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MESOSCALE SYSTEMS, FINITE SIZE EFFECTS, AND BALANCED

NEURAL NETWORKS

J. B. Dunworth, PhD

University of Pittsburgh, 2019

Cortical populations are typically in an asynchronous state, sporadically interrupted by brief

epochs of coordinated population activity. Current cortical models are at a loss to explain

this combination of states. At one extreme are network models where recurrent inhibition

dynamically stabilizes an asynchronous low activity state. While these networks are widely

used they cannot produce the coherent population-wide activity that is reported in a variety

of datasets. At the other extreme are models where short term synaptic depression between

excitatory neurons can generate the epochs of population-wide activity. However, in these

networks inhibition plays only a perfunctory role in network stability, which is at odds with

many reports across cortex. In this study we analyze spontaneously active in vitro prepa-

rations of primary auditory cortex that show dynamics that are emblematic of this mixture

of states. To capture this complex population activity we consider models where large ex-

citation is balanced by recurrent inhibition yet we include short term synaptic depression

dynamics of the excitatory connections. This model gives very rich nonlinear behavior that

mimics the core features of the in vitro data, including the possibility of low frequency (2-

12 Hz) rhythmic dynamics within population events. Our study extends balanced network

models to account for nonlinear, population-wide correlated activity, thereby providing a

critical step in a mechanistic theory of realistic cortical activity. We further investigate an

extension of this model that l exhibits clearly non-Arrhenius behavior, whereby lower noise

systems may exhibit faster escape from a stable state. We show that this behavior is due to

the system size dependent vector field, intrinsically linking noise and dynamics.
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Symbol Typical Meaning State Space

r firing rate R

n number of binary neurons in up state [0, N ] ⊂ N

N system size, number of neurons N

K average number of connections between neurons N

p plasticity variable, synaptic efficacy [0, 1] ⊂ R

τ timescale R

J absolute connection strength between neurons R

j scaled connection strength between neurons R

I applied current R

f sigmoidal function [0, 1] ⊂ R

θ threshold parameter R

ρ probability density [0,∞) ⊂ R

Ψ vector of probability densities Rm

S survival probability [0, 1] ⊂ R

N normalization constant R

U Potential function R

Û Pseudo-potential function R

σ characteristic amplitude of white noise R

ω transition rate (Markov process) R

λ, µ(Chapter 3) eigenvalues R

η, ϕ eigenvectors Rm

Table 1: Commonly used symbols
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1.0 INTRODUCTION

1.1 HISTORICAL MEAN FIELD MODELS

Neuroscience is a fundamentally multiscale problem, wherein millions of individual neurons

(already complex individually) interact to form a functioning, highly complex whole. This

makes it highly challenging to model individual neurons and neuronal interactions, and so

nearly all models make strong simplifying assumptions in order to make capturing the larger

interaction patterns tractable[1, 2]. Moreover, the complexity of single neuron models varies

quite a bit depending on the goals of the modeling and the questions to be addressed.

For example, the earliest qualitative model of a neuron comes from Lapique[3] with

the leaky integrate-and-fire neuron, which incorporates threshold spiking, decay to a resting

membrane potential, and a timescale of integration, features used in almost all models of

neurons. There have since been developed a wide range of dynamical extensions of this

basic model. Some extensions are developed to model specific types of neurons[4], some

for their interesting dynamical character[5, 6], while others have been developed for their

ease of computation[7] and usefulness in formalizing the essential characteristics of complex

behavior[8].

The gold standard in single neuron modeling is the Hodgkin Huxley neuron [9, 10], work

which led to a Nobel prize in physiology and medicine in 1963, one of the few examples

of such a Nobel awarded for mathematical biological work. Of particular note is that the

development, parameter estimation, and model comparison done using this model allowed

Hodgkin and Huxley to predict the existence and number of sodium and potassium gates

within the neuron before they were validated experimentally. The Hodgkin-Huxley model is

one of the most celebrated examples of the useful role of mathematical modeling in predicting
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and testing potential biological mechanisms. It continues to be widely used in practice today,

with a wide range of variations and extensions developed for different cell and tissue types[11–

14].

However, in spite of the successful development of models for single neurons across com-

plexity scales, modeling larger interaction patterns in the brain remains a daunting chal-

lenge. Brains consist of billions of neurons wired together, and even networks composed

of the simplest models of neurons can lead to seemingly arbitrarily complicated dynamics,

depending on the variables considered. Indeed, the question of understanding behavior of

neural networks has been studied since the earliest days of computational biology [15], and an

agreed-upon or “correct” approach to modeling aggregate activity remains elusive. Models

of network activity have historically relied heavily on the use of field theories, a well-defined

mathematical object allowing for rigorous analysis of dynamical character. Early models,

some of which pre-date our knowledge of inhibitory interneurons, discuss the stability char-

acteristics of networks of pulse coupled units[16–18], and the field eventually settled on mean

field models of recurrently coupled excitatory and inhibitory networks as the minimal nec-

essary model to understand neural activity[19, 20]. The currently accepted standard, or

canonical model, is based on the work of Wilson & Cowan[21], where the authors derive a

set of field equations for recurrently connected excitatory inhibitory networks.

Field theories are particularly useful for modeling the brain for several reasons. First,

many of the best measurements available of large scale neural activity are aggregate mea-

sures, which inherently involve some sort of averaging process,such as local field potential

or electroencephalogram recordings[22, 23]. As such, there is an inherent dimension reduc-

tion necessary for a model to be validated against measurements, which makes it a sensible

choice to simply model the aggregate behavior directly. Second, though neural data can be

arbitrarily complex (depending on the scale examined), there often appears to be a lower

dimensional description that provides the same functional responses [2]. Given that the ag-

gregate activity seems as though it is actually on a low dimensional manifold, a description

of the lower dimensional behavior is attractive. Finally, brains are formed by vast numbers

of (relatively tiny) neurons (e.g. humans have ∼ 1011 neurons, densely connected). This

suggests that models of even moderately sized regions (e.g. a few centimeters) will contains

2



thousands and thousands of neurons, and the different operating scales of individual units

vs. observable activity suggests that continuum style models would be an appropriate mod-

eling choice. These methods have been extremely successful in the study of propagation of

wave-like activity[24] and spatiotemporal pattern formation[25, 26].

The work of Wilson & Cowan has been highly influential[27], and has led to the general

advancement of computational neuroscience and the role of mathematics and dynamical

systems, especially in the study of neural systems. Nonetheless, there remain a host of

open questions surrounding the optimal approach and level of detail needed when modeling

neural systems, even discounting the incredibly complicated questions of how computations

are performed for more complex models. Since the development of the Wilson-Cowan model,

there have been many extensions of the work of studying neural field models, and the current

standard techniques involve statistical mechanics[28–30], theories of correlations [31, 32], the

study of complicated oscillations[33], and chaos[34]. More recently, extensions to standard

mean field models have been developed, which attempt to robustly account for variability in

systems[35, 36].

Here, I examine a specific extension of existing neuronal mean field models, which allows

for internally generated variability (i.e. we are able to quell the need for uncorrelated white

noise in simulations to ensure asynchrony[29]), a key feature observed in a wide range of

neuronal activity recordings [37]. This extension was developed by van Vreeswijk & Som-

polinsky [38], and is termed a balanced network. Below we explore some of the key features

of the Wilson-Cowan model, and the balanced network extension that we will study in the

remainder of this work.

1.2 THE WILSON-COWAN MODEL

We present here a brief introduction to the Wilson-Cowan rate model. The argument we

present here is not the original argument provided by Wilson and Cowan, but rather is based

on an argument first presented by Ginzburg & Sompolinsky [31], based on the techniques

of statistical mechanics and Glauber dynamics[39]. We believe this derivation highlights a
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salient point we would like to draw attention to, though the Wilson-Cowan theory is so well

established that there are a number of alternative derivations[2]. Let our network consist of

N binary neurons, with the state of the ith neuron at time t denoted by si(t). As this is a

model of binary neurons, si ∈ {0, 1}. The state si is determined as a threshold of a linear

combination of its inputs, given by

si(t) = Θ

(
N∑
j=1

Jijsj(t) + µb − θ
)

(1.1)

where µb is a constant input to all neurons (analogous to an input current), θ is the threshold,

Jij is the strength of the connection from neuron j to neuron i, and Θ (·) is the Heaviside

function. It is assumed that Jii = 0∀i = 1, . . . , N . The neurons are partitioned into

populations of excitatory neurons and inhibitory neurons, and we assume that the average

rate of update for neurons in population α is given by the time constant 1/τα. Note we allow

for heterogeneity in the inputs and thresholds, meaning we have µbα and θα, α ∈ {E, I}. For

simplicity, we may take Jij to be one of four constants, representing the strength of connection

between neuron types, rather than specific neurons. We denote strength of a connection

from a neuron in population β to a neuron in population α as Jαβ, where α, β ∈ {E, I}.
Allowing heterogeneity among the Jij by, for example, taking them as drawn from a Gaussian

distribution, as in Wilson & Cowan [21], does not appreciably change the derivation.

We further assume a network connectivity where any two neurons are statistically in-

distinguishable (as would be the case in all-to-all networks, K-regular networks, and Erdös-

Renyi networks), and that the activity is roughly asynchronous. Let an arbitrary neuron

receive, on average, K connections from both the E and I populations. It can be shown

[28, 31, 39] that the average activity of population α, mα(t), will be given by

τα
dmα

dt
(t) = −mα(t) + erfc

(−µα√
Vα

)
(1.2)

µα = J
αE
Km

E
− J

αI
Km

I
+ µbα − θα (1.3)

Vα = J2
αE
Km

E
+ J2

αI
Km

I
+ V b

α (1.4)

where erfc(x) is the complementary error function, µα is the mean input into population

α, Vα is the mean variance of inputs into population α, and V b
α is the background variance
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intrinsic to the population α.

To recover the classical formulation of the Wilson-Cowan equations, we must make a few

further simplifications. First, we let K → ∞. To prevent the mean input into a neuron

from diverging, we assume the connection strengths may be written as Jαβ = jαβ/K, where

jαβ ∼ O (1). Under this constraint, the variance Vα → V b
α in the K →∞ limit, a constant.

Finally, we may define a sigmoidal function f(x) that absorbs the background variance and

a negative sign to arrive at

τα
dmα

dt
= −mα + f

(
j
αE
m
E
− j

αI
m
I

+ µbα − θα
)
, α ∈ {E, I} (1.5)

If we associate the firing rate of a population with its mean activity, we have constructed a

pair of coupled rate equations with sigmoidal firing rate functions for a recurrently coupled

exictatory-inhibitory network. The techniques presented here are extendable to more com-

plicated models of single neurons, but we feel that this model is sufficient to highlight the

essential characteristics of the Wilson-Cowan style rate models.

1.3 NEURAL VARIABILITY

As we saw in section 1.1, one expects to see some variability in the firing rates of a model

of neural activity. In our construction of the Wilson-Cowan model in section 1.2, we showed

that the variance of the neuronal inputs limits to the background variance in the limit of a

network of many neurons. To get variable firing rates from such a system, one suspects we

would need quite a large background variance. Softky & Koch [40] formalized this argument

as follows.

Actual physiological neurons integrate inputs, which takes time. Neurons also have a

threshold of some kind that must be crossed to initiate an action potential. Let us take as a

model neuron a perfect integrator, and we suppose that the connection strengths are scaled

as they are in section 1.2, with J ∼ 1/K. Then to initiate an action potential, a neuron

needs to receive K excitatory inputs. We know that there is, at a minimum, some kind of

background noise in the system, so we may assume that our perfect integrator is receiving
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excitatory inputs from a Poisson process with rate r. Then the time between two spikes

of our perfect integrator is the interspike interval, a random variable that we can quantify.

Given a Poisson input, the expected value of the interspike interval will be K/r, with a

standard deviation of
√
K/r. The standard method of quantifying variability in spike trains

is the coefficient of variation of the distribution of interspike intervals, given as the ratio of

the standard deviation to the mean. For this toy system, the coefficient of variation will be

1/
√
K. Then as K →∞, the coefficient of variation approaches zero, giving a highly regular

spike train.

To rectify this incongruity with observed data, Shadlen & Newsome [41] proposed a

solution in the form of excitatory/inhibitory balance. If an integrator receives both excitatory

and inhibitory inputs of (approximately) the same size, the voltages should look more like

a random walk, meaning that the times at which the integrator reaches the spike initiation

threshold should be more variable than in Softky & Koch [40].

There is ample evidence of excitatory/inhibitory balance from experiment1. Some form

of balance between excitation and inhibition has been seen in slice[42], in vitro [43], in

vivo[44–47], and in culture[48]. The culture validation is particularly exciting as it validates

a modeling choice that we will see. Additionally, dysregulation of excitatory/inhibitory

balance has been implicated in some of disease states[49–53].

1.3.1 Balanced networks

We are now ready to extend the Wilson-Cowan rate model framework to allow for internally

generated variability. Beginning from the same system as in section 1.2, we can follow the

same calculations through Eq. (1.1) to (1.4). At the level of Eq. (1.3) and (1.4), though,

we make a different ansatz. Motivated by the desire to retain variance other than the

background variance Vb, we choose to scale the connection strengths as Jαβ = jαβ/
√
K, where

jαβ ∼ O (1). This results in Vα ∼ O (1), giving internally generated variability through the

dynamic recurrent interactions between and among the two neuronal populations. A side

effect of this, however, is that µα ∼ O
(√

K
)

. Arbitrarily large inputs will lead to saturation

1Though we note there is much more evidence now than when Shadlen & Newsome proposed the idea.
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of the neuronal activity.

To prevent this, we make the following simplifications. First, assume the threshold θα

is negligible. Next, assume that the input µbα is large, so that it may also be written as

µbα = Iα
√
K. If we are thinking of µbα as input from another brain area, this is equivalent

to the statement that feedforward connections can be strong. With these simplifications,

Eq. (1.3) becomes

µα =
√
K (j

αE
m
E
− j

αI
m
I

+ Iα) (1.6)

To ensure that µ
E
, µ

I
∼ O (1), it is enough require that

j
αE
m
E
− j

αI
m
I

+ Iα ∼
(

1√
K

)
. (1.7)

In the K →∞ limit, this gives rise to the balance conditions

j
EE
m
E
− j

EI
m
I

+ I
E

= 0 (1.8)

j
IE
m
E
− j

II
m
I

+ I
I

= 0 (1.9)

The balance conditions are generically solvable, and they provide a set of inequalities we

require if we expect the activities for our model to be well-defined. Note that in our desire

to keep the total inputs variable (i.e. Vα ∼ O (1)), we have derived, without explicit intent,

the condition outlined by Shadlen & Newsome [41].

Implicit in the derivation we provided here is the assumption that the network is sparse,

meaning that even though both K and N diverge to infinity, K � N so that the ratio

K/N → 0. This assumption is tantamount to the statement than any two neurons in the

network are at best weakly correlated. This is effectively an asynchrony condition. Renart

et al. [54] extended the argument in van Vreeswijk & Sompolinsky [55] to allow balanced

states in dense networks, where the ration K/N is a nonzero constant. That argument

was later simplified and extended to allow for spatial heterogeneity[56]. A result of this

extension to dense networks provides that balanced networks actively decorrelate neuronal

activity through a dynamic tension in the afferent currents onto a neuron. When a large

excitatory current is incoming, the network, on average, provides a compensatory inhibitory

current, effectively cancelling the excitatory input. While this places the net input into a
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neuron near zero, it still allows fluctuations in the network activity to cause spikes, because

the inputs of each type (excitatory/inhibitory) are large. This places the neuron in the

fluctuation driven regime (as opposed to the oscillatory regime), and suggests the tools of

studying noisy systems may be appropriate for analysis of systems of this type.

Finally, we should remark on the dynamics of balanced networks. First, we note that

Eq. (1.8) and (1.9) will generically have only a single solution, meaning that the dynamical

system of the activity variables has only a single fixed point in the K →∞ limit. Moreover,

the dynamics will be governed by Eq. (1.2) to (1.4). Next, we observe that by construction,

the input to the sigmoidal function will be

µα
Vα
∼ O

(√
K
)

(1.10)

which implies that the eigenvalues of the Jacobian at a fixed point will scale with
√
K. Thus

in the large K limit, the dynamical system responds to perturbations on a timescale that

scales with K: the larger the K, the faster the response. Colloquially put, a stable fixed

point becomes extremely stable as K grows.

For much of the work that follows, we will adopt a simplified form of a balanced network,

where we retain the sigmoidal nature of the transfer function, as well as the O
(√

K
)

sized

inputs. The simplest form of this simplified model is given as

τ
E
ṁ
E

= −m
E

+ f
(√

K (j
EE
m
E
− j

EI
m
I

+ I
E

)
)

τ
I
ṁ
I

= −m
I

+ f
(√

K (j
IE
m
E
− j

II
m
I

+ I
I
)
) (1.11)

where we have used a dot to denote differentiation with respect to time. We note that as

the governing equations depend explicitly on K, for any fixed K, it is possible to have more

diverse dynamical possibilities. In particular, we are able to choose parameters such that

Eq. (1.11) exhibit bistability (Figure 1A.) As K grows, the nullclines approach the pair of

lines defined by the balance condition (Figure 1B,C). So while it is technically true that

a finite sized balanced network can exhibit nonlinear behavior, this is a finely tuned case,

and we seek a more robust method to extend the theory of balance. To that end, we follow

the work of Mongillo et al. [57], where the authors added robust multistability to balanced

networks through the use of short-term synaptic plasticity.
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1.4 SYNAPTIC PLASTICITY

What follows is a grossly over-simplified explanation of short-term plasticity (STP) in neu-

ronal populations. STP depends on a number of subtle factors, having different characteris-

tics depending on the cell types involved, which regions of cortex are being studies, and the

specific details of the experimental preparation. We present here the features most relevant

to the modeling work we do in Chapters 2 and 3. For a more comprehensive view, see the

reviews [58, 59].

1.4.1 A simplified biological explanation of plasticity

While a detailed biological description of short term plasticity is outside the scope of this

work, it is beneficial to give a brief overview. At a very basic level, we may understand the

procedure of signal propagation across a synapse as follows. When a presynaptic neuron

fires an action potential, synaptic vesicles release neurotransmitter into the area between the

synaptic bouton and the post-synaptic neuron. The neurotransmitter binds to receptors on

the post-synaptic membrane, causing a temporary change in conductance, and a measurable

9



post-synaptic potential (PSP). After release, there is a refractory period of several hundred

milliseconds during which the synaptic contact does not have a vesicle docked. Under repet-

itive stimulation, the size of the PSPs changes, either decreasing (termed depression) or

increasing (termed facilitation). These changes depend systematically on stimulus intensity

and frequency. The type of STP depends on the types of pre- and postsynaptic cells. Di-

rect measurements, through simultaneous triple whole cell recordings, have shown that a

single pre-synaptic neuron can cause depression in one postsynaptic target and facilitation

in another[60].2

The cellular mechanisms by which STP takes place are better understood for depression

than for facilitation, but workable theories for both phenomena exist. The characteristics of

depressing synapses are consistent with a simple depletion model, where the readily releasable

pool of vesicles decreases with every incoming action potential. The most prevalent theory

for facilitation is the residual calcium hypothesis[61], which posits that the probability of

vesicle release increases in a nonlinear way with the accumulation of calcium [Ca2+].

1.4.2 The canonical synapse model

There are a variety of models of synapses, ranging from the highly mechanistic to the func-

tionally qualitative, encompassing stochastic effects at the microscale level[62, 63], and net-

work effects arising from large scale interactions of many agents [64–66]. We present here

one of the most adaptable and well-regarded models of a synapse[64, 67]. While this model

is partly phenomenological, it is known to reproduce well the measured synaptic responses

between pyramidal neurons.

