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ABSTRACT 

Influenza virus causes high burden of disease, especially in older adults and young children. The 

dynamics of influenza are not completely understood. Weather, population movement, and virus 

survival interact in complex fashion to produce annual epidemics. Chile is a country with a large 

range of latitudes with a public healthcare sector that covers 74% of the population. Influenza 

surveillance, pollution and weather data are periodically reported and publicly available. In our 

work we aimed to determine the spatial dependencies of influenza and the association between 

weather, pollution and influenza cases across Chile. For our purposes we used data from the 

Ministry of Health, national air pollution surveillance, national meteorological service between 

2010 and 2016. We used cross-wavelet analysis to determine the timing relation between 

influenza-like surveillance and laboratory surveillance system. Also, we used wavelet transform 

and phase difference to determine the relationship between latitude and epidemic timing and to 

determine the presence of local waves of influenza between health networks. Finally, we used a 

zero-inflated negative binomial multilevel model to determine the association between influenza 

cases, weather and pollution across hospitals. 
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Influenza-like illness had no difference in timing compared to laboratory-confirmed 

influenza A. A north to south pattern of influenza epidemic was found, especially in the central 

zone of the country where most of the population lives. Population size and latitude were 

associated to start and peak day of annual epidemics of seasonal influenza. Local outgoing and 

incoming travelling waves of influenza were found in 11 and 10 health networks, respectively. 

Local waves were located principally in the center and in the south of the country and were 

associated to population size. Finally, influenza cases were negatively associated with maximum 

temperature, minimum temperature and had a positive association with the concentration of 

particulate matter <2.5 μm (PM2.5).  

Public Health Significance: Our findings can help decision-makers to prepare influenza 

season, prioritize areas for early vaccination campaigns, establish standards for pollution, and set 

a baseline to compare the impact of policies to reduce particulate matter.  

 

 



vi 

TABLE OF CONTENTS 

PREFACE ................................................................................................................................... XV 

ACKNOWLEDGMENTS ..................................................................................................... XVII 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 INFLUENZA VIRUS .......................................................................................... 1 

1.2 INFLUENZA DYNAMICS ................................................................................. 2 

1.3 HEALTHCARE, INFLUENZA AND POLLUTION SURVEILLANCE IN 

CHILE  ............................................................................................................................... 4 

1.4 WAVELETS ......................................................................................................... 5 

1.5 AIMS ..................................................................................................................... 6 

1.5.1 Specific Aims .................................................................................................... 6 

Aim 1: Determine if influenza like illness in emergency departments is a 

reliable measure of laboratory confirmed influenza timing ............................ 6 

Aim 2: Determine the seasonality of influenza in Chile, their similarities and 

spatiotemporal relations ...................................................................................... 6 

Aim 3: Determine the association of weather, air pollution and cases of 

seasonal influenza epidemic ................................................................................ 7 

2.0 INFLUENZA-LIKE ILLNESS AND LABORATORY SURVEILLANCE 

TIMING: A CROSS-WAVELET ANALYSIS IN 25 CHILEAN HOSPITALS .................... 8 



 vii 

2.1 ABSTRACT.......................................................................................................... 9 

2.2 INTRODUCTION ............................................................................................. 10 

2.2.1 Data sources ................................................................................................... 11 

2.2.2 Data preparation............................................................................................ 12 

2.2.3 Statistical analysis .......................................................................................... 13 

2.2.3.1 Wavelet transformation ...................................................................... 13 

2.3 RESULTS ........................................................................................................... 18 

2.3.1 Hospitals Selected .......................................................................................... 18 

2.3.2 Cross-Wavelet ................................................................................................ 19 

2.3.3 Coherence ....................................................................................................... 21 

2.3.4 Best Seasonality.............................................................................................. 22 

2.3.5 Phase difference ............................................................................................. 27 

2.4 DISCUSSION ..................................................................................................... 30 

2.5 CONCLUSION .................................................................................................. 32 

3.0 NORTH TO SOUTH GRADIENT AND LOCAL WAVES OF INFLUENZA IN 

CHILE: A TIME-SERIES ANALYSIS USING WAVELETS ............................................... 33 

3.1 ABSTRACT........................................................................................................ 34 

3.2 INTRODUCTION ............................................................................................. 35 

3.3 METHODS ......................................................................................................... 37 

3.3.1 Design .............................................................................................................. 37 

3.3.2 Data sources ................................................................................................... 38 

3.3.3 Data preparation............................................................................................ 38 

3.3.4 Data transformation ...................................................................................... 39 



 viii 

3.3.5 Association between epidemic timing and latitude in Health Networks. . 40 

3.3.6 Local traveling waves of influenza ............................................................... 41 

3.4 RESULTS ........................................................................................................... 42 

3.4.1 Hospitals included.......................................................................................... 42 

3.4.2 Predominant annual seasonality .................................................................. 44 

3.4.3 Start and peak day of seasonal influenza in Health Networks .................. 48 

3.4.4 Population and a North to south pattern associated to early annual 

epidemics ..................................................................................................................... 50 

3.4.5 Local Travelling waves .................................................................................. 55 

3.5 DISCUSSION ..................................................................................................... 57 

3.6 CONCLUSSION ................................................................................................ 60 

4.0 ASSOCIATION OF WEATHER, POLLUTION AND DAILY INFLUENZA 

CASES IN EMERGENCY ROOMS, A MULTILEVEL ANALYSIS OF CHILEAN 

HOSPITALS ................................................................................................................................ 61 

4.1 ABSTRACT........................................................................................................ 62 

4.2 INTRODUCION ................................................................................................ 63 

4.3 METHODS ......................................................................................................... 65 

4.3.1 Data source ..................................................................................................... 66 

4.3.2 Data preparation............................................................................................ 66 

4.3.2.1 Influenza data ...................................................................................... 66 

4.3.2.2 Weather data ....................................................................................... 66 

4.3.3 Data imputation ............................................................................................. 67 

4.3.4 Statistical analysis .......................................................................................... 67 



 ix 

4.4 RESULTS ........................................................................................................... 70 

4.4.1 Selected Hospitals .......................................................................................... 70 

4.4.2 Weather Model .............................................................................................. 73 

4.4.3 Pollution Model .............................................................................................. 79 

4.5 DISCUSSION ..................................................................................................... 84 

4.6 CONCLUSION .................................................................................................. 86 

5.0 DISSERTATION DISCUSSION .............................................................................. 87 

5.1 MAJOR FINDINGS .......................................................................................... 87 

5.2 PUBLIC HEALTH SIGNIFICANCE.............................................................. 89 

5.3 FUTURE DIRECTIONS................................................................................... 90 

APPENDIX A : CROSS WAVELET POWER SPECTRUM FOR ILI VERSUS 

LABORATORY-CONFIRMED VIRUSES BY HOSPITAL, CHILE 2011-2016 ................ 91 

APPENDX B: DETRENDED RATE TIME SERIES, WAVELET TRANSFORMED 

RATES AND PHASES OF ILI AND VIRUSES BY HOSPITAL, CHILE 2011-2016 ...... 114 

APPENDIX C:  SELECTED AND COMBINED HOSPITALS IN SANTIAGO, CHILE 

2011-2016 ................................................................................................................................... 156 

APPENDIX D: POWER SPECTRUM FOR INFLUENZA-LIKE ILLNESS BY HEALTH 

NETWORK, CHILE 2010-2016 .............................................................................................. 157 

APPENDIX E: START AND PEAK OF INFLUENZA-LIKE ILLNESS VERSUS 

LATITUDE IN HEALTH NETWORKS BY YEAR, CHILE 2011-2016 ........................... 165 

BIBLIOGRAPHY ..................................................................................................................... 166 



 x 

LIST OF TABLES 

Table 2.1. Number of hospitals and type of seasonality in the Cross-wavelet power spectrum in 

25 hospitals, Chile 2011-2016 ...................................................................................................... 21 

Table 2.2. Number of hospitals and phase synchrony of ILI and Laboratory-confirmed viruses in 

25 hospitals, Chile 2011-2016 ...................................................................................................... 25 

Table 3.1. Univariate regressions for start day, peak day and days from start to peak ................ 51 

Table 3.2. Multivariate regression model selection for ILI start day and peak day, using best 

subset method................................................................................................................................ 54 

Table 3.3. Selected Multivariate Models for ILI start day and peak day ...................................... 54 

Table 3.4. Logistic models for outgoing and incoming influenza waves in Health Networks. 

Chile 2010-2016............................................................................................................................ 57 

Table 4.1. Summary of daily ILI counts, rates, weather and pollution variables across Chilean 

hospitals from January 2010 to December 2016........................................................................... 70 

Table 4.2. AIC scores for 9 models to determine the association between ILI rates and weather 

variables: minimum and maximum temperature, relative humidity and precipitation in 42 

hospitals from Chile, 2010-2016. Sorted from Smaller to larger AIC.......................................... 74 

Table 4.3. Association between daily ILI and weather measures across 24 Chilean hospitals from 

January 2010 to December 2016 in a Multilevel Zero-Inflated Negative Binomial model, with 

random intercept for Hospital ....................................................................................................... 76 



 xi 

Table 4.4. Association between daily ILI, weather and pollution measures across 10 Chilean 

hospitals from January 2010 to December 2016 in a Multilevel Zero-Inflated Negative Binomial 

model, with random intercept for Hospital ................................................................................... 81 



 xii 

LIST OF FIGURES 

Figure 2.1. 25 Hospitals included (+ sign) with laboratory surveillance and influenza-like illness 

surveillance, Chile 2011-2016 ...................................................................................................... 18 

Figure 2.2. Cross-Wavelet Power Spectrum for ILI and Lab-confirmed Viruses in Hospital 10-

100, Chile 2011-2016.................................................................................................................... 20 

Figure 2.3. Coherence distribution across hospitals of ILI and Lab-confirmed viruses, Chile 

2011-2016 ..................................................................................................................................... 22 

Figure 2.4. Significant average power and best seasonality of ILI and lab-confirmed virus for 

hospitals, Chile 2011-2016 ........................................................................................................... 24 

Figure 2.5. Detrended rate time series, wavelet transformed rates and phases of ILI and influenza 

A in hospital 10-100, Chile 2011-2016 ........................................................................................ 26 

Figure 2.6. Detrended rate time series, wavelet transformed rates and phases of ILI and 

Adenovirus in Hospital 10-100, Chile 2011-2016 ........................................................................ 27 

Figure 2.7. Phase difference distribution across hospital between ILI and lab-confirmed viruses, 

Chile 2011-2016............................................................................................................................ 29 

Figure 2.8. Distribution of phase angle difference between ILI and lab-confirmed viruses, Chile 

2011-2016 ..................................................................................................................................... 30 

Figure 3.1. Hospitals’ location and ILI rates, Chile 2010-2016 ................................................... 44 



 xiii 

Figure 3.2. Detrended ILI incidence rate and wavelet reconstruction (period = 46-53 weeks), 

Chile 2010-2016............................................................................................................................ 45 

Figure 3.3. Local Wavelet Power Spectrum of ILI rates, Chile 2010-2016 ................................. 45 

Figure 3.4. Average power of wavelet transformation per period, Chile 2010-2016 ................... 46 

Figure 3.5. Average power per period in individual hospitals and 95th percentile of power z-

score across period and hospitals, Chile 2010-2016 ..................................................................... 47 

Figure 3.6. Start and Peak of ILI in emergency room by Health Service and Latitude, Chile 2010-

2016............................................................................................................................................... 49 

Figure 3.7. Start of influenza season and predominant strain per year in 65 hospitals, Chile 2010-

2016............................................................................................................................................... 50 

Figure 3.8. Start of ILI vs Latitude, 29 Health Networks in Chile, 2010-2016 ............................ 52 

Figure 3.9. Peak of ILI vs Latitude, 29 Health Networks in Chile, 2010-2016 ............................ 52 

Figure 3.10. Distance vs pairwise Spearman's correlation of ILI rate, phase angles and wavelet 

reconstruction. Health Networks, Chile 2010-2016 ..................................................................... 55 

Figure 3.11. Travelling waves of influenza in Health Networks. Chile 2010-2016 ..................... 56 

Figure 3.12. ROC curves of logistic models for incoming and outgoing influenza waves in 

Health Networks. Chile 2010-2016 .............................................................................................. 57 

Figure 4.1. Daily ILI cases in Emergency rooms, rates, weather, and pollution variables in 

providers by latitude, Chile 2010-2016 ........................................................................................ 72 

Figure 4.2. Location of the 24 Hospitals included in the Weather Model, Chile 2010-2016 ....... 75 

Figure 4.3. Weather model predicted effects for ILI cases vs minimum temperature, maximum 

temperature and precipitation in 24 hospitals in Chile 2010-2016 ............................................... 77 

Figure 4.4. Location of the 10 hospitals included in the Pollution Model, Chile 2010-2016....... 80 



 xiv 

Figure 4.5. Pollution model predicted effects for ILI cases vs minimum temperature, maximum 

temperature and PM2.5 in 10 hospitals in Chile 2010-2016 ........................................................ 82 



 xv 

PREFACE 

This dissertation theme arose from practical observations of seasonal influenza epidemics and 

from the experience acquired by the author and the Ministry of Health of Chile after the 2009 

H1N1 pandemic. The first cases of the pandemic were diagnosed in the south of the country, 

despite active surveillance of all plane passengers that arrived from Mexico and other countries 

with reported cases. Evidently first cases were undetected, but questions arose: how does 

influenza travels through the country? Are there patterns, climate and pollution factors that could 

influence the epidemic? Chowell found a south to north pattern of hospitalized patients with 

H1N1 in the second semester of 2009. Does seasonal influenza present a similar pattern? These 

questions are principally driven by the need of preventing, controlling and reducing the impact of 

influenza. The highest impact of influenza is among the most vulnerable populations in Chile, 

including the elderly and children. We hope that this research can contribute to the understanding 

of influenza patterns and contribute to reduce the burden in the most vulnerable population. 

This dissertation is divided in five chapters: An introduction to the topic followed by 

three individual but related manuscripts, and a discussion. The first chapter is an introduction to 

influenza virus focused on virus characteristics and on what it’s known about influenza 

dynamics. Also includes a description about Chilean healthcare system, influenza and pollution 

surveillance systems. To orient the reader, we included a general explanation about wavelets, the 
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main method used in this document, which might be unfamiliar to most public health 

professionals.  

