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PROBABILISTIC DECENTRALIZED ACTIVE VIBRATION CONTROL:

STABILITY, PERFORMANCE, AND ROBUSTNESS

Christopher John D’Angelo, PhD

University of Pittsburgh, 2019

This research develops probabilistic decentralized active vibration control design and syn-

thesis techniques for uncertain complex structures. The uncertainty and complexity of the

structures studied in this thesis are concentrated at the point where two portions of a struc-

ture adjoin — the structural interconnection. This uncertainty is characterized using random

variables. The controller design and synthesis approaches that are developed in this research

lead to decentralized controller architectures while accounting for random uncertainty at

structural interconnections. Ancillary to probabilistic robust controller design and synthesis

is the development of analysis tools that enable the designer to evaluate the robust stability

and robust performance of the synthesized controllers, given that the plant uncertainty is

random.

The control approaches developed in this thesis fall into two distinct categories:

1. Full state feedback control design and synthesis for a lightly damped, lumped parameter

model with random interconnection uncertainty.

2. Dynamic output feedback control design and synthesis for a lightly damped, high di-

mensional beam model derived using finite element theory with random interconnection

element uncertainty.

For both the full state and dynamic output feedback control approaches that are devel-

oped in this research, the dynamic systems are modeled as generalized plants for control

design and synthesis. Control laws that are decentralized, attenuate the disturbance input

iv



to performance output channels in a system infinity-norm sense, and that are robust against

random interconnection uncertainty are then designed and synthesized. The models used in

this research represent random, lightly damped structures. Control design philosophies and

approaches are catered to, and exploit, properties specific to lightly damped structures.
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1.0 INTRODUCTION

This research develops probabilistic decentralized active vibration control design and syn-

thesis techniques for uncertain complex structures. The uncertainty and complexity of the

structures studied in this thesis are concentrated at the point where two portions of a struc-

ture adjoin — the structural interconnection. This uncertainty is characterized using random

variables. The controller design and synthesis approaches that are developed in this research

lead to decentralized controller architectures while accounting for random uncertainty at

structural interconnections. Ancillary to probabilistic robust controller design and synthesis

is the development of analysis tools that enable the designer to evaluate the robust stability

and robust performance of the synthesized controllers, given that the plant uncertainty is

random.

The control approaches developed in this thesis fall into two distinct categories:

1. Full state feedback control design and synthesis for a lightly damped, lumped parameter

model with random interconnection uncertainty.

2. Dynamic output feedback control design and synthesis for a lightly damped, high di-

mensional beam model derived using finite element theory with random interconnection

element uncertainty.

For both the full state and dynamic output feedback control approaches that are devel-

oped in this research, the dynamic systems are modeled as generalized plants for control

design and synthesis. Control laws that are decentralized, attenuate the disturbance input

to performance output channels in an H1-norm sense, and that are robust against random

interconnection uncertainty are then designed and synthesized. The models used in this re-
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search are random, lightly damped structures. Control design philosophies and approaches

are catered to, and exploit, properties specific to lightly damped structures.

1.1 RESEARCH OBJECTIVES

The act of decomposing large structures into a collection of many smaller ones is not new

[3]. In fact, the elementary notion of breaking down a large structure, or system, into an

interconnection of smaller ones has given rise to the fields of substructuring [3, 4] in structural

dynamics and large scale system theory [5] in control theory. However, designing vibration

controllers for each substructure and combining these controlled substructures to form a

controlled superstructure that meets some global performance requirements still has several

challenges.

One challenge is how uncertainty between substructures is quantified. The point where

substructures are joined may be bolted, welded, or joined by some other means. These inter-

connections are not only di�cult to model, but may experience changes in ways that di↵er

from the main portions of the structure. To address this challenge, random sti↵ness elements

are used to describe uncertainty at this interface. This uncertain interconnection between

substructures can have a significant impact on the dynamics of the composite controlled

structure — as shown in chapters 5 and 7 — and so techniques for evaluating the stability

and performance of independently-controlled substructures are developed into a large scale

structural control framework from the field of probabilistic robust control (PRC). Meeting

this challenge resulted in the first objective of this research:

Objective #1: Evaluate stability and performance of a composite controlled

structure possessing probabilistic interconnection uncertainty.

Developing methods to analyze the composite stability and performance of controlled sub-

structures in the presence of probabilistic interconnection uncertainty provides the structural

control engineer with powerful analysis tools, but methods for performing control design also

are needed. Few techniques exist in the area of decentralized substructure control that en-
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able the design of robust substructure controllers with attention to the types of uncertainty

studied in this research [6, 7]. Furthermore, there are no techniques that use probabilis-

tic interconnection uncertainty during decentralized substructure control design. Therefore,

control design techniques that can achieve controlled substructure performance requirements

in the presence of random interconnection uncertainty were needed. The second research ob-

jective is the following:

Objective #2: Achieve structural controller performance requirements when

controlled substructures are joined in the presence of interconnection uncertainty.

A significant component of robustness analysis deals with robust stability and performance

verification: for the amount of uncertainty present in the structural system model, will the

given controller meet performance and stability requirements for all instances within the

specified uncertainty set? Tools are developed in this research that allow the structural

control engineer to do two things: verify robust stability and performance and find how

much uncertainty can be tolerated by the controlled system before stability and performance

guarantees degrade toward unacceptable levels. Therefore, the third objective of this research

is the following:

Objective #3: Calculate probabilistic stability and performance margins.

In classical terms, these techniques translate into giving the structural control engineer ways

to find the robust stability and performance margins for the superstructure that is joined by

random interconnections.

1.2 RESEARCH APPROACH

An example application for the techniques that have been developed in this research is

the design of vibration controllers that attenuate the transfer of low frequency vibrations

between a marine engine compartment and hull. Due to the high dimension and complexity

of the models used to describe the dynamics of components in the engine compartment and
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hull, modeling endeavors for each subsystem may be pursued separately. Each subsystem

can be considered to be a substructure and the composition of these substructures form the

composite structure. For this type of system, sensing and actuation can be restricted to be

local to the substructures. This constraint, which may exist for physical or design reasons,

necessitates decentralized analysis and control strategies.

An additional challenge arises when we consider the dynamics at the point where sub-

structures are interconnected. Whether this point in the structure is bolted, welded, or

attached using some other means, the physics of this interconnection are complicated. In-

deed, an active, burgeoning area of research now exists at the intersection of tribology,

structural dynamics, and contact mechanics to better understand the dynamics across these

portions of a structure — and how to model them [8].

This thesis does not study the physics at substructure interconnections explicitly. This

thesis develops new controller design and synthesis techniques that allows engineers to syn-

thesize decentralized controllers for structures while explicitly accounting for uncertainty in

these interconnections. To capture the aggregate e↵ects of: nonlinearities; material changes

brought on by myriad phenomena; and other material or model anisotropies, the approaches

developed in this thesis allow for the interconnection to be modeled as a random system with

uncertainty characterized by arbitrary probability density functions.

The fields of control theory and active vibration control have developed techniques for

designing and synthesizing controllers in the presence of interconnection uncertainty [7, 6,

9, 10]. These specific methods in active structural control, and control theory in general,

are limited by design conservatism and potentially unrealistic expressions for substructure

interconnection uncertainty. The way that uncertainty is characterized in existing methods,

which is to model it as existing within some bounded ball of uncertainty, allows for the

uncertainty to exist everywhere within this ball with equal probability. We then end up

attempting to synthesize a controller for the theoretical worst-case plant configuration, even

if this worst-case is not likely to represent the configuration of the plant “most of the time”.

This notion has spurned the creation of an entire field within control theory: probabilistic

robust control [11, 12, 13, 14]. The principal di↵erence between these paradigms lies in
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Figure 1: Simplified di↵erence between robust control and probabilistic robust control.

how we characterize the system’s uncertainty. And so we may consider the existence of two

paradigms in robust control:

1. In robust control, norm-bounding uncertainty leads to asserting that the uncertain

plant may exist anywhere within some ball of uncertainty. For robust controller design,

the objective is to guarantee that stability and performance can be met for every member

in the set.

2. In probabilistic robust control, the uncertainty may or may not be norm-bounded,

and imposes a probability density function on the uncertainty. For probabilistic robust

controller design, the objective is to guarantee, using some probability measure, that

stability and robustness can be met for most members of the set.

A good way of visualizing these di↵erences is shown in figure 1. Color, or a gradient, by

way of a density function f�(�), is imposed onto the uncertainty set, as we attempt to find

controllers that perform better for most members in a now focused uncertainty set.

Using the robust control approach to incorporating uncertainty into structural models,

we are not able to incorporate precise information about the nature of the system’s uncer-

tainty during controller design and synthesis. At best, the traditional approach to bounding
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uncertainty only permits a coarse characterization of uncertainty. Using the methods devel-

oped in this thesis, actual materials and test data can be translated into uncertainty inputs

for use during controller design and synthesis.

This research provides the vibration control engineer with new techniques for analyzing

the stability and performance of connected, controlled substructures where random uncer-

tainty is concentrated in the interconnections. While accounting for random interconnection

uncertainty, this research culminates in active control design and synthesis approaches that

enforce a decentralized controller implementation. Techniques for evaluating the bounds on

how much random uncertainty can be tolerated before performance degrades significantly,

in a probabilistic sense, are also developed in this research. This research sets the stage for

extending these techniques to the more complicated case of including uncertainty not only

in the interconnections, but also in the substructures.

Two cases, using canonically studied models in vibration control, are features in this

research:

1. The full-state feedback control case, which uses a simple lumped-parameter spring-mass-

damper model;

2. The dynamic output feedback control case, which uses an Euler-Bernoulli beam derived

from elementary finite element methods.

Novel, probabilistic robust, decentralized active vibration controller design and synthesis

approaches are developed in this thesis for both the full-state feedback and dynamic out-

put feedback control cases. Aside from their decentralized implementations, both of these

approaches share a common feature: they are designed to attenuate the H1 norm of distur-

bance input/performance output mapping for the structure below some level in the presence

of random interconnection uncertainty. To achieve these ends in this research, two techniques

have been developed that synthesize decentralizedH1 controllers for structural systems with

random interconnection uncertainty through using techniques and tools such as:

1. Linear matrix inequalities/semidefinite programming and the scenario-based approach

for the full-state feedback case [15, 16, 14];
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2. µ-synthesis and genetic algorithms for solving a high-dimensional stochastic optimization

problem for the dynamic output feedback case [17, 18].

These tools are developed, and then applied to solve the large scale structural control problem

with attention paid to reducing controller design conservatism and computational complexity.

The approaches for achieving this are the topics of chapters 5, 6, and 7.

Structural systems, especially those that operate in harsh environments, have specific

mathematical and physical considerations that are highlighted during system modeling and

controller design in this research, making the results of this research especially applicable

to the structural dynamics and control community. These techniques may find application

to problems in vibration control of large scale space structures and for marine structural

vibration suppression.

1.3 CONTRIBUTIONS

This research develops probabilistic-robust, decentralized, structural control design tech-

niques with tools for analyzing system stability and performance. Two controller design and

synthesis approaches have been developed:

1. A decentralized, full state feedback H1 control design and synthesis method where in-

terconnection uncertainty is random;

2. A decentralized, dynamic output feedbackH1 control design and synthesis method where

interconnection uncertainty is random, specifically catered to high dimensional models.

The main contributions to the field of structural dynamic control are the following:

1. Treating the interconnection terms randomly and coupling decentrally-controlled sub-

structures in a generalized regulator framework is new.

2. A method for performing robust stability and performance tests and the definition and

calculation of margins for controlled structures coupled by a probabilistically-uncertain

interface sti↵ness matrix.
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3. A controller design and synthesis approach that permits frequency-weighting of system

models via complex-valued performance output functions and synthesis of a structure-

constrained high-dimensional semidefinite program for achieving decentralized full-state

feedback H1 control in the presence of random interconnections.

4. A controller design and synthesis approach that permits frequency-weighting of system

models, synthesis of robust controllers using loop-at-a-time µ-synthesis for the norm-

bounded interconnection uncertainty case, and subsequent solution of stochastic opti-

mization problems around the µ-synthesized solutions. This stochastic optimization

problem is pursued after imposing an Gaussian distribution over the interconnection un-

certainty, and is performed explicitly over the real and complex-parts of the µ-synthesized

controllers for computational e�ciency.

5. Application of these control approaches to lightly-damped, low and high-dimensional

structure models.

This research sets the stage for extending these techniques to the more complicated case of

including uncertainty not only in the interconnections, but also in the substructures them-

selves. In addition, these methods can be adapted to incorporate other types of controller

performance objectives, such as those specific to H2 control.

1.4 THESIS OVERVIEW

The remainder of this thesis is organized in the following way: Chapter 2 is a review the

state of the art along with associated limitations. Chapter 3 provides some mathematical

preliminaries background, fundamental to the approaches developed and used in chapters 4,

5, 6 and 7. Chapter 4 discusses structural modeling and active control objectives. Chapter 5

develops a full-state feedback, decentralized, probabilistic-robust H1 control approach using

complex semidefinite programming and the scenario-based approach. Chapter 6 discusses

and provides the methods and techniques used for decentralized robust H1 controllers using

loop-at-a-time µ-synthesis, where the interconnection uncertainty is real, parametric, and
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norm-bounded. The output of chapter 6 is then used directly as input to chapter 7, where

genetic algorithms and high-performance computing are used, along with careful construc-

tion of cost function and sample size for realizing the ultimate goal of this thesis: an ap-

proach to synthesizing probabilistically-robust, dynamic output feedback H1 controllers for

high-dimensional lightly-damped structures possessing random interconnection uncertainty.

Finally, chapter 8 summarizes the research along with contributions made, advancements to

the state of the art, and future directions for this research.
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2.0 STATE OF THE ART AND CURRENT PRACTICE

2.1 A REVIEW OF DECENTRALIZED STRUCTURAL VIBRATION

CONTROL

The field of structural control is well developed and has been an active field of research

in excess of four decades. In the late 1980’s and early 1990’s the interdisciplinary field of

control-structure interaction (CSI) was formed to bring structural dynamicists and control

theorists together to exchange techniques, collaborate, and develop technology and methods

in support of NASA’s large space structures program. Within this timeframe and into the

late 1990s, techniques were explored and developed for tackling large scale structural analysis

and control problems.

Decomposing large structures into substructures and combining substructures to form

large structures has been investigated since the early 1970’s [3]. One idea behind decomposing

large structures into substructures is obvious: structure decomposition into substructures

allows for parallel computation of structural dynamic behavior, leading to computational

savings and improved development time. Furthermore, substructures are sometimes designed

and tested at di↵erent locations and by di↵erent organizations [19, 20]. This led researchers

to develop ways to synthesize the dynamics of substructures, like the substructures that

would comprise the International Space Station (ISS), in order to predict structural dynamic

behavior.

Large scale structures, like the ISS, needed more than just a way to synthesize the open-

loop dynamics of several substructures. Because the system is very lightly damped, they
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needed a method to dissipate vibrational energy. One approach is active structural control.

This let engineers use the actuators that are used to control the geometry of the structure

to also control the structural vibrations. In response to this need, Su and Craig developed

a substructure controller synthesis technique called controlled component synthesis (CCS)

[21, 20]. This technique, which used elements directly from the field of large scale system

theory, enabled engineers to design controllers for individual substructures and to synthesize

these decentrally-designed controllers into a global controller [5, 10, 9]. This global controller

synthesis approach accompanied existing techniques used for synthesizing substructures into

a composite structure [3, 20]. A limitation of CCS is that there is no way to guarantee

stability of the composite system. Composite system stability is also an issue for control

design techniques germane to decentralized control [9].

In response to this limitation, Babuska developed a technique called the augmented phys-

ical component synthesis (APCS) method [7]. This method built o↵ of the CCS technique by

augmenting some of the dominant dynamics of adjacent substructures with the substructure

under consideration [20]. A controller is then designed for the substructure, with augmented

dynamics from neighboring substructures (components). Results were shown to be better

than those for the CCS method; however, no guarantee of composite stability could be made,

and the resulting composite controller had a centralized implementation [7].

A limitation to both CCS and ACPS methods is that no a priori guarantees for composite

system stability could be made. A second limitation to these techniques is that they did not

consider the fact that real structures would have uncertainty. The model used for control

design does not perfectly match the actual dynamics of the structure.

In the dissertation authored by Babuska, he began to investigate a limitation to CCS

and APCS. The question of interest was how to address uncertainty in the substructures

and substructure interconnections [7]. In this investigation, he adapted a robust control ap-

proach for decentralized control of connected structures, where substructure interconnection

uncertainty was modeled as an additive nonparametric uncertainty.

A limitation to the work by Babuska is that modeling interconnection uncertainty using

an additive nonparametric approach is conservative [7, 17]. Furthermore, he did not make
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connections to exactly how this nonparametric uncertainty quantification was physically

related to the substructure interconnection. In his work, he made the open-ended assertion

that “interconnection uncertainty could be modeled as a [nonparametric] internal feedback

loop”.

The work by Lim, which was an extension of Babuska, formulated a robust control

approach to substructure controller synthesis [6]. In Lim, multiple robust control design

techniques were compared and contrasted where he used centralized and decentralized con-

troller architectures for the substructure control problem. He also explicitly accounted for

substructure interconnection uncertainty parametrically. Although Lim took a comprehen-

sive approach to robust, decentralized controller design, his work is limited in two ways that

will be addressed in this research:

1. Robust control design approaches, such as µ-synthesis, for systems with real parametric

uncertainty lead to conservative control designs [14, 22, 23, 24, 13];

2. A finer approach to quantifying, and incorporating, information about the nature of the

uncertainty into controller design and synthesis is possible.

Robust control treats system uncertainty as existing in some ball of uncertainty, where the

actual system is allowed to exist with equal probability within this ball. Treatment of

uncertainty in this manner is equivalent to giving system uncertainty uniform probability

distributions, and it is this treatment of uncertainty that leads to conservative control designs

[14]. Most real physical systems, such as structures, will more likely exist in certain regions

of this ball and are less likely to exist in others.

If the limitations enumerated above can be overcome, then two inherently related benefits

are achieved:

• A reduction in design conservatism;

• The inclusion of more realistic interconnection uncertainty descriptions is possible.

These benefits can be realized using techniques from the field of control theory called prob-

abilistic robust control (PRC) [14]. PRC allows the enforcement of probability distributions

on both nonparametric and parametric uncertainty in a system.
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We will next review some specific, relevant research as it pertains to decentralized struc-

tural control. Some of these approaches account for substructure interconnection uncertainty;

some do not. We will also review some of the limitations that exist in decentralized control

— generally speaking — and will conclude with a review of some of the approaches germane

to probabilistic robust control. Some of the approaches that will be reviewed from proba-

bilistic robust control are used in this thesis, however, other methods have some limitations

that must be highlighted, as certain decisions made along with approaches developed in this

thesis were constructed to overcome some of these limitations.

2.2 A REVIEW OF SOME LIMITATIONS IN DECENTRALIZED

CONTROL

Large scale system theory and decentralized represents a deep subset of research within

control theory, and has been active for almost 40 years [5, 9]. An introduction to the basics

behind this theory is needed, as elements of this theory arise in the decentralized control

of substructures as approached by Babuska, Su, Craig, and Lim [7, 21, 20, 6]. The entire

basis for the development of large scale system theory boils down to the development of

techniques that allow for the decomposition of large systems into smaller ones for controller

design, and for development of control techniques that rely on using only local measurements

and actuators for regulation and tracking in large scale systems. By virtue of information

and actuation signals being local, we are now examining control system architectures that

are decentralized. A brief introduction to some central notions behind large scale systems

theory will be provided.

Let us consider the LTI state space system

ẋ = Ax+Bu (2.1)

y = Cx. (2.2)
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The system given by (2.1) and (2.2) can be partitioned into N subsystems, where each

subsystem i 2 [1, N ] can be represented as:

Si :

8
><

>:

ẋi = Aixi +Biui +
P

N

j=1 Aijxj

yi = Cixi

(2.3)

where Aij describes subsystem interconnections. In decentralized control, a most basic ap-

proach to design, synthesis, and implementation of decentralized control involves ignoring

these interconnections and designing controllers for each subsystem Si (hence with Ai,j = 0

and each Ai, Bi, Ci of appropriate dimension). Decentralized control is achieved insomuch

that the original system is controlled without sharing state information between these now

“local” controllers. An adaptation of this method, coined the Substructure Component

Synthesis (SCS) method by Craig [21] was created where substructure controllers are de-

signed while ignoring interconnections; however, a global controller is formulated from the

decentrally designed substructure controllers. Craig’s SCS technique is most applicable to

situations where the interconnections are known with absolute certainty. Furthermore, this

technique is good to use in situations where a component has varying or complicated varia-

tions in geometry, allowing for a reduction of the composite structure into substructures so

that focus can be placed on individual substructure design and analysis.

In large scale system theory, the subsystems Si are typically of high dimension, and

theory has been developed by [9] and others for finding the stability of the composite system

using the Bellman-Matrosov concept of vector Lyapunov functions. This same theory is then

used to find interconnection polyhedra1 that guarantee stability of the interconnected system.

As implied here, finding the stability boundary in this manner yields a hard, deterministic

bound on stability in terms of the interconnection parameters. For this technique, there is

no way to guarantee a priori stability of the decentrally controlled interconnected/composite

system. One aspect of decentrally controlled systems that becomes evident is that the

1
Polyhedra is used, here, as Siljak’s theory enables one to find interconnection parameter bounds that may

not be extrema, yet prove stability nonetheless. The optimal answer may be found but the transformations

performed in doing so leads to loss in interconnection parameter physical interpretation. See Theorem

6.1 of [5] with associated proof. Probabilistic techniques could be used to aid the search for physically-

meaningful interconnection parameter bounds that are “close” to the optimal answer, but this endeavor is

not investigated in this thesis.
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strength of the interconnections, given by Ai,j in (2.3), can hint, slightly, at whether or not

the composite system may be stable. Systems that are strongly coupled, like structures,

make decentralized controller design and synthesis di�cult. In what appears to be the first

application of decentralized structural control in 1989, Young was quick to point this out

[25].

In the 2008 review article written by Bakule, he covered the state of the art in decen-

tralized control [26]. In this review, he covered controller synthesis for “strongly coupled

systems”. Due to the intrinsic strength of the interconnections in structures, we almost

always find ourselves dealing with what can be considered a strongly coupled system in

the area of decentralized control. Synthesis of decentralized controllers for strongly coupled

systems reduces to developing, or applying, decentralized control synthesis strategies that

account for the neighboring subsystem’s dynamics. In this manner, controller synthesis for

strongly coupled systems is really a co-synthesis strategy. We cannot decouple systems, syn-

thesize controllers for each subsystem, and reconnect with the expectation that stability or

performance requirements will be met in any way.

For the synthesis of decentralized controllers for strongly coupled systems with some

norm-bounded interconnection uncertainty, Bakule did discuss that LMI-based techniques

could be used to achieve this end. Indeed, a recent structural control application, for a

lumped-parameter spring-mass-damper model in building earthquake control, was imple-

mented by Wang in 2009 by enforcing sparsity constraints on decision variables in a full-state

feedback H1 synthesis problem [27]. Palacious-Quiñonero also applied decentralized, and

semi-decentralized control techniques for structural vibration control; again, these models

were lumped-parameter spring mass damper models, wherein techniques such as overlap-

ping decompositions were used for achieving these ends [28, 29, 9]. The papers by Wang and

Palacious-Quiñonero are highlighted here, as their techniques align a bit more closely with

decentralized control, and less with the high-dimensional decentralized structural vibration

control approaches discussed in section 2.1. Presently, no techniques exist in the area of

decentralized control where the interconnection parameters are treated as having random

uncertainty.
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2.3 PROBABILISTIC ROBUST CONTROL: EVOLUTION OF THE FIELD

AND SOME LIMITATIONS

This section provides an overview on how the field of probabilistic robust control came to

fruition, including some of the threads within this field. Since this field’s inception, several

prominent — and oft celebrated — techniques have been developed. These techniques will be

briefly described, with some discussion on their positive attributes, as well as limitations, and

how these attributes and limitations have guided the development of the control synthesis

techniques in this thesis. Specifically, this section will cover:

• Stochastic robustness and evolutionary algorithms in probabilistic robust control [2, 1,

30, 31, 12, 32];

• Statistical learning theory in control [33, 34, 13, 35, 36];

• The scenario-based approach in probabilistic robust control [16, 14].

Development of PRC began in the early 1990’s through the work of Robert Stengel, where

Stengel and colleagues began analyzing the robustness of uncertain, controlled systems using

Monte Carlo methods [2, 1, 11]. What started out as a technique that just analyzed the

“stochastic robustness” [30] of controlled systems gradually turned into using this probabilis-

tic uncertainty during controller design and synthesis [31, 12, 32, 37, 38, 39]. Subsequently,

researchers [14, 40, 16, 41] developed formal theory to support the use of PRC and drew

direct connections to the field of robust control, [17] where in the monograph by Tempo,

Calafiore, and Dabbene they showed how PRC addresses robust control limitations of con-

servatism and complexity [23, 42, 41, 14]. In addition to reducing design conservatism and

computational complexity, the PRC paradigm gives rise to an alternative way of character-

izing the stability and performance of controlled systems by quantifying the probability of

stability and the probability of meeting performance.
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By bridging the field of PRC to the robust substructure control techniques developed

by Babuska and Lim almost 20 years earlier, limitations related to design conservatism and

uncertainty quantification in the robust substructure control problems can be addressed,

thereby advancing the state of the art.

2.3.1 Stochastic Robustness and Evolutionary Algorithms in Probabilistic Ro-

bust Control

Stengel’s highly cited paper [2] addresses the basic concepts of stochastic robustness of linear

time invariant systems. These basic concepts will be discussed, here, with acknowledgement

toward the techniques that were birthed from this thread of research. In addition, a com-

parison between the fundamental, conceptual, di↵erences between deterministic parameter

bounding (robust control theory) and probabilistic robust control theory will be made.

The best system to motivate this subject with is the linear time-invariant, spring-mass-

damper (SMD) equations of motion, whose characteristic equation is given by:

s
2 + 2⇣!ns+ !

2
n
= 0. (2.4)

For a real engineering system, it is known that the model of the plant is not going to match

the true plant [17]. With that said, we know that the mass, sti↵ness, and damping of the

SMD system will have some parameter uncertainty/variation. It is standard in robust control

theory to treat parameter variations using linear fractional transformations (LFTs), where

we would place hard bounds on the mass, sti↵ness, and damping coe�cients [43]. Placing

hard bounds on parameter coe�cients can lead to overly-conservative designs, as we end up

designing controllers for the worst-case plant configuration [33, 13, 14].

Probabilistic robust control theory instead associates some probability density functions,

or distributions, with these parameter variations. In this framework, any probability density

function could be used, but for motivating this topic we will focus on normal distribu-

tions.
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For the standard characteristic equation given in (2.4) we can treat the damping and nat-

ural frequency as being statistically independent variables. By giving the damping coe�cient

and natural frequency the normal distributions:

⇣ ⇠ N (0.1, 0.025) !n ⇠ N (4.5, 0.5)

for the case where these parameters are normally distributed, and conversely describing them

using the following uniform distributions:

⇣ ⇠ U(0.07, 0.13) !n ⇠ U(4, 5)

we can then sample from these distributions, solving for the system’s eigenvalues at each

iteration, and project the results for each distribution into the complex plane. The resulting

pole-zero maps are shown in figure 2 and the associated bivariate histogram is shown in

figure 3.

Modeling system uncertainty in this way introduces two alternative (probabilistic), system-

theoretic notions: probability of stability and probability of meeting performance require-

ments. Stability is a binary condition: a system is stable or it is not. We also know that

for the second-order system example our eigenvalues are described by �1,2 = � ± j! where

asymptotic stability is described by all �1,2 whose real parts lie in the open left half of the

complex plane. Since we know that the set of our systems, in terms of our binary metric

of stability, has a probability of 1 of being stable or unstable (by virtue of a system’s mere

existence):

Pr(stability) + Pr(instability) = 1 (2.5)

we can define the probability of instability in the following manner:

Pr(instability) = 1�
Z 0

�1
Pr(Re(�) < 0)d� (2.6)

where Pr(Re(�) < 0) is the joint probability that all real parts of the eigenvalues are in the

left-half plane. Pr(Re(�) < 0) does not necessarily have a closed-form solution. We can turn

to Monte Carlo evaluation of the probability of stability by generating N instances of our
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Figure 2: This figure is similar to those that appeared in Ray and Stengel’s papers [1, 2] on

stochastic robustness.
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Figure 3: This figure is similar to those that appeared in Ray and Stengel’s papers [1, 2] on

stochastic robustness.
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system (2.4) and equating the probability of stability by:

Z 0

�1
Pr(Re(�) < 0)d� = lim

N!1

P
N

i=1 Ii(⌅)

N
(2.7)

where I(⌅) is the indicator function, given by

I(⌅) =

8
><

>:

1 Re(�) < 0

0 otherwise.
(2.8)

Something else that is clear about this problem and that is implicit is that we have a

probability of instability that is conditioned on the parameter distributions. This is easily

generalized for a closed-loop or high dimensional system.

We can likewise apply this technique to look at the conditional probability that the

system will be both stable and meet some performance metrics. For instance, for the system

we just examined with ⇣ ⇠ N (0.05, 0.03), !n ⇠ N (10, 1) we can impose that we are interested

in the intersection of those systems that are stable and those systems that also have some

settling time below some threshold: say Ts = 6.824s (noting that for the nominal (mean)

case, here, the settling time is 7.824s). With Ts = � ln(0.02)
!n,0⇣0

, !n,0 = 10 rad/s, and ⇣0 = 0.05

we can examine, using Monte Carlo techniques:

Pr(stability) \ Pr(0 < Ts  6.824s). (2.9)

For notational convenience we will refer to stability as the event s and meeting settling time

performance as the event p. From probability calculus we know that the general multiplica-

tion rule can be expressed as:

Pr(s \ p) = Pr(s|p)Pr(p) = Pr(p|s)Pr(s). (2.10)

We know that the only way for our system, here, to meet performance requirements is for the

system to also be stable, meaning that the event, p, is a subset of the set of stable systems

s. We see:

Pr(s|p) = 1 since p ✓ s, (2.11)
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allowing us to find the probability of meeting performance requirements:

Pr(p) = Pr(p|s)Pr(s), (2.12)

and so it follows that

Pr(s \ p) = Pr(p). (2.13)

This is an obvious link that we take for being implicit in deterministic settings. And so we

can draw a link between these two, given prior knowledge about parameter distributions,

to examine the conditional dependency of these dynamic system metrics in a probabilistic

fashion: given that our system is stable, what is the probability that we’ll meet performance

requirements?

In this dynamic system framework it is interesting to think about this notion, which pro-

vides a probabilistic link between performance and stability. These two metrics are typically

treated as being separate; that is, we prove stability and then we focus on meeting perfor-

mance requirements. However, it is implicit that any system that meets some performance

requirements must also be stable (unless it is desirable for our system to be unstable). This

notion surrounding some basic probability calculus was not just provided as some academic

exercise; the cost function constructed for solution of the controller synthesis/optimization

problem in chapter 7 can be very expensive, especially for some of the high dimensional

systems studied in this thesis, and so conditional dependencies between any stability or per-

formance metrics are exploited when formulating these cost functions. As will be shown

in this thesis, the computational complexity of the algorithms used for synthesis becomes

important in this work.

For the example just discussed, the probability of meeting settling time requirements

given that the system is stable, expressed by the term Pr(p|s), is evaluated to be 0.4201.

And overall, Pr(p) = 0.3997. These estimates used N = 10, 000 Monte Carlo samples. This

discussion on stochastic robustness was provided as a means of discussing the basic notions

behind this framework. The researchers cited herein have extended these basic notions into

control design and synthesis for both linear and nonlinear systems [44, 45, 11, 1, 30, 31].
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So far, we have only introduced the notions of probability of stability and probability of

meeting performance requirements, which should both be thought of as metrics describing

probabilistic robustness. Next, we will briefly introduce probabilistic robust compensator

design and synthesis [30, 12, 31, 37, 32]. The design of a probabilistic robust controller was

approached by Marrison in the following way: probabilistic robust control can characterize

compensator robustness by defining a probability, Pr(p), that the closed-loop system will

have acceptable performance in the presence of parameter uncertainties. This probability,

Pr(p), is characterized by:

Pr(p) =

Z

V

I[G(v), K]Pr(v)dv (2.14)

where G is the plant, K is some candidate controller, V is the space of possible parameter

variations, v 2 V is a point in V , and Pr(v) is the probability density function over the

parameter variations. I[·] is the binary indicator function that equals 1 if G(v) and K form

an acceptable system and 0 if not.

A stochastic optimization problem is formulated by defining a cost function, J ,

J = f

⇣
Pr(p1), . . . ,Pr(pn)

⌘
, j = 1 . . . n (2.15)

where each element describes the probability that a given plant-controller pair meets some

metric of importance to the designer. Recalling our motivating example from previous, we

could have considered a static compensator design K and evaluated the probability of meet-

ing stability and performance (Ts = 6.824s); obviously, this only examines one compensator

configuration. A search over compensator configurations K(d), d 2 D along with a cost eval-

uation, J
⇣
K(d)

⌘
= f

⇣
Prd(p1), . . . ,Prd(pn)

⌘
, j = 1 . . . n allows for us to find the “best”

compensator for our parametrically-uncertain plant. Now, Prd(pj) arises from:

Prd(pj) =

Z

V

Ij

h
G(v), K(d)

i
Pr(v)dv (2.16)
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which can be evaluated using Monte Carlo techniques, turning this integral into the following

summation to get an estimate of the integral’s value as:

P̂rd(pj) =
1

N

NX

m=1

Ij

h
G(vm), K(d)

i
(2.17)

Ĵ(K(d)) = f

⇣
P̂rd(p1), P̂rd(p2), . . . , P̂rd(pn)

⌘
, j = 1 . . . n (2.18)

and from the law of large numbers, we have that Ĵ ! J as N ! 1 [12, 14]. A very attractive

aspect to this general approach is the following: the accuracy of the probability estimate is

not dependent upon the order of the plant or candidate controller. A drawback, however,

is that we cannot make any a priori guarantees related to meeting stability or performance

requirements using these methods. What we can guarantee, however, is that we place focus

on searching over the stable controller configurations.

Stengel, Marrison, and Wang used genetic algorithms for searching over candidate con-

troller variables for probabilistic robust synthesis of linear and nonlinear controllers, primar-

ily for aircraft applications. Their systems had less than 10 states, however some of their

cost functions had as many as 39 probability terms [12, 32]. In chapter 7, we deal with

random plant/controller pairs that have over 400 state variables in a generalized regulator

framework.

2.3.2 Statistical Learning Theory and Control

The probabilistic robust control paradigm has grown over the past several decades, and

several elegant and powerful techniques have matured. We must point out the research

that has been performed into statistical learning theory for controller design and synthesis,

as pursued by Vidyasagar, Kolthcinskii, and others [33, 13, 34, 46, 13, 47, 36, 35, 14, 48].

And so a brief review of these techniques is provided, along with the identification of some

limitations, which are especially onerous in the context of the specific problem pursued in

this thesis.

In the work by Vidyasagar, he showed that statistical learning theory, via uniform con-

vergence of empirical means (UCEM) can be used to establish sample bounds in a controller
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synthesis process for finding controllers that satisfy performance constraints expressed as

a finite family of boolean polynomial inequalities [34, 13]. Furthermore, using UCEM has

the benefit of no longer focusing on the “worst-case” design that accompanies robust con-

trol methods (such as µ-synthesis), rather the focus is placed upon finding controllers that

achieve performance “most of the time”. Mathematically, this performance constraint is

f(y)
.
= EPx [g(x, y)] (2.19)

where EPx [·] is the expectation, with variables x distributed according to a probability dis-

tribution Px. The function g(x, y) is the performance function, which is dependent upon

controller variables y 2 Y and plant variables x 2 X. If we suppose that we select real pa-

rameters ✏,↵, � > 0, which are related to the accuracy (✏), level (↵), and confidence (1� �),

the probability that the randomized algorithms fail to find what is called a “probably approx-

imate near minimum” of the objective function f(y) can be determined using the following

algorithm from Vidyasagar [13]:

Algorithm 1. Select integers n,m such that

n � log10(2/�)

log10[1/(1� ↵)]
and q(m, ✏;G)  �/2. (2.20)

Generate i.i.d. samples y1, . . . , yn 2 Y according to distribution Py and x1, . . . , xm 2 X

according to Px. Define

f̂i
.
= f̂i(yi) =

1

m

mX

j=1

f(xj, yi), i = 1, . . . , n, and (2.21)

f̂0
.
= min

1in

f̂i. (2.22)

Then with confidence 1� �, it can be said that f̂0 is a probably approximate near minimum

of f(·) to accuracy ✏ and level ↵.

The term q(m, ✏;G) is related to a family of functions that has the UCEM property —

these functions are those that are used for achieving some kind of performance with respect

to our random system, and are special in that they possess what has been defined to be

the Vapnik-Chervonenkis (VC-) dimension. The VC dimension is integral in determining an
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upper-bound for choosing the integer m used in this algorithm. The integer, m, is related to

the number of random plant samples required during controller synthesis. The VC dimension

of a family of measurable functions A that maps variables in X into {0, 1}, is denoted by

VC-dim(A). The VC-dimension leads to a definition of the largest integer m such that there

exists a set of cardinality m that is shattered by A. See [13] and specifically [49] for examples

and further detail.

Choosing n,m for the robust stabilization problem, and for a system that approaches the

size of that studied in chapter 7, will be highlighted momentarily. We now restate Theorem

1 without proof from Vidyasagar, which establishes bounds on m [13].

Theorem 1. Suppose A is a family of measurable functions X mapping into {0, 1}, and that

VC-dim(A)  d < 1. Then A has the UCEM property, whatever be the probability measure

Px. Moreover

q(m, ✏;A)  4

✓
2em

d

◆d

exp(�m✏
2
/8), 8 m, ✏. (2.23)

Moreover, q(m, ✏;A)  � provided

m � max

⇢
16

✏2
log

4

�
,
32d

✏2
log

32e

✏2

�
. (2.24)

Proof. See the book by Vidyasagar [49].

At this point in time, two things must be recognized:

1. A probability distribution is defined over the possible controller variables Y , which may

feel a bit unnatural (also pointed out by Tempo et. al. in [14]);

2. We see that we are choosing the best, or minimum, function value that is averaged over

all random plant / controller combinations (which was a “disappointing” result pointed

out by Vidyasagar in his papers [33, 13]). This result illustrates that we may have

many plant/controller pairs to evaluate. At the same time, we still have an algorithm

that is executable within polynomial time that permits a priori guarantees of meeting

probabilistic stability and performance requirements, which is part of what has motivated

the development of probabilistic techniques in control theory [23].
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The theoretical details behind this algorithm are sparse here, as the intention here is to give

a flavor for the complexity of this approach for high-dimensional control systems, such as

those pursued in this thesis. To illustrate the complexity of this approach, we now focus our

attention on one controller synthesis problem that can be solved using statistical learning

theory: robust stabilization. Stated concisely, this canonical robust control problem is one

where we wish to: find some controller, K(y), y 2 Y , that stabilizes most of the plants G(x)

where x 2 X, X ⇠ Px.