We consider a synapse as having a finite amount of resources (e.g. total amount of

neurotransmitter), which can be partitioned into three states. The resources can be active,

or effective (e.g. if a vesicle is docked), inactive, or recovered. The fraction of active, inactive,

and recovered resources is denoted by E, I, and R, respectively. Because the total amount

2As an applied mathematician who depends on the data collection of others, we should remark here that
direct measurement of STP is a herculean task, one which requires simultaneous patch camp techniques
onto at least two neurons. Moreover, one needs a direct connection between two neurons to perform this
experiment. The method of finding such a direct connection can best be described as “guess and check”
(or, we suppose, “patch and pray”). The skill and patience required for simultaneous triple patching onto
divergent connections can likely not be overstated.
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of resources is fixed, we have the constraint E + I +R = 1.

Let t′ be the time of a pre-synaptic action potential, and let USE (the utilization of

synaptic efficacy) be the fraction of synaptic resources moved into the active classification

at t′. The timescale with which resources move from active to inactive is a few milliseconds,

denoted by τin, and the timescale with which they recover is one the order of hundreds of

milliseconds, up to a second, denoted by τrec. The kinetic equations for a depressing synapse

follow essentially mass action compartmental model, and are found as

dR

dt
=

I

τrec
− USE ·R(t′ − 0) · δ(t− t′)

dE

dt
= − E

τin
+ USE ·R(t′ − 0) · δ(t− t′)

I = 1−R− E

(1.12)

There is also the parameter ASE, the absolute synaptic efficacy, defined as the maximal

possible response if all of the resources are activated by a presynaptic action potential. We

take the postsynaptic current, Ip to be proportional to the fraction of resources in the active

state (Ip(t) = ASEE(t)). While simple, this model effectively captures short term depression

(Figure 2B). In particular, we note that it reproduces the observed phenomena that for low

presynaptic firing rates depression is almost non-existent (the first two spikes in Figure 2B),

but for high firing rates depression is observed (the last five spikes in Figure 2B).

To account for facilitation, only a small modification of this model is needed. Rather

than assuming that a fixed amount of resources are released with every action potential, we

assume that the effective value of USE is increased with every action potential. Let U ′ be

the amount of synaptic resources available to be released (the running effective value of USE,

essentially), and let τf the time constant of facilitation. Then a model that captures both

12



facilitation and depression can be enumerated as

dR

dt
=

I

τrec
− U ′ ·R(t′ − 0) · δ(t− t′)

dE

dt
= − E

τin
+ U ′ ·R(t′ − 0) · δ(t− t′)

dU ′

dt
= −U

′

τf
+ USE · (1− U ′) · ·δ(t− t′)

I = 1−R− E

(1.13)

See Figure 2C for an example simulation of facilitation.

1.4.3 Integrating STP into a network

For our purposes, the most important result from this work is a roadmap on how to include

synaptic effects in a recurrent network using the mean value of the synaptic resources in

the recovered category, 〈R〉. Following the results of Softky & Koch [40], it is reasonable to

model the incoming spike train to Eq. (1.12) and (1.13) as a Poisson process, say with rate

r(t). Taking τin to be much faster than τrec, we can average over possible realizations of this

spike train, and find the following equations:

d〈R〉
dt

=
1− 〈R〉
τrec

− 〈U ′〉 · 〈R〉 · r(t)

d〈E〉
dt

= −〈E〉
τin

+ 〈U ′〉 · 〈R〉 · r(t)

d〈U−〉
dt

= −〈U
−〉
τf

+ USE · (1− 〈U−〉) · r(t)

〈U ′〉 = 〈U−〉(1− USE) + USE

(1.14)

where 〈U−〉 is the average value of U ′ immediately preceding an action potential. This

formulation gives us a sense of the typical dynamics of synapse.

To integrate this formulation into a recurrent network of many neurons, we need to

compute the postsynaptic current. Recalling that Ip(t) = ASEE(t), we will have the average

postsynaptic current as 〈Ip〉 = ASE〈E〉. As a first pass at simplification, we may suppose that

τin is fast relative to the other timescales in the system. Even if τin is a few milliseconds,
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this may be reasonable if we are considering the effective time constant of the excitatory

population to be, say, 10ms. In this case, when we are only interested in the behavior of

system at timescales slower that τin, we find the postsynaptic current can be simplified to

〈Ip(t)〉 = τinASEU
′ · 〈R〉 · r(t), (1.15)

effectively a product of the presynaptic firing rate and the available proportion of synaptic

resources.

As an explicit example, suppose we take a system of the form of Eq. (1.5), and we allow

a single synapse type to be plastic, say the excitatory to inhibitory (E → I) connection.

Denote the synaptic efficacy as p, a number residing in the unit interval [0, 1]. Then a proper

accounting of STP in the mean field model is incorporated as

τ
E
ṁ
E

= −m
E

+ f
(√

K (j
EE
m
E
− j

EI
m
I

+ I
E

)
)

τ
I
ṁ
I

= −m
I

+ f
(√

K (j
IE
· p ·m

E
− j

II
m
I

+ I
I
)
) (1.16)

where the governing equation for p follows from Eq. (1.14), giving

ṗ =
1− p
τrec

−
(
〈U−〉 (1− USE) + USE

)
· p ·m

E

d〈U−〉
dt

= −〈U
−〉
τf

+ USE
(
1− 〈U−〉

)
m
E

(1.17)

In the work that follows, we will make a few simplifications motivated by these results,

providing a qualitatively similar functional form of a synapse.

1.5 THESIS OUTLINE

In this thesis, we present the work of two studies, both involving the study of balanced

neuronal networks and the essential role noise plays in determining the network behavior.

In Chapter 2 we present a novel analysis of a previously published dataset of mouse audi-

tory cortex, and extend the current theory of balanced networks to reproduce complicated

dynamical behavior. In Chapter 3 we extend the model from chapter 2 to include the study
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of noise induced transitions in a bistable neural network. Any actual implementation of

a balanced network will naturally deviate away from the theory outlined here, since it is

computationally infeasible to simulate an unbounded number of neurons. In particular, the

increased variability of balanced networks (as compared to classic rate models) allows for

the possibility of nontrivial finite size effects even at reasonably sized implementations of a

network. We present a novel result in the study of state transitions and escape times, and

provide (what we believe to be) the first work studying a potential landscape that is itself

noise dependent.
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2.0 INTERLEAVING ASYNCHRONOUS AND SYNCHRONOUS

ACTIVITY IN BALANCED CORTICAL NETWORKS WITH SHORT

TERM SYNAPTIC DEPRESSION

Internally generated cortical activity is a reflection of the circuit structure and physiology of

the cortical network. Circuit models provide an important tool to test and validate whether

a specific biological feature of cortex can mechanistically explain recorded population dy-

namics [68]. However, it is often the case that cortical models are built to capture only a

subset of cortical dynamics. Indeed, there are distinct recurrent circuit models for asyn-

chronous population dynamics [69], rhythmic synchrony [70], long timescale dynamics [71],

and population-wide coordinated behavior [66, 72]. In many cases these models assume only

the circuit structure and physiology needed to replicate the population activity of interest,

while ignoring the biology that is critical in the other models. One clear reason for this

polychotomy of cortical models is that real cortical dynamics are quite rich, with activity

that transitions between distinct states throughout a recording, and models tend to focus

only upon a single dynamical state.

For the majority of the time, cortex is in an asynchronous (or weakly correlated) state

with temporally irregular spiking dynamics [29, 54, 73, 74] and population responses fluctuate

with linear dynamics about an operating point [75, 76]. Models with strong recurrent exci-

tation and inhibition readily capture these dynamics [38, 55, 77], but they require a strong

assumption of Gaussian distributed fluctuations in population activity [54]. However, the

asynchronous dynamics in biological cortical networks are sporadically interrupted by brief

epochs of population-wide coordinated activity, as reported in spontaneously active in vitro

slice recordings [42, 78–80], spontaneously active cortex in anesthetized animals [45–47], and

even in the cortices of awake behaving rodents [81] and primates [82]. These epochs of large
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population correlation are clear nonlinear phenomena, with a non-Gaussian character to

population activity skewing the activity distribution [37]. Circuit models that capture these

population events often do so through a brief respite from short term synaptic depression

of recurrent excitation that drives population activity [66, 83–85]. This mechanism ignores

the wealth of data suggesting that inhibition confers strong stability to population activity

[42, 44, 45, 86–88]. The apparent disconnect between models where population stability is

due to strong recurrent inhibition and those where nonlinear runaway population activity

emerges through a relief from synaptic depression represents a clear barrier towards a more

complete mechanistic theory of cortical dynamics.

In this study we focus on the internally generated dynamics of spontaneously active in

vitro slices of rodent auditory cortex [42]. Whole cell patch recordings show that the cortical

network is largely in a state where recurrent inhibition tracks and balances excitation, except

for rare and short periods when the slice undergoes a population-wide surge in activity. (We

note that as an aesthetic choice, to suggest excitation as increasing the membrane potential

and inhibition as decreasing it, we have inverted the whole-cell recordings so that excitation

(typically shown in red) points up, and inhibition (typically shown in blue) points down.)

A subset of the slice preparations show a population burst of activity with a previously

unstudied low frequency (2-12 Hz) within-burst rhythm, while the remaining preparations

show population events that lack any rhythm. We present novel analysis and modeling of the

complex and varied nature of the population events. To capture this dataset we follow past

work [57] and extend balanced network models to include synaptic depression from excitatory

neurons to both excitatory and inhibitory neurons. This gives a balanced asynchronous so-

lution where fluctuations in activity may cause a depression-induced weakening of inhibitory

recruitment, prompting the excitatory population to explode into a population event. Fur-

ther, the rhythmic character of population events results from an interplay between recurrent

excitation and the depression of excitation. This feature requires that excitatory synapses

onto inhibitory neurons exhibit more depression at relatively lower firing rates as compared

to depression onto excitatory cells. Fortunately, this requirement has strong support from

past electrophysiological recordings in primary auditory cortex [58, 89, 90].

It is clear that the cortex exhibits diverse dynamics poised between asynchrony and
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population-wide correlations. Our framework gives a clear blueprint for how to combine and

extend past models so as to account for previously unexplained cortical dynamics.

2.1 RESULTS

2.1.1 Two kinds of network stabilization

We first revisit previously published recordings from layer IV neurons in an in vitro tha-

lamocortical slice preparation of mouse primary auditory cortex (see [42] for a complete

description). An extracellular solution containing high potassium, low magnesium, and low

calcium concentrations was used to recruit internally generated neuronal activity within the

slice [91]. Whole-cell voltage clamp techniques isolated the excitatory currents into a single

neuron by holding its membrane potential at approximately the reversal potential of inhibi-

tion (-80 mV). The spontaneous network activity typically provided a net excitation which

fluctuated about a low state, suggestive of asynchrony between the pre-synaptic excitatory

neurons (Figure 3a). However, this state was sporadically interrupted by large excursions

in excitation lasting hundreds of milliseconds, presumably due to coordinated recruitment

of excitatory neurons throughout the network (Figure 3a, b). Similar population dynamics

have been reported in the spontaneous states of cultured [48, 83], in vitro [80, 92], and in

vivo [81, 93] preparations. We label these rare epochs population events, similar in nature

to the “population spikes” and “population bursts” described in past studies [66, 84]. In

particular, population event dynamics are reported in auditory cortex during in vivo spon-

taneous conditions, determined either directly from population recordings [47] or indirectly

from whole cell recordings that show large membrane potential excursions suggestive of

widespread synchrony [46].

Population event dynamics are captured by networks of spiking neuron models having

recurrent excitatory connections with short term synaptic depression [66, 83–85, 94]. The

activity of these models reduces to a simple dynamical system with only excitatory activity

and synaptic depression as variables [84, 85, 95, 96], making them amenable to phase plane
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analysis (Figure 3c). The positive feedback associated with recurrent excitation could in

principle destabilize network activity; however, strong synaptic depression weakens recur-

rent coupling so that moderate network activity is stable (Figure 3c, intersection of orange

and red curves). Consequently, we will throughout refer to these networks as depression

stabilized. While the asynchronous low activity state is stable, a transient relief from depres-

sion promotes a rapid runaway explosion in activity due to strong positive feedback in the

excitatory network (Figure 3c, black curve), modeling the population event. This massive

excitatory drive recruits synaptic depression that weakens recurrent feedback, ultimately

bringing activity back to the low state, terminating the population event.

Dynamical systems with a single stable state that exhibit large scale transient excursions

in activity as a response to input perturbations above a certain size are often labeled excitable

systems [2]. Population event activity in depression stabilized networks is an example of

excitable dynamics, and firing rate model reductions of them require two main assumptions.

First, the asynchronous spiking dynamics during the periods between population bursts

necessitate either sources of external noise that are independent across neurons [83, 94, 96]

or broad neuronal heterogeneities within the population [66, 84]. This ensures that the weak

recurrent coupling in the depressed state does not synchronize network activity. Second,

synaptic depression must operate on a timescale that is much slower than recurrent excitation

[95, 96], otherwise runaway population activity will be prematurely quenched. While the

second assumption is well founded in synaptic physiology [58, 64], the first ignores common

input projections that would otherwise synchronize the network [76].

In depression stabilized networks inhibitory connectivity plays only a perfunctory role;

in some models it is included [66, 83, 85] while in other models it is completely ignored

[84, 94–96]. A popular alternative cortical model is one in which strong recurrent inhibition

actively counteracts recurrent excitation, effectively stabilizing network activity at a moder-

ate level. Such networks are labeled inhibition stabilized [86, 97] and include networks with

large excitation that is balanced by recurrent inhibition [38, 54, 55]. Whole cell recording in

vivo in both visual [86, 88] and auditory cortices [87] have provided strong evidence for an

inhibition stabilized cortex.

Depression and inhibition stabilized networks differ in several key aspects. In inhibition
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stabilized networks the timescale of inhibition must be sufficiently fast to prevent runaway

activity. Because of this, inhibition stabilized networks cannot produce a stereotypical pop-

ulation event, and rather produce only stunted transient responses to a slight reduction in

inhibition (Figure 3d). Nevertheless, networks with strong recurrent inhibition require nei-

ther sources of independent noise external to the network nor broad cellular heterogeneities

to produce asynchronous dynamics; rather, they produce it naturally through inhibitory

cancellation of correlations due to common excitation [54, 77].

One advantage of spontaneously active in vitro slice preparations is that joint excitatory-

inhibitory dynamics can be directly measured [42]. Simultaneous whole-cell recordings from

neuron pairs were obtained, where one neuron’s membrane potential was held at the in-

hibitory reversal potential (-80 mV; Figure 3e, red curve) and the other at the excitatory

reversal potential (0 mV; Figure 3e, blue curve), isolating excitatory and inhibitory popula-

tion activity, respectively. Restricting analysis of paired neuron activity to the asynchronous

period (i.e. excluding population events) shows that while neuron pairs receive both corre-

lated excitation (Figure 3f, E → E) and inhibition (Figure 3f, I → I), the composite input

to the pair measured at resting potential is only weakly correlated (Figure 3f, Total). This

suggests that shared inhibition actively tracks and cancels shared excitation, producing an

asynchronous network state as has been previously theorized [54, 77], and is a hallmark of

inhibitory stabilization.

Taken together these observations present a problem when considering the spontaneously

active in vitro auditory cortex slice data (Figure 3; [42]). Specifically, the excitatory-

inhibitory dynamics recorded between population events support inhibitory stabilized dy-

namics. Such a cortical model disallows the existence of population event dynamics, and yet

population events are clearly present in the data and inhibition is strongly recruited during

the excursion (Figure 3e). The central focus of our study is to provide a circuit model of cor-

tex that captures the full range of asynchronous and population event dynamics in auditory

cortex.
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Figure 3: Two mechanisms of stabilization. a: Example whole cell voltage clamp recording

from mouse auditory cortex, in vitro; the neuron is held at the reversal potential for inhibi-

tion. Data inverted. b: Magnification of population event from recording shown in panel a.

c: Phase portrait for a depression stabilized network; the red and orange curves denote null-

clines for excitation and synaptic efficacy (depression), respectively. A momentary release

of depression permits large runaway excitatory activity until more depression is recruited,

decreasing excitatory activity (black curve). d: Phase portrait for an inhibitory stabilized

network; the red and blue curves denote nullclines for excitation and inhibition, respectively.
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A perturbation to network activity causes a brief and small amplitude relaxation back to

equilibrium (black curve).e: Synaptic input traces from dual whole cell patch clamp record-

ings from mouse auditory cortex. Two neurons are simultaneously clamped, one held at

the reversal potential of excitation, the other at the reversal potential of inhibition. Data

inverted. f: The correlation coefficient of synaptic inputs from simultaneously recorded

pyramidal neurons. The neuron pair is held at the inhibitory/inhibitory reversal to measure

the correlation of excitatory currents (EE), or held at the excitatory/excitatory reversal to

measure the correlation of inhibitory currents (II), or held at a membrane potential where

both excitatory and inhibitory currents are active to measure the correlation of summed

excitation and inhibition (composite). Analysis is shown for current fluctuations during

population event and non-event periods.

2.1.2 Oscillatory and non-oscillatory population events

In order to better motivate our model we first analyze the structure of population activity

within events recorded from our spontaneously active cortical slice [42]. We note that any

arbitrary pair of recorded cells likely do not share a direct connection, though all patched

cells register simultaneous population events throughout the recording. We take this as an

indication that the population event is slice-wide, and not likely an artifact of recording site.

Broadly speaking, there are two classes of population events – ones where the synaptic

excursion is a simple rise and then decay (Figure 4a, lavender curve) and ones with a low

frequency rhythmic dynamic throughout the population event (Figure 4a, green curve). Even

so, population events display a wide range of heterogeneity across all slices (Figure 4a, black

curves). The population events recorded from a given neuron would not switch between these

classes: if a neuron showed a rhythmic event during a recording, all events recorded from that

neuron would be rhythmic. This is verified by spectral analysis restricted to the population

event epochs from these two example neurons, showing that the respective arrhythmic or

rhythmic character was recording site specific (Figure 4b; see Methods). Spectral analysis of

the population event epochs across the entire dataset (n = 210 from 23 distinct slices) shows

that approximately one third of recorded neurons exhibited rhythmic events (Figure 4c). In
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the oscillatory cases the frequency is relatively slow, and somewhat heterogeneous across

the slices, ranging from ∼ 2Hz to 12Hz (Figure 4d). A natural question to ask is whether

population event dynamics are due to a synaptic and cellular property of the recorded neuron,

or a network-wide feature.

Reordering the dataset according to slice membership rather than spectral width shows a

slice dependent clustering of oscillatory event dynamics (Figure 4e). This is consistent with

an interpretation of a population event as a network feature, since if one neuron experiences

an oscillatory event then all other neurons in the same slice do as well. Further, the frequency

of the oscillation is also highly correlated within a slice; namely, the peaks in the power

spectrum for simultaneously recorded neurons lie roughly on the identity line (Figure 4f).

Taken together, these results suggest that the oscillatory character of population events is

due to slice heterogeneity, rather than a cellular process that is private to a neuron. This

fact will simplify the assumptions of our cortical model.

In contrast to the population event dynamics, the synaptic fluctuations that occurred be-

tween population events were dominated by low frequency power, and showed no discernible

peak suggestive of rhythmic dynamics (Figure 4g). A lack of pronounced population-wide

oscillations is characteristic of the asynchronous state associated with the low activity regime

[29, 54, 77]. The fact that the third of slices which show oscillatory dynamics during the

event do not show it for the low activity state suggests a strong nonlinearity in network

dynamics. Overall, these data provide an important constraint – our circuit model must be

able to produce both arrhythmic and rhythmic population events, as well as show a clear

asynchronous low activity state devoid of any rhythm between population events.

