
Title Page 

Stress Dependence of the Burst Experiment for Determining Fracture Toughness 

by 

Yixuan Zhang 

B.S. Petroleum Engineering, China University of Petroleum, Beijing, 2017 

Submitted to the Graduate Faculty of 

Swanson School of Engineering in partial fulfillment 

of the requirements for the degree of 

Master of Science in Petroleum Engineering 

University of Pittsburgh 

2019



ii 

Committee Membership Page 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 

This thesis was presented 

by 

Yixuan Zhang 

It was defended on 

March 28, 2019 

and approved by 

Andrew P. Bunger, Ph.D., Associate Professor 

Department of Civil and Environmental Engineering 

Department of Chemical and Petroleum Engineering 

Hseen Baled, Ph.D., Assistant Professor 

Department of Chemical and Petroleum Engineering 

Robert Enick, Ph.D., Assistant Chair of Research,  

Department of Chemical and Petroleum Engineering 

Thesis Advisor: Andrew P. Bunger, PhD, Associate Professor, Department of Civil and 

Environmental Engineering & Department of Chemical and Petroleum Engineering 



iii 

Copyright © by Yixuan Zhang 

2019 



iv 

Abstract 

Stress Dependence of the Burst Experiment for Determining Fracture Toughness 

Yixuan Zhang, MS 

University of Pittsburgh, 2019 

 The so-called “burst experiment” is used in the petroleum industry to measure the fracture 

toughness of reservoir rocks. It is considered advantageous compared to other methods because it 

tests rocks subjected to confining stress, which is more like field conditions. However, recent 

numerical simulations show that the burst experiment is possibly fundamentally dependent on the 

confining stress in a way which is not considered in the analysis of the experimental data. The 

reason is existence of a period of stable crack growth prior to the unstable “burst”. This stable 

growth is difficult to detect, and it raises large uncertainty in the crack length used in analysis of 

results. 

In this thesis, a series of modified burst experiments with acoustic emission (AE) detection 

have been carried out to compare with predictions from modeling indicating that there will be 

stable growth for certain combinations of specimen geometry and loading, including the geometry 

most commonly used by industry. These tests give rise to evidence of stable growth before 

specimen rupture from two aspects. One is the difference between stable and unstable growth cases 

from AE records. The other is the behavior of calculated fracture toughness results. A criterion for 

spurious dependence of 𝐾𝐼𝐶 on confining stress for cases with stable growth is then specified based

on stability of the specimen after failure. Also, the results of experiments using unstable 

configurations provide more self-consistent estimates of fracture toughness, most notably shown 

in a series of burst experiments with only unstable growth showing a positive correlation between 

fracture toughness and confining pressure, which is consistent with typical observations in the 
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literature. Finally, in other types of experiments with fixed confinement, a range of geometry and 

loading for valid calculation of 𝐾𝐼𝐶 is indicated based on the global stability criterion, providing 

guidance for improved design of this widely-used test method. 
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1.0 Introduction 

1.1 Background 

The burst experiment (Abou-Sayed 1978; Abou-Sayed and Jones 1979) is an important 

technique utilized in the petroleum industry to estimate the fracture toughness of rocks subjected 

to stresses that simulate reservoir conditions. In common use, it involves applying radial 

confinement to the boundary of a cylindrical specimen with concurrent pressurization of an 

interior, axially-notched borehole. The outer and inner pressure is increased proportionally until 

the specimen bursts. In the original publications, a numerically-determined stress intensity factor 

(Bowie and Freese, 1972) gives a premise for subsequent stress intensity factor analysis (Abou-

sayed, 1978). In their modeling, prior authors assume the in-plane lines of elastic symmetry of the 

orthotropic plate coincide with the x axis and y axis. Under this assumption, the stress intensity 

factor is defined by an Airy stress function for plane symmetric loading. Then, fracture toughness 

measurements of both shale and sandstone specimens were performed, leading to an observation 

that the facture toughness can be increased substantially – by an order of magnitude or more – for 

rocks under confining pressure compared with the laboratory results of unconfined tests (Yoshioka 

et al., 2019, in preparation). These burst experiments were carried out on thick-walled cylinder 

specimens with bi-wing notches for fracture initiation, and the steps of fracture toughness 

estimation followed. A combination of published results is shown in Figure 1, which indicates a 

positive relationship between the fracture toughness and the confining stress. 

However, some recent numerical simulations (Yoshioka et al., 2019, in preparation) have 

demonstrated that the burst experiment could be fundamentally dependent on the confining stress 
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in a way which is not considered in the analysis of the experimental data. The modeling also 

predicts experiment modifications that will mitigate the spurious dependence on stress that in order 

to characterize the fracture toughness and actual variation with confining stress accurately. Hence 

the modeling leads to a two-fold working hypothesis. The first part of the hypothesis is that the 

current burst experiment is pseudo-dependent on the confining stress due to stable crack growth 

prior to the observed instability. The second part of the hypothesis is that a modified version will 

mitigate this issue and allow characterization of an accurate representation of the dependence of 

the fracture toughness on the confining stress.  

 

 

Figure 1: Published results of fracture toughness versus confining stress on Indiana Limestone (after 

Roegiers, 1991; Thallak, 1993; Abou-sayed 1978; Schmnidt, 1976). 

 

   

 

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

K
IC

(𝑴
𝑷

𝒂
𝒎

)

Confining stress (MPa)

Roegiers Thallak Abou-sayed Schmnidt



3 

1.2 Literature Review 

Griffith (1924) proposed that a crack will propagate when the strain energy release rate that 

occurs due to crack growth is greater than or equal to the increase rate of effective surface energy 

due to the creation of new free surfaces, as is shown in Figure 2. This theory is applicable to elastic 

materials that fracture in a brittle fashion like glass. It depends on a critical energy release rate, 𝐺𝑐,

which is supposed to be a material property. When loading is leading only to opening of the crack-

not tearing or shearing- and when material damage is localized to a very small region near the 

crack tip, the energy criterion holds near equivalence to 𝐾𝐼 = 𝐾𝐼𝐶 (Irwin, 1957), where 𝐾𝐼 is the

computed stress intensity factor and 𝐾𝐼𝐶 is the fracture toughness. Note 𝐾𝐼𝐶 =
𝐸′𝐺𝑐

𝛾𝑐
, where 𝐸′ =

𝐸

1−𝑣2 for Young’s modulus 𝐸 and poisons ratio 𝑣. 

Figure 2: Schematic diagram of Griffith Theory (after Griffith, 1924). 
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The theory of fracture based on small deformation and small-scale plasticity is known as 

Linear Elastic Fracture Mechanics (LEFM). It is used in the calculation of 𝐾𝐼𝐶 and the condition

of propagation 𝐾𝐼 = 𝐾𝐼𝐶. Based on LEFM, crack growth conditions are estimated by comparing

the stress intensity factor and comparing it against the measured fracture toughness of the material. 

