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Abstract 

Homogenization of Inconel 718 Made by Additive Manufacturing and Suction Casting 
 

Matthew Gargani, MS 
 

University of Pittsburgh, 2019 
 
 
 
 

Inconel 718 is considered a promising candidate for production via additive manufacturing 

(AM) due to its excellent weldability. However, compared to traditional manufacturing methods, 

less attention has been paid to developing heat treatments of AM components. To better design the 

post-processing of Inconel 718 made by AM techniques, the CALPHAD (Calculation of Phase 

Diagrams) method is applied to study the phase equilibrium, metastable phase behavior, and phase 

transformations during the homogenization process of Inconel 718. Scanning electron microscopy, 

energy dispersive X-ray spectroscopy, and electron backscatter diffraction are employed to study 

the microstructure evolution of different samples supporting the CALPHAD model prediction. 

Suction cast samples are also investigated to provide a benchmark for comparison. The 

calculations and experiments are in agreement that homogenization occurs more rapidly in samples 

made by laser-powder bed fusion than by suction casting. Intriguingly, significant grain growth 

occurs at the homogenization temperature of 1,180°C for the suction cast samples, but only 

recrystallization and minor grain growth occurs for the AM samples. AM Inconel 718 samples 

show promise for reducing the time required for homogenization heat treatment. It is observed that 

the detrimental Laves phase dissolves in AM samples within 20 minutes due to the smaller grain 

size and less pronounced Nb segregation than suction cast samples. The new findings confirm that 

post-processing optimization for AM Inconel 718 components are essential. 
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1.0 Introduction 

Additive manufacturing (AM) methods have the potential to disrupt businesses dominated 

by traditional subtractive manufacturing methods; however, in order for the full potential of AM 

to be achieved, significant resources must be devoted to understanding the different 

microstructural behavior of AM parts and optimizing the mechanical properties of the final AM 

product. Powder-bed fusion (PBF) has become a leader amongst AM methods due to the ability to 

create near-net shape complex geometries with minimal wastage of raw material. Inconel 718 is 

an excellent candidate for PBF due to its excellent weld-ability and preexistence of mass-produced 

Inconel 718 powder for other powder manufacturing methods (e.g., Hot Isostatic Pressing (HIP)). 

This research explores the homogenization heat treatment behavior of Inconel 718 parts produced 

by PBF and by suction casting. 

1.1 Additive Manufacturing 

As one of the most widely used AM techniques, PBF is capable of building components 

with complex geometry layer-by-layer [(Das 2003; Kruth et al. 2005; Osakada and Shiomi 2006; 

Yadroitsev et al. 2010; Gu et al. 2012)], and thus results in less wasted material to create parts and 

requires less capital investment in tools and dies, which are essential in the conventional 

subtractive manufacturing processes [(Ma, Wang, and Zeng 2015)]. Additionally, due to extremely 

high heating and cooling rate, PBF can generate refined grain structures along specific directions 

[(Amato et al. 2012; Z. Wang et al. 2012; Jia and Gu 2014; Ma, Wang, and Zeng 2015; Strößner, 
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Terock, and Glatzel 2015; Raghavan et al. 2017)] and hence is able to improve the mechanical 

properties of materials. Due to having excellent weldability, Ni-based Inconel 718 superalloy is 

attracting tremendous attention from researchers and engineers as a prime candidate for the PBF 

process to achieve promising properties. Moreover, because the commercially available 

Inconel 718 powders developed for HIP operations can be used in PBF, and on account of the high 

tool wear that Inconel 718 causes in traditional subtractive manufacturing methods [2000_Davis, 

(Safdar et al. 2013; Ma, Wang, and Zeng 2015; Li et al. 2018; Huang, Chaturvedi, and Richards 

1996; Chlebus et al. 2015; X. Wang, Gong, and Chou 2017)], the application values of PBF 

Inconel 718 are significantly promoted. 

1.2 Inconel 718 

Inconel 718 is a precipitation-hardenable superalloy with excellent properties at high 

temperature, such as high strength and exceptional corrosion and creep resistance. The allowable 

compositions are given in Table 1, with the allowable compositions based on weight percent but 

in Table 1 are presented also in atomic percent herein for comparison [(ASTM 2018)]. Inconel 718 

is stable for utilization up to 650℃, which allows for use in aircraft engines, rocket motors, and 

nuclear reactors [(Cozar and Pineau 1973; Sundararaman, Mukhopadhyay, and Banerjee 1992; 

Slama and Abdellaoui 2000; Kuo et al. 2009; Zheng et al. 2012; Beaubois et al. 2004) (Keiser and 

Brown 1976)]. During the rapid solidification that occurs due to the high cooling rates of PBF, 

Inconel 718 forms dendrites with segregated microstructure; in the interdendritic zones the 

nonequilibrium, detrimental Laves phase ((Ni,Fe,Cr)2(Nb,Mo,Ti), Hexagonal C14) forms [(Keiser 

and Brown 1976) (Ram et al. 2005; Schneider, Lund, and Fullen 2018)]. The Laves phase usually 
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precipitates during solidification of Inconel 718 due to microsegregation of heavy elements such 

as Nb and Mo, and causes detrimental effects on the properties of alloys. For instance, the existence 

of Laves phase can initiate and propagate cracks [(Zhang et al. 2018)] and reduce tensile and stress 

rupture properties [(Ram et al. 2005)]. In addition, the formation of Laves phase consumes the 

necessary alloying elements (mainly Nb and Ti) for forming γ'' (Ni3Nb, BCT D022) and γ' 

(Ni3(Ti,Al), FCC L12), which are the major and minor coherent strengthening phases of 

Inconel 718, respectively. Therefore, homogenization heat treatments are usually required for the 

as-solidified samples to dissolve Laves phase and to release Nb and Ti to the matrix to allow for 

the local composition to be suitable for forming beneficial microstructures, especially the 

precipitation hardening phases γ'' and γ' during subsequent annealing processes [(Zhang et al. 2015; 

Trosch et al. 2016; Deng et al. 2017; Popovich et al. 2017; Tucho et al. 2017; Zhang et al. 2018; 

Huang, Chaturvedi, and Richards 1996; Radhakrishna and Rao 1997; Chlebus et al. 2015; Li et al. 

2018)]. γ'' can transform, on overaging, to 𝛿𝛿 (Ni3Nb, Orthorhombic D0a), which is detrimental at 

large phase fractions, but can act as a beneficial grain pinner at low concentrations. Graphics of 

the crystal structures are provided in Appendix A. 
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Table 1 - Inconel 718 Allowable Compositions 
 
 

 Mass 
[g/mol] 

Minimum 
weight % 

Maximum 
weight % 

Minimum 
atomic % 

(1) 

Maximum 
atomic % 

(1) 
Ni 58.693 50 55 49.51 54.00 
Cr 51.996 17 21 19.00 23.27 
Nb 92.906 4.75 5.5 2.97 3.41 
Mo 95.95 2.8 3.3 1.70 1.98 
Ti 47.867 0.65 1.15 0.79 1.38 
Co 58.933 0 1 0.00 0.98 
Al 26.982 0.2 0.8 0.43 1.71 
Mn 54.938 0 0.35 0.00 0.37 
Si 28.085 0 0.35 0.00 0.72 
Cu 63.546 0 0.3 0.00 0.27 
C 12.011 0 0.08 0.00 0.3838 
Fe 55.845 Balance 

Note: (1) The standard maximums and minimums are set by the weight percent. 
These minimum and maximum atomic percent merely correspond to the listed 
weight-based compositions. A given composition may have more or less atomic 
content of any element than the minimum and maximum atomic percent listed 
here as long as the weight percent is still within the limits. 
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1.3 Literature Review of Heat Treatments of PBF Inconel 718 

Various authors have found that the traditional heat treatments for wrought and cast 

Inconel 718 are not sufficient for PBF produced Inconel 718 and that the microstructural response 

to heat treatment is different due to the fine microstructure [(Tucho et al. 2017; Chlebus et al. 2015; 

Raghavan et al. 2017; Schneider, Lund, and Fullen 2018)]. Zhang et al. found that homogenization 

+ solutionizing + aging (HSA) heat treatment in cast samples left Laves phase, coarse δ phase, and 

pores in the matrix in addition to beneficial γ’ and γ’’ phases; whereas HSA heat treatment in PBF 

samples left only very fine δ phase and a few carbides in the matrix in addition to γ’ and γ’’ phases 

[(Zhang et al. 2018)]. It is also suggested that although HSA treated PBF samples are more ductile 

than HSA treated cast samples, the PBF samples precipitate too much δ phase and would benefit 

from a shorter solutionizing heat treatment than the cast samples [(Zhang et al. 2018)]. Chlebus et 

al. found that PBF samples required a higher homogenization heat treatment than that prescribed 

for wrought or cast Inconel 718 samples [(Chlebus et al. 2015)]. Schneider et al. found that PBF 

samples could achieve specified heat-treated wrought mechanical properties with reduced heat 

treatment steps, and that the recrystallization behavior of PBF samples differed from cast samples 

[(Schneider, Lund, and Fullen 2018)]. These findings demonstrate that additional work is needed 

to develop optimal heat treatments for Inconel 718 parts produced by PBF.  

While various investigations into the effect of heat treatment on PBF parts of Inconel 718 

have been performed [(Zhang et al. 2018, 2015; Deng et al. 2017; Popovich et al. 2017; Tucho et 

al. 2017; Chlebus et al. 2015; Trosch et al. 2016; Raghavan et al. 2017; Ma, Wang, and Zeng 2015; 

Amato et al. 2012; Z. Wang et al. 2012; Li et al. 2018)], very few studies into the microstructural 

evolution of Inconel 718 during homogenization heat treatment following PBF have been 

performed. Meanwhile, even for the traditional wrought and cast Inconel 718 parts, the same topic 
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is not well studied yet. Such lack of investigation on the homogenization processes poses obstacles 

to the development of an optimal post-processing design. It is thus obvious that a systematic study 

is necessary to gain better understanding of microstructural evolution during homogenization heat 

treatment for Inconel 718 alloys. The work herein compares the effect of homogenization heat 

treatment on samples produced by casting and by PBF with particular attention paid to the Nb 

homogeneity evolution and recrystallization behavior at various times under a homogenization 

heat treatment. CALPHAD-based (Calculation of Phase Diagrams) computational 

thermodynamics and kinetics is utilized to design the homogenization temperature and time. The 

samples were examined by Scanning Electron Microscope (SEM), Electron Backscatter 

Diffraction (EBSD), and Energy-Dispersive Spectroscopy (EDS) to characterize the phase 

transformation and recrystallization behaviors during homogenization processes. 