Chapter two includes an analysis of influenza-like illness surveillance to laboratory 

confirmed surveillance in hospitals from Chile, to determine which virus had the most similar 

timing to influenza-like illness as a validation method to use influenza-like illness as an influenza 

proxy. The third chapter shows the spatial dependencies and latitudinal patterns of influenzas-

like illness across healthcare networks and determine the presence of local travelling waves of 

influenza. The fourth chapter aims to determine the association between influenza, weather and 

pollution variables across different hospitals across Chile. Finally, in Chapter 5 we included 

three subsections to conclude, highlight public health significance of the findings, and propose 

future directions for applied research on this topic. 
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1.0  INTRODUCTION 

1.1 INFLUENZA VIRUS 

Influenza virus is part the Orthomyxoviridae family that includes the genera of influenza A, B, C 

and thogotovirus. Influenza viruses are composed of negative-sense RNA segment and a lipid 

envelope that provides resistance to environmental conditions (1, 2).  Influenza A and B cause 

disease in humans; are responsible for an important burden of disease world-wide, affecting 5-

10% of the world’s population including 250,000-500,000 deaths annually (3). In the Americas 

40,880-160,270 deaths occur every year associated with influenza infection and in the United 

States it causes 31.4 million outpatients visits, 334,000 hospitalizations and 41,000 deaths with an 

estimated cost of U$87.1 billion (4, 5). Even though all populations are at risk of influenza 

infection, persons of 65 years and more, and children under 5 are the most severely affected (6-8). 

Moreover, influenza is the second most commonly identified pathogen in children with acute 

lower respiratory infections globally (9). 

The high burden of disease caused by influenza is in part attributable to the ability of the 

virus to elude host immunity and cause annual epidemics. The main mechanism to evade 

immunity is attributed to changes in the two types of surface glycoproteins: Haemaglutinin  and 

neuraminidase. Haemaglutinin allows binding and infection of epithelial lung cells while N 

allows the release of new virus particles from infected cells (10). Influenza B has a single version 

of H and N. On the other hand, influenza A has 15 different haemaglutinin types (H1-H15) and 9 
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types of neuraminidase (N1-N9) (2). Haemaglutinin and neuraminidase can suffer two types of 

surface glycoprotein modifications. The first, antigenic shift, is present only in influenza A. In 

antigenic shift, successive single point mutations in the H or N genes occur as part of the 

continuous evolution process that triggers annual epidemics. The second, antigenic drift, is 

present in both influenza A and B. Antigenic drift is a more extreme mutation that results in 

completely new H or new H and N, normally as a result of the transmission of animal influenza to 

humans. The consequence is an immunologically different virus from those present in the past 

years capable of generating new pandemics (2, 11).  Antibodies that target H and N decrease the 

probabilities of infection and severe disease but confer limited or no protection against other types 

(12-14). The evasion of immunity and the mechanism of transmission from person-to-person 

through sneezing, coughing or fomites, gives influenza the ability to produce local and global 

epidemics.  

1.2 INFLUENZA DYNAMICS 

The dynamics of influenza at global and local scales are not fully understood, but can be 

addressed using demographic, geo-climatic and national census  data to improve accuracy of 

models and advance towards the precision that meteorological models have nowadays (15).  In 

temperate climates, there is annual seasonality in winter months, but this issue remains a mystery 

in tropical areas (16, 17). Tamerius et al studied the evidence of different mechanisms associated 

with influenza seasonality reviewing epidemiologic, animal and laboratory model studies (17). 

They used a framework with three primary mediators that include: contact rate, virus survival and 

host immunity. They found some association mediated by human contact rates; including a 
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relationship between influenza and temperatures in temperate regions, rainfall in tropical 

locations, school schedule and travel patterns (11, 18, 19). Virus survival in the environment is a 

basic condition for the spread of influenza.  Temperature, humidity (relative and absolute) and 

ultraviolet radiation showed association with virus survival and could explain in part influenza 

spread and seasonality (1, 20-22). Finally, photoperiod, humidity, temperature, nutritional factors, 

as well as the presence of other circulating viruses might affect population immunity and 

therefore influenza rates (17, 23-29). Even though these associations appear to play an important 

role in seasonality of influenza, it is hard to avoid collinearity of variables and confounding 

factors. The most accepted hypothesis to understand influenza seasonality is that absolute 

humidity may be negatively associated with seasonal epidemics (17).  

The observed periodicity of influenza is caused by complex interactions of factors. To 

understand these phenomena, diverse levels of analysis and convergence of fields will be needed, 

including environmental science, biology, sociology, meteorology, medical science and 

epidemiology (11). The main challenge to influenza dynamic research is to obtain reliable data 

from surveillance systems with the necessary resolution to understand local patterns and with 

international standards to compare and analyze global patterns. Chile has followed the World 

Health Organization recommendations and implemented a strong influenza surveillance systems 

for decades. Information from the Chilean surveillance system can help understand the dynamics 

of influenza.  
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1.3 HEALTHCARE, INFLUENZA AND POLLUTION SURVEILLANCE IN CHILE 

Chile is a high-income country located in south America with a GDP per capita of U$ 15,346 in 

2017 (30). It has the largest latitude range in the southern hemisphere (36 degrees from 17S to 

53S), with 10 types of climate categories ranging from desertic to artic (31). Healthcare provision 

is organized in 29 Public Health Networks that include primary healthcare and hospital services. 

Healthcare networks are organized geographically and are funded via taxes and by the public 

healthcare insurance (National Health Fund: FONASA). FONASA covers 74.4% of the 17 

million population and the rest are covered by private or army health insurance (32). Influenza 

surveillance was enhanced after the 2009 pandemic with year-round surveillance of influenza-like 

illness (ILI) in emergency departments (ED), laboratory in sentinel providers and surveillance of 

severe respiratory disease hospitalizations (33). Hospitals record and report to the Ministry of 

Health daily ED diagnosis. ED and laboratory surveillance showed that in Chile influenza usually 

starts in fall and peaks in winter (34, 35).  

A series of weather and pollution stations across the country are part of the Meteorological 

Services, the national systems of air quality (SINCA) and the Ministry of Agriculture (36-38). 

Since different measures of air pollution depend on local characteristics, like local industry 

development and the type of heating fuel used, there is variation of the air pollutants measured 

(37). Particulate matter <10 μg and <2.5 μg are measured as well as gases like sulfur dioxide 

(SO2) and ozone (O3).  All 4 pollutants are associated to health risks, increased respiratory 

symptoms and hospital visits (39, 40). Data of influenza surveillance, weather and pollution are 

publicly available and can be obtained from the respective institutional web sites. 
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1.4 WAVELETS  

In science we manipulate and represent information based on different geographical coordinate 

systems. For example, we use latitude, longitude and altitude to determine a point in the earth’s 

surface. For complex information, as signals such as influenza time series, a different system must 

be used. Fourier demonstrated that a periodic signal can be decomposed into simple waves, each 

one with a constant frequency multiple of a fixed frequency (41). This decomposition can be used 

to rebuild the original signal. Nowadays this method is used to compress information in 

computers like music into MP3. The compression consists in separating the signal, e.g. the range 

of wavelength audible by humans in music, from noise or recorded sounds that human cannot 

perceive. Then we can hear music using a fraction of the space (megabites) with a sound quality 

like the original. Wavelets are a refinement of the Fourier function. A wavelet is a mathematical 

function that divides a signal into different components that accounts for the presence of abrupt 

changes in time and frequency (Non-periodic signal). Then, signals can be studied using a 

resolution that matches a specific component or scale. We are in contact with these methods daily, 

given that is an essential part of the image compression format JPG (42). The main advantage of 

wavelets over Fourier is that wavelets represent functions that have breaks and peaks. 

Furthermore, wavelets can deconstruct and separate the signal from noise more precisely when 

signals are non-periodic or non-stationary. 

Wavelets are used in different areas of science, for example in physics to study crystal 

defects, in meteorology to study non-stationary phenomena like El Niño and in astronomy to 

detect gravitational waves from the fusion of two neutron stars (43-45). Wavelets have also been 

used in health science to study different infectious diseases such as, dengue, pertussis, measles, 

and influenza (46-54). The incorporation of methods from other fields to public health can help to 

a better understanding of patterns that are otherwise difficult to detect with classic methods. 
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1.5 AIMS 

The purpose of this investigation is to understand the spatial relation of influenza between 

different regions in Chile and the association with weather and pollution. 

1.5.1 Specific Aims 

Aim 1: Determine if influenza like illness in emergency departments is a reliable measure of 
laboratory confirmed influenza timing 

 
Hypotheses: 

a) There is seasonality of lab confirmed influenza and ILI compared to randomly generated 

time series (White noise). 

b) There is a predominant annual seasonality across hospitals for confirmed influenza and for 

ILI. 

c) Seasonality of lab confirmed influenza and ILI presents synchrony within each hospital.  

d) There is no difference in timing between ILI and laboratory confirmed influenza. 

Aim 2: Determine the seasonality of influenza in Chile, their similarities and spatiotemporal 
relations 

 
Hypotheses: 

a) ILI presents an annual seasonality compared to randomly generated time series (White 

noise). 

b) The annual epidemic start and peak of seasonal influenza in health networks is associated 

to latitude  

c) The presence of incoming and outgoing traveling waves of influenza in health networks is 

associated to population 
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Aim 3: Determine the association of weather, air pollution and cases of seasonal influenza 
epidemic  

 
Hypothesis: 

a) Influenza cases are associated to temperature and air pollution. 
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2.1 ABSTRACT 

Background: Influenza is associated to a high burden of mortality and morbidity in Chile and 

elsewhere. Studies about influenza activity from influenza-like illness (ILI) surveillance are 

focused on the sensitivity and the specificity of case definition. The estimation of influenza timing 

from ILI should consider the cocirculation of other pathogens that could increase ILI symptoms in 

the population to avoid over-attribution of ILI to influenza.  

Objective: Determine if ILI in emergency rooms is a reliable measure of laboratory confirmed 

influenza timing 

Method: We used weekly ILI and laboratory surveillance of Respiratory Syncytial Virus (RSV), 

Adenovirus (ADV), Parainfluenza (PARA), Influenza A (INFA), Influenza B (INFB), and 

Metapneumovirus (META) from 25 Chilean hospitals. To test synchrony between ILI and viruses 

we performed cross-wavelet analysis, extracted the predominant seasonality, and compared the 

timing component of the signals (phase). Finally, to test the hypothesis that there was no 

difference in timing between ILI and laboratory-confirmed influenza virus, we compared the 

average phase differences between ILI and each laboratory-confirmed virus. 

Results: We found no timing difference between ILI and influenza A. In contrast, the rest of the 

viruses showed significant differences in timing. 

Conclusion: ILI is a reliable measure of influenza A timing in Chile. 
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2.2 INTRODUCTION 

Influenza is associated with a high burden of morbidity and mortality, in Chile and elsewhere (4, 

55-59). Surveillance of influenza is an important tool to prepare health systems for annual 

epidemics, determination of vaccine content, and preparedness for eventual pandemics (60). 

Influenza surveillance, as recommended by the World Health Organization (WHO), has been 

implemented by several countries around the world (61). The standard promoted by the WHO is a 

combination of clinical and virologic surveillance by sentinel providers (62). Clinical surveillance 

is based on Influenza-like illness (ILI) used as a proxy of influenza A and influenza B to describe 

temporal trends between and within seasons. ILI surveillance accuracy to describe influenza 

activity increases when combined with laboratory surveillance, which is thought to deliver more 

precise information about influenza virus activity (63-65). Even though, laboratory surveillance 

has been implemented to complement clinical surveillance, it tends to be restricted to a small 

number of providers and smaller number of patients tested due to financial and time constrains 

(66). 

Studies about influenza activity from ILI surveillance are mainly focused on the 

sensitivity and specificity of case definition for ILI compared to laboratory-confirmed influenza 

(67-70). For the purpose of studying influenza epidemic timing within a country, it is of more 

interest to examine whether increase in ILI consultation rates are more closely associated with 

increases of laboratory-confirmed influenza virus compared to other viruses.  Viruses like 

influenza A, influenza B, respiratory syncytial virus, parainfluenza, metapneumovirus, and 

adenovirus (AD) are regarded as potential causes of ILI. Most of these pathogens are not 

monitored with the consequent poor positive predictive values of ILI of laboratory confirmed 

influenza (66, 71, 72). The estimation of influenza from ILI rates should consider the 
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cocirculation of other pathogens that could increase ILI symptoms in the population to avoid 

over-attribution of ILI to influenza. The same principle applies to determining seasonal epidemic 

timing when using ILI surveillance. Hence, in this study our aim is to determine the timing 

association between ILI and 7 different laboratory confirmed viruses and to determine if ILI is a 

reliable measure of influenza, using data from 25 Chilean hospitals from 2011 to 2016.Methods 

To determine if ILI reflects laboratory confirmed influenza timing, we obtained official 

governmental data. To test the hypothesis that there is a seasonality of lab confirmed influenza 

and ILI compared to randomly generated time series we performed a wavelet analysis. Then, to 

determine a predominant annual seasonality within each hospital for confirmed influenza and ILI 

we performed cross-wavelet analysis and extracted the predominant seasonality. Then, to test 

time series synchrony of ILI and each virus within each hospital we extracted and compared the 

timing component of the signals (phase). Finally, to test the hypothesis that there was no 

difference in timing between ILI and laboratory-confirmed influenza virus across hospitals, we 

compared the average phase differences of ILI and each laboratory-confirmed virus across 

hospitals. 

2.2.1 Data sources 

We obtained weekly cases of laboratory confirmed viruses reported from hospitals to the national 

reference laboratory, as part of the laboratory surveillance of respiratory viruses (35). Reports 

were available from 2011 to 2016 and included the total number of samples tested for respiratory 

viruses, number of cases of respiratory syncytial virus, adenovirus, parainfluenza, influenza A, 

influenza B, and metapneumovirus. For ILI, we used weekly cases between 2011 and 2016 from 

emergency departments (ED) of public hospitals reported by the Chilean Ministry of Health (73). 
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We included only hospitals with data for both ILI and laboratory surveillance for the period 2011-

2016. 

We used hospital location, census data, and population coverage from official 

governmental institutions to estimate the population that access each hospital. These data sources 

included the Ministry of Health, National Public Insurance (FONASA), National Institute of 

Statistics (INE) and the National Repository of Geospatial Information (32, 74, 75). To calculate 

rates, we estimated the population that access each hospital using the gridded population data 

from World Pop (76). 

2.2.2 Data preparation 

Access to hospital EDs decrease with distance (77-79). Consequently, we used a 5 kilometers 

radius to estimate the population that is covered by each hospital. First, we obtained population 

data for 2010 and 2015 from Worldpop. We obtained the estimated population numbers per 

100x100m grid square from Worldpop and adjusted it by census data for each municipality and 

year (31, 76). Second, we used a linear interpolation to impute the population for years 2011, 

2012, 2013, 2014 and 2016. Third, we applied the proportions of the population with public 

insurance for each municipality and year to the corresponding parts of the radius covered by each 

hospital (32). Finally, we calculated weekly rates of ILI using the estimated population and the 

weekly rate of laboratory confirmed viruses adjusted by the total number of samples as shown in 

the equation: 
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Where r is the adjusted rate of virus v on week w for hospital h. The number of positive 

samples for each virus v is represented by l, N is the population that access each hospital and t is 

the total number of samples. 

We assumed missing data were missing at random (MAR) conditional on the observed 

data and imputed ILI and laboratory-confirmed time series using time series imputation with 

Kalman Smoothing (80, 81). We calculated the total influenza cases (influenza AB) as the sum of 

the imputed data of influenza A plus influenza B. For the imputation of metapneumovirus we 

used a simple moving average as an alternative method for imputing metapneumovirus cases due 

to non-convergence of Kalman Smoothing model secondary to the high number of zeros. 