In turn, 𝐾𝐼𝐶 can be estimated by experiments using the computed critical stress intensity factor

taken at the time of crack extension. 

Where 𝐾𝐼𝐶  is supposed to be a constant material property, for rocks it is observed to

depend on loading and geometry. For example, Schimidt and Huddle (1976) carried out 

experiments to study the effect of confining stress on fracture toughness of Indiana Limestone. 

They designed two types of experiments, namely, a single-edge-notch configuration (Figure 3a) 

and a three-point-bend setup (Figure 3b). According to the experimental results, they concluded 

that the fracture toughness can indeed vary as a function of the confining pressure. In the 

experiments with confinement up to 62 MPa, there was a linear positive correlation between the 

fracture toughness and the confining stress (see Figure 1). 
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(a)                                                                                         (b) 

Figure 3: Schematic of (a) three-point bend test; (b) single-edge test (after Schimidt and Huddle, 1976). 

To accurately represent the downhole conditions in petroleum reservoir, Abou-Sayed 

(1978) designed the burst experiment (see Figure 4) to accurately estimate the fracture toughness 

of specimens under confinement in a laboratory setting. Moreover, he put forward an analysis 

method based on fracture mechanics. He modified the evaluation process of 𝐾𝐼𝐶 for a confined

cylinder specimen to be the superposition of a jacketed specimen and an unjacketed specimen. In 

his model, the fracture toughness was computed as the product of a non-dimensional stress 

intensity factor (determined by the initial notch length and geometric loading configuration), inner 

pressure, and square root of 𝜋𝑎 (𝑎 is the radius of the borehole). Their results are shown in Figure 

1, in which there is a positive correlation between 𝐾𝐼𝐶 and confining stress.
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Figure 4: Cross section of the appratus for burst experiment (after Abou-Sayed, 1978) 

 

Roegiers and Zhao (1991) have carried out laboratory experiments to measure  KIC of rocks 

under simulated reservoir conditions. In their experiments, the Chevron-notched disk specimen 

(CDISK) is conducted in the load cell, which is shown in Figure 5. Here, P is the primary loading 

applying to the specimen, and the confining stress is supplied by hydraulic oil. The data generated 

from their tests are shown as a part of Figure 1. In general, they find the values of KIC  are 

significantly higher than previously published results. But the relationship between 𝐾𝐼𝐶  and 

confining pressure is again linear, which is broadly consistent with other works presented in Figure 

1. 
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Figure 5: Schematic of CDISK (after Roegiers and Zhao, 1991). 
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shown in Figure 6, wherein they put the specimen into a cylindrical cell and then inject fracture 

fluid until evidence for crack growth or fracture break-through is observed. The confining stress 

is provided by fluid in the chamber and isolated from flowing into the specimen by the surrounding 

membrane. They also used LEFM to estimate the fracture toughness and all the results are 
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presented in the Figure 1. There is again a positive relationship between KIC and confining pressure 

for Indian Limestone.  

 

Figure 6: Apparatus of test (after Thallak et al., 1993) 

 

Ko and Kemeny (2007) analyzed the dependence of fracture toughness on confinement and 

loading rate by carrying out a beam test with Flagstaff sandstone. The apparatus of this confined 

beam test is shown in Figure 7. The compressive load is applied from the platen on the top of the 

specimen. And the confining stress is applied from the surrounding cell. An elasto-plastic behavior 

or micro-cracking at the crack tip was considered in their model. Their experiment results also 

showed 𝐾𝐼𝐶 had proportional relationship with the confining stress (Figure 8). 
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Figure 7: Apparatus of confined short beam compression test (after Ko and Kemeny, 2007). 

 

Figure 8: KIC versus confining prssure for Flagstaff sandstone (after Ko and Kemeny, 2007). 
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  Recent research by Yoshioka et al. (2019, in preparation) revisited the burst experiment 

analysis. They predict that the crack tip will extend into regions of compressive stress in some 

cases. This is a problem because it means that the crack length at the time of the global instability 

(the “burst”) will be longer than the assumed value of 𝑙0 (Figure 9). This inaccuracy in the crack 

length will lead to inaccurate interpretation of 𝐾𝐼𝐶. Hence, they propose that there will be a possible 

stable growth before rupturing if the burst experiment has certain geometry and loading pressure 

ratios, and in these cases, there will be inaccurate estimation of the fracture toughness. 

 

Figure 9: Schematic of burst experiment (after Yoshioka et al., 2019, in preparation). 
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1.3 Motivations 

Previous research has studied the dependence of rock fracture toughness on confinement 

using different experiments, including single-edge-notch test, three-point-bending test, CDISK 

configuration test and beam test (recall in Section 1.2). These tests indicate fracture toughness is 

positively correlated to confining stress. However, the recent simulations of Yoshioka et al. (2019, 

in preparation) observed some potential inaccuracy of fracture toughness measurements when 

using burst experiment, a test which is thought to better simulate the petroleum reservoir 

conditions. They propose a hypothesis that there is a stable crack growth period prior to the 

observed rupture, and they put forward a modified modeling for the stress intensity factor (SIF) 

estimation. Motivated by this prior work, this thesis presents results from burst experiments with 

various loading geometries and, in some cases, with Acoustic Emission (AE) detection in order to 

experimentally evaluate the dependence of both KIc of rocks and of the burst experiment itself on 

the level of confining stress. 

1.4 Objectives 

The first objective of this research is to propose a simple criterion for the existence of a 

stable period of crack growth prior to global. This criterion is intended to be a straightforward way 

to predict the stability and aid design of both stable and unstable tests with certain combinations 

of specimen geometry and loading. 

The second objective is to compare experimental behavior for both stable and unstable 

configurations. A series of experiments are thus designed to observe possible evidence in some 
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tests of stable stable growth using both Acoustic Emission (AE) detection and comparison of the 

estimated 𝐾𝐼𝐶 between stable tests and unstable tests.  

The third objective is to analyze the dependence of 𝐾𝐼𝐶  on confinement in both burst 

experiments and fixed confinement tests. 
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2.0 Theoretical Analysis 

2.1 Problem Statement 

Consider a cylinder specimen centralized in a triaxial cell. The top view schematic is shown 

in Figure 9. There is a bi-wing initial notch along the wellbore. The inner pressure is applied inside 

the wellbore as 𝑃𝑖 and the confining pressure 𝑃𝑜 is applied to the exterior surface. The ratio of the 

inner pressure to the outer pressure is 𝑟, and the ratio of the outer radius to the inner radius is 𝑤, 

that is: 

𝑃𝑜 = 𝑟𝑃𝑖 ,      𝑎 = 𝑤𝑏                                                        (2-1) 

At the beginning of burst experiment, the pressure is increased simultaneously and 

proportionally with 𝑟 unchanged, until specimen ruptures. The pressure data is recorded, and the 

peak pressures are selected to estimate the fracture toughness via the method described later in this 

chapter. 