2.1.3 Balanced cortical circuit model of population events

We first begin with modeling the low activity asynchronous state in which the cortical popu-

lation resides for most of the time. Motivated by the fact that recurrent inhibition is critical

for asynchrony in the auditory cortical slice recordings (Figure 3f), we consider recurrently

coupled populations of excitatory (E) and inhibitory (I) neurons (Figure 5a). The excita-

tory and inhibitory populations have NE and NI neurons, respectively. For simplicity we

23



Frequency  (Hz)

N
or

m
al

iz
ed

 p
ow

er

Cell 1 peak (Hz)

Ce
ll 

2 
pe

ak
 (H

z)

Peak (Hz)

Co
un

t

ρ=0.67

Frequency  (Hz)Frequency  (Hz)

1 s

0 10 20 30 0 10 20 30

0 1 10 30

00

11

0

0 4

4

4

8

8

8 12

12

12

15

5

10

0

0

Ce
ll 

nu
m

be
r

Ce
ll 

nu
m

be
r

Frequency  (Hz)

Width sorted

Slice sorted

0 10 20 30
0

1
mV nA

mV

mV

mV

nA

nAnA

nA

a e f

d gc

b

Figure 4: Heterogeneity of the dynamics within population events. a: Sample population

events from different slices. For events recorded in voltage clamp, vertical scale bar denotes

0.2nA. For events recorded in current clamp, vertical scale bar denotes 10mV. Sample events

marked in lavender (aperiodic) and green (periodic), are exemplar events marked throughout

figure. All sample traces inverted to point up for consistency. b: Power spectra for marked

cells from the dataset to the left, averaged over all of the events seen. There is a clear peak

in the power spectrum, here at ∼ 6Hz. Power spectra are normalized to have maximum

value 1. c: The power spectra for the event periods of the entire dataset. Power spectra

are normalized to have maximum value 1. Data sorted by full width at half max (for those

without peaks), and then by peak location (for those with peaks). Arrows denote marked

data from panel a. d: Histogram of the peak location for peaked power spectra. e: Same

data as panel c, sorted and grouped by slice, rather than by width. f: Scatterplot of the peak

location for pairs of cells. Since some of the collected data measures excitatory currents, some

measures inhibitory currents, and some measures mixtures, there is no natural categorization

for choosing which cell is “Cell 1” and which is “Cell 2”. These labels are chosen at random

for this figure. The reported correlation coefficient is the median of the distribution of

correlation coefficients computed for different instantiations of the randomization. Dashed

ellipse denotes the 95% confidence interval. Periodic data from panel a marked as a green

square. g: Same as panel c for the nonevent portions of the data.
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take NE = NI ≡ N , but this assumption can be easily relaxed. Since we will be studying

network-based mechanisms we opt for a phenomenological network model that only consid-

ers neurons as being active or inactive. We focus on the proportion of active neurons in

population α, rα(t) = nα(t)/N , where nα(t) is the number of active neurons at time t (here

α ∈ {E, I}).
Following classical work in the theory of balanced excitation and inhibition [54, 55] we

scale the baseline synaptic strength from a neuron in population β to a neuron in population

α as Jαβ = jαβ/
√
K, where jαβ ∼ O(1) is the unscaled connection strength (α, β ∈ {E, I}),

and K is the average number of connections onto a neuron. Here we will take K = cN ,

with c ∈ (0, 1) being a fixed and positive number. This scaling for Jαβ implies very strong

connections between neurons, especially when compared to those from the more common

1/K scaling. As a result the network produces sizable internally generated variability, so

that single neuron activity is temporally irregular, in line with experimental recordings [73].

While 1/
√
K synaptic scaling was originally a theoretical abstraction, recent work in cultured

neuronal preparations gives strong evidence for this scaling [48].

We take a sigmoidal activation function fα for population α, and for large K the popu-

lation activity then obeys the following dynamics (see Methods):

ṙ
E

= −r
E

+ fE

(√
K (j

EE
p
EE
r
E
− j

EI
r
I

+ I
E

)︸ ︷︷ ︸
Balance condition: O(1/

√
K)

)
,

τ
I
ṙ
I

= −r
I

+ fI

(√
K (j

IE
p
IE
r
E
− j

II
r
I

+ I
I
)︸ ︷︷ ︸

Balance condition: O(1/
√
K)

)
.

(2.1)

Here τ
I

is the time constant of the inhibitory population relative to the excitatory, and Iα

is a source of external drive to population α. Finally, pαE quantifies the degree of short

term synaptic depression from the E population onto population α. To gain intuition for

the subtleties of this scaling, for the moment we ignore depression and set pαE = 1. The

1/
√
K synaptic scaling introduces a complication, namely that the argument to fα in prin-

ciple grows with
√
K. This could produce saturated activity for large K, disallowing any

reasonable cortical dynamics. However, the network robustly corrects for this through a

balance condition whereby the combined external and recurrent excitation is roughly can-
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Figure 5: Balanced network model with synaptic depression of excitatory connections. a:

Schematic of the full model. Excitatory (red) and inhibitory (blue) populations are modeled

as Markov processes, while the dynamical synapse variables (p
EE
, p
IE

) are modeled as contin-

uous, slowly varying variables. Connection strengths (j
αβ

) are marked. Dynamical variables

are all scaled to live in [0, 1]. b: Data from Oswald & Reyes [89] and Levy & Reyes[98]

showing amount of depression as a function of pulse frequency. Depression is measured as

the ratio of the response heights from the fifth spike to the first spike (see Inset). Synapses

between pyramidal cells are shown in orange, synapses from pyramidal to inhibitory shown

in purple. c: Release probability (p
R

) as a function of excitatory firing rate (r
E

) used in the

model. Threshold parameters θαβ are marked. The only difference between the curves is the

threshold for onset of depression. To agree with the data in panel b, the threshold for the

EE synapse is chosen as larger than the threshold for the IE synapse (θ
EE

> θ
IE

).
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celed by recurrent inhibition so that the total input remains O(1) for all network sizes. For

robust balance conditions, one requires large external drive, i.e. Iα ∼ O(1). Such a bal-

ance condition produces asynchronous network dynamics [54], and the dual patch whole cell

experiments in [42] (Figure 3) were originally performed as a validation of this theory.

While balanced network models have been successful at explaining several aspects of

cortical spiking dynamics, for K → ∞ the firing rates are nonetheless determined by the

pair of linear equations defined by the balanced conditions. In particular, this means that the

firing rates (r
E
, r
I
) are linearly related to the external inputs (I

E
, I
I
), and the nonlinearities of

the transfer functions fα do not contribute to population activity. Additionally, the timescale

of cortical dynamics becomes very fast, so that for moderate τ
I

there cannot be rhythmic

dynamics [55]. These limitations are serious obstacles when trying to capture the clearly

nonlinear population event behavior (Figure 3), as well as the slow rhythmic dynamics in a

subset of the population events (Figure 4).

Mongillo et al.[57] have extended the theory of balanced networks to include short term

synaptic plasticity. Following their example, we use previous mean field reductions [64, 67]

to model population-wide synaptic depression, pαE, from the E population onto population

α:

dpαE
dt

=
1− pαE
τ rα

− aα(r
E

)pαE
τ dα

, (2.2)

aα(r
E

) =
mα

1 + e−βα(r
E
−θαE)

. (2.3)

The first term on the right hand side of Eq. (2.2) models the recovery from synaptic de-

pression while the second term models its recruitment; these occur on timescales τ rα and τ dα,

respectively. While recovery dynamics are simple, recruitment depends nonlinearly on the E

population activation through aα(r
E

). This recruitment is sigmoidal in r
E

(Eq. (2.3)), where

θαE is the threshold level in r
E

required for significant depression in the excitatory synapse

onto neurons in population α. When coupled with the balance conditions in Eq. (2.1), the

short term depression dynamics in Eq. (2.2) and (2.3) allow the nonlinearities in aα to shape

the firing rate solutions (r
E
, r
I
). This is because synaptic depression now reduces the baseline

connectivity jαE by an r
E

-dependent solution of Eq. (2.2) and (2.3). Thus the network firing
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rates (r
E
, r
I
) must be solved in conjunction with the equilibrium solution of pαE, involving

strong nonlinearities. For instance, in the original Mongillo et al. study [57], short term fa-

cilitation of excitatory-excitatory connectivity produced a bistable network with coexisting

low and high activity regimes.

Short term depression involves several complicated chemical and biophysical processes

[59], all lending to significant heterogeneity of plasticity recruitment and recovery across

synapse types [99]. In layer II-III of auditory cortex the short term depression of both the

excitatory to inhibitory and excitatory to excitatory synapses has been measured through

simultaneous in vitro patch clamp recording [89, 90] (the results are summarized in Fig-

ure 5b). Here, it is clear that θ
IE

< θ
EE

, meaning that the recruitment of depression of

excitation onto the inhibitory population occurs at lower r
E

than depression onto the exci-

tatory population (compare purple vs. orange curves in Figure 5b). Similar recordings from

layer IV of auditory cortex [98] are consistent with the overall trend we observe (Figure 5b,

triangles). We adopt this depression heterogeneity in our model (Figure 5c), and we will

show this to be a critical requirement to capture the full range of the population behavior

recorded in the auditory cortical slice. We remark that for simplicity our model ignores any

short term plasticity of the inhibitory connectivity, despite these connections being shown

to depress in auditory cortex [90, 100].

In the large network size limit (K → ∞) the dynamics of Eq. (2.1) to (2.3) lack any

stochastic aspect to their population activity. This means that solutions cannot capture the

random activation time of population bursts that is a clear feature of the in vitro data. The

collective behavior of finitely many neurons often introduces new stochastic effects at the

population level that are absent in theories that take K → ∞ [29, 101–105]. To explore

our model with finite K we study the associated birth-death Markov process whose large

K limit is the circuit model in Eq. (2.1) [103]. Briefly, the number of active neurons nα

undergoes stochastic transitions to either nα + 1 (birth) or nα − 1 (death) (Figure 6a; see

Methods). The stochastic birth and death of population activity imparts a random character

to rα(t) that is shaped by the recurrent excitatory/inhibitory circuit dynamics along with the

slower synaptic depression. Simulations of the finite size cortical network show fluctuating

population activity about a low state, punctuated by sporadic population events (Figure 6b,c,
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Figure 6: Birth-death Markov model of network activity. a: Each neuron is modeled as a

binary neuron that can be in an “active” or “inactive” state, and we measure the number of

neurons n in the “active” state. The transition rates between states, ω+ and ω−, are shown.

b-c: Simulations for two different parameter sets that reproduce the rare, random nature of

the events seen in data. In both panels, K = 400. b: These events display an oscillatory

nature. A simulation of 10s is show across the top, while a 1s interval around the first event

is shown on the bottom left. Power spectra for the excitatory and inhibitory populations

during the event is shown on the bottom right. This simulation shows an oscillation at ∼ 8

Hz. Power spectra are normalized to have maximum value 1. Here θ
EE

= 0.2, θ
IE

= 0.5. c:

Same as B, except these events display no oscillatory nature. The power spectrum shows no

clear peak, but does have a large degree of low frequency power. Here θ
EE

= 0.8, θ
IE

= 0.5.
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Figure 7: Noise due to finite network size induces population events. a: Sample simulation

trajectories of the excitatory population activity for three different system sizes K. Vertical

scale bars indicate 0.1 a.u., and horizontal scale bars indicate 10s. Each trace shows a total

of 50s of simulation. As K increases, events become exponentially less likely. τ
IEI

is the

time between two successive events. b: τ
IEI

is exponentially distributed, consistent with a

noise-induced escape model. µ̂ is the exponential parameter fit from a maximum likelihood

estimate (MLE) of simulated data; as expected µ̂ ∼ exp(K). Highlighted are distributions

for K = 325 (green) and K = 400 (purple). Connection strengths between populations were

scaled for these simulations to fix the underlying vector field to isolate the system-size/noise

relationship. Histograms are scaled to have total area 1. c: Distribution of inter-event

times from recorded in vitro data (Figure 3 and 4). The distribution appears exponentially

distributed, despite being aggregated from all slices. Dashed line is the MLE fit to the data,

giving approximately the same µ̂ as the simulation for K = 325 (Data: µ̂ = 18.03, Sim:

µ̂ = 18.05).
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top). Depending on the depression thresholds θ
EE

and θ
IE

the population events show either

rhythmic (Figure 6b, bottom) or arrhythmic (Figure 6c, bottom) dynamics.

The statistics of population events from our model behaves as expected for rare processes.

In the K →∞ limit population-wide fluctuations vanish and consequently population events

will never occur. As K decreases, fluctuations increase and thus events become more and

more likely, until finally for low enough K the finite size network has behavior significantly

different from the large K limit (Figure 7a). A hallmark of rare noise induced transitions is an

exponentially distributed inter-event interval[101]. Over a large range of K our model agrees

(Figure 7b), and the exponential parameter grows exponentially with system size (Figure 7b

inset), again in agreement with rare event theory due to finite system size [29, 101–105].

Satisfyingly, exponentially distributed inter-event intervals are found in our in vitro data,

aggregated over all events and all slices (Figure 7c). Moreover, qualitative agreement in

inter-event interval distribution is found between the model and the data for reasonably

sized networks (K on the order of a few hundred). This is in contrast to the traditional 1/K

scaling, where rare events are often observed only for exceptionally small networks, with

K on the order of tens. In total, the circuit model in Eq. (2.1) to (2.3) recapitulates the

main features of the asynchronous and population event epochs of the spontaneously active

cortical slice experiments.

The simplicity of the model makes it amenable to analysis that reveals how the recurrent

excitation and inhibition combine with the two synaptic depression processes to produce rich

population event dynamics. In the following sections we will use the fact that the E → I

synapses depress at lower pre-synaptic rates than E → E synapses (θ
IE
< θ

EE
; Figure 5b,c) to

probe the separate mechanisms underlying population event initiation and event rhythmicity.

2.1.4 Population event initiation

Population event initiation occurs at r
E

values that are far below θ
EE

, and thus a reasonable

approximation for the low activity regime is to take the E → E synapses as undepressed

(p
EE

= 1) (Figure 8a). This simplification reduces the network dynamics in Eq. (2.1) to (2.3)

to three dynamical variables: r
E

(t), r
I
(t), and p

IE
(t). In this reduced system we consider
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how population activity depends on the threshold for E → I synaptic depression, θ
IE

. For

sufficiently low θ
IE

, so that the E → I synapse is depressed even at low r
E

values, the

excitatory population cannot recruit sufficient recurrent inhibition to stabilize a low activity

state. Rather, only a stable high activity state exists (Figure 8b, solid line at r
E
≈ 1). In this

regime an external (negative) input can transiently lower r
E

(t), allowing p
IE

(t) to recover and

r
I
(t) to increase despite the reduction in r

E
(Figure 8c, left, 3s < t < 5s). Nevertheless, after

stimulus removal the network quickly returns to the high activity state with p
IE

(t) returning

to very low values (Figure 8c, left, t > 5s). Thus, cortical models with small θ
IE

that do

not allow a stable low activity state cannot hope to capture the in vitro population activity

(Figure 3a).

As θ
IE

increases a stable low activity state is created (Figure 8b, solid line at 0 < r
E
<< 1)

along with an unstable threshold state (a saddle point) that separates the new low activity

regime from the high activity regime (Figure 8b, dashed line). Here the dynamics are

bistable; when r
E

(t) is in the low activity state a sufficiently strong input can transition the

network into the high active state (Figure 8c, middle, 3s < t < 5s). The transition recruits

sufficient p
IE

(t) depression so that the network remains in the high state after the stimulus

is removed (Figure 8c, middle, t > 5s). This transition from the low to high activity state of

r
E

is the population event initiation in the full model. Finally, for very large θ
IE

the network

remains bistable, but the saddle point is distant from the low activity state (Figure 8b). Here,

moderate perturbations no longer promote transitions from low to high population activity

(Figure 8c, right). For finite size networks internally generated fluctuations can initiate a

population event via a stochastic transition across the stable manifold of the saddle point;

these transitions are far more likely for moderate θ
IE

where the stable low state and saddle

points are near one another.

In sum, the reduced model shows how an activity dependent weakening of inhibitory

recruitment allows a complex dynamic, wherein a low activity inhibitory stabilized state

can have a threshold beyond which inhibition can no longer prevent runaway activity from

positive feedback. However, our reduced model (with p
EE

= 1) lacks the requisite mechanisms

to produce excursions of stereotyped width that are clear in the population events of the full

model (Figure 6b,c).
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Figure 8: Reduced network model with fixed EE synaptic strength in the undepressed state

(p
EE

= 1). a: Schematic of the reduced system. b: Bifurcation diagram of the excitatory

rate (r
E

) as the depression threshold θ
IE

is varied. Red lines denote the stable fixed points

and the dashed black line denotes an unstable (saddle) fixed point. The lower stable state

and saddle point coalesce in a saddle-node bifurcation is the balanced state (intersection of

lower red and dashed lines). c: Example simulations for three values of θ
IE

, with K = 400.

Top row: traces of the activity, r
E

in red, r
I

in blue. Vertical scale bars denote 0.3, arbitrary

units. Bottom row: plasticity variable. We applied an external stimulation to the excitatory

population from t = 3s to t = 5s (green bar marks external stimulation). The depression

threshold θ
IE

is indicated by the black arrows linking to panel b.
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2.1.5 Population event rhythmicity

To investigate the mechanisms underlying within population event dynamics we study a

reduced model with the E → I synapses assumed to be depressed (p
IE
≈ 0.11, Figure 9a), as

is the case after event initiation (Figure 8). This reduction restricts the network dynamics

in Eq. (2.1) to (2.3) to three dynamical variables: r
E

(t), r
I
(t), and p

EE
(t). In particular, a

low p
IE

value removes the low activity state, and the reduced model is then only appropriate

for modeling network dynamics within a population event epoch.

In this reduced model a large threshold for synaptic depression in the E → E synapse,

θ
EE

, produces a stable activity state at high r
E

(Figure 9b, solid red curve and top inset).

However, as θ
EE

is reduced the recurrent excitation is depressed and the high state loses

stability via a super-critical Andronov-Hopf bifurcation. Consequently, this births a stable

limit cycle solution of growing amplitude, creating oscillatory dynamics within the network

(Figure 9b, green curves and bottom inset). The oscillation reflects a competitive interplay

between p
EE

(t) and r
E

(t), where the oscillatory timescale is set primarily by the depression

recruitment and recovery time constants. Further, over a wide range of θ
EE

the frequency

is between 4 and 8 Hz (Figure 9b, bottom), matching the oscillation frequency in the full

model (Figure 6b, bottom) and a subset of the in vitro data (Figure 4c). Overlaying the

limit cycle on the plasticity nullcline in the (p
EE

, r
E

) plane shows how the oscillation samples

the full nonlinearity of p
EE

recruitment (Figure 9c, cf. Figure 3c), highlighting the nontrivial

interaction between p
EE

and r
E

.

The combination of the two reduced models (Figure 8 and Figure 9) suggests that the

two depression pathways, p
IE

and p
EE

, play distinct roles in population event initiation and

within event dynamics, respectively. Armed with these insights we next aim to study how

population event dynamics depends upon the pair of depression thresholds (θ
EE
, θ
IE

) in the

full model.

2.1.6 Suite of population event dynamics

To study the range of possible dynamics in the full model we begin by constructing a two

parameter (θ
EE
, θ
IE

) bifurcation diagram of Eq. (2.1) to (2.3) (center panel of Figure 10).

There are two main organizing structures in the diagram. First, a curve of saddle-node bifur-
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Figure 9: Reduced network model with fixed EI synaptic strength in the depressed state

(p
IE

= 0.11). a: Schematic of the reduced system. b: Top: Bifurcation diagram of the

excitatory rate (r
E

) as the depression threshold θ
EE

is varied. Red lines denote stable fixed

points, the dashed black line denotes an unstable fixed point, and the green lines show the

peak and trough of a network oscillation (limit cyle). Bottom: The period of the oscillation as

a function of θ
EE

. Right: Sample simulations for two different values of θ
EE

(top: θ
EE

= 0.9,

bottom: θ
EE

= 0.5), with K = 400. c: Limit cycle of the underlying dynamical system

overlaid on the nullcline for p
EE

.
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cations (purple curve in Figure 10, cf. Figure 8b) separates regimes with either monostable

or bistable dynamics. Bistable dynamics exist for sufficiently large θ
EE

and moderate θ
IE

(purple region in Figure 10), while either a low rate solution (yellow region in Figure 10) or

saturated state (gray region in Figure 10) are possible outside of this region. Second, curves

of Andronov-Hopf bifurcations (green curves in Figure 10, cf. Figure 9b) demarcate a region

with oscillatory dynamics (green region in Figure 10). The combination of saddle-node and

Andronov-Hopf bifurcations provides key intuition into how the network responds to finite

K induced internally generated fluctuations.

