged firing rates, and so short-latency (i.e. 

possibly mono- or poly-synaptic) neuronal interactions could not be assessed.  However, they 

could clearly show widespread reorganization of correlation structure between neuronal 

responses, which likely corresponded to a transition between two distinct network states.  Future 

work could determine whether neuron-neuron relationships change along with the sequence of 

encoding epochs we have described. 

 A further limitation of our description of neural “states” is a reliance on trial-averaged 

firing rates.  Although this approach effectively manages trial-to-trial variability in unit 

responses, slight differences in spike timing or behavioral alignment across trials can obscure 

underlying single-trial dynamics.  For example, we showed in Chapter 2 that abrupt changes in 

directional tuning were associated with a gradual rise-and-fall of the modulation profile of single 

unit responses.  It is not clear if firing rates genuinely ramp up and down over the course of 

tuning epochs, or if the “edges” of these modulation phases are blurred out due to timing 

variability over trials.  Latimer et al (2015) described this problem in detail for spike-trains 

recorded from the lateral intraparietal area, and they challenged a common belief that firing rates 

ramp upward or downward while monkeys accumulate evidence during decision-making.  They 



 170 

argued that ramping could be an artifact of trial-averaged responses that actually changed 

discretely at different times on each trial.  By comparing single-trial models of ramp-like or step-

like spike train dynamics, they demonstrated that more than three quarters of single units 

produced step-like responses.  Our claims that M1 responses progress through discrete states 

could be further supported by similar statistical approaches. 

 Beyond analytical limitations, it is worth noting the shortcomings in our experimental 

design.  We have referenced neural “drivers” under the assumption that inputs to M1 generate a 

sequence of firing patterns, though we have not measured activity from any potential sources of 

input.  It would be valuable for future work to include recordings from several brain regions and 

attempt to trace information flow between areas (e.g. Pesaran, Nelson, & Andersen 2008).  We 

recorded neural data using microelectrode arrays, and it would be straightforward to adapt our 

approach to record from additional cortical structures (e.g. Dann et al 2016).  For visuomotor 

adaptation experiments, posterior parietal cortex (Clower et al 1996; Buneo & Andersen 2006) 

and ventral premotor cortex (Kurata & Hoshi 1999; Schwartz, Moran, & Reina 2004) would be 

relevant structures to record from simultaneously along with M1.  Although we did not use 

recording chambers in our experiments, this would be valuable for future experiments to allow 

recording from cerebellar structures involved in motor adaptation (Wolpert, Miall, Kawato 1998; 

Baizer, Kralj-Hans, & Glickstein 1999; Tseng et al 2007).  These data would be useful for 

evaluating the functional topology of brain structures (Bullmore & Sporns 2009), which may 

help clarify the sources of the signals we have described in M1. 

 A further limitation of our experimental design was that we only observed neuronal 

responses during center-out reaching and not other types of movements.  We therefore could not 

characterize state sequences during, for example, continuous drawing or random target tracking.  
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Schwartz & Moran (1999) used the PVA to predict hand path during figure-eight tracing and 

found a clear effect of path curvature on the prediction interval between the population vector 

and the movement.  They reasoned that “curvature defines the way a movement is segmented,” 

and concluded that “this segmentation is obvious in the neuronal firing patterns” after applying 

the PVA.  One possibility is the state transitions we have described here align with transitions 

defined by movement curvature.  During random target tracking, Harpaz et al (2018) found that 

M1 responses could be segmented into a few discrete states using hidden Markov models, and 

the identified states aligned with changes in acceleration.  These observations agree with our 

conclusion that task structure defines neural state sequences.  Additional work could clarify the 

interaction between the state transitions we identified (based on visuospatial coding, visual 

feedback, or endpoint strategy) and kinematic segmentation (i.e. as defined by curvature or 

acceleration). 

As is common in related work, we studied neuronal activity during well-practiced (“over-

trained”) behaviors, and so there is concern that an effect of learning on activity patterns could 

limit the generalizability of our results.  For example, our behavioral tasks strongly emphasized 

the importance of visuospatial information presented in the virtual reality environment, and the 

extreme visuomotor perturbations we imposed are outside the normal behavioral repertoire of 

macaques.  Moreover, we did not attempt to characterize any changes in neuronal response 

patterns over weeks or months while monkeys gradually mastered these difficult behaviors.  

Prior exposure to visuomotor perturbations is associated with “savings” in terms of adaptation 

time during subsequent exposure, and this likely reflects learning-related changes in neural 

activity (Krakauer, Ghez, & Ghilardi 2005).  One possibility is that segmented encoding 
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sequences reorganize during learning; future work could focus on determining whether the (re-

)organization of these sequences constitutes a reasonable neural “substrate” for learning. 

A related question is the degree to which motor adaptation can be recognized as a slow 

shift in encoding properties over trials, and whether this shift is correlated to behavioral 

performance.  The data presented here focused only on the pre- and post-adaptation periods of 

the task, and we did not analyze responses during the adaptation period.  This would have been 

challenging because we applied the visuomotor rotation quickly over ~20 trials, which caused 

monkeys to make distorted trajectories while they adapted.  Therefore, it would be difficult to 

determine if changes in firing patterns were related to the adaptation process or to gross changes 

in motor output (cf. Wise et al 1998).  It may be possible to study this process using an 

alternative paradigm in which the visuomotor rotation builds very gradually over, say, hundreds 

of trials.  This would likely allow monkeys to produce straight movements on each trial as they 

adapted, and changes in encoding pattern could be evaluated over this extended adaptation 

period. 

Many studies have examined functional throughput from M1 neurons to muscles during 

behavior.  Here, we focused on the structure and flexibility of M1 firing patterns, but we have 

not determined how these patterns may influence muscle excitability.  Griffin, Hoffman, & 

Strick (2015) demonstrated that corticomotoneuronal (CM) cells maintain a consistent functional 

relationship to their target muscles over a wide range of limb configurations.  This finding 

suggests there is a consistent output channel from M1 to muscles, and it would be valuable to 

identify how this output is represented in the patterns we have characterized.  Although we 

recorded from a slightly different location, it is likely that post-spike effects on EMG could be 

identified from units in our datasets.  Spike-triggered averaging of EMG would therefore be a 
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useful method to apply to data during the described tasks.  It is possible that, despite the 

changing encoding properties of units, their spiking activity affects targets muscles in a 

consistent way.   

Alternatively, throughput from single units to muscles might change between the 

encoding epochs we identified.  Kaufman et al (2014) reasoned that this must be true during 

instructed-delay tasks when monkeys transition from planning to moving; most M1 neurons are 

active during both task periods while muscles are active only during movement.  They identified 

linear combinations of movement-period M1 rates that correlated well with EMG activity, and 

then evaluated the same combinations using delay-period rates.  Delay-period combinations were 

near-zero valued, which led to the conclusion that certain patterns of M1 activity are structured 

to “cancel out” and attenuate throughput to muscles.  Their methods could be adapted to our data 

to evaluate if a similar phenomenon applies for the different encoding segments we found.  In 

that case, it may be that some segments reflect inputs to the system while others reflect outputs to 

other structures of the nervous system.  Identifying how the signals we have described relate to 

inputs, outputs, and local computation could be a topic of future work. 
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