2.2 Criterion of Global Stability 

Classically, the analysis assumes that the crack grows unstably and so the rupture at the 

conclusion of the experiment is taken to imply growth of a crack with initial notch length 𝐿0 

(Yoshioka et al., 2019, in preparation). However, more recent analysis proposes that when the 

crack tip reaches into a compression area, the propagation will arrest, requiring further 
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pressurization to generate instability (Yoshioka et al., 2019, in preparation). When this happens, 

the actual crack length associated with rupture is longer than 𝐿0 , leading to an inaccurate 

estimation of the stress intensity factor and hence the fracture toughness. Therefore, it is proposed 

to modify analysis to account for this stable range of crack growth, firstly from the perspective of 

global force analysis. Consider that there are two driving forces acting on the specimen. One is the 

expansion force caused by the inner pressure, and the other is the compression force given by the 

confinement. The difference between the two forces determines the global forces acting on the 

specimen, which is defined as the difference between the internal and external forces via, 

∆𝐹 = 𝐹𝑖 − 𝐹𝑜 = 2𝜋𝑎𝑃𝑖 − 2𝜋𝑏𝑃𝑜                                      (2-2) 

Once the crack propagates, there is no longer a resisting force provided by the strength of 

the rock. Hence, the sign of ∆𝐹 determines if specimen failure will occur under globally stable or 

unstable conditions. That is to say, two types of global conditions can be classified, corresponding 

to positive or negative value of ∆𝐹, respectively. So, if ∆𝐹 > 0, the resultant force is outwardly 

directed, which means in this range the specimen is unstable after crack growth. This is the 

condition where the crack length at the onset of instability is known (𝐿0), thus enabling accurate 

estimation of fracture toughness. On the other hand, if ∆𝐹 < 0, the resultant force points inward, 

which means the specimen is stable even after crack growth. This leads to a hypothesis that there 

will be stable crack growth, with subsequent rupture occurring for a longer crack length compared 

to 𝑙0, and perhaps even with instability that is not associated with crack growth at all but instead 

just the rupture of the inner membrane. Hence, the global force analysis indicates a criterion for 

the existence of instability versus stability, and directly implies conditions where toughness 

measurement should be more or less reliable.  
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To simplify the criterion, the pressure ratio 𝑟  (
𝑃𝑜

𝑃𝑖
)and the radius ratio 𝑤  (

𝑏

𝑎
) are used. 

Substituting into Equation (2-2), the criterion based on global force equilibrium is given by,  

𝑟𝑤 < 1, (unstable condition) 

𝑟𝑤 > 1, (stable condition)                                            (2-3) 

2.3 Fracture Toughness Estimation 

Fracture toughness (𝐾𝐼𝐶) is a property which describes the ability of a material to resist 

fracture. The development of linear-elastic fracture mechanics (LEFM) started with Griffith’s 

research on glass. Fundamentally, the Griffith theory considers the energy changes associated with 

incremental crack growth (Griffith, 1924). Griffith postulated that the total potential energy of 

stressed solid body is related to the release of the stored energy and the work done by the external 

loads. Based on his theory, the fracture stress of glass can be predicted by using an energy balance 

equation, that is, the decrease of potential energy per unit thickness is equal to the increase of 

surface energy per unit thickness at the rupturing point, namely, 

𝑈 = 𝑈𝑠 + 𝑈𝑒 ≥ 0                                                           (2-4) 

here, 

𝑈𝑠: Elastic surface energy per unit thickness (J/mm). 

𝑈𝑒: Released elastic energy per unit thickness (J/mm).  
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and, 

𝑈𝑒 = 𝑉 ∫ 𝜎𝑑𝜀 ,      𝑈𝑠 = 2𝐿𝛾𝑠                                                 (2-5) 

Here, 

𝑉: Volume of specimen (mm3). 

𝜎: Applied stress (MPa).  

𝜀: Elastic strain. 

𝐿: Initial notch length (mm). 

𝛾𝑠: Specific surface energy for atomic bond breakage (J/mm2) 

  The energy balance criterion can be simplified using Hooke’s Law (𝜎 = 𝐸′𝜀, where 𝐸′ =

𝐸

1−𝑣2) and the strain energy releasing rate (𝐺𝐼 = 2𝛾𝑠), such as, the Stress Intensity Factor for a 

straight crack in an infinite domain where 𝐿 is the crack length. 

𝐾𝐼 = 𝜎√𝜋𝐿                                                                (2-6) 

  The critical value of stress intensity factor at which the crack extends is called fracture 

toughness, denoted 𝐾𝐼𝐶. Stress intensity factor is therefore a function of stress and initial length. 

Equation (2-6) is valid for a straight crack subjected to uniform tension in an infinite homogeneous 

solid. A modified equation for the estimation of fracture toughness for the burst experiment 

configuration was firstly put forward by Abou-Sayed (1978) as 

𝐾𝐼𝑐(𝑙) = 𝑃𝑖𝐾𝐼
𝐵(1, 𝑙, 𝑤, 𝑟)√𝑎𝜋                                             (2-7) 

𝑃𝑖: Inner pressure. 
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𝐾𝐼: Stress intensity factor. 

a : Radio of hole. 

r : Ratius of confining pressure over inner pressure. 

w : Ratio of outer diameter over inner diameter. 

𝑙: Normalized crack length L, where 𝑙 =
𝐿

𝑏−𝑎
. 

Here 𝐾𝐼
𝐵 is stress intensity factor normalized by √𝑎𝜋 which can be numerically computed. The 

original calculation of Abou-Sayed (1978) is shown in Figure 10(b). During the estimating process 

of 𝐾𝐼, an important parameter is the initial length of the notch, 𝐿0, given an initial value of the 

normalized crack length. 

𝑙0 =
𝐿0

𝑏−𝑎
                                                                   (2-8) 

For the case of a thick-walled cylinder (𝑤 > 9) and with confining pressure (𝑟 > 0), the 

fracture growth may be stable as characterized in evolution curve, as shown in Figure 10(a). If the 

initial length of fracture is 𝑙𝑈𝑆 , the fracture growth becomes stable as 𝐾𝐼
∗  decreases, hence 

𝑃𝑖√𝜋𝑎𝐾𝐼
∗ stays smaller than 𝐾𝐼𝐶 until the fracture growth becomes unstable again at the length 𝑙𝑆𝑈. 