For sufficiently large θ
IE

(so that the system is above both the saddle-node or Andronov-

Hopf bifurcations), there is only a stable low state (yellow region in Figure 10). For low

θ
EE

the recurrent excitation is very depressed and internally generated fluctuations simply

perturb the activity about the low state (upper left inset in Figure 10). Moderate θ
EE

makes

it possible for fluctuations to transiently remove depression, resulting in a large population

event that is akin to the excitable dynamics explored in past studies [66, 83–85, 96] (top inset

in Figure 10). However, because the network has not passed through the Andronov-Hopf

bifurcation it lacks any oscillatory dynamics and consequently these population events are

strictly arrhythmic.

For very low θ
IE

and moderate θ
EE

the system has passed through the Andronov-Hopf

bifurcation and a stable limit cycle solution produces periodic dynamics (bottom left inset

in Figure 10). However, for larger θ
IE

the system passes through the saddle-node bifurcation

and more subtle population dynamics emerge (dark green region in Figure 10). In this

region there is no longer a stable limit cycle to organize periodic behavior; rather, there is

only a stable low rate state. Nonetheless, finite size fluctuations induce transient population

bursts with oscillatory dynamics (bottom inset in Figure 10). This region of parameter space

contains the (θ
EE
, θ
IE

) pairings for the initial simulations of the full model (Figure 6).

Focusing on (θ
EE
, θ
IE

) pairings within this region we find that it is possible to have

oscillatory and non-oscillatory population event dynamics. For very low θ
IE

(point I in

Figure 11a) there is a globally stable limit cycle solution and an unstable fixed point (phase

portrait I in Figure 11b). Simulations of the full finite size stochastic model show a robust

and sustained low frequency oscillation (time series I in Figure 11b). As θ
IE

is increased the
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system passes through a period doubling bifurcation (red curve in Figure 11a). This shifts the

stable limit cycle to have period two dynamics (II in Figure 11b); we remark that the limit

cycle remains globally stable. As θ
IE

is increased further another period doubling bifurcation

(orange curve in Figure 11a) gives rise to stable period four dynamics (not shown). As θ
IE

continues to increase, the system undergoes a period doubling cascade,

suggesting complicated chaotic transient dynamics. For even larger θ
IE

a stable/unstable

pair of fixed points are born out of the saddle-node bifurcation (purple curve in Figure 11a),

and the stable limit cycle is lost. Here the full model dynamics is excitable, with a slight

perturbation from the globally stable fixed point resulting in a large scale excursion before

returning to the fixed point (phase portrait III in Figure 11b). However, the high period

structure of the stable cycle that existed below the saddle-node bifurcation still shapes

the dynamical flow, so that the excursion has a rhythmic character. This is apparent in

the fluctuation-induced population event dynamic (time series III in Figure 11b). Finally,

for even larger θ
IE

the excitable dynamics persists, but now the excursion is simple and

the population event lacks rhythmic dynamics (IV in Figure 11b). This is because we

are now farther in (θ
EE
, θ
IE

) parameter space from the region where the stable high period

limit cycle shaped population dynamics. These last two parameter sets (III and IV in

Figure 11) capture that rhythmic and arrhythmic population event dynamics, respectively;

indeed spectral analysis of the time series from the stochastic model (Figure 11c) reflect that

from the in vitro data (Figure 4b).

2.2 DISCUSSION

In this work we studied the population dynamics of finite size balanced networks with short

term depression of excitatory projections. Despite the model’s simplicity it provided a parsi-

monious explanation of recordings from spontaneously active in vitro slices of auditory cortex

[42]. In particular, population events were sporadic and random in time, and depending on

short term plasticity thresholds the event could have rhythmic or arrhythmic dynamics, all

in agreement with analysis of the cortical recordings.
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Figure 10: Suite of network dynamics possible in the full model. Center: Two parameter

bifurcation diagram as the depression thresholds θ
EE
, θ
IE

are varied. The purple line marks

the location of the saddle node bifurcation (cf. Figure 8) marking the boundary of bistability.

To the right of this line (purple shaded regions) the system is bistable. The green line marks

the location of the Andronov-Hopf bifurcation (cf. Figure 9) marking the boundary for

oscillatory behavior. To the left of the green line but the right of the purple line (green shaded

regions), the system can exhibit slow oscillations. Above the unit diagonal, the system is

excitable but non-oscillatory (yellow shaded gradient). For low enough values of θ
EE

the

vector field loses its excitatory nature and events do not happen. Outer ring: Example

simulations showing the suite of possible behaviors. We note that the dark green region

(labelled Osc. event) can exhibit both oscillatory and non-oscillatory dynamics. Horizontal

bars denote 1s, and vertical bars denote 0.2 (arbitrary units). Simulations are for K =

400, and, starting with the bistable region and moving clockwise, the threshold values are

(θ
EE
, θ
IE

) = {(0.8, 0.5); (0.8, 0.05); (0.5, 0.2); (0.3, 0.05); (0.1, 0.6); (0.8, 0.9)}.
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Figure 11: Detailed bifurcation structure. a: Magnification of bifurcation diagram shown

in Figure 10, with period doubling bifurcations added (red/orange curves). Four different

parameter choices are marked (θ
EE

= 0.5, θ
IE
∈ {0.05, 0.12, 0.2, 0.3}). b Left: Sample time

courses of noisy system for the four parameter choices. Right: Trajectories from deter-

ministic system, displayed in (r
E
, r
I
, p
EE

). Color denotes depth (location in r
I
). Open circles

denote unstable fixed points, filled circles denote stable fixed points. For I we show projec-

tions onto each of the coordinate planes (gray curves). For choices I and II, we observe a

stable limit cycle. For choices III and IV, after the saddle node bifurcation, the only attrac-

tor is the stable fixed point, but the echo from the limit cycle allows for complex transients

in the excitable system.
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2.2.1 Synaptic depression and population events in the auditory cortex

Population recordings from the auditory cortex of both anesthetized and unanesthetized

animals show neuronal activity that transitions between desychronized and synchronized

states [54, 106–108]. In the synchronized state spontaneous population activity produces

periods of brief coordinated spiking activity that is akin to population event behavior [47].

Further, in vivo whole cell recording shows sporadic barrages of excitation that are expected

from population event dynamics [46], and are similar to those of the in vitro data presented

in this study (Figure 3). Unsurprisingly, several past modeling studies have thus proposed

core mechanisms for population event activity in the auditory cortex.

While our study focuses upon internally generated population event dynamics, the audi-

tory cortex nonetheless robustly produces population events as an onset response to sustained

pure tone inputs [109, 110]. It is likely that the physiological mechanisms underlying evoked

and spontaneous population events are very related. In tone evoked responses, synaptic

depression of excitatory-to-excitatory connectivity has long been thought to play a central

role, in part from the well known forward masking effect in auditory cortex [111]. Forward

masking is the phenomenon by which cortical spiking responses to successive tone inputs

show a strong suppression for later tones, and this suppression lasts for hundreds of millisec-

onds. In vivo whole cell recordings show that the timescale of recurrent inhibition is too fast

to explain the suppression phenomenon [109]; however the recovery timescale for excitatory

synaptic depression is much longer [89, 112] and matches the suppression recovery time.

Thus motivated, previous recurrent circuit models have captured tone evoked population

event dynamics strictly through short term synaptic depression of excitatory-to-excitatory

connections [84, 85]. In spontaneous conditions these models produce sporadic population

events with a single excursion in activity, akin to much of our in vitro data set (Figure 4c)

and our network model with θ
EE

< θ
IE

(Figure 10, top inset).

Our in vitro recordings also clearly show a subset of population events with rhythmic

dynamics. This behavior was not discussed in past experimental studies (including [42]),

and to our knowledge represents a novel finding. Our data is consistent with in vivo record-

ings from auditory cortex where population responses show an augmentation of population
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responses to successive tones (as opposed to a forward masking) if tone pulsing is restricted

to low frequencies [113]. This suggests a network susceptibility for low frequency inputs,

of which the spontaneous population event rhythmic dynamic may simply be a reflection.

Model networks with strictly excitatory neurons having synaptic depression can show a low

frequency (∼ 10 Hz) population oscillation [95, 96]. However, the oscillation in these models

is sustained, rather than a transition between a low activity regime and a brief, rhythmic

population event. In our model the oscillatory dynamic is mechanistically similar to those

of these past studies (Figure 9), however strong recurrent inhibition is needed to create an

additional stable low activity state (Figure 8). This complicates how a population event

is initiated, since the stable state is not depression stabilized, as was the case in the past

models [84, 85, 96].

We use slow synaptic depression of E → I synapses to create a saddle point that sep-

arates stable low activity from high activity dynamics, and internally generated activity

fluctuations prompt stochastic crossings of the stable manifold of the saddle point. For this

to be the mechanism for population event initiation our model has a strong requirement: the

depression of E → I synapses must be recruited at lower excitatory rates than the depression

of E → E synapses (θ
EE

> θ
IE

in Figure 10). Fortunately, there is strong evidence for this

from paired recordings in layers II/III and IV of auditory cortex (Figure 5a and [89, 90]).

There is a precedence of short term plasticity being determined by the post-synaptic target

[59, 114], so that a difference between θ
EE

and θ
IE

is not curious. However, the θ
EE

measured

in auditory cortex [89] is higher than that generally reported in the neocortex [64, 115],

making it easier for θ
EE

> θ
IE

to be satisfied. This difference in θ
EE

across datasets may be

region dependent, though a likely cause is a shift in short term plasticity over the critical

development period [89, 90], making θ
EE

and θ
IE

age dependent. Indeed, the recordings we

based our measurements of θ
EE

and θ
IE

upon were recorded in animals that were postnatal

day 19-29 [89, 90], compared to the postnatal day 13-15 used in other studies [64]. In fact,

when recordings are restricted to the auditory cortices of younger animals the θ
EE

and θ
IE

values are lower [89, 90], consistent with other datasets. In sum, we view the measurement

of θ
EE

> θ
IE

in auditory cortex as a strong postdiction of our model, since the fact that

θ
EE

> θ
IE

was unremarked upon in past studies [89, 90].
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2.2.2 Balanced networks and population events

The theory of balanced networks is successful at explaining several core features of cortical

activity, namely irregular spiking activity [73], large firing rate heterogeneity [55], and asyn-

chronous population activity [54]. More recently, balanced networks have also been shown to

produce stimulus tuned responses in randomly wired networks that lack columnar structure

[116] and that they can be critical for selective population codes [117, 118]. Despite these

advances, a linear stimulus-response relationship for balanced networks is enforced by the

balance condition (see Eq. (2.1)), and this continues to be a large barrier towards this model

framework explaining nonlinear properties of cortical response [119].

Mongillo et al.[57] used short term plasticity to impart new nonlinearities to population

solutions of balanced networks. In their work they considered facilitation of the E → E

synapse, which produced a network with stable low and high activity states. This is ideal

for neuronal dynamics where integration dynamics are required, such as in models of work-

ing memory [120]. By contrast, we use depression of the E → I pathway to give bistable

dynamics. In and of itself this is not particularly novel since the removal of recurrent inhi-

bition through a depression-mediated weakening of E → I pathway is similar, in spirit, to

a strengthening of the E → E pathway via facilitation. However, when E → E depression

is also considered the high state is destabilized and result in an excitable network capable

of population event dynamics. This is a population dynamic not previously explored in

networks with large recurrent inhibition, instead restricted to networks where inhibition is

often ignored [84, 96]. Capturing population events in inhibitory stabilized networks offers an

important bridge between cortical recordings where recurrent inhibition is a critical aspect

of network function [44, 45, 86–88, 121] with recordings where brief periods of unchecked

excitation are clearly apparent [81, 82]. Finally, linking population event initiation to E → I

depression allowed E → E depression to drive rhythmic dynamics within the spike. Rhyth-

mic population events represent a new population dynamic, not previously discussed in past

models, yet it captures a salient feature of our in vitro dataset. In total, our work then

broadens the repertoire of nonlinear population dynamics that balanced networks can cap-

ture.
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2.3 METHODS

2.3.1 Markov model of network

For the qualitative characteristics we are interested in studying, it is sufficient to study

the aggregate population level behavior of a network rather than the specific microscale

instantiation. We model a two population (excitatory, E, or inhibitory, I) network of binary

neurons that can be in either an active (1) or inactive (0) state. We let nα(t) be the number

of active neurons in population α at time t, and Nα be the total number of neurons in

population α. The firing rate (or mean activity) of each population is calculated as the

number of neurons in the active state normalized by the total number of neurons in that

population,

rα =
nα
Nα

α ∈ {E, I}. (2.4)

Finally, we introduce the probability P (n,m, t) = Pr{n
E

(t) = n, n
I
(t) = m}. We ignore

simultaneous transitions and let the probability evolve according to the birth-death process

dP (n,m, t)

dt
= ωE+(n− 1,m)P (n− 1,m, t) + ωE−(n+ 1,m)P (n+ 1,m, t)

+ ωI+(n,m− 1)P (n,m− 1, t) + ωI−(n,m+ 1)P (n,m+ 1, t)

−
[
ωE−(n,m) + ωE+(n,m) + ωI−(n,m) + ωI+(n,m)

]
P (n,m, t) (2.5)

where ωα+ is the transition rate for nα increasing and ωα− is the transition rate for nα de-

creasing. The boundary conditions are chosen as P (−1,m, t) = P (n,−1, t) = 0, with forced

upper bound P (NE + 1,m, t) = P (n,NI + 1, t) = 0. The lower boundary condition is

straightforward, as it simply indicates that if 0 neurons are in the up state, there are none

left to decay downward. The upper boundary condition requires a bit more thought. In the

derivation of the mean field equations [103], we formally require Nα to become unbounded.

As such, it is technically possible to have a population activity of greater than 1, though

this is a non-physical interpretation of the system. By ensuring that the fixed points of the

system never get too close to the boundaries, we effectively preclude this possibility, though

we include the upper boundary condition as a safeguard. The excitatory transition rates are
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taken as

ωE+(n,m) = NEf

(√
NE

(
j
EE
p
EE

n

NE

− j
EI

m

NI

+ I
E

))
, ωE−(n,m) = n (2.6)

and the inhibitory transition rates are taken as

ωI+(n,m) =
NI

τ
I

f

(√
NI

(
j
IE
p
IE

n

NE

− j
II

m

NI

+ I
I

))
, ωI−(n,m) =

m

τ
I

(2.7)

where jαβ is the strength of connection from population β to population α, Iα is directly

applied current to population α, p
EE

and p
IE

are the plasticity variables, τ
I

is the inhibitory

timescale, and f is a sigmoidal transfer function. Following the standard procedure [122, 123],

this leads to a mean field of the form

ṙ
E

= −r
E

+ f
(√

N
E

(j
EE
p
EE
r
E
− j

EI
r
I

+ I
E

)
)

τ
I
ṙ
I

= −r
I

+ f
(√

N
I

(j
IE
p
IE
r
E
− j

II
r
I

+ I
I
)
) (2.8)

For concreteness, we took the transfer function f to be

f(x) =
1

1 + e−x
. (2.9)

We note that we have made the assumption that rα = nα/Nα as negligibly small (in agree-

ment with the technical requirement that Nα be unbounded), which results in a mean field

of the form in Eq. (2.8). If we did not make this assumption, the transfer function term in

Eq. (2.8) would have a multiplicative factor of 1− rα in front of it. We took the excitatory

timescale to be unity, and other parameters as τ
I

= 1, j
EE

= 2, j
EI

= 1, j
IE

= 5, j
II

= 2,

I
E

= −0.12, I
I

= −0.2 (see Table 2). To assign a time value to the simulations, we interpret

1 time unit of simulation to be equivalent to 10ms of real time.

Tracking the total number of neurons in the active state for this model is known to

reproduce the asynchronous statistics of an Erdős-Renyi network of binary neurons. For

the qualitative characteristics we are interested in studying, it is sufficient to study the

aggregate quantities nα and rα. We also note that for a dense network, the average number

of connections K scales with the system size N such that K/N → c, c ∈ (0, 1) a constant.

A sparse network has c = 0, and a fully connected network has c = 1. As such, the “system

size” parameter N is easily related to the average number of connections K.
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Parameter Value Description

τ
E

1 characteristic timescale, excitation

τ
I

1 characteristic timescale, inhibition

j
EE

2 connection strength, E → E

j
EI

1 connection strength, I → E

j
IE

5 connection strength, E → I

j
II

2 connection strength, I → I

I
E

−0.12 static input drive to E population

I
I

−0.2 static input drive to I population

K 400 average number of input connections

τr 40 characteristic timescale, recovery from depression

τd 10 characteristic timescale, recruitment of depression

θ
EE

[0, 1] depression threshold, E → E synapse

θ
IE

[0, 1] depression threshold, E → I synapse

m
EE
,m

IE
2 controls lowest possible value of p

EE
, p
IE

β
EE
, β

IE
50 controls steepness of plasticity curve (cf. Figure 5)

Table 2: Chapter 2 parameters
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2.3.2 Model of a synapse

We consider a phenomenological model of a synapse similar to that seen in [64]. Since we are

modeling only the mean activity of the network, only the mean synaptic efficacy will affect

the governing equations [67]. The dynamics of a synaptic efficacy variable, p, are governed

by

dp

dt
=

1− p
τr
− a(r

E
)p

τd
(2.10)

a(r) =
m

1 + e−β(r−θ) (2.11)

The functional form of a(r) was chosen to reproduce the qualitative feature of depression.

If we denote the fixed point of Eq. (2.10) as p̂, then when r ∼ 0, p̂ ∼ 1 and as r → 1, p̂

approaches a low value (∼ 0.1 in practice). The synaptic parameters were chosen as identical

for both kinds of synapse, with the exception that the thresholds θ
EE

, θ
IE

were different, and

allowed to vary in the case of the bifurcation diagrams. We took τr = 40,τd = 10,m = 2,

β = 50. The threshold parameters θ
EE
, θ
IE

were bounded between 0 and 1. The ordering of

synaptic depression shown in Figure 5 is equivalent to θ
EE

> θ
IE

.

2.3.3 Simulation

The simulations of the noisy system were done by simulating the Markov process governed

by Eq. (2.5) to (2.7), where the plasticity variables were treated as slow variables that

evolved deterministically between birth/death events (see [124] for some remarks on dealing

with hybrid stochastic systems). This is equivalent to simulating a piecewise deterministic

Markov process with constant propensities between birth/death events. Since the typical

timescale of the plasticity variables is an order of magnitude larger than the typical timescale

of the rate variables, this seems a reasonable approximation. Alternatively, a back of the

envelope calculation shows that for ∆t ∼ O(1/N), a typical change in plasticity is

∆p ∼ 1− exp(−α∆t) ∼ α∆t ∼ τd + τr
τdτr

· 1

N
∼ O

(
1

10N

)
∼ O

(
1

4000

)
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for our typical parameter values, suggesting that the plasticity variables, and thus propensi-

ties, are effectively constant between birth/death events.

For a fixed value of r
E

, we can solve Eq. (2.10) for a closed form solution of p(r
E

). Then

our algorithm for the simulation is as follows:

1. Choose values for n
E
, n

I
as initial conditions.

2. Initialize r
E
, r
I
, p

EE
, and p

IE
, where rα = nα/Nα and pαβ is chosen as the fixed point of

Eq. (2.10) evaluated at r
E

.

3. Calculate the transition probabilities TE+/−, T I+/−, and construct the Gillespie probability

intervals.

4. Find the time of the next (“current”) event.

5. Calculate the current values of p
EE
, p
IE

based on the current values of r
E
, r
I

and ∆t, the

time between the current event and the previous event.

6. Decide which type of event happened: (in/de)crementing n
E/I

.