 7 

2.0 Method 

Computational and experimental methods are used to explore the homogenization heat 

treatment behavior of cast and AM samples. The computational work guided the choice of 

experimental parameters, and the experimental results provided input to further computational 

work. The interaction of computation and experiment is utilized in order to optimize the 

conclusions that are able to be drawn from the results. 

2.1 Computation 

The following types of computations are performed: 

• Determination of time to heat sample in furnace; 

• Phase diagram; 

• Scheil diagram; 

• Step diagram; 

• Diffusion simulation. 

Excel is used for the time-to-temperature calculation, and Thermo-Calc is used for all of 

the thermodynamic calculations. 
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2.1.1  Theory 

2.1.1.1 Temperature Transients 

In order to verify that the samples analyzed reach the homogenization heat treatment 

temperature in a negligible amount of time, a thermal analysis is performed. The thermal mass of 

the sample is: 

 𝑚𝑚𝑡𝑡ℎ = (𝜌𝜌𝜌𝜌)𝑐𝑐𝑝𝑝 (1)  

where 𝑚𝑚𝑡𝑡ℎ is the thermal mass of the sample, 𝜌𝜌 is the density of the sample, 𝑉𝑉 is the volume of 

the sample, and 𝑐𝑐𝑝𝑝 is the specific heat capacity of the sample. 𝑐𝑐𝑝𝑝 can be determined from 

thermodynamic quantities and does not need to be assumed: 

 𝑐𝑐𝑝𝑝 =
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
�
𝑃𝑃

 = −𝑇𝑇�
𝑑𝑑2𝐺𝐺
𝑑𝑑𝑇𝑇2

�
𝑃𝑃

 (2)  

where 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
�
𝑃𝑃

 is the change in enthalpy with respect to temperature at constant pressure, 𝑇𝑇 is the 

temperature, and �𝑑𝑑
2𝐺𝐺

𝑑𝑑𝑇𝑇2
�
𝑃𝑃

 is the second derivative of the Gibbs free energy with respect to 

temperature at constant pressure. 

The rate of temperature increase of the sample is: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

∗
1
𝑚𝑚𝑡𝑡ℎ

 (3)  

where 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the time rate of temperature increase in the sample and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the time rate of heat flow 

into the sample. In general, heat can flow via conduction, convection, or radiation. Thus the heat 

flow is: 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝛻𝛻𝛻𝛻) + ℎ𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

+ 𝜖𝜖𝜖𝜖𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟�𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 � 

(4)  

 

where 𝑘𝑘 is the effective conductivity between the sample and the furnace, 𝛻𝛻𝛻𝛻 is the spatial gradient 

in the temperature, ℎ is the convective temperature coefficient of natural convection in the furnace, 

𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the temperature of the furnace (1,180°C, or 1453.15 K), 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the temperature of 

the sample, 𝜖𝜖 is the emissivity of the sample, and 𝜎𝜎 is the Stefan-Boltzmann constant 

�5.670 ∗ 10−8 𝑊𝑊
𝑚𝑚2𝐾𝐾4

�, and 𝐴𝐴𝑖𝑖 is the area of the sample available for heat transfer for each form of 

heat transfer. 

2.1.1.2 Equilibrium Thermo-Calc 

In this work, thermodynamic (TCNI8) and mobility (MOBNI4) databases released by the 

Thermo-Calc software AB [(Chen et al. 2016)] have been adopted to understand phase equilibria 

and phase transformations in Inconel 718 during homogenization processes. In the thermodynamic 

database, all phases are modeled using the compound energy formalism (CEF) [(Hillert 2001)]. 

The Gibbs free energy of liquid and solid solution phases are modeled using the substitutional 

solution model, whereas the modeling of Gibbs free energy of intermetallic phases such as Laves 

phase, δ, and γ” phases uses the sublattice model [(J. O. Andersson et al. 2002; Division and 

Metallurgy 1981)]. For example, for a binary system (e.g. A-B), the molar Gibbs free energy of a 

solid solution phase 𝜙𝜙 can be described as: 

 
𝐺𝐺𝑚𝑚
𝜙𝜙 = �𝑥𝑥𝑖𝑖 𝐺𝐺𝑖𝑖

𝜙𝜙𝑜𝑜 + 𝑅𝑅𝑅𝑅�𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙𝑥𝑥𝑖𝑖
𝑖𝑖

+ 𝐺𝐺𝑒𝑒𝑒𝑒
𝜙𝜙

𝑖𝑖

 (5)  
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where the first term on the right side represents the reference state of Gibbs free energy and the 

second term indicates the contribution of configurational entropy to the Gibbs free energy, where 

𝑖𝑖 is the number of components in 𝜙𝜙, 𝑥𝑥𝑖𝑖 is the mole fraction of component 𝑖𝑖, 𝐺𝐺𝑖𝑖
𝜙𝜙𝑜𝑜  is the Gibbs free 

energy of pure component 𝑖𝑖 in 𝜙𝜙, 𝑅𝑅 is the gas constant, and 𝑇𝑇 is the temperature. The third term 

𝐺𝐺𝑒𝑒𝑒𝑒
𝜙𝜙  is the excess Gibbs free energy of mixing, which can be expressed by Redlich-Kister 

polynomial [(Redlich and Kister 2005)] as: 

 
𝐺𝐺𝑒𝑒𝑒𝑒
𝜙𝜙 = 𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵� 𝐿𝐿𝐴𝐴,𝐵𝐵

𝑣𝑣 (𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐵𝐵)𝑣𝑣
𝑣𝑣

 (6)  

where 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵 are the mole fraction of component A and B, respectively; 𝐿𝐿𝐴𝐴,𝐵𝐵
𝑣𝑣  is the interaction 

coefficient and 𝑣𝑣 is the power. It should be noted that if 𝑣𝑣 = 0, the model becomes a regular 

solution model, while when 𝑣𝑣 = 1, it becomes a sub-regular solution model. The parameters are 

optimized by fitting the model with experimental thermodynamic data. 

As for an intermetallic phase 𝜙𝜙, the Gibbs free energy is described by considering the 

interactions between various sublattices. As the simplest case, a two-sublattice model, i.e. 

(𝐴𝐴,𝐵𝐵)𝑚𝑚 (𝐴𝐴,𝐵𝐵)𝑛𝑛 gives [(Wu et al. 2012)] 

 

 

𝐺𝐺𝑚𝑚
𝜙𝜙 = ��𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′′ 𝐺𝐺𝑖𝑖:𝑗𝑗

𝜙𝜙𝑜𝑜

𝑗𝑗𝑖𝑖

 

+𝑅𝑅𝑅𝑅 �
𝑚𝑚

𝑚𝑚 + 𝑛𝑛
�𝑦𝑦𝑖𝑖′ 𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖′)
𝑖𝑖

+
𝑛𝑛

𝑚𝑚 + 𝑛𝑛
�𝑦𝑦𝑖𝑖′′ 𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖′′)
𝑖𝑖

� 

+𝑦𝑦𝐴𝐴′𝑦𝑦𝐵𝐵′ �𝑦𝑦𝑖𝑖′′ 𝐿𝐿𝐴𝐴,𝐵𝐵:𝑗𝑗(𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐵𝐵′ )𝑣𝑣𝑣𝑣

𝑗𝑗

 

+𝑦𝑦𝐴𝐴′′𝑦𝑦𝐵𝐵′′�𝑦𝑦𝑖𝑖′ 𝐿𝐿𝑖𝑖:𝐴𝐴,𝐵𝐵(𝑦𝑦𝐴𝐴′′ − 𝑦𝑦𝐵𝐵′′)𝑣𝑣𝑣𝑣

𝑗𝑗

 

+𝑦𝑦𝐴𝐴′𝑦𝑦𝐵𝐵′ 𝑦𝑦𝐴𝐴′′𝑦𝑦𝐵𝐵′′𝐿𝐿𝐴𝐴,𝐵𝐵:𝐴𝐴,𝐵𝐵 

(7)  
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On the right side of eq. (7) and similarly to the expression of substitutional solution model, 

the first term in the expression of sublattice model represents the reference state of Gibbs free 

energy and the second term indicates the contribution of configurational entropy to the Gibbs free 

energy. The summation of the last three terms is the excess Gibbs free energy. 𝐺𝐺𝑖𝑖:𝑗𝑗
𝜙𝜙𝑜𝑜  is the Gibbs 

free energy of “end members”, which are the stoichiometric compounds consisted of constituents 

of each sublattice [(Saunders and Miodownik 1998)]; m and n are the ratio of sites on each 

sublattices, 𝑦𝑦𝑖𝑖′ and 𝑦𝑦𝑖𝑖′′ represents the mole fraction of component 𝑖𝑖 in the first and second 

sublattices, respectively; 𝐿𝐿 is coefficients of interaction between the sublattices.  

After establishing the thermodynamic description of binary system, one can extend the 

excess Gibbs free energy model to a higher order multicomponent system, of which the 

descriptions of excess Gibbs free energy are extrapolated using the geometrical Muggianu method 

[(Muggianu, Gambino, and Bros 1975)]. More detailed discussion about the models of Gibbs free 

energy can be found in [(Lukas, Fries, and Sundman 2007)].  

2.1.1.3 Kinetic Thermo-Calc (Scheil Calculation) 

Scheil diagrams are based on simplified kinetic solidification simulations. The two major 

simplifying assumptions are: 

1. The liquid phase is fully homogenized in both temperature and compositions; 

2. The solid phases have no diffusion. 

Based on these assumptions, the Gibbs free energy (GFE) is calculated for each phase at 

each temperature as the temperature approaches 0 K. As equilibrium solid phase is calculated, it 

is removed from the system and the reduced liquid is then at a new composition. This method is 

fairly accurate for systems with rapid cooling and little time for solid diffusion. These assumptions 
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allow for relatively quick simulations that can predict non-equilibrium structures due to 

solidification phenomena.  

2.1.1.4 Kinetic Thermo-Calc (Diffusion) 

The kinetic modeling was performed in the diffusion module (DICTRA) implemented in 

Thermo-Calc using both the TCNI8 and MOBNI4 databases. In DICTRA, the flux of a component 

𝑘𝑘 along the Z direction in the volume-fixed frame of reference is described as: 

 Jk = −�𝐿𝐿𝑘𝑘𝑘𝑘′
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜕𝜕

𝑛𝑛

𝑖𝑖=1

 (8)  

where 𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝜕𝜕

 is the chemical potential of component 𝑖𝑖 along the Z direction in the system. 𝐿𝐿𝑘𝑘𝑘𝑘′  is a 

matrix of kinetic coefficients and is given by:  

  𝐿𝐿𝑘𝑘𝑘𝑘′ = ��𝛿𝛿𝑗𝑗𝑗𝑗 − 𝑐𝑐𝑘𝑘𝑉𝑉𝑗𝑗�𝐿𝐿𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 (9)  

where 𝛿𝛿𝑗𝑗𝑗𝑗 is the Kronecker delta and 𝛿𝛿𝑗𝑗𝑗𝑗 = 1 when 𝑗𝑗 = 𝑘𝑘, and 𝛿𝛿𝑗𝑗𝑗𝑗 = 0 otherwise. 𝑉𝑉𝑗𝑗 is the partial 

molar volume of element 𝑗𝑗 and 𝑐𝑐𝑘𝑘 is the concentration of k. 𝐿𝐿𝑗𝑗𝑗𝑗 is a function of the atomic mobility 

of component k. 