In Vidyasagar [13], he defined the function

gy(x)
.
= g(x, y) =

8
><

>:

1 if the pair
⇣
G(x), K(y)

⌘
is unstable

0 otherwise.
(2.25)

In the frequency domain, the plants G(x, s) and controllers K(y, s) were of the following

form:

G(x, s) =
nG(x, s)

dG(x, s)
, 8x 2 X (2.26)

K(y, s) =
nK(y, s)

dK(y, s)
, 8y 2 Y (2.27)

where nG, dG are polynomials in x, s with degree in s at most ↵s. He restricted the plant to

be strictly proper. nK , dK are analogous, with the exception that he restricted K(y, s) to be

proper with McMillan degree �s. Furthermore, he assumed that nK(y, s) and dK(y, s) were

polynomials in y of degree no larger than �y, and lastly that X ✓ R
k
, Y ✓ R

l for integers

k, l. The integer l represents the number of “degrees of freedom” in the controller K. Under

these assumptions, we restate Theorem 4 without proof from Vidyasagar [13]:

Theorem 2. Under the assumptions given above, the family of binary-valued functions G .
=

{gy : y 2 Y } has finite VC-dimension. In particular,

VC-dim(G)  2l log[4e(↵s + �s)
2
�y]. (2.28)

If we assume that our plant is SISO with 400 states and that the controller is SISO with 400

states we get VC-dim(G)  d = 34, 796. If we choose “reasonable” values for ✏, �,↵, such as
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✏ = 0.01, � = 0.05,↵ = 0.01, using equation 2.24 we have

m � 152, 279, 280, 019. (2.29)

And from algorithm 1, we get

n � 368. (2.30)

Thus, we would have to sample into our controller space 368 times, and try each of these

controllers with 152,279,280,019 samples from the random plant. Note that this approach

assumes that the distribution and hypercube over the possible controller parameters is chosen

judiciously, such that we even have a solution within the hypercube of controller parameters,

and only applies for the case where we want a controller that is robustly stabilizing. The

examples used by [13, 35] use controller parameter intervals where solutions are known to

exist. In addition, the sample bounds provided above are for a SISO plant/controller pair.

In chapter 7, we are dealing with a MIMO generalized regulator structure.

Some limitations must be pointed out with respect to statistical learning theory. These

limitations by no means denigrate these approaches — they are pointed out to highlight their

unsuitability for the decentralized, dynamic output feedback H1 control of high-dimensional

lightly-damped structures:

1. Sample complexity. This is dependent upon the VC-dimension, which is directly related

to the dimension of the plant, controller, and number of “free” controller variables.

2. Bounding or choosing a hypercube for constraining the optimization parameters can lead

to an inadvertent “leaving out” of good portions of a solution space, or will make it so

large that randomly sampling a “good” plant is highly improbable. Statistical learn-

ing theory is also predicated on imposing a probability distribution over the controller

variables. Aside from choosing a uniform distribution, making a good choice for a high-

dimensional system would be very di�cult and feels somewhat unnatural.

3. Despite the fact that the number of plant samples is divorced from the number of con-

troller samples, we still have to try every plant-controller pair, and choose the best one.
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The theoretical elegance and sophistication of this technique cannot be downplayed, and

numerous researchers have been working to develop machinery for obtaining less-conservative

estimates of the VC-dimension for specific families of boolean-polynomials (see [46, 13, 47,

36, 35]). However, for the high-dimensional problem pursued in this work, pursuing such

techniques was deemed to be impractical. Even with advances in determining reduced sample

sizes, for plants and controllers of several hundred states, this technique would still su↵er

from the limitations enumerated above.

2.3.3 Some Results from Probabilistic Robust Structural Control

Researchers have broached probabilistic robust structural control in the past. Several of the

more significant pieces of research are highlighted, here, however, the work in this thesis is

distinguished from their research in the following ways:

• This research focuses on decentralized controller design, synthesis, and implementation.

• We focus on random interconnection uncertainty, and not uncertainty distributed over

the entirety of the structural model’s parameter space.

• High dimensional structural models and controllers are considered, here, with attention

paid to the computational e�ciency of the algorithms developed.

• For both the full-state feedback, as well as dynamic output feedback controller cases,

H1 control objectives are featured.

Guo, in [50], developed a technique that has H1 control objectives and uses an LMI-based

approach for controller synthesis. However, a decentralized architecture with focus on inter-

connection uncertainty is not pursued. The method developed in chapter 5 di↵ers from this

approach in that we demonstrate that a complex performance output function can be for-

mulated, permitting control design and frequency-weighting in complex modal coordinates,

and we also show how a decentralized control architecture can be incorporated using sparsity

constraints in the decision variables of a semidefinite program.

Crespo, in [51, 52], used both time and frequency-domain metrics for achieving a prob-

abilistic robust solution, with a focus on “reliability control synthesis,” which is a synthesis
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approach that is very similar to the approaches discussed in section 2.3.1, and is implicit in

the approach developed in chapter 7. Basically, the cost function is penalized for exceeding

some specified value, which are termed as “failure boundaries” in Crespo’s work. This fo-

cus, which uses a “reliability” metric, is similar to a definition that Guo also used in [50].

Crespo demonstrated his technique using low order models for satellite attitude control. De-

centralized control architectures were not considered, nor were H1 performance objectives.

In this thesis, it is also demonstrated that control design and synthesis can be performed

directly over the field of complex numbers of a state space system for achieving the end of

synthesizing low-order, static, probabilistically robust decentralized full-state feedback H1

controllers and also high-order, dynamic, probabilistically robust dynamic output-feedback

H1 controllers.

May, in his dissertation titled “Probabilistic Robust Control: Theory and Applications”,

developed approaches for probabilistic robust control of low-order, lumped parameter, civil

structures [44]. His control objectives did not involve H1 performance. His thesis involved

the development of static output and full-state feedback controllers using “failure probabil-

ity” and H2 performance measures. His performance measures, being that he was interested

in civil engineering applications, were related to the minimization of inter-story drift, ab-

solute acceleration at certain points in the structure, and the magnitude of the base shear

between the structure and its foundation. A “probabilistically reliable” design ends up be-

ing related to the probability that certain thresholds, as they are related to these metrics,

are not exceeded. His probabilistic robust control synthesis approach involved asymptotic

approximation of probability integrals for estimating total failure probability, which during

optimization, is a method whose computation time grows exponentially with the number

of uncertain parameters. For this reason, high-dimensional control synthesis would be very

di�cult. May did not focus on dynamic compensator synthesis, a decentralized control ar-

chitecture, H1 control objectives, or frequency domain-based design, which are all features

of this research.
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3.0 PRELIMINARIES

This background section is meant to introduce some of the general mathematics and notation

used throughout this thesis. These tools and definitions are used in chapters 4, 5, 6, and

7.

3.1 SCALAR, VECTOR, AND MATRIX NOMENCLATURE

Scalar and vector-valued variables will be lowercase. These variables will be distinguished

by pointing out their size. For example, given xs 2 R, xv 2 R
n, xs is a scalar, real-

valued variable and xv is a real-valued vector of length n. Similarly, we will also deal with

scalars and vectors that exist over the field of complex numbers. These will be denoted as

xs 2 C, xv 2 C
n
. Matrices will be represented using upper-case letters, with sizes denoted

as

Ar 2 R
n⇥n

, Ac 2 C
n⇥n

. (3.1)

Some matrix, A, that is in the cone of symmetric matrices will be denoted A 2 S
n⇥n. If A

is complex and symmetric it is hermitian, which will be denoted by A 2 H
n⇥n.
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3.1.1 Positive and Negative (Semi)Definiteness

A matrix, Q, is positive definite if and only if (i↵) for any vector x 6= 0,

x
H
Qx > 0. (3.2)

If a matrix is positive definite, the following properties also hold:

Q = Q
H
, Re

⇣
�(Q)

⌘
> 0, Im

⇣
�(Q)

⌘
= 0 (3.3)

where Q
H denotes the hermitian transpose. Q may be a real or complex matrix. The �(Q)

refers to the eigenvalues of Q. Re(·) specifically refers to the real parts and Im(·) specifically

refers to the imaginary parts of the matrix. For a matrix to be positive definite, it must

be symmetric and all eigenvalues must be real and strictly positive. Positive definiteness is

indicated by Q > 0.

A matrix, Q, is positive semidefinite i↵ for any vector x 6= 0,

x
H
Qx � 0. (3.4)

If a matrix is positive semidefinite, the following properties also hold:

Q = Q
H
, Re

⇣
�(Q)

⌘
� 0, Im

⇣
�(Q)

⌘
= 0 (3.5)

which says that the conditions of positive definiteness are relaxed by permitting Q to have

eigenvalues that are equal to zero. There are other (equivalent) properties that characterize

positive definiteness of matrices, however, these two properties are all that are really needed

here.

Negative (semi)definiteness has the same requirements, however, we have that for some

Q = Q
H and x 6= 0 that

x
H
Qx < () 0 (3.6)

and that Re(�(Q)) < () 0.
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3.2 SYSTEM REPRESENTATIONS

All system model will be represented as generalized plants in state space form or, as will

be shown to be equivalent, transfer function matrices. That is, a system will have the

description

ẋ = Ax +B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w +D22u.

(3.7)

These system matrices have the sizes A 2 R
n⇥n

, B1 2 R
n⇥r1 , B2 2 R

n⇥r2 , C1 2

R
m1⇥n

, C2 2 R
m2⇥n

. The sizes of the vectors x, w, u, z, y and matrices D11, D12, D21, D22

are all implied by the sizes given.

By defining

B =
h
B1 B2

i
; C =

2

4C1

C2

3

5 ; D =

2

4D11 D12

D21 D22

3

5 ; ug =

2

4w

u

3

5 ; yg =

2

4z

y

3

5 (3.8)

it is quickly seen that the transfer function matrix that maps ug ! yg is given by

G(s) = D + C(sI � A)�1
B, s = j!, ! 2 [0,1) [ {1}. (3.9)

As is typical in robust control, the shorthand for indicating this transformation which de-

scribes the equivalent time domain/frequency domain system representations will be adopted

[17]. That is,

G(s) ⇠

2

4 A B

C D

3

5 = D + C(sI � A)�1
B, s = j!. (3.10)

3.2.1 The Linear Fractional Transformation (LFT)

Let P (s) denote a 2 x 2 transfer function matrix that relates inputs u1 and u2 to outputs y1

and y2: 2

4y1
y2

3

5 =

2

4P11 P12

P21 P22

3

5

2

4u1

u2

3

5 . (3.11)
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Figure 4: Generalized regulator framework.

Given some controller K, that connects y2 to u2, we have

y1 =
h
P11 + P12K(I � P22K)�1

P21

i
u1 (3.12)

.
= Fl(P,K)u1

where Fl(P,K) is called the lower linear fractional transformation (LFT) of P and K. In a

similar manner, the upper linear fractional transformation, denoted Fu(P,K) can be formed

if we instead had u1 = Ky1. State space realizations of LFTs can also formed, and will be

explained next.

3.2.2 State-Space Realizations of LFTs

Given the two systems

P ⇠

2

4P11 P12

P21 P22

3

5 =

2

6664

A1 B1 B2

C1 D11 D12

C2 D21 D22

3

7775
, K ⇠

2

4 A3 B3

C3 D3

3

5 (3.13)

with interconnection described by figure 4, the lower LFT Fl(P,K) is

Fl(P,K) =

2

6664

A1 +B2FD3C2 B2FC3 B1 +B2FD3D21

B3EC2 A3 +B3ED22C3 B3ED21

C1 +D12FD3C2 D12FC3 D11 +D12FD3D21

3

7775
(3.14)
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where E = (I � D22D3)�1 and F = (I � D3D22)�1. LFTs of systems and controllers are

used throughout chapters 5, 6, and 7 of this thesis.

3.3 SIGNAL AND SYSTEM NORMS

Certain signal and system norms are defined here, with aid from the book by Doyle, Francis,

and Tannenbaum [53].

3.3.1 Norms for signals

A signal is some u(t) : R ! R where R describes the field of real numbers. A signal may be

zero for time t < 0. A norm must have the following four properties:

1. ||u||� 0

2. ||u||= 0 , u(t) = 0, 8 t

3. ||au||= |a| ||u||, 8 a 2 R

4. ||u+ v|| ||u||+||v||

From this, we introduce the following useful signal norms:

2-Norm The 2-norm of u(t) is given by

||u||2
.
=

✓Z 1

�1
u(t)2dt

◆1/2

. (3.15)

1-Norm The 1-norm of a signal is the least upper bound of its absolute value:

||u||1
.
= sup

t

|u(t)|. (3.16)
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3.3.2 Norms for systems

Considering a linear time-invariant, causal, finite-dimensional system, which we will call G,

we can give the time domain input-output equation for such a system via the convolution

integral

y = G ⇤ u =

Z 1

�1
G(t� ⌧)u(⌧)d⌧. (3.17)

Letting Ĝ(s) denote the transfer function matrix of this system, which is the Laplace trans-

form of the impulse response matrix G(t), the 1-norm is given by

||Ĝ||1
.
= sup

!

�̄

⇣
Ĝ(j!)

⌘
, ! 2 [0,1] (3.18)

where �̄
⇣
Ĝ(j!)

⌘
denotes the maximum singular value of the transfer function matrix Ĝ(j!).

A useful relationship is the following:

||y||2 ||Ĝ||1||u||2 (3.19)

which can also be written as
||y||2
||u||2

 ||Ĝ||1 (3.20)

which shows, roughly, that the 1-norm of the system can be thought of as the maximum

input/output signal amplification across all frequencies. A derivation for this relationship is

provided in Doyle [53].
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3.4 VECTOR NORMS AND BALLS

Letting x 2 F
n where F is either the real or complex field, the lp norm of x is defined as

||x||p
.
=

 
nX

i=1

|xi|p
!1/p

, p � 1. (3.21)

The l1 norm of the vector x is defined as

||x||1
.
= max

i

|xi|. (3.22)

The ball of radius ⇢ in the lp norm is defined as

B||·||p (⇢,F
n)

.
= {x 2 F

n : ||x||p ⇢} (3.23)

with the boundary of this ball defined as

@B||·||p (⇢,F
n)

.
= {x 2 F

n : ||x||p= ⇢} . (3.24)

3.5 MATRIX NORMS AND BALLS

Two classes of matrix norms are introduced. The first is the so-called Hilbert-Schmidt norm

which is based on the isomorphism between the matrix space F
n⇥m and the vector space

F
nm.

Hilbert-Schmidt Matrix Norm The Hilbert-Schmidt lp norm of a matrix X 2 F
n⇥m is

defined as

||X||p
.
=

 
nX

i=1

mX

k=1

|Xi,k|p
!1/p

, p 2 [0,1) (3.25)

||X||1
.
= max

i,k

|Xi,k| (3.26)
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where Xi,k is the (i, k) entry of the matrix X. Also introduced is the matrix column vector-

ization operator. Given a matrix X 2 F
n,m the vectorization operator is given by

vec(X)
.
=

2

6664

c1

...

cm

3

7775
(3.27)

where c1, . . . , cm are the columns of X. Then, using (3.25), the Hilbert-Schmidt lp norm of

X can be described by

||X||p= ||vec(X)||p. (3.28)

Then, the lp Hilbert-Schmidt norm ball in F
n,m of radius ⇢ is defined as

B||·||p (⇢,F
n,m)

.
= {X 2 F

n,m : ||X||p ⇢} . (3.29)

These matrix norm and ball definitions will become useful when we are discussing uncer-

tainty descriptions, and particularly when the idea of degradation functions are introduced

in chapters 5 and 7. Other definitions and concepts will be introduced as needed within

chapters 4, 5, 6, and 7.
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4.0 STRUCTURAL MODELING AND CONTROL OBJECTIVES

In this chapter, we will discuss the models, assumptions that are made, how interconnection

uncertainty is characterized, and control objectives. Two models are used in this work: a

random lumped parameter spring mass damper model; and a random Euler-Bernoulli beam

model, which was modeled using finite element methods. Both of these models are detailed

in separate appendices. The lumped parameter model is detailed in appendix A. The finite

element model is detailed in appendix B.

For both cases, a generalization of the input/output (I/O), controller architecture, and

interconnection with associated uncertainty is provided in figure 5. The lumped parameter

model is used for developing the decentralized control techniques in chapter 5. The finite

element beam model is used for developing the decentralized control techniques in chapters 6

and 7.

4.1 THE LUMPED PARAMETER MODEL

The model that is used for full-state feedback controller design and synthesis is a simple one:

a, lightly damped, fixed-fixed lumped parameter spring mass damper model. Although this

type of model may be hard-pressed to find application for controller design, synthesis, and

analysis of a complicated piping system, other applications could find some of these devel-

oped techniques to be attractive. Areas such as: building earthquake structural dynamics

and active control; automotive active suspension control; robotic manipulator control; and
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Figure 5: Probabilistic decentralized active control conceptualization. Control inputs

(u), measurements (y), disturbance inputs (w), performance outputs (z), and struc-

ture/interconnection forces/moments and displacements/rotations (p, q) are depicted for

substructures G1 and G2.
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microgrid power system control may find applications for these approaches. A few of these

areas fall under the large umbrella of active vibration control.

We will consider the lumped model in appendix A, shown in figure 54, which depicts

a four-mass system that is coupled by some spring k�, with the subscript � indicating

that this spring is an uncertain element. This system has disturbance inputs w1, w2 and

control inputs u1, u2 entering the system in the locations shown. One thing that will become

important when we get into discussing controller objectives and design is the fact that there

is no dissipative element included between masses 2 and 3. By modeling the system in this

way, we cannot have proportional damping. This model structure leads to a situation where

the eigenvectors of this system will be complex. Details behind this model can be found in

appendix A.

The lumped parameter model, as a generalized plant, has the representation

G ⇠

2

6664

A B1 B2

C1 D11 D12

I 0 0

3

7775
(4.1)

with inputs [w u]T and outputs [z y]T .

4.2 THE EULER-BERNOULLI BEAM FINITE ELEMENT MODEL

This particular structural model is derived using elementary finite element analysis/struct-

ural dynamic theory. We are able to treat certain system parameters as being random

variables. Specifically, we can account for geometric nonlinearities (length, area moment

of inertia in a generalized beam model) and material anisotropies and uncertainty directly

and on an elemental basis (elastic modulus, mass density). Only the elastic modulus of an

interconnecting element is treated as having random uncertainty in this research. We only

consider transverse (bending) deflection in this model. Details behind this model can be

found in appendix B.
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The beam model, as a generalized plant, has the representation

G ⇠

2

6664

A B1 B2

C1 D11 D12

C2 D21 D22

3

7775
(4.2)

with inputs [w u]T and outputs [z y]T . This generalized plant has a random interconnection

sti↵ness element embedded within the dynamics matrix A.

4.3 INTERCONNECTION STIFFNESS ELEMENT UNCERTAINTY

We must discuss two di↵erent cases for random interconnection uncertainty in this research.

The first case is specific to the lumped parameter model/full-state feedback case. This

definition does not require very much discussion. The second case is specific to the finite

element model/dynamic output feedback case. This case requires more discussion related to

the random uncertainty that was modeled for this case, as well as an associated structured,

norm-bounded uncertainty for the interconnection sti↵ness matrix.

4.3.1 The Uncertain Interconnection Sti↵ness Element for the Full State Feed-

back Case

For k�, the interconnection sti↵ness adjoining substructures in the lumped parameter model,

we have chosen that the uncertainty be normally-distributed with mean of 100 and standard

deviation of 15: k� ⇠ N (100, 152).

4.3.2 The Uncertain Interconnection Sti↵ness Element for the Dynamic Output

Feedback Case

Uncertainty in the interconnection sti↵ness element must be characterized in two ways:

1. As a random variable;
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2. As an uncertain element satisfying some structured norm-bound.

The first uncertainty characterization stands at the crux of this dissertation — how can we

synthesize a control law that is decentralized and robustly meets performance and stability

requirements in the presence of random interconnection uncertainty? The second uncer-

tainty characterization, in addition to being borne out of the elegant field of robust control,

is actually used as a mechanism to give us good starting points in a large-scale stochas-

tic optimization problem to solve the controller synthesis problem for the first uncertainty

characterization. Thus, we must define, and set the stage, for both of these uncertainty

cases.

An uncertain sti↵ness interface is introduced that connects the substructure systems G1

and G2 shown in figure 5. This formulation is recast, perhaps a bit more neatly/formally,

in figures 13, 14, and 15. The uncertainty in the elastic modulus in the interconnection

sti↵ness matrix will be characterized using a normal distribution. The random, uncertain

interconnection sti↵ness matrix is given by

K� =

2

4K�,11 K�,12

K�,21 K�,22

3

5 = �
✓
E�I

L3

◆

2

6666664

12 6L �12 6L

⇤ 4L2 �6L 2L2

⇤ ⇤ 12 �6L

⇤ ⇤ ⇤ 4L2

3

7777775
, E� ⇠ N (E0, 0.16E

2
0)

(4.3)

where E0 = 200GPa.

As the control objectives in this research focus on low frequency vibration attenuation,

probabilistic parametric modeling is adequate for capturing dynamical system uncertainty

[54]. Results from the fields of computational stochastic mechanics and stochastic finite

element methods have shown that the parametric probabilistic approach is quite e↵ective at

capturing uncertainty in both the low and mid-frequency ranges [54, 55, 56].

To moderate the amount complexity that we introduce into the development of these

techniques and through a recognition that these techniques can be generalized to more

complicated cases, we focus on the situation where only one parameter of the interconnection

sti↵ness element is uncertain — the elastic modulus. We will assume that the random
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uncertainty in the elastic modulus can be characterized by a normal distribution. The scalar

case for the normal distribution is given by

f(E |µ, �2) =
1p
2⇡�2

e
� (E�µ)2

2�2 (4.4)

where E corresponds to the uncertain elastic modulus specific to the uncertain interconnec-

tion sti↵ness element, µ is the mean, and �2 is the variance1. As a general note, we could

similarly declare that the element length, elastic modulus, width, and height were all uncer-

tain, thereby enabling us to characterize their uncertainty using a multivariate distribution,

such as the multivariate normal:

fKcoup(k1, . . . , kp) =
exp

�
�1

2(k� µ)T⌃�1(k� µ)
�

2⇡p/2|⌃|1/2 (4.5)

where k is a p-dimensional column vector, ⌃ > 0 is the covariance matrix, and µ is the

p-dimensional mean vector. The aggregate e↵ect of the uncertainty in all of these terms

could very well result in an uncertain dynamic response that looks almost identical to that

specific to the case where only the elastic modulus is uncertain. As a part of this thesis,

wherein we generate stability/performance degradation functions that are a function of the

amount of uncertainty in the system, these cases di↵er in how we either:

• Scale the variance on the univariate normal distribution as a measure for the amount of

uncertainty;

• Scale the covariance matrix and decompose the “size” of this matrix into a scalar value,

such as the Frobenius norm, as a measure for the amount of uncertainty.

Thus, it is with no detriment to the development of the techniques in this thesis that we

consider only the scalar case of uncertainty on the elastic modulus for one interconnection

sti↵ness element.

1
Throughout this thesis, we typically use � to denote the singular value of a matrix, and µ to describe

the structured singular value of an uncertain dynamic system, as defined in robust control. However, µ is

used in a few other places, mainly within this chapter, to denote the mean.
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A normal distribution, similarly, was an arbitrary choice. Probabilistic robust control

techniques, as applied in this research, do not have to be implemented on systems that

have analytic types of uncertainty associated with them. Any distribution, especially those

derived from actual plant uncertainty data, can be used with the techniques developed in

this thesis [14].

4.3.3 Structured Norm-Bounded Uncertainty

We have stated that the random interconnection element uncertainty has an uncertain elastic

modulus characterized by E� ⇠ N (E0, 0.16E2
0). In order to solve for seed solutions using

techniques from robust control, we must construct uncertainty structures that are “similar”

to our desired random uncertainty distribution. Doing so requires that we define these

uncertainty characterizations to be structured and norm-bounded.

Defining structured norm-bounded uncertainty is common in robust control, where the

elegant theory behind doing so has demonstrated good results on practical engineering sys-

tems [57, 17]. However, part of this research is motivated by the notion that norm-bounding

uncertainty can lead to conservative results — indeed, this notion has motivated other re-

searchers to further investigate probabilistic robust control methods [14, 30, 12].

We define the following structured, norm-bounded interconnection uncertainty for the

elastic modulus in the interconnection sti↵ness element:

• E�,1 2 [0.01E0, 2E0]

• E�,2 2 [0.05E0, 1.5E0]

These choices were facilitated by comparing them to the normal distribution that we had

imposed on our interconnection uncertainty.
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4.3.4 Encapsulating the Structured Norm-Bounded Interconnection Uncert-

ainty

We chose E� ⇠ N (E0, 0.16E2
0) for the random uncertainty on the interconnection sti↵ness

modulus. We also defined some structured, norm-bounded uncertainty sets E�,1 and E�,2,

that will characterize the uncertainty used during loop-at-a-time µ-synthesis for generating

an initial population/starting point in a stochastic optimization problem.

It now becomes insightful to examine how the random uncertainty set compares to the

structured, norm-bounded uncertainty set, which can be equivalently thought of as being

characterized using uniform probability distributions. This section is meant to show how

we can compare these two sets, along with some considerations around how uniform bounds

can be selected and analyzed against random distributions of arbitrary shape.

The first thing that we note is that E�,2 ⇢ E�,1. This implies that µ(E�,2) 2 E�,1. We

can therefore analyze the normal distribution with respect to the set E�,1. We can also see

that this normal distribution also has the e↵ect of weighting the structured norm-bounded

uncertainty ball — this explains the notion that probabilistic robust control can have the

e↵ect of weighting us toward a solution that can be less conservative/better-performing for

the “most-likely” plants in a structured norm-bounded uncertainty set.

The cumulative distribution function, adjunct to any density, is given by

Pr[a  E�  b] =

Z
b

a

f(E�|µ, �2)dE� (4.6)

where we recall that

E� ⇠ N (E0, 0.16E
2
0) , E� ⇠ f(E |E0, 0.16E

2
0) =

1p
2⇡0.16E2

0

e
� (E�E0)

2

0.32E2
0 . (4.7)

To understand how we have “encapsulated” the norm-bounded uncertainty using E� ⇠

N (E0, 0.16E2
0), we want to calculate:

Pr[0.01E0  E�  2E0] =

Z 2E0

0.01E0

f(E� |µ, �2)dE�. (4.8)
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It is a well-known result from probability calculus, that for the univariate normal kernel,

that

Pr[E�  L] =
1

2


1 + erf

✓
L� E0p
2(0.4E0)

◆�
(4.9)

where erf is the “error function”. A closed-form solution to the error function is not known,

however, using a series expansion this function can be approximated by

erf(x) =
2p
⇡

1X

n=0

(�1)nx2n+1

n! (2n+ 1)
⇡ 2p

⇡

✓
x� x

3

3
+

x
5

10
� x

7

42
+

x
9

216
� . . .

◆
. (4.10)

Now, we have

Pr[0.01E0  E�  2E0] =
1

2


1 + erf

✓
2E0 � E0p
2(0.4E0)

◆�
� 1

2


1 + erf

✓
0.01E0 � E0p

2(0.4E0)

◆�
(4.11)

=
1

2


erf

✓
2E0 � E0p
2(0.4E0)

◆
� erf

✓
0.01E0 � E0p

2(0.4E0)

◆�
(4.12)

= 0.9871. (4.13)

Thus, we have shown that the probability of E� being sampled to be within the range

[0.01E0, 2E0] is 98.71%. This implies that E� ⇠ U(0.01E0, 2E0) ⇢ E� ⇠ N (E0, 0.16E2
0).

Furthermore,

1� Pr[0.01E0  E�  2E0] = 0.0129, (4.14)

meaning that 1.29% of the E� ⇠ N (E0, 0.16E2
0) will fall outside of the range [0.01E0, 2E0].

In this manner, it is safe to say that the selected distribution used for probabilistic synthesis

— and analysis — in chapter 7 encapsulates the norm bounded range, while simultane-

ously allowing us to “focus” our analysis and synthesis on the most-likely portions of of the

uncertainty set.

For completeness, for E� ⇠ N (E0, 0.16E2
0),

Pr[0.05E0  E�  1.5E0] = 0.8856. (4.15)

We note that as Pr[aE0  E�  bE0] ! 1 for scalar values of (a, b), denoting the upper

and lower bounds, we find ourselves in a situation where the norm-bounded set actually

encapsulates the normally-distributed set. It is with this logic, then, that we make the claim
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that our random uncertainty encapsulates the norm-bounded uncertainty. Converse to this

situation, one can also choose some (a, b) such that Pr[aE0  E�  bE0] ! 0. This implies

one of two things:

1. Significant “mean bias”: the means of the distribution and norm-bounded sets are chosen

to be very far away from one another, or

2. Significant “variance bias”: The interval width characterizing (a, b) and the “width” of

the distribution, given by it’s variance, were chosen to be very di↵erent. This can arise

if a very large variance is imposed over a very small interval width.

Either of these conditions imply that the distribution chosen to encapsulate/color some

norm-bounded uncertainty set is not a good one. Therefore, the designer must choose the

distribution and associated norm-bounded sets in a meaningful way. No further guidance is

given in this thesis, aside from the quantified di↵erences and discussion above.

An alternative view is depicted in figure 6, where histograms of the norm-bounded

(uniformly-distributed) versus normally-distributed interconnection modulus are contrasted.

4.3.5 Open-loop Response of the Uncertain Structures with Structured, Norm-

bounded Uncertainty

We also examined the random maximum singular value plots to get a feel for how the

response spectra was a↵ected by this uncertainty — see figures 8 and 9. These figures depict

the mapping 2

4w1

w2

3

5 !

2

4z1
z2

3

5 ,

as shown in figure 7 for the two norm-bounded uncertainty cases given above.

The low-mid frequency region for these uncertain systems appear to have enough uncer-

tainty to potentially be useful in some practical structural control problems. A cursory anal-

ysis of variability that we have in the maximum singular value plot for E�,1 2 [0.01E0, 2E0]

(figure 9) shows us that the second mode’s frequency !2 2 [3.2, 3.8] Hz. Since we have

norm-bounded this uncertainty within the range mentioned earlier, we can assert that this
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Figure 6: Comparison of the uniform, structured norm-bounded uncertainty used for µ-

synthesis with the normal distribution that has been defined for probabilistic robust synthe-

sis.
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Figure 7: Open loop w ! z mapping.

Figure 8: Maximum singular value plot of beams coupled through a norm-bounded, uncertain

interface sti↵ness element. Interface sti↵ness element modulus variability ranges between 5%

and 150% of the nominal, or E� 2 [0.05E0, 1.5E0].
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Figure 9: Maximum singular value plot of beams coupled through a norm-bounded, uncertain

interface sti↵ness element. Interface sti↵ness element modulus variability ranges between 1%

and 200% of the nominal, or E� 2 [0.01E0, 2E0].
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mode can exist within the range just given with equal probability (uniform distribution over

this range). Therefore, we can say that the average µ(!2) = 3.5 Hz. This implies that we

have approximately ±9% uncertainty around this mode.

Variability around other modes is di↵erent. This mode was chosen for additional study so

that we can make one statement: this amount of uncertainty, and the associated variability

in natural frequencies, will make for a formidable controller synthesis problem, while also

allowing for us to capture a high degree of variability in the interconnection sti↵ness.

4.3.6 Infinity Norm of the System Possessing Structured, Norm-Bounded Un-

certainty

Randomized algorithms were used to evaluate the infinity norm of the open-loop, norm-

bounded uncertain system. This open-loop system is represented by the mapping

2

4w1

w2

3

5 !

2

4z1
z2

3

5 ,

which we will call G� for the time being, and is depicted in figure 7. The intent of this

step was to determine the approximate worst-case infinity norm of the open-loop system

so that a probabilistic robust control performance objective could be crystallized. Due to

how random interconnection uncertainty was defined, we can have some members of the

uncertainty set that are unstable, since the normal distribution is unbounded. Although

unlikely, we wanted to examine the portion of the uncertainty set that will occur 98.71% of

the time — that portion that is bounded between 0.01E0 and 2E0.

Note that by even using µmethods, it is not possible to find the exact infinity norm within

this continuous uncertainty set [58, 59]; this fact further motivated the use of probabilistic

methods [41]. Thus, 150 instances of this uncertain system were sampled and the infinity

norm of each system was evaluated. Then,

�̄
.
= max

i

sup
!

�̄

⇣
G�,i(j!)

⌘
, ! 2 [0,1) [ {1}, i = 1, . . . , 150 (4.16)

which says that �̄ is the approximate worst-case 1-norm within the uncertain plant set,
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with uncertainty in the plant G�(j!) characterized by E� 2 [0.01E0, 2E0].

Using this approach and the data generated from it, we observe that the approximate

maximum is �̄ = �39.4 dB. We do not perform a rigorous evaluation for estimating the

probability that this norm serves as the upper-bound for the entire set. Instead, this cursory

evaluation is su�cient so that we can reasonably select some level below this value as we

move into solving the stochastic optimization problem in our chapter 7.

With that statement being made, we can declare that we wish to find a probabilistically

robust dynamic output feedback, decentralized controller pair that maintains the H1 norm

of this system 6 dB less than this “worst case” norm. Therefore, our desired performance

shall be declared to be

�
⇤ = �̄ � 6 = �45.4 dB. (4.17)

One thing that we have to recognize, here, is that we are dealing with a random/uncertain

system. This makes achieving aggressive performance targets more di�cult. This leads us

into discussing our control objectives.

4.4 CONTROL OBJECTIVES

The control objectives are very similar for both models and methods developed in this

research. The approaches to achieving these control objectives are di↵erent and will be

discussed in this section. The overarching control objectives that we seek to achieve in this

work are:

• Objective #1: Disturbance Attenuation at Low Frequencies We want to find

decentralized control laws, which we can call K, such that the H1-norm of the LFT

mapping the disturbance inputs to performance outputs is attenuated below some level,

especially at the low frequency modes of the structure. Mathematically, we want

���
���Fl(G,K)

���
���
1

 �. (4.18)
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Designing the approaches to focus control e↵ort on low frequency modes will be discussed

in this chapter. The attenuation that we want to achieve for the lumped-parameter and

finite-element models are di↵erent, as these models, and their parameters, are di↵erent.

• Objective #2: Decentralized Controller Architecture Decentralization is with

respect to enforcing both sensing and actuation constraints on the controllers. That is,

a controller K1 can only use measurements specific to the portion of the structure where

it is located. Similarly, it can only issue commands to the actuators local to the portion

of the structure where it is located. The same is true for another controller for this

structure, K2. Figure 5 generalizes this architecture for both the full-state as well as

output feedback cases.

The approaches to achieving decentralized controller implementations for the full-state

and dynamic output feedback cases are quite di↵erent. These approaches will be touched

upon in this present chapter, with the details behind the implementations in chapters 5,

6, and 7.

• Objective #3: Robustness Against Random Interconnection Uncertainty

Lastly, we want our approach to be able to incorporate information about, and result in

a controller that is robust against, random interconnection uncertainty. This is a prob-

lem that has not been addressed by the decentralized control community, resulting in a

contribution of this research [26].

This robustness is with respect to the two fundamental metrics that we use for evaluating

the e↵ectiveness of a controller: stability and performance. If we suggest that the random

uncertainty in our system is characterized by some �, robustness against � becomes:

P̂r(stable |�) � 1� ✏s (4.19)

P̂r

✓���
���Fl(G,K)

���
���
1

 �

�����
◆

� 1� ✏p (4.20)

which says, in probability, that we want the volume of “good” decentrally-controlled

systems to be greater than 1 � ✏s for stability and 1 � ✏p for performance with respect

to the random systems generated by the interconnection uncertainty, described by �.
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4.5 ACHIEVING CONTROL OBJECTIVES IN STATIC FULL-STATE

FEEDBACK

For the full-state feedback case, we will now discuss how control objectives will be achieved

vis-à-vis control approach and design. The overarching control objective is to synthesize

decentralized controllers that attenuate the maximum of the system’s response across all

disturbance input/performance output channels at low-frequencies while being robust against

random uncertainty in the interconnection sti↵ness element.

We are also interested in the attenuation of low-frequency disturbance inputs at low

frequencies. There are many ways to achieve this, however, some model bases have theoretical

benefits that are attractive and intuitive. An approach is developed in modal coordinates,

which is a basis that is attractive in the structural control community.

We recall that the eigenvectors of our system are complex, which arises from how we

have defined our interconnection sti↵ness and damping matrices (see equation (A.5)). This

research will show how we can divorce ourselves from the canonically-used proportional

damping assumption, allowing us to pursue control design and synthesis over the field of

complex numbers.

The system is modeled as a full-information generalized plant, with the form

ẋ = Ax +B1w +B2u

z = C1x+D11w +D12u

y = Ix

(4.21)

where the equation y implies that we can measure/sense all state variables, and the equation

z is termed the performance output equation. This should be viewed as a virtual output,

as we use it to achieve our specific performance objectives. The traditional full-information

H1 control problem that one would want to solve is to find some u = Kx such that the

1-norm of the transfer function matrix

||z(s)||2
||w(s)||2

.
= ||Fc(s)||1 � (4.22)
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where

Fc(s) =

2

4 A+B2K B1

C1 +D12K D11

3

5 . (4.23)

Controller synthesis can be achieved by solving algebraic Ricatti equations, or alternatively,

by solving a semidefinite program (SDP) with linear matrix inequality (LMI) constraints

[17, 60]. To achieve the macroscopic control objectives listed previously, we must employ

several techniques and approaches which are discussed in chapter 5. These approaches involve

solving the full-information H1 synthesis problem as an SDP with LMI constraints. The

LMI constraint in this synthesis problem is:

2

6664

QA
T + AQ+ Y

T
B2 +B2Y B1 QC

T

1 + Y
T
D

T

12

B
T

1 ��I D
T

11

C1Q+D12Y D11 ��I

3

7775
< 0 (4.24)

Q > 0, Y 2 R
r2⇥n

with the controller given by K = Y Q
�1.

There are some assumptions that we must make about the system that we are studying

in this thesis. First, some definitions are required.

Definition 1 (Stabilizability). A linear system (continuous or discrete) is stabilizable if all

unstable modes are controllable.

Definition 2 (Detectability). A linear system (continuous or discrete) is detectable if all

unstable modes are observable.

For full-state feedback H1 synthesis using linear matrix inequalities, we have made the

following assumptions about our system:

(i) (A,B1) is stabilizable and (C1, A) is detectable;

(ii) (A,B2) is stabilizable;

and we have enforced that

D
T

12

h
C1 D12

i
=
h
0 rzI

i
(4.25)
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where rz > 0. The linear dynamic, lightly damped structures that we study in this thesis are

both stabilizable and detectable. Since we are interested primarily in lightly-damped struc-

tural dynamic systems that do not have rigid body modes, this assumption is automatically

satisfied, as these types of systems do not have any unstable modes. See appendix C for a

theorem and proof that shows this.

4.5.1 Performance Output Function Design in Modal Coordinates

Recall that we want to develop a technique that:

1. attenuates the system response at low frequencies due to disturbance inputs; and

2. allows us to perform control design in a modal basis with non-proportional damping.

When we are dealing with a system that does not have proportional damping, the mass,

sti↵ness, and damping matrices may not all be diagonalized. In that case, the resulting

modal damping matrix will be non-diagonal. When this is the case, the way to talk about the

system modes tends to be more complicated and must be done in state space. Nevertheless,

the modal form, in state space, can still be intuitive — the system modes still correspond

with specific natural frequencies in the structure.

This basis is attractive when used in the context of the full-information H1 control

design and synthesis problem; rather than limiting ourselves to considering the original,

physical displacements and velocities of our masses, we are now considering the modes of the

system, making the definition of some z = C1q + D11w + D12u very intriguing, as the H1

controller seeks to make ||z||2
||w||2 small. We can now, quite intuitively, target specific system

modes when designing our control law. Indeed, we can define some C1 such that we attempt

to attenuate, or find some controller that, maintains the 1-norm of the w ! z mapping

below some level for only the first two modes of the system.

We chose to perform control design in complex modal coordinates, yet perform synthesis

in the physical state space system. Doing so allowed us to achieve a decentralized controller

directly in the physical state space and helped to avoid other complications that arise with

using the scenario approach in probabilistic robust control.
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For design, we transform to a complex modal basis where we can define our performance

output function to look like:

z = Ĉ1q +D11w +D12u

=

2

4 In⇥n

0r2⇥n

3

5 q +
h
0(n+r2)⇥r1

i
w +

2

40n⇥r2

Ir2⇥r2

3

5 u.