Therefore, the crack is predicted to grow stably after initiation if the value of 𝑙 satisfies: 

𝑙𝑆𝑈 < 𝑙 < 𝑙𝑢𝑠                                                              (2-9) 

Thus, the analysis is useful in two ways. Firstly, it provides the necessary computed value 

of 𝐾𝐼
𝐵 for estimation of 𝐾𝐼𝐶 using experimental data for specimen geometry and pressure at the 

time of failure. Secondly, it corroborates the global stability criterion, showing that a period of 

stable crack growth can exist for small enough 𝑙0 provided that 𝑟𝑤 > 1. 
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                                                                            (a) 

 

                                                                             (b) 

Figure 10: Stress intensity factor evolutions against the fracture length, (a) according to Yoshioka et al. (2019, 

in preparation); (b) according to Abou-Sayed (1978). 
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2.4 Calculation of SIF 

During the estimation of fracture toughness, simulation for burst SIF is considered to be an 

important step. During this process, a method called G-theta (Geniaut et al., 2005) has been widely 

used to calculate the energy release rate after Griffith Theory proposing an energy balance method 

to analyze the fracture on glass as a brittle material.  The G-theta is based on the estimation of 

second derivatives of the energy potential with respect to crack length using the technique of 

virtual domain perturbation theta. Numerically it uses an integral over a surface, which is more 

accurate than the contour integral used by the J-integral (Rice et al. 1973). Evaluate the normalized 

SIF or the energy release rate G are related using Irwin’s formula (Irwin, 1958). 

The first step is to decomposition Equation (2-7) into elementary problems. Abou-Sayed, 

1978 proposed a method to decomposed it into two problems: 1) the jacketed problem, in which 

the pressure applied only on the inner cylinder and 2) the problem C, in which the confining 

pressure only applied on the outer cylinder as shown in Figure 11. Therefore, calculation process 

of burst SIF can be superimposed as: 

𝐾𝐼
∗(1, 𝑙, 𝑤, 𝑟) = 𝐾𝐼

𝐽∗(1, 𝑙, 𝑤) − 𝑟𝐾𝐼
𝐶∗(1, 𝑙, 𝑤)                                     (2-10) 

Our burst experiments use unsaturated rocks, which means pore pressure can be ignored 

( 𝑃𝑝𝑜𝑟𝑒 = 0 ). The superposition can be utilized into another version with a new part called 

unjacketed problem, shown in Figure 12: 

𝐾𝐼
∗(1, 𝑙, 𝑤, 𝑟) = 𝐾𝐼

𝐽∗(1, 𝑙, 𝑤) − 𝑟𝐾𝐼
𝑈∗(1, 𝑙, 𝑤)                                    (2-11) 
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This equation gives an approximate estimation of burst SIF, during which Jacket SIF and 

Unjacketed SIF can be simulated respectively.   

 

Figure 11: Superposition of the burst SIF (after Abou-Sayed, 1978). 

 

Figure 12: Approximate superposition for analysis of the burst SIF (after Abou-Sayed, 1978). 

The SIFs are estimated by the G-theta method, which is based on the second derivatives of 

the energy potential with respect to crack length using the technique of virtual domain perturbation 

𝜃. Geniant and Massin (2005) gives the detail of this process. Then the SIFs of both jacketed and 

unjacketed problems have been calculated using this method. Finally, the results from 
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superposition of these two SIFs is shown in Figure 13, 14. In these simulation results, the three 

types of relationship between normalized SIF and non-dimensional notch length are similar to 

these shown in Figure 13. When 
1

𝑟
 is larger than 𝑤 (𝑟𝑤 < 1), which means there is only unstable 

growth in these cases based on global force equilibrium criterion mentioned in Chapter 2, 𝐾𝐼
∗ is 

generally proportional to the initial notch length. If 
1

𝑟
 is equal to or even smaller than 𝑤(𝑟𝑤 > 1), 

a downward period will occur in SIF simulation. It is possibly due to a pre-existing stable growth 

according to our hypothesis.  

In order to calculate the fracture toughness with SIF simulation, the dimensionless initial 

notch length 𝑙 is fixed as 0.11 for 0.5-inch tests and 0.15 for 2-inch tests. Therefore, the normalized 

value of 𝐾𝐼
∗ for each test can be estimated according to the simulation results as shown in Figure 

13 and Figure 14, corresponding to the values of 𝑟 and 𝑤. Based on these values and Equation (2-

7), 𝐾𝐼𝐶  for each case can be estimated when the critical inner pressure can be obtained at the 

rupturing point during each burst experiment in following sections.  

 

Figure 13: Simulation results of KI
* for w=3. 
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(a) 

 

(b) 

Figure 14: Simulation results of KI
* for (a) w=12, (b) w=3, for fixed confinement tests 
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3.0 Experimental Method 

3.1 Apparatus and Procedure 

The burst experiment set-up is shown in Figure 15(a). To begin a test, the cylindrical rock 

specimen is placed in the center of a triaxial cell, surrounded by the oil filled chamber providing 

the confining stress. The invasion of oil into the specimen is prevented by the outer membrane. 

The specimen is held at the vertical center of the cell by two aluminum spacers. A Tygon tube 

(Figure 16b) is inserted into the central hole of specimen and sealed by two rubber plugs. Inside 

the Tygon tube, the steel rod holds the two rubber plugs in place, expanding them via compression 

thereby providing better sealing. This system provides for application of the inner pressure while 

preventing fluid from infiltrating the specimen. The steel plate covers are held in place by bolts at 

the top and bottom to keep the system intact. Two ISCO syringe pumps are used simultaneously 

to ramp up both the inner pressure and the confining pressure until a pressure drop is observed.  
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                                                                             (a) 

 

Figure 15 (a) Apparatus design for burst experiment, (b) triaxial cell. 
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                                                                             (b) 

 

                                                                             (a) 

 

(b) 

Figure 16: (a) spacers and specimen for tests, (b) tube to provide inner pressure and rubber plug for system 

sealing. 
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The series of burst experiments is shown in Table 1 and Table 2. There are two kinds of 

hole sizes: 0.5 inch (𝑤 = 12) and 2 inch (𝑤 = 3). The values of the parameter 𝑟 is chosen to be 

0,
1

6
,

1

8
. The stability is predicted based on global equilibrium criterion (Equation (2-3)). 

Table 1: Design of burst experiments (the “Stability” column is based on rw criterion, see Equation (2-3)). 

 

 

Table 2: Design of fixed confinement tests (the “Stability” column is based on rw criterion, see Equation (2-

3)). 