2.2.3 Statistical analysis 

2.2.3.1 Wavelet transformation 

We used wavelet analysis to determine the best periodicity (e.g. seasonality) and compare timing 

of ILI in the ED and laboratory confirmed viruses: respiratory syncytial virus, adenovirus, 

parainfluenza, metapneumovirus, influenza A, influenza A, and influenza AB in each hospital. 

Wavelet transform is a well-suited method to determine seasonality for non-stationary time series. 

Likewise, wavelet transform is a good approach to determine the seasonality of a periodic time 

series without assuming a specific seasonality (82). Wavelet analysis has been used before to 

study different infectious diseases such as, dengue, pertussis, measles, and influenza (46-53). 

Wavelet transform can be understood as the cross-correlation of ILI rates time series with a group 

of wavelets of diverse “widths” or “scales” at different time points (82). The Morlet wavelet has 

been used before to study infectious disease incidence rates (46, 47, 54).  
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For each scale s and time interval δt, the continuous wavelet transform of a time series xk 

is defined as (83):  

Equation 2.1 

 

 

Where ψ* represents the complex conjugate of the Morlet wavelet function. N represents 

the time index, ranging from zero to the total number of time points and s are the scales.  

To quantify the relationships between two time series the wavelet cross-spectrum and the 

wavelet coherence can be computed (84). An advantage of these ‘wavelet-based’ methods is that 

they can vary in time and detect transitory associations between time-series(84). Cross-wavelets 

and wavelet coherency allow to analyze scale dependencies between two signals (84).  

We used Morlet wavelet coherence and Morlet cross-wavelet transformations to determine 

the association between ILI in the ED and each laboratory confirmed virus. Coherence is a direct 

measure of the correlation between the spectra of two time-series (85). Wavelet coherence is a 

representation of how two signals are correlated, hence, the interpretation is similar to a 

correlation coefficient and a measure of the degree of association of the two series (86).  

Cross-wavelet transformation is used to reconstruct two time series simultaneously to 

determine the seasonality at any time t and determine the local relative timing between them (47, 

83, 84). Cross wavelet provides an appropriate tool for comparing the frequency of two time 

series and for drawing conclusions about the synchrony at certain periods and a given time range 

(86). Given two time series X and Y with wavelet transforms WnX(s) and WnY(s), the cross-

wavelet spectrum is defined as (83): 
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Equation 2.2 

 

Where WnY*(s) is the complex conjugate of Wn Y(s).  

The cross-wavelet spectrum is a complex function, defined as |WnXY(s)|, and can be 

interpreted as the cross-wavelet power (83). Cross-wavelet power can be used as a measure of the 

cross-correlation of two series in the time-frequency (or time-scale) domain (86). Cross-wavelet 

power spectrum and its significance was calculated for all ILI/virus pairs and hospitals (82, 

83).The complex argument of a cross-wavelet transform, arg(Wxy ), represents the local relative 

timing (phase) between two time series xn and yn in a time frequency space (87). The local 

relative phase is represented in the cross-wavelet power spectrum as local arrows, where the angle 

represents the local timing difference between both signals. The time series xn leads for angles 

0∘-90∘ and xy for angles 270∘-360∘, when both signals are synchronized (in-phase). On the other 

hand, both signals differ in timing (are out-of-phase) when the arrows range between 90∘ - 270∘.   

For all transformations we used the same parameters. We used a non-dimensional 

frequency ω0 = 6, that has shown a good performance, good resolution and has been used 

previously for infectious disease (53, 83). We used periodicity step size δj of 1 on a linear scale 

that represents a weekly resolution and periods (scales) from 14 to 144 weeks. Statistical 

significance was tested by comparing the wave signal against randomly generated time series (i.e. 

white noise) with a significance level of 0.05 (84).  

The cross-wavelet spectrum considers a zone that is affected by the edge effects related to 

the size of the periods. Consequently, the data not affected by edge effects, the cone of influence 

(COI), can be interpreted with more confidence (87). As a sensitivity analysis, we tested our 

analysis restricting our data for significant time points from the cross-wavelet transformation, 
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restricting to the COI, and restricting data to the combination of both significant time point 

included in COI. We obtained the same results compared to the complete data. 

We selected separately the best seasonality for the cross-wavelet transformations of each 

ILI/Virus time series pair, per hospital. We defined the best seasonality as the range of periods 

within the 95th percentile of average power across all time points. Therefore, each hospital had its 

own seasonality for every pair of ILI/virus. To determine the periods with higher power, we 

computed the average cross-wavelet power for each period over all time points n from the cross-

wavelet spectrum. We computed the average power according to the work of Torrence (83): 

Equation 2.3 

 

Where, N represents the number of observations, WnXY the cross-wavelet spectrum, and 

s are the scales. 

Then, we filtered the cross-wavelet transforms for each hospital and ILI/virus pair using 

the range of best periods, excluding sub-annual cycles of periods <40 weeks. We reconstructed 

the epidemic cycles using a filter defined by Torrence and Campo (83): 

Equation 2.4 

 

 

Where δt, the periodicity step size, was 1 and Cδ, the reconstruction factor, was 0.776 empirically 

derived for the non-dimensional frequency ω0 = 6 (83). Values from j1 and j2 were the lower and 

upper limits of the range of periods that included the 95th percentile of power.   
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Since the Morlet wavelet is a complex function with a real and an imaginary part, this 

allows us to separate the amplitude (magnitude of the difference between extreme values) and the 

phase of a signal as the timing of a signal within a specific period, regardless of the amplitude 

(82). The real part enables the extraction of phases as an indicator of epidemic timing.  We 

extracted phases for each hospital ILI/Virus pair as described previously by Torrence (47, 82, 83): 

Equation 2.5 

 

Where ϕn(s) is the phase for a scale s, ℑ{WnXY(s)) is the imaginary part, and 

ℜ{WnXY(s)), the real part.  

Phases are continuous and are presented as phase angles in radians from -π, the starting 

point, to +π before resetting and starting a new cycle (84). We extracted the phase angles using a 

band of periods within the 95th percentile of average power as described previously and 

calculated the difference between both ILI and lab-confirmed virus. A negative phase difference 

represented an earlier ILI peak compared to lab-confirmed virus and vice versa. We used a t-test 

to test the hypothesis that there was no difference in timing between ILI and each laboratory 

confirmed virus across hospitals (average phase difference was = 0). To determine the virus that 

reflected most closely ILI timing, we compared the distributions of phase differences between 

viruses. Finally, we compared wavelet coherency distribution for each filtered time series of ILI-

virus across hospitals. We used R and the R package Waveletcomp for data transformation and 

analysis (88, 89). 
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2.3 RESULTS 

2.3.1 Hospitals Selected 

A total of 25 hospitals were selected from all the 15 regions of the country (Figure 2.1). 

Three hospitals had zero metapneumovirus cases in the period, and therefore were excluded 

(hospitals 06-100, 06-103 and 19-100). 

  

 
Figure 2.1. 25 Hospitals included (+ sign) with laboratory surveillance and influenza-
like illness surveillance, Chile 2011-2016 
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2.3.2 Cross-Wavelet 

The cross-wavelet power spectrum showed a consistent annual seasonality for all viruses 

across hospitals. Annual seasonality was presented in the cross-wavelet power spectrum as 

red/yellow zones within the black contour in the range of periods between 40 and 70 that covered 

more than 4 years (208 weeks) in the time axis. An example, for hospital 10-100 from the center 

of the country, is shown in Figure 2.2, the rest of the hospitals’ cross-wavelet power spectrums 

are available in Appendix A. 
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a. b.                              

c. d.                               

e. f.                                                                                        

g.                                                                                              
Figure 2.2. Cross-Wavelet Power Spectrum for ILI and Lab-confirmed Viruses in Hospital 10-
100, Chile 2011-2016  
Cross Wavelet Power Spectrum for ILI and a. influenza A, b. influenza B, c. influenza A and B, d. respiratory 
sincicial virus, e. adenovirus, f. parainfluenza, and g. metapneumovirus. Colors represent cross wavelet power 
representing the correlation between both time series and a wavelet with a seasonality equivalent to the period 
(y axis) in a given week (x axis) . Black lines mark significant power with a 95% confidence level compared to 
white noise, white line the ridge of power values and shaded area demark the zone affected by edge effect 
delimiting the cone of inflluence inside. Whithe line correspond to the power ridge. Arrows show the relative 
timing difference (phase difference ) between both signals. Arrows pointing right represent synchronicity 
between both signals (in-phase), on the contrary, an arrow to the left represents asynchronic time series (out of 
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phase). An arrow pointing up represents ILI leading and an arrow down represents the corresponding virus 
leading timing over ILI. 
 
 

Most hospitals had annual seasonal patterns for at least 4 years. For influenza A, influenza 

AB, respiratory syncytial virus and Adenovirus 92% of the hospitals displayed an annual seasonal 

pattern for ≥4 years. For influenza B, had 88% of the hospitals displayed an annual pattern for 

more than 4 years, 73% of hospitals for metapneumovirus and 60% for parainfluenza (Table 2.1 

and Table 2.2). Few hospitals (n=4) had a sub-annual or multiannual predominant seasonality for 

influenza B, parainfluenza, adenovirus and metapneumovirus. 

 
 

Table 2.1. Number of hospitals and type of seasonality in the Cross-wavelet power spectrum 
in 25 hospitals, Chile 2011-2016 

 
Influenza A         

n(%)
Influenza B         

n(%)
Influenza A and B         

n(%)
RSV                    
n(%)

Parainfluenza         
n(%)

Adenovirus         
n(%)

Metapneumovirus         
n(%)

Sub-annual Seasonality (< 40weeks)

Duration of seasonality

≥4 years

<4 years 1 (0.04)

Annual Seasonality  (40 - 70 weeks)

Duration of seasonality

≥4 years 24 (0.96) 14 (0.56) 24 (0.96) 24 (0.96) 21 (0.84) 15 (0.68)

<4 years 1 (0.04) 10 (0.4) 1 (0.04) 1 (0.04) 2 (0.08) 3 (0.12) 6 (0.27)

Multiannual Seasonality (>70 weeks)

Duration of seasonality

≥4 years 1 (0.04)

<4 years 1 (0.04) 1 (0.04) 1 (0.04)
TOTAL 25 (1) 25 (1) 25 (1) 25 (1) 26 (1) 25 (1) 22 (1)

                

 

2.3.3 Coherence 

All viruses had a high coherence compared to ILI that ranged from 0.84 to 1 (  ). The highest 

modes were observed for respiratory syncytial virus, influenza A and influenza AB with 0.99, 

0.98, and 0.98 respectively. 
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Figure 2.3. Coherence distribution across hospitals of ILI and Lab-confirmed viruses, Chile 
2011-2016 
Distribution of coherence between ILI and Lab-confirmed viruses across hospitals. Coherence is a measure 
of correlation between two signals. All viruses’ time series have a high correlation with ILI. 
 

2.3.4 Best Seasonality 

The average power showed a similar seasonal pattern across hospitals for all ILI/Virus pairs. The 

pattern is represented by the vertically aligned red zones in Figure 2.4 column B. The 95th 

percentile of power, the best seasonality, for each hospital showed a range of similar periods close 

to an annual seasonality (52 weeks). In general, the best seasonality ranged between 40 - 56 

weeks for influenza A and influenza AB, 42-58 for AD, 42-57 for parainfluenza,  43-98 for 

influenza B,  48–57 for respiratory syncytial virus, and 46-105 weeks for metapneumovirus 

(Figure 2.4 column C). Twenty-five (25) hospitals had best seasonality >40 weeks for respiratory 

syncytial virus, 24 for influenza A and influenza AB, 21 for influenza B and metapneumovirus, 

20 for adenovirus and 17 for parainfluenza. 
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Figure 2.4. Significant average power and best seasonality of ILI and lab-confirmed virus 
for hospitals, Chile 2011-2016 
Column A) Lab confirmed virus compared to ILI B) Cross wavelet average power per period for hospitals. 
Colors represent average cross wavelet power representing the correlation between both time series and a 
wavelet with a seasonality equivalent to the period (x axis) for each hospital ordered by latitude (y axis). 
Only significant average power with a 95% confidence compared to white noise are colored. Power was 
transformed to z-score for comparison. Missing data due to non-reported metapneumovirus in black. 
Column C) 95th percentile of average cross wavelet power for each hospital. Range of periods for each 
hospitals are presented in red. Dashed grey dashed line denote the lower limit of annual cycles of 40 
weeks. 

 

In general, ILI and most viruses time series were synchronized (in-phase) with the 

laboratory confirmed viruses. Influenza AB and respiratory syncytial virus were in-phase in all 

hospitals, influenza A and metapneumovirus were in phase for all hospitals except one and two 
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hospitals respectively. Influenza B and parainfluenza had similar number of in-phase and out-of 

phase hospitals (Table 2.2). Adenovirus had more hospitals with time series out-of-phase vs ILI.  

Figure 2.5 and Figure 2.6  shows examples of in-phase and out-of-phase time series. In the 

hospital 10-100, influenza A and ILI had similar rate (Figure 2.5 top), wavelet transform (Figure 

2.5 middle) and phases timing (Figure 2.5 bottom). Instead, Figure 2.6 shows out-of-phase time 

series of adenovirus and ILI in hospital 10-100. The rest of the rate time series, wavelet 

transformed rates and phase for each virus/ILI pair per hospital are available in Appendix B. 

 

 
Table 2.2. Number of hospitals and phase synchrony of ILI and Laboratory-confirmed 
viruses in 25 hospitals, Chile 2011-2016 

 

Virus
In-phase                  

n(%)
Out-of-Phase                  

n(%) TOTAL
Influenza A 23 (0.96) 1 (0.04) 24
Influenza B 10 (0.48) 11 (0.52) 21
Influenza A and B 24 (1.00) 0 (0.00) 24
RSV 25 (1.00) 0 (0.00) 25
Parainfluenza 10 (0.59) 7 (0.41) 17
Adenovirus 3 (0.15) 17 (0.85) 20
Metapneumovirus 19 (0.90) 2 (0.10) 21
TOTAL 114 38 152
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Figure 2.5. Detrended rate time series, wavelet transformed rates and phases of ILI and 
influenza A in hospital 10-100, Chile 2011-2016 
Example of influenza-like illness and lab-confirmed influenza A time series comparison in Hospital 10-
100 from Santiago, the capital city. Blue: ILI, Red: Influenza A. Top: Detrended time series rates ILI and 
detrended adjusted rates of Influenza A. Middle: Wavelet transformed rates with the best seasonality filter 
of periods between 48 – 54 (see Figure 2.4 Line 1, column C). Bottom: Phase angles and phase angles 
difference (dashed black line) between ILI and Influenza A. The cycles or seasons for each time series, 
starts at -3.14-degree radians, lower point in the middle graph, then the increase up to 0 degree correspond 
to the rates peak, then follows the descending rates represented by positive increase of phase angles up to 
3.14 radians, then the cycle reset and start all over again.  Here, phases are synchronized in timing with 
signals that are in-phase. 
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Figure 2.6. Detrended rate time series, wavelet transformed rates and phases of ILI and 
Adenovirus in Hospital 10-100, Chile 2011-2016 
Example of Influenza-like illness and lab-confirmed adenovirus time series comparison in Hospital 10-100 
from Santiago, the capital city. Blue: ILI, Red: Influenza A. Top: Detrended time series rates ILI and 
detrended adjusted rates of adenovirus. Middle: Wavelet transformed rates with the best seasonality filter 
of periods between 46 – 54 weeks (see Line 5, column C). Bottom: Phase angles and phase angles 
difference (dashed black line) between ILI and adenovirus. The cycles or seasons for each time series, 
starts at -3.14-degree radians, lower point in the middle graph, then the increase up to 0 degree correspond 
to the rates peak, then follows the descending rates represented by positive increase of phase angles up to 
3.14 radians, then the cycle reset and start all over again. Here, phases differ in timing with signals that are 
out-of-phase. 
 