(4.26)

Performing design and probabilistic robust synthesis in a complex modal space while pre-

serving a decentralized structure in the physical space was a challenge that was not pursued

directly in this research. Even if a modal basis that preserved a decentralized structure

in our physical coordinate system was found, we would have to map the synthesized con-

troller back through the basis transformation used to get into complex modal coordinates.

Mapping back through such a transformation has implications on the scenario-approach to

probabilistic robust synthesis that is used to achieve the end of finding a probabilistic robust

H1 controller for the full-state feedback case; by solving a high-dimensional SDP with LMIs

representing random instances of the plant, we end up with many basis transformations that

can be used to map back into a physical controller space. A question, then is related to how

we go about choosing which basis transformation to use in order to transform our controller

into a decentralized physical one.

Performing synthesis in the physical basis, with a modal performance output function,

avoids these challenges related to finding, and choosing, a basis that allows control design

and synthesis to only be performed in complex modal coordinates.

Decentralization of controller variables in the physical state space is discussed in sec-

tion 4.5.3 and the scenario approach is discussed in chapter 5.

4.5.2 Frequency Weighting in Modal Coordinates

Another attractive feature of performing control design in a modal basis, especially for

lightly-damped systems, is related to a simple method that allows us to frequency-shape

our disturbance input and performance output matrices. This is a practice that is already
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Figure 10: Disturbance input and performance output filtering in a generalized plant setting.

used in active structural control, and is another component of this research [61]. Part of the

attractiveness behind this practice is the fact that we are able to preserve the order of our

plant during controller synthesis.

Frequency weighting either the disturbance input or performance output allows us to

incorporate knowledge about the spectral content of disturbances entering the system and

allows us to target low frequency modes by filtering the performance output prior to controller

synthesis. The input and output filters are augmented with the generalized plant as shown

in figure 10.

We exploit properties that lightly-damped structures possess to achieve frequency weight-

ing without augmenting filters to the generalized plant. Due to the presence of these lightly-

damped modes, we can achieve the approximate result that input or output filtering has

on the plant by multiplying the corresponding rows/columns of the input/output matrices,

while in modal coordinates, by the magnitude of a smooth filter function at each resonant

frequency.

This approximation is by no means an equivalence. However, the approximation works

well at the system resonances, thereby making the H1-norm approximately equal for the

case where the entire filter is augmented and for the case where we are scaling the modes by

the magnitude of the filter function at each resonance.
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We provide the following property to show how this is the case and refer to Gawronski

for additional details [61].

Property 1 (H1 Norm of a structure with a filter). Given a system G and a smooth filter

F , the H1 norm of a structure with a smooth filter is equal to the H1 norm of the structure

with scaled modes.

||GF ||1⇡ max
i

(||Gi↵i||1), i = 1, . . . , n (4.27)

and the norm of the ith mode with a smooth filter is approximately equal to the norm of the

scaled mode

||GiF ||1⇡ ||Gi↵i||1, (4.28)

where the scaling factor ↵i is defined

↵i = |F (!i)|=
p

F (!i)HF (!i). (4.29)

Gi corresponds to the ith mode’s transfer function. A diagonal F (!) of order s represents

input filters without cross-coupling between the inputs. Similarly, a diagonal F (!) of order r

represents the output filter without cross coupling between the outputs. This approximation

holds only for smooth input or output filters.

To demonstrate this approximation, we note that for a smooth filter the transfer function

GF preserves the notion that the structural transfer function at the ith natural frequency is

approximately equal to the ith modal transfer function at this frequency (see property 2.1

of Gawronski [61]);

||GF ||1 = sup
!

�̄(G(!)F (!)) ⇡ max
i

�̄(G(!i)F (!i)) (4.30)

⇡ max
i

�̄(Gi(!i)↵i) = max
i

(||Gi↵i||1). (4.31)

In the approximation just provided, the fact that �k(GF ) = �k(G|F |) is used, which is shown

by

�
2
k
(GF ) = �k(F

H
G

H
GF ) = �k(FF

H
G

H
G) (4.32)

= �k(|F |2GH
G) = �k(|F |GH

G|F |) = �
2
k
(G|F |) (4.33)
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which says that the norm of a smooth filter in series with a flexible structure is approximately

equal to the norm of a structure scaled by the filter gains at the natural frequencies. This

property can also be shown for a structure with a filter at the output.

For a given diagonal bank of input or output filters, where all filters are the same, we

can achieve this modal input or output scaling by:

B̃1 = �Ww�
�1
B1 (4.34)

C̃1 = C1�Wz�
�1 (4.35)

with � representing the eigenvectors of the state space system matrix A, and where

Ww = diag(↵B

1 ,↵
B

1 , . . . ,↵
B

n
,↵

B

n
) (4.36)

Wz = diag(↵C

1 ,↵
C

1 , . . . ,↵
C

n
,↵

C

n
) (4.37)

where each ↵i corresponds to the magnitude of the filter at that particular system natural

frequency. The left/right multiplication is shown since we are able to compactly scale the

rows/columns of the disturbance input/performance output using this approach, and pro-

vided the diagonal filters are all equivalent. See Gawronski for additional information on

using this approximation for filter approximation in lightly-damped structures, and how the

the 2 and Hankel norms can similarly be approximated by scaling [61].

To illustrate the e↵ectiveness of this approximation, an example is provided wherein

the disturbance input matrix, B1, is scaled by the magnitude of a smooth filter at the

system’s resonances, with this comparison made to an open-loop unfiltered system along

with the open-loop system with an input filter augmented. See figure 11. In figure 11,

an input filter Ww(s) = !c
s+!c

where !c = 10 rad/s was used. This figure was created for

the system depicted in figure 54 of appendix A, but only represents a single I/O mapping

between a disturbance entering the first mass and the velocity of the first mass. It is purely

used to illustrate the e↵ect of frequency weighting in the manner discussed. For the full-

state feedback problem, we have chosen to frequency weight both the disturbance input and

performance output matrices to achieve the end of low-frequency response attenuation while

accounting for frequency content in disturbance inputs.
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Figure 11: Lightly damped linear system comparing disturbance input filter augmentation

with input matrix scaling in modal coordinates. This figure depicts the open-loop, unfiltered

system, the system with an augmented disturbance input filter, and the e↵ects of magni-

tude scaling in modal coordinates. The filter that was augmented, and used for scaling,

is also included on this figure. It is shown that magnitude scaling achieves a good filtered

approximation near the system resonances.

62



So far, we have sketched out how control objectives would be met for achieving the

attenuation of low frequency structural modes due to exogenous disturbances entering our

system. In order to do this, we approach the problem from three directions:

1. Pursue the synthesis of a full-state feedback H1 controller, since this type of controller

has appeal in its ability to attenuate some virtual performance output in the presence of

broad-band exogenous inputs in some 1-norm sense;

2. Define the performance output function in modal coordinates, which allows us to target

specific, or all, modes in the system directly during control design;

3. Frequency-shape the disturbance input and performance output B1 and C1 matrices, in

modal coordinates.

There are two other objectives that we strive to meet:

1. A decentralized controller architecture;

2. A controller that is probabilistically-robust against random interconnection uncertainty.

We will now discuss how we will achieve these specific ends, before moving into our discussion

on the model used for dynamic output feedback controller design and synthesis.

4.5.3 Decentralized Controller Architecture

A decentralized controller implementation is very straightforward to achieve when controller

synthesis is pursued as a semidefinite program [60]. A decentralized controller architecture

is achieved by enforcing sparsity constraints on the decision variables in the semidefinite

program used to solve this type of controller synthesis problem. The full state feedback

controller, denoted by K, is constructed as

u = Kx = Y Q
�1
x (4.38)

where Y and Q are the decision variables in an SDP and our state vector, x = [x(1) x(2)]T ,

with x(1) corresponding to only those states specific to subsystem 1, and x(2) corresponding
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only to those states specific to subsystem 2. By enforcing that

Q =

2

4Q1 0

0 Q2

3

5 , Y =

2

4Y1 0

0 Y2

3

5 ) K =

2

4Y1Q
�1
1 0

0 Y2Q
�1
2

3

5 (4.39)

we pose the optimization problem such that the o↵-diagonal terms in the decision variables

are set to zero, and only search only over the block-diagonal terms, leading to a decentralized

controller architecture.

4.5.4 A Probabilistic Robust Full State Feedback H1 Controller

Robustness against the random interconnection uncertainty for the lumped parameter model

used for the full state feedback case is addressed using the scenario approach in robust control

[14, 16]. The full-informationH1 synthesis problem, solved as an SDP with LMI constraints,

can be used in the scenario approach. This approach, with many considerations surrounding

controller design and analysis, is the topic of chapter 5.

4.5.5 Probabilistic Robust Stability and Performance Metrics

The fact that we have random uncertainty tells us a few things. Stability and performance

objectives are no longer deterministic. Therefore, we must define acceptable probability

estimates that reflect our confidence that a certain amount of stability or performance can

be guaranteed. Since our open loop system has random uncertainty, we need to evaluate the

open loop performance through a similar probabilistic lens, which is how we can crystallize

our desired probabilistic performance. It was previously discussed that part of the approach

to achieving low-frequency performance was through frequency-shaping of the disturbance

input and performance output matrices in modal coordinates.

Since controller synthesis will be performed on the filtered system, figure 12 is useful for

understanding the e↵ects that the interconnection uncertainty has on the resonance peaks

that occur across the system’s spectrum. Using the open-loop, random maximum singular

value plot of the filtered and unfiltered system in figure 12, our objective was to achieve at
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least a 20 dB reduction in the open-loop H1-norm of the disturbance input to performance

output mapping. According to figure 12, the filtered H1-norm is approximately 10 dB.

By defining (4.26) frequency-scaling in modal coordinates, and transforming back into

our physical coordinate system, our performance output equation is now defined to be

z =

2

4Wz��1

0

3

5 x+
h
0(n+r2)⇥r1

i
w + rz

2

40n⇥r2

Ir2⇥r2

3

5 u. (4.40)

We declare that we want to find a control law, u = Kx, such that the H1-norm of the LFT

����

����Fl(G̃,K)

����

����
1

 �10 dB (4.41)

where the G̃ is the frequency-scaled plant, with disturbance input filter Ww and performance

output filterWz approximated by scaling the B1 and C1 matrices in modal coordinates. Using

the magnitude scaling shown previously, this system is

Fl(G̃,K) ⇠

2

4 A+B2K B̃1

C̃1 +D12K D11

3

5 (4.42)

where B̃1 is the “physical” version of B1 after being scaled in modal coordinates by the

magnitude of the filter function Ww(s) at each s = j!i open-loop resonant frequency. The

C̃1 matrix, likewise, was scaled using Wz(s) at each s = j!i resonant frequency.

Thus, the probabilistic robust controller that we find, if one exists, will have a priori

guarantees on the probability of meeting this performance objective on the filtered system.

A posteriori analyses around the unfiltered (actual) system are carried out, as is done for

other systems that are frequency-shaped for controller synthesis [17].

We can now state our performance objectives as it relates to having probabilistic guaran-

tees. We want our decentralized controller to meet performance objectives 97% of the time

with 95% confidence in this estimate. This allows us to arrive at our desired probabilistic

robust performance requirement.
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Figure 12: Open loop maximum singular value plots, filtered and unfiltered, with the dis-

turbance input and performance output filters used.
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Probabilistic Robust Performance: The probabilistic robust performance test for the

full-state feedback case is given by:

Ptest
.
= P̂r

 ����

����Fl(G̃�, K)

����

����
1

 �

�����
!

� 0.97 (4.43)

with 95% confidence in this a priori probability estimate and with � = �10 dB. The G̃� and

conditional dependence upon � implies that we are evaluating the performance of random

instances of the controlled system, with samples being drawn from the prescribed probability

distribution. A system is asymptotically stable if and only if it has a finite infinity norm,

and so stability is implied by this performance requirement. This implies that a system that

meets these performance requirements exists within the subset of stable plant/controller con-

figurations. This conditional dependency, although somewhat obvious, was briefly discussed

in chapter 2. This allows us to arrive at our desired probabilistic robust stability require-

ment.

Probabilistic Robust Stability: The probabilistic robust stability test for the full-state

feedback case is given by:

Stest
.
= P̂r

 
Re

✓
�(A� +B2K)

◆
< 0

�����
!

� 0.99 (4.44)

with 95% confidence in this a priori probability estimate. The A�, along with the �, implies

that we are evaluating the stability of random instances of the controlled system, with

samples being drawn from the prescribed probability distribution.

4.6 ACHIEVING CONTROL OBJECTIVES IN DYNAMIC OUTPUT

FEEDBACK

We also want to design and synthesize dynamic output feedback controllers that are ro-

bust against random model uncertainty while attenuating the system’s excitation at low-

frequencies due to broadband disturbance inputs. Furthermore, we want a decentralized

controller architecture. This means that controllers are synthesized that can only use those
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spatially-local measurements and actuators for achieving overarching control objectives. This

situation is depicted by figure 5.

We want to synthesize probabilistic-robust H1 controllers for the substructures in this

research. In order to do this, and as is well-known from the field of robust control and

H1, a generalized model of the plant must be constructed. Recalling the generalized plant

representation for the finite element modeled beams,

G ⇠

2

6664

A B1 B2

C1 D11 D12

C2 D21 D22

3

7775
, (4.45)

we make the following assumptions, which are specifically relevant for the loop-at-a-time

µ-synthesis approaches in chapter 6:

(i) (A,B1) and (A,B2) are stabilizable;

(ii) (C1, A) and (C2, A) are detectable;

(iii) D
T

12D12 = I;

(iv) D21D
T

21 = I;

(v) D11 = 0, D22 = 0.

Note that in order to satisfy (iii) and (iv), D12 must have no more columns than rows and

D21 no more rows than columns. Generally, if D12 and D21 have full rank, scaling matrices

can always be found to make sure (iii) and (iv) are satisfied. These scalings preserve the

system’s 1-norm. See the lecture notes by Dailey for additional details [62]. We note that

when using the LMI approach to H1 synthesis, we only have the requirement that (A,B2)

be stabilizable, (C2, A) be detectable, and D22 = 0 [63]. To achieve the objectives in this

thesis, however, we have designed D12 and D21 to be full rank matrices, with D12 having

more rows than columns, and D21 more columns than rows.
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For the plant given by (4.45), we want to find some control law u = Ky, where

K ⇠

2

4 Ak Bk

Ck Dk

3

5 (4.46)

that renders ���
���Fl(G,K)

���
���
1

 � (4.47)

where this LFT is mapping the disturbance inputs to the performance outputs for this

structure.

Very generally, we have just covered what the objective that a controller must attenuate

the system H1-norm below some level. Controller synthesis approaches will be covered in

both chapters 6 and 7, as we develop an approach to synthesizing multiple robust controllers

using µ-synthesis, and use these controllers as starting points in a stochastic optimization

problem. We will now continue our discussion on this system model and how we are going

about designing the controller.

4.6.1 Performance Output Function Design in Modal Coordinates

To achieve performance output attenuation at low frequencies, the C1 performance output

matrices are defined to be frequency-weighted versions of the measured position and velocity

at measurement locations. Thus, the performance output equations are constructed as

z =

2

4C2�Wz��1

0

3

5 x+D11w +D12u, i = 1, . . . , n (4.48)

where each Wz = diag(↵C

1 ,↵
C

1 , . . . ,↵
C

n
,↵

C

n
), i = 1 . . . n is a diagonal matrix of positive scal-

ings equal to the magnitude of a smooth filter function at each resonance frequency. The

coe�cients ofWz are determined by evaluating the following filter at each resonant frequency

of the system:

↵i = |Wz(si)|=
����

500

si + 500

���� , si = j!i, i = 1, . . . , n (4.49)

where n is equal to the dimension of our state space system. Since the fixed-fixed beam,

determined using the parameters in table 6, has a first fundamental frequency at approxi-

69



mately 5.8 rad/s (0.9 Hz), filtering the performance outputs with the filter (4.49) was chosen

to attempt to achieve the end of attenuating the system’s response at low frequencies. The

open-loop, uncertain maximum singular value plot of the coupled system was shown in fig-

ures 8 and 9.

4.6.2 Decentralized Controller Architecture

To achieve the end of synthesizing decentralized, robust controllers that attenuate the sys-

tem’s H1-norm below some level while achieving the attenuation of low frequency modes,

we combine a technique known as loop-at-a-time controller synthesis with µ-synthesis via

D/K iterations [6, 17]. This means that di↵erent w ! z mappings are required during loop

formulations and controller synthesis. The details of this approach are included in chapter 6,

however, we present the high-level approach at this juncture. To start, we formulate the

mapping 2

4w1

w2

3

5 ! z1

where w1 is the disturbance entering substructure #1 and w2 is the disturbance entering

substructure #2. z1 is the frequency-weighted, measured positions and velocities specific to

substructure #1. The generalized plant block diagram depicting this open-loop formulation

is shown in figure 13. The Kcoup block represents the structured, norm-bounded uncertain

interconnection sti↵ness element. We then synthesize the controllerK1 for this configuration,

using only the control inputs u1 and measurements y1. Next, we move toward formulating

the next open loop interconnection for synthesis of controller K2. This involves formulating

the mapping 2

4w1

w2

3

5 ! z2,

where w1 and w2 are as defined before, with z2 as a frequency-weighted version of the

measured positions and velocities specific to substructure #2. This case becomes even more

interesting, however; the controller K1 is collapsed into G1, meaning frequency-weighting

of z2 at the system’s resonances includes the closed-loop dynamics produced by having the
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Figure 13: Initial generalized plant formulation used for K1 controller synthesis.

controller K1 active. This system is depicted in figure 14. Synthesis around this system is

performed, using only control inputs u2 and measurements y2 for synthesis of K2.

Figure 14: Subsequent generalized plant formulation for K2 controller synthesis.

Lastly, we arrive at the final system configuration that we use for assessing the perfor-

mance of our closed loop system. We are finally interested in the mapping

2

4w1

w2

3

5 !

2

4z1
z2

3

5

where z1 and z2 are no longer frequency-weighted versions of the measured positions and

velocities specific to each substructure. Rather, these are now just the positions and ve-

locities at measurement locations, with these measurements only being particular to each

substructure. The controllers K1 and K2 are wrapped around substructures G1 and G2 as

shown in figure 15.
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Figure 15: Closed loop system for system analysis.

The controllers resulting from loop-at-a-time µ-synthesis, if they are found to exist while

achieving good performance at low frequencies, will be used as seed solutions in a stochastic

optimization problem as we search for solutions that achieve a 6 dB reduction in the open-

loop H1 norm of the uncertain plant.

4.6.3 Probabilistic Robust Stability and Performance Metrics

The performance test is given by:

Ptest
.
= P̂r

✓
||Fl(G,K)||1  �

⇤
����K�

◆
� 1� ✏p (4.50)

where we chose �⇤ = �45.4 dB and ✏p = 0.05. Probability estimate accuracy and confidence

is detailed in chapter 7.

The stability test is given by:

Stest
.
= P̂r

✓
Fl(G,K) stable

����K�

◆
� 1� ✏s (4.51)

where we chose ✏s = 0.02. Probability estimate accuracy and confidence is detailed in

chapter 7. The robust stability test says that we want our system to be stable for some

prescribed volume (1 � ✏s) of our set. Clearly, and using the logic/arguments presented in

section 2.3.1, ✏s  ✏p, since the H1-norm of a system is finite if and only if the system is

stable.

72



A critical statement must be made, now. The approaches developed in chapter 7 do

not allow us to make an a priori guarantees for passing our stability (Stest) or performance

(Ptest) for given volumes 1� ✏s and 1� ✏p, respectively. This fact is what makes the scenario-

based approach and statistical learning theory attractive in probabilistic robust control,

as discussed in chapter 2. Thus, we will say that a satisfactory solution will be one for

which:

• Stest passes for an ✏s = 0.02;

• Ptest passes for an ✏p = 0.05.

In words, we want 98% of our random, decentrally-controlled structures to be stable, and

for 95% of these random plants to have a w ! z mapping with H1-norm less than or equal

to �⇤.

4.7 CHAPTER SUMMARY

In this chapter we have discussed and developed the following:

• The lumped parameter model, with quantified random interconnection uncertainty, for

the full-state feedback control case;

• The finite element model, with quantified random interconnection uncertainty, for the

dynamic output feedback control case;

• Control objectives for the probabilistic robust, decentralized, full-state feedback H1

problem that we solve in chapter 5;

• Control objectives for the probabilistic robust, decentralized, dynamic-output feedback

H1 problem that we solve in chapters 6 and 7.

We now move into chapter 5, which develops a scenario-based decentralized full-state

feedback control technique for lightly-damped system with random interconnection uncer-

tainty.
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5.0 SCENARIO-BASED DECENTRALIZED FULL-STATE FEEDBACK

CONTROL OF A LIGHTLY-DAMPED SYSTEM WITH RANDOM

INTERCONNECTION UNCERTAINTY

For the field of probabilistic controller design and synthesis for dynamical systems, a pow-

erful, contemporary development pioneered by Calafiore et al., is the scenario approach

[16]. Perhaps the most attractive aspects of this approach are that it is both computation-

ally tractable and straightforward in its implementation. This approach also enables the

incorporation of real, complex, structured and unstructured uncertainties into the system

model.

In this chapter, we show how scenario design can be used to synthesize decentralized

H1 controllers where the system interconnections are real, random variables, and where

our performance objectives are complex-valued. An advantage to this technique is that

global system performance objectives can be defined and met, where controller synthesis

accounts for the random interconnections and adjoining system dynamics, yet is completely

decentralized in implementation. In addition, we show how a real-valued control law can be

synthesized with control design performed in a complex modal basis.

Several techniques and concepts are brought together to achieve the end of synthesiz-

ing a decentralized, probabilistically-robust, full-state feedback H1 controller for the light,

non-proportionally damped model with random interconnection uncertainty introduced in

chapter 4. This chapter is structured as follows:

• The scenario approach to probabilistic robust control will be detailed;
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• Representing the full-state feedback H1 problem as a semidefinite program with linear

matrix inequality constraints will be detailed, hence showing that this is a convex program

amenable to the scenario approach;

• Primal and dual forms of semidefinite programs will be presented, as the dual form is

fundamental to understanding complex semidefinite programming;

• A little abstract algebra: how complex numbers can be represented as real matrices, and

some important properties that are preserved through this transformation;

• Complex semidefinite programming, and how the transformation between complex and

real matrices is used to represent this problem as a real semidefinite program;

• Scenario-based, decentralized, complex, full-state feedback H1 synthesis for a lightly

damped system model possessing random interconnection uncertainty;

• The stability and performance of the resulting decentralized, probabilistic robust H1

controller is analyzed.

5.1 THE SCENARIO APPROACH TO PROBABILISTIC ROBUST

CONTROL

This section is provided as an overview to the scenario approach, which was developed by

Calafiore et al. in [16, 64]. A good overview of the approach is provided in the monograph

by Tempo et al. [14].

In the scenario approach, if we consider some nominal plant given by G where it is known

that certain physical parameters of this plant G are uncertain, we can represent G as a finite

collection of plants, denoted by GN = {G(1)
, . . . , G

(N)}. If the number of scenarios, equal to

N , is chosen properly during controller design and subsequently for controller synthesis, a

specified level of probabilistic robustness can be achieved [14].
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We denote � 2 B� to represent the random uncertainty that is a↵ecting our system.

The set B� assumes the form

B�(a)
.
=
�
� 2 R

n⇥m : � ⇠ f�(a)
 

(5.1)

where

f�(a) = N (µ, a�0), a 2 [0, amax], amax 2 R+. (5.2)

For probabilistic robust synthesis, a is chosen to be equal to unity. Note that through using

this approach, the distribution does not have to be normal, uniform, or any other analytic

distribution. The uncertainty can be characterized in any way, allowing the designer to

incorporate uncertainty information derived from test data or other means.

For analysis, and for the construction of stability and performance degradation functions,

a will be allowed to vary in some set that is upper-bounded by some scalar amax, which is

what will allow us to construct these probabilistic analogues to the structured singular value

from robust control [17].

We also denote ✓ 2 ⇥ ✓ R
n✓ to be the controller variables that we must find. Thus, the

set ⇥ is the domain of optimization variables.

We state the following assumption, which is an assumption upon which the scenario-

based approach to controller synthesis is based [14]:

Assumption 1 (Convexity). The performance function, which we denote g(�,⇥), is convex

in ⇥ for any fixed value of � 2 B�.

Under satisfaction of the Assumption 1 given above, the scenario design problem amounts to

determining some ✓ 2 ⇥, for some randomly extracted scenarios �(1,...,N), that solves

min
✓

c
T
✓

s.t. g(�i, ✓)  ⇢
⇤
, i = 1, . . . , N.

(5.3)

The scenario design problem form, with its underlying convexity assumption, opens up our

ability to use it for many control synthesis problems. One such problem is the synthesis

of full-state feedback H1 controllers. This type of synthesis approach is possible using
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scenario design since the controller variables are convex in the problem’s constraints. It is

well-established that this problem is convex and is solvable as a semidefinite program [15].

This will be detailed later on in this chapter.

5.1.1 On sample size complexity and a priori probabilistic guarantees

Perhaps one of the most powerful aspects to the scenario approach is that by using a finite

number of constraints, one can make an a priori probabilistic guarantee on meeting perfor-

mance requirements with specified accuracy. For the H1 synthesis problem, this approach

involves solving a semidefinite program with finite number of LMI constraints. We then see

that the algorithms used to synthesize controllers are of polynomial complexity [14].

We will now discuss how bounds are determined using the scenario approach, leading

to our ability to guarantee a priori the probability that a given solution will meet speci-

fied performance requirements with specified accuracy. For a multisample �(1,...,N) 2 BN

� ,

the events in this multisample are measured by a product probability Pr�(1,...,N) . For any

multisample �(1,...,N) for which the problem in (5.3) is feasible, a unique optimal solution is

attained, which is due to ⇥ being a convex and compact set. Then, B⇤N
� ✓ BN

� describes

those multisamples that lead to feasible solutions.

Given some multisample extraction drawn from B⇤N
� , the optimal solution is denoted as

✓̂N , which is itself a random variable. Since the set B⇤N
� corresponds to an extraction wherein

no constraints are violated, and since sampling into BN

� to form some random multiextraction

�(1,...,N) can lead to formulation of a problem where constraints are violated, we must define

the constraint violation probability as we move toward establishing sample bounds using the

scenario approach. The constraint violation probability is given by

V (✓̂N) =

8
<

:
Pr

n
g(�, ✓̂N) > ⇢

⇤
o
, if�(1,...,N) 2 B⇤N

�

1, otherwise.
(5.4)

V (✓̂N) is a random variable in the interval [0, 1], with events in V (✓̂N) measured by the

product probability Pr�(1,...,N) . In line with the nomenclature in Tempo et al. [14], the
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reliability of a scenario solution is given by R(✓̂N) = 1� V (✓̂N). Thus, we can write

R(✓̂N) = Pr
n
g(�, ✓̂N)  ⇢

⇤
o
⇥ IB⇤N

�
�(1,...,N)

, (5.5)

where IB⇤N
�

is the indicator function. We now state Theorem 12.1 from [14]:

Theorem 3. Let Assumption 1 on convexity be satisfied, and let ⇥ be a convex and compact

set. Also assume that when (5.3) is feasible, we attain a unique, optimal solution. Let

✏ 2 (0, 1) be a given probability level and let N � n✓ + 1. Then it holds that

Pr�(1,...,N)

⇢n
V (✓̂N) > ✏

o
\ B⇤N

�

�
 BN,✏(n✓) (5.6)

where BN,✏(n✓) is the binomial distribution,

BN,✏(n✓) =
n✓X

k=0

✓✓
N

k

◆◆
✏
k(1� ✏)N�k

. (5.7)

The proof behind this theorem is extensive and can be found in Calafiore [64]. Importantly,

the following corollary, which accompanies this result, gives us a straightforward means for

bounding sample complexity for a probabilistically robust convex program.

Corollary 4. Let the assumptions of Theorem 3 be met, and let positive scalars ✏, � 2 (0, 1)

be given probability levels. If N is an integer such that

N � 2

✏

✓
log

1

�
+ n✓

◆
(5.8)

then it holds that

Pr�(1,...,N)

⇢n
V (✓̂N) > ✏

o
\ B⇤N

�

�
 �. (5.9)

This result says that if the number of scenarios, N , is selected according to the bound given

in (5.8), then the unique, optimal solution — if one exists — to the scenario approach has

with probability 1� �, a level of accuracy 1� ✏.
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5.1.2 Scenario-based Synthesis as a Semidefinite Program with LMI Con-

straints

Semidefinite programs with linear matrix inequalities are convex [15]. Some nomenclature

will now be introduced and the primal and dual forms of semidefinite programs will be

presented. This discussion will aid with some of the machinery used later for:

• Achieving a decentralized control architecture by enforcing sparsity constraints in an

SDP with LMI constraints, and

• Transforming the scenario-based synthesis problem into a complex semidefinite program,

for achieving the end of synthesizing a controller with complex performance output equa-

tions that were designed in modal coordinates.

We now start with introducing linear matrix inequalities. We refer to the monograph by

Boyd [15] for a comprehensive review of LMIs and how they are used throughout system

and control theory.

If we let x 2 R
m, an LMI condition on x is the following:

F (x) > 0 (5.10)

where (5.10) indicates that the matrix function is positive definite. Moreover, F (x) actually

has the representation

F (x) = F0 +
mX

i=1

xiFi (5.11)

where Fi 2 S
n⇥n

, i = 0, . . .m are symmetric matrices. We note that if F(1)(x) and F(2)(x)

are both LMIs in x, then

F(1,2)(x) =

2

4F(1)(x) 0

0 F(2)(x)

3

5 (5.12)

is also an LMI.
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In many control synthesis and analysis problems, linear matrix inequalities are used as

the constraints in semidefinite programs. These problems are cast as

min
x

c
T
x

s.t. F (x) < 0.
(5.13)

A semidefinite program has both a primal and a dual form. Introducing these forms now

will be useful as we get into a discussion on complex semidefinite programming later on in

this chapter.

We consider a semidefinite program in primal inequality form

min
x

c
T
x

s.t. x1F1 + · · ·+ xmFm + F0  0
(5.14)

where F1, . . . , Fm, F0 2 S
n⇥n. x 2 R

m is the variable and c
T 2 R

m.

We can associate with the constraint a dual variable or multiplier Z 2 S
n⇥n so that the

Lagrangian is

L(x, Z) = c
T
x+ Tr

⇣
(x1F1 + · · ·+ xmFm + F0)Z

⌘
(5.15)

which is a�ne in x. The dual function is given by

h(Z) = inf
x

L(x, Z) =

8
><

>:

Tr(F0Z) Tr(FiZ) + ci = 0, i = 1, . . .m

�1 otherwise
(5.16)

which can be written as:

max Tr(F0Z)

s.t. Tr(FiZ) + ci = 0, i = 1, . . . ,m

Z � 0.

(5.17)

This form is important when we get into discussing complex semidefinite programming later

on in this chapter.
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What we see at this point is that semidefinite programming is performed over real-valued

decision variables and cones of symmetric matrices. See Boyd for more details on LMIs and

convex optimization [15, 65].

We return to discussing the scenario-based problem. The problem given by (5.3) can be

solved as an SDP with multiple linear matrix inequality constraints. In primal form, this

looks like

min
✓

c
T
✓

s.t. F1(✓)  0

F2(✓)  0

...

FN(✓)  0

(5.18)

which is a convex (semidefinite) program with N linear matrix inequality constraints. In

this work we set c = 0, turning this into a feasibility problem: that is, we search over the set

✓ 2 ⇥ for the existence of some ✓⇤ that satisfies all N linear matrix inequality constraints

which represent a multisample of the random plant set. Numerically, this optimization

problem is solved with the use of open-source optimization parsing software, Yalmip [66],

and the commercially-available (yet free to university researchers) conic optimization solver

MOSEK©.

Something powerful and elegant about the scenario approach is that we are able to

formulate high-dimensional stochastic optimization problems that are convex. Furthermore,

this approach permits the leveraging of any available computing resources. Many conic

solvers, such as MOSEK©, are internally parallelized.

It is well-known that the full-state feedbackH1 problem can be represented as a semidef-

inite program with linear matrix inequality constraints; this makes this specific controller

synthesis problem amenable to the scenario-based approach, as we can aggregate a finite

collection of linear matrix inequality constraints, each containing samples from the random
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plant data, into the form given by (5.18) [60]. Prior to actually doing this, we will present the

theory behind full-state feedback H1 synthesis, as some results through this presentation

will be useful later on in this chapter.

5.2 FULL-STATE FEEDBACK H1 CONTROLLER SYNTHESIS USING

LINEAR MATRIX INEQUALITIES

We will now show how the full-state feedback H1 problem is formulated as a semidefinite

program with linear matrix inequality constraints. Some of this derivation becomes quite

useful in a result that we will derive later on. The formulations provided were compiled with

the aid of [60, 67].

In the full-state feedback H1 formulation, we want to find the existence of some control

law u = Kx for the system

G ⇠

2

6664

A B1 B2

C1 D11 D12

I 0 0

3

7775
(5.19)

and controller

K̄ ⇠

2

4 0 0

0 K

3

5 (5.20)

leading to the LFT mapping w ! z

Fl(G, K̄) =

2

4 A+B2K B1

C1 +D12K D11

3

5 . (5.21)

By the Kalman-Yakubovich-Popov (KYP) Lemma (also known as the Bounded Real Lem-

ma), ||Fl(G, K̄)||1< � if and only if there exists some X > 0 such that

2

4(A+B2K)TX +X(A+B2K) XB1

B
T

1 X ��I

3

5+ �
�1

2

4(C1 +D12K)T

D
T

11

3

5
h
(C1 +D12K) D11

i
< 0.

(5.22)
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The KYP condition is given by the following equivalency.

Lemma 1 (The KYP Lemma, also known as the Bounded Real Lemma). Suppose

G ⇠

2

4 A B

C D

3

5 (5.23)

Then the following are equivalent:

1. ||G||1 �

2. There exists a X > 0 such that
2

4A
T
X +XA XB

B
T
X ��I

3

5+ �
�1

2

4C
T

D
T

3

5
h
C D

i
< 0. (5.24)

The proof to this lemma is provided in appendix D.

A fundamental concept from linear algebra is the Schur Complement of a block matrix.

The Schur Complement is used to prove the bounded real lemma, for formulating the full-

state feedback H1 synthesis problem, and used for a proof surrounding controller synthesis

for complex performance output equations in this thesis. Although the Schur Complement

is fundamental to linear algebra, we refer to [68] for the proof.

Theorem 5 (Schur Complement). For any M 2 S
n⇥n

, Q 2 S
m⇥m

, and R 2 R
n⇥m, the

following are equivalent:

1.

2

4M R

R
T

Q

3

5 < 0

2. Q < 0 and M �RQ
�1
R

T
< 0

For the case specific to the KYP Lemma, let

Q = ���1
I < 0, M =

2

4A
T
X +XA XB

B
T
X ��I

3

5 , R =
h
C D

iT
, (5.25)

thus, using the Schur complement we get

2

4A
T
X +XA XB

B
T
X ��I

3

5+ �
�1

2

4C
T

D
T

3

5
h
C D

i
< 0 (5.26)
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if and only if 2

6664

A
T
X +XA XB C

T

B
T
X ��I D

T

C D ��I

3

7775
< 0. (5.27)

We notice that we have made the LMI larger, in this case. This leads to the full-state

feedback condition for the system given by equation (5.21):

2

6664

(A+B2K)TX +X(A+B2K) XB1 (C1 +D12K)T

B
T

1 X ��I D
T

11

(C1 +D12K) D11 ��I

3

7775
< 0 (5.28)

where the above LMI is now bilinear in X and K. We want to use a variable substitution

trick to formulate an LMI that is linear in its controller variables. To do so, we must apply

the Dual KYP Lemma, which says:

Lemma 2 (KYP Dual). Suppose

G ⇠

2

4 A B

C D

3

5 , (5.29)

then the following are equivalent:

• ||G||1 �

• there exists a Q > 0, s.t.

2

6664

QA
T + AQ B QC

T

B
T ��I D

T

CQ D ��I

3

7775
< 0. (5.30)

We let X = Q
�1. Then,

2

6664

QA
T + AQ B QC

T

B
T ��I D

T

CQ D ��I

3

7775
< 0 and Q > 0 i↵ X > 0 (5.31)
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and
2

6664

Q
�1 0 0

0 I 0

0 0 I

3

7775

2

6664

QA
T + AQ B QC

T

B
T ��I D

T

CQ D ��I

3

7775

2

6664

Q
�1 0 0

0 I 0

0 0 I

3

7775
=

2

6664

A
T
Q+QA QB C

T

B
T
Q ��I D

T

C D ��I

3

7775
< 0.

(5.32)

By a Schur complement, this is equivalent to

2

4A
T
X +XA XB

B
T
X ��I

3

5+ �
�1

2

4C
T

D
T

3

5
h
C D

i
< 0 (5.33)

and by the KYP lemma this is equivalent to ||G||1 �. This result can now be applied to

the full state feedback problem.

Theorem 6. The following are equivalent:

• There exists an K such that ||Fl(G, K̄)||1 �

• There exists a Q > 0 and Y such that

2

6664

QA
T + AQ+ Y

T
B2 +B2Y B1 QC

T

1 + Y
T
D

T

12

B
T

1 ��I D
T

11

C1Q+D12Y D11 ��I

3

7775
< 0. (5.34)

Then K = Y Q
�1.

Proof. See appendix E.

These derivations and results were provided to achieve the following ends:

1. Provide some background into LMIs and SDP, as this background is built into complex

semidefinite programming (CSDP).

2. Show that the full-state feedback H1 synthesis problem, cast as an SDP with LMI

constraints, is convex and thus amenable to the scenario approach.

3. Introduce the Schur Complement and show how it is used with full-state feedback H1

LMIs, as it is used later to prove a result related to guaranteeing real-valued controllers

for complex performance output equations using the scenario approach.
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5.3 A USEFUL ISOMORPHISM BETWEEN C AND R

One of the contributions of this thesis is the following: a controller design and synthesis ap-

proach that permits frequency-weighting of system models with complex-valued performance

output functions, and the synthesis of a structure-constrained high-dimensional semidefinite

program for achieving decentralized full-state feedbackH1 control in the presence of random

interconnections.

Before getting into complex semidefinite programming, an isomorphism between C and

R must be detailed, as this isomorphism is useful for CSDP, as well as for a theorem and

proof that is developed later in this chapter.

Complex-coe�cient systems in control is a topic that is receiving attention within the

controls community as of late [69]. Using the approaches developed in this chapter, in

conjunction with the scenario approach to probabilistic robust control, could lead to some

exciting developments for those investigating controller design, synthesis, and analysis for

complex-coe�cient systems.

We begin by observing that one way to construct the field of complex numbers is the

following:

C =

8
<

:

2

4a �b

b a

3

5

������
a, b 2 R

9
=

; =

8
<

:a

2

41 0

0 1

3

5+ b

2

40 �1

1 0

3

5

������
a, b 2 R

9
=

; . (5.35)

Formally, this is called a commutative subring of M2(R). This construction identifies the

number 1 with I, which is the identity of size 2, a real number a with the diagonal matrix

aI, and the imaginary number i with the matrix J =

2

40 �1

1 0

3

5, which is justified by the fact

that J2 = �I.

The matrix representation of a complex number, using this construction, is an isomor-

phism. Standard properties for matrix operations hold: associativity, commutativity, dis-

tributivity. This is very powerful and enables us to manipulate complex numbers using linear
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algebra over the field of real numbers. What this means, then, is that

aI + bJ =

2

4a �b

b a

3

5 (5.36)

behaves exactly like a + jb under addition, subtraction, multiplication, complex conjuga-

tion/transposition. This means that an isomorphic map exists from C to the set of skew-

symmetric matrices aI + bJ . This isomorphism is what makes complex semidefinite pro-

gramming possible.