Since it is usually more convenient to use the concentration gradient in the expression of 

flux rather than the chemical potential, the chain rule of derivation is applied to eq. (9) and then 

gives: 

 Jk = −�𝐿𝐿𝑘𝑘𝑘𝑘′ �
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑐𝑐𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝜕𝜕𝑐𝑐𝑗𝑗
𝜕𝜕𝜕𝜕

𝑛𝑛

𝑖𝑖=1

 (10) 
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if we rewrite eq. (10) as: 

 Jk = −�𝐷𝐷𝑘𝑘𝑘𝑘
𝜕𝜕𝑐𝑐𝑗𝑗
𝜕𝜕𝜕𝜕

𝑛𝑛

𝑖𝑖=1

 (11) 

By comparing eq. (10) and eq. (11), one can get: 

 Dkj = �𝐿𝐿𝑘𝑘𝑘𝑘′
𝑛𝑛

𝑖𝑖=1

𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑐𝑐𝑗𝑗

 (12) 

where 𝐷𝐷𝑘𝑘𝑘𝑘 is the matrix of chemical diffusivity of element 𝑘𝑘. Because 𝐿𝐿𝑘𝑘𝑘𝑘′  is related to the atomic 

mobility of 𝑘𝑘 and 𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑐𝑐𝑗𝑗

 is a thermodynamic factor, the diffusivity in DICTRA is therefore consisted 

of one thermodynamic part and one kinetic part. In MOBNI4 database, the atomic mobilities 

assessed by experimental data are stored to reduce the number of parameters in the database. 

Hence, when performing kinetic simulation, the mobility and thermodynamic factors from both 

kinetic and thermodynamic databases will be invoked by DICTRA to generate the matrix of 

chemical diffusivity 𝐷𝐷𝑘𝑘𝑘𝑘 and the description of the flux 𝐽𝐽𝑘𝑘 can be immediately obtained from eq. 

(11). As a result, the concentration change of component 𝑘𝑘 with respect to the time and distance 

can be solved according to Fick’s second law: 

 
𝜕𝜕𝑐𝑐𝑘𝑘
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕

(−𝐽𝐽𝑘𝑘) (13) 

More detailed and comprehensive discussion about the diffusivity theory employed in 

DICTRA can be found in the work of Andersson and Ågren [(Jan Olof Andersson and Ågren 

1992)]. 
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2.1.2  Inputs 

2.1.2.1 Temperature Transient 

Although Equation (4) describes the three ways that heat can be transferred – conduction, 

convection, and radiation – the samples analyzed herein are encapsulated into vacuumed quartz 

tubes back-filled with pure Argon gas, and are thus insulated from conduction and convection from 

the furnace. Most of the heat transfer will therefore occur by radiation, but conduction and 

convection can be conservatively ignored. Equation (4) thus simplifies to: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜖𝜖𝜖𝜖𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟�𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 � (14) 

and combining Equations (14) and (3) gives 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜖𝜖𝜖𝜖𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟�𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 � ∗
1

−𝑉𝑉𝑉𝑉𝑇𝑇 �𝑑𝑑
2𝐺𝐺
𝑑𝑑𝑇𝑇2�𝑃𝑃

 (15) 

For metals, emissivity depends on the surface finish. Fluke Process Instruments list 

emissivity values for Inconel ranging from 0.2-0.5 in the polished condition, with other conditions 

listing higher values; for this analysis 0.2 is conservatively used [(Fluke Process Instruments 

2019)]. The Stefan-Boltzman constant is 5.67x10-8 𝑊𝑊
𝑚𝑚2𝐾𝐾4

. For a sample of size 5 mm x 5 mm x 

10 mm, the surface area (𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟) is equal to 0.00025 m2. The temperature of the furnace is assumed 

to be a constant 1,453.15 K (1,180°C). The initial temperature of the sample is assumed to be 

298.15 K (25°C). For a sample of size 5 mm x 5 mm x 10 mm, the volume (𝑉𝑉) is equal to 

0.25x10-6 m3. The density (𝜌𝜌) and �𝑑𝑑
2𝐺𝐺

𝑑𝑑𝑇𝑇2
�
𝑃𝑃

 are calculated via Thermo-Calc using the composition 

given in Table 2. The results of the Thermo-Calc calculation are presented in the Results Section.  
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Table 2 - Composition for Temperature Transient Calculation 
 
 
Element: Ni Cr Fe Nb Mo Al Ti C 

Atomic Percent 51.0162 21.86 19.07 3.25 1.92 1.26 1.24 0.3838 

Weight Percent 51.8 19.66 18.42 5.22 3.19 0.59 1.03 0.080 

 
 
 

2.1.2.2 Phase Diagram 

Two phase diagrams are calculated using Thermo-Calc. One phase diagram shows the 

equilibrium phases of the AM samples with the hypothetical maximum carbon content 

(AM_MaxC), while the second phase diagram shows the equilibrium phase diagram of a 

Ni-Cr-Fe-Nb alloy. Both phase diagrams vary the content of Ni and Nb while holding all other 

contents constant. Both diagrams vary from 0 to 20 atomic percent Nb and range from 1,000°C to 

1,500°C. The compositions of both alloys are given in Table 3. All of the graphical module default 

phases in Thermo-Calc are included. 

 
 

Table 3 - Compositions for Phase Diagrams 
 

Element: Ni Cr Fe Nb Mo Al Ti C 

AM_MaxC 
Atomic Percent 

45.73-25.73 21.86 19.07 0-20 1.92 1.26 1.24 0.3838 

Ni-Cr-Fe-Nb 
Atomic Percent 

59.07-39.07 21.86 19.07 0-20 0 0 0 0 
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2.1.2.3 Scheil Diagram 

Two Scheil Diagrams are calculated using Thermo-Calc. One diagram shows the Scheil 

solidification path for the AM samples assuming no carbon content (AM_NoC). The other phase 

diagram shows the Scheil solidification path for the AM samples assuming the hypothetical 

maximum carbon content (AM_MaxC). The simulations start at 1,400°C and terminate once 

Thermo-Calc determines ~100% of the liquid has transformed to solid. The compositions of both 

alloys are given in Table 4. All of the graphical module default phases in Thermo-Calc are 

included. 

 
 

Table 4 - Compositions for Scheil Diagrams 
 

Element: Ni Cr Fe Nb Mo Al Ti C 

AM_NoC  
Atomic Percent 51.4 21.86 19.07 3.25 1.92 1.26 1.24 0 

AM_MaxC  
Atomic Percent 51.0162 21.86 19.07 3.25 1.92 1.26 1.24 0.3838 

AM_NoC  
Weight Percent 

51.85 19.68 18.44 5.23 3.19 0.59 1.03 0 

AM_MaxC  
Weight Percent 

51.8 19.66 18.42 5.22 3.19 0.59 1.03 0.080 

 
 
 

2.1.2.4 Step Diagram 

Four step diagrams are calculated by Thermo-Calc. The step diagrams are essentially the 

calculation of phase fractions and phase compositions based on the phase diagrams for one alloy 

composition. The four step diagrams calculated are for the following compositions: 
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1. The cast sample composition, assuming no carbon (AC_NoC); 

2. The cast sample composition, assuming the hypothetical maximum 

carbon content (AC_MaxC); 

3. The AM sample composition, assuming no carbon (AM_NoC); 

4. The AM sample composition, assuming the hypothetical maximum 

carbon content (AM_MaxC). 

The simulations range in temperature from 500°C to 1,180°C. The compositions of all four 

alloys are given in Table 5. All of the graphical module default phases in Thermo-Calc are 

included. 
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Table 5 - Compositions for Step Diagrams 
 

Element: Ni Cr Fe Nb Mo Al Ti C 

AC_NoC  
Atomic Percent 51.89 20.85 19.36 3.44 1.94 1.19 1.33 0 

AC_MaxC  
Atomic Percent 51.5062 21.86 19.07 3.25 1.92 1.26 1.24 0.3838 

AM_NoC  
Atomic Percent 51.4 21.86 19.07 3.25 1.92 1.26 1.24 0 

AM_MaxC  
Atomic Percent 51.0162 21.86 19.07 3.25 1.92 1.26 1.24 0.3838 

AC_NoC  
Weight Percent 

52.40 18.65 18.60 5.50 3.20 0.55 1.10 0 

AC_MaxC  
Weight Percent 

52.36 18.64 18.59 5.49 3.20 0.55 1.09 0.08 

AM_NoC  
Weight Percent 

51.85 19.68 18.44 5.23 3.19 0.59 1.03 0 

AM_MaxC  
Weight Percent 

51.8 19.66 18.42 5.22 3.19 0.59 1.03 0.080 

 
 
 

2.1.2.5 Diffusion Simulation 

Four diffusion simulations are calculated by the DICTRA module of Thermo-Calc. The 

diffusion simulations are based on EDS scans across 𝛾𝛾 matrix and Laves phase in both as-cast and 

as-built samples. The results of the EDS scans are provided in Appendix B. The EDS scan 

compositions are included in DICTRA via Heaviside functions. The four analyses run are 

1. The as-cast sample EDS scan composition, assuming no carbon; 

2. The as-cast sample EDS scan composition, assuming no carbon, but 

with all minor element (Mo, Al, Ti) converted to Ni; 
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3. The as-built sample EDS scan composition, assuming no carbon; 

4. The as-built sample EDS scan composition, assuming no carbon, but 

with all minor element (Mo, Al, Ti) converted to Ni. 

The simulations are conducted at a temperature of 1,180°C. Only the disordered FCC phase 

(𝛾𝛾) is included in the analysis. 