2.3.5 Phase difference 

Phase difference represents the relative timing between ILI and lab-confirmed viruses, 

where a negative value represents ILI preceding lab-confirmed viruses. We found that phase 

differences were normally distributed for the different viruses across hospitals. We found that 

metapneumovirus, influenza B, influenza AB and respiratory syncytial virus had, on average, 
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significantly different timing compared to ILI across hospitals. metapneumovirus, influenza B, 

influenza AB were delayed 8, 2.5 and 11 weeks compared to ILI respectively. Instead, respiratory 

syncytial virus preceded ILI by 2.5 weeks. On the other hand, non-significant differences were 

found for influenza A and parainfluenza that were delayed 0.21 (1.5 days) and 0.65 (4.55 days) 

weeks respectively compared to ILI, and adenovirus that led ILI by 0.37 (2.6 days) weeks (Figure 

2.7). From these three viruses, parainfluenza and adenovirus presented wide distributions without 

a clear predominant phase difference. In contrast, influenza A had a phase difference that peaked 

close to zero (Figure 2.8). 
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Figure 2.7. Phase difference distribution across hospital between ILI and lab-confirmed 
viruses, Chile 2011-2016 
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Figure 2.8. Distribution of phase angle difference between ILI and lab-confirmed viruses, 
Chile 2011-2016 
Distribution of phase angle difference with ILI by Lab-confirmed viruses. Dashed line represents no 
difference in timing between ILI and the corresponding virus. 
 

2.4 DISCUSSION 

Most studies compare ILI and influenza or other viruses using one pair of time series of a region, 

city or country (11, 58, 65, 90-94). In this study, we evaluated 25 hospitals from various zones of 

the country to assess the relation between ILI and 6 different laboratory confirmed viruses and the 

sum of influenza A and influenza B. Rather than assuming an annual seasonality a priori, we used 

individual hospital seasonality for each ILI/virus pair.  
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We found that ILI timing was most closely related to influenza A compared to other 

viruses in the laboratory surveillance system. There was no difference in weekly timing between 

influenza A and ILI across all hospitals, with a clear predominant phase difference close to zero. 

Influenza A was most closely related in timing to ILI with a clear peak in the phase difference 

distribution. Even though neither adenovirus nor parainfluenza demonstrated a difference in 

timing compared to ILI, both had wide phase differences distributions that made it difficult to 

determine a consistent time difference and limits the interpretation of ILI as a consistent measure 

of these viruses. In other words, ILI in a given week, appears to represent influenza A with 

respect to timing.  ILI has been described as a good measure of influenza (62, 72, 95). In Hong 

Kong, ILI rates in primary care showed a similar seasonal pattern to influenza virus activity (94). 

Similarly, to our study, Yang used a range of periods between 48 – 56 weeks and found no phase 

difference between ILI and influenza.  Here, ILI preceded by 1.6 weeks (-2.5 to 4.3) in general 

outpatient clinics and by 4.1 weeks (-0.3 – 6.0) in general practitioners (94). Further, ILI has been 

found to be reliable for predicting influenza epidemics as ILI data was correlated with laboratory 

data in temperate regions (96). 

In is not surprising that we found that most viruses were closely synchronized (in-phase) 

with ILI, given that all the viruses are part of ILI syndrome. Curiously, we found that respiratory 

syncytial virus preceded ILI. It is possible that this is because respiratory syncytial virus affects 

mostly children, and we did not analyze data by age group. Despite the lack of age categories, we 

used hospitals that covered children and adults in their emergency departments. Bias may still be 

present given that is difficult to samples children and samples might be drawn from children with 

severe infection. Influenza B and metapneumovirus showed a late peak compared to ILI. 

Influenza  peak coincided with the experience of temperate areas and reports from the Chilean 

Ministry of Health (33, 92). The earlier peak of influenza A compared to ILI can explain the 
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differences of influenza B and influenza AB to influenza A. Further, differences between timing 

of influenza A and influenza B to ILI timing emphasizes the importance of measuring different 

strains of influenza in the surveillance system. 

This study has some limitations. Data were obtained from ED and surveillance registers 

and did not relate each ILI case to a case sampled. We assumed that all laboratory tested cases 

were registered as ILI cases. We were unable to include age group in the analysis. To control by 

population and intensity of sampling through the year, we used laboratory rates and adjusted them 

by the total number samples (positives and negatives) given the increased probability of finding a 

positive sample as the number of samples increase.  This may decrease the possibility of finding 

associations between time series that are known to have an implicit seasonality. Regardless, we 

found good coherence (correlation) of ILI and all viruses studied. It would be important in further 

studies to include age to determine timing differences between different age groups and have a 

better understanding of respiratory virus dynamics. 

2.5 CONCLUSION 

ILI in EDs preceded most viruses measured in the Chilean laboratory surveillance system. 

Influenza A had a consistent timing difference across hospitals. It is likely that ILI reflects the 

weekly circulation of influenza A. ILI is a good measure of influenza A timing compared to other 

viruses from the laboratory surveillance system and can be used to determine influenza A timing 

in Chile. 
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3.1 ABSTRACT 

Background: Influenza cause a high burden disease worldwide. Influenza seasonality is caused 

by complex interactions of weather factors, virus mutations, population crowding, and human 

travel. Even though annual surveillance reports of influenza show an annual seasonality in Chile, 

no studies have estimated the seasonality and latitudinal patterns of seasonal influenza within the 

country.  

Objective: We aim to evaluate influenza timing across Chile and the presence of travelling 

patterns through different territories as local waves of influenza. 

Method: We conducted an ecological study of the 29 public health networks from Chile. We 

obtained ILI surveillance data and estimated the seasonality across health networks using wavelet 

analysis. Then, we assessed the relationship between the start, the peak of ILI epidemic, and 

latitude using a linear and piecewise regressions. Finally, we estimated the presence of incoming 

and outgoing travelling waves (timing vs distance) between networks and the relation to 

population using linear and logistic regression respectively. 

Results: We found a north to south latitudinal gradient of influenza and travelling waves that 

were present principally in the center of the country and associated to larger population size. 

Conclusion: Our findings suggest that larger population located in the center of the country 

drives seasonal influenza epidemics in Chile. 
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3.2 INTRODUCTION 

Influenza persists as an important cause of disease worldwide. Annual influenza epidemics affects 

5-10% of the world population causing 250,000-500,000 deaths every year (16). Influenza 

seasonality is caused by complex interactions of factors including virus mutations, temperature, 

humidity, rainfall, population crowding and human travel (1, 11, 18, 19). In temperate areas 

influenza peaks in winter months. On the other hand, in tropical and subtropical areas influenza is 

present year-round with peaks related to the rainy season (16, 17).  

The antigenic drift of influenza virus causes mutations in surface proteins that generate 

new viruses that elude immunity and can lead to global epidemics (2). Identification of influenza 

seasonality is crucial for implementation of effective control strategies worldwide and in different 

countries (18, 97). Moreover, countries can tailor control strategies to their national and local 

patterns (90).  

Influenza timing has been studied in different regions of the world. The virus travels from 

reservoirs in tropical areas to temperate areas (90, 92, 98-100). Similarly, influenza frequently 

moves from high to low populated areas associated with human movement (18, 101, 102). Local 

climates and social characteristics can generate specific patterns of influenza. Most evidence of 

influenza timing comes from the northern hemisphere, from developed countries, and from Asia. 

There are few studies from South America, and seasonal influenza timing has not been studied in 

Chile.  

Several studies of influenza timing have used laboratory surveillance, mortality data and 

symptomatic surveillance of influenza-like illness (ILI). ILI is a useful measure to characterize 

influenza epidemics (91, 103-106). Even though, ILI surveillance has a high sensitivity and low 

specificity, it is a useful measure to describe influenza season and identify influenza population 
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patterns (94, 107).  National surveillance is common throughout the world, but patterns within 

countries need large subnational and local datasets to estimate influenza dynamics. There is a 

need for information from the local level with the highest data resolution possible to inform 

prevention measures such as vaccination campaigns and provider preparedness.  

In this study we evaluate influenza timing across Chile and the presence of travelling 

patterns through different territories as local waves of influenza. Chile is the country with the 

largest latitude range in the southern hemisphere (36 degrees from 17S to 53S), with 10 types of 

climate categories ranging from desertic to artic (31). Healthcare provision is organized in 29 

Public Health Networks that include primary healthcare and hospital services. The Public 

Healthcare Insurance (National Health Fund: FONASA) covers 74.4% of the 17 million 

population (32). Influenza surveillance was enhanced after the 2009 pandemic with year-round 

surveillance of influenza-like illness (ILI) in emergency departments (ED), laboratory 

surveillance by sentinel providers and surveillance of severe respiratory disease hospitalizations 

(33). Hospitals record and report to the ministry of health daily ED diagnosis. ED and laboratory 

surveillance showed that in Chile influenza usually starts in fall (April-May) and peaks in winter 

(July-August)(34, 35). Chowell et al. found a south to north pattern of hospitalizations for H1N1 

pandemic strain in 2009 (95). Burger confirmed this pattern using mathematical simulation of the 

same data and found that Santiago, the capital, was a hub that spread the epidemic rapidly to the 

rest of the country (108).   

A better understanding of seasonal influenza in Chile can help implement timely 

vaccination campaigns and allocate resources to control seasonal influenza. Further, knowledge 

about seasonality of influenza could help to identify unusual patterns associated with new strains.  

Additionally, local waves information can show the spatial relation between seasonal patterns in 

different zones of the country. These relations can help to prioritize zones with earlier start times 



37 

with earlier vaccination campaigns. On the other hand, zones with similar timing of influenza will 

need to implement prevention campaigns at the same time to protect the population. Finally, 

factors that increase the odds of incoming or outgoing travelling waves of influenza would inform 

actions to prepare and respond to the annual epidemics. 

Even though annual surveillance reports of influenza show an annual seasonality, no 

studies have estimated the seasonality of seasonal influenza in Chile. The geographic 

characteristics, health system organization and influenza surveillance system make Chile a 

suitable country to study, the yet unknown, influenza patterns between locations.  Hence, we 

aimed to estimate the seasonality and spatial dependencies of influenza across Chile using ILI 

reported in ED. 

3.3 METHODS 

3.3.1 Design 

We conducted an ecological study to assess the seasonality of influenza in Chile and the 

relationship with local influenza patterns. We first collected time-series data from daily ED visits 

and calculated health network-specific rates of ILI. Second, to test the hypothesis that there is an 

annual seasonality of ILI, we estimated the seasonality of ILI across health networks using 

wavelet analysis. Then, to test the hypothesis that annual epidemic start and peak are associated to 

latitude, we extracted the annual start and peak dates within each health network and assessed the 

relationship between the start and peak of ILI and latitude using a linear and piecewise regression. 

Finally, to test the hypothesis that there are local travelling waves associated to population, we 
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estimated the relation between timing versus distance represented as incoming and outgoing 

travelling waves for each health network using linear regression and the relation to population 

using a logistic regression model. 

3.3.2 Data sources 

We obtained daily ILI cases between 2010 and 2016 from EDs of large- and medium- size public 

hospitals, collected by the Chilean Ministry of Health. We used hospital location, census data and 

population coverage from official governmental institutions to estimate the population that access 

each hospital. These data sources included the Ministry of Health, National Public Insurance 

(FONASA), National Institute of Statistics (INE) and the National Repository of Geospatial 

Information (32, 74, 75). To calculate rates, we estimated population that access each hospital 

using the gridded population data from World Pop (76). 

We excluded small (community) hospitals and hospitals with no ED. Large and medium 

size hospitals that reported <75% of the 6-year period were also excluded (<1920 days). Hospitals 

that presented ≥5% missing data in groups of 20 consecutive days were also excluded to reduce 

imputation errors. We assumed the time-series missing data was missing at random (MAR) 

conditional on observed data. We used the same imputation method mentioned previously in 

subsection 2.2.2. 

3.3.3 Data preparation 

Access to ER in hospitals decrease with distance (77-79). Consequently, to calculate the 

population covered by each hospital, we used the same method mentioned in subsection 2.2.2. To 
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determine seasonality across Health Networks, we calculated ILI rate by network by merging 

daily ILI reports data and population from all hospitals within each health network.  We used a 

mid-point location from hospitals within each network to determine the health network’s latitude. 

3.3.4 Data transformation 

We used wavelet analysis to determine the best periodicity (namely seasonality) of influenza 

across the country. We used wavelet transform as explained in subsection 2.2.3.1 and in Equation 

2.1. Differing from what we used in chapter 2, we did not use cross-wavelet to transform 

simultaneously two signals, rather we applied wavelet transformation to one time series at a time.  

We conducted wavelet transformations for periods (scales) from 14 to 144 weeks. Statistical 

significance was tested by comparing the wave signal against randomly generated time series (i.e. 

white noise) with a difference considered to be statistically significant at the level of 0.05 (84). 

The local wavelet power spectrum was used to visualize the cross-correlation between rates and 

each group of wavelets, namely the power, and its significance (Figure 3.3) (82, 83).  

To determine the best seasonality (periods with higher power), we computed the average 

power of wavelet transforms for each period over all time points, n, from the local wavelet power 

spectrum. We computed the average power separately for the country, for each Health Network, 

and for each hospital, according to the work of Torrence (83): 

Equation 3.1 

 

Where, N represents the number of observations.  
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We defined the best seasonality of influenza as the range of periods within the 95th percentile of 

average power across periods.  The best seasonality for the whole country, across health networks 

and across hospitals showed the same range of periods. 

3.3.5 Association between epidemic timing and latitude in Health Networks. 

To determine the association of influenza timing and latitude we filtered the wavelet transform 

using the range corresponding to the best seasonality for each Health Network. We used the same 

filter mentioned in subsection 2.2.3.1 and Equation 2.4.  

We determined the start and peak date of annual ILI epidemic for each Health Network. 

We defined start date as the date when the reconstructed cycles reached half point between the 

lowest point and the peak of the signal for each year. Then, we calculated the peak day as the date 

of the highest point of the signal for each year. Finally, we calculated the median start and median 

peak date for each Health Network. 