This transformation will now be applied to a complex matrix. We can take a complex

matrix that we will call Z, given by

Z =

2

4z11 z12

z21 z22

3

5 (5.37)

we can map this complex matrix Z 2 C
2⇥2 into a real matrix 2 R

4⇥4 by replacing each zi,j

with 2 by 2 matrices that look like the matrix given in (5.35). Let us further examine this

by substituting zi,j = ai,j + ibi,j. So, we have

Z =

2

4a11 + ib11 a12 + ib12

a21 + ib21 a22 + ib22

3

5 (5.38)

where we perform the transformation outlined in this section to get a block 2 ⇥ 2 matrix

Z̃ =

2

6666664

a11 �b11 a12 �b12

b11 a11 b12 a12

a21 �b21 a22 �b22

b21 a21 b22 a22

3

7777775
. (5.39)

This matrix can then be mapped through a similarity transform into

T (Z)
.
= T

�1
Z̃T =

2

4Re(Z) �Im(Z)

Im(Z) Re(Z)

3

5 . (5.40)

This transformation is important, at this stage, for showing that a complex semidefinite

program (CSDP) is equivalent to a semidefinite program (SDP). We shall denote T (Z) as the
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transformation that is used in converting a complex matrix into a real one of the form given

in (5.40), with dim(T (Z)) = 2dim(Z). We can then carry out block matrix multiplication

between the real and imaginary blocks given by (5.40). There are a few properties, preserved

through this transformation, that are important in the context of this work.

Theorem 7 (Eigenvalue and Eigenvector Preservation under T (·)). The eigenvalues of a

complex matrix Z are preserved through the isomorphism T (Z).

Proof. For a complex matrix Z 2 C
n⇥n, let

Z = X + jY, X, Y 2 R
n⇥n

. (5.41)

We have that T (Z) is the isomorphic transformation given by (5.40), meaning this is a real

matrix T (Z) 2 R
2n⇥2n:

T (Z) =

2

4X �Y

Y X

3

5 . (5.42)

Lemma 3. If Z is Hermitian, Z = Z
H , then X is symmetric, X = X

T and Y is skew-

symmetric, Y = �Y
T .

Proof.

X + jY = (X + jY )H = X
T � jY

T (5.43)

equating real and imaginary parts, X = X
T and Y = �Y

T .

Lemma 4. If Z is Hermitian Z = Z
H , then

T (Z) =

2

4X �Y

Y X

3

5 is symmetric. (5.44)

Proof.

T (Z)T =

2

4X �Y

Y X

3

5
T

=

2

4 X
T

Y
T

�Y
T

X
T

3

5 =

2

4X �Y

Y X

3

5 = T (Z)T . (5.45)

We point out that Z and T (Z) have real eigenvalues since they are hermitian.

Lemma 5. The hermitian matrix Z has an eigenvalue � with eigenvector u+ jv if and only

if T (Z) has eigenvalue of multiplicity two with real eigenvectors �̂1 =

2

4u

v

3

5 and �̂2 =

2

4 v

�u

3

5 .
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Proof.

Z� = �� (5.46)

(X + jY )(u+ jv) = �(u+ jv) (5.47)

(Xu� Y v) = j(Y u+Xv) = �u+ j�v (5.48)

real Xu� Y v = �u (5.49)

imag Y u+Xv = �v (5.50)
2

4X �Y

Y X

3

5

2

4u

v

3

5 = �

2

4u

v

3

5 (5.51)

T (Z)�̂1 = ��̂1. (5.52)

Now, proving the equality in the other direction is straightforward. Showing that this result

holds for the eigenvector

2

4 v

�u

3

5 is also straightforward. We have therefore shown that if

� is an eigenvalue with eigenvector u + jv of the complex, hermitian matrix A, then it is

an eigenvalue of multiplicity two with eigenvectors

2

4u

v

3

5 and

2

4 v

�u

3

5 of the matrix T (A).

Q.E.D.

This leads us to the following corollary:

Corollary 8. Positive and negative (semi)definiteness are preserved under the transforma-

tion given by T (·), which follows immediately from theorem 7:

A > 0 , �(A) > 0 , �(T (A)) > 0 , T (A) > 0. (5.53)

We will now use these results to discuss complex semidefinite programming.
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5.4 COMPLEX SEMIDEFINITE PROGRAMMING

Goemans and Williamson [70] showed that complex semidefinite programs can be reduced to

semidefinite programs, which is achievable by using linear transformations that map H
n⇥n

matrices to S
2n⇥2n matrices. These transformations were the topic of section 5.3.

In a complex semidefinite program, the linear matrix inequalities are given by

F̃ (x̃) = F̃0 +
nX

i=1

x̃iF̃i, (5.54)

where x̃ 2 C
m and F̃0, F̃i 2 H

n⇥n. This means that the program that we are trying to solve,

in the dual form, looks like

max Tr(F̃0Z)

s.t. Tr(F̃iZ) + ci = 0, i = 1, . . . ,m

Z � 0

Z 2 H
n⇥n

.

(5.55)

It may be obvious from the discussion in section 5.3 what we will be doing to convert

this problem into an equivalent real-valued semidefinite program. This will now be dis-

cussed.

5.4.1 Formulating the Equivalent Real-Valued Semidefinite Program

Given two complex, Hermitian matrices A, and B, the inner product of these matrices is

given by

A •B = Tr(ABH). (5.56)
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By mapping both A and B through the transformation given by (5.40), the inner product

is

T (A) • T (B) = Tr

0

@

2

4ReA �ImA

ImA ReA

3

5

2

4 ReB ImB

�ImB ReB

3

5

1

A (5.57)

= 2Tr(ReBReA+ ImBImA) = 2A •B. (5.58)

This is important to note, as we can now examine the canonical, dual form of a semidefinite

program for the complex case. And we now consider the following SDP

max Tr(T (F̃0)Y ) (5.59)

s.t. Tr(T (F̃i)Y ) + 2ci = 0, i = 1, . . . ,m (5.60)

Tr

0

@

2

4Eij 0

0 �Eij

3

5Y

1

A = 0, i, j = 1, . . . , n, i  j (5.61)

Tr

0

@

2

4 0 Eij

Eij 0

3

5Y

1

A = 0, i, j = 1, . . . , n, i  j (5.62)

Y � 0 (5.63)

Y 2 S
2n⇥2n (5.64)

where ei is the ith unit vector, and Eij = eie
T

j
+ eje

T

i
— this matrix has unity in positions

(i, j) and (j, i) and zeros everywhere else. The two constraints (5.61) and (5.62) ensure that

our decision matrix Y has the form

Y =

2

4L �M

M L

3

5 (5.65)

for some symmetric L and skew-symmetric M . We see that for Y of this form that T �1(Y ) =

Z is unique and well-defined.

The SDP is equivalent to the CSDP. Given some feasible solution Z to the CSDP, T (Z)

is also a feasible solution for the SDP with objective function that is twice that of the CSDP.

If Y is a feasible solution to the SDP, then T �1(Z) is also a feasible solution to the CSDP

with objective function equal to one half of that of the SDP [70].
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Lastly, using theorem 7 and corollary 8, we have that Y > 0 ) Z > 0, and that these

matrices have the same eigenvalues.

We are now prepared to discuss how the scenario approach to probabilistic robust con-

troller synthesis is used to find a decentralized controller for a lightly-damped SMD model

with complex performance output function, where control design was performed in a complex

modal basis.

5.5 SCENARIO-BASED, DECENTRALIZED, PROBABILISTIC ROBUST

SYNTHESIS FOR A SYSTEM REPRESENTED IN COMPLEX

MODAL COORDINATES

In this section we consider control design and synthesis of a lightly-damped, uncertain struc-

ture for the case of non-proportional damping where controller design and synthesis is per-

formed in a modal basis. This section brings together the topics that were discussed in the

preceding sections of this chapter:

• The scenario approach;

• Representation of the H1 synthesis SDP as a CSDP since control design is performed

in complex modal coordinates.

Analyzing lightly damped systems, including controller design, in the modal basis is both

attractive and intuitive to the vibration control engineer. Implicit to this basis is the fact

that we have decoupled modes, enabling us to analyze specific modes and frequencies during

controller design and synthesis.

The system model, controller design approach, and control objectives for this section

were discussed in chapter 4. The specifics about the system model are included in ap-

pendix A.
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State space control design and synthesis approaches are typically approached in R. That

is, we usually look at the system

G ⇠

2

6664

A B1 B2

C1 D11 D12

I 0 0

3

7775
(5.66)

with the sizes of this matrices defined in chapter 3. One thing that we know is that for any

A 2 R
n⇥n that we can solve

A� = �⇤ (5.67)

which is the generalized eigenvalue problem for any square matrix, A. Then,

��1
A� = ⇤ = diag(�1, . . . ,�n) (5.68)

is a diagonal matrix containing the eigenvalues of our original matrix A, provided A has

eigenvalues that are distinct and nonzero. It almost goes without saying that � is our

matrix of eigenvectors.

It is common practice for the vibration control engineer to examine, model, and synthe-

size controllers in the modal space. That is, our modal coordinates are given by q = ��1
x,

meaning the similarity transformation x = �q, leads our system to be described as

G̃ ⇠

2

6664

��1
A� ��1

B1 ��1
B2

C1� D11 D12

� 0 0

3

7775
=

2

6664

⇤ ��1
B1 ��1

B2

C1� D11 D12

� 0 0

3

7775
. (5.69)

Now we can see why this would be an attractive basis. All of our states are decoupled in

the dynamics matrix. Control design and system analysis in modal coordinates can be both

powerful and very intuitive in this basis, and is fundamental in the study of lightly damped

structures [61].

Placing the system into the coordinate system described by (5.69) does not exactly

inhibit the interpretability of the physics. Although most transformations involve assuming

proportional damping (leading to the use of bases with real-valued eigenvectors), we still have

that each eigenvalue, or natural frequency, is associated with a given eigenvector, thereby
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assigning a magnitude (natural frequency) to the rotation (mode shape) of our similarity

transformation as we get our system into its new, modal form. In this form we have

⇤ =

2

6666666666664

��1 + j!1 0 0 0 0 0

0 ��1 � j!1 0 0 0 0

0 0
. . . 0 0 0

0 0 0
. . . 0 0

0 0 0 0 ��n + j!n 0

0 0 0 0 0 ��n � j!n

3

7777777777775

(5.70)

where, clearly, our complex conjugate pairs are associated with the natural frequencies by

!n,i = |�i ± j!i|, with each natural frequency corresponding with their respective mode

shapes. In this state space, we can target specific modes/frequencies all-the-same.

To do so, we define our z-equations while in modal coordinates:

z = C̃1q +D11w +D12u

z =

2

4 In⇥n

0r2⇥n

3

5 q +
h
0(n+r2)⇥r1

i
w + rz

2

40n⇥r2

Ir2⇥r2

3

5 u.

(5.71)

By defining the performance output function while in modal coordinates, the mapping is now

an explicit expression that maps disturbance inputs to the system modes. Even though the

system matrices specific to this realization are complex, it is perfectly acceptable to examine

the magnitude and phase of this transfer function matrix, as any transfer function matrix is

a complex function, anyway. With this being said, it is worthwhile to highlight the property

of transfer function invariance under non-singular similarity transformations. Because of the

basis in which C̃1 is defined, our physical state space will still have complex matrices.

In order to map back into our physical coordinate system, we know that we use the

similarity transform q = ��1
x. This will bring our system into the form

Ĝ ⇠

2

6664

A B1 B2

C̃1��1
D11 D12

I 0 0

3

7775
(5.72)
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where we see, right away, that the term C̃1��1 2 C
(n+r2)⇥n. Now, if we suppose that we

synthesize a control law u = Ky = Kx 2 R
r2⇥n such that

���
���Fl(Ĝ,K)

���
���
1

 �, where

Fl(Ĝ,K) ⇠

2

4 A+B2K B1

C̃1��1 +D12K D11

3

5 (5.73)

then the same H1-norm is achieved when the controlled system is also in (complex) modal

coordinates.

Now, under the non-singular similarity transformation x = �q, we have

G̃ ⇠

2

6664

��1
A� ��1

B1 ��1
B2

C̃1 D11 D12

� 0 0

3

7775
(5.74)

and that the control law u = K�q. Since any system is invariant under any nonsingu-

lar similarity transform, we have that Ĝ = G̃, leading to the conclusion that Fl(G̃,K) =

Fl(Ĝ,K).

5.5.1 Enforcing Sparsity Constraints on our Controller Variables

The essence of this idea is straightforward. This is achieved by choosing a block-diagonal

basis for the controller variables in the semidefinite program. This was briefly described in

equation (4.39) in chapter 4. Parsing this structure for the decentralized full state feedback

H1 scenario-based synthesis is achieved using the software YALMIP [66]. We will show how

this structure-enforced optimization is carried out for a simple problem.

This is most easily seen for the Lyapunov Inequality for a 2 x 2 stable system matrix, A.

Given some A 2 R
2⇥2

, Re
⇣
�(A) < 0

⌘
, we know that the Lyapunov Inequality states that A

is stable if some P > 0 exists that satisfies

A
T
P + PA < 0. (5.75)
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This equation is easily posed as the semidefinite feasibility problem

min
x

0

s.t. A
T
P + PA < 0, P > 0.

(5.76)

To cast this problem into it’s canonical form with sparsity constraints enforced on a candidate

diagonal P > 0 we write the matrix inequality as

2X

i=1

xi

2

4Pi 0

0 �A
T
Pi � PiA

3

5 > 0 (5.77)

where

P1 =

2

41 0

0 0

3

5 , P2 =

2

40 0

0 1

3

5 . (5.78)

And so it is as simple as choosing a diagonal, or block diagonal basis for our controller

variables in a semidefinite program. The one drawback to enforcing sparsity constraints is

that we restrict our feasible search space from 1
2n(n+1) to 1

2n(
n

2 +1) variables to search over

(for problems where we deal with only one symmetric matrix). This can lead to a higher

chance of infeasibility in SDPs since we are constricting our search space. For the scenario

approach, however, we are reducing the number of unique controller variables, thus requiring

fewer samples to achieve some specified level of accuracy and confidence in a solution.

5.5.2 Frequency Weighting the Disturbance Input (B1) and Performance Out-

put (C̃1) Matrices

Frequency weighting of lightly-damped structures for control design was covered in sec-

tion 4.5.2. It is implemented on the disturbance input (B1) and performance output (C̃1)

matrices for controller design in this chapter.

In this aspect of the research we have elected to focus on the attenuation of low-frequency

disturbance inputs. A first-order disturbance input filter transfer function matrix that looks

like

Ww(s) = diag

✓
!wc

(s+ !wc)1
, . . . ,

!wc

(s+ !wc) r1

◆
(5.79)
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is constructed with !wc = 1.6Hz (10 rad/s) chosen as the cuto↵ frequency in this filter. A

first order filter was chosen to promote rollo↵ at high frequencies, thus placing the greatest

emphasis on those low-frequency disturbances that enter the system, and hence, placing

the greatest amount of emphasis on controller synthesis in the low frequency range. To

implement this filtering strategy using the scaling methods detailed in chapter 4, which are

particular to lightly-damped systems, the disturbance input matrix rows are scaled by the

magnitude of the filter function at each resonant frequency in modal coordinates. This means

that the frequency scaled disturbance input matrix is

B̃
⇤
1 = �Ww�

�1
B1 (5.80)

where Ww was defined in equation (4.36) in chapter 4. Note that the term �Ww��1
B1 is

guaranteed to be real sinceWw is only row scaling the matrix ��1
B1, which is the disturbance

input matrix in modal coordinates. Thus, by left multiplying by � after this scaling, we still

map back into R since B1 2 R
r2⇥n.

Each pair of elements in (4.36) represents the magnitude of the input filters at each

system resonance. Since all transfer functions in (5.79) are equal, we end up with the

diagonal structure Ww, as indicated, which gives rise to the row scaling in (5.80).

In similar order, we presume that we are most interested in the attenuation of low-

frequency structural modes. As a slight variant to our disturbance input filtering, we will

augment our performance output function with a first-order transfer function with unity

DC-gain. In this manner, we get -20 dB/decade rollo↵ at frequencies beyond our cuto↵

frequency. This means that our performance output, for controller synthesis, will be filtered

through some transfer function matrix that looks like

Wz(s) = diag

✓
!zc

(s+ !zc)1
, . . . ,

!zc

(s+ !zc)n

◆
, (5.81)

with !zc = 2.7Hz (17 rad/s). A diagonal matrix results from evaluating Wz(s) at each

resonant frequency, as shown in equation (4.37) in chapter 4.
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We saw from previous that when in our modal coordinate system, we defined

C̃1 =

2

4 In⇥n

0r2⇥n

3

5 (5.82)

where the zeros, with rows equal to the number of control inputs, are appended since we

have included nonzero D12 terms for control design and synthesis, as we want to avoid

actuator singularities at high frequencies and also want the ability to trade o↵ control input

energy.

Performance output matrix scaling in modal coordinates serves as a good approximation

of this filtering that we’ve just discussed, without increasing the order of the plant. Our

frequency-weighted performance output matrix in modal coordinates will now look like:

C̃
⇤
1 =

2

4 Wz

0r2⇥n

3

5 , Wz =

2

6666666664

↵
C

1 0 . . . 0 0

0 ↵
C

1 . . . 0 0

0 0
. . . 0 0

0 0 . . . ↵
C

p
0

0 0 0 0 ↵
C

p

3

7777777775

, p = n/2 (5.83)

where each ↵C

i
is the magnitude of the filter functions at each resonant frequency.

These scalings, with performance output functions defined and scaled in modal coordi-

nates, leads our system to have the representation (in physical coordinates):

Ḡ ⇠

2

6664

A B̃
⇤
1 B2

C̃
⇤
1�

�1
D11 D12

I 0 0

3

7775
. (5.84)

The system given by (5.84) is the nominal open-loop system that we are using for synthesis.

However, as the title of this chapter (and thesis) imply, we are interested in synthesizing a

controller that is robust against random interconnection uncertainty. In chapter 4 we de-

clared that the interconnection sti↵ness, k� ⇠ N (100, 152). By removing the interconnection

sti↵ness terms from the dynamics matrix A and denoting this system, with interconnection

sti↵ness terms removed A0, we can represent our uncertain system as having real, random,
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a�ne parametric uncertainty entering the system. That is,

A� = A0 +� (5.85)

where � has the support

B�(a)
.
= {� 2 R

n⇥n : � ⇠ f�(a)} (5.86)

with a = 1 and f�(a) = N (100, a152) for synthesis.

The matrix �, as shown in appendix A, has the structure:

� =

2

6666664

0 0 0 0

0 k� �k� 0

0 �k� k� 0

0 0 0 0

3

7777775
(5.87)

k� ⇠ f�(a) = N (100, a152). (5.88)

Now, this means is that the H1 synthesis problem, as a CSDP, becomes

min
Q,Y

0 (5.89)

s.t.

2

6664

QA
H

� + A�Q+ Y
H
B

H

2 B̃
⇤
1 Q(C̃⇤

1�
�1)H + Y

H
D

H

12

B̃
⇤H
1 ��I D

H

11

C̃
⇤
1�

�1
Q+D12Y D11 ��I

3

7775
< 0 (5.90)

Q =

2

4Q1 0

0 Q2

3

5 > 0 (5.91)

Y =

2

4Y1 0

0 Y2

3

5 free (5.92)

Q 2 H
n⇥n

, Y 2 C
r2⇥n (5.93)

which is our scenario-based feasibility problem, solved for some level �. Recall in chapter 4

that � = �10 dB = 0.3162. We notice a few more things:

• Hermitian transposes are used since C̃
⇤
1�

�1 is complex.
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• Our decision variables are over the field of complex numbers.

• We have enforced sparsity/decentralization constraints on the decision variables.

• This LMI now has a random matrix, A�, and hence, the system’s eigenvectors � also

have random uncertainty.

We are now prepared to discuss the sample bounds used in the scenario approach.

5.5.3 Sample Bounds for this Problem

The scenario based approach to control synthesis enables us to establish a priori sample

size bounds guaranteeing that, if a solution exists, it will meet stability and performance

requirements with prescribed probability and confidence in this probability estimate [14].

We recall from equation (5.8), that these bounds are given by

N � 2

✏

✓
log

1

�
+ n✓

◆
(5.94)

where this bound states that if the number of scenarios is selected in this manner, then then

optimal solution has, with probability 1 � �, a guaranteed level of accuracy 1 � ✏. We also

note that the number of decision variables is included in this bound, which is given by n✓.

For the full-state feedback H1 problem, we know that this is tied to two things:

1. Dimension of our plant dynamics matrix

2. Number of control inputs

In full-state feedback H1 control where synthesis is achieved via semidefinite programming,

we have two matrix variables in our optimization problem: some Q > 0 ) Q = Q
T and

some Y 2 R
r2⇥n. This implies that we have

n✓ =
1

2
n(n+ 2r2 + 1) (5.95)

optimization variables. However, we have restricted our decision variables to have a block-

diagonal structure, such that Q1, Q2 2 H
4⇥4 and Y1, Y2 2 C

1⇥4. This implies that n✓ = 28.

We choose ✏ = 0.03, � = 0.005, requiring N � 2, 220.
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5.5.4 Pseudocode for this Optimization Problem

The pseudocode for decentralized, scenario-based synthesis with disturbance input/perfor-

mance output weighting in modal coordinates is provided in algorithm 2. Now, if a solution

has been found, can it be guaranteed that it is real? For the design that we have conceived

in this chapter, K = Y Q
�1 2 R

r2⇥n. We discuss, and prove this, in the next section.

5.6 GUARANTEEING THAT THE CONTROLLER WILL BE STRICTLY

REAL

We see that our physical system is real. Intuitively, one would probably think that the

controller, K, must be strictly real. But how can this be guaranteed? Indeed, we can find

some K 2 C
r2⇥n such that A + B2K is stable, and that

���
���Fl(Ḡ,K)

���
���
1

 �. Since we must

solve a complex semidefinite program that searches over the real and complex parts of the

candidate controller solutions, can we guarantee that the controller that we find for this case

will be real — and therefore implementable?

For our problem, we have that A 2 R
n⇥n and B2 2 R

n⇥r. This is an important fact. We

will use part of the KYP Dual Lemma, presented previously, in a moment.

Theorem 9. For a system with the realization

G ⇠

2

6664

A B1 B2

C1 D11 D12

I 0 0

3

7775
(5.97)

with A,B1, B2 real, C1 complex, and all of appropriate dimension, a full-state feedback H1

controller synthesized via Complex Semidefinite Programming (CSDP) will yield a real-valued

full-state feedback control law, u = Kx, that stabilizes the system and maintains the system’s

H1-norm below some prescribed, real, scalar level �.
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Algorithm 2 Formulation and Solution of the Scenario Synthesis Problem
1: procedure Complex Decentralized Scenario-Based Synthesis

2: Establish sample bounds, N , using (5.8).

3: Set some performance level �, for which it is desired that
���
���Fl(Ḡ,K)

���
���
1

 �.

4: Establish a convex, compact hypercube for decision variables, such that Q, Y 2 ⇥ ✓

C
n✓ .

5: for i = 1 : N do

6: Generate a k� from N (100, 152) and form the random interconnection matrix �.

7: Form A� = A0 +�.

8: Solve A�� = �⇤.

9: Form C̃
⇤
1 and B̃

⇤
1 as in (5.83) and (5.80), since the system’s resonant frequencies

will change due to the randomness in the dynamics matrix.

10: Form the complex matrix:

Fi(✓)
.
=

2

6664

QA
H

� + A�Q+ Y
H
B

H

2 B̃
⇤
1 Q(C̃⇤

1�
�1)H + Y

H
D

H

12

B̃
⇤H
1 ��I D

H

11

C̃
⇤
1�

�1
Q+D12Y D11 ��I

3

7775
(5.96)

with sparsity constraints enforced on the decision variables Q, Y .

11: Map each matrix within this matrix inequality through the isomorphism T (·)

discussed in section 5.3, equation (5.40), thus converting this matrix inequality into a

real-valued matrix inequality.

12: Append this real-valued matrix inequality as a constraint in the SDP that is to

be solved. Note: Using parsing software such as YALMIP is highly recommended, as

this software is also capable of handling complex constraints and interfaces with many

di↵erent solvers [66].

13: end for
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14: Solve the SDP:

min
✓

0

s.t. F1(✓) < 0

F2(✓) < 0

...

FN(✓) < 0

Q =

2

4Q1 0

0 Q2

3

5 > 0

Y =

2

4Y1 0

0 Y2

3

5

Q 2 H
n⇥n

, Y 2 C
r2⇥n

15: If a solution exists, then the controller is given by K = Y Q
�1, and it meets perfor-

mance requirements with probability at least 1� ✏ and confidence 1� � in this estimate.

16: end procedure
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Proof. Suppose that solutions Q > 0, Q 2 H
n⇥n and Y 2 C

r2⇥n are found and satisfy the

following complex-valued matrix inequality:

2

6664

QA
H + AQ+ Y

H
B

H

2 +B2Y B1 QC
H

1 + Y
H
D

H

12

B
H

1 ��I D
H

11

C1Q+D12Y D11 ��I

3

7775
< 0. (5.98)

We start by introducing a definition:

Definition 3 (Schur Complement of a Block Matrix). Given a block matrix M 2 C
(p+q)⇥(p+q)

comprised of the blocks A 2 C
p⇥p

, B 2 C
p⇥q

, C 2 C
q⇥p

, andD 2 C
q⇥p

M
.
=

2

4A B

C D

3

5 , (5.99)

the Schur complement of M with respect to D, abbreviated as M/D, is given by:

M/D
.
= A� BD

�1
C. (5.100)

Following definition 3, we also have, which is proven in [68],

Definition 4 (Schur Complement of a Matrix X = X
H
< 0). Given a matrix

X
.
=

2

4 A B

B
H

C

3

5 , (5.101)

The Schur Complement of X with respect to C is given by

X/C
.
= A� BC

�1
B

H (5.102)

and

X < 0 , A < 0, A� BC
�1
B

H
< 0 (5.103)

We take the Schur complement of the LMI given by (5.98) to get

2

4QA
H + AQ+ Y

H
B

H

2 +B2Y B1

B
H

1 ��I

3

5+ �
�1

2

4QC
H

1 + Y
H
D

H

12

D
H

11

3

5
h
C1Q+D12Y D11

i
< 0

(5.104)
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which, when multiplying out the RHS, is

2

4QA
H + AQ+ Y

H
B

H

2 +B2Y B1

B
H

1 ��I

3

5

+ �
�1

2

4QC
H

1 C1Q+QC
H

1 D12Y + Y
H
D

H

12C1Q+ Y
H
D

H

12D12Y QC
H

1 D11 + Y D
H

12D11

D
H

11C1Q+D
H

11D12Y D
H

11D11

3

5 < 0

(5.105)

where, since we assume that we have found solutions Q and Y to this problem, and using

definition 4 that we have that
2

4QA
H + AQ+ Y

H
B

H

2 +B2Y B1

B
H

1 ��I

3

5 < 0. (5.106)

We find that the Schur complement of (5.106) is

QA
H + AQ+ Y

H
B

H

2 +B2Y + �
�1
B1B

H

1 < 0 (5.107)

which, we know is true for the Q, Y, found and � for this problem. We recall that A,B1, B2, �

are all real for this problem. This implies that Q and Y are both real. We will now show

why.

Multiplication of complex numbers/matrices in this transformed space preserves the

nature of the multiplication, which was shown in section 5.3. We return our attention to

(5.107) where we map each real complex matrix through the transformation T (·).

This means that the matrices Q and A will have representations

T (Q) =

2

4Re(Q) �Im(Q)

Im(Q) Re(Q)

3

5 , T (A) =

2

4Re(A) 0

0 Re(A)

3

5 . (5.108)

We shall declare the transformed version of (5.107) where each matrix is mapped through

T (·) as

Q̃
T
Ã

T + ÃQ̃+ Ỹ
T
B̃

T

2 + B̃2Ỹ + �
�1
B̃1B̃

T

1 < 0. (5.109)

Hence, the tilde notation implies Q̃ = T (Q). Noting that negative definiteness is preserved

under this transformation, as shown earlier. This arises from the fact that the eigenvalues
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are invariant. We will now expand these matrices out and will perform the block matrix

multiplications as we move forward in this proof.

What we get when we expand (5.109) is the following:

(5.110)

2

4 Re(Q) Im(Q)

�Im(Q) Re(Q)

3

5

2

4Re(A)
T 0

0 Re(A)T

3

5

+

2

4Re(A) 0

0 Re(A)

3

5

2

4Re(Q) �Im(Q)

Im(Q) Re(Q)

3

5

+

2

4 Re(Y )T Im(Y )T

�Im(Y )T Re(Y )T

3

5

2

4Re(B2)T 0

0 Re(B2)T

3

5

+

2

4Re(B2) 0

0 Re(B2)

3

5

2

4Re(Y ) �Im(Y )

Im(Y ) Re(Y )

3

5

+ �
�1

2

4Re(B1)Re(B1)T 0

0 Re(B1)Re(B1)T

3

5 < 0

which is equal to

(5.111)

2

4 Re(Q)Re(A)T Im(Q)Re(A)T

�Im(Q)Re(A)T Re(Q)Re(A)T

3

5+

2

4Re(A)Re(Q) �Re(A)Im(Q)

Re(A)Im(Q) Re(A)Re(Q)

3

5

+

2

4 Re(Y )TRe(B2)T Im(Y )TRe(B2)T

�Im(Y )TRe(B2)T Re(Y )TRe(B2)T

3

5

+

2

4Re(B2)Re(Y ) �Re(B2)Im(Y )

Re(B2)Im(Y ) Re(B2)Re(Y )

3

5

+ �
�1

2

4Re(B1)Re(B1)T 0

0 Re(B1)Re(B1)T

3

5 < 0

which is equal to

F =

2

4F11 F12

F21 F22

3

5 < 0 (5.112)
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with

F11 = Re(Q)Re(A)T +Re(A)Re(Q) +Re(Y )TRe(B2)
T +Re(B2)Re(Y ) + �

�1Re(B1)Re(B1)
T

(5.113)

(5.114)F12 = Im(Q)Re(A)T � Re(A)Im(Q) + Im(Y )TRe(B2)
T � Re(B2)Im(Y )

(5.115)F21 = �Im(Q)Re(A)T + Re(A)Im(Q)� Im(Y )TRe(B2)
T + Re(B2)Im(Y )

F22 = Re(Q)Re(A)T +Re(A)Re(Q)+Re(Y )TRe(B2)
T +Re(B2)Re(Y )+��1Re(B1)Re(B1)

T
.

(5.116)

We know that for any square matrix that

Tr(F ) =
nX

i

�i(F ), F 2 H
n⇥n

. (5.117)

We see that for this problem, both F11 and F22, which are the block diagonal components

of this transformed, real-valued complex linear matrix inequality, are only comprised of the

real parts of Q and Y . The imaginary parts of Q and Y do not have an impact on our

ability to satisfy the constraints in this SDP. Because of this, we can also say that negative

definiteness of (5.106) is not determined by these imaginary parts, which also implies the

same for (5.105). During this optimization, then, the variables entering the linear matrix

inequalities that correspond to the imaginary parts of Q and Y do not a↵ect our ability

to satisfy these constraints, and therefore do not lead to the generation of a solution that

renders (5.105) satisfied. When solving the CSDP under discussion, since the complex parts

of the solution variables Q and Y have no e↵ect on our ability to satisfy the LMI constraints

in our problem, when associating this problem with its dual form, non-zero complex parts

of Q and Y will lead to no change in the objective function value. What we find, then, is

that these variables remain at zero, leading to purely-real Q and Y .

Since negative definiteness of F implies that negative definiteness of (5.107) is not af-

fected by any of the imaginary parts of Q or Y , we can conclude that negative definiteness

of (5.98), despite the fact that we have a complex C1. If this were not the case, we could
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arbitrarily choose the imaginary components of Q and Y such that we rendered (5.107) pos-

itive definite, thereby violating the solution that we achieved by solving (5.98), as stated in

the beginning of this theorem.

We also know that the closed loop system is embedded in (5.107) by the dual KYP

Lemma. That is,

QA
T + AQ+ Y

T
B

T

2 +B2Y + �
�1
B1B

T

1 < 0 (5.118)

is equivalent to

Q(A+B2K)T + (A+B2K)Q+ �
�1
B1B

T

1 < 0 (5.119)

by simply performing the substitution Y = KQ. From our theory behind full-state feed-

back H1 controller synthesis using linear matrix inequalities via solving a semidefinite pro-

gram, we see that the controller, K, is recovered from K = Y Q
�1. Since we can take

Im(Q), Im(Y ) = 0 without any loss in generality, this complex semidefinite program does

not need to admit a controller solution that has complex parts.

This would not be the case if any of A,B1, B2 has complex parts. By performing the first

multiplication shown in (5.109) for the case where the matrix A is complex, we see

(5.120)

2

4 Re(Q) Im(Q)

�Im(Q) Re(Q)

3

5

2

4 Re(A)T Im(A)T

�Im(A)T Re(A)T

3

5

=

2

4 Re(Q)Re(A)T + Im(Q)Im(A)T Re(Q)Im(A)T + Im(Q)Re(A)T

�Im(Q)Re(A)T � Re(Q)Im(A)T Im(Q)Im(A)T + Re(Q)Re(A)T

3

5

where we see, immediately, that the trace of this matrix is now dependent upon the imaginary

components of Q, thereby suggesting that the imaginary components of Q, Y in this complex

semidefinite program will now a↵ect the negative definiteness of the solution, leading to the

admission of a complex-valued controller. This may seem obvious, since our state matrix is

now complex. Nevertheless, this had to be shown, since we endeavored to prove that even

with a complex-valued performance output function that is mapped through C1 2 C (of

appropriate dimension) we end up with a real-valued controller. Q.E.D.
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5.7 RESULTS

5.7.1 Open Loop and Closed-Loop System Performance

A probabilistic robust, decentralized full state feedback H1 controller was found such that

P̂r

✓���
���Fl(Ḡ�, Kopt)

���
���
1

 �10dB

◆
� 0.97. (5.121)

where

Fl(Ḡ�, Kopt) ⇠

2

4 A� +B2Kopt B̃
⇤
1

C̃
⇤
1�

�1 +D12Kopt D11

3

5 . (5.122)

Indeed, we did better than these a priori bounds for controller that was synthesized, as will

be shown from the a posteriori robustness analysis that is performed in this chapter. The

synthesized controller is

Kopt =

2

4669.7 �7763.5 �197.4 �216.4 0 0 0 0

0 0 0 0 13635 �24713.9 �2475.1 �952.7

3

5 .

(5.123)

Since the controller was synthesized for a weighted version of the plant, we present the

random, weighted open and closed-loop maximum singular value plots in figure 16. It is

only appropriate to perform this analysis for this weighted version of the plant, which was

pursued in an e↵ort to shape the synthesis process with a focus on low frequency disturbance

attenuation, with similar focus on the low frequency modes of the system. Like other loop

shaping approaches in multivariable control, it is also appropriate that we examine the closed-

loop response of the unfiltered system. Of course, probabilistic robustness of the unweighted

system is possible, and can certainly be done with respect to stability. Performance, on the

other hand, would not be a fair comparison. It is noted that the eigenvalues of the weighted

and unweighted closed-loop, random systems are equivalent. This is evidenced by observing
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Figure 16: Frequency-weighted open and closed-loop lightly damped system with random

interconnection uncertainty.
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Figure 17: Random, unweighted maximum singular value plot of the Fl(Ĝ�, Kopt) mapping.

the following:

Fl(Ḡ�, Kopt) ⇠

2

4 A� +B2Kopt B̃
⇤
1

C̃
⇤
1�

�1 +D12Kopt D11

3

5 , Fl(Ĝ�, Kopt) ⇠

2

4 A� +B2Kopt B1

C̃1��1 +D12Kopt D11

3

5

(5.124)

where Ḡ and Ĝ are those system realizations given by equations (5.84) and (5.72), respec-

tively, with the subscript � indicating that random uncertainty is included. Although a

somewhat obvious result, we see that scaling has no e↵ect on the eigenvalues of the sys-

tem.

What we can observe from figure 16 is that the weighted closed-loop system has infin-

ity norm below -10 dB. The unweighted maximum singular value plot, which depicts the

maximum singular values of the linear fractional transformation Fl(Ĝ�, Kopt) is shown in

figure 17. These results may be slightly less than exciting, however, a contribution of this

research is that a loop shaping method is now possible by way of scaling the magnitudes
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of disturbance input and performance output matrices in modal coordinates for achieving a

probabilistic robust, decentralized, H1 controller.

Next, we will evaluate the probabilistic robustness of the controller given by (5.123).

5.7.2 Probabilistic Analyses

Since the uncertainty in our system is random, nondeterministic tools must be developed,

and used, for evaluating the e↵ectiveness of our controller. This section on probabilistic

analyses is separated into the following evaluations:

1. Stability and performance tests.

2. Robust stability and performance margins.

These tools represent a contribution of this thesis for lightly-damped structural systems, and

are adjunct to evaluating the probabilistic robust controllers that are synthesized. These tests

and evaluations will now be performed for the controller found, and given by (5.123), for the

uncertain lightly-damped system featured in this chapter.

5.7.2.1 Stability and Performance Tests The robust stability test is a probabilistic

test that measures, using a probability estimate, whether or not some percentage of all system

configurations will be stable. This percentage is defined by a level parameter, ✏s 2 [0, 1].

This test involves generating samples from the distribution that describes the interconnection

sti↵ness, forming the composite system, and evaluating stability. A probability estimate of

composite system stability replaces the classic notion of deterministic system stability and

the test amounts to evaluating whether or not the probability of stability is greater than the

threshold defined by the level parameter:

P̂r(stable) =
1

N̂

N̂X

i=1

I

⇣
stable

��� (A� +B2Kopt)
⌘
, Stest

.
= P̂r(stable) � 1� ✏s. (5.125)
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The term N̂ is the total number of controlled structure configurations analyzed, and I

is the indicator function. This robust stability test is carried out using established Monte

Carlo methods where N̂ is appropriately chosen [14]. Note that the P̂r(·) nomenclature is

used to denote that these are probability estimates, and not exact probabilities.

Recall that the “nominal” uncertainty used during synthesis was characterized by f�(a0) =

N (100, 152). Using established Monte Carlo approaches (which are detailed in chapter 7),

we chose N̂ = 100, 000, a level parameter of ✏s = 0.01, which is equal to the original ✏s

chosen in chapter 4 (and is admittedly a lax requirement since the performance test is also

ingrained in this a priori probabilistic performance parameter), to find that

P̂r(stable) = 1 ) ⇡s,0 = 0 (5.126)

which says that we have passed the stability test. The variable ⇡s,0 represents the probability

of instability specific to the amount of uncertainty included during synthesis. Using N̂ =

100, 000 in our a posteriori Monte Carlo evaluations leads to a probability estimate accuracy

of ✏ = 0.0051 with confidence of 99% (1��) in the probability estimates generated by (5.125)

and (5.129). These estimates, and confidence in this estimate, are derived using Cherno↵

Bounds [14]:

N̂ � 1

2✏2
log

2

�
. (5.127)

For the case where we want 99% confidence in our estimate, choosing N̂ = 100, 000 will lead

to ���P̂r(stable)� Pr(stable)
���  ✏. (5.128)

The same confidence and accuracy applies for the performance test. The details, and theory,

behind these probability bounds and estimates is a subject of chapter 7, and so they are

spared here. In chapter 7, these Cherno↵ Bounds are also used during controller synthesis,

as more accurate probability estimates tend to smooth out the “noise” generated during the

synthesis process developed in that chapter.
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The performance test is given by

P̂r(performance) =
1

N̂

N̂X

i=1

I

⇣
performance

��� (Ḡ�,i, Kopt)
⌘
, Ptest = P̂r(performance) � 1�✏p,

(5.129)

where

performance
.
=
���
���Fl(Ḡ�, Kopt)

���
���
1

 �10 dB (5.130)

which was the originally-specified performance, with level parameter ✏p = 0.03 defined in

chapter 4. Using the same N̂ = 100, 000, we found

P̂r(performance) = 1 ) ⇡p,0 = 0 (5.131)

where ⇡p,0 represents the probability of not meeting performance for the amount of uncer-

tainty included for synthesis. Using the level parameter ✏p, we can say that the probabilistic

robust controller Kopt passed the stability and performance tests for our random system

quite handily. Of course, these tests are with respect to the nominal amount of uncertainty,

where the interconnection sti↵ness element is characterized by f�(a0) = N (100, 152).