7. Update the rate variables r
E
, r
I
.

8. Return to step 3 and repeat until the simulation is complete.

2.3.4 Bifurcation diagrams

The bifurcation diagrams were computed using XPPAUT [125], simulating the full determin-

istic system given by Eq. (2.8) to (2.11). A full discussion of computing bifurcations using

numerical continuation is a subtle and complicated one beyond the scope of this paper,

though XPPAUT is a standard tool for this purpose in applied dynamical systems. Briefly,

we highlight the bifurcations of interest to this work. A saddle node bifurcation is when

a pair of fixed points, one stable and one unstable, annihilate each other (cf Figure 8, 10

and 11). An Andronov-Hopf bifurcation is the emergence of a limit cycle when a fixed point

changes stability via a pair of purely imaginary eigenvalues. A period-doubling bifurcation is

when the period a limit cycle doubles, and introduces a characteristic winding of the limit

cycle over itself. After such a bifurcation, every other peak returns to the same place is phase

space (rather than every peak). In particular, a cascade of period doubling bifurcations over

a short parameter region is often associated with the onset of deterministic chaos.
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2.3.5 Event detection in data

Please see [42] for a more detailed description of the collection methods. Briefly, we investi-

gate spontaneously active in vitro slices from mouse auditory cortex through paired whole

cell patch-clamp recordings. Figure 3f was reproduced from [42] by repeating the analysis

performed there.

Since recorded membrane potentials and synaptic currents are nonstationary and fluc-

tuate over a wide range of timescales, recorded data was detrended prior to event detection.

The detrended data point at time t, x̂(t), was calculated as

x̂(t) = x(t)− ({x(t)}t−w/2,t+w/2 − 〈x〉L) (2.12)

where x(t) is the raw data point at time t, 〈x〉
L

is the average of the entire recording of

length L, {x(t)}t−w/2,t+w/2 is the median of a window of width w = 3s centered at each data

point.

To isolate the events, we performed two passes through the data. In the first pass, we

isolated potential excursions by looking for periods where the local activity differed from the

overall detrended recording average by 5 mV in current-clamp recordings or 0.15 nA in the

voltage-clamp recordings. These periods were padded by 200 ms before and 500 ms after the

threshold crossing. In the second pass, the specific event times were then marked by hand

on an event-by-event basis, where the beginning of the event was taken to be 200 ms before

the initial upstroke of the excursion (easily identified by eye), and the end of the event was

marked by the last point before the data returned to having a roughly flat slope (> 1s “flat”

region required).

Visual inspection of the events show that a nontrivial fraction (approx. 1/3) display

oscillatory behavior during the excursion. To compute the power spectra we first denoised

the data by applying a Savitsky-Golay filter with a first-order polynomial and a window size

of 100 data points (a region approximately 10 ms in width) to remove power over 100Hz.

For each event, MATLAB’s detrend function was used to remove any linear trend and center

the data, to remove excess low power noise. Finally, the power spectrum of each event was

computed using MATLAB’s pwelch algorithm, which was then normalized to have unit area.
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The power spectra reported for each slice are the average over all events, then normalized to

have maximum value 1, for ease of visualization in the heatmaps. The power spectra for the

nonevent periods were computed identically, using each nonevent period of length greater

than 100ms.

For Figure 4f, there is no natural criteria for choosing the labels “Cell 1” and “Cell

2”, since some recordings are for pairs of excitatory currents, some for pairs of inhibitory

currents, some recordings have 3 cells simultaneously recorded, etc. As a result, there are

a plurality of possible correlation coefficients. To report a single number, we computed the

correlation coefficient for 10, 000 possible labelings, where the labels were assigned to each

cell randomly. The number reported in Figure 4 (ρ = 0.67) is the mean of the distribution

of computed correlation coefficients. A representative scatter plot was chosen for panel f.
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3.0 ESCAPE PROBLEMS

3.1 INTRODUCTION

In chapter 2 we built a neuronal model that reproduces the complex dynamical behavior of

observed data recorded from auditory cortex, while simultaneously retaining the dynamic

tension between the excitatory and inhibitory populations. One of the key features of that

model and the associated data set is the existence of spontaneous, aperiodic transitions

between two qualitative behaviors. This characteristic is not unique to our dataset, but

rather, it is pervasive in computational neuroscience. Though the most likely case is that

cortical state is a continuum of neuronal activities and not a discrete set of states[126],

there is a preponderance of data and modeling work showing that a framework of discrete

transitions can serve as a useful starting point to understand cortical activity.

Perhaps the most well known example of this phenomenon is the existence of UP-DOWN

states in cortical dynamics. UP-DOWN dynamics consist of (often irregular, aperiodic) al-

ternation between periods of tonic firing (the UP state) and periods of quiescence (DOWN

state)[78, 127, 128]. First observed in the context of slow wave sleep[78], UP-DOWN dynam-

ics have since been observed due to anesthesia[78], in vivo under thalamic lesioning[129], in

awake rodents absent explicit sensory stimulation[128, 130–135], in both rodents and mon-

keys performing a perceptual task[136, 137], and in a wide range of cortical slices [138–144].

A preponderance of work on UP-DOWN dynamics supports the hypothesis that the

intrinsic cause of transition between these two states is the competition between self ex-

citability and mechanisms of cellular fatigue (e.g. synaptic short-term depression, as we

used in chapter 2)[141, 145]. Many computational studies have modeled this dynamic, re-

sulting in regular, oscillatory transitions[146–151]. However, the rhythmicity of UP-DOWN
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transitions depends heavily on the specific experimental preparation[152–154]. In particu-

lar, stimulation of intracortical neurons can reliably induce transitions[43, 155], sometimes

by stimulating only a relatively small number of neurons[156]. This sensitivity to stimu-

lation suggests that spontaneously generated transitions are likely due to fluctuations in

neuronal activity. Modeling work on fluctuation driven transitions has been done in the

spinal cord[157, 158], in networks of excitatory neurons[159, 160], and more recently, in

coupled networks of excitatory and inhibitory neurons[161].

Spontaneous transitions in neuronal data are not limited to UP-DOWN dynamics. More

broadly, there are a host of contexts in which we observe some sort of switching phenomena

between two states in measured data. One such context is that of perceptual bistability.

Perceptual bistability is the phenomenon of ambiguous sensory stimuli giving rise to unpre-

dictable sequences of spontaneous perceptual shift. The most commonly studied examples of

this are ambiguous visual stimuli[162–164], though there are examples in both auditory[165]

and olfactory contexts[166, 167]. Famous examples of ambiguous stimuli include the visual

examples of Rubin’s vase[162] (often referred to as the “faces or vases” optical illusion),

“My Wife and My Mother-in-Law”[162, 168], and the rabbit-duck[169], while the most well

known auditory example is the Shepard tone[165].

The mechanism of perceptual bistability is largely unknown[170–173], but there is ample

evidence that perceptual transition can be modulated by intracortical state [174–180](e.g.

attention), as well as by seemingly noise-induced spontaneous transitions[181–185]. Com-

putational and modeling work on perceptual bistability typically take the form of neural

competition models[186–188], as they are a natural candidate for inducing bistability[189–

191].

Another context in which spontaneous transitions are found in neuronal data is through

neuronal avalanches. A neuronal avalanche is the widespread propagation of spontaneously

correlated neuronal activity[192]. The essential feature of a neuronal avalanche is that

the event sizes do not display a characteristic scale, and are instead described by a power

law[192, 193]. Avalanches have been observed in both slice and cortical culture[192, 194],

as well as in awake monkeys[195]. Avalanches appear to be a somewhat generic property of

cortical networks, likely arising from the anatomical development of connections[196, 197].
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They have been shown to occur when a network is in a state capable of large dynamic

range[198], and presumably offer some computational benefit, as they can efficiently store

and transmit information[199], and can exhibit incredible stability[194]. Neuronal avalanches

are fundamentally different than UP-DOWN states and perceptual bistability in that there

is no clear set of stable attractors, and it is unknown if the underlying dynamics should be

interpreted in terms of competition between two stable fixed points.

Regardless of their biological differences, each of these examples share a key feature

with the data presented in chapter 2, namely that apparently spontaneous, macroscopically

measurable qualitative changes in neuronal activity are randomly produced and regularly

measured. This phenomenon is widespread throughout computational neuroscience, and bi-

ological systems more broadly. While we feel the biological evidence supporting the study

of escape problems is well founded, there is an additional issue to which we wish to draw

attention. Because even simplistic models of biological behavior can generate spontaneous

transitions in this way, understanding and accounting for the generating mechanism is im-

portant if one wishes to limit the existence of these types of transitions. To illustrate this

point, we consider as an example a small network of pulse coupled linear-integrate-and-fire

(LIF) neurons.

An LIF neuron[3] is one of the simplest mathematical models that captures neuron like

dynamics. We let Vj(t) represent the membrane potential of the jth neuron at time t. The

dynamical equation for Vj is

dVj
dt

= −Vj(t) +
∑
i 6=j

Jjiδ(t− tsi ) (3.1)

Vj(t
−) = Vt ⇒ Vj(t) = Vr (3.2)

where Jji is the strength of the connection from neuron i to neuron j, tsi is the time of the

sth spike of neuron i, and Vt,Vr are threshold and reset potentials, respectively. If neuron i is

excitatory, Jji > 0, if neuron i is inhibitory, Jji < 0, and if neuron i does not have a synapse

connecting to neuron j, Jji = 0. In Figure 12 we show two simulations for different network

sizes. In both simulations, interplay between excitatory and inhibitory neurons leads to

roughly asynchronous behavior. In both cases, the connection strengths have been scaled so
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Figure 12: Toy model of spontaneous transitions. Raster plot of two simulations of Erdös-

Renyi connected networks of excitatory and inhibitory LIF neurons. Excitatory spikes

marked in red, inhibitory spikes marked in blue. Connection strengths are scaled so each

neuron in both networks receives the same average input. A: N = 2000 total neurons. Ac-

tivity is roughly asynchronous, with sparse bouts of synchrony. B: N = 1000 total neurons.

Activity transitions from synchrony to asynchrony randomly.
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that an arbitrary neuron in either network receives the same average input. In Figure 12A,

the total system size is N = 2000 neurons, and we see that the behavior is roughly asyn-

chronous, with only brief, sparse bouts of synchrony. In Figure 12B, the total system size

is N = 1000 neurons, and we see clear transitions between qualitatively different dynamic

behaviors, switching between regions of synchrony and regions of asynchrony. Because the

average input to each neuron is the same in both simulations, individual connections in the

smaller network are larger. As a result, individual pulses in the smaller network can have

a larger impact on whether or not the efferent neuron spikes, leading to a greater chance

for synchronization. This type of effect is what is known as a finite size effect, since it will

vanish in the N →∞ limit.

While this model is incredibly simplistic, it highlights the importance of understanding

the underlying mechanisms for complex systems. The two simulations in Figure 12 have

been controlled to be as similar as possible, with the exception of a single difference, and

yet they produce noticeably different behavior. In order to account for these differences, we

need to understand the fundamental process that leads to such an issue. This is, in general,

an open question. However, the prevalence of such behaviors in biological and modeling

systems means that much study has been devoted to this topic, and we have a well-defined

framework to discuss finite size effects and noise induced transitions.

3.2 MATHEMATICAL FRAMEWORK

The techniques used in this section, while broadly intuitive, lie outside the standard cur-

riculum of dynamical systems. As such, it is convenient to clearly define some notational

conventions and concepts up front, rather than interrupt the thread of the calculation with

clarifications for new concepts.

In section 3.1 we gave some evidence for why we need a framework to discuss noise in

dynamical systems, but the historical process of how this framework came about is quite

interesting. The earliest studies of noise in physical systems comes from the work of Robert

Brown studying the motion of pollen grains suspended in liquid, ca. 1828[200]. It is from
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this work that we derive the name Brownian motion to describe the most commonly ob-

served and studied stochastic process in the applied sciences. It is also from whence we

derive much of the common language to describe stochastic processes of this type, often by

referring to the “effective force” on “a particle of negligible mass”. One of the most notable

advancements in the study of Brownian motion comes from one of Albert Einstein’s seminal

1905 papers, where he gave the first rigorous classification of Brownian motion[201]. The

formalism typically adopted today to discuss Brownian motion was characterized by Norbert

Wiener in the early 1920s[202]. This work has been so instrumental in the development of

the study of noise that the standard Brownian motion stochastic process is also know as

a Wiener process. Interestingly (though not of direct relevance to our work here), Norbert

Wiener’s personal experiences in World Wars I and II significantly affected the work of ap-

plied scientists for years to come. Wiener developed a commonly used signal processing

technique (aptly called the Wiener filter) while working on the automation of anti-aircraft

guns. This work eventually led to his formulating of the field of cybernetics (from the greek

word for “steersmanship”), an interdisplinary approach to exploring feedback systems that

encourages collaboration between specialists to produce holistic solutions to complicated

problems[203, 204].

The two primary intuitive descriptions of a Wiener process are (a) that it is the limit of a

random walk1 or (b) that it is the integral of the standard Gaussian white noise. Historically,

the Wiener process has been defined by which Fokker-Planck equation it satisfies, though

this definition obscures the most salient features for our analysis. The four conditions listed

below are equivalent to the historical definition[205, 206], but more explicitly highlight the

features that impact the study of differential equations under noise. For our purposes, we

may take a Wiener process W (t) as a stochastic process with:

1. W (0) = 0 almost surely

2. independent increments: for t0 ≥ 0, W (t + t0) −W (t) is independent of W (t1) for any

t1 < t.

3. Gaussian increments: W (t+ t0)−W (t) ∼ N (0, t0)

4. continuous (though non-differentiable) paths

1Donsker’s Theorem, also known as the functional central limit theorem.
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Alternatively, we may consider the infinitesimal increment

dW (t) = lim
∆t→0

W (t+ ∆t)−W (t), (3.3)

and derive the above conditions by taking dW to be delta correlated, i.e. 〈dW (t1), dW (t2)〉 =

δ (t1 − t2).

To construct stochastic differential equations, we use a Langevin formulation. This

was also originally developed in the context of Brownian motion[207], though here we use

slightly more modern notation for clarity. We restrict ourselves to the case of a single

spatial dimension for notational simplicity, though the results stated here are easily and

straightforwardly extensible to higher dimensions. Similarly, we restrict to the case of first-

order differential systems, because higher-order systems can always be reformulated into an

equivalent first-order system of higher dimension.

We let x ∈ R be a dynamical variable (e.g. firing rate or synaptic efficacy) with dynamics

governed by a function F : R→ R. In the absence of noise, the governing equation is

ẋ(t) =
dx(t)

dt
= F (x) (3.4)

When white noise is added to this system, the associated Langevin equation may be written

as

dX(t) = F (X)dt︸ ︷︷ ︸
drift

+σdW (t)︸ ︷︷ ︸
diffusion

(3.5)

where σ is the typical magnitude of the noise, and X is a random variable. This is also

commonly known as a drift-diffusion equation, where the deterministic component F is the

drift term, and the stochastic component is the diffusion term.

It is important to draw a subtle distinction between Eq. (3.4) and (3.5). Solutions

to Eq. (3.4) may be thought of as trajectories uniquely determined by the initial condition

x(0) = x0. In particular, this fact is essential in the numerical study of differential equations,

as it ensures that forward integration schemes, with appropriately chosen timesteps, have

some hope of converging to the analytic solution. Solutions to Eq. (3.5), on the other hand,

are random objects, subject to the influence of dW (t) at every timestep. Solution trajectories

are drawn from a distribution, and it is nonsensical to talk of “the” solution. A reasonable
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interpretation is to talk of the distribution of solutions. With that as a goal, we define the

probability density, ρ(x, t) by

ρ(x, t)dx = Prob {X(t) ∈ (x, x+ dx)} . (3.6)

A characterization of ρ(x, t) will give a full characterization of X(t).

To investigate ρ(x, t), we need some sort of governing equation to which we can apply

differential equations methods. The standard method is to construct a Fokker-Planck equa-

tion that governs the behavior of the density. The derivation of this procedure is standard

(if somewhat tedious), and can be found in most textbooks on the subject (see, e.g. Risken

[205], Gardiner [206]). The end result of this procedure is that for a Langevin equation of

the form of Eq. (3.5) the associated Fokker-Planck equation is

∂ρ

∂t
(x, t) = − ∂

∂x
[F (x)ρ(x, t)] +

1

2

∂2

∂x2

[
σ2ρ(x, t)

]
. (3.7)

Though we have suppressed the notation here, in this derivation we have implicitly assumed

that we know the initial condition for x, and have found the equation that governs the

evolution of ρ(x, t) forward in time. A related question, where we wish to find the evolution

of ρ(x, t) backward in time given that we know the value of x at a time t, we would find the

associated backwards Fokker-Planck equation

∂ρ

∂t
(x, t) = −F (x)

∂ρ

∂x
(x, t)− 1

2
σ2 ∂

2ρ

∂x2
(x, t). (3.8)

The most substantive difference between these two formations is that the derivatives act

only on ρ(x, t) in the backward equation.

Even with a governing equation for ρ(x, t), it is important to note here that often the

solution space of the noisy system has no clear analogue to the solutions of the deterministic

system. As a simple example, we may consider the deterministic system

ẋ = −x(x− 1)(x+ 1). (3.9)

This system has 2 stable fixed points at x = ±1 and an unstable fixed point at x = 0. The
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full solution space of Eq. (3.9) can be classified according to

lim
t→∞

x(t) =


−1 x(0) < 0

0 x(0) = 0

1 x(0) > 0

(3.10)

Stated another way, the asymptotic average value of x(t) will approach −1,0, or 1 depending

on the initial value of x.

In comparison, the stochastic version of this system does not share this property. The

stochastic Langevin equation is

dX = −X(X − 1)(X + 1) dt+ σ dW (3.11)

with associated Fokker-Planck equation

∂ρ

∂t
=

∂

∂x

[(
x3 − x

)
ρ
]

+
σ2

2

∂2ρ

∂x2
. (3.12)

In this particular case, the stationary solution ρs can be found explicitly if we enforce the

boundary conditions ρs(+∞) = ρs(−∞) = 0 and the normalization condition that ρs inte-

grates to 1. In this case, we find

ρs(x) = C1 exp

(
−x

2(x2 − 2)

2σ2

)
(3.13)

where C1 is a normalization constant. We see immediately that ρs has local maxima at

x = ±1 and a local minimum at x = 0. Moreover, since ρs is symmetric in x, any odd

moment of this distribution will be 0. In particular, this means the average value of X will

be 0 for any initial condition, despite the deterministic system having precisely one point

which leads to the equivalent condition.

In principle, equations of the form of Eq. (3.5) can be arbitrarily complicated, often

through making σ dependent on x and t. This means that in general, even the simplest

Fokker-Planck equations can be highly challenging to solve. As an instructive example of

the general procedure for dealing with these systems, we now look at a canonical escape

problem.
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3.2.1 Canonical escape example

Let us first look at a bistable neuronal model to study spontaneous transitions between

stable states. Taking the Wilson-Cowan formalism as a starting point, the simplest rate

model which exhibits bistability is a single population of excitatory neurons with an external

current:

ṙ = −r + f (j · r + Iapp) (3.14)

where r is the rate of an excitatory population of neurons, f is a sigmoidal transfer function

(in principle the same as fe and fi from chapter 2), j > 0 is the average connection strength

between excitatory neurons, and Iapp is an applied external current (Iapp can be positive or

negative). To ensure bistability, we need only that f(x) intersect the identity line in three

places, which can be ensured through judicious choice of the connection strength j and the

applied current Iapp. Then let us suppose that we are in a regime with two stable fixed points

and one unstable fixed point. We will refer to these as the low rate state, r`, the high rate

state, rh, and the saddle, r∗.

Based on neural data, we expect the rate r to be noisy. From a modeling perspective,

we can suppose this noise arises from many possible sources, though throughout this work

we will consider it to come from finite size effects. Then our rate equation with noise will be

taken as

ṙ = −r + f (j · r + Iapp) + σξ(t) (3.15)

= F (r) + σξ(t) (3.16)

where the diffusion coefficient σ scales as σ2 ∼ 1/N (with N the system size), and ξ(t)

is a white noise term. For notational simplicity, we define F (r) = −r + f (j · r + Iapp).