We used separated linear models to assess the relationship of latitude as a predictor of the 

start and peak of the epidemic across Health Networks. For both outcomes, we created univariate, 

piecewise and multivariate linear models. For the piecewise models, we separated the country into 

3 zones: north, center and south with latitude range of <31, 31-40 and >41, respectively. For 

multivariate models, we included the independent variables latitude and population as continuous 

variables, airport nearby as a binary variable, and year as dummy variables with 2013 as the 

reference year. Predominant strain was excluded due to linear dependencies with years 2011 and 

2014. We forced years, as a dummy variable, into the models to adjust for epidemic year. We 

selected the best multivariate model using the best subset method (109). For each outcome, we 
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compared all possible models for each number of variables using regression sum of squares 

method. The best model was selected using BIC and Mallow’s Cp (109, 110). 

3.3.6 Local traveling waves of influenza 

Morlet wavelet is complex with a real and an imaginary part.  The real part of the Morlet wavelet 

enables the extraction of phases as indicator of epidemic timing. Also has the advantage of 

separating the amplitude (magnitude of the difference between extreme values) and the phase of a 

signal as the timing of a signal within a specific period, regardless of the amplitude (82). We used 

the same filter mentioned in subsection 2.2.3.1 and used Equation 3.2 to extract phase angles as a 

measure of timing. We extracted the phase angles using a band of periods within the 95th 

percentile of average power as described previously (2.2.3.1).  

We calculated the median difference of phase angles (timing) for the complete period for 

all possible pairs of Health Networks and tested the association to distance. 

We created two distinct linear models for each of the 29 Health Network to all others, one 

for positive phase differences and the second for negative phase difference that correspond to 

outgoing and incoming travelling waves respectively. The sign of the phase difference 

represented the relative timing of the health services such that a negative difference indicated a 

delayed timing of influenza and vice versa. The linear regression models we used were: 

Equation 3.2 

 

Where θp,q is the lag between Health Networks p and q, and dp,q is the distance in kilometers 

between Health Networks. The distance sign was inverted for negative lag times for a more 
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intuitive display of incoming waves. We considered a local traveling wave as a significant linear 

association between phase difference and distance using a corrected Bonferroni significance level 

of 0.0017. 

In order to define what is a “local” distance, we used a second-degree local polynomial 

regression model (loess) of spearman’s correlation between pairs of Health Networks phase angle 

time series to distance with parameter α = 0.75. Then, local was defined as the distance between 0 

kilometers and the kilometers with the smallest correlation after an initial linear segment of the 

loess model. All pairs of Health Networks within this distance limit were included for each of the 

29 linear models for traveling waves. The significance level used in these models was adjusted 

using Bonferroni methods in order to account for the multiple comparisons. 

Finally, we created separate logistic regression for incoming and outgoing waves to 

determine the association between the presence of travelling waves and population adjusted by 

latitude for each of the 29 Health Networks. We used the receiver operating characteristic (ROC) 

curve and the area under the curve (AUC) to evaluate model discrimination (111). 

We used R environment for analysis, R package Leaps for model selection and R package 

WaveletComp for data transformation and extraction of phases (86, 88, 89, 110). 

3.4 RESULTS 

3.4.1 Hospitals included 

We included 71 of the 78 large and medium size hospitals in Chile in our analyses. Four large and 

3 medium size hospitals were excluded. Of the 4 large hospitals excluded, 3 were from Santiago, 
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the capital of the country, and one was from Valparaiso, the second most populated city. All 3 

medium size hospitals excluded were from small cities from the center, south, and extreme south 

of the country. Six pairs of hospitals from Santiago were combined. Four out of the six combined 

pairs corresponded to the merging of a pediatric and adult hospital from the north, east, south-

east, and south Health Networks in the city. The additional two pairs of combined hospitals were 

located in the center and southern networks (see Appendix).  The 65 hospitals included in the 

analysis covered the 15 regions of the country, all the 29 public Health Networks, and included 

cases from both adults and children (Figure 3.1). 

A total of 242,982 ILI cases were reported from January 2010 to December 2016. Sixty 

five percent of the days reported by all hospitals had zero cases, and 34% (959,792) had ≥1 cases 

reported. There were 1861 (1.04%) days with missing data that were imputed. Missing data from 

hospitals ranged from 0 to 5% of the period.   

ILI rates presented a cyclic pattern in all hospitals. Vertical linear patterns in the raster plot 

showed an annual seasonality of ILI. Timing had high synchrony and a high rate across hospitals 

in 2010 with a more spread pattern was present in the following years (Figure 3.1). 
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Figure 3.1. Hospitals’ location and ILI rates, Chile 2010-2016 

 

3.4.2 Predominant annual seasonality 

We reconstructed national ILI rates and found a predominant annual seasonality. The annual 

pattern of ILI was present in the original time series and in the wavelet-reconstructed data (Figure 

3.2). The local wavelet power spectrum showed that an annual seasonality was present within a 

band of periods from 40 to 64 and the highest average power corresponded to a period of 50 

weeks (Figure 3.3 and Figure 3.4 respectively). 
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Figure 3.2. Detrended ILI incidence rate and wavelet reconstruction (period = 46-53 weeks), 
Chile 2010-2016 
Detrended ILI incidence rate time series and wavelet reconstructed time series (red). Wavelet 
reconstruction used periods between 46-53 weeks. 
 

  

Figure 3.3. Local Wavelet Power Spectrum of ILI rates, Chile 2010-2016 
Local power for periods and time in weeks. Significant power against white noise inside black contour. 
Ridge in white. A significant and high power was present through the complete time series for periods 
between 40 and 60. 
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Figure 3.4. Average power of wavelet transformation per period, Chile 2010-2016 
Average power for periods, representing the average of local power shown in Figure 3.3 with significance 
levels <0.01 (red) and <0.05 (blue). 

 

For each hospital, we calculated the 95th percentile of the power and found that the best 

seasonality was between 46 and 53 weeks. Health Network and the country showed the same 

annual period range for the best seasonality pattern (Appendix D). Ergo, we used an annual 

periodicity from 46 to 53 weeks to filter the Morlet wavelet of Health Networks and to obtain the 

transformed time series with the best seasonality. 
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a.                                                                                                              b. 

 

Figure 3.5. Average power per period in individual hospitals and 95th percentile of power z-score across period and hospitals, 
Chile 2010-2016 
a. Power per each of the 65 hospitals across all periods. Dark red is higher power, namely better fit of the data to the period. Yellow represents low 
power and fit to the period. White spaces denote non-significant power. Dotted lines represent the 95th percentile of power across hospitals, same as 
in b. 
b. Cumulative power z-score to calculate the periods with best fit across hospitals. Power for each hospital were normalized. Data was log transform, 
subtracted the mean and divided by the standard deviation. Then the sum of z-score for each period was plotted with the 95th percentile (dotted lines 
in both a and b).  
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3.4.3 Start and peak day of seasonal influenza in Health Networks 

The median start of the epidemic for all Health Networks and years was May 11 that coincided 

with the autumn season (Day 131 of each year; IQR 117, 152). The median peak day was August 

4th that coincide with the winter season (Day 217 of each year; IQR 200, 237). The median 

duration from start to peak of the epidemic for all hospitals and years was 84 days (IQR 82, 88), 

equivalent 12 weeks or 3 months. 

Despite the presence of some variability of start and peak day between and within Health 

Networks, there was consistency across the country with respect to the timing of the start and the 

peak of ILI. The duration of the epidemic, difference between the start and the peak, appeared 

constant across Health Networks and latitudes (Figure 3.6). 
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Figure 3.6. Start and Peak of ILI in emergency room by Health Service and Latitude, Chile 
2010-2016 

 

The start of the annual ILI epidemic tended to start earlier between 2010 and 2013, and 

after 2013 ILI epidemic was delayed each year compared to the previous year. No clear relation 

was found between the peak of the epidemic and predominant strain in the country for each year 

(Figure 3.7).  
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Figure 3.7. Start of influenza season and predominant strain per year in 65 hospitals, 
Chile 2010-2016 

3.4.4 Population and a North to south pattern associated to early annual epidemics 

The univariate regressions results showed a positive association between population size and 

earlier start and peak time of influenza. A north to south pattern was evident. The increase of 

latitude from north to south was associated to a delayed start and peak of influenza Figure 3.8a 

and Figure 3.9a). The observed north to south patterns were dominated by the central zone of the 

country where the association between latitude and timing of influenza was significant. In 

contrast, no association between latitude and timing of influenza was present in the north and 

south extremes of the country (Figure 3.8b and Figure 3.9b). Influenza season varies every year, 

consequently, years, analyzed as a categorical variable, had a significant association with start and 

peak day. Similarly, each year had a predominant strain in the country. Accordingly, strains 

H3N2 had earlier peak day and shorter start-peak time compared to influenza AH1N1.  The 
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presence of an airport in the territory of the Health Network had no association to any outcome of 

influenza timing (Table 3.1). 

 

 

Table 3.1. Univariate regressions for start day, peak day and days from start to peak 

β Std.Error p-value Adjusted R2

Latitude 0.996 0.334 0.00321 0.038
Year (continuous) -3.331 1.135 0.0037 0.036
Population (10,000) -0.322 0.116 0.0060 0.032

Year 0.171
2010 50.000 7.880 0.0000
2011 30.793 7.880 0.0001
2012 13.069 7.880 0.099
2013  -  - 
2014 14.828 7.880 0.061
2015 23.517 7.880 0.0032
2016 23.172 7.880 0.0037

Strain -0.0048
AH1N1  -  -  - 
AH3N2 0.859 5.133 0.867

Airport 0.003
No  -  -  - 
Yes 6.374 4.992 0.203

Table 1a. Univariate Regressions predictors estimates ILI start day

β Std.Error p-value Adjusted R2

Latitude 0.844 0.277 0.003 0.040
Year (continuous) -3.172 0.935 0.001 0.050
Population (10,000) -0.215 0.09661 0.027 0.019

Year 0.348
2010 47.966 5.796 0.0000
2011 28.862 5.796 0.0000
2012 11.862 5.796 0.042
2013  -  -  - 
2014 -1.103 5.796 0.849
2015 31.586 5.796 0.000
2016 20.862 5.796 0.0004

Strain 0.015
AH1N1  -  -  - 
AH3N2 -8.576 4.212 0.043

Airport -0.004
No  -  -  - 
Yes 1.844 4.153 0.658

Table 1b. Univariate Regressions predictors estimates ILI peak day
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                  a. All health networks              b. Health networks by zone: north, center, and south 

      

Figure 3.8. Start of ILI vs Latitude, 29 Health Networks in Chile, 2010-2016 
a. Colored line represents red: p-value < 0.05, black: p-value > 0.05. Vertical grey zones denote 95% CI, 
horizontal grey: range of start days for de period for each health network. Black circles size: population size. 
Black circle position: median start day. Linear model: β = 0.99, p-value = 0.003, R2 = 0.04.  
b. Colors and circles same as in a. North zone linear regression (top): β = 0.5, p-value = 0.75, R2 = 0.003. 
Center zone linear regression (middle): β = 3.49, p-value < 0.01, R2 = 0.09. Southern zone linear regression 
(bottom): β = 1.49, p-value = 0.33, R2 = 0.02 
 

                                 a.  All health networks                                b. Health networks by zone: north, center, and south 

            

Figure 3.9. Peak of ILI vs Latitude, 29 Health Networks in Chile, 2010-2016 
a. Colored line represents red: p-value < 0.05, black: p-value > 0.05. Vertical grey zones denote 95% CI, 
horizontal grey: range of start days for de period for each health network. Black circles size: population. Black 
circle position: median peak day.  Linear model: β = 0.8, p-value = 0.002, R2 = 0.04 
b. Colors same as in a. North zone linear regression (top): β = 0.8, p-value = 0.554, R2 = 0.01. Center zone 
linear regression (middle): β = 3.65, p-value < 0.01, R2 = 0.11. Southern zone linear regression (bottom): β = -
1.8, p-value = 0.08, R2 = 0.05 
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We found that the best multivariate model for the start day outcome included 9 variables: latitude, 

population, presence of airport and years. A negative association was found for start day and 

population size (β = -0. 3, CI 95% -0. 5 - -0. 1, P<0.01). Health networks with an airport was 

associated with an estimated delay of 9.5 days for the start of an ILI epidemic (CI 95%, 0.848-

18.190, p<0.05). A north to south pattern was also found such that a one degree increase in 

latitude was associated with nearly a one day delay in ILI (north to south, β = 0.903, CI 95% 

0.315-01.491, P<0.01) (Equation 3.3, Table 3.2a and Table 3.3).  

Equation 3.3 

Sd = 170.9 +0.9(Lat) -0.31(Pop10,000) +9.5(Airport) +49.7 (Y2010) +30.5(Y2011) +12.9 (Y2012) +14.8(Y2014) +23.5(Y2015) +23.3(Y2016) 

Where Sd = Start day from January 1st from each year; Lat = South Latitude; Airport = Indicator 

variable for presence of airport; Y = Indicator variable for the year noted in the subscript. For the 

ILI peak the best multivariate model included 8 variables: latitude, population and years. A north 

to south pattern was found for latitude (β = 0.780, CI 95% 0.346-1.215, P<0.01)) and a negative 

association with population size (β = -0.00002, CI 95% -0.00003 - -0.000001, P<0.05) (Equation 

3.4, Table 3.2b and Table 3.3 ). 

Equation 3.4 

Pd = 173.43 +0.78(Lat) -0.16(Pop10,000) +47.8 (Y2010) +28.7 (Y2011) +11.8 (Y2012) -1.09 (Y2014) +31.59 (Y2015) +20.94 (Y2016) 

Where Pd = Peak day from January 1st from each year; Lat = South Latitude; Y = Indicator 

variable for the year noted in the subscript. 
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Table 3.2. Multivariate regression model selection for ILI start day and peak day, using best 
subset method 

Model‡ # of Variables Variables used* R2 Adjusted R2 Cp BIC
A 7 year, latitude 0.24 0.21 16.0 -13.0
B 8 year, latitude, population 0.26 0.23 12.0 -14.0
C† 9 year, latitude, population, airport 0.28 0.25 9.0 -14.0

Model‡ # of Variables Variables used* R2 Adjusted R2 Cp BIC
A 7 year, latitude 0.41 0.39 11.0 -65
B† 8 year, latitude, population 0.43 0.40 8.4 -65
C 9 year, latitude, population, airport 0.43 0.40 9.0 -61

† Selected model

‡ Best model for all possible models with the given numbers of variables using RSS
*Year was considered as 6 dummy variables and was forced in. Strain was excluded given the high 
correlation with year.