2.2 Experiments 

Inconel 718 rod samples with a diameter of 15 mm and a length of 40 mm were made by 

suction casting under an Argon atmosphere using an ABJ-338 arc-melter (Materials Research 

Furnaces Inc.). AM Inconel 718 samples were built by PBF using an EOS M 290 machine with 

the default processing parameters for Inconel 718 alloy. The nominal compositions of the cast 

alloy and powders of Inconel 718 are listed in Table 5. Both as-cast and as-built samples were 

denoted as AC and AM respectively, sectioned into smaller parts, and encapsulated into vacuumed 

quartz tubes back-filled with pure Argon gas. In total there were four cast samples and four AM 

samples to allow for various heat treatment times. Afterwards, both cast and AM samples were 

homogenized at 1,180°C for 20 minutes, 1 hour, or 12 hours followed by quenching in ice-water. 

Sample notations with homogenization conditions are shown in Table 6. 

Following the heat treatment, all eight samples were surface polished using the standard 

procedures. After surface polishing, microstructures of both as-received (as-cast and as-built) and 

as-homogenized samples were characterized and analyzed by electron microscopes. SEM (Zeiss 

Sigma 500 VP, Carl Zeiss AG) and EDS (Oxford Instruments plc) characterizations were carried 

out for phase morphology observation and composition determination. EBSD (FEI Scios 
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DualBeam, FEI Company) was employed to investigate the recrystallization behaviors of the 

homogenized samples with a mapping area of 1,200 μm × 1,200 μm and step size of 1.6 μm for 

each sample. The EBSD results were analyzed by OIM Analysis™ v8 software package. 
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3.0 Results 

3.1 Computational Results 

3.1.1  Temperature Transient 

The calculated density of the Inconel 718 sample at 1,180°C is 7.82 g/cm3. The GFE of 

the sample is calculated via Thermo-Calc and shown in Figure 1 along with the derivative of the 

GFE with respect to temperature at constant pressure, with spikes in the data removed. The blue 

line corresponds to the left axis, and the orange line corresponds to the right axis. The calculated 

specific heat capacity is shown in Figure 2, with spikes in the data removed. The calculated 

specific heat capacity includes all equilibrium phase transitions, even though not all of the 

equilibrium phase transitions are present in the samples. The calculated radiative heat flow 

versus time is shown in Figure 3. The heat flow is large while the difference in temperature is 

large, but the heat flow reduces as the sample approaches the target temperature due to the 

radiative heat transfer being a function of 𝑇𝑇𝑓𝑓4 − 𝑇𝑇𝑠𝑠4. The temperature transient of the sample is 

shown in Figure 4, with the temperature of the furnace and the temperature of the sample plotted 

versus time. The temperature transient of the sample is shown in Figure 5, with the sample’s 

percent of target temperature plotted versus time. The blue line corresponds to the right axis, and 

the orange line corresponds to the left axis. Both lines are the same data, but on different scales. 

The percent of target temperature is calculated based on absolute temperatures. The sample 

reaches 98% of the target temperature within three minutes, and 99.5% within four minutes. 
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Figure 1 - Gibbs Free Engery and dG/dT of Inconel 718 vs. Temperature at Constant Pressure  
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Figure 2 - Specific Heat Capcity of Inconel 718 versus Temperature 
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Figure 3 - Radiative Heat Flow in Sample 
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Figure 4 - Temperature Transient of Sample 
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Figure 5 - Temperature Transient as Percent of Target Temperature 
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3.1.2  Phase Diagram 

The calculated phase diagram for the AM alloy with assumed maximum carbon content 

is shown in Figure 6. Select phases are labeled. The composition plotted varies in Ni and Nb 

content. The AM sample has an average Nb content of 3.25 atomic percent. Due to the 

complexity of the 8-component phase diagram, a simplified 4-component phase diagram is 

shown in Figure 7. The alloy has 21.86 atomic percent Cr, 19.07 atomic percent Fe, and the 

balance is Ni and Nb. Select regions are labeled. Special attention should be paid to the variable 

𝛾𝛾 Nb content on solidification, and that if the local Nb concentration is above ~7%, then Laves 

phase becomes an equilibrium phase. The composition plotted varies in Ni and Nb content. 

Similarities between the two phase diagrams can be seen, especially by looking at the 𝛾𝛾+Liquid-

Liquid interface, and the Laves+Liquid-Liquid interface.  
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Figure 6 - Phase Diagram of AM Composition with Maximum Carbon Content 
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Figure 7 - Phase Diagram for Simplified Alloy 
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3.1.3  Scheil Diagram 

The result of the Scheil calculation for the AM composition with no carbon is shown in 

Figure 8. The dashed line shows equilibrium cooling. The color of the line changes as phases are 

added. In order to show the effect of carbon content on the solidification behavior, the result of the 

Scheil calculation for the AM composition with maximum carbon is shown in Figure 9. The dashed 

line shows equilibrium cooling. The color of the line changes as phases are added. 
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Figure 8 - Scheil Diagram for AM Composition with No Carbon 
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Figure 9 - Scheil Diagram for AM Composition with Maximum Carbon 
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3.1.4  Step Diagram 

The step diagram for the AC composition with no carbon is shown in Figure 10. To 

quantify the effect of adding carbon, the step diagram for the AC composition with maximum 

carbon is shown in Figure 11. The phase fractions add up to 1.0. The Y-axis is in a log-scale. 

Different colors are different solid phases. The equilibrium phase fraction of MC carbide is 

approximately 0.8%. To compare the different equilibrium phase fractions between AC and AM 

samples, the same step diagrams are created for the AM composition with no carbon and maximum 

carbon in Figure 12 and Figure 13, respectively. The equilibrium phase fraction of MC carbide is 

approximately 0.8%. 
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Figure 10 - Step Diagram for AC Composition with No Carbon 
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Figure 11 - Step Diagram for AC Composition with Maximum Carbon 
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Figure 12 - Step Diagram for AM Composition with No Carbon 



 37 

 
 

Figure 13 - Step Diagram for AM Composition with Maximum Carbon 
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3.1.5  Diffusion Simulations 

The DICTRA diffusion result for the cast sample is shown in Figure 14; the full elemental 

composition from the EDS scan is used. Each line is the spatial distribution of the Nb for a different 

length of homogenization heat treatment: 0 is for 0 seconds of heat treatment; 0.036 is for 0.036 

seconds of heat treatment, etc. All of the material is assumed to be disordered γ matrix phase. The 

elemental composition is based on EDS scan results in Table 7. The diffusion result for the cast 

sample with a reduced element set without Ni-Cr-Fe-Nb content is shown in Figure 15; all of the 

minor elements from the EDS scan are converted into Ni for this simulation to see the effect of 

simplifying the alloy. The diffusion result for the AM sample is shown in Figure 16; the full 

elemental composition from the EDS scan is used. Each line is the spatial distribution of the Nb 

for a different length of homogenization heat treatment: 0 is for 0 seconds of heat treatment; 0.036 

is for 0.036 seconds of heat treatment, etc. All of the material is assumed to be disordered γ matrix 

phase. The elemental composition is based on EDS scan results in Table 8. Because the reduced 

element set result is very similar to the full element set results, the reduced element result for the 

AM sample is not presented. The four diffusion simulations results are distilled into one plot in 

Figure 17 that shows the average Nb content from the EDS scan divided by the maximum Nb 

content at any point within the simulation. 100% indicates that the average Nb content is equal to 

the maximum Nb content and the sample is fully homogenized. For reference, 20 minutes and 1 

hour are included in the plot. 
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Figure 14 - DICTRA - Cast Sample - Full Elemental Set - No C 
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Figure 15 - DICTRA - Cast Sample - Reduced Element Set - No C 
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Figure 16 - DICTRA - AM Sample - Full Elemental Set - No C 
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Figure 17 - Combined DICTRA Results. 
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3.2 Experiments 

The results of the eight SEM experiments are shown in Figure 18. The top four images are 

for the cast sample, and the bottom four images are for the AM sample. The leftmost images are 

the as-received (non-heat-treated) samples, and heat treatment length increases towards the right. 

Because backscatter electrons are used for the imaging, high atomic number atoms will reflect 

more electrons and show up as brighter portions in the image. Nb and Mo are the heaviest elements 

in the samples and thus Nb and Mo segregation, which is in MC and Laves phases, can be measured 

via SEM. The results of the image analysis of Figure 18 are given in Table 6. All images are taken 

from the same plane, with the build direction in the plane, as demonstrated by the melting pool 

lines in Figure 18(e). 

 
 

 
 

Figure 18 - SEM Characterized Microstructure of Samples 
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Table 6 - SEM Image Analysis Results 
 

 Homogenization time: 20min 1h 12h 

MC (+Laves phase) fraction: 
AM ~0 0.05% 0.36% 

AC 0.73% 0.65% 0.47% 

 
 
 

Prior to heat treatment, EDS scans were performed across representative Laves 

interdendritic regions. The results of the EDS scans are shown in Figure 19, with the cast sample 

on the left and the AM sample on the right. The SEM image used for guiding the EDS scan is 

shown above the EDS plot. The tabulated results of the EDS scan for all elements are provided in 

Table 7 for the cast sample and in Table 8 for the AM sample. No carbon content is listed because 

EDS cannot find light elements. 
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Figure 19 - EDS Line Scanning across Laves Phase in Cast and AM samples 

 
 
 

In order to measure the Nb distribution around MC carbides, an EDS map is made for each 

of the six heat treated samples. To make the map, a MC carbide without neighboring MC carbides 

is located and a 5 x 5 grid of EDS scans is made with the MC carbide at the center of the grid, as 

shown in Figure 20. Three such scans are made and averaged for each plot in Figure 21.  To plot 

the results, the middle point (with the MC carbide) is removed to avoid skewing the results with 

the roughly 50% Nb content. The results are shown as a heat map in Figure 21 with black lines 

denoting where the MC carbide is located. The AC20m sample had neighboring MC carbides. 
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Figure 20 - EDS Mapping on Investigation of Nb Distribution, AC12 Sample as An Example 
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Figure 21 - EDS Mapping Results for Heat Treated Samples 

 
 
 

The EBSD scan results for the eight samples are shown in Figure 22. The scan is shown in 

Inverse Pole Figure (IPF) mode, with the color corresponding to the grain orientation. Grains with 

a [001] orientation show as red, [101] show as green, and [111] show as blue. Only the FCC phase 

is included in the mapping algorithm.  The average grain size from the images is presented in 

Figure 23 for the eight samples. The grain diameter distributions for the eight samples are shown 

in Figure 24, with the cast samples shown on the left and the AM samples shown on the right. The 

Grain Orientation Spread (GOS) for each of the eight samples is shown as a heat map in Figure 25 

and plotted as a distribution in Figure 26. 