 

 

Test Name Stability Hole size (in) w=b/a r=Po/Pi rw

1 unstable 0.5 12 0 0

2, AE unstable 0.5 12 0 0

3, AE stable 0.5 12 1/8 1.5

4 stable 0.5 12 1/6 2

5 stable 0.5 12 1/6 2

6 unstable 2 3 0 0

7 unstable 2 3 0 0

8, AE unstable 2 3 1/8 0.375

9 unstable 2 3 1/6 0.5

10 unstable 2 3 1/6 0.5

11 unstable 2 3 1/6 0.5

12, AE unstable 2 3 1/6 0.5

Tests Name Stability Fixed Po w r rw

F-1 unstable 1 3.00 0.24 0.71

F-2 unstable 3 3.00 0.30 0.89

F-3 stable 4.8 3.00 0.40 1.21
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3.2 Specimen Preparation 

The burst experiment is performed with Kasota Valley Limestone, a dolomitic limestone 

found and quarried in southern Minnesota, especially near the Minnesota River and its tributaries. 

As a part of Oneota Dolostone Formation of Southern Minnesota, it has a long history of about 

450 million years (lower Ordovician Period) (Stauffer, 1933). This type of limestone is commonly 

used in architecture since it is magnesium rich, making it more resistant to weathering compared 

to more calcium-rich limestone. Table 3 shows some physical properties of the limestone (test data 

from Coldspring Quarry (2009). Also, Table 4 shows other properties of Kasota Valley Limestone 

from Lu (2018), and also including fracture toughness obtained from Kuruppu et al., (2014) using 

three-point-bending tests on semi-circular specimens. 
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Table 3: Properties of Kasota Valley Limestone (from Coldspring Quarry, retrieved on March 3 from 

https://www.coldspringusa.com/quarry) . 

 

 

Table 4: Materials properties of Kasota Valley Limestone (from Lu, 2018) 

 

 

 

 

 

Bulk Density ASTM C97

Avg. Bulk Density 154 pcf

Absorption ASTM C97

Avg. Absorption 3.75%

Compressive Strength ASTM C170

AVG. Compressive Strength 5663 psi

Modulus of Rupture ASTM C99

AVG. Modulus of Rupture 938 Psi

Limestone Test method

Young's Modulus (Gpa) 45

Uniaxial compression on 

cylindrical specimens (ASTM, 

2010a )

Possion's Ratio 0.3

Uniaxial compression on 

cylindrical specimens (ASTM, 

2010b )

Fracture Toughness (Mpa√ m) 0.77

Three-point loading on 

semicircular bend (SCB) 

specimens (Kuruppu et al., 2014 )
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Specimens were prepared by core drilling (shown in Figure 17a), sawing, and surface 

grinding (shown in Figure 18a) to obtain 6-inch diameter cylinder at 2.5 inches thickness with flat 

and parallel faces. These were then core drilled to give either a 0.5-inch or 2-inch central hole. 

Next a wire saw (Figure 17b) was used to cut two diametrically opposed (bi-wing) notches at 0.3 

inches length by 0.27 inches aperture (Figure 18bc).  

 

 

(a)                                                                                        (b) 

Figure 17: (a) Core drilling, (b) wire saw. 
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(a) 

 

(b)                                                                                            (c) 

Figure 18: (a) grinding, (b) 0.5-inch limestone specimen, (c) 0.5-inch specimen. 
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3.3 Steps of Burst Experiment 

The 0.5-inch and 2-inch central holes give cases with 𝑤 =
𝑏

𝑎
= 12  and 𝑤 =

𝑏

𝑎
= 3 , 

respectively. The experiments thus use both stable (𝑟𝑤 > 1) and unstable (𝑟𝑤 < 1) configurations 

(recall global equilibrium criterion, Equation (2-3)). Stable configurations use a 0.5-inch central 

hole (𝑤 = 12) with pressure ratios 𝑟 =
𝑃𝑜

𝑃𝑖
=

1

8
 and 𝑟 =

1

6
. Unstable configuration use 0.5-inch 

central hole 𝑤 = 12 with 𝑟 = 0 and 2-inch central hole (𝑤 = 3) with 𝑟 = 0, 𝑟 =
1

8
 and 𝑟 =

1

6
. 

At the beginning of testing, an aluminum spacer was placed in the bottom of the triaxial 

cell followed by the placement of the limestone specimen. A Tygon tube (recall Figure 16b) with 

a steel rod inside was placed immediately below the center hole. After that, a second aluminum 

spacer was put on the specimen through the Tygon tube. A steel plate was placed on the top of the 

cell and the top rubber plug was right inside this plate to seal the system. Two ISCO syringe pumps 

were connected, one to the triaxial cell giving confining pressure, and the other to the central tube 

providing the inner pressure.  

  After all the preparation work was done, two ISCO syringe pumps were turned on 

simultaneously and set to pressure ramp rates in order to keep a constant ratio between two 

pressures. The flow rate and the pressure were monitored until a sudden drop in pressure or 

increase in flow rate occurred. 
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3.4 Acoustic Emission Detection 

  In order to observe if there is evidence of stable crack growth in burst experiment, an 

Acoustic Emission (AE) detecting system (Figure 19a) was utilized so as to detect the acoustic 

energy released during rock breakage. It can show evidence of crack growth and other active 

damage modes in the stressed specimens, including small-scale damage before specimen 

rupturing, which would provide evidence of stable crack growth prior to macroscopic specimen 

failure. 

  Due to access limitations in the burst cell, four sensors were placed only on the bottom 

surface of top spacer (Figure 19b), thereby contacting the top surface of the specimen. Sensors 

were distributed as shown in Figure 19(c). Also, as is shown in Figure 19(c), the direction of the 

notches initiates crack growth between pairs of sensors. Hence, these four sensors work together 

to detect crack growth, albeit without resolving location in the axial direction of the specimen. The 

data collected includes a) number of events changing over time, b) location of each event, and c) 

hit rate. Note that hit rate accounts for every time any channel is triggered by a signal, whereas an 

event requires 3 channels to receive hits at nearly the same time. Therefore, the results from AE 

detection can be analyzed along with the pressure records to infer if rock breakage occurred prior 

to the peak pressure. 
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(a) 

 

                                              (b)                                                                                                         (c)           

Figure 19: (a) Acoustic Emission detection system, (b) sensors placed in the bottom spacer, (c) sensor 

distribution. 
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4.0 Results of Experiments 

4.1 Burst Experiments with w=12 

4.1.1  Pressure Records 

In the first series of experiments, the geometry configuration is fixed with a 6-inch outer 

radius and a 0.5-inch inner hole, which means 𝑤 = 12 (see Table 1). Therefore, all the variables 

are held the same except only changing 𝑟. Three different pressure ratios have been chosen in these 

tests, namely 𝑟 = 0, 𝑟 =
1

8
 and 𝑟 =

1

6
. Also, two tests are carried out with the AE Detection. To 

begin with, the inner pressure is increased at a constant rate, 6.2 MPa/min, starting from 2.5 MPa, 

simultaneously the outer (confining) pressure is increase at 1.03 MPa/min (
1

6
 of the rate of the inner 

pressure) from 0.42 MPa, or 0.78 MPa/min (
1

8
 of the rate of the inner pressure) from 0.31 MPa.  