Table 2a. Start day models

Table 2b. Peak day models

 

Table 3.3. Selected Multivariate Models for ILI start day and peak day 
 

β 95% CI p-value Adjusted R2

Outcome: Start Day 0.000 0.2471
Latitude 0.9027 0.3147 , 1.4907 0.0028
Population (10,000) -0.31250 -0.51956 , -0.10539 0.0033
Airport

Yes 9.519 0.8479 , 18.190 0.03266
Year

2010 49.71 34.892 , 64.518 0.00000
2011 30.5 15.687 , 45.313 0.00007
2012 12.96 -1.850 , 27.773 0.08597
2013  -  -  - 
2014 14.86 0.0508 , 29.674 0.049
2015 23.52 8.7108 , 38.334 0.002
2016 23.31 8.4998 , 38.123 0.002

β 95% CI p-value Adjusted R2

Outcome: Peak Day 0.0000 0.4016
Latitude 0.7801 0.3455 , 1.2145 0.00050
Population (10,000) -0.16640 -0.316 , -0.016 0.03013
Year

2010 47.81 36.861 , 58.756 0.000000
2011 28.71 17.758 , 39.653 0.000001
2012 11.8 0.8581 , 22.751 0.034690
2013  -  -  - 
2014 -1.085 -12.03 , 9.8615 0.845200
2015 31.59 20.642 , 42.535 0.000000
2016 20.94 9.9897 , 31.882 0.000215

Table 3. Selected Multivariate Models
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3.4.5 Local Travelling waves 

We used a second-degree local polynomial regression model (LOESS) to determine the upper 

distance limit for the local travelling waves’ models.  We found a descending Spearman’s 

correlation of phase angles up to 1250 km that disappeared for larger distances (Figure 3.10b).  

Consequently, we included health networks closer than 1250 km in each model of local travelling 

waves.  We found a similar descending pattern of correlation versus distance for the wavelet 

reconstructed time series. On the contrary, the original rate time series showed low correlation 

and a pattern that increased of up to 400 km followed by descending curve from 400 to 1250 km.  

Despite the differences of the patterns and average correlation for the three models, all three 

presented a change in the pattern at a distance close to 1250 km (Figure 3.10a). 

a. b.   

Figure 3.10. Distance vs pairwise Spearman's correlation of ILI rate, phase angles and 
wavelet reconstruction. Health Networks, Chile 2010-2016 
a. Spearman’s correlation versus distance between pairs of Health Networks. Wavelet reconstructed time 
series (blue), phase angle time series (red), rates (black). Dashed lines represent the average correlation.  
The 3 models used a loess model with α = 0.75 and 95% CI (grey).  Different correlations and patterns 
showed a change at the distance of 1250 km that we used as the upper distance limit to define local wave.  
b. Same as a. showing the phase angle time series model. 
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There were 11 health networks with outgoing travelling waves (Bonferroni corrected p-

value < 0.0017) located at the center of the country. There were 10 health networks that presented 

incoming waves with the corrected p-value < 0.0017 (Figure 3.11). 

   

      a.                                                                               b. 

 

Figure 3.11. Travelling waves of influenza in Health Networks. Chile 2010-2016 
a. Phase difference in weeks vs distance (km) for Health Networks with incoming (red) and outgoing (blue) 
waves. In grey linear models with a significance level of 0.05. In red and blue, linear models with a 
Bonferroni corrected significance level < 0.001.  
b. Geographic location of Health Networks with significant travelling waves. Incoming and outgoing waves 
are clustered in the center of the country. Colors same as in a.  

 

The prescence of outgoing and incoming waves in Health Networks were associated with 

population size, adjusting by latitude. For every 10,000 people a Health Network has a 23% 

greater odds of presenting local outgoing waves (OR = 1.23, CI 95%  1.05, 1.44, p =  0.001) and 

18% higher odds of presenting incoming waves of influenza (OR = 1.18, CI 95%  1.03, 1.34, p =  

0.01) (Table 3.4). Both logistic models had good discrimination with AUC of 0.914 (CI 95% 0.8, 

1.0 ) for outgoing waves and 0.884 (CI 95% 0.729, 1.0 ) for incoming waves. 
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Table 3.4. Logistic models for outgoing and incoming influenza waves in Health Networks. 

Chile 2010-2016 

Model 10,000 Population 

OR (CI 95%) 

Latitude (South) 

OR (CI 95%) 

AUC 

(95% IC) 

Outgoing Waves 1.23 (1.05,1.44) 0.95 (0.78,1.15) 0.914 (0.800, 1.00) 

Incoming Waves 1.18 (1.03,1.34) 1.08 (0.86,1.36) 0.884 (0.729, 1.00) 

 

    a.                                                                                      b. 

 

Figure 3.12. ROC curves of logistic models for incoming and outgoing influenza waves in 
Health Networks. Chile 2010-2016 
a. ROC curve and AUC for logistic model of outgoing influenza waves. 
b. Same as a. for incoming influenza waves. 

3.5 DISCUSSION 

We found a predominant annual seasonality of influenza in Chile with a periodicity of 50 weeks 

(95% CI 43, 53). This period coincides with the annual seasonality of influenza reported for other 

temperate territories and the reports from influenza surveillance from the Chilean Ministry of 
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Health (34). To our knowledge, this is the first study that confirms a cycle of seasonal influenza in 

Chile using multiple years.  

There was a north to south latitudinal gradient for the start and peak of influenza across 

the country. Most of that gradient was related to the central zone between latitudes 31 and 40 

south. The central zone is the area of the country where most of the population lives. Chowell 

found a south to north hospitalization gradient for H1N1 2009 pandemic (95). The difference with 

our findings can be explained by the annual variability of influenza epidemics due to weather, 

population immunity, human movement (112). We did not include 2009 in our analysis, but we 

found a south-north latitudinal gradient in 2015 (Appendix). In 2009 and 2015, the first cases 

were reported in southern cities with large populations that lead that year’s epidemic. Even 

though, Health Networks with large populations from the center of the country have higher 

chances of presenting the first cases of influenza, southern zones with relatively large populations 

can lead an epidemic. 

Population was also a factor associated with the start and peak of influenza as described 

previously (18, 90, 101, 102). The patterns found were mostly influenced by the center zone of 

the country where the capital Santiago, the most populated city, is located. Similarly, Burger et al. 

found that Santiago was a hub that spread influenza rapidly to the rest of the country (108). These 

findings are supported by the results from the local travelling waves. Population was associated 

with the presence of local incoming and outgoing waves. Further, Health Networks with 

significant local outgoing waves were in the center of the country. The Health Networks with 

incoming travelling waves were largely located at the center of the country and two of them in the 

south zone of the country. Our findings suggest that the larger population located in the center of 

the country drives seasonal influenza epidemics. Health Networks with larger population from the 
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central zone spread to neighboring Networks with the form of outgoing travelling waves to 

Network acting as receivers (incoming waves) in the same zone and in the south of the country.  

This study has some limitations. First, we use secondary data from reports from ED visits. 

These were diagnosis of ILI based on clinical judgement and have no necessary laboratory 

confirmation. Second, we assumed that all hospitals had the same population structure as we did 

not include population age structure of Health Networks in the analysis. Control by age group 

might give a more detailed information on influenza transmission and could be an interesting 

challenge for future work.  Third, we did not include ED data from private insurance companies, 

private hospitals or private practices since they were not available. Nevertheless, the public 

insurance covers 74% of the population in Chile. Finally, we assumed a constant proportion of 

emergency consultation to other providers. Private hospitals, private practices and public primary 

healthcare centers could attract patients with public insurance especially in seasons of high 

demand. We assessed this limitation partially by estimating the population with public insurance 

that lives in a 5km radius that are more likely to visit the hospital ED rather than other providers 

(public or private). One of the strengths of our study was that we included data of hospitals from a 

wide range of latitudes from a single healthcare system. Also, the centralized reporting system 

and national guidelines increase data quality. ILI surveillance operates year-round in all hospitals 

resulting in more reliable data of seasonality of influenza. We did not assume an annual 

seasonality, on the contrary, we estimated the best seasonality before fitting our models. Finally, 

we selected the best models for the start and peak of influenza by comparing the fit of all the 

possible models for the variables measured. 
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3.6 CONCLUSSION 

This is the first study to estimate seasonal influenza seasonality in Chile and its patterns across 

latitudes. New strains should be considered when different patterns are detected. Likewise, if a 

new strain is detected early, patterns could differ from the ones found here.  

Our findings can help decision-makers to prepare influenza season, to prioritize zones for 

early vaccination campaigns, prepare hospital beds reallocation for annual influenza epidemics 

and allocate resources according to patterns of influenza. Zones with larger population and in the 

center of the country would need earlier actions that could reduce influenza spread and its impact 

across the country.  
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4.1 ABSTRACT 

Background: Influenza affects 5-10% of the world’s population including 250,000-500,000 

deaths annually. In the Americas 40,880-160,270 deaths occur every year associated with 

influenza infection. Weather factors and air pollution are associated to influenza transmission, 

morbidity and hospital visits. Understanding the patterns of influenza and the factors associated 

can benefit public health. 

Objective: In this study we aimed to determine the association between daily influenza cases and 

daily temperature, relative humidity, precipitation, PM10, PM2.5, SO2 and O3 across Chile.  

Method: We obtained data from daily influenza-like illness in emergency rooms, data from 

weather and pollution stations. We constructed a multilevel zero-inflated negative binomial as the 

weather model to test the hypothesis that influenza cases were associated to low temperature. 

Finally, to test the hypothesis that influenza cases are associated to air pollution we included 

pollution measures to the weather model to determine the association between influenza and 

pollution. 

Results: Lower minimum and maximum temperature were associated to fewer influenza cases 

and a small positive association was found between influenza and PM2.5.  

Conclusion: Our findings can help to understand the complex relation between influenza, 

weather and pollution. The results could also help design vaccination campaigns, stablish 

pollution standards and to calculate health effects of policies to reduce particulate matter. 
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4.2 INTRODUCION 

Influenza affects 5-10% of the world’s population including 250,000-500,000 deaths annually 

(16). In the Americas, 40,880-160,270 deaths occur every year associated with influenza infection 

(4, 113). Understanding the patterns of influenza and associated factors can bring concrete 

benefits to public health, as it may help reduce the burden of seasonal influenza and improve 

preparedness for pandemics (19). The dynamics of influenza at the global and local scales are not 

fully understood, but can be addressed using demographic, geo-climatic and national census data 

to improve accuracy of the models and advance results towards the precision that meteorological 

models have nowadays (15).   

Climatic factors are associated with influenza transmission. Temperature and humidity are 

associated with increased spread of influenza by affecting virus survival (1, 20-22, 92, 114-116). 

Further, lower temperature in temperate areas and rainfall in tropical regions were associated with 

a rise of influenza cases mediated by an increase of human contact rates (11, 17-19, 92, 117). 

Immunologic response to influenza can prevent contagion, but population immunity is affected by 

climatic factors like humidity, temperature, and photoperiod (17, 23-29). The mix of factors that 

drive influenza spread are complex. The associations between factors appear to play an important 

role in seasonality of influenza but it is hard to avoid collinearity of variables and confounding 

factors. The most accepted hypothesis to understand influenza seasonality is that absolute 

humidity may be negatively associated with seasonal influenza epidemics (1, 17, 20, 21, 92, 116, 

118, 119). Beyond weather factors, air pollution can play a role on influenza transmission.   

There is a close association between air pollution and different diseases (120-126). 

Particulate matter (PM) is a mix of materials that include dust, dirt, soot, smoke, and liquid 

droplets released into the air. The inhaled particles, that are limited  ≤10μm (PM10) include two 
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size of particles <2.5μm (PM2.5) and > 2.5μm. PM10 are known to increase respiratory 

admissions to hospitals(127, 128). Likewise, PM2.5, fine particles resulting from combustion, 

penetrates deep into the lungs to the bloodstream, and are associated with respiratory disease, 

cardiovascular disease, and mortality (121-123, 125, 129-134). Air pollution increases risk of 

upper respiratory infections and influenza-like illness (ILI) even after controlling for the weather 

conditions (39, 40). Droplets that contain influenza are attached to PM that provides 

“condensation nuclei” increasing virus survival and potentially increasing transmission (135-140). 

Similarly, industrial activity and motor vehicle emissions like sulfur dioxide (SO2) and ozone 

(O3) are related to acute inflammation of the pulmonary epithelium (128). Both gases can reduce 

the first defensive barrier against viruses in the respiratory epithelium, produce local 

inflammation and increase the risk of influenza infection. SO2 and O3 cause respiratory 

symptoms and increased hospital respiratory admissions (128, 141-143). Countries can enhance 

influenza surveillance including weather and pollution data to increase model accuracy to face 

seasonal influenza (15).  

In this study, we studied the influenza with weather and pollution across Chile. Chile is 

the country with the largest latitude range in the southern hemisphere (36 degrees from 17S to 

53S), with 10 types of climate categories ranging from desertic to artic (31). The Chilean public 

healthcare provision system is organized into 29 Public Health Networks that covers 74.4% of the 

17 million population (32). Influenza surveillance was enhanced after the 2009 pandemic, with 

year-round surveillance of influenza-like illness (ILI) in emergency departments (ER), laboratory 

in sentinel providers and surveillance of severe respiratory disease hospitalizations (33). A series 

of weather and pollution stations across the country are part of the Meteorological Services, the 

national systems of air quality (SINCA) and the Ministry of Agriculture. We used data from the 

meteorological services, SINCA, and from the Climatic Explorer data repository from the Center 
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for Climate and Resilience Research that consolidates weather data from different official sources 

(36-38). Since different measures of air pollution depend on local characteristics, like local 

industry development and the type of heating fuel used locally, there are variations of the air 

pollutants in some locations (37). The data we obtained, covers the principal cities of the country 

with daily measures and is available online from the 3 sources mentioned (36-38). As a temperate 

country, influenza has annual epidemics that peaks in winter season. Lower temperatures were 

associated to the peak of H1N1 pandemic in 2009 (95). Also, Bertoglia found a positive 

association of temperature and ILI between 2012 and 2014 in the Metropolitan Region where the 

capital Santiago is located (144). In the same study, ILI cases showed a small association to 

PM2.5. The country-wide association between weather measures, PM, gas pollutants, and 

seasonal influenza is still unknown. 

4.3 METHODS 

In this ecological study we determined the association between daily influenza cases and daily 

temperature, relative humidity, precipitation, PM10, PM2.5, SO2 and O3 across Chile. We first 

collected time-series data from daily ED, data from weather, and from air pollution stations. 

Second, we constructed and compared different models for weather variables. Third, to test the 

hypothesis that influenza cases are associated to temperature we used a multilevel zero-inflated 

negative binomial as the weather model. Finally, to test the hypothesis that influenza cases are 

associated to air pollution we included pollution measures to the weather model. 
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4.3.1 Data source 

We obtained daily ILI cases from the influenza surveillance system reported by public hospitals 

to the Ministry of Health of Chile from 2010 to 2016. Daily rates were calculated for each 

hospital using an estimated population covered by each provider population for World Pop, 

FONASA and Census as described in subsection 0. We obtained weather and pollution data from 

Meteorological Services, SINCA and CR2 (33, 36, 38). We paired each hospital to the closest 

station within a radius of 10 km. Some stations were used for more than one hospital. 