Specifically, we note that Eq. (3.16) can be written in of the form of a Langevin equation

(cf. Eq. (3.5)), as

dR = F (R) dt+ σ dW (3.17)

where R is a random variable taking values in set available to r. For a bistable system,

Eq. (3.17) is a special case of a double well potential, and we have well-understood methods

to study this system. To study transitions between stable states (what is typically called
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escape), we first note that for a reasonable function F , we can define an associated potential

U such that

F (r) = −∂U
∂r

= −U ′(r) (3.18)

where ′ denotes differentiation with respect to the natural argument. This feature of a

well-defined potential will not generically be true in higher dimensions, and is the central

complication in studying escape problems in multidimensional systems. With such a U , we

note that the fixed points r`, rh, and r∗ are critical points of U , since they are by definition

solutions of F (r) = 0. Moreover, it is straightforward to show that r` and rh will be local

minima, and r∗ a local maximum (Figure 13A).

Following the general structure of section 3.2, we can define the probability density

ρ(r, t)dr = Prob {R(t) ∈ (r, r + dr)} . (3.19)

which satisfies the Fokker-Planck equation

∂ρ

∂t
(r, t) =

∂

∂r
[U ′(r)ρ(r, t)] +

σ2

2

∂2ρ

∂r2
(r, t). (3.20)

We may solve for the stationary density ρs(r) by setting ∂ρ/∂t = 0 and integrating directly

the corresponding differential equation. We find

ρs(r) = N exp

(
−2U(r)

σ2

)
(3.21)

where N is found from the normalization condition
∫
ρs(r)dr = 1.

In the deterministic version of the question, with no diffusion (σ = 0), we already know

that the minima r`, rh are stable, and the saddle point r∗ is unstable. Then for any initial

condition less than r∗, r(t) → r`, and any initial condition greater than r∗ has r(t) → rh.

In the stochastic system, this is no longer the case. For arbitrarily small σ > 0, the rate is

constantly bombarded with noise, and never stays at a single value, so we expect the rate

almost never to be near r∗, and to spend most of its time in the bottom of the wells, near

r`, rh. The smaller σ is, the more true this should be. If we take U(r) to be sufficiently

smooth, we can approximate ρs in the regions near the minima. A simple Taylor expansion
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Figure 13: A: A potential function with two quadratic wells, depths marked. B: Simulation

of a rate in the potential from panel A influenced by diffusion. The rate exhibits spontaneous

switching between the two stable states. Color of the trajectory indicates which fixed point

the rate is near. C: A histogram of the long term behavior of the simulation from panel

B (blue/green). Dashed line denotes the estimate of the stationary density found from

quadratic assumptions on U . D: Symbols denote average escape time from r` (blue triangles)

and rh (green circles), as found by simulations from C. Each value of the diffusion coefficient

has a minimum of 1000 trials. Lines denote the Arrhenius estimate.
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gives

U(r) ≈

U(r`) + 1
2
U ′′(r`)(r − r`)2 for |r − r`| small

U(rh) + 1
2
U ′′(rh)(r − rh)2 for |r − rh| small

(3.22)

giving

ρs(r) ≈


N exp

(
−2U(r`)−U ′′(r`)(r−r`)2

σ2

)
for |r − r`| small

N exp
(
−2U(rh)−U ′′(rh)(r−rh)2

σ2

)
for |r − rh| small

0 otherwise

(3.23)

as the stationary distribution. Direct integration gives

1

N ≈ exp

(−2U(r`)

σ2

)√
πσ2

U ′′(r`)
+ exp

(−2U(rh)

σ2

)√
πσ2

U ′′(rh)
. (3.24)

If we assume an asymmetry in the depth of the wells (say U(rh) > U(r`), Figure 13A), then

for σ small enough one of the terms in N is overwhelmingly larger than the other, in effect

making the deeper well at r` the more stable of the two states. Correspondingly, we expect

the rate to be more likely found in the vicinity of r` than at rh (Figure 13C).

With a reasonable characterization of the steady state probability density ρs, we are

now able to estimate the transition rate between the low and high rate states r`, rh. A

detailed overview of the background perturbation theory is beyond the scope of this work,

but it can be shown[206] that the t → ∞ limit of the small noise perturbation theory does

not reproduce the σ → 0 limit of the stationary density. This means that for arbitrarily

small σ > 0, an initial condition that starts near r` will eventually be near rh. More

colloquially, this draws a sharp distinction between deterministic and stochastic systems.

In a deterministic system of this form (σ = 0), initial conditions determine the long time

behavior, and an initial condition that starts in the basin of attraction for r` will never be

in the basin of attraction of rh. In contrast, a metastable system with any amount of noise

(σ > 0) will allow the system to (eventually) sample all stable points. We will show that

this happens on exponentially long timescales (which is essentially why the linearization of

the small noise perturbation theory fails, since exp (−K/σ2) → 0 faster than any power of

σ as σ → 0 for fixed K positive).

It will be convenient to work with the conditional probability density ρ(r, t|y, 0), speci-
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fying that r(0) = y (or, if you like, ρ(r, 0|y, 0) = δ(r − y)). The Fokker-Planck formulation

holds for the conditional densities as well. Suppose the rate starts at some r < r∗. At a time

t, the probability that the rate is still less than r∗ is given by

G(r, t) :=

∫ r∗

−∞
ρ(y, t|r, 0)dy. (3.25)

If we further suppose that the rate exceeds r∗ at time T , then this definition is equivalent to

saying G(r, t) = Prob {t ≤ T}. Moreover, since our system is time inhomogeneous, we have

p(y, t|r, 0) = p(y, 0|r,−t). Effectively, rather than thinking of the rate as having a value of

r at time 0, we may think of it as having a value of r∗ at time T . Then we may use the

backward Fokker-Planck equation to see

∂ρ

∂t
(y, t|r, 0) = −U ′(r)∂ρ

∂r
(y, t|r, 0) +

σ2

2

∂2ρ

∂r2
(y, t|r, 0). (3.26)

If we then integrate Eq. (3.26) over y, we have the associated governing equation for G(r, t):

∂G

∂t
(r, t) = −U ′(r)∂G

∂r
(r, t) +

σ2

2

∂2G

∂r2
(r, t). (3.27)

For the sake of completeness, we give initial and boundary conditions on G. Noting that by

definition we have ρ(y, 0|r, 0) = δ(r − y), the initial condition on G is

G(r, 0) =

1, −∞ < r ≤ r∗

0, r > r∗

, (3.28)

or, stated more simply, the probability that r ∈ (−∞, r∗] is unity when t = 0 (this is a

bit of a vacuous statement since the problem was formulated with r ≤ r∗ at t = 0). For

the boundary conditions, we need to address each boundary independently. For the right

boundary, if r = r∗, the rate is ‘absorbed’ immediately, and so T = 0. Thus, G(r∗, t) = 0.

For the left boundary, it is convention to consider infinite boundaries as reflecting rather

than absorbing, since the rate will never leave the interval of interest as it approaches the

left boundary. For reflecting boundaries we require a no flux condition, giving us a Neumann
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boundary condition, and so

∂G

∂r
(−∞, t) = lim

a→−∞

∂G

∂r
(a, t) = 0.

Finally, we can compute the mean exit time by observing the that since G(r, t) =

Prob {t ≤ T} = 1 − Prob {T < t}, we can recover the conditional density by differentia-

tion, and thus we can compute the mean of any function of T by

〈f(T )〉 = −
∫ ∞

0

f(t)
∂G

∂t
(r, t)dt (3.29)

Then the mean first exit time can be computed explicitly as

〈T 〉 = −
∫ ∞

0

t
∂G

∂t
(r, t)dt

=

∫ ∞
0

G(r, t)dt

(3.30)

after applying integration by parts. Then integrating Eq. (3.27) over t, we find

−U ′(r)∂〈T 〉
∂r

+
σ2

2

∂2〈T 〉
∂r2

=

∫ ∞
0

∂G

∂t
(r, t)dt

= G(r,∞)−G(r, 0)

= 0− 1 = −1

(3.31)

with the boundary conditions ∂〈T 〉
∂r
|−∞ = 〈T 〉|r∗ = 0. Luckily this is a second order linear

equation in 〈T 〉, and can be solved explicitly with an integrating factor. Recalling that T

is defined as the first exit time for which an initial condition to the left of r∗ reaches r∗,we

have a fairly simple closed form solution given by

〈T 〉 =
2

σ2

∫ r∗

r

ds exp

(
2U(s)

σ2

)∫ s

−∞
dz exp

(
−2U(z)

σ2

)
. (3.32)

To get a nicer form for 〈T 〉 we can use information about ρs(r) and U(r). For small σ,

exp (−2U(z)/σ2) is very small for z near r∗, and we can reasonably approximate the inner

integral in Eq. (3.32) by replacing the upper bound s with r∗. This gives

〈T 〉 ≈ 2

σ2

[∫ r∗

−∞
dz exp

(
−2U(z)

σ2

)]∫ r∗

r

ds exp

(
2U(s)

σ2

)
. (3.33)

Moreover, we can further simplify each of these integrals by noting that near the extremal
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values r`, r∗, U is locally quadratic, and the exponential factor will only increase the peaked-

ness of these functions, and away from the extremal values of U , the integrands contribute

very little to the integral. Then letting

U(r) ≈

U(r`) + 1
2
U ′′(r`)(r − r`)2 for r near r`

U(r∗)− 1
2
|U ′′(r∗)| (r − r∗)2 for r near r∗

(3.34)

we can approximate the integrals as∫ r∗

−∞
dz exp

(−2U(z)

σ2

)
≈
√

πσ2

U ′′(r`)
exp

(
−2U(r`)

σ2

)
∫ r∗

r

ds exp

(
2U(s)

σ2

)
≈
√

πσ2

|U ′′(r∗)|
exp

(
2U(r∗)

σ2

) (3.35)

finally giving the classical Arrhenius formula for escape time

〈T 〉 =
2π√

U ′′(r`) |U ′′(r∗)|
exp

(
2 [U(r∗)− U(r`)]

σ2

)
(3.36)

What we have essentially done here is construct a boundary value problem to estimate

the total probability density to the left of the saddle (i.e. near the low rate state r`). The

particular methods employed here are especially nice for the canonical one-dimensional ex-

ample. While the particulars of the calculation need to be adjusted for multidimensional

systems, the basic procedure is sound. In particular, there has been much work on formu-

lating and solving the specific boundary value problems to estimate an escape time across

a potential barrier for multidimensional, possibly nongradient systems[208–215]. As we will

see, there is an additional complication in our model system due to the stochastic hybrid

nature of our governing equations.

This process has illuminated the general strategy we wish to take for more complicated

problems. Given a deterministic system that exhibits bistability, the noisy analogue of

that system will exhibit spontaneous switching between the two stable states (Figure 13B).

Moreover, the approximation given by Eq. (3.36) generates quite a nice fit to simulation

(Figure 13D), and provides a simple heuristic to estimate escape times. It can be shown

that for a large class of stochastic problems, so-called large deviation principles can be
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derived that give essentially the same qualitative form as Eq. (3.36), suggesting that the

intuition used to solve the particle in a double well problem may be applied in a broader

context[216]. For an arbitrary system, our procedure is as follows:

1. Given a dynamical system with noise, formulate a governing equation for the probability

density ρ(r, t).

2. Using the double-well problem as a guide, construct a potential function, U(r), that leads

to a characterization of the stationary distribution, ρs(r).

3. With an initial condition near one of the stable states, estimate the amount of the

stationary distribution lying past the saddle r∗, and use this to estimate the probability

flux across r∗.

4. Given the probability flux across the saddle, estimate the mean escape time.

For the specific system we wish to study (motivated by our results from chapter 2), there

are a number of complications that arise at each step of the proposed procedure.

3.3 NEURONAL MODEL WITH SYNAPTIC PLASTICITY

The model presented in chapter 2 exhibits bistability in certain parameter regimes (cf. Fig-

ure 8 and 10). A natural extension of that work is then to investigate the average residence

time near the fixed points. In order to attack the simplest problem possible, we make ex-

plicit a few assumptions as we reintroduce the model. To retain the balanced character of

the model, we require at least two neuronal populations, E and I, as well as strong synaptic

weights. Additionally, in order to have multiple stables states, we need at least one synaptic

connection to exhibit short term plasticity (Figure 14A).

As before, we consider a phenomenological model consisting of binary neurons. We

suppose each population has N neurons, and we track the proportion of active neurons in

each population, rα(t) = nα(t)/N , where nα(t) is the number of active neurons in population

α at time t, α ∈ {E, I}. The nα are Markovian variables. As before, we take the baseline

synaptic strength from a neuron in population β to population α to be Jαβ = jαβ/
√
K,
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where jαβ ∼ O (1) is the unscaled connection strength and K is the average number of

connections onto a neuron[48, 54, 55]. Since we are only investigating the aggregate activity,

the functional difference between a dense and sparse network is small, so we may take our

network to be dense in the sense that K/N is constant. In this way, we may rescale all

of the connection strengths jαβ so as to take Jαβ = jαβ/
√
N. Finally, we take a sigmoidal

activation function f . The specific form of f does not matter for the qualitative features,

but in practice we take f to be a logistic function.

To model the effects of short term plasticity, we choose a phenomenological model that

acts at the level of rate equations (known to be the limit of a system of individually modeled

synapses[67]). We let p
IE
∈ [0, 1] be the synaptic efficacy variable from the excitatory

population to the inhibitory population. We choose the dynamics of p
IE

such that it is a

depressing synapse – when firing rates are low, p
IE

is near 1, and when firing rates are high,

p
IE

is low (p
IE
∼ 0.2 at its lowest value). For large population activity, this system then

obeys the following dynamics:

ṙ
E

= −r
E

+ f
(√

N (j
EE
r
E
− j

EI
r
I

+ I
E

)
)

τ
I
ṙ
I

= −r
I

+ f
(√

N (p
IE
j
IE
r
E
− j

II
r
I

+ I
I
)
)

dp
IE

dt
=

1− p
IE

τr
− a(r

E
)p
IE

τd

a(r
E

) =
m

1 + e−β(r
E
−θ)

f(u) =
1

1 + e−u

(3.37)

Here τ
I

is the time constant of the inhibitory population relative to the excitatory, Iα is a

source of external drive to population α, τr and τd are the recovery and depression timescales

of the synapse p
IE

, and θ and β govern where and over how large a region the synapse

experiences the full range of depression. For the work that follows, we take j
EE

= 2, j
EI

=

2.4, j
IE

= 20, j
II

= 2, I
E

= 0.2, I
I

= −0.8, τ
I

= 1.1,m = 0.7, β = 50, θ = 0.15, τr = 24, τd = 4

(see Table 3).

To accurately reflect the stochastic nature of the Markovian nα, we may define a set of

transition rates that have Eq. (3.37) as the expected value of the stochastic process. Given

a set of deterministic equations, a set of appropriate transitions rates can be constructed
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Parameter Value Description

τ
E

1 characteristic timescale, excitation

τ
I

1.1 characteristic timescale, inhibition

j
EE

2 connection strength, E → E

j
EI

2.4 connection strength, I → E

j
IE

20 connection strength, E → I

j
II

2 connection strength, I → I

I
E

0.2 static input drive to E population

I
I

−0.8 static input drive to I population

N [102, 105] system size

τr 24 characteristic timescale, recovery from depression

τd 4 characteristic timescale, recruitment of depression

θ 0.15 depression threshold, E → I synapse

m 7 controls lowest possible value of p
IE

β 50 controls steepness of plasticity curve (cf. Figure 5)

Table 3: Chapter 3 parameters
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with some generality [206], but the most natural choice of transitions for this system have

the appropriate features [103, 122]. We take as our transition rates

(n
E
, n

I
)→(n

E
− 1, n

I
) : ω−

E
= n

E

(n
E
, n

I
)→(n

E
, n

I
− 1) : ω−

I
=
n
I

τ
I

(n
E
, n

I
)→(n

E
+ 1, n

I
) : ω+

E
= Nf

(√
N
(
j
EE

n
E

N
− j

EI

n
I

N
+ I

E

))
(n

E
, n

I
)→(n

E
, n

I
+ 1) : ω+

I
=
N

τ
I

f
(√

N
(
p
IE
j
IE

n
E

N
− j

II

n
I

N
+ I

I

))
(3.38)

In between transitions in the nα variables, we treat p
IE

as a deterministic function. This

is motivated by the fact that we take the plasticity timescales to be much slower than the

excitatory and inhibitory timescales, ensuring that for reasonable N , the rate of individual

events is much faster than any other timescale in the system. Systems with these features

are sometimes called stochastic hybrid systems, or partially deterministic Markov processes.

With our choice of parameters, this system displays bistability and spontaneous transi-

tions (Figure 14B). In chapter 2, we made reference to the “low state”, in which the rate

variables had smaller values than in other regions of phase space. For this chapter, we will

primarily be using p
IE

as the indicator of which state the system inhabits, and when the rates

are low the synapse p
IE

is close to 1. Rather than obfuscate which state is low and which

is high, we will refer to the low rate state as the undepressed state, and the high rate state

as the depressed state. Then the bistability of our model system is mainly concerned with

three states: the undepressed state, p`, the depressed state, ph, and the saddle point, p∗.

Because the escape time from the depressed state is exponentially long (make it unobserved

in almost all simulations) and requires a multiple order of magnitude increase in simula-

tion time compared to the undepressed state (which itself required hundreds of computation

hours to produce Figure 14E). Thus, here we will only investigate the escape time from the

undepressed state.

69



C E

FD

A B

Traditional
Scaling

Balanced
Scaling

N

101

105

104

103

102

106

103 104 105102

〈T
〉

(s
)

ρ(T )

0 84 x 104

T (s)

ρ(T )

0 84 x 106

T (s)

ρ(T )

0 42 6x103

T (s)

0.65 0.98 0.9680.948 0.965 0.9665

0 107.552.5

T (s)

ρ(T )

0 84 x10212

T (s)

ρ(T )

0.9644 0.96640.82 0.98

〈T
〉

(s
)

N103 104102

101

100

104

103

102

105

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

200 600400 200 600400200 600400

0.8

0.6

0.4

0.2

1

r
I

r
E

t (s) t (s)t (s)

E I

p
IE

p
IE

ρ (p
IE
)ρ (p

IE
) ρ (p

IE
) ρ (p

IE
) ρ (p

IE
)

p
IE

p
IE

p
IE

p
IE

p
IE

Figure 14: A: Schematic of the rate equation formulation, with p
IE

denoting the plastic

synapse. B: Simulation of the stochastic system for size N = 220 that exhibits bistability

and spontaneous transitions. C: Simulated escape times, where synaptic strengths are scaled

as 1/N . 〈T 〉 obeys approximately the Arrhenius formula. Inset: Plot of same data with only

the y axis logarithmic. Dashed line denotes line of best fit for the two largest system sizes,

though it passes through almost 6 points. System sizes highlighted are N = 2300 (green)

and N = 4400 (red). D: Histograms of exit times for the two points marked in C. Inset:

Histogram of x-values for the two points marked in C. E: The same as C for the balanced

scaling case. System sizes highlighted are N = {360, 2050} (green), N = {4400, 25000}
(red), and N = {138, 3150, 65000} (blue). F: The same as D, for the points marked in E.