 48 

 

 
 

Figure 22 - Inverse Pole Figure of Samples from EBSD 
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Figure 23 - Average Grain Size vs. Homogenization Time 
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Figure 24 - (a) Grain Size Distribution - AC (b) Grain Size Distribution - AM  

 
 
 

 

 
 

Figure 25 - Grain Orientation Spread Map of Samples from EBSD 
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Figure 26 - (a) GOS - AC (b) GOS - AM  
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4.0 Discussion 

4.1 Discussion of Calculations and Comparison to Experiments 

In order to verify the accuracy of the homogenization heat treatment times listed (20 

minutes, 1 hour, 12 hours), which are based on the amount of time the sample spent in the furnace, 

the calculation of the temperature transient was performed. The specific heat capacity shown in 

Figure 2 is based on the equilibrium phases in Inconel 718, which are not the phases present in the 

samples, as demonstrated by the Scheil calculation presented in Figure 9. However, as shown in 

Figure 9, the majority of the solid formed during solidification is 𝛾𝛾 and MC carbide, which 

corresponds to the dominant equilibrium solid phases shown in the step diagram in Figure 13 at 

1,180°C and thus also corresponds to the right-most section of the specific heat diagram (Figure 2). 

As seen in Figure 2, the right-most portion from ~1,050°C to 1,180°C, which corresponds to 𝛾𝛾 and 

MC carbide phases, has a lower than average specific heat, thus it is conservative to use the 

calculated equilibrium specific heat values for the transient calculation because it will overestimate 

the time required to heat the sample. From Figure 5 it is seen that the sample reaches 98% of the 

target temperature within 3 minutes, and 99.5% of the target temperature within 4 minutes; this 

means that only about 3 minutes of the heat treatment are spent at temperatures significantly below 

the heat treatment temperature, which is a small amount compared to the heat treatment times. 

Based on the results of the temperature transient analysis, it is concluded that it is a reasonable 

approximation to base the heat treatment times on the total time spent in the furnace and ignore 

the heat up time.  However, because this analysis shows that the very small sample (5 mm x 5 mm 

x 10 mm) heats up in 3-4 minutes, that indicates that larger samples, or samples where the surface 
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is shielded from radiative heating due to its complex geometry, which will take longer to heat up, 

may not be able to ignore the heat up time for heat treatments.  AM parts with very complex 

internal geometries will have restricted heat conduction paths and the internal sections will heat 

up more slowly, thus resulting in a gradient heat treatment unless the experimentalist or 

manufacturer takes care to avoid under-heating the sample. 

The phase diagrams in Figure 6 and Figure 7 give a better understanding of the 

solidification microstructure to expect and demonstrate that segregation should be expected. The 

slope of the solidus and liquidus of the 𝛾𝛾+Liquid region in Figure 7 indicate that severe Nb 

segregation should be expected upon solidification; for the hypothetical alloy, as the first 𝛾𝛾 begins 

to form at ~1,360°, the Nb content in the 𝛾𝛾 is less than 2%, while the Nb content in the liquid is 

3.44%. As further solidification occurs, the lack of Nb in the 𝛾𝛾 requires that there is more Nb in 

the liquid, which pushes the average Nb content to the right and eventually the liquid will undergo 

a eutectic reaction to produce 𝛾𝛾 and Laves. Comparing Figure 7 and Figure 6 shows that a similar 

process should be expected for the actual Inconel 718 alloy, but that there will additionally be MC 

carbides that contain a high percent of Nb. It is also shown that the actual Inconel 718 alloy will 

form solid at a lower starting temperature than the hypothetical alloy plotted in Figure 7, and that 

the Laves phase will form at lower Nb concentrations. Use of the phase diagrams in Figure 6 and 

Figure 7 in combination with the Scheil diagrams in Figure 8 and Figure 9 guides the expectations 

of the experiments. 

Because it is known that the EDS used for determining the composition of the samples 

cannot determine the carbon content of the alloys, simulations are performed for both minimum 

and maximum carbon to estimate the range of values to be expected from the actual alloy. Figure 8 

and Figure 9 show that the presence of carbon does not have a significant effect on the temperature 
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of solidification, but does push the precipitation of Laves, 𝛿𝛿 and 𝜎𝜎 to later mole fractions of solid 

(0.89 vs 0.87), which is due to the consumption of Nb by the MC carbides. The step diagrams in 

Figure 10 through Figure 13 show that the addition of carbon can result in up to 0.8% phase 

fraction of MC carbide, slightly reduces the amount of 𝜎𝜎 and 𝛿𝛿, and slightly increases the amount 

of 𝛾𝛾′. The step diagrams in Figure 10 through Figure 13 also show that the different AC and AM 

alloy compositions have negligible difference in equilibrium phase fraction; the AM alloy has 

slightly more 𝜎𝜎 and 𝛾𝛾′ and slightly less 𝛿𝛿. Based on the Scheil and step diagrams, it is concluded 

that, for homogenization, the only major effect of carbon content is to provide a new phase, MC 

carbide, which is stable at the homogenization heat treatment temperature. 

The step diagrams, Figure 10 through Figure 13, along with the phase diagram, Figure 6, 

are used for determination of the homogenization heat treatment temperature. From the step 

diagrams, it is seen that the equilibrium phases above 1,060°C through 1,180°C are only 𝛾𝛾 and 

MC carbide. From the phase diagram, it is seen that the eutectic reaction Liquid to 𝛾𝛾 + Laves 

occurs close to 1,200°C. If the samples are heated too quickly at a temperature above the eutectic 

reaction temperature, then localized liquid would form, which is not preferred. These results 

indicate that 1,060°C – 1,200°C is the acceptable homogenization heat treatment range. In order 

to make a final determination of the heat treatment temperature, a literate review is performed. 

Chlebus et al. found that PBF samples required a higher homogenization heat treatment than that 

prescribed for wrought or cast Inconel 718 samples [(Chlebus et al. 2015)], which would indicate 

that the heat treatment should occur closer to the 1,200°C limit. Scheider et al. performed a 

literature review of PBF homogenization heat treatment temperatures and decided upon 1,080°C 

for 1.5 hours [(Schneider, Lund, and Fullen 2018)]. The review performed by Scheider et al. 

provided contradictory data points for comparison: one work reported that even at 1,180°C for 3 
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hours, the columnar grain structure continued to exist [(Brenne et al. 2016)], while another work 

reported complete recrystallization after solutionizing at 954°C for 1 hour [(Zhang et al. 2015; 

Schneider, Lund, and Fullen 2018)]. Recrystallization is useful for achieving isotropic material 

properties, but also typically precedes grain growth which is detrimental for strength but beneficial 

for creep resistance. To promote quicker homogenization times, a homogenization heat treatment 

temperate of 1,180°C is selected, which is in line with the work of Brenne et al. [(Brenne et al. 

2016)]. 

The DICTRA simulations, Figure 14 through Figure 16, based on the EDS scan results, 

Figure 19, Table 7, and Table 8, are used to determine the homogenization heat treatment 

durations. The phase diagram in Figure 6 says that the Laves phase ceases to exist at less than ~6% 

Nb atomic content, which combined with Figure 14 suggests that the cast sample will no longer 

have Laves phase between 720 seconds and 1,080 seconds (12-18 minutes); however, it should be 

expected that diffusion will be slower within the Laves phase and therefore the Laves phase will 

not be fully dissolved in that timeframe in the cast sample. Figure 16 indicates that the Laves phase 

should be expected to be dissolved by 3.6 seconds in the AM sample; however, as previously 

mentioned it should be expected that diffusion will be slower within the Laves phase and therefore 

the Laves phase will not be fully dissolved in that timeframe in the AM sample. Figure 17 indicates 

that by 20 minutes, the AM sample should be fully homogenized, while the cast sample is 

significantly segregated. Figure 17 also indicates that at 1 hour, the cast sample should be more 

segregated than the AM sample at 20 minutes. The results in Figure 18 and Table 6 indicate that 

this analysis is correct. 20 minutes is selected to give the short term homogenization behavior of 

the samples, where it is expected that the AM sample will be fully homogenized but the cast sample 

will be not fully homogenized. 1 hour is selected as a time where the AM sample will still be fully 
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homogenized, and the cast sample will be almost fully homogenized. 12 hours is selected as a time 

indicative of the long term, or equilibrium homogenization behavior. 

Based on the step diagrams, Figure 10 through Figure 13, it is expected that the equilibrium 

Nb segregation, which is due only to MC carbides, will be less than 0.8%. The results in Table 6 

concur with this prediction; the cast sample is converging to a Nb segregation value of 

approximately 0.47%, while the AM sample is converging to a Nb segregation value of 

approximately 0.36%.  

4.2 Further Discussion of Experimental Results 

Figure 18 shows the homogenization behavior of the cast and AM samples via backscatter 

SEM. White sections of the SEM image correspond to Nb-rich phases, such as Laves or MC 

carbide. It is clear in the as-received state (a) and (e), that there is ample segregation. The 

segregation has the expected character of Nb-poor dendrite cores with Nb-rich interdendritic 

zones. From the image and scale bar, it can be seen that for the cast sample the dendrite arm spacing 

(DAS) is approximately 20 μm, while for the AM sample the DAS is approximately 1 μm; this 

difference indicates that the AM sample has a much higher cooling rate because DAS is related to 

cooling rate. Raghavan et al. report a DAS of 1.1 μm for their samples, and estimate approximately 

104°C/s cooling rates [(Raghavan et al. 2017)]. Figure 18 (e) also shows the presence of the melting 

pools produced in the PBF process; the microstructure in the overlapping regions is different from 

the non-overlapping regions. (b) and (f) show the homogenization after 20 minutes, which 

demonstrates that the AM sample is homogenized and only has very small MC carbides, while the 

cast sample has significant Laves and MC carbides present. The Laves phase can be distinguished 



 57 

from the MC carbides by its irregular shape compared to the cubic MC carbide shape. Further 

homogenization time in (c), (d), (g), and (h) show that the trends in each sample continue – the 

cast sample is further homogenized, while the AM sample becomes less homogenized. The AM 

sample is more homogenized than the cast sample at all times, especially at 20 minutes. The AM 

sample becomes less homogenized via the growth of MC carbides, while the cast sample becomes 

more homogenized via the dissolution of the Laves phase. The difference in homogenization 

behavior is driven by the shorter diffusion distances in the AM samples, and the smaller degree of 

initial segregation. The eight samples demonstrate that AM parts require shorter homogenization 

heat treatment times than traditionally manufactured samples. 

Figure 19 shows the EDS scan of two representative Laves sections in the cast and AM 

samples. From the top image, it can be seen that the Laves phase is much more pronounced in the 

cast sample. The EDS results correspond to the SEM image: there is significantly more Nb 

segregation over a larger length in the cast sample compared to the AM sample. The lower 

segregation in the AM sample could be due to the solidification being so rapid that the Nb cannot 

segregate to the Laves phase as easily as in the slower solidifying cast sample. This smaller, in 

length and amount, segregation in the AM sample further supports that the homogenization heat 

treatment for AM samples requires shorter times or lower temperatures than traditional 

manufacturing methods. 