In an example unconfined test (𝑟 = 0, test 1), the inner pressure reaches to 17.5 MPa 

(shown in Figure 20a), after which the specimen ruptures. This peak pressure is selected as the 

critical point to estimate the fracture toughness via Equation (2-7). In another typical case with 𝑟 =

1

6
 (test 4), the inner pressure ramps up to 50 MPa (shown in Figure 20d), which is selected as the 

critical pressure to calculate 𝐾𝐼𝐶 since the specimen ruptures at this point. As for the example test 

with 𝑟 =
1

8
 (test 3), the peak inner pressure is 47.4 MPa when the specimen begins to rupture. In a 

word, the critical inner pressure for each test has been selected, corresponding to the pressure drop 

taken as evidence of specimen’s rupture. The resulting estimate of 𝐾𝐼𝐶 will be presented in the 

next chapter. 
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                                  (a)                                                                                         (b) 

   

(c)                                                                                           (d)

 

                                                                             (e) 

Figure 20: Pressure records for burst experiments with w=12, (a) test 1 (unconfined), (b) test 2 (unconfined), 

(c) test 3 (r=1/8), (d) test 4 (r=1/6), (e) test 5 (r=1/6). 
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4.1.2  AE Records 

The modeling (see Chapter 2) and global stability (Equation (2-3)) both predict that there 

will be stable growth for 𝑤 = 12 with 𝑟 > 0. Hence, tests with 𝑟 =
1

6
 and 

1

8
 presented here, which 

are predicted to have a period of stable growth before specimen rupture. Acoustic Emission (AE) 

records indicating significant generation of acoustic energy before specimen rupturing will be 

taken as evidence of stable growth of the crack prior to the rupture. By comparing two series of 

AE records from one unconfined test (unstable growth, Figure 21) and one confined test with 𝑟 =

1

8
 (with predicted stable growth, Figure 21), both with 𝑤 = 12, indicate a difference evidencing 

stable crack growth in the latter case. It is the clear that the number of events grows in a different 

way for these two cases. For the unconfined test, predicted to have only unstable growth, the 

number of events keeps almost unchanged before specimen rupturing. Then it suddenly increases, 

corresponding to the pressure drop point shown in Figure 21. But, for the confined test with 𝑟 =
1

8
, 

with predicted stable growth, the number of events steadily increases from 0 to 250 over a period 

of about 400 seconds of loading (Figure 22). Then it suddenly grows from 250 to 700, 

corresponding to the rupture of specimen determined by pressure drop point in Figure 22.  

   Visible inspection was attempted in order to strengthen the evidence for the existence of 

stable growth. A test with 𝑟 =
1

8
 has been repeated and manually terminated before the rupture. 

AE records during this test again show steady growth of the event number before the pressure 

peak. But, before rupture occurs, loading is halted and in order to observe the physical evidence 

of stable growth, the unruptured specimen was cut into two halves. However, there was no visible 

trace of stable growth. That is to say, AE records show an obvious difference between stable 

growth and unstable growth, but it still needs visual proof of the existence of stable fracture growth. 
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Figure 21: AE records corresponding to test 1 with w=12, r=0 (predicted to has only unstable growth). 

 

Figure 22: AE records corresponding to test 3 with w=12, r=1/8 (with predicted stable growth). 
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4.2 Experiments with w=3 

4.2.1  Pressure Records 

Unlike the tests with 𝑤 = 12, the burst experiments with 𝑤 = 3 are predicted to only have 

unstable crack growth. This series of burst experiments have been carried out also with different 

pressure ratios, while all the other variables are controlled the same as before (see Table 1). Hence, 

being the same as all other tests, the initial inner pressure is 2.48 MPa, and the increasing speed of 

inner pressure is also fixed as 6.2 MPa/min. Since the configuration 𝑤 and initial notch length of 

each specimen are also fixed, the pressure ratio 𝑟 (taken as 0, 
1

8
, and 

1

6
 ) is the only variable in this 

series of tests. All the pressure records of experiments designed as in Table 1 are shown in Figure 

23. 

A typical 2-inch unconfined test (𝑟 = 0, test 6) is shown in Figure 23(a). The inner pressure 

increased up to 2.2 MPa and then the specimen ruptured from the initial notch. This peak pressure 

is selected to be the critical pressure to estimate 𝐾𝐼𝐶 in the next chapter. Then in a typical 2-inch 

confined test with 𝑟 =
1

6
 (test 9), the outer (confining) pressure was applied with 1.03 MPa/min (

1

6
 

of the rate of the inner pressure) from 0.41 MPa. Finally, the inner pressure increases to 20.8 MPa 

(Figure 23c), after which the specimen ruptures into 3 pieces (Figure 24). Since Figure 23(c) shows 

two peaks of inner pressure, it is questionable which one should be chosen to estimate the fracture 

toughness of the notch. If the second one is chosen, 𝐾𝐼𝐶 would be 2.21 𝑀𝑃𝑎 ∙ 𝑚0.5, which is much 

larger than results from other similar cases and different experiments like beam tests (Lu, 2018) 

on the same material. Therefore, the first peak is selected to be the critical point to estimate 𝐾𝐼𝐶. 

A possible interpretation for a third fracture is that the specimen failed along the notch in one 
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direction at the first peak, after which it broke 90 degrees from the initial breakage at the second 

peak. Afterwards, it failed at the second notch and the specimen subsequently became unstable 

(not satisfying global force equilibrium, as described in Section 2). To test the hypothesis, two 

more tests have been repeated. Since the similar phenomenon shows up again and after trying to 

calculate 𝐾𝐼𝐶 using each pressure peak, our hypothesis seems to be supported that the first peak 

corresponds to initial growth and should be used to compute 𝐾𝐼𝐶. 
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                                 (a)                                                                                         (b) 

 

                                  (c)                                                                          (d) 

  

                                                 (e)                                                                                         (f) 

Figure 23: Pressure records for burst experiments with w=3 (2-inch hole), (a) test 6 (unconfined), (b) test 8 

(r=1/8), (c) test 9 (r=1/6), (d) test 10 (r=1/6), (e) test 11 (r=1/6), (f) test 12 (r=1/6). 
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Figure 24: Specimen from test 12 after test with a third crack. 

 

4.2.2  AE Records 

The AE records in burst experiments with 𝑤 = 12  present some differences between 

unstable growth and stable growth (recall Figure 21, Figure 22). For tests with 2-inch hole size, 

both the SIF calculation and global equilibrium criterion predict that there will only be unstable 

growth in these tests with 𝑟 = 0, 
1

8
 and 

1

6
. Hence it is useful to observe characteristics of unstable 

growth in these AE records to compare to those previous tests with possible stable growth. 