5.7.2.2 Robust Stability and Performance Margins Another contribution of this

research is that a method for finding probabilistic stability and performance margins for

controlled structures coupled by a probabilistically-uncertain interface sti↵ness matrix is

developed. These margins can be thought of as a probabilistic analogue to the structured

singular value [17].

To find probabilistic robust stability and performance margins, we construct degradation

functions [14]. Degradation functions are simple to construct: simply choose some metrics

against which we would like to measure/evaluate our system, and establish an approach

to increasing the amount of random uncertainty present in our model. At discrete points,

these metrics are evaluated using Monte Carlo techniques, thus evaluating the probability

of violation at these discrete points. The probability of violation then becomes a function of

how the model uncertainty is changed.

114



The ball that characterized the uncertainty in our model used for synthesis is given

by

B�(a0)
.
=
�
� 2 R

n⇥n : � ⇠ f�(a0)
 

(5.132)

f�(a0) ⇠ N (100, a015
2) (5.133)

where a0 = 1 for synthesis. We could have built this set to be

B�(a, ⇢)
.
=
�
� 2 R

n⇥n : � ⇠ f�(a), ||�||p ⇢
 

(5.134)

f�(a) ⇠ N (100, a152) (5.135)

a 2 [0, amax], amax 2 R+ (5.136)

⇢ 2 R+ (5.137)

where we see that the ball now is now bounded in some norm-sense, where we could choose

p to be the a norm of our choice: Frobenius, 2, 1, etc. For synthesis and analysis, we

chose not to bound this set, as illustrated by (5.132). Note that the probability estimates

generated by not bounding the set are not a consequence of absence of a bound — imposing

a hard bound would retain the validity of this approach. However, it was chosen not to use a

hard bound, as a more exhaustive, and perhaps exciting, search of the solution space would

be possible during synthesis. Moreover, rather than just coloring a norm-bound, which is

a bit of an incremental step beyond the robust control approach, we are able to color the

uncertainty set and give it fuzzy edges.

When constructing these degradation functions, we must therefore change the uncer-

tainty that is characterizing our random system while performing probabilistic analyses. For

this present chapter, and for the full state feedback case, degradation functions were con-

structed defining the set given in (5.132) with amax = 10. Clearly, we are just scaling the

standard deviation/variance of our uncertainty. At points along the line a 2 [0, amax], the

probability of stability and having 1-norm less than �, as given by equations (5.129) and

(5.125) were calculated with N̂ = 100, 000, yielding the same accuracy and confidence that

resulted from performing these evaluations for the nominal case, a0 = 1.
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The resulting degradation functions, depicting the probability of instability and per-

formance violation, for the filtered systems, are shown in figure 18. We are now prepared

to discuss what is meant by probabilistic margins, as it pertains to a contribution of this

research.

Definition 5 (Probabilistic Margin). Probabilistic stability and performance margins are

extractions of a degradation function, and provide a measure for the amount of random un-

certainty that can be tolerated before the probabilistic levels for failure become unacceptable

to the designer. By defining the nominal amount of uncertainty that was used for controller

synthesis as a0, and the amount of uncertainty that corresponds with an unacceptable prob-

abilistic level of failure as a1, the probabilistic margin, PM , is

PM
.
=

a1

a0
. (5.138)

The probabilistic stability and performance margins are extractions from the degradation

functions given in figure 18. For the stability degradation function shown in figure 19, we

see that a given a 2 [0, amax] is associated with a specific probability of instability. That is,

degrade(as,1) = ⇡1 ) as,1 = degrade�1(⇡s,1)

degrade(as,0) = ⇡0 ) as,0 = degrade�1(⇡s,0).
(5.139)

where we recall from (5.126) that ⇡s,0 = 0. If we declare that we are willing to accept a

1% chance of instability, then ⇡s,1 = 0.01. The probabilistic stability margin, referred to as

PSM in figure 19, is then given by

PSM =
as,1

as,0
⇡ 4.9. (5.140)

Using the way that we have defined our uncertainty set, given by (5.132), we can scale the

standard deviation on the original uncertainty by approximately 4.9⇥ before encountering

unacceptable levels of instability, in a probability sense.
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Figure 18: Combined stability and performance degradation functions for the full-state feed-

back, probabilistic robust decentralized H1 controller given by (5.123) for the uncertainty

set (5.132) with a 2 [0, amax].
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By the same token, we analyze the probabilistic performance margin (PPM). Refer to

figure 20. Recalling that ⇡p,0 = 0 from equation 5.131, and by positing that we are willing

to accept a 1% chance of performance violation, we have

degrade(ap,1) = ⇡1 ) ap,1 = degrade�1(⇡p,1)

degrade(ap,0) = ⇡0 ) ap,0 = degrade�1(⇡p,0).
(5.141)

leading to

PPM =
as,1

as,0
⇡ 4.75, (5.142)

which says that we can scale the standard deviation on the original uncertainty by ap-

proximately 4.75⇥ before encountering an unacceptable probability of performance viola-

tion.

This can be a powerful design tool, as engineers or operators can now make decisions

regarding how long active vibration controllers should remain in operation before re-tuning.

In harsh environments where structures are subjected to radiation and experience fatigue,

such as in space, uncertainty in structure parameters will inevitably increase over time.

Using probabilistic robust control to analyze the probability of stability and probability

of meeting performance objectives for the composite, decentrally-controlled structural system

not only allows the structural control engineer to capture interconnection uncertainty in a

way that represents structural dynamic uncertainty, [71] it relaxes the conservatism and com-

putational complexity associated with traditional robust control approaches to quantifying

robust stability and performance [14]. It has been shown that using randomized algorithms

for testing robust stability and performance are more computationally e�cient than those

used in traditional robust control since they can be executed in polynomial time. Traditional

robust stability algorithms have been shown to be NP-hard [42, 41, 14, 24, 23].
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Figure 19: Stability degradation function with the probabilistic stability margin (PSM)

shown.

119



Figure 20: Performance degradation function with the probabilistic performance margin

(PPM) shown.
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A designer can define an increased probability of instability or performance violation

that they are willing to accept in exchange for greater uncertainty. Engineers or operators

can now make decisions regarding how long active vibration controllers should remain in

operation before re-tuning or decommissioning. In harsh environments where structures are

subjected to radiation and experience mechanical fatigue, such as in space, uncertainty in

structure parameters will inevitably increase over time.

5.8 CHAPTER SUMMARY

In this chapter, we developed the following techniques with associated results:

1. A way of enforcing sparsity constraints in a scenario-based full state feedback H1 syn-

thesis problem, allowing for the incorporation of random interconnection uncertainty.

2. A method, with theorem and proof, for showing how control design can be performed

in frequency-weighted complex modal coordinates, with performance output equation

defined in complex modal coordinates, that results in a real-valued controller using the

scenario approach.

3. Stability and performance tests and the concept of probabilistic stability and perfor-

mance margins for decentrally-controlled systems possessing random interconnection un-

certainty.

4. Application of these approaches to a lightly-damped system possessing random uncer-

tainty.

We will now move into chapter 6 as we set up the control design and synthesis approach for

a high-order, dynamic output feedback case.
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6.0 LOOP-AT-A-TIME DECENTRALIZED DYNAMIC OUTPUT

FEEDBACK H1 CONTROL USING µ-SYNTHESIS

This chapter provides a discussion into µ-synthesis techniques, and thereafter shows how µ-

synthesis is used in a loop-at-a-time synthesis process to achieve a collection decentralized,

robust controllers. The plurality of controllers is emphasized, as the output of this process

is used as input to the approach developed in chapter 7.

As we will discuss, the µ-synthesis process is both elegant and powerful, with the result-

ing controllers guaranteed to be robust against the structured or unstructured uncertainty

defined during controller design and synthesis. Unfortunately, µ-synthesis is not guaran-

teed to achieve an optimal answer, and modeling uncertainty using approaches specific to

robust control tend to be overly-conservative [57, 14]. Despite some of these drawbacks, µ-

synthesis has demonstrated great success in practice, and we demonstrate that its inherent

sub-optimality and conservatism work in our favor in chapter 7.

Philosophically-speaking, all control design and synthesis processes are iterative. That

is, we always pursue the following steps:

Step #1: Model the plant with associated uncertainty;

Step #2: Determine control objectives;

Step #3: Design the controller;

Step #4: Synthesize the controller;

Step #5: Check nominal stability/performance, robust stability/performance;

Step #6: If “acceptable”, you’re done. If “unacceptable”, return to Step #3.
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Figure 21: Probabilistic decentralized active control conceptualization. Control inputs

(u), measurements (y), disturbance inputs (w), performance outputs (z), and struc-

ture/interconnection forces/moments and displacements/rotations (p, q) are depicted for

substructures G1 and G2.
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In the same way that PID control design is often iterated, we iterate using µ-synthesis.

If objectives are not met, either uncertainty weightings/models are adjusted, disturbance

input/performance output weightings are adjusted, or control objectives are retooled alto-

gether. A di↵erence between these techniques, of course, is related to the machinery used

for control design and synthesis.

In our pursuit of excellence or perfection, we may end up discarding controllers that are

good in step #6, because they may not be as excellent as we wish for them to be. How-

ever, controllers that are synthesized using µ-synthesis are robust against some prescribed

structured norm-bounded uncertainty. Due to the conservatism and sub-optimality inherent

to µ-synthesis via D/K iterations, these solutions may exist near probabilistically-robust

solutions. Therefore, we will use this synthesis process to generate good starting points for

a high-dimensional stochastic optimization problem.

The goal of this research was to develop an approach for designing and synthesizing prob-

abilistically robust, decentralized controllers that achieved specified performance objectives

in the presence of random interconnection uncertainty. The controllers that are synthesized

in this chapter allow us to find seed solutions for the high-dimensional, non-convex, stochas-

tic optimization problem posed, and solved, in chapter 7 in order to achieve the overarching

goal of this research.

A discussion on robust control and µ-synthesis is provided in this chapter. Going into

some depth will serve the following purposes:

1. Reveal the conservatism of µ-synthesis and in estimating the structured singular value.

This helps with motivating the use of probabilistic robust techniques.

2. To show how we are able to extract multiple robust controllers from µ-synthesis via D/K

iterations, subsequently leading to good, initial solutions spaces to search in chapter 7.
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6.1 LOOP-AT-A-TIME µ-SYNTHESIS IN DECENTRALIZED

STRUCTURAL CONTROL

Loop-at-a-time µ-synthesis for decentralized structural control was a technique that Kyong

Lim implemented, where he modeled interconnection uncertainty as possessing real, para-

metric uncertainty, and modeled uncertainty in the structures, especially at high frequencies,

as additive uncertainties [6]. This chapter makes contributions to loop-at-a-time µ-synthesis

beyond how Lim originally pursued these methods:

1. Lim pioneered loop-at-a-time synthesis for the robust decentralized control of coupled

Euler-Bernoulli beams, where he was explicit about the interconnection sti↵ness matrix

having norm-bounded, parametric uncertainty. Lim did not work out the loop formula-

tions for controller design and synthesis. This thesis works out these manipulations. The

results are very general, and hopefully makes this approach even more accessible to the

vibration control engineer. A virtue of this generality, of course, is that other control ap-

proaches can be adapted into these loop formulations/synthesis steps and subsequently

used with the approaches in chapter 7.

2. In the context of loop-at-a-time µ-synthesis for the decentralized robust control of coupled

substructures, this thesis provides a new controller design approach. Frequency-weighting

of performance output matrices in modal coordinates is pursued, which does not increase

the overall model order. This is now a common design practice for lightly-damped

structures [72, 61].

3. By virtue of how D/K iterations occur, we end up with multiple (possibly robust) con-

trollers on our way to minimizing the infinity norm of our uncertain system. In other

words, the third contribution is the identification that we are able to assemble a collec-

tion of good robust controllers in our high-dimensional solution space. Then, we can use

this collection as initial members of a population in a genetic/evolutionary algorithm for

searching for probabilistic-robust controllers.
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This chapter is structured as follows:

1. A discussion on robust control and µ-synthesis is provided.

2. Loop-at-a-time formulations, with interconnection sti↵ness terms explicitly identified,

are provided for all of the cases used during loop-at-a-time µ-synthesis.

3. An algorithm that condenses controller design, loop formulations, and µ-synthesis is

formulated.

4. The performance of the resulting robust controllers are highlighted. Closed-loop maxi-

mum singular value plots for those controllers that ended up working very well as initial

solution seeds for the techniques developed in chapter 7 are shown.

6.2 ROBUST CONTROL AND µ-SYNTHESIS

In sections 6.2, 6.3, and 6.4 we will discuss the following topics:

• general uncertainty representations in robust control;

• the structured singular value;

• robust stability and performance tests and evaluations using the structured singular

value;

• µ-synthesis via D/K iterations.

Subsequently, we will discuss how µ-synthesis is used in the context of this thesis and how

loop-at-a-time synthesis is performed. During D/K iterations, we are able to capture mul-

tiple controller starting points for use in the stochastic optimization problem formulated in

chapter 7.
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µ-synthesis via D/K iterations is an approach that has been in existence for over 30

years. The machinery behind this approach is well understood, and the discussion in this

section was put together with the aid of several sources [57, 17, 59]. During loop-at-a-time

µ-synthesis, Matlab’s Robust Control Toolbox was used for synthesizing the controllers used

as input to chapter 7 [73, 74].

6.2.1 Uncertainty Representations in Robust Control

Uncertainty is unavoidable. The actual dynamic system almost always has some variation

in its physical parameters. This uncertainty can be captured using several modeling tech-

niques.

In robust control, we represent the model-controller-uncertainty triplet using the gener-

alized regulator framework shown in figure 22, where the plant is given by P , controller by

K, and uncertainty by �. The signals are u - control input; w - disturbance/reference input;

w� - uncertainty inputs; y - measured outputs; z - performance output; and z� - uncertainty

outputs.

The uncertain inputs and outputs, along with the system given by � are pure modeling

constructs. Through certain modeling choices, we elect to pull them out of P for analysis and

controller synthesis purposes. At this point, it is worthwhile to discuss the details behind �

before getting into our discussion on the structured singular value.
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Figure 22: Generic uncertain system.

6.2.2 The Uncertainty Block, �

Generally, the uncertainty set � is described by

�c = diag
�
p1I, . . . , pnrI, �1I, . . . , �ncI,�1, . . . ,�nf

�
(6.1)

whose elements satisfy

• pj 2 R with |pj|< 1, j = 1, . . . , nr

• �j 2 C with |�j|< 1, j = 1, . . . , nc

• �j 2 C
pj⇥qj with ||�j||< 1, for j = 1, . . . , nf

where pjI is a real repeated block, �jI is a complex repeated block, and �j is a full complex

block.
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Figure 23: Rewritten uncertain closed loop interconnection.

The expanded, open-loop equations of the system depicted in figure 22 are given here:

0

BBB@

z�

z

y

1

CCCA
=

0

BBB@

P11 P12 P13

P21 P22 P23

P31 P32 P33

1

CCCA

0

BBB@

w�

w

u

1

CCCA
. (6.2)

The upper or lower linear fractional transformation of this uncertain, controlled system, map-

ping w ! z can be formed by substituting w� = �z� and u = Ky. The significance of these

mappings will become evident as we get further into this discussion on µ-synthesis.

6.2.3 Uncertainty and Stability Margins

This discussion will help with setting a stage to discuss the structured singular value, whose

upper/lower bounds arise in µ-synthesis. Furthermore, a discussion on traditional robust

stability/performance is insightful for illustrating its conservatism.

The uncertainty can be pulled out of an uncertain system G + � to get the rewritten

uncertain system shown in figure 23. Next, we can remove the uncertainty block in order to

get the transfer function that is seen by the uncertainty block. That is, the transfer function

w� ! z�. This interconnection is shown in figure 24. For this interconnection, the transfer

function is given by

M = �(I +KG)�1
K. (6.3)
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Figure 24: Uncertain closed loop interconnection with uncertainty block removed.

For robust stability, we will show that the loop remains stable for a specific � if I � M�

has a proper and stable inverse.

Recalling figure 24, we set z = e and collect d, n, r into w =
h
d n r

iT
. From here, we

correspond figure 24 to figure 26. Our signals can then be related by

0

@ z�

z

1

A =

0

@ N11 N12

N21 N22

1

A

0

@ w�

w

1

A =

0

@ M N12

N21 N22

1

A

0

@ w�

w

1

A . (6.4)

We notice that the transfer matrix seen by � in this structure is N11 = M , which is what

was shown by (6.3). By reconnecting the uncertainty by

w� = �z� (6.5)

we arrive at the linear fractional transformation mapping w ! z

z =
h
N22 +N21�(I �M�)�1

N12

i
w. (6.6)

Since we know that the controller that was designed, K, is stabilizing, N11 = M, N12, N21,

N22 are all proper and stable. It is through (I � M�)�1 that instability or improperness

occurs. We end up having to verify that

I �M� = I + (I +KG)�1
K� (6.7)
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Figure 25: Condensed version of the uncertain system.

Figure 26: Condensed uncertain system, open loop.

has a proper, stable inverse with the requirement that ||�||< 1. The Nyquist criterion can

now be applied. Since both M = �(I +KG)�1
K and � are stable, this is true if the curve

! ! �M(j!)�(j!) =
⇣
I +K(j!)G(j!)

⌘�1

K(j!)�(j!) (6.8)

does not encircle �1. This is true if

����M(j!)�(j!)

���� =
����
⇣
I +K(j!)G(j!)

⌘�1

K(j!)�(j!)

���� < 1 8 ! 2 R [ {1}. (6.9)

Due to the requirement that ||�||< 1, (6.9) is implied by

���M(j!)
��� =

����
⇣
I +K(j!)G(j!)

⌘�1

K(j!)

����  1 8 ! 2 R [ {1}. (6.10)

So, if (6.10) is valid, then the transfer function matrix I �M� = I + (I +KG)�1
K� has

a proper, stable inverse for all stable �, with ||�||< 1, allowing us to conclude that no

uncertainties contained within � will be destabilizing.
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Using the results derived above, we can move forward with discussing how we may

go about constructing a destabilizing uncertainty perturbation. After doing so, we will

set the stage for introducing the structured singular value (SSV), before getting into µ-

synthesis.

6.2.3.1 Construction of a Destabilizing Uncertainty Perturbation A destabiliz-

ing uncertainty is one for which a � causes (I �M�)�1 to have a right-half plane pole, or

alternatively, for I � M� to have a right-half plane zero. We can look for a zero, j!0, on

the imaginary axis. This would require that

M(j!0)�(j!0) = 1. (6.11)

Put another way, if we choose some !0 such that |M(j!0)|> 1, then the complex number

�0
.
=

1

M(j!0)
(6.12)

leads to M(j!0)�0 = 1, therefore destabilizing the loop. Recalling (6.10), and relaxing the

requirement that ||�||< 1, we can have that

����M(j!)

���� =
����
⇣
I +K(j!)G(j!)

⌘�1

K(j!)

����  �0 8 ! 2 R [ {1} (6.13)

meaning that this equality will hold, and the system will be stable for, all � that satisfy

|�(j!)|< 1

�0
8 ! 2 R [ {1} (6.14)

where we see that this bound is directly related to the inverse of the infinity norm of M .

That is,

1

�0
=

 
sup

!2R[{1}
|M(j!)|

!�1

= ||M ||�1
1 (6.15)

which illustrates how we can analyze, and establish bounds, on the robust stability of some

system M subjected to uncertainty �.
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6.2.4 Robust Stability Analysis

Our discussion on general uncertainty and stability margin has set the stage for us to discuss

robust stability analysis, and thereafter robust performance analysis. Afterward, we will

be able to move into a discussion on the structured singular value. Before doing so, it is

worthwhile to state the well-known robust stability analysis and synthesis problems.

Robust Stability Analysis For a given, fixed controller K, test whether K robustly sta-

bilizes Fu(�, P ) against all uncertainties within a given set �.

Robust Stability Synthesis Find a controller K that robustly stabilizes

Fu(�, P ) against all uncertainties in �. We introduce the notation

Fl(P,K) = N =

0

@ N11 N12

N21 N22

1

A =

0

@ M N12

N21 N22

1

A (6.16)

where we recall that M is the block that is “seen” by the uncertainty. This brings us to the

following theorem, which is provided without proof, on robust stability.

Theorem 10. If K stabilizes P , and if I � M� has a proper and stable inverse for all

� 2 �, then K robustly stabilizes Fu(�, P ) against �.

6.2.5 Robust Stability Tests Reduced to a Non-Singularity Test on the Imagi-

nary Axis

We need to verify whether I �M� has a proper and stable inverse. To do so, as discussed

previously, we would check that the matrix I �M� does not have any zeros in the closed

right half plane, including infinity. This check amounts to

det
⇣
I �M(s)�(s)

⌘
6= 0 8 s 2 C

0 [ C
+ [ {1},� 2 � (6.17)

This is challenging to do, since the entirety of the right half plane must be evaluated and

the test must be performed for every � 2 �.
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The proceeding result, taken from the lecture notes by Scherer [59], shows that it is

su�cient to test that I �M(s)�c is nonsingular only on the j! axis. We note that �c ⇢ �

are those members of � along the imaginary axis, only. The following theorem states

this.

Theorem 11. Suppose M is a proper and stable transfer function matrix. If

det
⇣
I �M(j!)�c

⌘
6= 0 8 �c 2 �c, ! 2 R [ {1}, (6.18)

then I �M� has a proper stable inverse for all � 2 �.

Proof. See Scherer, page 68 [59].

6.2.6 The Central Test for Robust Stability

Through combining theorems 10 and 11, we arrive at the fundamental robust stability test

for controlled systems/interconnections.

Corollary 12. If K stabilizes P , and if

det
⇣
I �M(j!)�c

⌘
6= 0 8 �c 2 �c, ! 2 R [ {1}, (6.19)

then K robustly stabilizes Fu(�, P ) against �.
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6.3 THE STRUCTURED SINGULAR VALUE (µ)

Thus far, we have discussed uncertainties whose values on the imaginary axis assume the

following structure

�c = diag
�
p1I, . . . , pnrI, �1I, . . . , �ncI,�1, . . . ,�nf

�
(6.20)

whose elements satisfy

• pj 2 R with |pj|< 1, j = 1, . . . , nr

• �j 2 C with |�j|< 1, j = 1, . . . , nc

• �j 2 C
pj⇥qj with ||�j||< 1, for j = 1, . . . , nf

where pjI is a real repeated block, �jI is a complex repeated block, and �j is a full complex

block.

When the uncertainty, �c takes on the structure given by (6.1), the size of the blocks

can be expressed as ||�c||< 1. Furthermore, the set r�c consists of all complex matrices �c

that take the same structure as (6.1) and whose blocks are bounded in size by r. That is,

||�c||< r. The scaling factor, r, will be very relevant to our discussion on the structured

singular value.

Recalling theorem 11, we know that the robust stability test is given by the following:

I �M(j!)�c is non-singular for all �c 2 �c (6.21)

which is a problem of linear algebra [59]. Now we get into formally introducing the structured

singular value. Given the complex matrix M 2 C
q⇥p and the set of complex matrices

�c ⇢ C
p⇥q, we must decide whether

I �M�c is non-singular for all �c 2 �c. (6.22)
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We modify this test by considering the scaled set r�c in which every element of �c is

being scaled by r. The robust stability test can now be modified into a new one: Determine

the largest r such that I � M�c is nonsingular for all �c in the set r�c. We denote this

largest value of r as r⇤.

Formally, we want to calculate

r⇤ = sup
n
r | det(I �M�c) 6= 0 8 �c 2 r�c

o
. (6.23)

Using r as a scaling factor, we are inflating or shrinking the set r�c. r⇤ is the finite critical

value for which we are able to claim that the set r�c is nonsingular. Conversely, r⇤ also

equals the smallest r such that we find the existence of some �c 2 r�c that renders I�M�c

singular. We are now prepared to define the structured singular value.

Definition 6. The structured singular value (SSV) of the matrix M with respect to the set

�c is

µ�c(M) =
1

r⇤
=

1

sup

⇢
r

��� det(I �M�c) 6= 0 8 �c 2 r�c

� . (6.24)

We now assume that the SSV can be calculated. Thereafter we can decide whether or not

(6.22) is true by checking whether µ�c(M)  1. We provide the following theorem that

supports this test, with proof contained within the lecture notes by Scherer [59].

Theorem 13. Let M be a complex matrix and �c be an arbitrary, open set of complex

matrices. Then

• µ�c(M)  1 implies that I �M�c is non-singular for all �c 2 �c.

• µ�c(M) > 1 implies that there exists a �c 2 �c for which I �M�c is singular.

Unfortunately, computation of the SSV is a di�cult task. It is a task that we cannot perform

exactly for problems of moderate size. What is done, instead, is a calculation of the upper

and lower bounds on the SSV. Upper and lower bounds are used when performing robust

performance/stability analyses, as well as during robust controller synthesis. Bounds on the

SSV can be interpreted by letting M be a complex matrix and �c an arbitrary (open) set

of complex matrices.
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Then,

• µ�c(M)  �1 implies that I �M�c is non-singular for all �c 2 �
�1
1 �c.

• µ�c(M) > �2 implies that there exists a �c 2 �
�1
2 �c for which I �M�c is singular.

Given some scalar ↵, this is a consequence of the following:

↵µ�c(M) = µ�c(↵M) = µ↵�c(M). (6.25)

We have that a scaling by some scalar ↵ of the SSV is the same as scaling either M or the

set �c by the same amount.

6.3.1 SSV Applied to Testing Robust Stability

At this point, we have mentioned that we are relinquished to calculating the upper and

lower bounds of the SSV. See Newlin for a more thorough discussion on this topic [75].

These bounds may or may not be tight — they are nonetheless approximations. This fact is

part of the reason why probabilistic robustness evaluations have found acceptance and have

developed within the controls community [14].

For robust stability to hold, we must have that the SSV of M(j!), calculated with

respect to the set �c is smaller than 1. Since this must be true for all ! 2 R, we arrive at

the most fundamental result related to the SSV and robust stability testing: I �M� has a

proper and stable inverse for all � 2 � i↵

µ�c

⇣
M(j!)

⌘
 1 forall ! 2 R [ {1}. (6.26)

We also can formulate the following corollary, resulting from theorems 10 and the small gain

theorem to obtain the robust stability test for the general interconnection [17, 59]:

Corollary 14. If K stabilizes P, and if

µ�c

⇣
M(j!)

⌘
 1 for all ! 2 R [ {1}, (6.27)

then K robustly stabilizes Fu(�, P ) against �.
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The robust stability tests are applied by simply calculating the number µ�c

⇣
M(j!)

⌘
for

a finite number of frequencies. Practically-speaking, this would amount to plotting the

function

! ! µ�c

⇣
M(j!)

⌘
(6.28)

and verifying that the curve remains below one for all frequency. If it does not, we can move

toward finding the destabilizing perturbation. As a somewhat useful aside, by plotting upper

bound of µ�c(M(j!)) over the frequency !, we can determine some � > 0 such that

µ�c

⇣
M(j!)

⌘
 � for all ! 2 R [ {1} (6.29)

is satisfied. Robust stability can be concluded for the uncertainty set

n1

�
� |� 2 �

o
(6.30)

where the above set admits the same structure as those in �, but that are bounded by 1
�

instead of one. By varying �, the largest set 1
�
� is obtained with the smallest � for which

(6.29) is valid. This value is

�⇤ = sup
!2R[{1}

µ�c

⇣
M(j!)

⌘
. (6.31)

This number is called the stability margin since ��1
⇤ is the largest inflating factor for the

given set of uncertainties.
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6.3.2 Bounds on the SSV

This subsection discusses how we go about calculating bounds on the SSV. The fact that

we can only calculate bounds, even if they are tight, on the SSV shows that we are intro-

ducing additional conservatism into our analysis, and thereafter synthesis process by using

µ-techniques. The entire purpose of this chapter, and using µ-techniques for establishing an

initial search space for probabilistic robust, decentralized controller synthesis, is that we are

hypothesizing that this conservatism will benefit our search. Indeed, this hypothesis, and

approach, did work in our favor. This is detailed in chapter 7. For now, we continue this

exposition into robust control and µ-methods.

Given two sets of complex matrices �1 and �2 such that

�1 ⇢ �2 (6.32)

then we can say that

µ�1(M)  µ�2(M). (6.33)

Now, we introduce the sets

�1
.
=

⇢
pI 2 R

p⇥q

��� |p|< 1

�
(6.34)

�2
.
=

⇢
pI 2 C

p⇥q

��� |p|< 1

�
(6.35)

�3
.
=

⇢
�c 2 C

p⇥q

��� ||�c||< 1

�
(6.36)

where these sets correspond to one real repeated block, one complex repeated block, and one

full block. For each of these structures, the SSV can be computed explicitly [59]:

µ�1(M) = ⇢R(M) (6.37)

µ�2(M) = ⇢(M) (6.38)

µ�3(M) = ||M || (6.39)

139



where ⇢R(M) is the real spectral radius of M , which is defined as

⇢R(M) = max

⇢
|�|

���� is a real eigenvalue ofM

�
. (6.40)

The complex spectral radius has the same definition, with the exception that � is complex.

Generally, we have that

�1 ⇢ �c ⇢ �3, (6.41)

which implies that

µ�1(M)  µ�c(M)  µ�3(M). (6.42)

If there are no real blocks, then we have

µ�2(M)  µ�c(M)  µ�3(M). (6.43)

This leads to the following lemma from Scherer [59]:

Lemma 6. In general,

⇢R(M)  µ�c(M)  ||M || (6.44)

and if the number of real blocks, nr = 0, then

⇢(M)  µ�c(M)  ||M || (6.45)

These bounds are coarse. Computational approaches are used to refine the bounds in getting

close to the actual value of the SSV. These computational approaches are not discussed

here.

Lower Bounds on the SSV: If we can compute some

�0 2
1

�
�c that renders I �M�0 singular, (6.46)

then we can conclude that

�  µ�c(M). (6.47)
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Upper Bounds on the SSV: If we can compute

for all �c 2
1

�
�c the matrix I �M�c is non-singular (6.48)

then we can conclude that

µ�c(M)  �. (6.49)

Previously, we saw that ||M || � is a su�cient condition for (6.48) to hold. So, we move

toward refining this condition.

Simple Scalings: We assume that all full blocks of the general uncertainty structure are

square, meaning that pj = qj. Supposing that D is a non-singular matrix that satisfies

D�c = �cD for all �c 2
1

�
�c. (6.50)

Given the condition that

||D�1
MD||< � (6.51)

it is implied that

I � [D�1
MD]�c (6.52)

is non-singular for all �c 2 1
�
�c. By exploiting D�c = �cD, (6.52) can be written as

I �D
�1[M�c]D = D

�1[I �M�c]D (6.53)

which means that we not only have that I�M�c is nonsingular, but that � is also an upper

bound for µ�c(M).

To find the smallest upper bound, we need to minimize the norm

||D�1
MD|| (6.54)

over the set of matrices D satisfying equation (6.50). This marks the beginning of D/K

iterations. Since, D = I is in the class of these commutative matrices, the minimal value

is better than ||M ||, meaning that this upper bound can be refined through introduction

of extra variables D. We are interested in a scaled version, D�1
MD of M , meaning these

variablesD are called scalings. This brings us to the following lemma from Scherer [59]:
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Lemma 7. We have

µ�c(M)  inf
D satisfies (6.50) and is non-singular

||D�1
MD||. (6.55)

To find the best upper bound we want to minimize the RHS of the inequality above. Fortu-

nately, this problem is convex and is furthermore amenable to being cast as a semidefinite

program. One thing that we recognize is that (6.50) holds if and only if D admits the

structure

D = diag(D1, . . . , Dnr , Dnr+1, . . . , Dnr+nc , d1I, . . . , dnf
I) (6.56)

where nr is the number of real repeated blocks, nc is the number of the complex repeated

blocks, and nf is the number of full complex blocks. Furthermore, Dj is a non-singular

complex matrix and dj is a non-zero complex scalar. In the next step of this scaling approach,

we transform ||D�1
MD||< � into an LMI. We see that this is equivalent to

[D�1
MD][D�1

MD]H < �
2
I. (6.57)

By left multiplication with D and right multiplication with D
H we get

D[D�1
MD][D�1

MD]HDH
< �

2
DD

H (6.58)

DD
�1
MDD

H
MD

�H
D

H
< �

2
DD

H (6.59)

MDD
H
M < �

2
DD

H
. (6.60)

By introducing the Hermitian matrix

Q
.
= DD

H (6.61)

the last inequality above becomes

MQM
H
< �

2
Q (6.62)

where Q has the structure

Q = diag(Q1, . . . , Qnr , Qnr+1, . . . , Qnr+nc , q1I, . . . , qnf
I) (6.63)
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where Qj, given the structure that has been imposed, is Hermitian and positive definite, and

qj is a real positive scalar. This is a semidefinite program. This semidefinite program can be

cast with the objective of minimizing �, allowing us to find the best upper bound. A larger

class of scalings can be considered, allowing more freedom and ability to approach the actual

value of the SSV. For a brief discussion on this topic, refer to Scherer’s notes [59].

6.3.3 Robust Performance

The robust performance test is very similar to that pursued for robust stability. Performance

signals are identified, uncertainties are pulled out, and weightings for the uncertainties are

introduced such that the preceding framework is mirrored.

In the robust performance framework, performance weightings are incorporated to turn

the desired performance into anH1 norm bound on the virtual output/performance channel.

As mentioned previously, the controlled uncertain system is given by

0

BBB@

z�

z

y

1

CCCA
=

0

BBB@

P11 P12 P13

P21 P22 P23

P31 P32 P33

1

CCCA

0

BBB@

w�

w

u

1

CCCA
, u = Ky, w� = �z�, � 2 � (6.64)

we now provide the following hypothesis from Scherer [59]:

Hypothesis 1. P is a generalized plant, and

• The set of uncertainties is given as

�
.
=
n
� 2 RH1 |�(j!) 2 �c

o
for all ! 2 R [ {1} (6.65)

where �c is the set of all matrices �c structured as given by (6.1) and satisfying ||�c||< 1.

• The direct feed-through P11 and �c are such that

I � P11(1)�c (6.66)

is non-singular for all �c 2 �c.
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• The performance of the system is as desired if the H1 norm of the w ! z channel is

smaller than 1.

Using the notation

P� = Fu(�, P ) =

2

4P22 P23

P32 P33

3

5+

2

4P21

P32

3

5�(I � P11�)�1
h
P12 P13

i
(6.67)

for the uncertain open-loop interconnection, we have the open-loop interconnection without

uncertainty

P0 = Fu(0, P ) =

2

4P22 P23

P32 P33

3

5 . (6.68)

If K stabilizes P and if ���
���Fu(P0, K)

���
���
1

 1 (6.69)

we can say that K achieves nominal performance for P . Robust performance is achieved

if

K stabilizes P� = Fu(�, P ) and
���
���Fu(P�, K)

���
���
1

 1 for all � 2 �

allowing us to say that

K achieves robust performance for Fu(�, P ) against �.

6.3.4 Testing Robust Performance

The SSV of a complex matrix equals its norm if the uncertainty structure consists of just

one full block. This was given in (6.39). Recalling this: given �3
.
=

⇢
�c 2 C

p⇥q

��� ||�c||< 1

�

we had that µ�3(M) = ||M ||. We assume throughout that the controller K stabilizes P ,

implying that N
.
= Fl(P,K) is stable. Introducing the partition:

0

@ z�

z

1

A = Fl(P,K)

0

@ w�

w

1

A = N

0

@ w�

w

1

A =

0

@ M N12

N21 N22

1

A

0

@ w�

w

1

A (6.70)

the inference can be made that

Fl(P�, K) = Fu(�, N) = N22 +N21�(I �M�)�1
N12, (6.71)
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leading us to conclude robust performance if the robust stability condition

µ�c

⇣
M(j!)

⌘
 1 8! 2 R [ {1} (6.72)

, det
⇣
I �M(j!)�c

⌘
6= 0 8�c 2 �c, ! 2 R [ {1} (6.73)

and furthermore that the performance bound

���
���N22 +N21�(I �M�)�1

N12

���
���  1 8 � 2 � (6.74)

,
����

����N22(j!) +N21(j!)�(j!)
⇣
I �M(j!)�(j!)

⌘�1

N12(j!)

����

����  1 8 � 2 �, (6.75)

! 2 R [ {1}

,
����

����N22(j!) +N21(j!)�c(j!)
⇣
I �M(j!)�c(j!)

⌘�1

N12(j!)

����

����  1 8 �c 2 �c, (6.76)

! 2 R [ {1}

all hold true.

Just as for the robust stability tests, for each frequency within some grid that we have

defined, we end up with linear algebraic problems to solve. To show this, we introduce

the main loop theorem. After this has been shown, we will be fully prepared to discuss

µ-synthesis via D/K iterations. Given the set �c and the complex matrix

Nc =

0

@ M N12

N21 N22

1

A with N22 2 C
r1⇥m1 (6.77)

we need to test whether or not the two conditions hold:

det(I �M�c) 6= 0 (6.78)

����

����N22(j!) +N21(j!)�c(j!)
⇣
I �M(j!)�c(j!)

⌘�1

N12(j!)

����

����  1 8 �c 2 �c. (6.79)

What has been referred to as a “fundamental trick” is used to solve this problem [59]. The

structured singular value is equal to the norm of a complex matrix for the case where the
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uncertainty is a full block matrix. The condition

���
���N22 +N21�c(I �M�c)

�1
N12

���
��� =

���
���Fu(�c, Nc)

���
���  1 (6.80)

is equivalent to

det
⇣
I � Fu(�c, Nc)�̂c

⌘
6= 0 8 �̂c 2 C

p2⇥q2 , ||�̂c||< 1. (6.81)

Again, this uses the fact that the SSV of a full complex matrix equals its norm if the

uncertainty structure is just one full block. It is noticed that the term �̂c has now appeared.

This is defined as

�̂c =
n
�̂c 2 C

p2⇥q2 | ||�̂c||< 1
o

(6.82)

and infer that, for all �c 2 �c, that

det(I �M�c) 6= 0 and
���
���Fu(�c, Nc)

���
���  1 (6.83)

i↵ for all �c 2 �c and �̂c 2 �̂c, we have that both

det(I �M�c) 6= 0 and det
⇣
I � Fu(�c, Nc)�̂c

⌘
6= 0 (6.84)

i↵ for all �c 2 �c, that

det

0

@ I �M�c �N12�̂c

�N21�c I �N22�̂c

1

A 6= 0 (6.85)

i↵ for all �c 2 �c,

det

0

@I �

0

@ M N12

N21 N22

1

A

0

@ �c 0

0 �̂c

1

A

1

A 6= 0 (6.86)

where these arguments arise from the Schur formula for the determinant of a block matrix.

That is, given

M
.
=

2

4A B

C D

3

5 (6.87)

we know that M/A gives us

M/A
.
= D � CA

�1
B (6.88)
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and that det(M), using this formula, can be found from

det(M) = det(A)det(D � CA
�1
B). (6.89)

For our specific case we require that det(I �M�c) 6= 0. Thoroughly, we have

det
⇣
I � Fu(�c, Nc)�̂c

⌘
= det

⇣
I � [N22 +N21�c(I �M�c)

�1
N12]�̂c

⌘
=

= det
⇣
[I �N22�̂c]� [N21�c](I �M�c)

�1[N12�̂3]
⌘
= det

0

@ I �M�c �N12�̂c

�N21�c I �N22�̂c

1

A .