Figure 21 suggests that the MC carbides are not growing significantly in the cast sample 

while the Laves phase is dissolving, but that the MC carbide grows significantly in the AM samples 

due to being the only non-𝛾𝛾 phase present. The homogenization heat treatment for AM parts should 

not be 12 hours long, and as such this MC carbide coarsening issue should not be present in 

manufactured parts. 



 58 

The IPF images in Figure 22 for the heat treated samples show that there is no preferred 

grain orientation, but that there is a columnar microstructure for the as-built AM sample. Wang 

and Chou [(X. Wang and Chou 2017)] found a very strong preferred [101] grain orientation in 

their AM samples prior to heat treatment. The change from a strong columnar microstructure to 

equiaxed grains in the AM samples indicate that significant recrystallization has occurred, even by 

20 minutes. This hypothesis is further supported by the low GOS values in the heat treated samples 

in Figure 25. It is hypothesized that the large surface area and aspect ratio of the columnar grains, 

combined with the high residual stress and high temperature of the heat treatment all result in rapid 

recrystallization, even without cold work [(Schneider, Lund, and Fullen 2018)]. 

The average grain size and distribution presented in Figure 23 and Figure 24 indicate that 

significant grain growth has occurred in both the cast and AM samples. Converting the columnar 

grains into an equivalent grain size results in an approximately 75 μm initial grain size being 

reported for the as-built AM sample. The initial grain size in the AM sample is likely close to the 

1-40 μm size reported by Wang and Chou [(X. Wang and Chou 2017)], but by 20 minutes the 

average size has already become ~175 μm. The shift in distribution suggests that further 

recrystallization occurs in the AM samples at further homogenization time. The cast sample 

measurements also suggest growth followed by further minor recrystallization. The rapid 

recrystallization and grain growth of the AM sample further support developing shorter and cooler 

heat treatment times for AM components. 

Very interestingly, Figure 23 shows that while the cast samples continuously grow in 

average grain size, the AM samples grow initially (within 20 minutes) and then recrystallize more 

than they grow, resulting is a smaller average grain size.  It is hypothesized that there are finely 

dispersed oxides from the powder that are acting as grain boundary pinners in the AM sample, 
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while the cast samples have no such oxides.  The oxides would be stable at the heat treatment 

temperature.  Additionally, finely dispersed MC carbides at the grain boundaries would also 

restrict the grain growth. 
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5.0 Conclusion 

In the present work, the effect of homogenization heat treatment at 1,180℃ on the phase 

transformation and grain evolution in cast and AM Inconel 718 samples are investigated by 

computational modeling and experimental methods. The computational modelling was performed 

in a CALPHAD framework via Thermo-Calc and the modelling was used to guide the 

experimental work. Based on the work presented, and the literature review performed, the 

following conclusions can be made: 

Although the samples analyzed herein reached the homogenization temperature quickly, 

larger, more complex parts will heat more slowly.  Additional attention needs to be paid to the 

heat-up of large, geometrically complex AM parts to ensure a gradient heat treatment is not 

accidently applied. 

Inconel 718 shows significant segregation on solidification with the primary detrimental 

segregated element being Nb. The segregation is more pronounced in cast samples than in AM 

samples. The distances between neighboring Nb-rich regions are higher in cast samples than in 

AM samples, and the level of Nb enrichment in Nb-rich regions is higher in cast samples. 

The phase transformation process is different between cast samples and AM samples. The 

cast samples slowly dissolve Laves phase while MC carbides are present. The AM samples very 

rapidly dissolve the Laves phase while MC carbides precipitate over time. The highest level of Nb 

content in the 𝛾𝛾 phase is within 20 minutes of heat treatment for the AM samples, while the highest 

level of Nb content in the 𝛾𝛾 phase is after more than 1 hour of heat treatment for the cast sample. 

The EBSD analysis on recrystallization indicates much faster kinetics in the AM samples 

than in the cast samples. The AM sample shows no grain orientation and no columnar structure 
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after 20 minutes of heat treatment, which indicates extensive recrystallization. The AM sample 

shows significant grain growth after 20 minutes of heat treatment, but shrinkage at times longer 

than 20 minutes. Further heat treating of cast samples shows complex grain behavior suggestive 

of growth followed by recrystallization.  It is hypothesized that finely dispersed oxides provide 

grain boundary pinning in the AM samples. 

Further work should be done to determine the optimum heat treatment strategy for 

additively manufactured Inconel 718. This work provides guidance on the different phase 

transformation and grain behavior between cast and AM samples, and demonstrates that there is a 

clear need for different heat treatments for AM parts. 
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Appendix A Crystal Structures 

The crystal structures of four major phases are presented. The renderings are not to scale, 

but provide information on the relative placement of the atoms in the lattice. 

A.1 𝜸𝜸′ FCC L12 Ni3(Ti,Al) Pm3m 

 
 

Figure 27 - γ' FCC L12 Ni3(Ti,Al) Pm3m 
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A.2 𝜸𝜸′′ BCT D022 Ni3Nb I4/mmm 

 
 

Figure 28 - γ'' BCT D022 Ni3Nb I4/mmm 
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A.3 𝜹𝜹 Orthorhombic D0a Ni3Nb Pmmn 

 
 

Figure 29 - δ Orthorhombic D0a Ni3Nb Pmmn 
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A.4 Laves C14 (Ni,Fe,Cr)2(Nb,Mo,Ti) hP12 

 
 

Figure 30 - Laves C14 (Ni,Fe,Cr)2(Nb,Mo,Ti) hP12 
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Appendix B – EDS Scans 

Table 7 - EDS Scan in As-Cast Sample 
 
 

Point Distance 
(µm) 

Nb 
At% 

Mo 
At% 

Al 
At% 

Ti 
At% 

Cr 
At% 

Fe 
At% 

Ni 
At% 

1 0 2.7 1.83 0 1.2 21.89 20.05 52.32 
2 0.22944 2.49 1.4 0 1.45 21.66 19.7 53.31 
3 0.45889 2.53 2.22 0 1.29 21.37 19.98 52.61 
4 0.68833 2.16 2.4 2 1.23 21.74 19.46 51.01 
5 0.91778 2.58 1.72 2.3 1 20.94 19.44 52.02 
6 1.1472 2.11 1.84 1.43 1.25 20.99 20.33 52.04 
7 1.3767 2.44 1.87 0 1.26 21.71 19.59 53.13 
8 1.6061 2.31 2.07 0 0.97 21.8 20.6 52.24 
9 1.8356 2 1.6 0 0.96 22.21 20.59 52.64 
10 2.065 1.63 2.29 0 1.11 21.25 20.66 53.06 
11 2.2944 1.68 1.8 0 0.95 21.33 21.65 52.59 
12 2.5239 2.18 1.61 1.32 0.89 20.4 20.68 52.92 
13 2.7533 1.59 1.26 1.52 0.97 20.88 20.83 52.94 
14 2.9828 2.01 1.85 0 1.2 21.28 21.18 52.48 
15 3.2122 2.02 1.93 1.46 1.07 21.31 19.69 52.51 
16 3.4417 2.12 1.73 0 0.98 21.8 20.62 52.76 
17 3.6711 1.77 1.76 0 0.93 21.81 20.55 53.17 
18 3.9005 1.57 0 0 0.9 21.84 21.61 54.08 
19 4.13 1.83 1.76 0 0.71 21.32 21.82 52.55 
20 4.3594 1.55 2.2 0 0.96 22.47 20.63 52.19 
21 4.5889 2.12 1.83 1.74 0.7 21.77 20.29 51.55 
22 4.8183 1.2 1.59 0 0.81 21.94 21.33 53.13 
23 5.0478 1.88 1.8 1.73 1 21.54 20.24 51.81 
24 5.2772 1.86 2.02 0 1.17 21.92 20.79 52.24 
25 5.5067 1.67 1.38 1.56 1.21 21.29 20.25 52.64 
26 5.7361 1.83 1.54 1.4 0.71 22.53 19.53 52.46 
27 5.9655 2.02 1.97 0 0.84 21.7 21.1 52.36 
28 6.195 1.73 2.02 0 1.25 21.98 20.16 52.87 
29 6.4244 1.7 1.96 0 0.8 21.79 21.03 52.72 
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Table 7 (continued) 
 
 

Point Distance 
(µm) 

Nb 
At% 

Mo 
At% 

Al 
At% 

Ti 
At% 

Cr 
At% 

Fe 
At% 

Ni 
At% 

30 6.6539 1.3 1.73 0 0.94 21.44 19.96 54.62 
31 6.8833 1.59 1.52 0 1.18 22.14 21.37 52.2 
32 7.1128 0 1.68 1.98 1.04 22.29 21.6 51.41 
33 7.3422 1.66 1.84 0 0.98 22.65 20.3 52.56 
34 7.5716 2.09 2.01 1.49 0.87 21.21 20.44 51.89 
35 7.8011 2 1.6 0 1.13 21.46 21.23 52.58 
36 8.0305 2.01 2.12 0 1.18 21.89 19.99 52.81 
37 8.26 1.73 1.82 0 1.2 21.39 20.24 53.62 
38 8.4894 1.81 1.54 1.45 1.08 21.38 20.81 51.92 
39 8.7189 2.24 1.94 0 1.32 21.54 20.04 52.92 
40 8.9483 1.91 1.36 0 1.14 21.22 19.91 54.46 
41 9.1778 2.4 1.97 1.52 1.27 21.42 19.62 51.8 
42 9.4072 2.16 2.02 1.34 1.24 21.4 19.57 52.28 
43 9.6366 2.47 1.91 1.7 0.9 21.46 19.98 51.58 
44 9.8661 2.45 1.82 0 1.03 21.4 19.82 53.47 
45 10.096 3.05 1.96 0 1.48 21.29 19.2 53.03 
46 10.325 3.61 2.14 1.44 1.44 20.98 18.48 51.91 
47 10.554 4.16 2.33 1.32 1.5 20.37 18.21 52.11 
48 10.784 5.29 1.83 0 1.96 19.98 17.26 53.68 
49 11.013 6.89 3.05 0 2.01 19.57 17.37 51.11 
50 11.243 9.67 3.25 1.69 1.77 18.24 15.71 49.67 
51 11.472 12.17 3.64 0 2.2 17.64 15.44 48.92 
52 11.702 14.94 3.77 0 1.77 16.36 14.74 48.43 
53 11.931 16.05 3.15 0 2.23 16.82 14.12 47.63 
54 12.161 16.83 3.25 0 2.46 16.94 14.33 46.19 
55 12.39 13.28 2.89 0 2.45 17.21 14.16 50 
56 12.619 9.49 2.76 1.48 2.27 17.08 14.88 52.04 
57 12.849 7.13 2.68 1.86 2.25 18.52 16.08 51.47 
58 13.078 6.1 2.38 0 2.42 19.07 16.66 53.37 
59 13.308 5.74 2.29 1.68 2.18 19.31 17.24 51.55 
60 13.537 4.78 2.38 1.7 2.02 19.9 18.2 51.03 
61 13.767 4.91 2.44 0 2.15 20.18 16.95 53.38 
62 13.996 4.65 1.98 0 2.04 20.54 18.12 52.67 
63 14.226 5.5 2.43 1.43 1.95 19.19 17.66 51.84 
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Table 7 (continued) 
 