In two tests with 𝑟 =
1

8
 (test 8) and 𝑟 =

1

6
 (test 12) for 𝑤 = 3, the peak inner pressures have 

been selected to be 4.96 and 4.24 MPa, after which the specimen ruptures into two parts. The AE 

records show a similar behavior to the previous test with only unstable growth when 𝑤 = 12 (0.5-

inch hole) and 𝑟 = 0. In detail, in the case with 𝑤 = 3 and 𝑟 =
1

8
 (test 8) when the pressure 
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increases before specimen rupturing, the number of events stays around 3 for 20 seconds until a 

sudden pressure drop occurs (Figure 25a). Then the number of events increases to over 10 suddenly 

(Figure 25a). And in the case with 𝑟 =
1

6
 (test 12) when the pressure is ramping up before the first 

peak (Figure 25b), the number of events remains almost unchanged at 6 for 20 seconds then 

suddenly goes up to 8 (Figure 25b), corresponding to the pressure drop. These results further show 

the feature of test with unstable growth from AE using a different geometry configuration. That 

being said, the cause of the few events that occurred at the early time is unclear and it cannot be 

ruled out that it could be associated with unexpected stable crack growth. 
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(a) 

 

(b) 

Figure 25: AE records corresponding to burst experiments with w=3 (a) r=1/8 (test 8), (b) r=1/6 (test 12). 
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4.3 Fixed Confinement Tests 

The outer and inner pressure of the original burst experiment (Abou-Sayed, 1978) increases 

with a constant ratio 𝑟. In previous tests, both the initial inner pressure and the initial notch length 

are fixed. Then those tests are designed to analyze the dependence of pressure ratio 𝑟 and the 

specimen configuration 𝑤. In this part, a series of tests with fixed confinement have been carried 

out to further evaluate the possible stress dependence of the behavior from another perspective. 

Three levels of outer pressure have been applied for tests with the same geometry (𝑤 = 3), 

namely 1 MPa, 3 MPa and 4.8 MPa. The specimens after the tests and the pressure monitoring 

results are shown in Figure 26(a) and Figure 26(c). Being similar to burst experiments with 𝑤 =

3, when the confining stress was larger than 3 times of inner pressure, the specimen was globally 

stable and there was no third or fourth fracture appearing. This observation is consistent with the 

single pressure drop in Figure 26(c, e). The first peaks, which have been chosen to be the critical 

points to estimate the 𝐾𝐼𝐶, are 4.07 MPa, 9.71 MPa and 11.55 MPa, respectively.  
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(a) 

 

(b) 

 

(c) 

Figure 26: Tests with fixed confinement as, (a) 1 MPa (test F-1), b) 3 MPa (test F-2), c) 4.8 MPa (test F-3). 

Specimen rupture  

Specimen rupture  

Specimen rupture  



 46 

5.0 Discussion 

5.1 Estimates of Fracture Toughness 

5.1.1  KIC Calculation 

The facture toughness for the burst experiment is determined by critical pressure and 

geometry. Using the SIF computed as described in Chapter 2. The critical inner pressure point has 

been identified for each test, as described in Chapter 4. In this chapter, 𝐾𝐼𝐶 is estimated for each 

situation using Equation (2-7), with the results shown in Table 5. Also, for the tests with fixed 

confinement, 𝐾𝐼𝐶 is shown in Table 6. It is clear that 𝐾𝐼𝐶 varies significantly from 0.34 𝑀𝑃𝑎√𝑚 

to 1.55 𝑀𝑃𝑎√𝑚. Connecting this variation to geometry and loading is the main topic of discussion 

in this chapter. 
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Table 5: Summary of parameters and KIC calculation for all tests (note stability is determined by “rw” 

criterion, see Equation (2-3); “AE” means this test is under AE detection). 

 

 

Table 6: Summary of parameters and KIC calculation for fixed confinement tests. 
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5.1.2  Configurational Dependence 

This section presents analysis of the configurational dependence of 𝐾𝐼𝐶. All the results of 

𝐾𝐼𝐶 are summarized in Figure 27. Since there are two independent variables in the experiments, 

pressure ratio 𝑟 and radius ratio 𝑤, the x axis is set to be 𝑟, and the tests with different 𝑤 are 

divided into two groups.  

On the one hand, we focus on the calculated results in each group with the same hole size. 

In the group of tests with 𝑤 = 3, which has only unstable growth, presenting a linear positive 

correlation between 𝐾𝐼𝐶 and 𝑟. However, in the group with 𝑤 = 12, the correlation is not apparent, 

which might be due to the stable growth.  

On the other hand, when comparing the results between each pair of tests with the same 𝑟 

but the different 𝑤, the dependence on 𝑟 and 𝑤 can be observed. In detail, tests with smaller hole 

size (larger 𝑤) lead to a larger value of calculated 𝐾𝐼𝐶. Even in the unconfined test (𝑟 = 0), 𝐾𝐼𝐶 

calculated from 0.5-inch hole set-up (𝑤 = 12) is about twice the 𝐾𝐼𝐶 from 2-inch hole set-up (𝑤 =

3).  
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Figure 27: Results of KIC calculation for all tests. 
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5.2 Dependence of Fracture Toughness on Confinement 

5.2.1  Stable Tests 

Recall the past burst experiments have led to a belief that 𝐾𝐼𝐶  depends upon confining 

stress (Figure 1). This section examines the possible dependence of 𝐾𝐼𝐶 on confinement in 0.5-

inch burst experiment with possible stable growth. With all other variables the same except 

confinement, it is firstly observed that the values of 𝐾𝐼𝐶 calculated from all confined tests are over 

50% larger than the unconfined ones. For example, 𝐾𝐼𝐶 of the test with 𝑟 =
1

8
 is larger than that of 

the test with 𝑟 =
1

6
, which is contrary to results from 2-inch tests. Unlike the results from previous 

published research, which presents a linear positive correlation between 𝐾𝐼𝐶 and confining stress 

(see Figure 1), the results from these tests show an unanticipated behavior, which is a negative 

correlation, i.e., In detail, when the confining pressure is large enough, a negative correlation 

occurs (Figure 28a). If the global equilibrium criterion is used to analyze this phenomenon, this 

trend is clearly in the range of 𝑟𝑤 > 1 (stable growth condition), as shown in Figure 28(b). 