Larger system sizes are shown as an outline, smaller system sizes are shown as filled.
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3.4 COMPARISON BETWEEN SCALING LAWS

Before we construct a governing equation for the probability density of Eq. (3.37), it will

first be convenient to compare the behavior of a balanced network with the behavior or a

traditionally scaled network. Let us momentarily consider a system analogous to Eq. (3.37)

with a traditional Wilson-Cowan style scaling of synaptic strength with system size (J ∼
1/N). The deterministic equations for such a system are the same as Eq. (3.37), with the

exception that
√
N does not appear as an explicit parameter anywhere in the equations. We

choose synaptic strengths and input currents to be the same as the balanced system when

N = 3600.2 The behavior of this system is essentially the same as that of the canonical

double well potential example (Figure 14C). To make explicit the parallels, we note that

for large N , individual fluctuations in the Markovian variables have a small effect on the

rate variables, equivalent to a small diffusion coefficient σ. Similarly, small N corresponds

to large σ. Simulations of this system show that 〈T 〉 ∼ exp(N). This is more readily seen

by plotting log〈T 〉 against N , and observing that as N increases, values of 〈T 〉 converge

to a line (Figure 14C inset). Additionally, the probability densities ρ(T ) are approximately

exponentially distributed, with the variance increasing with system size (Figure 14D). This is

the opposite of the trend for the microscale behavior of the state variables. As N increases,

fluctuations get smaller and smaller (Figure 14D inset), suggesting a causal relationship

between the increase in N and the increase in 〈T 〉. Here we show only the distribution of the

synaptic state variable p
IE

, though the trend is the same for the rate variables. This system

behaves essentially as we expect when guided by the intuition of the double well example.

In contrast, something completely different is happening in the balanced scaling case

(Figure 14E). The nonmonotonic behavior of 〈T 〉 with N is strikingly and fundamentally

different than the intuition from the double well problem. If we select any set of system sizes

for which 〈T 〉 is approximately the same, we see that the densities ρ(T ) are still exponentially

distributed, suggesting that transitions are in fact fluctuation driven events. Moreover, the

exponential distributions are N -dependent only so far as 〈T 〉 depends on N . This is shown

in Figure 14F, where we plot the distribution ρ(T ) for different N , and observe that the

2Take jαβ , Iα, and map them to 60jαβ , 60Iα.
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histograms are visually near-identical. However, we note that the microscale behavior varies

with system size in the expected way: as N increases, the distribution of observed p
IE

values

ρ(p
IE

) becomes more sharply peaked. Thus there must be some compensatory mechanism

in the dynamics of this system that counteracts the decrease in fluctuations to increase the

likelihood of an escape event.

At first glance, there are potentially two reasonable guesses for what may be causing

this non-monotonicity. Our system differs from the canonical double well example by the

fact that it has a partially deterministic component and also that the system size N is an

explicit parameter of the governing equations. However, simulations show that the partially

deterministic process with traditional scaling laws effectively behaves as a traditional double

well (Figure 14C,D), suggesting that the partially deterministic component alone is not

enough to cause nonmonotonicity in the escape times.

Our hypothesis is that the fundamental driver of the nonmonotonic behavior is the

explicit system size dependence in the governing equations. In this case, the system size

actually changes the vector field of the underlying deterministic system, effectively changing

the potential landscape of phase space. However, since N is also the source of noise in

the system, this system has an intrinsic link between the traditional “drift” and “diffusion”

components of Langevin style stochastic processes. To construct a similar condition in the

canonical double well problem, we would need to make the well depths ∆U functions of

the diffusion σ. To the best of our knowledge, this particular problem has not been studied,

however, this appears to be a promising direction in understanding the intricate links between

finite size driven noise and aggregate dynamical behavior.

3.5 STOCHASTIC HYBRID SYSTEMS AND THE PSEUDOPOTENTIAL

The first hurdle in estimating the escape time for our system is that there is no obvious

candidate for a potential function U that governs the dynamics of this system. In order to

address this, it will be beneficial to reformulate our problem slightly. Rather than considering

the rate variable as a limit of the Markovian process for large system size (as we effectively
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do when we think of an underlying multidimensional dynamical system acting under the

influence of noise), we make explicit the discrete nature of our system.

Our state variables (n
E
, n

I
, p
IE

) live in S×S×R, where S = [0, 1, . . . , N ] is a discrete state

space. Through its dependence on n
E

, the synaptic variable p
IE

defines a related stochastic

process P (t), with governing equation given by

dP (t)

dt
=

1− P
τr
− a(n

E
)P

τd
(3.39)

We may define a joint probability density for our state vector by

ρ(p, n,m, t)dp = Prob {P (t) ∈ (p, p+ dp), n
E

(t) = n, n
I
(t) = m} (3.40)

In section 3.2, we reviewed the Fokker-Planck equation equation which governs the prob-

ability density for a Langevin equation. For a stochastic hybrid dynamical system, we begin

instead with a differential Chapman-Kolmogorov (CK) equation, which allows us to measure

the probability flux through both the discrete and continuous changes in the system.

To compute the probability flow between states due to transitions in the discrete vari-

ables, we let A be the transition matrix for the Markov variables n
E
, n

I
(schematic in

Figure 15A). The off diagonal entries of A are filled with the transition rates defined by

Eq. (3.38), and the diagonal entries of A are constrained to have column sum 0. By con-

struction, A is a stochastic matrix which defines how nα move about. There are N2 possible

states for the ordered pair (n
E
, n

I
), which makes A of size N2×N2. Moreover, A is a function

of p
IE

, inherited through the transition rates ω.

To account for probability flow due to changes in the continuous variable, we define a

diagonal matrix B where the entries are defined according to

B(n,m)(p) =
1− p
τr
− a(n)p

τd
(3.41)

where (n,m) denotes a single state in the 2 dimensional Markov process, uniquely specifying

a row in the matrix B. This ensures B is also of size N2×N2. We note that the right hand

side of Eq. (3.41) does not depend on m. This is because we are modeling a plastic synapse

from E → I, and expect that the amount of depression should depend on the pre-synaptic

rate (cf. Eq. (1.15)). This is consistent with the modeling choices made to integrate short
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term plasticity into a mean-field network structure [67].

Rather than writing out a tedious sum over all possible states, we can construct a vector-

ized form of the CK equation. We define Ψ(p, t) = (. . . , ρ(p, n,m, t), . . .)T to be the vector

of densities for each state of the Markov process. Then the differential CK equation is es-

sentially a master equation, given by tracking the flow of probability density between states.

We have
∂Ψ

∂t
= AΨ− ∂

∂p
(BΨ) (3.42)

We note explicitly that both A and B depend on p. Eq. (3.42) can be understood intuitively

in terms of processes we’ve already established. The AΨ term tracks probability flow due

to changes in the discrete variables n
E
, n

I
, entirely analogous to a simple discrete Markov

process. The second term, involving BΨ, tracks probability flow due to changes in the

continuous variable p
IE

. Note specifically that this term shares the general form of the drift

term in a Fokker-Planck equation (and is derived through the same procedure). Because the

continuous variable p
IE

has no intrinsic noise (and inherits stochasticity through interacting

with the discrete Markovian variables), there is no analogous diffusion term. Equations of

this form have been studied reasonably completely [216–219], and there is a well-defined

(though time consuming) algorithm to obtain estimates for the mean exit time. Before we

compute the mean exit time explicitly, it is helpful to first consider a simpler calculation.

3.5.1 Quasi-steady state approximation

The simplest plausible technique that we could try is a quasi-steady state approximation.

There are two reasons to expect that this might be a reasonable simplification. First, the

timescales of plasticity τr, τd are approximately an order of magnitude larger than the

timescales of excitation and inhibition (1 and τI , respectively), suggesting a natural sep-

aration in the effective dynamical timescales of the state variables. Second, and more impor-

tantly, an effect of that timescale separation is that the rate of individual transitions of nα

is much faster than any change in the deterministic variable p
IE

, where the typical time be-

tween stochastic transitions (∆t ∼ O (1/N)) induces a change in p
IE

of ∆p
IE
∼ O (1/(10N)).

Taking the transitions in nα as fast, the quasi-steady state approximation is to let n
E

, n
I
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relax to their stationary distributions, namely by taking

AΨ = 0 (3.43)

for fixed values of p
IE

. We denote the solution to Eq. (3.43) as Ψs. In Figure 15B, we

show examples of the stationary distribution Ψs for representative values of p
IE

. Along the

top row, shown as a heat map normalized to have area 1, are three instances of Ψs. As

expected, as p
IE

decreases, the steady state of the rate variables changes, and as we enter

the oscillatory regime for very low p
IE

the distribution spreads. Along the bottom row, we

show the marginal density for n
E

, the only discrete variable that directly affects the vector

field induced by B. In the undepressed state, we can see that the marginal density ρ(n
E

) is

approximately Gaussian, but displays decidedly more peakedness in the depressed (p
IE
∼ 0.2)

state.

By varying p
IE

and solving Eq. (3.43), we can define Ψs(p), the effective steady state

distribution of the discrete variables as a function of the continuous variable. Using Ψs(p),

we can construct an average vector field governing the dynamics of p
IE

. To do this, we let b

be the 1×N2 vector constructed from the diagonal matrix B, and we construct the average

vector field by performing a weighted sum over Ψs(p) (Figure 15C, for a single value of N):

B(p) = bTΨs(p) (3.44)

Through this simplification, we have reduced our system to an effective one dimensional

system, with the dynamical variable not being the rate (as in Section 3.2.1), but rather the

plasticity state. The new governing equation for p
IE

is

dp
IE

dt
= B(p

IE
) (3.45)

For this averaged vector field, we define a pseudo-potential Û by integrating, i.e.

Û(p) = −
∫ p

p`

B(s) ds (3.46)

where p` denotes the value of p
IE

in the undepressed, low rate state, and p denotes the value

of p
IE

in an arbitrary state. Three representative examples of Û for three different values of
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N are shown in Figure 15D. Following the intuition from section 3.2.1, we expect that the

average escape time should be directly related to the well depth of the pseudo-potential Û .

For our system, with the standard parameters (Table 3), this well depth is non-monotonic

with the system size N (Figure 15E).

This crude analysis captures the broad qualitative features of the observed escape times

(Figure 14E), and provides compelling evidence that our intuition is essentially correct. That

is:

1. There is a (pseudo)potential structure to the system that serves as the largest determining

factor in setting the average transition time between states.

2. The transitions are reliably noise driven, in that the distribution of escape times is

exponentially distributed (even though the variation in the state variables is roughly

Gaussian) (cf. Figure 14D,F).

3. Transitions between states can be effectively marked by the passing of the unstable

manifold of a saddle point, and

4. the escape time can be estimated by estimating the amount of the stationary distribution

that crosses that unstable manifold.

At this point, we can apply the basic methods from section 3.2.1, along with an appropri-

ate estimation of the magnitude of the noise, to estimate the average escape time. However,

it is known that applying the Arrhenius estimate with the pseudo-potential Û will give in-

accurate results for the escape time in a stochastic hybrid system[218]. The discrepancy

arises from deviations in the exponential factor of the Arrhenius estimate when the rate is

approaching, but still far from, the saddle.

The work of Bressloff & Faugeras [216], Keener & Newby [217], Newby & Keener [218],

details the proper approach for quantitative estimates through the use of the Wentzell-

Kramers-Brillouin (WKB) approximation in solving an appropriate boundary value problem.

We apply a straightforward adaptation of this technique to estimate the escape time for our

model system. The main complication in our adaptation comes from the computational

complexity of solving for the stationary distribution Ψs(p) and estimating an eigenvalue and

eigenvector for an exceptionally large matrix.
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Figure 15: A: Schematic of our two dimensional Markov process. B: stationary (top) and

marginal (bottom) distributions for selected values of x. C: Example estimates of the average

vector field B for 3 different system sizes. Blue represents the lowest system size, red is

an intermediate system size, and green is the largest system size. D: Example potential

functions from the undepressed state to the saddle for 3 different system sizes. Coloring is

as in panel C. E: Well depths as a function of system size. The potentials found in D are

highlighted with matching colors. We observe an internal extremal value.
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3.5.2 Escape time estimation

The work in this section follows closely the work developed in Newby & Keener [218]. Rather

than simply repeating the calculations performed there (since they were done in great gen-

erality), we provide a general overview of the method as it relates to our model system, and

highlight the challenges specific to this system.

The first step in estimating the escape time is to set up the appropriate boundary value

problem. The construction of such a boundary value problem for escape problems often

follows the same general structure [206, 218]. We let T be the random variable equal to the

first time at which the plasticity variable p
IE

reaches the saddle p∗. We wish to approximate

the probability distribution for T . In section 3.2.1, we were able to explicitly formulate a

boundary value problem for the first moment of this distribution, 〈T 〉. This will not generally

be possible, so we instead formulate first a boundary value problem for the full distribution,

and then proceed to estimate the first moment.

Suppose the plasticity variable has an initial condition in the undepressed state, p
IE
∈

(p∗,∞). We define the survival probability, S(t), to be the probability that the plasticity

variable p
IE

is still inside the interval (p∗,∞) at time t, given by

S(t) ≡
∑
(n,m)

∫ ∞
p∗

ρ(p, n,m, t) dp. (3.47)

We notice that the distribution for T is functionally related to S by

Prob {t > T} = 1− Prob {t ≤ T} = 1− S(t). (3.48)

To find the density function for T , then, we need only differentiate this distribution, giving

F(t) = −∂S/∂t. Then our goal becomes to find an expression for ∂S/∂t.
We can relate S to the stationary density Ψ in the following way. By first integrating

an arbitrary row of Eq. (3.42) over the interval (p∗,∞) and then summing over all possible

discrete states (n,m), the first term in Eq. (3.42) becomes the time derivative of the survival

probability S:
∂S
∂t

=
∑
(n,m)

∫ ∞
p∗

∂ρ

∂t
(p, n,m, t) dp (3.49)
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Similarly, the fact that A is a stochastic matrix (with column sum zero), gives that∑
(n,m)

∑
(i,j)

∫ ∞
p∗

A(n,m);(i,j)ρ(p, i, j, t) dp = 0 (3.50)

Finally, applying the boundary condition that limp→∞ ρ = 0, the last term from Eq. (3.42)

results in ∑
(n,m)

∫ ∞
p∗

∂

∂p
B(n,m)ρ(p, n,m, t) dp = −

∑
(n,m)

B(n,m)ρ(p∗, n,m, t) (3.51)

Combining each of these results gives us a governing equation for the survival probability.

After rewriting summation as vector multiplication, we have

∂S
∂t

= bTΨ(p∗) (3.52)

We have thus reduced the problem of estimating the escape time to one of estimating

the distribution Ψ at the saddle. If we can approximate Ψ(p), we can approximate ∂S/∂t,
and thus the density function F , which characterizes the escape time T . The details of

this approximation are worked out in great detail in Newby & Keener [218] and Keener &

Newby [217], and here we simply apply them to our specific system. Thus, in what follows,

we present the main points necessary to apply this method to our system. We refer the

interested reader to Newby & Keener [218] for the specific proofs.

The most important point to estimating Ψ is understanding that a stationary solution

to Eq. (3.42) will have zero net flux across the saddle point p∗, and so provides an inaccurate

estimate of the escape time. However, the natural timescale separation in the system (since

the transition matrix A has terms that are O (N)) provides an avenue of attack. The use of

spectral projection methods[220] for singularly perturbed boundary value problems, along

with the Wentzell-Kramers-Brillouin (WKB) method[221], provide sound estimates for the

escape time.

The first key component is to assume that Ψ(p, t) has an eigenfunction expansion of the

form

Ψ(p, t) =
∞∑
j=0

cje
−λjtφj(p). (3.53)

Because of the separation of timescales, we will have that the principal eigenvalue λ0 will be
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exponentially small compared to all other eigenvalues[217, 222]. We will refer to λ0 as the

escape eigenvalue. This means that all higher modes of the eigenfunction expansion can be

ignored in the long-time limit, and we will have

Ψ(p, t) ∼ φ0(p)e−λ0t. (3.54)

To find an expression for the exit time distribution, we first note that each eigenfunction

in Eq. (3.53) satisfies Eq. (3.42). In particular, Eq. (3.54) then implies that we have the

condition

λ0φ0 = Aφ0 −
∂

∂p
(Bφ0) . (3.55)

As we showed in Eq. (3.49) to (3.51), we can transform the right hand side of the above

equation into the right hand side of Eq. (3.52). Applying the same procedure to the left

hand side, we have

λ0

∑
(n,m)

∫ ∞
p∗

φ0(p) dp = λ0, (3.56)

where we have used the fact that the probability distribution must normalize to 1. In the

long time time limit, our approximation is that φ0(p) encompasses all possible states of p
IE

,

and by assumption we are taking the initial condition as somewhere in the basin of attraction

of the undepressed state (i.e. above the saddle point p∗).

Then from Eq. (3.52) it follows that the exit time distribution will scale as

F(t) ∼ λ0e
−λ0t, (3.57)

which has a first moment of

〈T 〉 ∼ 1

λ0

. (3.58)

We have now reduced this problem to one of estimating the escape eigenvalue.

Before we work through this calculation, however, it will first be convenient to understand

some specific results from Newby & Keener [218] that apply to our system. As we will

see below, the problem of estimating the escape eigenvalue can be framed in terms of a

generalized eigenvalue problem. For our system, for almost all values of p, the diagonal
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matrix B is invertible. In this case the generalized eigenvalue equation

Av = µBv (3.59)

is equivalent to the standard eigenvalue equation

B−1Av = µv. (3.60)

It is simple to see that B−1A and A share the same null space (since B is invertible), and

that the nullspace is spanned by a unique vector ϕ0 (since A is a stochastic matrix – this

follows from the Frobenius-Perron theorem). Going forward, we let ϕ denote right null

vectors of A− µB, and η denote left null vectors of A− µB. In particular, we note that ϕ0

is a probability vector, meaning that it has sum 1, and all entries are positive.

It can be shown for matrices of the form B−1A, with A a stochastic matrix and B defined

as in Eq. (3.41)[218] that there is precisely one other positive right eigenvector, which we

denote ϕ1. The corresponding eigenvalue µ1 is nonzero for p 6= p∗, p`, and has the property

µ1(p) > 0 for p > p` and µ1(p) < 0 for p∗ < p < p`. The eigenvectors ϕ0, η0 (with

eigenvalue 0) and ϕ1, η1 (with eigenvalue µ1) are essential to defining an effective potential

U for our system. See Section 3.5.3 for a discussion of the complications of estimating these

eigenvalue/eigenvector pairs.

The second key component in estimating the escape time comes from the WKB approx-

imation, which provides a framework to reasonably define a potential function U . (Recall

that this is the central difficulty in applying the standard method from Section 3.2.1.) From

Eq. (3.54) we see that it will suffice to approximate φ0. We denote this approximation φε.

Motivated by the intuition from Section 3.2.1, we apply the WKB ansatz, namely that there

exists a potential U such that the φε can be expressed as

φε(p) = g(p)e−NU(p) (3.61)

where U(p) is a scalar function and g(p) is a vector. To construct such an approximation,

we take the asymptotic expansions U ∼ U0 + N−1U1 and g ∼ g0 + N−1g1, and substitute

these in to Eq. (3.42) (equivalently, Eq. (3.55)). After applying the standard techniques of
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perturbation theory, to lowest order we arrive at the matrix equation

Ag0 = −U ′0Bg0, (3.62)

which, for a fixed value of p, is equivalent to the matrix equation Eq. (3.59).

Newby & Keener [218] show that we can approximate this dominant term of the effective

potential as

U0(p) = −
∫ p

p∗

µ1(y) dy (3.63)

and show that the first order term of the potential satisfies

U ′1(p) =
ηT1 (Bϕ1)′

ηT1 Bϕ1

(3.64)

where we recall η1,ϕ1 are the left and right eigenvectors of Eq. (3.59) corresponding to the

eigenvalue µ1. For convenience, we define

χ(p) = exp

[
−
∫ p

p∗

U1(y) dy

]
(3.65)

and

B = bTA†Bϕ0 (3.66)

where A† is the pseudoinverse of A, ϕ0 is the eigenvector spanning the nullspace of A, and

b is as in Eq. (3.44). With all of these definitions in place, Newby & Keener [218] show that

the escape eigenvalue λ0 can be approximated as

λ0 ≈
B(p∗)

πχ(p`)

√
|U ′′0 (p`)|U ′′0 (p∗)e

−NU0(p`) (3.67)

For the systems discussed in Bressloff & Faugeras [216], Keener & Newby [217], Newby &

Keener [218], each of the terms in Eq. (3.67) can be calculated analytically, either because of

the simplicity of the model system or because of the low number of discrete states. Typical

examples shown as validation of this theory have approximately 3 states to the Markov

process. For our model system, the smallest number of possible states is 104. Regardless,

each of the quantities can be estimated numerically to give a theoretical estimate for the

escape time (Figure 16). We observe a reasonable fit between the theory estimate and the

simulated escape times.
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Figure 16: Theoretical estimate of escape time (red triangles) compared to simulated escape

times (grey dots) of the model system Eq. (3.37). It is computationally infeasible at this

time to estimate for N > 1500 (cf. section 3.5.3).
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3.5.3 Eigenvalue estimation

To compute the estimates shown in section 3.5.2, we need to numerically estimate specific

eigenvalues and eigenvectors of very large matrices. As this technique is independent of the

biological modeling of the rest of this work, we discuss it in some generality.