 

Point Distance 
(µm) 

Nb 
At% 

Mo 
At% 

Al 
At% 

Ti 
At% 

Cr 
At% 

Fe 
At% 

Ni 
At% 

64 14.455 4.84 2.51 0 1.96 20.38 18.04 52.27 
65 14.684 4.9 2.62 0 2.05 19.9 18.01 52.52 
66 14.914 4.48 2.12 2.53 1.49 19.84 18.47 51.07 
67 15.143 3.97 1.6 0 1.78 20.36 19.32 52.97 
68 15.373 3.84 2.54 0 1.44 21.13 19.11 51.93 
69 15.602 2.99 1.36 1.69 1.23 21.16 19.78 51.8 
70 15.832 2.83 2.45 0 1.78 20.76 20.86 51.32 
71 16.061 3.07 2.63 1.6 1.43 20.96 18.97 51.34 
72 16.291 2.33 2.05 0 1.1 21.74 19.99 52.79 
73 16.52 1.57 1.63 0 1.5 20.98 20.91 53.42 
74 16.749 1.9 1.78 0 1.05 21.41 20.32 53.54 
75 16.979 2.08 1.81 1.49 1.02 21.01 20.56 52.03 
76 17.208 1.61 1.67 0 0.99 21.42 21.23 53.08 
77 17.438 1.65 2.14 1.66 0.86 21.32 19.39 52.97 
78 17.667 1.8 1.63 1.52 0 21.36 20.56 53.13 
79 17.897 1.24 1.76 1.76 0.9 21.85 20.43 52.06 
80 18.126 1.46 1.81 0 1.15 22.39 20.4 52.79 
81 18.356 1.85 1.73 1.53 1.14 21.44 20.21 52.1 
82 18.585 1.87 2.13 1.72 1.06 21.13 20.28 51.8 
83 18.814 2.04 1.96 1.84 1.04 21.76 20.66 50.7 
84 19.044 1.4 1.49 0 1.06 22.04 20.49 53.51 
85 19.273 1.81 1.82 1.4 1.22 21.67 20.92 51.17 
86 19.503 1.38 1.48 1.38 0.79 21.46 21.01 52.51 
87 19.732 1.39 1.38 0 1.07 22.55 20.75 52.86 
88 19.962 1.23 1.41 0 0.8 21.94 21.47 53.15 
89 20.191 1.1 1.76 1.79 1.01 21.44 20.37 52.54 
90 20.421 1.85 1.77 0 0.88 20.82 21.42 53.26 
91 20.65 1.84 1.97 0 1.09 21.95 20.81 52.34 
92 20.879 1.13 1.67 1.63 0.94 21.57 20.72 52.34 
93 21.109 1.88 2.08 1.5 1.22 20.44 20.74 52.14 
94 21.338 1.2 1.63 0 0.88 21.86 21.62 52.82 
95 21.568 0 1.91 1.45 1 21.29 21.76 52.59 
96 21.797 1.39 1.61 0 0.72 22.1 20.64 53.54 
97 22.027 1.55 1.7 0 0.91 21.41 21.15 53.27 
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Table 7 (continued) 
 
 

Point Distance 
(µm) 

Nb 
At% 

Mo 
At% 

Al 
At% 

Ti 
At% 

Cr 
At% 

Fe 
At% 

Ni 
At% 

98 22.256 1.4 1.66 1.4 0.8 21.67 21.52 51.56 
99 22.486 1.53 0 0 0.8 21.46 22.49 53.72 
100 22.715 1.49 1.99 0 0 21.85 20.66 54.02 
 

 

  



 70 

Table 8 - EDS Scan in As-Built Sample 
 
 

Point Distance 
(µm) 

Ni 
At% 

Fe 
At% 

Cr 
At% 

Ti 
At% 

Nb 
At% 

Mo 
At% 

Al 
At% 

1 0 55.46 20.52 22.75 1.27 0 0 0 
2 0.042767 51.72 19.93 22.25 2.05 4.06 0 0 
3 0.085533 56.41 20.07 22.32 1.21 0 0 0 
4 0.1283 50.32 21.21 23.65 1.61 3.22 0 0 
5 0.17107 53.65 18.1 23.79 1.65 2.81 0 0 
6 0.21383 54.02 18.8 22.89 1.7 2.59 0 0 
7 0.2566 52.81 19.43 22.4 1.24 4.12 0 0 
8 0.29937 54.12 18.83 23.88 0 3.18 0 0 
9 0.34213 54.79 18.46 22.45 1.11 3.2 0 0 
10 0.3849 56.95 19.98 21.95 1.12 0 0 0 
11 0.42767 52.94 19.66 23.17 1.33 2.9 0 0 
12 0.47043 53.02 20.03 22.04 1.75 3.15 0 0 
13 0.5132 54.15 20.01 22.68 0 3.15 0 0 
14 0.55597 54.32 19.81 22.89 0 2.98 0 0 
15 0.59873 52.76 18.39 21.84 0 4.01 3 0 
16 0.6415 50.1 19.96 22.07 1.59 3.52 2.77 0 
17 0.68426 52.84 19.75 22.64 1.07 3.7 0 0 
18 0.72703 55.21 19.49 23.87 1.43 0 0 0 
19 0.7698 53.3 19.55 22.13 1.19 3.83 0 0 
20 0.81256 54.84 20.07 22.39 0 2.71 0 0 
21 0.85533 56.23 20.1 22.52 1.15 0 0 0 
22 0.8981 52.76 20.65 22.7 1.01 2.89 0 0 
23 0.94086 55.42 20.13 21.74 0 2.71 0 0 
24 0.98363 52.15 19.69 23.9 1.23 3.03 0 0 
25 1.0264 52.17 19.42 23.91 1.35 3.15 0 0 
26 1.0692 53.04 20.81 22.7 0 3.45 0 0 
27 1.1119 54.06 20.97 23.56 1.42 0 0 0 
28 1.1547 53.17 19.41 22.57 1.18 3.66 0 0 
29 1.1975 53.16 20.34 22.21 1.21 3.08 0 0 
30 1.2402 56.27 19.92 22.68 1.13 0 0 0 
31 1.283 56.95 19.32 22.43 1.3 0 0 0 
32 1.3258 55.41 19.9 23.66 1.03 0 0 0 
33 1.3685 55.36 19.71 22.14 0 2.8 0 0 
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Table 8 (continued) 
 
 

Point Distance 
(µm) 

Ni 
At% 

Fe 
At% 

Cr 
At% 

Ti 
At% 

Nb 
At% 

Mo 
At% 

Al 
At% 

34 1.4113 54.99 18.81 22 1.41 2.79 0 0 
35 1.4541 51.99 20.34 24.3 0 3.37 0 0 
36 1.4968 53.56 18.84 23.39 1.03 3.18 0 0 
37 1.5396 56.03 19.63 22.78 1.56 0 0 0 
38 1.5824 51.95 18.9 22.09 1.16 2.93 2.98 0 
39 1.6251 54.31 20.21 22.31 0 3.17 0 0 
40 1.6679 53.17 20.63 21.69 1.14 3.38 0 0 
41 1.7107 54.24 20.1 22.78 0 2.88 0 0 
42 1.7534 53.11 19.03 22.3 1.61 3.95 0 0 
43 1.7962 52.38 20.58 22.67 1.21 3.16 0 0 
44 1.839 54.74 19.32 21.74 1.27 2.93 0 0 
45 1.8817 53.12 19.22 22.38 1.3 3.98 0 0 
46 1.9245 54.05 18.4 23.42 1.43 2.7 0 0 
47 1.9673 55.62 20.11 22.94 1.33 0 0 0 
48 2.01 56.77 19.8 22.38 1.05 0 0 0 
49 2.0528 51.81 19.49 22.86 0 3.24 2.6 0 
50 2.0956 56.52 19.58 22.36 1.55 0 0 0 
51 2.1383 56.55 18.97 23.37 1.11 0 0 0 
52 2.1811 54.96 20.86 23.2 0.98 0 0 0 
53 2.2239 52.61 19.95 22.57 1.13 3.75 0 0 
54 2.2666 56.43 20.13 22.06 1.38 0 0 0 
55 2.3094 54.21 19.26 22.39 1.05 3.09 0 0 
56 2.3522 55.01 19.16 22.31 0.98 2.54 0 0 
57 2.3949 53.98 21.47 23.08 1.47 0 0 0 
58 2.4377 53.2 19.69 22.97 1.2 2.95 0 0 
59 2.4805 52.14 19.84 23.57 1.32 3.13 0 0 
60 2.5232 53.45 20.26 22.04 1.3 2.95 0 0 
61 2.566 55.83 19.59 21.32 0 3.26 0 0 
62 2.6088 50.02 19.83 23.04 1.46 2.87 2.79 0 
63 2.6515 53.41 19.13 22.75 1.47 3.24 0 0 
64 2.6943 53.07 21.05 21.54 1.32 3.01 0 0 
65 2.7371 54.14 19.48 22.17 1.23 2.98 0 0 
66 2.7798 53.42 19.71 22.66 1.12 3.08 0 0 
67 2.8226 50.74 18.96 22.64 1.22 3.82 2.62 0 
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Table 8 (continued) 
 
 

Point Distance 
(µm) 