  Taking all these results into account, the dependence of fracture toughness on 

confinement in stable tests are hard to interpret. But these results could be another evidence of 

difficulty arising from stable fracture growth. It is consistent with the hypothesis that the stable 

growth will lead to inaccurate estimation of fracture toughness.  
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(a) 

 

(b) 

Figure 28: Results from burst experiment with w=12, (a) KIC versus confining pressure, (b) KIC versus rw 

(global equibrium criterion, see Equation (2-3)). 
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5.2.2  Unstable Tests 

The dependence of 𝐾𝐼𝐶 on confinement appears more clearly in the burst experiment with 

𝑤 = 3  (2-inch hole). It is consistent with the published results that 𝐾𝐼𝐶  has a linear positive 

correlation with the confining stress, as shown in Figure 29(a). Recall modeling and the AE records 

show that there is only unstable growth in this series of tests. Also, all these tests are in the range 

of 𝑟𝑤 < 1  (shown in Figure 29b), which is proposed to be unstable condition in the global 

equilibrium criterion (see Chapter 2, Equation (2-3)). In addition, when looking back to pressure 

records in Figure 23, there is a trend toward the global force equilibrium (𝑟𝑤 = 1) after the rupture 

in these tests. Taken together, the evidence points to only unstable growth in this series, which, in 

turn, shows a clear positive correlation between 𝐾𝐼𝐶 and confinement. 
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(a) 

 

(b) 

Figure 29: Results from burst experiment with w=3, (a) KIC versus confining pressure, (b) KIC versus rw 

(global equibrium criterion, see Equation (2-3)). 
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5.2.3  Fixed Confinement Tests 

In this part, the dependence of 𝐾𝐼𝐶 on confinement will be discussed using results from 

fixed confinement tests. Recall that there are three values of confining pressure applied for these 

tests with the same configuration (𝑤 = 3), namely 1 MPa, 3 MPa and 4.8 MPa. The 𝐾𝐼𝐶 for each 

test has been calculated respectively, as 0.35𝑀𝑃𝑎 ∙ 𝑚0.5, 0.64 𝑀𝑃𝑎 ∙ 𝑚0.5and 0.34 𝑀𝑃𝑎 ∙ 𝑚0.5, as 

shown in Figure 30(a). An unanticipated phenomenon shows up again that when confining stress 

is getting large enough, the 𝐾𝐼𝐶  decreases, which is similar to the results from 0.5-inch burst 

experiments. This phenomenon possibly can be explained using the global equilibrium criterion 

(see Equation (2-3)). Figure 30(b) shows that the first two tests are in the range of 𝑟𝑤 < 1, which 

leads to a linear positive correlation between the fracture toughness and the confining stress. 

However, the last test, falling in the range of 𝑟𝑤 > 1, shows a downward trend. This is consistent 

with tests with the possible stable growth.  

These results further strengthen the previous argument that when confining stress is large 

enough (𝑟𝑤 > 1), the dependence of 𝐾𝐼𝐶 on confinement will be difficult to interpret, which is 

possibly due to the stable growth causing inaccurate estimation of 𝐾𝐼𝐶. In contrast, in the range of 

𝑟𝑤 < 1, there appears to be a linear positive correlation between 𝐾𝐼𝐶 and confining pressure.  
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(a) 

 

(b) 

Figure 30: Results from fixed confinement tests, (a) KIC versus confining pressure, (b) KIC versus rw (global 

equibrium criterion, see Equation (2-3)). 
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5.3 Summary of Recommendations 

The recommendations for future application and research using burst experiments are as 

follows:  

1.  It is desirable to use unstable configurations (𝑟𝑤 < 1). Otherwise, there is potential for 

inaccurate estimation of 𝐾𝐼𝐶 in general including a possibility of spurious dependence of fracture 

toughness on confining stress. Additionally, the global equilibrium criterion (Equation (2-3)) is 

found to be valid to classify the situations by comparing the radius ratio 𝑤 and the pressure ratio 

𝑟 (inner over outer). When 𝑟𝑤 > 1, there is possible stable fracture growth before rupture, which 

leads to inaccurate estimation of the fracture toughness. 

2.  It is necessary to further investigate the existence of stable growth. Some clues could 

be found by artificially terminating a burst experiment right before the rupturing point, and then 

the specimen should be cut layer by layer, which would comprise a more comprehensive search 

than what carried out here. If some visible evidence can be observed, the existence of stable growth 

can be more conclusively determined. 

3.  A 3D distribution of sensors should be used to get more information from AE detection. 

More compelling evidence of the pre-existing stable growth would be found if locations were 

reliable and, better yet, if moment tensor analysis (Shigeishi and Ohtsu, 2001) could be carried 

out on the AE. 

4.  Practically, it is better to use larger hole size when performing burst experiment since 

the small hole size will lead to higher overall pressures during the test. This higher pressure leads 

to higher test failure rates. 
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6.0 Conclusion 

This research is aimed at identifying stable crack growth in the burst experiment, 

demonstrating its consequences, and proposing modification for overcoming the problems it 

creates. Additionally, this research studies the dependence of fracture of rock on confinement. 

The main contributions of this thesis are as follows: 

1. Evidence of stable growth of fracture has been found out from two aspects. One is the 

features of AE detection records. In general, the records from predicted stable growth tests are 

different from the tests predicted to have only unstable growth. Firstly, the number of events is 

much larger than those in only unstable growth situation. Also, there is a steadily increasing trend 

of events versus time in the stable growth tests.  Finally, there is a downward trend in stable tests 

for 𝐾𝐼𝐶 versus confinement, which could be due to stable crack growth.  

2. The dependence of 𝐾𝐼𝐶  on confinement has been analyzed with both proportional 

pressurized and fixed confinement tests. In the tests with only unstable growth (when 𝑟𝑤 < 1), 

there is a linear positive correlation between 𝐾𝐼𝐶 and confining pressure. But in the tests with stable 

crack growth, it is difficult to interpret this dependence. In detail, a negative correlation is always 

appearing when the confining stress is large enough, such that 𝑟𝑤 > 1 (stable condition). 

3. A criterion of stability based on global force equilibrium has been proposed and tested 

(see Equation (2-3)). It is shown to be effective for determining the growth regime. If 𝑟𝑤 < 1, 

there will be only unstable crack growth. Otherwise in the range of 𝑟𝑤 > 1, the stable crack growth 

is predicted to exist, which can lead to an inaccurate estimation of 𝐾𝐼𝐶. 

In summary, AE records show evidence of stable growth prior to specimen rupture, leading 

to inaccurate estimation of 𝐾𝐼𝐶  and unclear dependence of 𝐾𝐼𝐶  on confinement. But for the 
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unstable cases, there is a linear positive correlation between 𝐾𝐼𝐶 and confining pressure. The global 

equilibrium criterion is able to predict the stability of burst experiment. The future research can 

use this criterion to design burst experiment and then use advanced analyses of AE results, 

experimentation on other rocks as well as more ideally brittle materials such as glass and paused 

stable experiments with detailed serial sectioning. All of these extensions would bring clarity to 

the nature of the stable growth as well as to better understand a deeper, more long-standing 

question around the mechanical origin and a priori prediction of stress dependence of rock fracture 

toughness. 
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