(6.90)

This derivation and discussion motivates the introduction of what have been termed the set

of extended matrices [59]:

�e

.
=

8
<

:

0

@ �c 0

0 �̂c

1

A : �c 2 �c, �̂c 2 C
p2⇥q2 , ||�̂c||< 1

9
=

; . (6.91)

The original uncertainty structure has been augmented with one full, complex block un-

certainty. The derivation above has just proven the Main Loop Theorem, which is

stated:

Theorem 15 (Main Loop Theorem). The two conditions

µ�c(M)  1 and
���
���Fu(�c, Nc)

���
���  1 for all �c 2 �c (6.92)

are equivalent to

µ�e(Nc)  1. (6.93)

Thus, this result reduces the desired condition to another SSV test on the matrix Nc with

respect to the extended structure �e! Now, we will complete our discussion on this topic.

Typically, a computation of µ�e(Nc) will lead to an inequality

µ�e(Nc)  � (6.94)
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with bound � > 0 di↵erent from one. We can easily re-scale. That is,

µ�e

✓
1

�
Nc

◆
 1. (6.95)

This is equivalent to

µ�c

✓
1

�
M

◆
 1 (6.96)

and ����

����
1

�
N22 +

1

�
N21�c

✓
I � 1

�
M�c

◆�1 1

�
N12

����

����  1 for all �c 2 �c (6.97)

showing us that both conditions are just

µ�c(M)  � (6.98)

and ����

����N22 +N21
1

�
�c

✓
I �M

1

�
�c

◆�1

N12

����

����  � for all �c 2 �c (6.99)

leading us to arrive at

det(I �M�c) 6= 0 for all �c 2
1

�
�c (6.100)

and ���
���N22 +N21�c(I �M�c)

�1
N12

���
���  � for all �c 2

1

�
�c, (6.101)

showing us that a bound �, di↵erent from one, leads to stability and a performance bound

� for the scaled complex matrices 1
�
�c.

148



6.3.5 The Robust Stability and Robust Performance Test

By combining the main loop theorem with our robust performance test, we arrive at the

main theorem for robust stability and performance testing.

Theorem 16. Let N =

0

@ M N12

N21 N22

1

A be a proper and stable transfer matrix. For all

� 2 �,

(I �M�)�1 2 RH1 and
���
���Fu(�, N)

���
���
1

 1 (6.102)

i↵

µ�e

⇣
N(j!)

⌘
 1 for all ! 2 R [ {1}. (6.103)

This leads us to a fundamental corollary in structured singular value theory:

Corollary 17. If K stabilizes P , and if

µ�e

⇣
N(j!)

⌘
 1 for all ! 2 R [ {1} (6.104)

the K achieves robust performance for Fu(�, P ) against all � 2 �.

6.3.6 Summary

Figure 27 will aid this discussion. Supposing that some controller K stabilizes the plant P

and supposing that the controlled, uncertain system is given by

0

@ z�

z

1

A = Fl(P,K)

0

@ w�

w

1

A = N

0

@ w�

w

1

A =

0

@ M N12

N21 N22

1

A

0

@ w�

w

1

A , w� = �z�

(6.105)

with proper and stable � satisfying

�(j!) 2 �c for all ! 2 R [ {1}, (6.106)

then the controller K achieves:

• Robust stability if

µ�c

⇣
M(j!)

⌘
 1 for all ! 2 R [ {1}; (6.107)
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Figure 27: Robustness test block diagram.

• Nominal performance if

���
���N22(j!)

���
���  1 for all ! 2 R [ {1}; (6.108)

• Robust performance if

µ�e

⇣
N(j!)

⌘
 1 for all ! 2 R [ {1}. (6.109)

Referring back to figure 27, robust stability is guaranteed by an SSV-test on the block

M of N = Fl(P,K); nominal performance by an SSV-test on the block N22, and robust

performance is guaranteed by an SSV-test on the whole N , with respect to the extended

block uncertainty structure �e.

6.4 µ-SYNTHESIS VIA D/K ITERATIONS

The design of controllers that achieve robust stability and performance amounts to minimiz-

ing the SSV, with respect to a certain uncertainty structure, of the controlled system over all

frequencies. Another name for D/K-iteration is actually scalings/controller-iteration.
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We consider the uncertain, controlled system:

0

BBB@

z�

z

y

1

CCCA
=

0

BBB@

P11 P12 P13

P21 P22 P23

P31 P32 P33

1

CCCA

0

BBB@

w�

w

u

1

CCCA
, u = Ky, w� = �z�, � 2 � (6.110)

and again use the notation, P�
.
= Fu(�, P ). The goal of D/K iteration is to design a

controller, K, that stabilizes P� and leads to the condition that

���
���Fl(P�, K)

���
���  1 for all � 2 �. (6.111)

In order to do this, we turn, again, to the extended uncertainty block structure, which looks

like

�e

.
=

8
<

:

0

@ �c 0

0 �̂c

1

A : �c 2 �c, �̂c 2 C
r1⇥m1 , ||�̂c||< 1

9
=

; (6.112)

where r1/m1 are the lengths of the w/z channels, respectively. A controller K achieves

robust performance if it stabilizes the nominal system and satisfies the condition

µ�e

⇣
Fl(P,K)(j!)

⌘
 1 for all ! 2 R [ {1}. (6.113)

Finding a controller that achieves (6.113) directly cannot be done [76]. We cannot even com-

pute the SSV directly in most practical cases [75]. To achieve (6.113) we want to guarantee

that a computable upper bound on the SSV is smaller than one for all frequencies.

Recalling that the set of scalings D corresponding to �c for computing an upper bound

look like

D = diag(D1, . . . , Dnr , Dnr+1, . . . , Dnr+nc , d1I, . . . , dnf
I) (6.114)

with each Dj matrix being Hermitian and positive definite and each dj real, positive scalars.

The class of scalings corresponding to the extended uncertainty structure �e is then

De

.
=

8
<

:

0

@ D 0

0 I

1

A > 0 |D 2 D

9
=

; . (6.115)
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This class of scalings has the property that

µ�e

⇣
Fl(P,K)(j!)

⌘
 inf

D2De

���
���D�1

Fl(P,K)(j!)D
���
���. (6.116)

which means that any stabilizing controller K that leads to

inf
D2De

���
���D�1

Fl(P,K)(j!)D
���
���  1 for all ! 2 R [ {1} (6.117)

guarantees that (6.113) will be met. Thus, we are actually minimizing the upper bound

of the SSV — not the SSV, directly. Put another way, we are actually performing “upper

bound design”. It helps to reformulate (6.117) slightly — we can say that there exists a

frequency-dependent scaling D(!) 2 De such that

���
���D(!)�1

Fl(P,K)(j!)D(!)
���
��� < 1 for all ! 2 R [ {1} (6.118)

which leads us to the problem that we want to solve:

min sup
!2R[{1}

���
���D(!)�1

Fl(P,K)(j!)D(!)
���
��� (6.119)

over all controllers stabilizing K, and over all frequency-dependent scalings D(!) 2 De.

If the minimal value is found to be smaller than one, our controller synthesis problem is

complete. We meet (6.117), which implies that we meet (6.113)! The procedure fails if the

minimal value is found to be greater than one.

6.4.1 Scalings and Controller Iteration (D/K-iteration)

Scaling/controller iteration is pursued via two, iterative steps:

1. Fix the scaling function D(!) and minimize (6.119) over all stabilizing controllers. This

amounts to solving the H1 problem, which can be pursued by solving a semidefinite

program or by solving indefinite algebraic Ricatti equations [63, 17].

2. Fix the stabilizing controller K and minimize (6.119) over all scaling functions D(!).

We can now turn to the distinct steps behind this method.
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6.4.2 Step #1

Set

D1(!) = I (6.120)

and minimize

sup
!2R[{1}

���
���D1(!)

�1
Fl(P,K)(j!)D1(!)

���
��� =

���
���Fl(P,K)

���
���
1

(6.121)

over all stabilizing controllers. We note that this is just the standard H1 problem. We

suppose that the optimal value is found to be smaller than some �1, denoting K1 as the

controller that achieves this optimal bound.

6.4.3 Step #2

Find, through a separate optimization process, another diagonal D2(!) such that D2(!) and

D
�1
2 (!) are stable and such that we minimize

inf
D22De

���
���D�1

2 Fl(P,K1)(j!)D2

���
��� (6.122)

at each frequency. In this sense, we are attempting to minimize the upper bound of our

estimate of the SSV. We recall that this minimization can be cast as a semidefinite program

described by

min
Q,�

� (6.123)

s.t. MQM
H � �

2
Q < 0 (6.124)

Q > 0, � > 0 (6.125)

where Q
.
= DD

H , with this SDP being solved at each frequency. This exact problem is also

covered in section 3.3 of Boyd [15].
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As a result of solving this optimization problem, we arrive at two new spots in our D/K

iteration:

• Some new bound �̂1

• D2

That is, this step leads to a scaling function D2(!) such that

sup
!2R[{1}

���
���D2(!)

�1
Fl(P,K1)(j!)D2(!)

���
��� < �̂1 (6.126)

One thing that we notice here is that we’ve calculated new upper bounds on some D2(!), but

that this collection of matrices do not represent some real rational transfer function matrix.

Therefore, we must fit these matrices to some real-rational transfer function matrix D̂2(s),

such that ���
���D2(!)� D̂2(s)

���
���  ✏ 8 ! 2 R [ {1} (6.127)

for some small, prescribed error ✏. This step can be achieved using several approaches to

fitting data to transfer function matrices, for instance, see the interpolation problem posed

in section 10.5.3 of Boyd [15].

Once this fitting has been completed, we are prepared to proceed to the next step. That

is, we are now prepared to solve the H1 problem, again, with our real rational D̂2(s) that

was just found.

154



6.4.4 Step #3

We now solve

inf
K stabilizesP

���
���D̂2(j!)

�1
Fl(P,K)(j!)D̂2(j!)

���
���
1

(6.128)

to find another “almost” optimal controller, which we call K2. This step leads us to the

condition such that

sup
!2R[{1}

���
���D2(!)

�1
Fl(P,K2)(j!)D2(!)

���
��� < �2 (6.129)

where this controller, K2, now holds for some new bound �2. We have arrived at (6.126) and

can now iterate.

6.4.5 Step #4

Return to step #1, replacing K1 ! Kk ! Kk+1 as we iterate, and D1(!) ! Dk(!) !

Dk+1(!).

These approaches are implicit to the µ-synthesis tools used by Matlab and Matlab’s

Robust Controls toolbox [77, 74]. This toolbox was used for achieving the collection of

robust controllers that are subsequently in chapter 7 in order to search for probabilistic

robust, decentralized dynamic output feedback controllers.

6.4.6 Examining Bounds on � during Iterations

One thing that is interesting about these iterations is that during our scaling iterations, we

are guaranteed that each new bound �̂k can be chosen such that �̂k < �k. This is insightful,

since if our desired robust performance is such that we want some �k < �0, then all controllers

subsequent to �k will be both robustly stabilizing and robustly performing. These controllers,

which we find on our way to solving the overarching mini-max problem in µ-synthesis, are

still useful in the larger context of this research.
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What we may find, however, is that the value of (6.126) cannot be made significantly

smaller than �k at some frequency. If this is the case, the new bound �̂k is very close to �k,

and the algorithm is stopped. Otherwise, if we have that �̂k is significantly smaller than �k

and the algorithm proceeds.

We will now show that during each iteration, �k+1 < �k. This is important to show,

since by proceeding in this manner during synthesis, we are able to extract useful solutions

for input into a larger stochastic optimization problem that we wish to solve.

During controller iteration, we see that the scaling function Dk(!) is fit to a real rational

D̂k(s) uniformly over all frequencies. If ✏ is small, it can be inferred that

sup
!2R[{1}

���
���D̂�1(j!)Fl(P,K)(j!)D̂(j!)

���
��� ⇡ sup

!2R[{1}

���
���Dk+1(!)Fl(P,K)(j!)Dk+1(j!)

���
���

(6.130)

for both K = Kk and Kk+1. We can infer from (6.129) that

sup
!2R[{1}

���
���D̂�1(j!)Fl(P,Kk)(j!)D̂(j!)

���
���  �̂k. (6.131)

Since Kk+1 is found by solving an H1-optimization problem, we can choose that

���
���D̂�1(j!)Fl(P,Kk+1)(j!)D̂(j!)

���
���
1


���
���D̂�1(j!)Fl(P,K)(j!)D̂(j!)

���
���
1

(6.132)

which implies that

sup
!2R[{1}

���
���D̂�1(j!)Fl(P,Kk+1)(j!)D̂(j!)

���
��� < �̂k. (6.133)

If the approximation of the scaling is good, this leads to

sup
!2R[{1}

���
���D̂�1

k+1(j!)Fl(P,Kk+1)(j!)D̂k+1(j!)
���
��� < �̂k. (6.134)

which means that the bound �k+1 can be taken smaller than �̂k, allowing us to conclude

�k+1 < �̂k < �k. (6.135)

During iterations, if we find that �k+1 is not much smaller than �k, the algorithm stops.
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We will now discuss how µ-synthesis via D/K iterations is used using an approach

that has been called loop-at-a-time synthesis to achieve a collection of robust, decentralized

controllers. A collection of controllers is obtained using this process and are subsequently

as initial starting points, or seeds for the stochastic optimization problem that is posed and

solved in chapter 7, for achieving the end of developing a controller design and synthesis

approach that results in probabilistically-robust, decentralized, dynamic output feedback

controllers.

6.5 LOOP-AT-A-TIME FORMULATIONS AND µ-SYNTHESIS

Loop-at-a-time synthesis is pursued so that we can achieve a decentralized controller archi-

tecture. This approach yields several benefits:

• The dynamics of the adjoining substructure are included during controller synthesis.

• After the first controller is synthesized, synthesis of the second controller accounts for

the closed loop dynamics of the adjoining substructure.

• The resulting controllers are decentralized. Measurements and performance outputs are

specific to the substructures.

Recall that the beam model that is used for controller design and synthesis in this chapter,

as well as in chapter 7, was described in chapter 4. A schematic of this beam, with un-

certain interconnection element shown, was given in figure 58, with beam data detailed in

table 6, input/output locations in table 7, and the structured norm-bounded interconnection

uncertainty described in section 4.3.3.
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At a high level, loop at a time synthesis is described by the following steps:

1. Design controller K2 to be robust against uncertainty and attenuate the 1-norm of the
h
w1 w2

iT
! z2 mapping at low frequencies.

2. Design controller K1 to be robust against uncertainty and attenuate the 1-norm of

the
h
w1 w2

iT
! z1 mapping at low frequencies while accounting for the closed-loop

dynamics due to the presence of K2.

3. Check the stability and performance of the
h
w1 w2

iT
!

h
z1 z2

iT
mapping.

4. If acceptable, exit. Otherwise, set K2 = 0, holding K1 constant, and return to

step 1. Alternate this iteration on K1 and K2 until acceptable performance and stability

is achieved.

At the end of this process, we will achieve a controller structure, like that conceptualized

in figure 21, that is robust against some structured norm-bounded interconnection uncer-

tainty.

Now, we will recall the model, some of the design parameters, and the uncertainty

descriptions that were defined in chapter 4. Then, we will develop the loops, algebraically,

showing the state-space/transfer function matrices used for loop-at-a-time synthesis.

Loop-at-a-time µ-synthesis via D/K iterations was performed for the following uncer-

tainty cases, which specify the parametric uncertainty in the interconnection sti↵ness elastic

modulus:

• E�,1 2 [0.01E0, 2E0]

• E�,2 2 [0.05E0, 1.5E0]

Controller objectives and performance output function definition are similarly given in chap-

ter 4. Stated again, we wanted to synthesize controllers, using µ-synthesis via D/K itera-

tions, that were robust against the structured norm-bounded uncertainty E�,1 and E�,2, and

attenuated the magnitudes of the displacement and velocity of each substructure, as sensed

at measurement locations. Frequency-weighting was performed by scaling the performance

output matrices, given by C1, in modal coordinates by the magnitude of a smooth first-order

filter with cuto↵ frequency of 80 Hz (500 rad/s), which was also discussed in chapter 4.
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Recall from chapter 4 and appendix B that a model sti↵ness element, as given by (B.10),

is

ke =

✓
EI

L3

◆

2

6666664

12 6L �12 6L

⇤ 4L2 �6L 2L2

⇤ ⇤ 12 �6L

⇤ ⇤ ⇤ 4L2

3

7777775
. (6.136)

We have said that the elastic modulus, given by E, has structured norm-bounded uncertainty

characterized by either E�,1 or E�,2 as described earlier, where E0 = 200GPa. As an aside,

we recognize that this interconnection sti↵ness element is actually just an uncertain static

gain. This will become evident when the entire system is modeled in a multi-loop generalized

plant architecture, which is iteratively collapsed during loop-at-a-time synthesis.

Seeing that the interconnection sti↵ness matrix is uncertain, with single uncertain pa-

rameter given by E�,i, i = 1, 2, this system is perfectly amenable to being cast into the

uncertain generalized regulator framework discussed earlier in this chapter. For real-valued

parametric uncertainty, the process of pulling out this uncertainty is straightforward. We

show how this is done in appendix F for real-valued, parametric uncertainty and state that

Matlab’s Robust Control Toolbox was used to perform this step for µ-synthesis [74, 73].

During loop formulations, we must carry around the fact that the interconnection sti↵ness

element is uncertain (which amounts to a fair amount of bookkeeping for high-dimensional

systems). This is where computer-aided design software, such as Matlab’s Robust Control

Toolbox, aid in this endeavor.

The resulting robust, decentralized controllers are used as warm start points in a stochas-

tic optimization problem, where we search for controllers of a similar-structure in a now-

random space, as the interconnection is colored by random uncertainty and relatively un-

bounded — recall section 4.3. Thus, we will not explicitly analyze the nominal stability, per-

formance, and robust stability and performance of the controllers that are obtained through

this synthesis process. These controllers serve as a means to the end that is achieved in
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chapter 7. Recall that our probabilistic robust performance objective, detailed in chapter 4

and given by (4.50), was

Ptest
.
= Pr

✓���
���Fl(G,K)

���
���
1

 �
⇤
����K�

◆
� 1� ✏p (6.137)

where we chose �⇤ = �45.4 dB and ✏p = 0.05. The random transfer function matrix maps

both disturbance inputs into the structure to both performance outputs of the structure.

This implies that we wanted to find robust controllers using µ-synthesis via D/K iterations

that attenuated the structure’s response to disturbance inputs at low frequencies, yet did

not necessarily achieve the 6 dB reduction below the open-loop response that was used to

determine �⇤ for all members of the norm-bounded plant uncertainty set. Theoretically, we

could have iterated on our design and synthesis scheme using µ-synthesis to hopefully find

a solution that achieved this, however, the goal of this research was to develop a proba-

bilistic robust decentralized design and synthesis approach for structures that have random

interconnection uncertainty. This chapter, and its approaches, are steps to achieving this

end.

6.5.1 System Descriptions

For this section we shall define equations, along with the systems, that comprise figure 28.

Going from left to right we will describe each system. We will then move toward closing

the loop, as we transform the system toward achieving the end of loop-at-a-time synthesis.

The Controller, K1: The first controller, using shorthand notation, is described by

K1 ⇠

2

4 Ak,1 Bk,1

Ck,1 Dk,1

3

5 (6.138)

The equations for this dynamic compensator are given by

ẋk,1 = Ak,1xk,1 +Bk,1uk,1 (6.139)

yk,1 = Ck,1xk,1 +Dk,1uk,1. (6.140)
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Figure 28: General system under consideration with labeled signals.

The Substructure, G1: The first substructure’s dynamics are described by

G1 ⇠

2

6666664

A1 Bw,1 Bu,1 Bp,1

Cz,1 0 D12,1 0

Cy,1 D21,1 0 0

Cq,1 0 0 0

3

7777775
(6.141)

These equations are given by

ẋ1 = A1x1 +Bw,1w1 +Bu,1u1 +Bp,1p1 (6.142)

where w1 is the disturbance input vector, u1 is the control input vector, and p1 represents

the interconnection forces / moments that are acting on G1. The other salient equations

that characterize this system’s outputs are

z1 = Cz,1x1 +D12,1u1 (6.143)

y1 = Cy,1x1 +D21,1w1 (6.144)

q1 = Cq,1x1 (6.145)

where (6.143) describes the performance output function defined for control design; (6.144)

are the measurements made (transverse displacements and velocities); and (6.145) are the

displacements and rotations at the interconnection sti↵ness interface.

161



At this point, it is appropriate to define the interconnection sti↵ness matrix and how it

is incorporated into the model.

The Interconnection Sti↵ness, Kcoup: In terms of realizing the interconnection sti↵ness

as a dynamic system, the first thing that we notice is that this system component is actually

just a static gain. That is,

Kcoup ⇠

2

4 0 0

0 K

3

5 (6.146)

where

K =

2

4K11 K12

K21 K22

3

5 = �
✓
EI

L3

◆

2

6666664

12 6L �12 6L

⇤ 4L2 �6L 2L2

⇤ ⇤ 12 �6L

⇤ ⇤ ⇤ 4L2

3

7777775
(6.147)

where E, I, L are the modulus, area moment of inertia, and length of the sti↵ness ele-

ment, respectively. From this, we see that interface forces/moments are related to dis-

placements/rotations through 2

4p1
p2

3

5 = K

2

4q1
q2

3

5 (6.148)

with q1 describing the displacement and rotation on one side of the element, and q2 de-

scribing the displacement and rotation on the other. Correspondingly, the pi, i = 1, 2 are

the forces/moments exerted due to displacements/rotations in the element. And so we can

expand these equations, which will be useful in the derivations to follow, as

p1 = K11q1 +K12q2 (6.149)

p2 = K21q1 +K22q2. (6.150)

The Substructure, G2: Very similar to the first substructure (and included here for com-

pleteness and since the equations will be uniquely manipulated), the second substructure’s
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dynamics are captured by

G2 ⇠

2

6666664

A2 Bw,2 Bu,2 Bp,2

Cz,2 0 D12,2 0

Cy,2 D21,2 0 0

Cq,2 0 0 0

3

7777775
. (6.151)

The associated equations for this subsystem are

ẋ2 = A2x2 +Bw,2w2 +Bu,2u2 +Bp,2p2 (6.152)

The output equations, in an almost identical manner, are given by

z2 = Cz,2x2 +D12,2u2 (6.153)

y2 = Cy,2x2 +D21,2w2 (6.154)

q1 = Cq,2x2 (6.155)

The Controller, K2: Finally, the last controller is given by

K2 ⇠

2

4 Ak,2 Bk,2

Ck,2 Dk,2

3

5 , (6.156)

explicitly:

ẋk,2 = Ak,2xk,2 +Bk,2uk,2 (6.157)

yk,2 = Ck,2xk,2 +Dk,2uk,2 (6.158)

6.5.2 Collapsing the Systems during Di↵erent Stages of the Synthesis Pro-

cess

The steps, along with the algebra, for putting the systems into a form for loop-at-a-time

synthesis are provided here. Figures accompany these operations for clarity. Once the

controllers K1 and K2 have been synthesized, we will enter an iteration loop, if necessary,

until we are satisfied with the closed-loop system’s performance.
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6.5.3 First Step — No controller for G1, Synthesize Controller for G2

Our first step is to attempt to find a robust controller using µ-synthesis for the situation

where G1 is uncontrolled, where this controller’s measurements and performance outputs are

spatially-local to the subsystem G2.

In order to pose this problem in a form that is amenable to controller synthesis, we must

collapse G1 and Kcoup into G2. The mathematics behind this operation are not complicated,

but the algebra is slightly tedious. We will go through some of these derivations for this case

now. This case is depicted in figure 29. For this case, there is no controller specific to G1

Figure 29: Posing the problem for synthesis of K2.

and so the Bu,1 term of (6.142) is omitted along with (6.144). Similarly, we are no longer

interested in the virtual performance output equation given by (6.143). This means that our

redefined dynamics for G1 are

ẋ1 = A1x1 +Bw,1w1 +Bp,1p1 (6.159)

with the interface sti↵ness output still given by (6.145). We recall that the interface sti↵ness

coupling is given by equations (6.149) and (6.150). To close the loop, we begin by eliminating

the variables q1, p1. If we substitute (6.149) and (6.145) into (6.159) we get

ẋ1 = A1x1 +Bw,1w1 +Bp,1K11Cq,1x1 +Bp,1K12q2 (6.160)

We can also substitute (6.145) into (6.150) to get

p2 = K21Cq,1x1 +K22q2 (6.161)
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Figure 30: Intermediate step for loop at a time synthesis using µ synthesis via D/K itera-

tions.

and so we see that we have eliminated q1, p1 by closing the loop around the pair (G1, Kcoup).

We are presently have the system depicted by figure 30. We need to continue this process

for the displacement/rotation and force/moment interactions between the interface sti↵ness

element and G2, now. To do this, we must similarly eliminate the terms q2, p2.

This is easily accomplished by substituting (6.161) and (6.155) into (6.152), yielding

ẋ2 = (A2 +Bp,2K22Cq,2)x2 +Bw,2w2 +Bu,2u2 +Bp,2K21Cq,1x1. (6.162)

We recall that (6.160) still has a q2 term. Substituting (6.155) into (6.160) gives us

ẋ1 = (A1 +Bp,1K11Cq,1)x1 +Bw,1w1 +Bp,1K12Cq,2x2. (6.163)

Our resulting system is now depicted by figure 31. Note that the connections for y2 and

u2 are still open — the controller K2 is not yet included in our closed-loop equations. The

controller is included in these figures to indicate it’s presence as we move toward formulating

the open-loop system around this controller. We can now aggregate our system in terms

of exogenous inputs and outputs. That is, inputs
h
w1 w2 u2

iT
and outputs

h
z2 y2

iT
.
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Figure 31: Stage in formulating system for µ-synthesis via D/K iterations.

Defining G3
.
= (G1, Kcoup, G2), our system has the representation

G3 ⇠

2

6666664

A1 +Bp,1K11Cq,1 Bp,1K12Cq,2 Bw,1 0 0

Bp,2K21Cq,1 A2 +Bp,2K22Cq,2 0 Bw,2 Bu,2

0 Cz,2 0 0 D12,2

0 Cy,2 0 D21,2 0

3

7777775
. (6.164)

We note that this derivation was performed for the nominal case. There is uncertainty

in the elements contained within the coupling sti↵ness interface previously given by K.

Thus, and for the first step of µ-synthesis, we can isolate the uncertain terms in our system

and can cast this uncertain generalized regulator problem into the familiar form shown in

figure 32. Control synthesis is then performed around this structure using µ-synthesis via

D/K iterations.

Assuming a robust controller was found, we now have our K2. The K2 assumes the

form given by the equations (6.157) and (6.158). Depending upon controller order, we

either perform a balanced reduction of the controller or proceed with closing the loop in

the opposite direction for pursuing synthesis of K1. In this thesis, the model order was

retained since model reduction inevitably leads to decreased robustness and performance [17].

Concurrently, we want to develop techniques that are applicable for high-order systems.

166



Figure 32: Uncertain generalized regulator structure for G3.

6.5.4 Second Step — Controller Exists for G2, Synthesize Controller for G1

At this step, we begin by formulating the controlled subsystem (G2, K2). This amounts to

finding the lower linear fractional transformation that maps the interconnection input p2 to

the interconnection output q2 (see [17] for a review of LFTs). This is essentially what we are

doing, repeatedly, as we converge toward a collapsed version of the system for performing

loop-at-a-time synthesis. Nevertheless, we go through the algebra, here. We stress that the

definition and frequency scaling of the performance output matrix Cz,1 includes the closed

loop dynamics of the adjoining substructure. Although construction of this performance

output matrix is derived from the displacement and velocity measurements on substructure

#1, we are calculating the eigenvectors of the entire closed loop system, and are frequency

scaling across the bandwidth of the entire structure, when constructing this Cz,1.

Recalling the K2 equations given by (6.157) and (6.158), we see that

yk,2 = u2 (6.165)

uk,2 = y2. (6.166)
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Figure 33: Another stage in loop at a time synthesis process.

To close the loop, we seek to eliminate u2 and y2 from our G2 system equations. By substi-

tuting (6.154) into (6.157) and (6.158) we get

ẋk,2 = Ak,2xk,2 +Bk,2Cy,2x2 +Bk,2D21,2w2 (6.167)

yk,2 = Ck,2xk,2 +Dk,2Cy,2x2 +Dk,2D21,2w2. (6.168)

We then substitute (6.168) into (6.152) to get:

ẋ2 = (A2 +Bu,2Dk,2Cy,2)x2 +Bu,2Ck,2xk,2 + (Bw,2 +Bu,2Dk,2D21,2)w2 +Bp,2p2 (6.169)

which is accompanied by (6.167) and the interface output equation given by (6.155). Our

(G2, K2), system is realized by the transfer function matrix

(G2, K2) ⇠

2

6664

A2 +Bu,2Dk,2Cy,2 Bu,2Ck,2 Bw,2 +Bu,2Dk,2D21,2 Bp,2

Bk,2Cy,2 Ak,2 Bk,2D21,2 0

Cq,2 0 0 0

3

7775
(6.170)

where our exogenous inputs are given by
h
w2 p2

iT
and outputs is q2. Clearly, our augmented

state vector is
h
x2 xk,2

iT
. This system is depicted on the far right in figure 33. We recall

that the static interconnection sti↵ness coupling is described by (6.149) and (6.150). To

close the loop on Kcoup, we want to eliminate p2 and q2. To achieve this end, we first insert

(6.155) into (6.150) to get

p2 = K21q1 +K22Cq,2x2 (6.171)
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Figure 34: Intermediate closed loop system.

and then insert (6.171) into (6.169) to get

ẋ2 = (A2+Bu,2Dk,2Cy,2+Bp,2K22Cq,2)x2+Bu,2Ck,2xk,2+(Bw,2+Bu,2Dk,2D21,2)w2+Bp,2K21q1.

(6.172)

Inserting (6.155) into (6.149) we get

p1 = K11q1 +K12Cq,2x2 (6.173)

meaning that at this intermediate step we now have

ẋ2 = (A2 +Bu,2Dk,2Cy,2 +Bp,2K22Cq,2)x2 +Bu,2Ck,2xk,2 + (Bw,2 +Bu,2Dk,2D21,2)w2

(6.174)

+Bp,2K21q1

ẋk,2 = Ak,2xk,2 +Bk,2Cy,2x2 +Bk,2D21,2w2 (6.175)

p1 = K11q1 +K12Cq,2x2 (6.176)

which are given by equations (6.172), (6.167), and (6.173), respectively. This system is

depicted on the far right in figure 34. Finally, we want to close the loop between G1 and

(Kcoup, G2, K2). To do this, we want to eliminate p1 and q1.

Recall the system equations given by (6.142), (6.143), (6.144), and (6.145). Since we

want to eliminate p1 and q1, we systematically approach this similar to previous. First, we
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insert (6.145) into (6.173) to get

p1 = K11Cq,1x1 +K12Cq,2x2. (6.177)

We then insert (6.177) into (6.142) and (6.145) into (6.172) to get

ẋ2 = (A2 +Bu,2Dk,2Cy,2 +Bp,2K22Cq,2)x2 +Bu,2Ck,2xk,2 + (Bw,2 +Bu,2Dk,2D21,2)w2

+Bp,2K21Cq,1x1 (6.178)

ẋ1 = (A1 +Bp,1K11Cq,1)x1 +K12Cq,2x2 +Bw,1w1 +Bu,1u1 (6.179)

We can aggregate (6.179), (6.178), (6.167), (6.143), and (6.144) as our closed-loop sys-

tem:

ẋ1 = (A1 +Bp,1K11Cq,1)x1 +Bp,1K12Cq,2x2 +Bw,1w1 +Bu,1u1 (6.180)

ẋ2 = (A2 +Bu,2Dk,2Cy,2 +Bp,2K22Cq,2)x2 +Bu,2Ck,2xk,2 + (Bw,2 +Bu,2Dk,2D21,2)w2

+Bp,2K21Cq,1x1 (6.181)

ẋk,2 = Ak,2xk,2 +Bk,2Cy,2x2 +Bk,2D21,2w2 (6.182)

z1 = Cz,1x1 +D12,1u1 (6.183)

y1 = Cy,1x1 +D21,1w1. (6.184)
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Figure 35: Intermediate collapsed subsystem.

This collapsed system is shown in figure 35. Calling G4
.
= (G1, Kcoup, G2, K2), we have the

transfer matrix representation

G4 ⇠

2

4 A4 B4

C4 D4

3

5 (6.185)

where

A4 =

2

6664

A1 +Bp,1K11Cq,1 Bp,1K12Cq,2 0

Bp,2K21Cq,1 A2 +Bu,2Dk,2Cy,2 +Bp,2K22Cq,2 Bu,2Ck,2

0 Bk,2Cy,2 Ak,2

3

7775
, (6.186)

B4 =

2

6664

Bw,1 Bu,1 0

0 0 Bw,2 +Bu,2Dk,2D21,2

0 0 Bk,2D21,2

3

7775
, (6.187)

C4 =

2

4Cz,1 0 0

Cy,1 0 0

3

5 , D4 =

2

4 0 D12,1 0

D21,1 0 0

3

5 , (6.188)

with the exogenous inputs
h
w1 u1 w2

iT
and outputs

h
z1 y1

iT
. We note that the uncer-

tain interconnection terms are embedded as a�ne terms within the G4 dynamics matrix —

meaning that these parametrically uncertain terms can be easily extracted during controller

synthesis. It is around this system — the mapping from
h
w1 w2

iT
to z1 that we try to

synthesize a robust controller around using µ-synthesis via D/K iterations.
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Figure 36: The controlled global system.

6.5.5 Third Step — Controllers Exist for G1, G2; Performance Verification

Under the presumption that we find a K1 that is robust against this parametric interconnec-

tion uncertainty, which exists in the presence of the controlled substructure pair (G2, K2),

we want to formulate the composite closed loop system. The derivation for the closed loop

systems, with controllers included, can be inferred from the steps that we have followed

through with previously. Therefore, we will provided the resulting system, which we will call

Gglobal. Gglobal is depicted in figure 36, where we see that for the performance verification

step, we are interested in the
h
w1 w2

iT
!

h
z1 z2

iT
mapping. Recall from chapter 4 that

the D12 and D21 terms meet certain properties. To do this, measurement disturbance inputs

were defined and appended to the measurement equations (yi’s) and additional actuator per-

formance output functions were appended, thus adding rows to the C1 matrices and creating

a nonzero performance feedforward matrix D12. These modeling choices were made more

for synthesis purposes. However, an additional benefit to appending these terms, especially

with respect to the D12 matrices which enter as feedforward terms in the performance output

equations, is that we are given an additional knob to turn during synthesis. Generally, the

performance output equations are defined as:

z =

2

4C2�Wz��1

0

3

5 x+ rz

2

40

I

3

5 u (6.189)
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where rz is chosen to be a small positive scalar. By choosing rz to be larger, we are both

penalizing excess control and preventing actuator singularities at high frequencies from oc-

curring during H1 controller synthesis. Similarly,

y = C2x+ ry

h
0 I

i
w (6.190)

where ry is chosen to be a small positive scalar and the size of I is equal to the number

of sensor measurements being made (which is two for each substructure). For every in-

stance of D/K iteration, ry = 10�5. Thus, we have presumed that we have accurate sensor

measurements.

For analysis of the resulting controllers that were obtained through the loop-at-a-time

µ-synthesis we are principally interested in how the disturbance inputs to the system a↵ect

the displacements and velocities, at low frequencies, at the measurement locations. Thus,

we eliminate the augmented terms in the z-equations by setting each D12 term to zero.

Furthermore, we are also now considering the unweighted version of the system. The modal-

magnitude scaling used on the performance output matrices C1, as covered in chapter 4,

is removed, and we are just examining the unfiltered displacements and velocities at mea-

surement locations. Thus, the maximum singular value plots are generated for the following

system:

Gglobal ⇠

2

4 Aglobal Bglobal

Cglobal Dglobal

3

5 (6.191)

where the input, output, and state vectors are given by

u =

2

4w1

w2

3

5 , y =

2

4z1
z2

3

5 , x =

2

6666664

x1

x2

xk,1

xk,2

3

7777775
. (6.192)
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Thus, we have

Aglobal =
2

6666664

A1 +Bu,1Dk,1Cy,1 +Bp,1K11Cq,1 Bp,1K12Cq,2 Bu,1Ck,1 0

Bp,2K21Cq,1 A2 +Bu,2Dk,2Cy,2 +Bp,2K22Cq,2 0 Bu,2Ck,2

Bk,1Cy,1 0 Ak,1 0

0 Bk,2Cy,2 0 Ak,2

3

7777775

(6.193)

Bglobal =

2

6666664

Bw,1 +Bu,1Dk,1D21,1 0

0 Bw,2 +Bu,2Dk,2D21,2

Bk,1D21,1 0

0 Bk,2D21,2

3

7777775
(6.194)

Cglobal =

2

4Cz,1 +D12,1Dk,1Cy,1 0 D12,1Ck,1 0

0 Cz,2 +D12,2Dk,2Cy,2 0 D12,2Ck,2

3

5 (6.195)

Dglobal =

2

4D12,1Dk,1D21,1 0

0 D12,2Dk,2D21,2

3

5 . (6.196)

6.5.6 Fourth Step — Iterative Controller Synthesis

The fourth step in loop-at-a-time µ-synthesis via D/K iterations is invoked if we find that a

controller K1 does not exist, or if we are not at all satisfied with how the robust, closed-loop

system is performing within our bandwidth of interest. If this is the case, we essentially

reverse the process derived in section 6.5.4. Otherwise, we proceed with candidate con-

troller solutions to be used for probabilistic-robust decentralized H1 controller synthesis.

These acceptable controllers are robust decentralized controllers that were synthesized using

loop-at-a-time µ-synthesis/D/K iterations. These robust controllers will serve as a starting

174



points for our search for a probabilistically-robust controllers. That is, we will now incor-

porate random uncertainty into this problem and pursue stochastic optimization to find

probabilistically-robust decentralized H1 controllers.

6.5.7 Loop-at-a-Time µ-synthesis via D/K Iterations Algorithm

We will now cover how loop-at-a-time µ-synthesis via D/K iterations is executed. This

procedure is described in algorithm 3. Note that it does not really matter which controller

we initiate with. The derivations provided in this thesis are specific to starting with K1 = 0,

and attempting to first synthesize K2. We easily could have starting by attempting to

synthesize K1, first, without any loss in generality. In line with several other chapters in this

thesis, we provide the following algorithm.

175



Algorithm 3 Loop at a Time µ-synthesis via D/K Iterations

1: procedure Loop at a Time µ-synthesis via D/K Iterations

2: Form the open-loop system given by G3, given by (6.164), as we prepare to design

and synthesize controller K2, with

G3 ⇠

2

4 A3 B3

C3 D3

3

5

3: Calculate A3�3 = �3⇤3

4: Form Cz,1 = Cy,1�3Wz�
�1
3 , as performed in chapter 4, through construction of the

diagonal Fz which represents the magnitude of a first-order filter function with cuto↵

frequency of 500 rad/s at each A3 system resonance. This magnitude scaling is performed

for the nominal plant in the uncertainty set. That is, for an interconnection sti↵ness

modulus E0 = 200GPa.

5: Ensure that norm-bounded interconnection uncertainty is appropriately captured in

the model, and attempt to synthesize a controller using µ-synthesis via D/K iterations.

6: Assuming a controller K2 was found, form system G4, given by (6.185), so that we

can prepare to synthesize controller K1, with

G4 ⇠

2

4 A4 B4

C4 D4

3

5

7: Calculate A4�4 = �4⇤4

8: Form Cz,2 = Cy,2�4Wz�
�1
4 , as performed in chapter 4 and using the same first-order

filter for magnitude scaling. Notice that magnitude scaling accounts for the closed-loop

substructure dynamics, as well. This magnitude scaling is performed for the nominal

plant in the uncertainty set. That is, for an interconnection sti↵ness modulus E0 =

200GPa.