4.3.2 Data preparation 

4.3.2.1 Influenza data 

Influenza-like illness is highly correlated to laboratory confirmed influenza and a good proxy of 

influenza circulation in the population (16, 72, 94, 95). We defined our outcome as ILI from 

emergency departments from large and middle size hospitals that reported daily cases to the 

Ministry of Health. We calculated hospital population using a radius of 5km to estimate 

population that access each emergency room as described previously in subsection 2.2.2. Daily 

rate was calculated using daily ILI and the population estimated for each hospital and year.  

4.3.2.2 Weather data 

We included data for precipitation, temperature, relative humidity, PM2.5, PM10, SO2 and O3 of 

stations that had ≥ 600 days with reported for the period 2010-2016 (≥ 25%). We calculated daily 

precipitation as the cumulative precipitation milliliters (mm) registered for days with ≥6 hours 

reported. Relative humidity was reported as the average daily relative humidity. Daily minimum 
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(Tmin) and maximum (Tmax) temperatures were recorded by the official sources (36-38). The 

weather and pollution variables were measured in conventional units. Relative Humidity was 

measured as average daily percentage of water vapor in air over the maximum expected adjusted 

by temperature. PM10 and PM2.5 were measured as daily average in microgram per squared 

meters (μg/m3). Both gases, SO2 and O3 were measured as daily average in part per billion per 

volume (ppbv). Median temperature was excluded due to multiple correlation, evaluated with the 

variance inflation factor (VIF). Lagged variables (up to 14 days) of weather and pollution 

variables were excluded given non-significant difference in the cross-correlation between 

weather, pollution, and ILI when comparing lagged and non-lagged values 

4.3.3 Data imputation 

We assumed ILI time-series, weather and pollution missing data was missing at random (MAR) 

conditional on observed data. For ILI data, different imputation methods were tested and selected 

the best imputation method as described previously in subsection 2.2.2 (80, 81). We imputed 

weather and pollution data using the average of non-missing values from the same day and month 

from other years.   

4.3.4 Statistical analysis 

In epidemiology, count data are frequently analyzed using a Poisson model. One limitation of the 

Poisson model is that assumes that the mean and variance of the dependent variable are equal 

(145). A problem with this approach arise when the response variable is over-dispersed, when 

variance is greater than the mean (146). If overdispersion is present, standard errors might be 
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underestimated, hence a significant association may appear when is in fact non-significant (145). 

Negative binomial regression is an alternative to model count data, that accounts for 

overdispersion (147).  Our ILI data showed overdispersion and a high proportion of zero (61%). 

To account for the excess zeros we used a zero inflated model and assumed that our data came 

from two distributions: a count distribution of positive integers that include zeros (Equation 4.1) 

and a structural zeros from a binary distribution (Equation 4.2). We assumed that daily ILI data is 

correlated within hospital therefore the assumption of independence of observations is violated. 

Incorrect estimates can result if this violation is ignored (148, 149). To account for 

nonindependence of observations, we used a multilevel model (148). We first determined the best 

weather model for ILI rates including the predictors: Tmax, Tmin, humidity and precipitation 

adjusted by hospital. We compared 9 different models based on the Akaike Information Criterion 

(AIC) as used before for ILI (40). The different models had ILI cases as the outcome and had the 

form of Equation 4.1,except the linear model that used ILI rates. A logistic regression was 

incorporated to the count component in zero inflated models that determined the odds of zero 

cases and had the form of Equation 4.2. Then, count models included only Equation 4.1 and zero-

inflated models included Equation 4.1 and Equation 4.2. The multilevel models replaced the 

variable hospital for a random intercept to account for autocorrelation. The inclusion of a random 

intercept representing hospitals assuming that data within hospitals are correlated and treats each 

hospital as a cluster of ILI and weather data. Humidity was excluded from the zero-inflated 

component due to the presence of non-significant estimates and non-convergence of the models 

when included. The models compared are presented in Table 4.2. The predictors for the final 

weather model were selected using backward elimination using AIC, Bayesian information 

criteria (BIC) and likelihood ratio test (LRT). Finally, to determine the association of pollution 
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and ILI we included PM10, PM2.5, SO2 and O3 to the weather model and applied the same 

backward elimination method used for the weather model.  

We used R environment and the R packages glmmTMB for analysis and model selection 

(89, 150, 151). 

 

Equation 4.1: Count component for weather model selection. 

 

 

Equation 4.2: Zero-inflation component for weather model selection. 

 

Where, μ is the expected number of ILI cases for the day t. tmax, tmin, hum and prec are 

maximum temperature, minimum temperature, humidity and precipitation, respectively. For 

multilevel models β3(hospital) was replaced by 𝒰𝒰 (hospital) that represented the random intercept 

for hospitals and all variables changed the subscript t, to subscript t,h representing the relation for 

a given time in a specific hospital. P0t is the probability of zero ILI cases at day t and nt is the 

population assigned to a hospital at time t.  For the linear models, we replaced log(μt) by rate of 

ILI per 100.000 population. 
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4.4 RESULTS 

4.4.1 Selected Hospitals 

A total of 105,898 daily observations were registered in 42 hospitals. Table 4.1 shows the data 

characteristics. The number of cases and rate showed an important number of zero cases and 

justified the use of a zero-inflated model. Further, ILI cases variance (σ2 = 24.83) was greater 

than the mean (μ = 1.69) supporting the use of a Negative Binomial model. Variables Tmax, 

Tmin and humidity had a distribution closer to normal and a poison distribution was found for 

precipitation PM10, PM2.5, So2 and O3. 

 

 

Table 4.1. Summary of daily ILI counts, rates, weather and pollution variables across 
Chilean hospitals from January 2010 to December 2016 

Mean (95% CI) Min Q1 Median Q3 Max Missing (n)
Influenza-like illness in emergency rooms

Cases (n) 1.69 (1.66-1.72) 0 0 0 2 154 0
Rate (per 100.000pop) 7.09 (6.88-7.29) 0 0 0 2.1 2088 0

Meteorological measures
Minimum Temperature (c∘) 8.42 (8.38-8.45) -38 5.11 8.7 11.7 33.4 23445
Maximum Temperature (c

∘

) 19.89 (19.84-19.9) -13.9 15 19.9 25 41.2 23410
Relative Humidity (%) 60.93 (60.75-61-09) 0 50 63.42 75.08 105 53635
Precipitation (mm) 1.34 (1.30-1.37) 0 0 0 0 80 9329

Pollution Measures
PM10 (μg/m3) 58.03 (57.7-58.36) 0 33 50 72 845 50098
PM2.5 (μg/m3) 29.8 (29.5-30.14) 0 13 21 35 960 62829
SO2 (ppbv) 1.76 (1.73-1.79) 0 1 1 2 79 75702
O3 (ppbv) 13.89 (13.72-14.05) 0 7 14 19 500 72572

                
    

 
 

We found similar temporal pattern of ILI rates with increased rates in 2010 corresponding 

to the second season of H1N1 after 2009 pandemic. Vertical patterns in the raster plot showed 
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synchrony of annual seasons for ILI cases and ILI rates (Figure 4.1a and Figure 4.1b 

respectively). Higher rates were present in southern hospitals, as the population covered is 

smaller, few cases results in higher daily rates compared to other hospital with larger population 

size. 

Tmax and Tmin also had marked seasonal pattern across the country. In the northern and 

central zones of the country higher minimum and maximum temperatures were found. Southern 

hospitals had a similar patter, but with lower temperatures (Figure 4.1c and Figure 4.1d). Lower 

relative humidity was present in the north of the country, associated to cities in the desertic 

regions of the country (Figure 4.1e). Precipitation also presented differences between northern 

and southern hospitals. A seasonal pattern was present for precipitation, but lower humidity was 

found in the north (with few days with precipitation) compared to the southern hospitals (Figure 

4.1f). PM10, PM2.5, and O3 showed a seasonal pattern across the country with a more consistent 

seasonality in the northern regions compared to the southern regions of the country (Figure 4.1g, 

Figure 4.1h, Figure 4.1i). On the contrary, So2 did not presented a clear seasonal pattern across 

the country (Figure 4.1j).  
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Figure 4.1. Daily ILI cases in Emergency rooms, rates, weather, and pollution variables in 
providers by latitude, Chile 2010-2016 
Daily ILI cases, ILI rate, weather, and pollution variables in hospitals ordered by latitude in the y axis 
(north to south) 2010-2016. Gray represents missing data. Colors denote the value of each variable: a. 
Number of ILI cases. b. Rates per 100.000 population. c. Maximum temperature C∘. d. Minimum 
temperature in C∘. e. Relative Humidity in %. f. Precipitation in mm. g. PM10 in μg/m3. h. PM2.5 in 
μg/m3. i. SO2 in ppbv. j. O3 in ppbv. 
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4.4.2 Weather Model 

We selected a Multilevel Zero-inflated Negative binomial model as the weather model with the 

lowest AIC (Table 4.2).  The model components that resulted from the backward elimination are 

presented in Equation 4.1and Equation 4.2. A total of 24 hospitals had enough data to build 

the weather model (Tmax, Tmin, humidity, and precipitation). The hospitals included were 

from different latitudes and from 11 regions (Figure 4.2). The estimate’s exponent (eβ) of the 

zero-inflated part of the model can be interpreted as the odds ratio of a day presenting zero ILI 

cases versus non-zero cases.  An increase in 1-degree Celsius of Tmax and Tmin decreased the 

odds of zero ILI cases by 15% and 33% respectively adjusting by precipitation, and population 

size (Table 4.3). On the other hand, the odds non-ILI cases increased 4% for every 1 mm of 

precipitation increase (p = 0.007).  

In the count component eβ can be interpreted as the relative change in the number of cases 

for every one-unit change in the predictor, among days with non-zero ILI cases. For every 1-

degree Celsius increase of Tmin or Tmax there is a decline of 1 ILI case (Tmin: e-0.45= 0.95; 

Tmax: e-0.039= 0.96) adjusting by relative humidity, precipitation and for correlation within 

hospitals (Table 4.3, Figure 4.3a and Figure 4.3b). A 1% increase in humidity and one mm 

increase of precipitation increased one ILI case, although these associations were non-significant 

(hum: e-0.001= 1; prec: e-0.001= 1) (Table 4.3 and Figure 4.3c). 

The predicted fixed effects of the complete weather model, including both the count and 

the zero-inflated component, are shown in Figure 4.3d to Figure 4.3.f for Tmin, Tmax and 

precipitation. The y axis μ*(1-P) reflects the combination of both components: ILI number of 

cases (μ) and the probability of non-zero cases (1-P). ILI cases decrease as Tmin increase. At 

lower temperatures, people gather together indoor when, increase contact rate, and increase 
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transmission (Figure 4.3a). Tmax showed a quadratic shape (inverted U) that could be explained 

by the increased odds of finding zero cases in days with low Tmax. Precipitation showed a small 

and direct association with ILI cases influenced by the zero-inflated component (Figure 4.3c). 

Finally, the random effects of the weather model showed the same effects with variation between 

hospitals (Figure 4.3h, i, j). The y axis is represented in logarithm scale for visualization purposes. 

 

Table 4.2. AIC scores for 9 models to determine the association between ILI rates and weather 
variables: minimum and maximum temperature, relative humidity and precipitation in 42 hospitals 
from Chile, 2010-2016. Sorted from Smaller to larger AIC 

 
Model AIC 

Multilevel Zero-inflated Negative Binomial 167242 
Zero-inflated Negative Binomial 169317 
Negative Binomial 169449 
Multilevel Negative Binomial 169602 
Zero-inflated Poisson 251668 
Multilevel Zero-inflated Poisson 292319 
Poisson 292682 
Multilevel Poisson 292868 
Multilevel Linear 561937 

 

Were, μ is the expected number of ILI cases for day t in hospital h. tmax, tmin, hum and prec are 

maximum temperature, minimum temperature, humidity and precipitation, respectively.  

Equation 4.3: Count component of weather model. 

 
 

Equation 4.4: Zero-inflation component of the weather model. 
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represents the random intercept for hospitals. P0t is the probability of zero ILI cases at day t and nt 

is the population assigned to a hospital at time t. 

 

 

Figure 4.2. Location of the 24 Hospitals included in the Weather Model, Chile 2010-2016 
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Table 4.3. Association between daily ILI and weather measures across 24 Chilean 
hospitals from January 2010 to December 2016 in a Multilevel Zero-Inflated Negative 
Binomial model, with random intercept for Hospital 

 
Variable and Unit β (95% CI) p-value
Fixed Effect

Count component
Meteorological measures

Minimum Temperature (c∘) -0.045 (-0.049,-0.041) <0.001
Maximum Temperature (c

∘

) -0.039 (-0.043,-0.036) <0.001
Relative Humidity (%) 0.001 (-0.0002,0.0017) 0.13
Precipitation (mm) 0.001 (-0.001,0.003) 0.302

Zero-Inflated component OR (95% CI) p-value
Meteorological measures

Minimum Temperature (c∘) 0.856 (0.815,0.898) <0.001
Maximum Temperature (c

∘

) 0.677 (0.620,0.738) <0.001
Precipitation (mm) 1.040 (1.010,1.070) 0.00694

Random Effect
Hospital (Intercept) 1.382 (1.040,1.834) <0.001
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Figure 4.3. Weather model predicted effects for ILI cases vs minimum temperature, maximum temperature and precipitation in 
24 hospitals in Chile 2010-2016 
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Top line: Predicted fixed effects of the count component on ILI cases of the Multilevel Zero-inflated Negative Binomial weather model for a) 
Minimum Temperature in C∘, b) Maximum Temperature in C∘ and c) Precipitation in mm. Dashed lines represent upper and lower limits of the 95% 
CI. 
Middle line: Predicted fixed effects of complete Multilevel Zero-inflated Negative Binomial weather model presented in μ*(1-P) as the combination 
of both components: count ILI number of cases (μ) and the probability of non-zero cases (1-P).  d) Minimum Temperature in C∘, e) Maximum 
Temperature in C∘ and f) Precipitation in mm.  
Bottom line: Predicted random effects of the complete weather model presented in log10(μ*(1-P)) in the y axis. The effects are the combination of 
both components: ILI number of cases (μ) and the probability of non-zero cases (1-P) for each hospital. g) Minimum Temperature in C∘, i) Maximum 
Temperature in C∘ h) and i) Precipitation in mm.  The y axis is represented in logarithm scale for visualization purposes. 
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4.4.3 Pollution Model 

A total of 10 hospitals had enough pollution and weather data to build the pollution model, 7 from 

the capital Santiago, 2 from the center and one from the south of the country (Figure 4.4).  

Equation 4.5 and Equation 4.6 show the final pollution model that resulted from the backward 

elimination. The estimates of the model are presented in Table 4.4. In the zero-inflated 

component, only Tmax was significantly associated to zero cases (OR 0.57, CI95% 0.41, 0.78).  

In the count component, similar to the weather model, Tmin and Tmax had a significant inverse 

association to ILI cases (Tmin: e-0.48= 0.95; Tmax: e-0.038= 0.96) (Figure 4.5a and Figure 4.5b). 