Ni 
At% 

Fe 
At% 

Cr 
At% 

Ti 
At% 

Nb 
At% 

Mo 
At% 

Al 
At% 

68 2.8654 53.62 18.88 23.09 1.23 3.17 0 0 
69 2.9081 50.69 20.07 21.78 1.27 3.41 2.78 0 
70 2.9509 52.16 19.32 21.32 1.45 3.08 2.67 0 
71 2.9937 52.53 20.7 21.95 1.47 3.36 0 0 
72 3.0364 53.62 19.22 21.97 1.29 3.9 0 0 
73 3.0792 52.48 19.72 23.23 1.73 2.85 0 0 
74 3.122 52.76 19.81 22.27 1.61 3.56 0 0 
75 3.1647 53.9 19.63 22.03 1.02 3.4 0 0 
76 3.2075 53.97 19.89 22.14 1.08 2.93 0 0 
77 3.2503 52.19 19.8 23.66 1.24 3.11 0 0 
78 3.293 53.14 19.96 22.22 1.1 3.57 0 0 
79 3.3358 53.18 19.1 21.99 1.29 4.44 0 0 
80 3.3786 53.27 19.47 22.59 1.4 3.27 0 0 
81 3.4213 54.28 20.18 21.28 1.32 2.95 0 0 
82 3.4641 52.52 19.31 23.22 1.09 3.86 0 0 
83 3.5069 54.5 20.63 23.69 1.18 0 0 0 
84 3.5496 50.74 18.12 22.69 1.54 4.23 2.68 0 
85 3.5924 55.77 18.5 21.12 1.46 3.16 0 0 
86 3.6352 48.83 19.27 23.38 1.68 3.87 2.97 0 
87 3.6779 54.36 17.93 22.39 1.47 3.85 0 0 
88 3.7207 52.61 18.89 22.53 1.51 4.46 0 0 
89 3.7635 52.77 18.36 22.57 1.83 4.47 0 0 
90 3.8062 51.06 20.68 21.87 1.75 4.64 0 0 
91 3.849 53.5 17.27 23.11 1.37 4.75 0 0 
92 3.8918 52.39 18.78 22.81 1.23 4.79 0 0 
93 3.9345 52.24 19.56 21.04 1.18 5.98 0 0 
94 3.9773 51.82 17.93 21.73 1.94 6.58 0 0 
95 4.0201 48.67 18.17 20.81 1.43 6.74 4.19 0 
96 4.0628 51.06 17.95 22.68 0 8.31 0 0 
97 4.1056 51.54 18.4 21.85 0 8.21 0 0 
98 4.1484 51.16 18.04 22.37 1.25 7.19 0 0 
99 4.1911 51.43 18.87 21.7 1.98 6.03 0 0 
100 4.2339 50.49 17.1 23.03 0 5.38 4 0 
101 4.2767 54.47 18.34 21.15 1.79 4.25 0 0 
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Table 8 (continued) 
 
 

Point Distance 
(µm) 

Ni 
At% 

Fe 
At% 

Cr 
At% 

Ti 
At% 

Nb 
At% 

Mo 
At% 

Al 
At% 

102 4.3194 51.68 19.27 23 1.19 4.85 0 0 
103 4.3622 50.87 19.53 22.2 1.98 5.43 0 0 
104 4.405 53.67 18.06 23.06 1.11 4.1 0 0 
105 4.4477 51.69 20.74 21.93 1.11 4.53 0 0 
106 4.4905 51.3 18.18 21.53 1.15 4.8 0 3.05 
107 4.5333 53.75 18.69 22.44 1.14 3.97 0 0 
108 4.576 51.16 18.74 21.3 1.52 4.29 2.99 0 
109 4.6188 53.93 19.58 20.74 1.35 4.4 0 0 
110 4.6616 53.46 20.25 22.28 0 4.02 0 0 
111 4.7043 52.27 19.95 22.19 1.93 3.66 0 0 
112 4.7471 53.86 18.84 23.26 1.05 2.98 0 0 
113 4.7899 53.81 19.69 21.11 1.21 4.17 0 0 
114 4.8326 56.94 19.83 23.23 0 0 0 0 
115 4.8754 52.66 19.31 22.78 1.53 3.72 0 0 
116 4.9182 56.99 19.33 22.7 0.98 0 0 0 
117 4.9609 55.25 19.17 21.59 0 3.99 0 0 
118 5.0037 54.23 17.9 22.61 1.25 4.01 0 0 
119 5.0465 53.93 20 22.16 0 3.92 0 0 
120 5.0892 53.21 20 22.18 0.99 3.63 0 0 
121 5.132 51.61 19.35 22.49 0 3.94 2.61 0 
122 5.1748 52.12 18.88 22.49 0 3.18 3.32 0 
123 5.2175 53.14 20.26 22.16 0 4.43 0 0 
124 5.2603 53.41 19.47 22.81 1.63 0 2.68 0 
125 5.3031 52.88 19.36 23.23 1.72 2.82 0 0 
126 5.3458 54.33 19.38 23.5 0 2.79 0 0 
127 5.3886 55.88 20.4 22.4 1.32 0 0 0 
128 5.4314 52.49 19.61 22.45 1.82 3.62 0 0 
129 5.4741 53.55 19.67 22.32 1.31 3.15 0 0 
130 5.5169 53.13 17.53 21.19 1.58 3.88 2.69 0 
131 5.5597 51.65 19.4 23.7 1.05 4.2 0 0 
132 5.6024 51.01 19.45 23.49 1.47 4.58 0 0 
133 5.6452 51.97 19.34 22.31 1.21 5.17 0 0 
134 5.688 53.03 19.45 21.63 1.79 4.11 0 0 
135 5.7307 54.55 18.48 22.91 0 4.05 0 0 
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Table 8 (continued) 
 
 

Point Distance 
(µm) 

Ni 
At% 

Fe 
At% 

Cr 
At% 

Ti 
At% 

Nb 
At% 

Mo 
At% 

Al 
At% 

136 5.7735 51.89 19.63 22.38 1.57 4.53 0 0 
137 5.8163 53.03 19.57 21.43 1.62 4.34 0 0 
138 5.859 49.77 19.07 22.26 1.42 4.39 3.08 0 
139 5.9018 51.88 17.72 21.84 1.43 4.4 2.73 0 
140 5.9446 52.04 19.9 22.75 1.37 3.94 0 0 
141 5.9873 51.74 19.85 22.7 2.14 3.58 0 0 
142 6.0301 53.96 19.28 22.43 0 4.33 0 0 
143 6.0729 54.78 20.52 23.52 1.17 0 0 0 
144 6.1156 52.59 19.14 22.08 1.69 4.51 0 0 
145 6.1584 52.89 20.28 22.61 0 4.22 0 0 
146 6.2012 53.55 20.07 22.92 0 3.46 0 0 
147 6.2439 52.67 19.69 21.14 1.91 4.59 0 0 
148 6.2867 52.75 18.75 22.18 1.95 4.36 0 0 
149 6.3295 52.88 19.23 23.33 1.3 3.26 0 0 
150 6.3722 55.39 18.68 21.65 0 4.29 0 0 
151 6.415 52.09 20.69 22.7 1.57 2.95 0 0 
152 6.4578 50.01 19.54 22.25 1.38 3.98 2.84 0 
153 6.5005 53.51 19.01 22.77 1.54 3.17 0 0 
154 6.5433 54.99 18.61 21.61 1.8 3 0 0 
155 6.5861 55.35 18.88 22.85 0 2.91 0 0 
156 6.6288 52.1 18.86 23.83 1.27 3.94 0 0 
157 6.6716 52.46 18.94 21.33 1.17 3.45 2.66 0 
158 6.7144 51.7 18.95 21.66 1.82 2.65 3.21 0 
159 6.7571 52.5 19.41 22.29 1.48 4.33 0 0 
160 6.7999 52.73 19.55 23.6 1.24 2.88 0 0 
161 6.8426 56.9 18.83 24.27 0 0 0 0 
162 6.8854 53.92 19.08 22.65 1.62 2.73 0 0 
163 6.9282 54.65 19 23.33 0 3.02 0 0 
164 6.9709 53.62 19.48 22.64 1.27 2.99 0 0 
165 7.0137 54.58 19.01 22.12 1.22 3.07 0 0 
166 7.0565 54.5 18.54 22.77 1.18 3.01 0 0 
167 7.0992 53.51 22.46 23.05 0.98 0 0 0 
168 7.142 51.52 20.8 22.71 1.2 3.77 0 0 
169 7.1848 53.83 19.88 22.3 0.95 3.04 0 0 
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Table 8 (continued) 
 
 

Point Distance 
(µm) 

Ni 
At% 

Fe 
At% 

Cr 
At% 

Ti 
At% 

Nb 
At% 

Mo 
At% 

Al 
At% 

170 7.2275 54.39 19.54 22.22 1.19 2.65 0 0 
171 7.2703 54.95 19.62 21.1 1.14 3.19 0 0 
172 7.3131 54.2 19.59 21.88 1.39 2.93 0 0 
173 7.3558 55.07 18.94 21.29 1.24 3.46 0 0 
174 7.3986 54.07 19.48 23.69 0 2.75 0 0 
175 7.4414 50.98 19.78 21.47 1.89 3.27 2.6 0 
176 7.4841 53.02 20.1 21.98 1.15 3.75 0 0 
177 7.5269 53.45 20.11 21.89 1.21 3.34 0 0 
178 7.5697 54.46 20.03 21.39 1.24 2.88 0 0 
179 7.6124 52.89 19.05 21.23 1.27 2.85 2.7 0 
180 7.6552 52.08 19.21 22.2 0 3.54 2.96 0 
181 7.698 52.57 20.14 22.71 1.6 2.98 0 0 
182 7.7407 53.55 19.33 23.19 1.28 2.65 0 0 
183 7.7835 52.53 20.3 22.66 1.45 3.05 0 0 
184 7.8263 55.5 20.45 22.36 1.69 0 0 0 
185 7.869 53.65 18.83 22.48 1.36 3.69 0 0 
186 7.9118 51.09 18.04 21.21 1.49 5.07 3.1 0 
187 7.9546 53.51 19.65 21.88 1.48 3.48 0 0 
188 7.9973 53.34 19.66 21.7 1.3 4.01 0 0 
189 8.0401 53.95 18.8 22.09 1.48 3.68 0 0 
190 8.0829 53.05 19.14 22.75 0 5.06 0 0 
191 8.1256 52.54 19.57 22.19 1.33 4.37 0 0 
192 8.1684 54.43 18.96 23.31 0 3.31 0 0 
193 8.2112 52.03 19.87 22.83 1.12 4.16 0 0 
194 8.2539 53.01 18.96 21.27 0 3.8 2.96 0 
195 8.2967 53.51 20.04 23.38 0 3.07 0 0 
196 8.3395 53.89 18.39 22.94 1.4 3.38 0 0 
197 8.3822 53.54 19.5 22.24 1.65 3.06 0 0 
198 8.425 52.84 18.86 23.86 1.31 3.13 0 0 
199 8.4678 53.79 19.79 22.81 0 3.62 0 0 
200 8.5105 52.94 19.5 23.18 1.29 3.1 0 0 
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