9: Ensure that norm-bounded interconnection uncertainty is appropriately captured in

the model, and attempt to synthesize a controller using µ-synthesis via D/K iterations.
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10: Assuming K1 and K2 exist, form the composite system for performance analysis.

This composite system is given by Gglobal in (6.191),

Gglobal ⇠

2

4 Aglobal Bglobal

Cglobal Dglobal

3

5

11: Define a frequency grid ! = [0,!max] and calculate instances of the curve

f(!) = �̄(Gglobal)

which is a plot of the maximum singular value of the Gglobal mapping. Instances are

plants drawn from the norm-bounded uncertainty set.

12: if K1 and K2 are robust (e.g. with SSV < 1) and perform relatively well within the

bandwidth of interest, then

13: Proceed to use these candidate solutions as starting points in the stochastic opti-

mization problem developed in chapter 7.

14: else

15: Set K2 = 0 and perform this procedure again, forming the appropriate system for

synthesis of a new K2 with K1 held constant.

16: end if

17: end procedure
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6.6 UNCERTAIN MAXIMUM SINGULAR VALUE PLOTS OF

µ-SYNTHESIZED SEED SOLUTIONS

Eight candidate decentralized controller pairs were synthesized using loop-at-a-time µ-synthe-

sis via D/K iterations. After synthesis of K1, formulation of the loop equations for design

and synthesis of K2, and synthesis of K2, it was judged that the collection of controllers

obtained through this synthesis process would be adequate for pursing the stochastic op-

timization problem in chapter 7 with all candidate solutions. Therefore, subsequent loop

iterations were not needed. All of these controllers share a common quality: they are all

robust against some amount of structured norm-bounded uncertainty. As discussed in sec-

tion 6.4, H1-norm minimization, using an approach such as a bisection method, is pursued

after the D-scalings iteration, meaning that the robust performance levels of all of these

controllers are di↵erent. What we are looking for are controllers that are robust and atten-

uate low frequency modes in our system. (As an aside: this thesis is about developing an

approach, and not finding the optimal way to control Euler-Bernoulli beams). We want to

exploit the sub-optimality and conservatism inherent to µ-synthesis via D/K iterations by

exploring the random solution spaces in the vicinity of these controllers to achieve the end

goal of this research.

The seed population of controllers was generated by using the two norm-bound uncer-

tainty descriptions from previous, and by varying the magnitude of the scaling coe�cient,

rz. Definition of the performance output matrices, along with all other model parameters,

were the same. When these controllers were synthesized, we started with synthesizing K1

first, and then iterating to synthesize K2; this explains why the order of K2 is greater than

the order of K1. Some relevant data about the seed populations are provided in table 1.

From this seed data, we will feature the performance, in terms of uncertain maximum sin-

gular value plots of the open and closed-loop systems, for Controller Pairs 2 and 7. It will

be highlighted in chapter 7 that these seeds gave rise to probabilistic robust solutions that

did very well with respect to the cost function and associated optimization problem that

was posed. Simultaneously, we must recognize that each of these controller pairs resulted
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Table 1: Initial Controller Population Resulting from µ-Synthesis

Initial Population Seed Data for Genetic Algorithm

Controller Pair E� rz SSV K1 order K2 order Worst-Case �

1 [0.01E, 2E] 10�2 0.9899 100 200 -45.68 dB

2 [0.01E, 2E] 10�2 0.9899 100 248 -45.35 dB

3 [0.01E, 2E] 10�3 0.9900 100 200 -46.02 dB

4 [0.01E, 2E] 10�3 0.1954 100 248 -40.72 dB

5 [0.01E, 2E] 10�3 0.9556 100 228 -40.10 dB

6 [0.05E, 1.5E] 10�2 0.9655 148 248 -45.68 dB

7 [0.05E, 1.5E] 10�2 0.9655 148 296 -45.68 dB

8 [0.05E, 1.5E] 10�2 0.9655 148 296 -44.88 dB

from, and were robust against, di↵erent levels of structured norm-bounded uncertainty. The

uncertain open and closed loop maximum singular value plots for Controller Pair #2 are

shown in figure 37. A similar plot for Controller Pair #7 is shown in figure 38. We see that

the combined order of the controller pair #2 is 348. The order of the controller pair #7 is

444. In control theory, these are considered to be high-order systems.
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Figure 37: Uncertain maximum singular value plot of open loop system and closed loop

system for Controller Pair #2, synthesized with norm-bounded interconnection uncertainty

E�,1 2 [0.01E0, 2E0].
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Figure 38: Uncertain maximum singular value plot of open loop system and closed loop

system for Controller Pair #7, synthesized with norm-bounded interconnection uncertainty

E�,2 2 [0.05E0, 1.5E0].
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7.0 PROBABILISTIC DECENTRALIZED DYNAMIC OUTPUT

FEEDBACK H1 SYNTHESIS

Presently, no techniques exist that allow vibration control engineers to design and synthesize

decentralized dynamic output feedback controllers for random systems. In this thesis, the

uncertainty is concentrated in the portion of a structure that couples two substructures,

which we have termed the interconnection between these substructures. For this chapter,

we continue to focus on the structural models that were used in chapter 6, with all of the

same model parameters that are detailed in appendix B. The interconnection uncertainty is

specific to the modulus of the interconnection element between two Euler-Bernoulli beams,

with this random uncertainty characterized by a normal distribution.

Controller design and synthesis for this specific problem has faced several challenges:

1. The scenario approach from chapter 5 cannot be used, since the dynamic output feedback

H1 synthesis problem is not jointly convex in the plant and controller variables [14, 63].

We are still contending with random interconnection uncertainty.

2. Lightly-damped structures, and their models, are generally high-dimensional. Even after

some model reduction is performed, controller design and synthesis for plants that have

several hundred states faces design and computational challenges. No model reduction

is performed on the systems used in this chapter.

3. It has been shown in the area of decentralized control that imposing a diagonal (or

decentralized) structure on the controllers leads to a reduction in performance [9]. This

restriction reduces the solution space.
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This chapter develops an approach for synthesizing high-dimensional, probabilistic ro-

bust, decentralized, dynamic output feedback controllers for lightly-damped structures that

are coupled by a random interconnection element. A collection of µ-synthesized controllers,

generated using the loop-at-a-time µ-synthesis procedure in chapter 6, are seeds in the op-

timization problem solved in this chapter. A cost function is constructed that focuses on

searching the solution space for decentralized dynamic output feedback controllers that:

1. Stabilize the random system, and

2. Attenuate the infinity norm of the random system mapping disturbance inputs to per-

formance outputs below some level, �⇤.

We note that the a posteriori performance test for this system still requires evaluating the

H1-norm of the entire structure, as detailed in chapter 4.

A common theme in this thesis, in terms of controller performance objectives, is that

we seek to attenuate the excitation of low frequency modes. The full-state feedback con-

troller design and synthesis approach in chapter 5 did this via frequency weighting in modal

coordinates. The loop-at-a-time µ-synthesis approach in chapter 6 similarly did this via

frequency weighting the performance output function in modal coordinates. We retain the

our objective to attenuate low-frequency modes in this present chapter, and will show how

it is accomplished by cost function construction and by virtue of the fact that we begin

our searches in the vicinity of the µ-synthesized solutions from chapter 6. This chapter is

structured as follows:

1. A discussion on stochastic optimization using genetic algorithms, which includes theory

and details related to:

• Genetic algorithm-based optimization;

• How stochastic optimization problems can be posed, and solved, using genetic algo-

rithms;

• Probability theory that is useful for constructing the cost functions in stochastic

optimization problems involving controller synthesis.

• Genetic algorithm settings used for the optimization problem posed in this thesis.
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2. Probabilistic decentralized dynamic output feedback controller synthesis for structures

coupled by a random interconnection element, which includes theory and details related

to:

• Cost function construction, including a discussion on computational cost/complexity

and how parallel computing makes these high-dimensional problems tractable.

• Controller synthesis in complex modal coordinates, which leads to a significant re-

duction in the optimization variables in this problem.

3. Discussion of the results obtained using this new approach to decentralized controller

synthesis. Several probabilistically-robust, decentralized, dynamic output feedback con-

trollers were successfully synthesized that attenuated theH1-norm of the structure below

the prescribed level �⇤ with probability greater than the 1� ✏p determined in chapter 4.

Two of these solutions are highlighted.

7.1 THE TRANSFER FUNCTION MATRIX AND PERFORMANCE

OBJECTIVES

We will briefly discuss the transfer function matrix and performance objectives that motivate

the techniques developed in this chapter. Recalling the generalized plant structure shown in

figure 28, we reformulate this system with:

G1 ⇠

2

6666664

A1 Bw,1 Bu,1 Bp,1

Cz,1 0 0 0

Cy,1 0 0 0

Cq,1 0 0 0

3

7777775
, G2 ⇠

2

6666664

A2 Bw,2 Bu,2 Bp,2

Cz,2 0 0 0

Cy,2 0 0 0

Cq,2 0 0 0

3

7777775
(7.1)

and random interconnection sti↵ness matrix:

K�,coup ⇠

2

4 0 0

0 K�

3

5 (7.2)
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where

K� =

2

4K�,11 K�,12

K�,21 K�,22

3

5 = �
✓
E�I

L3

◆

2

6666664

12 6L �12 6L

⇤ 4L2 �6L 2L2

⇤ ⇤ 12 �6L

⇤ ⇤ ⇤ 4L2

3

7777775
, E� ⇠ N (E0, 0.16E

2
0)

(7.3)

with E0 = 200GPa. The controllers still have the structure:

K1 ⇠

2

4 Ak,1 Bk,1

Ck,1 Dk,1

3

5 , K2 ⇠

2

4 Ak,2 Bk,2

Ck,2 Dk,2

3

5 . (7.4)

We form the mapping 2

4w1

w2

3

5 !

2

4z1
z2

3

5 (7.5)

which we call

Gprob ⇠

2

4 Aprob Bprob

Cprob Dprob

3

5 (7.6)

where the input, output, and state vectors are given by

w =

2

4w1

w2

3

5 , z =

2

4z1
z2

3

5 , x =

2

6666664

x1

x2

xk,1

xk,2

3

7777775
. (7.7)

185



Thus, we have

Aprob =

2

6666664

A1 +Bu,1Dk,1Cy,1 +Bp,1K�,11Cq,1 Bp,1K�,12Cq,2 Bu,1Ck,1 0

Bp,2K�,21Cq,1 A2 +Bu,2Dk,2Cy,2 +Bp,2K�,22Cq,2 0 Bu,2Ck,2

Bk,1Cy,1 0 Ak,1 0

0 Bk,2Cy,2 0 Ak,2

3

7777775
,

Bprob =

2

6666664

Bw,1 0

0 Bw,2

0 0

0 0

3

7777775
, Cprob =

2

4Cz,1 0 0 0

0 Cz,2 0 0

3

5 , Dprob =

2

40 0

0 0

3

5 .

(7.8)
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In chapter 4, we declared that the stability and performance tests, with probabilistic

metrics, were: The performance test was given by (4.50), which can now be written as:

Ptest
.
= P̂r

✓
||Gprob||1  �

⇤
����K�

◆
� 1� ✏p (7.9)

where we chose �⇤ = �45.4 dB and ✏p = 0.05. The stability test is given by:

Stest
.
= P̂r

✓
Re
⇣
�(Aprob)

⌘
< 0

����K�

◆
� 1� ✏s (7.10)

where we chose ✏s = 0.02.

7.2 STOCHASTIC OPTIMIZATION USING GENETIC ALGORITHMS

Genetic algorithms (GAs) are search methods based on principles of natural selection and

genetics [78, 18]. Genetic algorithms repeatedly modify a population of individual solutions

to an optimization problem through the processes of: evaluation, selection, recombination,

mutation, and replacement.

New populations of individual candidate solutions are formed through these processes,

as the populations evolve toward an optimal solution. Much of the terminology used in

the genetic algorithm literature is derived from the Darwinian process of natural selection,

however, these algorithms actually employ randomized adaptive search methods capable of

processing a large number of candidate solutions at each step [18]. The best candidate

solutions are carried over, combined with one another, and mutated to form subsequent

populations.

The fact that we have a population of candidate solutions, each of which is evaluated

against the same cost function, makes this approach amenable to parallelization. This fact

allows us to address computational complexity associated with problems that have the fol-

lowing features: 1) have many decision variables, and/or 2) have computationally-expensive

cost functions. This chapter is addressing a controller synthesis problem that has both

of these qualities. For the techniques developed in this chapter, the number of controller
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variables can be between approximately 50,000 and 120,000 variables, however, through a

change in controller basis we develop an approach that drops this range to between 1,200 and

1,800 variables. The former case would have been intractable using the computing resources

presently available during the writing of this thesis.

7.2.1 Steps in Genetic Algorithm-based Optimization

Previously, we said that genetic algorithms repeatedly modify a population of individual

solutions to an optimization problem through the processes of evaluation, selection, recom-

bination, mutation, and replacement. These steps will be explained a bit more:

1. Initialization — The initial population of candidate solutions is generated by creating

random candidate controller solutions around each given seed controller.

2. Evaluation — Once this initial population has been created, each candidate solution is

evaluated against the fitness/objective function that is constructed for the problem.

3. Selection — Those candidate solutions with higher fitness values are copied more fre-

quently than those with lower values. First, each candidate solution is ranked and ar-

ranged from highest to lowest. Then, the raw objective functions are scaled according

to their rank. So, an individual with rank r has its objective function values scaled

by 1/
p
r. This makes poorly ranked solutions more equal in value. Then, a stochastic

uniform selection function is invoked, which lays out a line on which each individual

corresponds to a section of the line, with length proportional to its scaled value. The al-

gorithm moves along this line in steps of equal size, allocating an individual to retain and

use for crossover and mutation. Simultaneously, a subset of these individuals with the

highest objective function values are identified as elite individuals, and are guaranteed

to survive into the next population.
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4. Recombination — Combines two or more parts of “parental” solutions to create new

solutions, many times referred to as “o↵spring”. Recombination is also referred to as

crossover. An algorithm known as scattered crossover is used at this step [79]. This step

works by generating a random binary vector that is used to swap elements of the parent

solutions with one another. As an example, given parents p1 and p2, with random binary

vector b, we have:

p1 =
h
a b c d e f g h

i

p2 =
h
1 2 3 4 5 6 7 8

i

b =
h
1 0 0 0 1 0 0 0

i
,

resulting in a child c, that becomes a member of the next population:

c =
h
a 2 3 4 e 6 7 8

i
.

5. Mutation — While recombination is combining two or more parent solutions to create

subsequent generations of candidate solutions, mutation randomly modifies parts of solu-

tions during each generation. This process promotes a more thorough investigation into

the solution space [18]. A gaussian mutation algorithm is used at this step. For a given

candidate solution that is selected for mutation, random elements are chosen similarly

to the recombination step, and zero-mean random numbers are added to these elements,

whose standard deviation is determined by:

�k = �k�1

✓
1� S

k

Ng

◆
(7.11)

where k represents the generation that we are currently in, and Ng is the total number

of generations that we direct the algorithm to run. The initial standard deviation is set

to be equal to the range of the initial population — the di↵erence between the largest

and smallest elements of all candidate solutions. We have set S = 1, meaning that this

standard deviation decreases to zero as k ! Ng.

6. Replacement — Solutions created by selection, recombination, and mutation replaces the

previous candidate solutions, leading to the formation of the subsequent population.
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7. Repeat steps 2-6 until a terminating condition is met.

Genetic algorithms have been used in artificial intelligence, machine learning, and control

theory for decades. Some control applications can be found in the papers by Fleming,

Marrison, and Wang [80, 12, 37, 39]. Attempting to list all of the research that has used

these tools would be futile. Moreover, additional details behind these algorithms and their

variants can be found in the book by Goldberg [18].

7.2.2 Stochastic Cost Functions and Genetic Algorithms

We will briefly now discuss probabilistic robust controller design and synthesis, as approached

originally by Stengel, Marrison, and Wang [30, 12, 31, 37, 32]. These techniques were in-

troduced in chapter 2. The design of a probabilistic robust controller was approached by

Marrison in the following way: probabilistic robust control can characterize compensator

robustness by defining a probability, Pr(p), that the closed-loop system will have acceptable

performance in the presence of parameter uncertainties. This probability, Pr(p), is defined

to be:

Pr(p) =

Z

V

I

h
G(v), K

i
Pr(v)dv (7.12)

where G is the plant, K is some candidate controller, V is the space of possible parameter

variations, v 2 V is a point in V , and Pr(v) is the probability density function over the

parameter variations. I[·] is the binary indicator function that equals 1 if G(v) and K form

an acceptable system and 0 if not. The formation of an acceptable system configuration

corresponds to the event p occurring.

A stochastic optimization problem is formulated by defining a cost function, J ,

J = f

⇣
Pr(p1), . . . ,Pr(pn)

⌘
, j = 1 . . . n (7.13)

where each element describes the probability that a given plant-controller pair meets some

metric of importance to the designer. A search over compensator configurations K(d), where

the compensators are parameterized by some vector d 2 D, with D ✓ R
nd is pursued along

with an evaluation of the cost function J

⇣
K(d)

⌘
= f

⇣
Prd(p1), . . . ,Prd(pn)

⌘
, j = 1 . . . n
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allows for us to find the best compensator for our parametrically-uncertain plant. Each

Prd(pj) arises from:

Prd(pj) =

Z

V

Ij

h
G(v), K(d)

i
Pr(v)dv (7.14)

which can be evaluated using Monte Carlo techniques, turning this integral into the following

summation to get an estimate of the integral’s value as:

P̂rd(pj) =
1

N

NX

m=1

Ij

h
G(vm), K(d)

i
(7.15)

Ĵ

⇣
K(d)

⌘
= f

⇣
P̂rd(p1), . . . , P̂rd(pj), . . . , P̂rd(pn)

⌘
, j = 1 . . . n (7.16)

and from the law of large numbers, the probability estimate Ĵ approaches its true value,

J , as the number of Monte Carlo samples approaches infinity [12, 14]. A very attractive

aspect to this general approach is the following: the accuracy of the probability estimate is

not dependent upon the order of the plant or candidate controller. A drawback, however,

is that we cannot make any a priori guarantees related to meeting stability or performance

requirements using these methods. All that we can do, using some results from probability

theory that will be provided momentarily, is guarantee accuracy in the probability estimates,

along with confidence in these estimates, before executing this optimization. Establishing

bounds on estimate accuracy and confidence exploits the fact that probabilistic estimates

are generated using summations of indicator functions. The “Yes/No” nature of evaluating

whether our system is stable, and meets our defined performance requirements is key for

this. Section 7.2.3 addresses Monte Carlo sample bounds for this type of problem.

What all of this means, then is that we pose our problem as an unconstrained, stochastic

optimization problem. That is, we want to solve:

max
K(d)

f

⇣
P̂rd(p1), . . . , P̂rd(pj), . . . , P̂rd(pn)

⌘
, j = 1 . . . n (7.17)

s.t. d 2 D, D ✓ R
nd

where the controller variables are parameterized into a vector of length nd, and are not

bounded within the field of real numbers. The actual cost function that is used to solve

the probabilistic robust decentralized active vibration controller synthesis problem in this
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chapter will be detailed after we discuss our approach to determining how many Monte

Carlo samples are required to achieve certain levels of probability estimate accuracy and

confidence.

7.2.3 Theoretical Bounds on Probability Estimate Accuracy and Confidence

This section will present some probability inequalities that are essential for establishing

bounds on the accuracy and confidence of probability estimates generated using Monte Carlo

estimates. First, we define the probability estimate that a system is stable, as

P̂r(stable) =
1

N

NX

i=1

I

⇣
stable

���K�,i

⌘
(7.18)

where K�,i represents a sample drawn from the random interconnection sti↵ness matrix

defined by (4.3), and stability is with respect to the random system formed by (7.6). This

indicator function is constructed as

I

⇣
stable

���K�,i

⌘
=

8
><

>:

1, Re
⇣
�(Aprob)

⌘
< 0

0, otherwise
(7.19)

where Aprob is given in (7.6), formed each time a new K�,i is drawn. The probability inequal-

ities and bounds that are formed from them rely upon the fact that we are using indicator

functions to judge the acceptability of certain controller/system pairs. Furthermore, these

inequalities are key tools used for determining the minimum number of samples required to

compute the reliability of the estimate given by (7.18).

The reliability of an estimate is measured in terms of the closeness of P̂r(stable) to

Pr(stable), which is the true probability of stability. Thus, given some ✏ 2 (0, 1), we want to

make sure that the event

|P̂r(stable)� Pr(stable)|< ✏ (7.20)

holds with adequately high probability. We refer to this adequately high probability as a

confidence. We notice something about the accuracy and confidence in our estimates: if ✏

is chosen to be too large, even with high confidence in our estimate, we introduce noise into
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our optimization problem. This was pointed out by Marrison, Wang, and Stengle in their

papers [32, 31, 12]. Therefore, it is important that we try to account for this, as we could end

up searching for a solution for longer than required, or end up with an inaccurate solution

altogether. At the same time, the computational cost that accompanies high accuracy, high

confidence estimates must also be balanced. We discuss these considerations in further detail

later in this chapter.

We develop the number of Monte Carlo estimates, embedded within the cost function

that is evaluated during genetic algorithm optimization, using the Cherno↵ bound [14]. The

Cherno↵ bound is given by

Theorem 18 (Cherno↵ bound). For any ✏ 2 (0, 1) and � 2 (0, 1), if

N � 1

2✏2
log

2

�
(7.21)

then, with probability greater than 1� �, we have |P̂r(stable)� Pr(stable)|< ✏.

Proof. The Cherno↵ bound follows from direct application of the Hoe↵ding inequality to

the random variables x1, . . . , xN , defined as

xi = I

⇣
stable

���K�,i

⌘
=

8
><

>:

1, Re
⇣
�(Aprob)

⌘
< 0

0, otherwise
(7.22)

for i = 1, . . . , N . Since xi 2 [0, 1], letting sN =
P

N

i=1 xi and applying the two-sided Hoe↵ding

inequality [81, 14], we get the Cherno↵ inequality

Pr
n
|sN � E(sN)|� ✏

o
 2e�2✏2/N (7.23)

where E(sN) is the expectation of the random variable sN . Through observing that

P̂r(stable) = sN/N and E

⇣
P̂r(stable)

⌘
= Pr(stable), we have

Pr
n
|P̂r(stable)� Pr(stable)|� ✏

o
 2e�2N✏

2
(7.24)

where the bound given previously follows. Q.E.D.

A parametric plot that shows the number of Monte Carlo samples, N , required to achieve

certain levels of estimate accuracy and confidence, is shown in figure 39. From figure 39,
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Figure 39: Cherno↵ bounds as a parametric of accuracy (✏) and confidence (1 � �). This

plot illustrates how accuracy is more expensive than confidence. Additionally, this plot aids

in a later discussion on probability estimate accuracy and computational complexity.
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one thing that we can infer is that confidence is much cheaper than accuracy, using these

bounds. This is evidenced by the tight spacing between the 90% and 99.9% confidence lines

on this log-log plot.

The Cherno↵ bound given by theorem 18 is used for both synthesis and analysis of

probabilistic robust decentralized controllers in this chapter. These bounds help us establish

accuracy and confidence in the probability estimates generated during controller synthesis

and analysis. Indicator functions are constructed for calculating a probability estimate of

the random controlled system being stable. Similarly, we develop another indicator func-

tion for calculating the probability that a certain performance requirement has been met.

Development of the performance indicator function is covered in section 7.3. Before getting

into the performance function that we construct, we will state the genetic algorithm settings

used in this chapter. Choices for many of these settings will be justified by the discussions

in section 7.3.

7.2.4 Genetic Algorithm Settings

The settings and functions in table 2 were used for genetic algorithm-based optimization

in this research. Genetic algorithm populations of 45 were used for all optimizations. This

choice will be detailed in the sections to follow, as the computational complexity of the

stochastic cost function used in this thesis was considered along with available computing

resources.
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Table 2: Genetic Algorithm Settings

Population Data

Population 45

Elite Children 9

Crossover Children 29

Mutation Children 7

Selection, Crossover, Mutation Functions

Selection Stochastic Uniform [79]

Fitness Scaling Fitness Scaling Rank [79]

Crossover Crossover Scattered [79]

Mutation Gaussian Mutation [79]

Stopping Conditions

Generations 400

Cost Function Limit 100

Cost Function Tolerance 0.001

Stall Generations 40

Time Limit (Actual) 120 hours
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7.3 FORMULATING THE PROBABILISTIC DECENTRALIZED

DYNAMIC OUTPUT FEEDBACK SYNTHESIS PROBLEM AS A

STOCHASTIC OPTIMIZATION PROBLEM SOLVED USING A

GENETIC ALGORITHM

The performance test that we want our system to pass was given by (4.50), where the transfer

function matrix mapping is between disturbance inputs and performance outputs for the

structure. Throughout this research, we have discussed methods that revolve around finding

a solution that is below, or minimizes in some way, the H1-norm of the dynamic system. We

are now dealing with a high-dimensional system with random uncertainty, where controller

synthesis involves the calculation of probability estimates. Accounting for the computational

complexity of any performance functions is a major consideration.

Matlab employs the method by Bruisma for calculating the H1-norm of a transfer func-

tion matrix [82]. This method is based on a relation between the singular values of the

transfer function matrix and the eigenvalues of a related Hamiltonian matrix. An alter-

native method is to solve an H1-norm feasibility problem by way of the KYP Lemma;

unfortunately, the time complexity of types of LMIs grow as O(n6) when using parsing soft-

ware such as YALMIP [66, 83]. The structure of KYP-type problems can be exploited to

increase e�ciency, as shown by Falkeborn, but this speed increase still makes this computa-

tion very expensive for problems containing hundreds of states [84]. The method developed

by Bruisma, and as implemented by Matlab, is significantly faster than LMI approaches.

This speed increase is especially realized with high-order models.

Before constructing a function that generates the probability estimate

P̂r

✓
||Gprob||1 �

⇤
���K�

◆
(7.25)

we must understand, approximately, how much time this function call requires for state space

systems of several hundred states. After all, the closed-loop system that we are studying in

this chapter has between 400 and 500 state variables, which depends upon the order of the

seed solutions found using the techniques in chapter 6. By running a small experiment, the
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computational cost of this function was investigated. The average amount of time required to

calculate the H1-norm of one hundred instances of stable, random 2-input, 4-output stable

state space systems was calculated. Five di↵erent model orders were considered: 100, 200,

300, 400, and 500 states.

The amount of time required to compute the H1-norm, using the method developed

by Bruisma, sees a polynomial increase with model order. This is shown in figure 40. For

state space models possessing 500 states, 2-inputs, and 4-outputs, it took (on average) 8.868

seconds to compute theH1-norm using Bruisma’s approach. These estimates were generated

on a computer possessing a 3.0 GHz Intel Core i7 processor. For most analysis problems

that we approach in control, this would not be an issue. However, the probabilistic robust

synthesis problem that we are developing in this chapter requires (ideally) that we generate

a large number of Monte Carlo samples for estimating (7.25). If we refer to figure 39, we see

that for an ✏ = 0.015 and confidence 1� � = 0.95, we would need approximately 8200 Monte

Carlo estimates to generate a reasonably-accurate estimate for (7.25). This function call

requires approximately 20 CPU hours. If we wanted to evaluate 50 candidate solutions with

this function call embedded within a genetic algorithm, this would require approximately

1000 CPU hours.

The term “CPU hour” refers to the amount of computing time required by a computing

resource. For processes that are parallelizable, we can reduce the actual hours by dividing

these expensive tasks up among all available resources. So, if we have access to a 24-core

computer, where each CPU has 3 GHz of processing power, this task would take approxi-

mately 40 hours. This implies that it would take almost two days for one generation in a

genetic algorithm to be evaluated, for ✏ = 0.015 and � = 0.05.
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Figure 40: Average H1-norm computation time versus state space order for a random,

2-input, 4-output, stable state space system.
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7.3.1 A Less Expensive H1-norm Performance Calculation

We can retain the probabilistic performance test defined by equation 4.50 in chapter 4 as

an a posteriori measure of success. We also retain our objective related to attenuating

the system response at low frequencies. It is clear that calculating the H1-norm of the

structure’s disturbance input to performance output mapping is not an e�cient way to solve

this problem.

For a transfer function matrix G(s), we have that the H1-norm of the transfer function

matrix is less than some positive scalar � if

G(s)HG(s)� �
2
I < 0, s = j!, ! 2 [0,1), [ {1}. (7.26)

This follows from

�̄(GH
G)  �

2 (7.27)

||G||1  � (7.28)

meaning that (7.26) is su�cient for checking that a given transfer function matrix G has

infinity norm less than �.

Next, we must discuss how we go about establishing our frequency grid. That is, at what

points do we want to check for this negative definiteness? As we will show momentarily,

computation demands can be significant should we attempt to compute the infinity norm by

constructing a very fine frequency grid. This choice also allows us to focus on a bandwidth

that we are most interested in.

7.3.1.1 Selecting a Frequency Grid In chapter 4 we showed how the disturbance in-

put and performance output matrices of a lightly-damped structure can be scaled in modal

coordinates by the magnitude of a filter function, evaluated at the natural frequency corre-

sponding with that structure’s mode, to achieve the end of approximate frequency weighting

for control design purposes.
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Since it is our desire to attenuate the system’s response at low frequency modes and by

exploiting the fact that the H1 norm of a lightly-damped structure will occur at one of its

natural frequencies (see section 5.6 of Gawonski [61]), we can choose to evaluate (7.26) at a

the closed-loop system’s natural frequencies. Thus, we have:

G(j!i)
H
G(j!i)� �

2
I < 0, i = [0, . . . , n] (7.29)

where each !i is a natural frequency of G. This means that this check must be performed

up to n times for a given G, where n is equal to the degree of the characteristic polynomial

of G.

Something fundamental is worth pointing out at this point. The transfer function matrix,

G 2 C
m1⇥r1 , where from chapter 3 these dimensions refer to the number of performance

outputs and disturbance inputs, respectively. This means that the term G
H
G 2 R

r1⇥r1

which in this research is only a 2 by 2 matrix. Computing the eigenvalues of this matrix

takes fractions of a millisecond using most numerical approaches. However, the transfer

function matrix Gprob, given by (7.6), is realized into its equivalent state space formulation

during algorithm execution since:

1. Generating random parametric uncertainty while in this physical state space form;

2. This is the basis in which we have elected to perform synthesis and analysis.

Since the closed loop plant order has between 400 and 500 states, this means that in order

to form:

Gprob(si) = Cprob(siI � Aprob)
�1
Bprob +Dprob (7.30)

we must invert a complex matrix (siI�Aprob) 2 C
n⇥n where n is in the range [400, 500], and

the subscript si is the complex variable j!i, which is each system natural frequency. This is

an expensive operation, especially when it must be performed for many frequencies and for

many instances of the random system.
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We recall that one of our control objectives was disturbance attenuation at low frequen-

cies. We want the system’s response to be small at the low frequency modes as the system

is excited by broadband disturbance inputs. We can therefore choose to evaluate:

G(j!i)
H
G(j!i)� �

2
I < 0, i = [0, . . . , nl] (7.31)

where nl < n, with n being equal to the dimension of the state space model specific to (7.6).

We choose nl to include to span half of the controlled model’s bandwidth. We note that

a stable system also has finite H1-norm, and so high-frequency modes are not completely

ignored.

Calculating the infinity norm across the bandwidth of the structure, at each natural

frequency, is still not an inexpensive procedure. Inversion of a 500 ⇥ 500 complex matrix

is expensive. To show this, 100 instances of random state space systems with 2 inputs, 4

outputs, and having orders of 100, 200, 300, 400, and 500 were generated and the average

amount of time to compute the

1. H1-norm using Bruisma’s approach;

2. Perform the calculation (7.26) across the entire bandwidth of the structure, only per-

forming (7.26) for eigenvalues that have complex parts;

3. Perform the calculation (7.26) up to half of the structure’s bandwidth, only performing

(7.26) for eigenvalues that have complex parts.

The result of these experiments is shown in figure 41. For a system with 500 states, we see

that by only evaluating the modes corresponding with complex-conjugate eigenvalues up to

half of the structure’s bandwidth, we are able to realize an approximately 8-fold decrease in

computation time. Using the extrapolated computation time provided earlier for the case

where we perform 8200 Monte Carlo evaluations, we see that one generation will require

approximately 113 CPU hours. On a 24-core computing node with 3 GHz processing power

per CPU, this suggests that one generation would require approximately 5 “actual hours”

for evaluation.
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Figure 41: Computation time comparison between Bruisma approach to H1-norm calcu-

lation with evaluation at lightly damped modes across the bandwidth of 2-input 4-output

stable state space systems.
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Figure 42: The set of systems with H1-norm below some scalar value � is a subset of the

stable systems, where both sets are generated by the same uncertainty distributions.

7.3.2 Final Cost Function used for Synthesis

The previous section was used for determining a good way to create a cost function that

evaluated the maximum response across all disturbance input/performance output channels

at low frequency modes in a manner that is not too computationally expensive. We must

strike a balance between probability estimate accuracy, confidence in this estimate, available

computing resources, and our ability to thoroughly investigate the solution space. To do

this, we recall from chapter 2 that a conditional independence exists between achieving

performance and stability. That is, finding a solution that has H1-norm below some level

is guaranteed to exist within the set of stable solutions. This is shown in figure 42. One

thing that we can say with certainty is this: the volume of stable solutions is most certainly

larger than the volume of solutions that achieve some H1-norm below some level. We want

to exploit this (obvious) property when implementing our final cost function. Thus, the cost

function that is used for this optimization problem is given in algorithm 4.
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Algorithm 4 Closed Loop Cost Function Formulation and Evaluation
1: procedure Closed Loop Cost Function Formulation and Evaluation

2: Load controllers #1 and #2.

3: Initialize stability and performance counters, Sc = 0, Pc = 0.

4: for i = 1 : Number of Monte Carlo Evaluations(Nmce) do

5: Generate a random interconnection sti↵ness matrix;

6: Form the closed loop system, Gprob, given by (7.6).

7: Perform stability test

8: if all real parts of �(Aprob) < 0 then

9: Sc = Sc + 1;

10: Calculate the natural frequencies of Aprob: |�(Aprob)|

11: Remove natural frequencies corresponding to purely-real eigenvalues, and form

a frequency grid at of natural frequencies that spans half of the controlled model’s band-

width, called ⌦0.5.

12: for ii = 1 : Number of frequency points in⌦0.5 do

13: Form

Gprob(j!i) = Cprob(j!iI � Aprob)
�1
Bprob +Dprob

14: if Gprob(j!i)HGprob(j!i)� �
2
I < 0 then

15: Pc = Pc + 1;

16: else

17: Return to beginning of outermost for-loop.

18: end if

19: end for

20: else

21: Return to beginning of outermost for loop.

22: end if

23: end for
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24: P̂r(stable) = 1
Nmce

Sc

25: P̂r(perf) = 1
Nmce

Pc

26: Cost = 1P̂r(stable) + 2P̂r(perf)

27: end procedure

The final cost function is defined to be Cost = 1P̂r(stable) + 2P̂r(perf) where 1 and

2 are chosen as positive scalars. We chose 1 = 60 and 2 = 40 so that the maximum cost

function value would be 100. This implies that our optimization problem is being cast as:

max
K1,K2

1P̂r(stable) + 2P̂r(performance)

s.t. K1 2 R
vk1 , K2 2 R

vk2 .

(7.32)

Furthermore, vk1 and vk2 correspond to the number of unique controller variables that we

must search over. These sizes indicate that the controller variables are vectors. This is a

requirement for genetic algorithm-based optimization. Therefore, the controllers are both

vectorized and reconstructed as dynamic systems during optimization.

Two aspects to this cost function pseudo code should be recognized:

1. The probability of meeting performance requirements is a subset of the probability of

being stable. As a result of this, e↵ort is not wasted looping through our frequency grid

given by ⌦0.5. This portion of the cost function contains the most expensive computation:

repeated calculation of Gprob(j!).

2. Another exit criterion exists within the check for positive definiteness. If it is discovered

that at any natural frequency, (7.26) is violated, we exit this loop and move on to the

next random instance, concluding that the performance test failed.

The cost function given by algorithm 4 was evaluated for random instances of the actual

dynamic system under study. Therefore, most of the closed-loop poles of the system were

lightly damped. Some, but not all, of the random plant instances met our prescribed per-

formance level given by �
⇤, as defined in chapter 4. Therefore, some of the exit criteria

were invoked. It was discovered that this cost function, on average, required 0.57 seconds

206



to execute. Using this information, the parametric plot shown in figure 43 was created for

a computer possessing a 3 GHz Intel i7 processor. Recall the considerations that we must

balance for this stochastic optimization problem:

1. Available computing resources;

2. Choosing an adequate probability estimate and accuracy, so as to reduce “noise” in our

probability estimates;

3. Ability to thoroughly search the solution space.

This optimization problem was solved on shared memory partitions located at the University

of Pittsburgh Center for Research Computing, where each node had 24 Xeon Gold 6126 2.6

GHz Processors and 192 GB of (shared) RAM. For this research, we did not enable commu-

nication across computing nodes, and so optimization around a certain seed controller was

limited to only one node. Because of this, it was decided that genetic algorithm populations

would be set to have 45 candidate solutions. On a 24-core node, we can roughly estimate

that the approximate actual run time in figure 43 would be doubled, since genetic algorithm

parallelization is accomplished by evaluating individual candidates solution cost functions

on separate CPUs.

These considerations related to available CPUs, absence of cross-node communication,

and cost function complexity led us to select

|P̂r(stable)� Pr(stable)| < 0.04 (7.33)

|P̂r(performance)� Pr(performance)| < 0.04 (7.34)

with 95 % confidence in these estimates. This means that the number of Monte Carlo

samples required, Nmce � 1153. In the equations above, ✏ = 0.04 and 1 � � = 0.95. Using

the parametric shown in figure 43 one generation possessing 45 candidate solutions can be

evaluated in approximately 21.5 minutes. Note that this estimate is likely to be under-

conservative once we find ourselves in good solution spaces, since we will likely exist within

the performance subset within figure 42. Conversely, candidate solutions that are unstable

will take little time to evaluate. This analysis was performed to understand how to make cost

207



Figure 43: Probability estimate accuracy, 95% confidence, parametric with available com-

puting cores and average computation time required to execute the cost function given by

algorithm 4 for one Monte Carlo sample.
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function and probability estimate accuracy choices, while balancing these choices against the

available computing resources.

7.4 ON REDUCING THE NUMBER OF CONTROLLER VARIABLES

Our seed controllers each have the structure

K ⇠

2

4 Ak Bk

Ck Dk

3

5 (7.35)

with dimensions Ak 2 R
nk⇥nk , Bk 2 R

nk⇥mk , Ck 2 R
rk⇥nk , Dk 2 R

rk⇥mk .

It is well-known that dynamic output feedback H1 synthesis tends to yield controllers

that are the same order, or greater than that of the plant [63]. However, we also know that

reduced rank controllers can be sought by imposing rank constraints (which are nonconvex)

on the controller variables in a semidefinte program. Such constraints are not always nec-

essary, however, they can be incorporated into the µ-synthesis problem when solving the

controller synthesis problem as an LMI [63, 85, 86].

Nevertheless, we do not impose these constraints during our µ-synthesis process while

generating an initial population of robust dynamic output feedback H1 controllers for this

problem. A modest reduction in the size of the nominal controllers would not significantly

reduce the computational complexity of the stochastic optimization problem that we need

to solve. If we denote our optimization variables as v, we observe that the controller K given

above has

v = n
2
k
+ nkmk + rknk + rkmk (7.36)

variables. Generally, and for the problem that we are solving, mk, which matches the number

of sensors used in feedback, is not all that large. Furthermore, rk, which matches the number

of actuators used with our feedback control laws, is not all that large, either.
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The one variable that can be large, especially with structural vibration control problems, is

the order of the controller, nk. We can safely say that

nk > mk > rk. (7.37)

Clearly, this has ramifications on the complexity of the stochastic controller synthesis prob-

lem that we are trying to solve. We can rewrite (7.36) as

v = n
2
k
+ nk(mk + rk) + rkmk (7.38)

and can call v1
.
= n

2
k
, v2

.
= nk(mk + rk), and v3

.
= rkmk. We can then say that

v1 � v2 > v3 (7.39)

which leads us to ask the question that plagues so many control theorists and has motivated

us, over time, to pursue reduced-order controllers: how can we reduce the order of this

optimization problem?