On the other hand, PM2.5 and SO2 were included in the pollution model, with PM2.5 resulting in 

a direct and significant association to ILI cases. For one μg/m3 increase in PM2.5 there was an 

increase of 1 case of ILI (e0.001=1.001, CI95% 1.0003-1.001) adjusting by SO2, temperature, 

relative humidity and correlation within hospitals (Figure 4.5c). O3 showed a positive, but non-

significant association to ILI cases (e0.005=1.005, CI95% 0.99-1.01) (Table 4.4). PM10 and O3 

were excluded in the backward elimination process and showed a non-significant association in 

the univariate models adjusting by weather variables. The predicted fixed and random effects of 

the pollution model were similar to the weather model: An inverse relation of ILI and Tmin and a 

quadratic shape for Tmax (Figure 4.5d,e,g,h). PM2.5 showed a positive association to ILI cases in 

the three effects estimated: Count component, fixed, and random effect (Figure 4.5c,f,i). 
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Equation 4.5: Count component of the pollution model 

 

𝑙𝑙𝑙𝑙𝑙𝑙�𝜇𝜇𝑡𝑡 ,ℎ� = 𝛽𝛽0 − 𝛽𝛽1�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,ℎ� − 𝛽𝛽2�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,ℎ�+ 𝛽𝛽3�ℎ𝑢𝑢𝑡𝑡𝑡𝑡,ℎ� + 𝛽𝛽4�𝑃𝑃𝑃𝑃2.5𝑡𝑡,ℎ�+  𝛽𝛽4�𝑆𝑆𝑆𝑆2𝑡𝑡,ℎ�+ 𝒰𝒰ℎ  

 

Equation 4.6: Zero-inflation component of the pollution model. 

 
Where, μ is the expected number of ILI cases for day t in hospital h. tmax, tmin, hum and prec are 

maximum temperature, minimum temperature, humidity and precipitation, respectively. 𝒰𝒰 

represents the random intercept for hospitals. P0t is the probability of zero ILI cases at day t and 

nt is the population assigned to a hospital at time t. 

 

 
 
Figure 4.4. Location of the 10 hospitals included in the Pollution Model, Chile 2010-2016 
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Table 4.4. Association between daily ILI, weather and pollution measures across 10 
Chilean hospitals from January 2010 to December 2016 in a Multilevel Zero-Inflated 
Negative Binomial model, with random intercept for Hospital 

 
Variable and Unit β (95% CI) p-value
Count component
Pollution Measures

PM2.5 (μg/m3) 0.001 (0.0003,0.001) <0.01
SO2 (ppbv) 0.005 (-0.0028,0.0127) 0.2129

Meteorological measures
Minimum Temperature (c∘) -0.048 (-0.0536,-0.0427) <0.01
Maximum Temperature (c

∘

) -0.038 (-0.0434,-0.0328) <0.01
Relative Humidity (%) -0.002 (-0.0036,0.0005) 0.1433

Zero-Inflated component OR (95% CI) p-value
Meteorological measures

Minimum Temperature (c∘) 0.864 (0.7274,1.0273) 0.0981
Maximum Temperature (c

∘

) 0.571 (0.4169,0.7832) <0.001
Precipitation (mm) 1.012 (0.8984,1.1402) 0.8434

Random Effect
Hospital (Intercept) 1.128 (0.7094,1.7929) <0.001
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                            Minimum Temperature             Maximum Temperature             PM2.5 

a b c  

d e  f  

g h  i  
Figure 4.5. Pollution model predicted effects for ILI cases vs minimum temperature, maximum temperature and PM2.5 in 10 
hospitals in Chile 2010-2016 
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Top line: Predicted fixed effects of the count component on ILI cases of the Multilevel Zero-inflated Negative Binomial pollution model a) 
Minimum Temperature in C∘, b) Maximum Temperature in C∘ and c) Precipitation in mm. Dashed lines represent upper and lower limits of the 95% 
CI. 
Middle line: Predicted fixed effects of complete Multilevel Zero-inflated Negative Binomial pollution model presented in μ*(1-P) as the combination 
of both components: ILI number of cases (μ) and the probability of non-zero cases (1-P).  d) Minimum Temperature in C∘, e) Maximum Temperature 
in C∘ and f) Precipitation in mm.  
Bottom line: Predicted random effects of the complete pollution model presented in log10(μ*(1-P)) as the combination of both components: ILI 
number of cases (μ) and the probability of non-zero cases (1-P) for each hospital. g) Minimum Temperature in C∘, h) Maximum Temperature in C∘ 
and i) Precipitation in mm.  The y axis is represented in logarithm scale for visualization purposes. 
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4.5 DISCUSSION 

We found a negative association between Tmin and influenza in both weather and pollution 

models. These results coincide with international and national findings (11, 17-19, 92, 95, 117, 

144, 152). A slightly different effect was found for Tmax. The positive association between Tmax 

and ILI for negative temperatures turned into a negative association after 0C∘ (32F∘). A possible 

explanation is that Tmax is normally measured in the afternoon, thus is more closely related to 

chances of commuting to an Emergency room compared to Tmin, that is normally measured early 

in the morning. For extreme low temperatures that chance might be reduced, with a 

predomination of the zero-inflation component (153). On the other hand, when a tolerable 

temperature is reached, the chances of commuting to an ED settles giving the count component 

predominance reflecting the negative association to Tmax.  

We did not find an association between humidity and ILI cases in concordance with 

previous studies in the country (144). The lack of association may be explained because we 

measured relative humidity (Absolute humidity / maximum humidity given the same 

temperature), but absolute humidity (water content in the air in g/m3 vapor) has been found to be 

more strongly associated to influenza cases (17). Chile is a country that has different weather and 

lower humidity compared to other countries. The low humidity and adjusting by other weather 

variables could diminish the association between humidity and influenza. 

Fine particulate matter, like PM2.5 increases the risk of ILI even after controlling for the 

weather conditions (39, 40). The pollution model showed a positive association between PM2.5 

and ILI cases. The relationship found was small, but significant. We believe that the association is 
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real given that the fixed effects were calculated using diverse hospital locations with different air 

conditions. Further, some hospitals shared the same pollution station, increasing the variance that 

could result in underestimating the real effect. Nevertheless, our findings are in line with the 

accepted hypotheses about the relation of PM2.5 and influenza, and similar findings were 

reported for the one Chilean Region (144). PM2.5 causes direct tissue damage, local 

inflammation, reduced capacity of the immune system, and increase transmission by transporting 

viruses in minuscule droplets present in the particles (113, 135-139). These individual level 

effects of pollution should be addressed in future studies to determine the association and to 

explain the mechanisms involved in the relation between PM and influenza.  

Our study has limitations. First, we calculated exposure using weather and pollution 

stations. The stations rather than measure individual exposure, represent a proxy of exposure. 

Second, we did not include age structure and assumed a constant spread in all age groups, 

regardless that is feasible that temperature and PM2.5 might have different effects in different age 

groups. This differential effect could determine a different transmission pattern in zones with 

different age structure (40). Third, the selection of cities for the pollution model may be biased 

given that cities with higher air pollution are more likely to have stations. Consequently, these 

results must be interpreted with caution given that they cannot be generalized. Fourth, some 

hospitals were paired to the same stations. This could underestimate the effect given that outcome 

variance might increase for equivalent exposures. Even though this could underestimate the 

associations, we found significant relations between temperatures, PM2.5 and influenza, 

supporting the existence of a real association in the locations studied.  

In this manuscript, we obtained a large amount of ILI, weather and pollution data from 

different locations across the country. Data came from established and reliable surveillance 

systems, for example ILI surveillance operates year-round with centralized report and national 
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guidelines. All data were obtained from publicly available reports from the Ministry of Health, 

meteorological services and air quality surveillance. We compared different models and handled 

overdispersion, excess zeros, and adjusted by autocorrelation within hospitals. Overdispersion, 

excess zeros and autocorrelation are common characteristics in ILI data, but not always accounted 

for. Few studies have evaluated the relation between PM2.5 and ILI (40). Even, fewer used 

different locations to determine the association. In that matter, our study contributes a small step 

in understanding the complex relations between weather, pollution and influenza in temperate 

regions. 

4.6 CONCLUSION 

To our knowledge, this is the first study that address the relation between weather, pollution and 

ILI across different locations in Chile. Our findings showed a positive association between ILI 

and PM2.5 and a negative association with Tmin. Tmax showed an inverted U shape relation with 

negative temperature providing a positive association and the opposite for temperature > 0∘ 

Celsius. Our results could help decision-makers prepare vaccination campaigns, stablish pollution 

standards and to calculate health effects of policies that reduce particulate matter. Additionally, 

this study could be a baseline to compare effects of weather and pollution on influenza across 

Chile. 
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5.0  DISSERTATION DISCUSSION 

5.1 MAJOR FINDINGS 

Influenza causes an important burden of morbidity and mortality every year in Chile and the rest 

of the world. However, the dynamics of influenza at global and local scale are not fully 

understood. This investigation aimed to understand the spatial relation of influenza between 

different regions in Chile and the association to weather and pollution. For our purpose, we 

presented three complementary studies. The first explores the influenza surveillance system in 

Chile and determine the timing association between ILI and 7 laboratory confirmed viruses. The 

second assesses the seasonality of influenza and spatial relationships across the country, including 

the analysis of local traveling waves between health networks. Finally, the third study assesses the 

association between influenza, weather and air pollution. 

The study presented in chapter two found that the timing of ILI in emergency rooms is 

closely related to the incidence of influenza A. There were no significant differences on timing 

across different hospitals that participated in both laboratory and ILI surveillance systems. 

Further, we compared ILI timing to different laboratory-confirmed viruses to confirm our 

findings. Our results support the use of ILI as a reliable measure of influenza A timing in Chile.  

The results on spatial dependencies of influenza and travelling waves was presented in 

chapter three of this dissertation. Here, we demonstrated that influenza has a predominant 

periodicity (seasonality) in Chile of 50 weeks. Also, we found a north to south latitudinal gradient 
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of influenza that was related to the central zone of the country and associated to health networks 

with larger population size. Similarly, local travelling waves of influenza were present in health 

networks from the center of the country and were also associated with population size. Our 

findings suggest that the larger population located in the center of the country drives seasonal 

influenza epidemics in Chile. 

Finally, the results from the association between influenza, weather and pollution are 

presented in chapter four. Lower minimum and maximum temperature were associated with fewer 

influenza cases and a small positive association was found between influenza and PM2.5. These 

findings can help to understand the complex relation between influenza, weather and pollution.  
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5.2 PUBLIC HEALTH SIGNIFICANCE 

The Chilean Ministry of Health, public health networks and local public health departments have 

the constitutional mandate to protect the population from health threats. Influenza causes high 

morbidity and mortality. Decision-makers need to be informed about influenza dynamics and the 

factors associated to allocate resources more efficiently and to reduce the burden of influenza. 

 The results of the three complementary studies are a step forward to the understanding of 

the complex relationships that govern seasonal influenza epidemics in Chile.  Influenza season 

preparation is fundamental to reduce influenza mortality and morbidity. We present new 

information that can help prepare vaccination campaigns by prioritizing areas with larger 

populations from the center of the country. Although we studied seasonal influenza epidemics in a 

“normal” scenario, it should be considered in future pandemics associated with new influenza 

strains, in situations of vaccine shortages, and to allocate human resources in these cases. 

Influenza spread and impact in the population can be reduced in Chile if earlier actions are taken 

in zones with larger populations and where influenza starts earlier. Finally, weather and pollution 

should be considered in the design of influenza campaigns. Our results are inputs to establish 

pollution standards to calculate the effect of pollution policies on health. Further, the results 

established a baseline to compare future effects of weather on influenza in Chile in the context of 

global warming. 
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5.3 FUTURE DIRECTIONS 

Influenza affects the population differently across age groups. Young children and the elderly are 

at higher risk of developing the disease and presenting complications. Temperature and pollution 

effects on influenza vary across age groups. Future analysis should include age structure of the 

population to account for this differential risk and to shed light on the local influenza dynamics.   

Age groups have different contact rates that result in differential impact on influenza 

spread. Contact rate is fundamental to simulate infectious diseases with person-to-person 

transmission, like influenza. Contact rate surveys could be a central input to develop better 

models for the understanding of influenza spread at the local and national level.  

Humans are the principal host of influenza and the main source of transmission. There is 

little knowledge on how human movement across Chile could affect transmission of influenza and 

other diseases. Although the study of travel patterns and its relation to disease in Chile is a 

complex endeavor, we think that substantial advances could be made by incorporating 

professionals from different disciplines and international collaborators with experience in this 

research topic. 

Finally, our research is unique in South America. A major body of knowledge could be 

built for the understanding of global influenza dynamics by initially including neighboring 

countries followed by countries from all the Americas and, why not, the rest of the world. 
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APPENDIX A: Cross wavelet power spectrum for ILI versus laboratory-confirmed viruses 

by hospital, Chile 2011-2016 

1. Cross wavelet power spectrum for ILI versus laboratory-confirmed influenza A by hospital 
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2. Cross wavelet power spectrum for ILI versus laboratory-confirmed influenza B by hospital 
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3. Cross wavelet power spectrum for ILI versus laboratory-confirmed influenza A plus 
influenza B by hospital 
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4. Cross wavelet power spectrum for ILI versus laboratory-confirmed respiratory syncytial virus 
by hospital 
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5. Cross wavelet power spectrum for ILI versus laboratory-confirmed parainfluenza by hospital  
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6. Cross wavelet power spectrum for ILI versus laboratory-confirmed adenovirus by hospital  
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7. Cross wavelet power spectrum for ILI versus laboratory-confirmed metapneumovirus by 
hospital  
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APPENDX B: Detrended rate time series, wavelet transformed rates and phases of ILI and viruses by hospital, Chile 2011-2016 
 

 

1. Detrended rate time series, wavelet transformed rates and phases of ILI and influenza A by  hospital 
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2. Detrended rate time series, wavelet transformed rates and phases of ILI and influenza B by  hospital 
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3. Detrended rate time series, wavelet transformed rates and phases of ILI and infuenza A plus influenza B by  hospital 
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4. Detrended rate time series, wavelet transformed rates and phases of ILI and respiratory syncytial virus by  hospital 
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5. Detrended rate time series, wavelet transformed rates and phases of ILI and parainfluenza by  hospital 
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6. Detrended rate time series, wavelet transformed rates and phases of ILI and adenovirus by  hospital 
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7. Detrended rate time series, wavelet transformed rates and phases of ILI and metapneumovirus by  hospital 
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APPENDIX C:  Selected and combined hospitals in Santiago, Chile 2011-2016 
 

 
 

Selected hospitals from Santiago. 
Blue dots: Hospitals included. Green dots: hospitals that were combined with the nearest green point 
to form the blue dot between both green hospitals. † Pediatric hospital that were combined, * Adult 
Hospital that were combined. The upper blue dot with † and * represent the combination of two 
neighboring hospitals.  
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APPENDIX D: Power spectrum for influenza-like illness by health network, Chile 2010-2016 
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APPENDIX E: Start and peak of influenza-like illness versus latitude in health networks by year, Chile 2011-2016 
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