We wish to solve the matrix equation

Ay = µBy, (3.68)

where we let y be the state space vector for the 2-dimensional Markov process, A the transi-

tion matrix for that process, and B the diagonal matrix of the B(n,m)(p) values denoting the

right hand side of ṗ
IE

(Eq. (3.37), (3.38) and (3.41)). We recall that A,B are both functions

of p. If we assume that B is invertible, as it will be for almost every value of p, Eq. (3.68)

is equivalent to the standard eigenvalue problem

B−1Ay = µy (3.69)

For notational simplicity, let us define M0 = B−1A. As discussed in section 3.5.2 and

Newby & Keener [218], the matrix M0 will have precisely two right eigenvectors that are

also probability vectors. Our task is then to estimate these eigenvectors and the associated

eigenvalues.

Generically, the process of computing eigenvalues and eigenvectors for an arbitrary n×n
matrix M is well defined, and in fact analytically tractable. The eigenvalues are the roots

of the characteristic polynomial, an nth order polynomial in one variable. Though tedious,

many simple methods for root-finding exist for one dimensional functions (simple gradient

descent with a sufficient variety of initial conditions will suffice). Once the eigenvalues are

obtained, the associated eigenvectors can be found by solving a matrix equation, through,

for example, Gaussian row reduction. This process is ubiquitous throughout the applied

sciences, and any undergraduate level textbook in linear algebra will contain descriptions of

efficient algorithms for solving this problem (though of particular use are Golub & Van Loan

[222] and Press et al. [223]). There are slightly more advanced techniques which are known

to be efficient at computing eigenvalue/eigenvector pairs simultaneously, such as singular
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value decomposition and QR-factorization[222, 224].

Though the process of eigenpair computation is well-defined, there are particular compu-

tational problems that arise when dealing with very large matrices. For our model system,

with N neurons, recall that the two-dimensional Markov process has N2 possible states, and

so M0 is of size N2 × N2. Our numerical results span three orders of magnitude, with the

smallest simulated system having 1002 = 104 possible states, and the largest simulated sys-

tem having in excess of 1010 possible states. The symmetry properties of our model system

ensure that the transition matrix A has a sparse representation of ∼ O (N2) nonzero en-

tries, suggesting we may have some hope of solving this problem. However, the analytically

motivated algorithms for computing eigenpairs cannot ensure sparseness of the factorization

matrices. This means that, for example, in QR-factorization, the matrix Q will typically

have ∼ O (N4) nonzero entries. For our model system, this means that a minimal Q re-

quires storing 108 floating point numbers (which, at 4 bytes a float, accounts to ∼ 400MB to

store the matrix), while the largest possible Q requires storing 1020 floating point numbers

(which requires ∼ 100 million terabytes of storage). This is computationally infeasible.

To get around this, we can take advantage of the fact that we do not require the full

eigenspectrum for our problem, but rather, only two specific eigenpairs. We make use of a

technique know as iterative subspace projection (see Golub & Van Loan [222, Chapter 7]),

which solves the eigenvalue problem for a specific eigenvalue by efficiently projecting the

matrix onto subspaces. We note that a requirement for methods of this type are strong

starting estimates for the eigenvalues. In practice, this is implemented using a canned func-

tion in MATLAB, eigs [225]. Even with the optimized algorithms of professional scientific

software, memory constraints make computation infeasible for large systems. We are able

to estimate the eigenpairs for up to 1500 neurons, but the combinatorial growth of required

memory makes the current method of computation intractable for larger systems.

Then for us to effectively use this method, we need good estimates for our eigenvalues of

interest. We know the eigenvalue µ0 = 0, and the associated eigenvector corresponds to the

stationary distribution of the Markov process. For the eigenvalue µ1 we do not have an a

priori estimate. We do, however, know that µ1(p) switches sign as p passes through the fixed

points of Eq. (3.37). We can use this fact to construct an effective continuation method.

85



We adapt a method of eigenvalue continuation found in Kalaba et al. [226], though it seems

this method is a variant of the Jacobi-Davidson algorithm discussed in Golub & Van Loan

[222, (Chapter 10)], and is the basis for many continuation methods used in bifurcation

theory[227].

Let M be an n × n matrix, and let (y, µ) be an eigenpair, where M is parameterized

by some parameter α. Furthermore, let y = {yi}ni=1 be a probability vector, i.e. yi ≥ 0

for i ∈ {1, . . . , n} and
∑

i yi = 1. If we denote by 1 the n × 1 vector of all ones, then this

constrained eigenvalue problem may be stated as

My = µy

1Ty = 1.
(3.70)

Differentiating Eq. (3.70) with respect to α we find

∂M

∂α
y +M

∂y

∂α
=
∂µ

∂α
y + µ

∂y

∂α

1T
∂y

∂α
= 0

(3.71)

Re-arranging terms slightly, Eq. (3.71) becomes

∂M

∂α
y = (µIn −M)

∂y

∂α
+ y ·∂µ

∂α

0 = 1T
∂y

∂α
+ 0 · ∂µ

∂α

(3.72)

where In is the n × n identity matrix. Letting differentiation with respect to α be denoted

by ′, Eq. (3.72) can be re-written as the matrix equationM ′y

0

 =

µIn −M y

1T 0


︸ ︷︷ ︸

:= J(p)

y′

µ′

 , (3.73)

which can otherwise be stated as the initial value problemy′

µ′

 = J−1(p)

M ′y

0

 , (3.74)

with initial conditions to be specified. As long as the matrix J(p) is invertible, this problem

86



is well-defined, and we can use standard integration techniques to solve for the eigenpair

(y, µ).

To make sure that this problem is well defined, we should remark on the invertibility

of J(p). Rather than try to say something very general about J(p), we instead look only

at the restricted problem of interest to our system. We take M = M0 = B−1A, where

A is the transition matrix defined by Eq. (3.38) and B is the diagonal matrix defined by

Eq. (3.41). The Frobenius-Perron theorem guarantees that A has a unique eigenvector ϕ0

with eigenvalue 0, with ϕ0 being a probability vector (i.e. all positive terms, sums to 1).

From Section 3.5.3, we know that M0 has a unique eigenvector, ϕ1, such that ϕ1 6= ϕ0 and

ϕ1 is a probability vector. For values of p away from the fixed points of Eq. (3.37), µ1(p) 6= 0,

and thus ϕ1 and ϕ0 are linearly independent of each other. Moreover, they will be linearly

independent of any other eigenvectors (or generalized eigenvectors) of M0. Since our goal is

to estimate ϕ0 and ϕ1, it suffices to consider only a special case of J . Let J1 be the matrix

J with y = ϕ1, and similarly for J0. Suppose v is a vector not in the span of ϕ0,ϕ1. Then

v is expressible as a linear combination of eigenvectors and generalized eigenvectors of M0,

linearly independent of both ϕ0 and ϕ1. Then we observe that for any a ∈ R, β ∈ {0, 1},

Jβ

v

a

 =

µβv −M0v + aϕβ

1Tv

 . (3.75)

If the vector (v, a)T is in the nullspace of Jβ, we have

µβv −M0v + aϕβ = 0, (3.76)

which sets up a linear dependence between ϕβ and the other eigenvectors and generalized

eigenvectors of M0. As both ϕ0 and ϕ1 span one dimensional eigenspaces, no such linear

dependence can exist. Thus, Jβ has a trivial kernel, thus is invertible, and the initial value

problem in Eq. (3.71) is well-defined.

Because our problem is well-defined, solving Eq. (3.74) is in principle a trivial matter.

Using a standard integration scheme, we compute the derivative term by solving Eq. (3.73)

without explicitly inverting J(p), and then adjust values and continue. This process can

be entirely automated. In practice, however, the size of the matrices make this process
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time-prohibitive, as solving a system of 1012 equations will tax even the best computers. For

N ≤ 500, we employ the automated process, solving Eq. (3.74) with a fixed-step fourth order

Runge-Kutta integrator. For N > 500, we employ a partially automated process, where we

estimate the derivative term in the integration scheme very crudely. Our algorithm is as

follows:

1. Choose p near p`, so that µ0 = 0 and µ1 near 0.

2. Using eigs, compute a set of the smallest magnitude eigenvalues of M0 (typically ∼ 10).

3. For each of the eigenvalues in the previous step, compute the eigenvectors. Precisely 2

will be probability vectors. These are our initial estimates for ϕ0, ϕ1, and µ1.

4. Using eigs, refine the estimates from the previous step.

5. Compute the integration increment.

a. If N is small (< 500), for a fixed increment ∆p, compute the increment in µ1,ϕ1, ϕ0

using Eq. (3.73).

b. If N is large (> 500), for a fixed increment ∆p, estimate the increment in µ1 from

the previous two values computed for µ1. If we are on the nth increment of p, then

estimate the increment in µ1 as the average of the slopes of the lines connecting

µ1(pn) to µ1(pn−1) and µ1(pn−2).

6. Return to step 3 and iterate until p reaches a point past p∗.

By ranging over the interval of interest in the plasticity variable p, we are able to nu-

merically approximate µ1(p), as well as the left and right null vectors of A− µ1B. Once we

have this information, it is a simple matter to numerically estimate Eq. (3.63) to (3.66), as

well as U ′′0 . These are the estimates used in the generation of Figure 16.

3.6 CONCLUSION

Escape problems provide a useful perspective for studying a wide range of neuroscience

phenomena, and were used here to understand state switching (between an asynchronous

state and epochs of coordinated activity across the population) in the model of cortex first
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presented in chapter 2. Following some initial introductory preliminaries on escape problems

and bistable phenomena, we used a bistable Wilson-Cowan neuronal model as a canonical

example to illustrate the basic ideas and approach, drawing out the similarities to the classic

double-well potential.

We then examined our model of interest, a neuronal model with synaptic plasticity

included. We compared the balanced network model used here with a traditionally scaled

network, showing that the nonmonotonic relationship between escape time and system size in

the balanced network is a characteristic not possible to replicate with traditional mean field

scaling techniques. This nonmonotonicity appears to derive from the system size dependence

in the governing equations, making analogous analysis to classic double well-type problems

(i.e. using a potential energy function) more challenging.

To address this, we developed a psuedopotential, which allowed us to estimate escape

times. This approach necessitated overcoming several significant computational hurdles, as

the calculations needed to calculate escape times (without simulation) for even the smallest

system (N = 100) involve 1002 states. Nonetheless, for N < 1500, we were able to calculate

escape times which closely matched simulation results for escape times using the same system.

In addition to the applications to cortex considered here, this work opens up several

possible avenues for future research into the ways that finite size effects may explain popu-

lation dynamics. These include both computational problems (such as efficient estimation

of eigenvalues and eigenvectors for very large matrices), as well as analytical mathematical

questions examining the proper way to study noise in systems where the potential landscape

is intrinsically linked to the source of noise. In particular, much of the standard framework

for studying dynamical behaviors in noisy systems is predicated on the explicit decoupling

of the noise from an underlying dynamical landscape, making it possible to understand com-

plex activity in terms of low dimensional systems. To effectively study systems where the

dynamical landscape depends explicitly on the source of the noise, it will be necessary to ex-

tend our understanding of the current techniques of mean field models to include appropriate

corrections.
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4.0 CONCLUSION

In this work, we presented an extension of balanced neural network theory through the ad-

dition of short term synaptic plasticity and a treatment of stochastic effects. In chapter 2

we focused primarily on reproducing the qualitative features of an experimental result in-

congruous with simultaneous measurements. We were able to produce a balanced network

that demonstrated rare events of large, population-wide correlated activity, generated by

spontaneous stochastic effects. In chapter 3, we investigated the escape time behavior of a

finite size balanced network, and observed strongly non-Arrhenius behavior in simulation.

Following the work of Newby & Keener [218], we estimate the escape time by solving an

appropriate boundary value problem, which necessitated the estimation of two eigenvectors

of a matrix of O (N4), with N between 102 and 106.

In the rest of this section, we detail a few of the several future directions and possible

criticisms of this work. In both chapters, we focused on specific parameter ranges and values

and a relatively simple model structure, to balance analytical tractability, parsimony, and

realism. Thus, reasonable criticisms can be drawn with both the parameter values and

particular choices for the model structure.

4.1 SPIKING SIMULATIONS

An essential continuation of this work is the construction of a spiking network model that re-

produces the behavior we have outlined here. Qualitative models based on average quantities

run the risk of either ignoring or introducing confounding factors that can lead to qualitative

disagreement between the averaged model and the high dimensional spiking network. This
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holds especially true for the work in chapter 3 as we are interpreting the transition inducing

noise as due to finite size effects. This is the correct interpretation for the Markov model we

present, but it is important to find validation with a spiking model that models the dynamics

of N neurons, rather than modeling the dynamics of an aggregate of neurons (as we do in

rate models).

There is a reasonable expectation that our results will be reproducible in spiking net-

works. For the system from chapter 2, the fact that the synapses are slow compared to both

the excitatory and inhibitory populations means that the average synaptic activity must

depend more on the firing rate than on specific spike times. This suggests that the quali-

tative features cannot be fine tuned, as there will be a large region of parameter space that

produces statistically similar firing rate behavior. Moreover, balanced networks will have

a broad distribution of firing rates[30, 54], and previous work has shown that population

events of the type we study here are often a cascade effect instigated by ultra low frequency

neurons [66] – essentially, neurons that rarely spike, but when they do, all the other neurons

receive input. In that context, it seems likely that we will be able to produce events easily,

and the slow rhythmic component can be independently tweaked by setting the timescales

of the synapses. For the system from chapter 3, the change of synaptic scaling with system

is essential to the novel result, and it is of interest to validate the non-monotonic nature of

the escape time with the system size.

4.2 SYNAPTIC MODEL

An important question to pursue in future work is thus whether the behavior shown this

work is robust to our choice of depression model. While the sigmoidal form used for the

synaptic depression in chapter 2 simplifies and facilitates the bifurcation analysis, it differs

from other models in the literature[57, 65, 66, 96]. More specifically, our choice of threshold

steepness is particularly sharp. This large transition in synaptic efficacy over a small dynamic

range in the rate variables serves to emphasize the switch-like behavior in our system. While

this can be helpful from a modeling perspective, it disagrees somewhat with the known
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biology[90, 100]. Recalling Figure 5B, we have access to direct measurements estimating the

plasticity curve. To rectify this disagreement, we would wish to extend our model to include

a more realistic model of synaptic plasticity.

To that end, as preliminary work, we have used a least squares fit to a Hill-type function

to produce additional plasticity curves for use in the model (Figure 17 left panel). Using this

plasticity curve fit to data, we are able to reproduce the basic features found in chapter 2,

including persistent rhythmic activity, single events, and rhythmic events (Figure 17 right

panels). There is a subtlety to this change of plasticity curve, since the rates in our model

are scaled to live in [0, 1] while the measured data from Oswald & Reyes [90], Oswald et al.

[100] are in physical units. As such, we have an effective threshold parameter that controls

the minimum rate at which depression is recruited while still retaining the least squares

fits shown in Figure 17. Varying the effective threshold parameter is analogous to changing

the thresholds θ
EE

,θ
IE

in chapter 2, and is the main parameter we vary to produce the

qualitatively different event types seen in Figure 17.

The next step is to implement a Tsodyks-Markram style synapse model, which is known

to be able to faithfully reproduce synaptic behaviors observed in experiments. In particular,

this work should be done in conjunction with the spiking network simulations discussed in

section 4.1.

4.3 PARAMETER CHOICES

A broader exploration of the parameter values more generally would be valuable—for exam-

ple, exploring the effects of different potential synaptic strengths on the model dynamics. A

sensitivity analysis and exploration of all of the model parameters would allow us to evaluate

whether our model can capture different behaviors, such as variations in the amplitude of

population events. Related to the question of the potential range of behaviors in the model,

in future work it may be useful to examine population event dynamics as a function of ma-

turity (post-natal day) or cortical slice preparation (either by exploring the parameter space

of this model, or by expanding the model to consider these issues).
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Figure 17: Left panel: Fit to data from [89, 90]. Right panels: Simulated event types from the

model in chapter 2, with the plasticity variables replaced with the fit found in the left panel.

Moving left to right, we see persistent oscillatory activity, rhythmic events, and singleton

events. Along the top, plots of the two types of plasticity variables (E → I in purple, E → E

in orange). Along the bottom, plots of the activity (excitatory activity in red, inhibitory

activity in blue).
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4.4 ESCAPE TIME ESTIMATE

Finally, we wish to improve on the escape time estimate. There are three main reasons why

this is important. First, there are several standard techniques for computing escape times

that we did not discuss in this work, and they were unsuccessful in reproducing the results

found through simulation. A full understanding of why these methods failed is essential

to fully understand the mechanism leading to the non-monotonicity. These other methods

require computationally sensitive calculations, such as the estimating of a two dimensional

unstable manifold, or the computation of a one-dimensional path in a six-dimensional space.

These techniques are challenging at the best of times, and because of the nature of the

large synaptic inputs in our model, these techniques become especially challenging for stiff

systems. We have had some minor success at computing these paths and manifolds, but so

far our solutions have not been robust enough to reliably reproduce the qualitative features

of the escape time. Extending our work to successfully incorporate these additional estimates

will add credence to our novel result.

Second, we note that the method we have successfully used to generate escape time esti-

mates only works for systems sizes of up to ∼ 1500. The computation of specific eigenvalues

and eigenvectors of very large matrices is a difficult task, and one which has widespread

applications in machine learning, as well as many areas of the applied sciences. Further ad-

vancement of eigenpair computations is generally of use, and adds to the skill set of applied

researchers.

Third, while our method of escape time estimation provides good fits to the simulation

data for the region we can calculate, the memory constraints on this method make it func-

tionally impossible to numerically compute the escape times over the full range of simulated

system sizes. Because the method we employ here effectively reduces our model to the escape

of a single variable, we believe it should be possible to compute the escape times through

a variety of different methods, and not just through the eigenpair estimation. There are a

number of methods we have not had time to effectively implement, and we believe there are

tractable solutions to this problem.
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[121] B. Haider, M. Häusser & M. Carandini. Inhibition dominates sensory responses in the

awake cortex. Nature 493(7430), 97–100 (2013).

[122] P. C. Bressloff. Stochastic neural field theory and the system-size expansion. SIAM

Journal on Applied Mathematics 70(5), 1488–1521 (2009).

[123] M. A. Buice & J. D. Cowan. Field-theoretic approach to fluctuation effects in neural

networks. Physical Review E 75(5), 051919 (2007).

[124] D. F. Anderson, B. Ermentrout & P. J. Thomas. Stochastic representations of ion

channel kinetics and exact stochastic simulation of neuronal dynamics. Journal of

computational neuroscience 38(1), 67–82 (2015).

[125] B. Ermentrout. Simulating, analyzing, and animating dynamical systems: a guide to

XPPAUT for researchers and students, volume 14 (Siam, 2002).

[126] K. D. Harris & A. Thiele. Cortical state and attention. Nature reviews neuroscience

12(9), 509 (2011).

[127] I. Timofeev, F. Grenier & M. Steriade. Disfacilitation and active inhibition in the

neocortex during the natural sleep-wake cycle: an intracellular study. Proceedings of

the National Academy of Sciences 98(4), 1924–1929 (2001).
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