Again, we are dealing with a stochastic optimization problem in a high-dimensional

solution space. We do not want to perform order reduction on our controller orders given

by nk, since we know that we are starting in a solution space that has robust solutions. We

observe, however, that a simple change of basis can be used on the controller basis can help

with this problem. That is, we can go into a modal basis to restrict the variables that we

must search over within the controller dynamics matrix (generically given by Ak).

7.4.1 A Canonical Similarity Transform for Reducing the Number of Optimiza-

tion Variables

It is a fundamental fact that any state space system is invariant under any nonsingular sim-

ilarity transformation [87]. The same argument works for transformations for the controller

and the resulting linear fractional transformation between some plant and this controller.

That is, we have

K ⇠

2

4 A B

C D

3

5 = K̃ ⇠

2

4 T
�1
AT T

�1
B

CT D

3

5 (7.40)
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and since K = K̃, we have for some system G, that Fl(G,K) = Fl(G, K̃). This furthermore

implies that ||Fl(G,K)||1= ||Fl(G, K̃)||1. Since we have equivalence between the linear

fractional transformations we can also say that these complex functions share the same

characteristic equation. Since their characteristic equations are equivalent, roots to these

characteristic equations are equivalent, which implies that the eigenvalues of their state

space realizations are equivalent.

Thus, we can calculate the eigenvectors of the controller K and can convert this sys-

tem into its complex modal form. By the arguments just provided, the closed-loop system’s

eigenvalues and frequency response functions are invariant under this transformation. Note

that leaving the controllers in their complex modal form works specifically for the stabil-

ity and performance requirements that have been defined in this thesis — if time-domain

performance requirements are to be entertained/required, the controllers would have to be

converted into a purely-real basis. This can be done using the modal form given in Linear

System Theory and Design by Chen [87].

A distinct advantage that we get in our situation is that we have just reduced the number

of optimization variables to

ṽ = nk + nk(mk + rk) +mkrk. (7.41)

That is, we have gone from optimization variables that were O(n2
k
) to O(nk)! For high-order

controllers, and systems, this reduction is significant.

In fact, we see that for mk = 4 and rk = 2, the number of variables, v, as a function

of controller order and accounting for a decentralized structure, will increase as shown in

figure 44. Recall that at the end of chapter 6, we said that we would highlight two of the

successful seed controller cases. They were controller pairs 2 and 7. which, when in the basis

resulting from µ-synthesis, and using (7.36), means that we have 50,904 free variables for

controller pair #2 and 110,856 for controller pair #7. This would be a very large solution

space to have to search over. By converting the controllers into their modal form, we can

realize the significant reduction illustrated in figure 44, and shown exactly in table 3 for the

featured controller pairs. Figure 44 helps us see that even higher order controllers can still
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Figure 44: Reducing the seed controllers to a modal basis dramatically reduces the number

of controller variables required during optimization.
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Table 3: Unique Controller Variables

Pair K1 (nk,1,mk,1, rk,1) K2 (nk,2,mk,2, rk,2) General From Modal Form

2 (100, 2, 1) (200, 2, 1) 50,904 1,204

7 (148, 2, 1) (296, 2, 1) 110,856 1,708

be solved using the techniques developed in this chapter. As it will be shown momentarily,

good solutions were found in a reasonable amount of time using these approaches.

7.4.2 Using Modal µ-Synthesized Seed Controllers for Stochastic Synthesis

By converting each controller into their modal form, we can approach the stochastic synthesis

problem by searching over the real and complex parts of the controller system matrices. It

is in this reduced, fundamental basis, where we can realize the most compact realization,

making our high-dimensional search possible. Solving the problem in this basis is not without

challenges, however. Specifically, these challenges are:

1. The eight controller pairs, described in table 1, are generally of di↵erent model order.

This becomes a concern if we wish to include all controllers as initial population members

in one genetic algorithm.

2. All controller pairs are likely to have di↵erent numbers (and locations) of purely-real

eigenvalues. For real/complex eigenvalues we know that each has an associated real/com-

plex eigenvector, meaning that the corresponding rows/columns in the B and C matrices

will have purely-real or real/complex entries.

3. And lastly, which is related to the presence of di↵erent numbers of purely-real eigenvalues,

how can we include an intelligence into our synthesis process that allows two purely-real

eigenvalues to converge and depart from the real-axis, thus becoming a complex conjugate

pair?
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These obstacles present interesting opportunities, for future research, as we fashion algo-

rithms that are capable of transforming our dynamic controllers into forms that can be used

— and searched over — using algorithms specific to artificial intelligence and optimization

methods. Theoretically, the initial population matrix could be zero-padded to bring our

initial population members up to the maximum dimension of the set of µ-synthesized con-

trollers to address the first challenge. This option was not pursued. To address the second

and third challenges, we could have developed an algorithm that allowed complex conjugate

pairs of eigenvalues to converge/diverge along the real axis, but developing this approach

with sound theory was not pursued at this time. For example, if 5 purely real-valued eigen-

values are all next to one another on the imaginary axis, how do we make a choice about

which eigenvalues combine to form complex conjugate pairs? How do we handle the rapid

jump/discontinuity that can occur by immediately allowing a pair of real-valued eigenvalues

to assume a pair with low damping? Generally, genetic algorithms are well-suited for prob-

lems where the objective function is discontinuous and discrete jumps in variable values are

normal, however, it was not obvious — at this point in time — that spending the e↵ort to

encode this capability would lead to a significant gain.

Thus, the path forward involved the following:

• Initializing random populations around each µ-synthesized controller and executing our

searches as completely separate optimization problems. The orders of the decentralized,

dynamic compensators were fixed to equal that of each seed of the initial population.

This architecture is depicted in figure 45.

• The number of purely-real eigenvalues for each controller was restricted to equal the

number of purely-real eigenvalues specific to the µ-synthesized seed controllers.

And so we can see that, already, we have made the following restrictions for our random

search:

1. We are not combining all µ-synthesized controllers into one initial population, thus re-

stricting their ability to cross-over with one another;
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2. In each separate search space, and generally, we are restricting the order of the controllers

to be equal to that of the µ-synthesized seed controllers;

3. We are restricting the number of purely real-valued eigenvalues equal to the number of

purely real-valued eigenvalues specific to each µ-synthesized seed controller.

These restrictions bring us to a fundamental assumption that is being made with respect to

our approach:

Assumption 2. With the restrictions 1), 2), and 3) made above, a set of probabilisitic robust

controllers that maintain the 1-norm of our system below some level exists for the random

uncertainty set prescribed for the interconnection sti↵ness element.

And so we move forward with execution, leveraging access to supercomputing resources in

our attempt to test assumption 2 in our search for probabilistically-robust, decentralized

controllers that maintain the 1-norm of our system below some level.

7.5 RESULTS

In chapter 6, as well as at the beginning of this chapter, we said that we would focus on

presenting the results, and analyzing further, those probabilistic decentralized controllers

resulting from the second and seventh seeds. In table 4, these final solutions are given by

Solutions 1 and 2. We found that each of these solutions achieved the prescribed stability

and performance objectives over 99% of the time, with 95% confidence that these estimates

are within 0.01 of the true probability. We proceed with analyzing how these controllers

performed by comparing their performance around the nominal plant to the seed solutions,

showing their random maximum singular value plots against the open-loop plant, and lastly

analyze the probabilistic robustness against varying levels of random uncertainty. We can

make a few comments about the results shown in table 4:

• All solutions converged due to the cost function tolerance criterion. The algorithm stops

if the average relative change is less than the prescribed tolerance (set to  0.001) for
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Figure 45: Genetic algorithm based optimization was pursued around individual µ-

synthesized seed controllers. Communication between computing nodes was not enabled.

Eight seeds were used, meaning eight nodes, each with 24 cores, were involved in searching

for probabilistic robust decentralized controllers in this research.

Table 4: Optimization algorithm performance and convergence.

Algorithm Performance Data

Solutions µ-Seed Pair K1 Order K2 Order Final Cost Generations CPU Hours

1 2 100 200 99.653 64 1200

2 7 148 296 99.826 42 1464

3 4 100 248 98.826 84 1464

4 7 148 296 95.299 78 2448
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the best cost function value, over the prescribed number of stall generations (set to 40).

These settings are given in table 2.

• The solutions that appear to be the most robust converged in only 64 and 42 generations.

This suggests that we either started in, or quickly found our way to a rich solution space.

• With more computing resources, a broader solution space can be investigated while also

reducing the algorithm runtime. Furthermore, these new, probabilistic-robust solutions

can be placed into a subsequent optimization problem to design against other metrics, if

the designer so chooses.

Monte Carlo sampling using Cherno↵ bounds for probabilistic tests and degradation function

construction were set according to: ✏p = 0.01, �p = 0.05, leading to the requirement that

we generate at least 18, 445 samples for probability estimates that will be within 0.01 of the

true probability, with 95 % confidence in this estimate. Recall that for synthesis, we had

Nmce = 1, 153.

7.5.1 Controlled System Performance

We will briefly examine the closed loop performance of the probabilistic robust solutions

#1 and #2, with respect to the nominal plant, and also compare performance to the µ-

synthesized seed solutions. These results are shown in figures 46 and 47. Note that since

the µ-synthesized solutions were used as seeds in this optimization problem, these solutions

were evaluated against the same cost function. The resulting solutions, given by solutions

#1 and #2, are therefore more probabilistically-robust against the design criteria that was

prescribed for this optimization problem.
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Figure 46: Solution #1, as described in table 4. These maximum singular value plots show

the disturbance input/performance output mapping for the open-loop system and both the

probabilisitic-robust and associated µ-synthesized seed closed-loop systems. These maximum

singular value plots are for the nominal plant, where the interconnection sti↵ness modulus

E0 = 200GPa. Around the nominal plant, with the exception of the second mode and a few

modes in the mid-frequency range, the probabilistic robust solution tends to perform better

than the µ-synthesized solution.
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Figure 47: Solution #2, as described in table 4. These maximum singular value plots, map-

ping the disturbance inputs/performance outputs are around the nominal plant, where the

interconnection sti↵ness modulus E0 = 200GPa. Similar to solution #1 shown in figure 46,

the probabilistic robust solution out-performs the µ-synthesized solution with the exception

to the second mode.
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Table 5: Solutions #1 and #2 Performance

Stability and Performance of the “Nominal Uncertainty” Case

Solutions K1 Order K2 Order Final Cost P̂r(stable) P̂r(perf) E(||Gprob||1)

1 100 200 99.653 0.9934 0.9934 -46.52 dB

2 148 296 99.826 0.9933 0.9933 -46.47 dB

7.5.2 Stability and Performance Tests

The probability of stability (estimate) and performance (estimate) for solutions 1 and 2 are

shown in table 5. The probability of being stable, of meeting the performance requirement

that ||Gprob||1 �
⇤, are shown. The H1-norm was calculated using Bruisma’s approach. In

this manner, we are not limiting ourselves to checking within the bandwidth that we defined

in executing algorithm 4 for synthesis. One thing that we see is that every stable configura-

tion meets these performance requirements. The equivalence of the estimated probabilities

illustrate this. Furthermore, the H1-norm was calculated using Bruisma’s approach [82],

where we clearly see that we have achieved our objective of finding controller solutions such

that

Ptest
.
= P̂r

✓
||Gprob||1  �

⇤
���K�

◆
� 1� ✏p (7.42)

where we chose �⇤ = �45.4 dB and ✏p = 0.05. The stability test is given by:

Stest
.
= P̂r

✓
Re
⇣
�(Aprob)

⌘
< 0

���K�

◆
� 1� ✏s (7.43)

where we chose ✏s = 0.02. We have passed these stability and performance tests with

confidence of 95% in our probability estimates.
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7.5.3 Comments on Probabilistic Robust Solutions 1 and 2

Tables 4 and 5 summarize the data related to, and performance of, the two solutions that

are being featured in this chapter. Some additional comments on these controller solutions

are warranted.

Probabilistic Robust Solution #1: The first solution was generated from the µ-synthesized

controllers specific to seed #2 (see table 1). µ-synthesis via D/K iterations was executed

around the bounded uncertainty E�,1 = [0.01E0, 2E0].

Probabilistic robust solution #1 has the same number of controller variables as the

µ-synthesized seed solution: K1 has 100 states and K2 has 200 states.

For the probabilistic robust solution, the worst case H1-norm within stable set was

-46.24 dB. The expected value of the H1 norm was -46.52 dB.

Probabilistic Robust Solution #2: The second solution, which we call solution #2, was

generated from the µ-synthesized controllers specific of seed #7 (see table 1). This case

is particularly interesting, since µ-synthesis was executed around the bounded uncertainty

E�,2 = [0.05E0, 1.5E0], yet a probabilistic robust solution, for a random uncertainty set

that was much larger than the structured norm-bounded set used for µ-synthesis was found

around this seed solution.

Probabilistic robust solution #2 has the same number of controller variables as the

µ-synthesized seed solution: K1 has 148 states and K2 has 296 states.

For the probabilistic robust solution, the worst case H1-norm within stable set was

-46.23 dB. The expected value of the H1 norm was -46.46 dB.

Both the worst-case performance, as well as the limit on the expected value, are due

to our diminished ability to a↵ect the fourth mode in this system. This is due to the fact

that this mode exists, approximately, in the uncontrollable subspace for the control input

locations that we have chosen.
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7.5.4 Random Maximum Singular Value Plots of the Open and Closed Loop

Systems

The random maximum singular value plots for each of these solutions are given in figures 48

and 49. Only 100 instances of the random open and closed loop plants were generated for

the purpose of generating these figures. These random maximum singular value plots show

the e↵ect that the random interconnection uncertainty has on the performance of the plant,

and may help with extrapolating the utility of these techniques to real systems and the

uncertainty that is seen when test data is generated.

7.5.5 Degradation Functions of the Closed-Loop Systems

Just as was done in chapter 5, degradation functions of the closed loop systems were con-

structed by building, and evaluating, the systems generated from the interconnection sti↵ness

uncertainty sets:

B�(a)
.
=
�
K� 2 R

4⇥4 : E� ⇠ f�(a)
 

f�(a) ⇠ N (E0, a0.16E
2
0)

a 2 [0, 10]

(7.44)

where a = 1 corresponds to the value used for controller synthesis using algorithm 4. We

refer to this value as the variance inflation factor. Notice that we have not placed any kind

of hard-bound on these sets. This is something that is also noted for the case where a = 1.

In doing so, we include some members of the uncertainty set that:

• Have negative interconnection sti↵ness values. This type of system can be open-loop

unstable depending upon how large the interconnection sti↵ness is with respect to the

system’s open-loop ability to dissipate energy. This is a situation where energy is actually

entering the system through the interconnection sti↵ness element, or a situation where

the slope of the stress/strain curve of the sti↵ness element is negative.

• Instances where the interconnections sti↵ness element is approximately equal to zero will

be included.
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Figure 48: Solution #1, as described in table 4. This random maximum singular value plot

was generated for both the open and closed-loop systems, for the first probabilistic robust so-

lution featured in this chapter. Interconnection modulus uncertainty was generated from the

distribution N (E0, 0.16E2
0), which was the uncertainty used for synthesis. This probabilistic

robust solution was found to maintain stability 99.34% of the time, while maintaining the

H1-norm below our objective of -45.4 dB for 99.34% of the random plants generated by this

uncertainty. The equivalence between these probabilistic performance metrics implies that

we only failed our performance requirements for those closed-loop plants that were unstable.

This solution is probabilistically-robust against the random interconnection uncertainty that

was defined for synthesis.
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Figure 49: Solution #2, as described in table 4. Interconnection modulus uncertainty was

generated from N (E0, 0.16E2
0) for synthesis and analysis. This probabilistic robust solution

was found to maintain stability 99.33% of the time, while maintaining the H1-norm below

our objective of -45.4 dB for 99.33% of the random plants generated by this uncertainty.

The same insight is realized with respect to the conditional dependence between stability

and performance as for solution #1. This solution is probabilistically-robust against the

random interconnection uncertainty that was defined for synthesis.
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The stability and performance degradation functions were constructed by performing the

following calculations as we increased the variance inflation factor, meaning that K� was

generated by the support given by (5.132) as a was increased:

1. Checked for stability by calculating P̂r

✓
Re
⇣
�(Aprob)

⌘
< 0

���K�

◆
.

2. Checked for performance by calculating P̂r

✓
||Gprob||1 �

⇤
���K�

◆
.

These degradation functions for solutions 1 and 2 are shown in figures 50 and 51. The

probability estimates that were generated for the construction of these degradation functions

is included in appendix G.

7.5.6 On Calculation of Probabilistic Robust Stability and Performance Mar-

gins

In a manner congruent with our approach to defining probabilistic stability and performance

margins in chapter 5, we can do the same for these solutions. Since this concept was covered

earlier, we will not do this, here. Meeting some prescribed margins for probabilistic stability

and performance, with respect to variance inflation factors, was not defined/prescribed as

a measure of success in this technique. All insights developed for this concept in chapter 5

can be transferred and applied to these results.

7.5.7 A Special Case: No Interconnection Sti↵ness Element

One special case is examined as we conclude this chapter: the case where no interconnection

sti↵ness element is present. This is a situation where the boundary conditions of our struc-

tures are drastically di↵erent, leading to two cantilevered beams, as opposed to a clamped-

clamped, decentrally-controlled beam configuration. Finding decentralized controllers that

can achieve stability good performance both in a coupled and uncoupled configuration was

a goal of Lim, Babuska, Craig, Su, Young, Siljak, and many others that work in the area of

decentralized structural control, and decentralized control, generally [6, 7, 20, 21, 9]. Using

the approaches detailed in this current chapter, as well as chapter 6, both solutions 1 and 2
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Figure 50: Solution 1 degradation functions. The data that was used to construct this

function is included in appendix G. These results show that if the system is stable it almost

always meets the performance specification for the systems used in this research.
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Figure 51: Solution 2 degradation functions. The data that was used to construct this

function is included in appendix G.
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remain stable when the substructures are completely decoupled. For the case where K� = 0,

we can call the resulting system configuration originally given by (7.6), Guncoupled. We find

that

• Solution 1 — ||Guncoupled||1= �45.34 dB

• Solution 2 — ||Guncoupled||1= �32.09 dB

which shows that solution 1 barely misses our originally-prescribed performance objective,

with �
⇤ = �45.4 dB. This result was somewhat expected for this synthesis process. By

using E� ⇠ N (E0, 0.16E2
0) as the distribution that characterized the interconnection modu-

lus, we are likely to sample random instances of the plant that have close to zero, or slightly

negative, interconnection sti↵ness matrices. Therefore, the (almost) decoupled cases were

accounted for during synthesis, leading to this result. In chapter 2, we discussed strongly-

coupled systems in decentralized control. Due to the intrinsic strength of the interconnections

in structures, we almost always find ourselves dealing with what can be considered a strongly

coupled system. Synthesis of decentralized controllers for strongly coupled systems reduces

to developing, or applying, decentralized control synthesis strategies that account for the

neighboring subsystem’s dynamics. In this manner, controller synthesis for strongly coupled

systems is really a co-synthesis strategy. Early researchers in decentralized structural control

did not initially approach controller synthesis in this manner, leading to decentralized con-

trollers that led to the inability to meet performance requirements, or worse — instability

of the superstructure.
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Figure 52: Maximum Singular Value Plot of Uncoupled, Open and Closed-Loop Systems —

Solution #1.
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Figure 53: Maximum Singular Value Plot of Uncoupled, Open and Closed-Loop Systems —

Solution #2.
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7.6 CHAPTER SUMMARY

In this chapter, we have discussed the following:

1. Stochastic optimization using genetic algorithms, including the algorithms and probabil-

ity theory that is used for solving the controller synthesis problem in this research.

2. Probabilistic decentralized dynamic output feedback controller synthesis for structures

coupled by a random interconnection element, which included approaches for:

• Cost function construction, including a discussion on computational cost/complexity

and how parallel computing makes these high-dimensional problems tractable.

• Controller synthesis in complex modal coordinates, which leads to a significant re-

duction in the optimization variables in this problem.

3. Discussion of the results obtained using this new approach to decentralized controller syn-

thesis. Several probabilistic robust, decentralized, dynamic output feedback controllers

were successfully synthesized that attenuated the H1-norm of the structure below the

prescribed level �⇤ with probability greater than the 1�✏p determined in chapter 4. Two

of the solutions that were found were highlighted.

We showed in this chapter by using seed results from loop-at-a-time µ-synthesis via D/K

iterations and subsequently by constructing cost functions that balance performance re-

quirements and computational complexity for high-order system, that it is possible to find

probabilistic robust, decentralized dynamic output feedback controllers for lightly-damped

structures possessing random interconnection uncertainty. The results reported in this re-

search show promise in these techniques, revealing that probabilistic solutions were found

in as little as 1200 CPU hours. Since stochastic optimization using genetic algorithms is a

parallelizable process, it is certainly feasible for larger problems to be tackled using these

approaches. In this research, solution 1 was found after 50 hours on a 24-core machine.

In addition to being able to attempt larger controller synthesis problems for higher-order

structures/controllers, additional performance requirements can be included during synthe-

sis that may be of importance to the designer. This approach is not limited to only using

231



the H1-norm as a performance metric. However, the controller basis must be chosen to be

di↵erent if time-domain performance requirements are to be included.
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8.0 CONCLUSIONS AND FUTURE WORK

The overarching goal of this research was to develop novel, probabilistic-robust decentralized

active vibration control strategies for structures possessing random interconnection uncer-

tainty. This research was accomplished by meeting the following objectives:

1. Evaluate stability and performance of a composite controlled structure possessing prob-

abilistic interconnection uncertainty.

2. Achieve structural controller performance requirements when controlled substructures

are joined in the presence of interconnection uncertainty.

3. Calculate probabilistic stability and performance margins.

All three of these objectives have been met for controller design, and the associated models,

for the full-state and dynamic output feedback control design and synthesis approaches that

were developed in this research.

This research developed probabilistic decentralized active vibration control design and

synthesis techniques for structures possessing random parametric uncertainty. The uncer-

tainty and complexity of the structures studied in this thesis were concentrated at the point

where two portions of a structure adjoin — the structural interconnection. This uncertainty

was characterized using random variables. Control design and synthesis approaches that

enforce decentralized controller architectures, while accounting for random uncertainty at

structural interconnections, were developed for the following canonical control cases:

1. Static full-state feedback control;

2. Dynamic output feedback control.
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Control objectives involved achieving some level of stability and performance in probabil-

ity. The performance objectives in this thesis involved two things, that are not completely

exclusive of one another: 1) the attenuation of H1-norm mapping the disturbance inputs

to performance outputs, and 2) attenuation of low-frequency vibration modes. Ancillary to

these stability and performance objectives was the development of analysis tools that en-

able the designer to evaluate the robust stability and robust performance of the synthesized

controllers, given that the plant uncertainty is random.

Chapter 5 showed how we can design and synthesize a decentralized, full-state feed-

back H1-controller for a lightly damped system with random interconnection uncertainty

by solving a high-dimensional, structure-constrained semidefinite program with linear ma-

trix inequality constraints. We also showed that the performance output function for this

controller can be designed in complex modal coordinates, and showed that the resulting

controller will be real. This approach does not require the designer to make any simplifying

assumptions about the damping models used for the system under consideration. Each LMI

constraint in this high-dimensional semidefinite program represents a random instance of

the uncertain plant under consideration. The resulting controller design approach allows

the designer to account for random uncertainty, perform control design in complex modal

coordinates, and enforce a decentralized controller structure. If a controller exists, it is

guaranteed to meet H1-norm performance requirements with a priori guarantees that this

controller will meet the performance specification with a certain probability and confidence

in this probability.

Chapter 6 showed how we can use loop-at-a-time µ-synthesis via D/K iterations to

synthesize decentralized robust controllers, where these controllers are robust against some

prescribed structured norm-bounded parametric uncertainty in the interconnection sti↵ness

matrix. By virtue of how µ-synthesis via D/K iterations works, and provided the structured

singular value is less than 1, we are able to assemble collections of controllers as a result

of, and during, the D/K iteration process. These controllers share a common trait — they

are robust against the uncertainty that we have modeled. µ-synthesis via D/K iterations is

a non-convex controller synthesis strategy that has no guarantee of being globally optimal.
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Nevertheless, the D/K iteration process is capable of assembling robust solutions. We then

show how we can exploit both the sub-optimality and robustness of the collection of solutions

found using µ-synthesis via D/K iterations. These solutions are then used as seed solutions

in a high-order stochastic optimization problem in chapter 7 as we develop a technique for

synthesizing probabilistic robust decentralized dynamic output feedback controllers.

Chapter 7 developed an approach for synthesizing decentralized controllers that are ro-

bust against random interconnection sti↵ness element uncertainty and attenuate the H1-

norm of the disturbance input to performance output mapping below a level that was at least

6 dB less than the approximate worst-case H1-norm of the open-loop plant. The approach

in chapter 7 exploited properties specific to lightly-damped structures, and accounted for the

computational complexity associated with certain approaches to cost function construction.

The results indicate that the techniques developed in that chapter can be used with systems

and controllers possessing even more variables and that the resulting controllers can be used

in a subsequent optimization that incorporates additional constraints. Two of the results

from this approach were highlighted, where each decentralized controller pair achieved the

following stability and performance objectives over 99% of the time for specified levels of

accuracy and confidence:

Probability of Stability P̂r

✓
Re
⇣
�(Aprob)

⌘
< 0

���K�

◆
� 0.99

Probability of Performance P̂r

✓
||Gprob||1  �

⇤
���K�

◆
� 0.99.

where �⇤ = �45.4 dB, Gprob corresponds to the disturbance input/performance output for the

structure, andK� represents the random interconnection sti↵ness element that was modeled,

with uncertainty in the elastic modulus of this element characterized by E� ⇠ N (E0, 0.16E2
0)

for synthesis. These probability estimates were generated with 95% confidence that these

estimates are within 0.01 of their true probabilities.
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8.1 SUMMARY OF CONTRIBUTIONS

This thesis provides the following contributions to the areas of control theory and active

vibration control:

1. Treating the interconnection terms randomly and coupling decentrally-controlled sub-

structures in a generalized regulator framework is new.

2. A method for performing robust stability and performance tests and the definition and

calculation of margins for controlled structures coupled by a probabilistically-uncertain

interface sti↵ness matrix.

3. A controller design and synthesis approach that permits frequency-weighting of system

models via complex-valued performance output functions and synthesis of a structure-

constrained high-dimensional semidefinite program for achieving decentralized full-state

feedback H1 control in the presence of random interconnections.

4. A controller design and synthesis approach that permits frequency-weighting of system

models, synthesis of robust controllers using loop-at-a-time µ-synthesis via D/K itera-

tions for the structured norm-bounded interconnection uncertainty case, and subsequent

solution of stochastic optimization problems around the µ-synthesized solutions. This

stochastic optimization problem is pursued after imposing an Gaussian distribution over

the interconnection uncertainty, and is performed explicitly over the real and complex-

parts of the µ-synthesized controllers for computational e�ciency.

5. Application of these control approaches to lightly-damped, low and high-dimensional

structure models.
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8.2 FUTURE DIRECTIONS FOR PROBABILISTIC DECENTRALIZED

ACTIVE VIBRATION CONTROL

This research sets the stage for extending these techniques to the more complicated case of

including random uncertainty not only in the interconnections, but also in the substructures

themselves.

Using the techniques developed in this thesis, the interconnection uncertainty between

two substructures can also be represented as a random dynamic system and not just a random

interconnection sti↵ness element. Doing so would require the loop-at-a-time formulations to

change slightly, and the system used for probabilistic robust synthesis in chapter 7 would

look a bit di↵erent since the random interconnection system would introduce additional state

variables into the model. Nevertheless, seed controllers can be found using the loop-at-a-time

µ-synthesis approach in chapter 6 and the high-dimensional stochastic optimization problem

in chapter 7 can be posed in a very similar way. This problem would be a logical next step

in this research.

The techniques that were developed in this research are applied to a class of problems

that is generally linear. However, the control design and synthesis strategies developed in this

research can be applied to many other classes of problems. For example, these probabilistic

decentralized control design and synthesis techniques can be applied to uncertain systems

that are linear parameter varying and nonlinear. Linear parameter varying and nonlinear

control problems have been approached using probabilistic robust control techniques, but

only in applications where centralized controllers were synthesized [39, 14]. Extending the

techniques to be developed in this research to linear parameter varying and nonlinear systems

— that are both large scale and may require decentralized control schemes — will not only be

possible but can represent next steps in this research program. Some example applications

that have received significant attention in the area decentralized control are:

• Swarms and coordinated unmanned aerial and underwater vehicles

• Power systems and smart grids
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• Financial systems and markets

Decentralized control problems in these areas share a common problem: how to handle

uncertainty in large scale system interconnections. The techniques developed in this research

deliver some tools that enable the incorporation of random interconnection matrices into the

analysis and control of large scale systems in many fields.

There are several other aspects to this present research that can be both enhanced and

extended. The approaches developed in chapter 7 can be enhanced by enabling cross-node

communication on a supercomputer, enabling optimization to be performed more e�ciently,

across a larger solution space, and also while sharing solution information that is developed

within disparate populations. Along these lines, developing an approach that enables the

optimization to dynamically change the order of the controllers, along with an analytical

approach to enabling complex conjugate solution points to combine to form purely-real

solutions, and vice versa, would enhance the adaptability of this algorithm and therefore

unlock an even larger solution space.

This research does not provide the “silver bullet” that allows us to control a system that

has an infinite amount of uncertainty, or one that experiences significant discontinuities in

its dynamics. Developing gain-scheduled or other adaptive schemes that enable transitions

across a continuum of probabilistic robust controllers, in a smooth manner, is a goal that can

be investigated next. One set of controllers can only be pushed so far — this is evidenced by

the definition and analysis of probabilistic margins via degradation functions in chapters 5

and 7. These approaches should next be used in a more adaptive manner so that structures

that

• possess even greater amounts of uncertainty;

• have discontinuities or highly-nonlinear behavior in their dynamics;

• require di↵erent control objectives in di↵erent operating regimes,

can be controlled in the most safe and e↵ective manners possible.

These approaches must be tested in a laboratory setting. There is no substitution for

actually putting these controllers to the test on real structures and for using data and models
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derived from real structures. Along this same thread, the field of tribomechadynamics,

which studies the dynamics of structural interconnections can provide valuable input to the

approaches developed in this thesis [8].
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APPENDIX A

FULL STATE FEEDBACK MODEL

We consider the general model shown in figure 54, which depicts a four-mass system that is

coupled by some spring k�, with the subscript � indicating that this spring is an uncertain

element. This system has disturbance inputs w1, w2 and control inputs u1, u2 entering the

system in the locations shown.

One thing that will become important when we get into discussing controller objectives

and design is the fact that there is no dissipative element included between masses 2 and

3. By modeling the system in this way, we cannot have proportional damping. This model

structure leads to a situation where the eigenvectors of the dynamics matrix for this system

will be complex.

The open-loop, second-order dynamics equations for the spring-mass-damper model is

Figure 54: Spring mass damper model with random interconnection sti↵ness.
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given by

Mẍ+ Cẋ+Kx = P1w + P2u (A.1)

where

• ẍ, ẋ, x are the acceleration, velocity, and displacement of each mass;

• M,C,K are the mass, damping, and sti↵ness matrices;

• P1, P2 describe where disturbance and control inputs enter the system, respectively.

A.1 SYSTEM MATRICES AND PARAMETER VALUES

For the system depicted in figure 54, the system parameters are given by:

M =

2

6666664

m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

3

7777775
, C =

2

6666664

c1 + c2 �c2 0 0

�c2 c2 0 0

0 0 c3 �c3

0 0 �c3 c3 + c4

3

7777775
(A.2)

K = K0 +K� (A.3)

with

K0 =

2

6666664

k1 + k2 �k2 0 0

�k2 k2 0 0

0 0 k3 �k3

0 0 �k3 k3 + k4

3

7777775
, K� =

2

6666664

0 0 0 0

0 k� �k� 0

0 �k� k� 0

0 0 0 0

3

7777775
. (A.4)

The parameters were chosen by defining m1 = m2 = m3 = m4 = 1; k1 = k2 = 100;

k3 = k4 = 150; and the nominal value for k� = 100. The damping matrix was formed by

C = ↵M + �K0 (A.5)

where ↵ = 10�3
, � = 4 ⇥ 10�3, which were constants chosen to promote a lightly-damped

system; in defining (A.5), this lightly-damped system does not have proportional damping,
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which is an intentional choice. Forces enter the system by the matrices P1 and P2:

P1 =

2

6666664

1 0

0 0

0 1

0 0

3

7777775
, P2 =

2

6666664

0 0

1 0

0 0

0 1

3

7777775
(A.6)

which says that disturbances enter masses 1 and 3, with control inputs entering masses 2

and 4.

For k�, we have chosen that the uncertainty be normally-distributed with mean of 100

and standard deviation of 15: k� ⇠ N (100, 152).
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APPENDIX B

DYNAMIC OUTPUT FEEDBACK MODEL

The structural model in this chapter is derived using elementary finite element analy-

sis/structural dynamic theory, as this is the tool most frequently used to generate com-

plicated structural dynamic models. We are able to treat certain system parameters as

being random variables. Specifically, we can account for geometric nonlinearities (length,

area moment of inertia in a generalized beam model) and material anisotropies and uncer-

tainty directly and on an elemental basis (elastic modulus, mass density). Only the elastic

modulus of an interconnecting element is treated as having random uncertainty. We will

only consider transverse (bending) deflection in this model.

A uniform beam of length Lb, mass density ⇢, modulus E, cross sectional area A, and area

moment of inertia I is depicted in figure 55. This beam will be the subject of control design

and analysis in chapters 6 and 7. Also shown in the top of figure 55 are measurements (yi’s),

control inputs, u, and disturbance inputs, w. As discussed in chapter 4, we want to synthesize

controllers — in the presence of random interconnection uncertainty — that attenuate, below

some prescribed level, the H1-norm of the mapping between the disturbance inputs w’s and

performance outputs, which will be later on denoted by the vector z.

We will now get into discussing how the open loop system was modeled in this portion

of the research. We will then discuss what our control objectives are and how the controller

synthesis problem is posed.
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Figure 55: Beam model.

Figure 56: Composite structure decomposed into substructures with uncertain interconnec-

tion element.
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Figure 57: A single finite element statically loaded by forces and moments at ends, with

associated elemental shape functions.

We consider a single finite element that is statically loaded at its ends by moments and

shears, as shown in figure 57. Each element has some mass density (⇢), elastic modulus (E),

cross sectional area (Ael), area moment of inertia (I), and length (L) associated with it.

The displacement coordinates for transverse motion in a uniform beam can be described by

v(x, t) =
4X

i=1

 i(x)vi(t) (B.1)

with the general solution to (B.1) for a uniform beam being a cubic polynomial, which is

given by

v(x) = c1 + c2

⇣
x

L

⌘
+ c3

⇣
x

L

⌘2

+ c4

⇣
x

L

⌘3

. (B.2)

Through considering a uniform beam statically loaded at it’s ends by moments and shears,

we can posit that this element is producing static deflection shapes,  i, such that the shape

functions satisfy

 1(0) =  3(L) =
d

dx
 2(0) =

d

dx
 4(L) = 1 (B.3)

All other B.C.’s and derivatives = 0 (B.4)
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We can obtain the shape functions  i, i = 1, 2, 3, 4 using these boundary conditions and

(B.2) to find

 1 = 1� 3
⇣
x

L

⌘2

+ 2
⇣
x

L

⌘3

(B.5)

 2 = x� 2L
⇣
x

L

⌘2

+ L

⇣
x

L

⌘3

(B.6)

 3 = 3
⇣
x

L

⌘2

� 2
⇣
x

L

⌘3

(B.7)

 4 = �L

⇣
x

L

⌘2

+ L

⇣
x

L

⌘3

(B.8)

with these shape functions sketched in figure 57. We then find the mass and sti↵ness matrices

(mij, kij) and load vector (pi) from

mij =

Z
L

0

⇢Ael i jdx, kij =

Z
L

0

EI
d
2
 i

dx2

d
2
 j

dx2
dx, pi =

Z
L

0

p(x, t) idx (B.9)

where we find that the symmetric mass and sti↵ness matrices are expressed by

me =

✓
⇢AL

420

◆

2

6666664

156 22L 54 �13L

⇤ 4L2 �13L �3L2

⇤ ⇤ 156 �22L

⇤ ⇤ ⇤ 4L2

3

7777775
, ke =

✓
EI

L3

◆

2

6666664

12 6L �12 6L

⇤ 4L2 �6L 2L2

⇤ ⇤ 12 �6L

⇤ ⇤ ⇤ 4L2

3

7777775
(B.10)

and that the disturbance and control input influence vectors are described by

per = fr

h
L

2
L
2

12
L

2 �L
2

12

iT
r = u, w (B.11)

where the subscript, r, indicates that the input influence vectors are specific to either a

control input or disturbance input to the system. These mass and sti↵ness matrices are

applicable to uniform beam elements that are statically loaded by shear and moment loads

at their ends.

We use the well-known “Direct Sti↵ness” method for assembling element matrices [88].

This technique involves enforcing compatibility at the element interfaces. By doing so, ele-

ment local coordinates are mapped into global coordinates through a binary transformation

matrix Le such that

⇠̂e = Le⌅ (B.12)
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where ⇠̂e corresponds to elemental coordinates and ⌅ are global coordinates. In figure 57, this

equates to enforcing that the displacements and rotations are equal to those at the adjoining

element.

Each element matrix me or ke is then placed into the global structure coordinate system

by

Ke = L
T

e
keLe, Me = L

T

e
meLe (B.13)

where each binary transformation matrix Le is specific to each element mapping into the

global coordinate system. The global mass and sti↵ness matrices are then given by

Kg =
NeX

e=1

Ke, Mg =
NeX

e=1

Me. (B.14)

By a very similar convention, the global input force vectors are given by

Pug =
NeX

e=1

L
T

e
pue, Pwg =

NeX

e=1

L
T

e
pwe (B.15)

where the binary locater matrices are chosen for those elements that are a↵ected by either

a control input or disturbance. Constraints are enforced by simply eliminating the degrees

of freedom at the extreme ends of the model. See “Structural Dynamics: An Introduction

to Computer Methods” by Craig for details [88].

We have now arrived at an undamped structural dynamic model derived from finite

element analysis:

Mg ⇠̈ +Kg⇠ = Pugfu +Pwgfw. (B.16)

We have assumed that modal damping exists. Given that there are Ne elements and we

consider only transverse vibration, we will have Ne
2 modes. Thus, we solve the generalized

eigenvalue problem given by

(Kg � !
2
r
Mg)�r = 0, r = 1, 2, . . .

Ne

2
(B.17)

for each structure mode. We assemble the modal matrix by

� =
h
�1 �2 . . . �Ne/2

i
. (B.18)
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Furthermore, we mass-normalize these eigenvectors such that �TMg� = I. We also assume

that all modes are orthogonal. In order to add damping to each mode that looks like

C = �TCg� = diag (2⇣r!rMr) , r = 1, . . .
Ne

2
(B.19)

where ⇣r is some prescribed amount of damping, !r is the frequency of each mode, and Mr

is the modal mass (which is unity), we must find a way to transform a damping matrix C

back into physical coordinates Cg. We have chosen to add 2% damping to each mode when

creating this model.

To do this, and as is typical in any elementary problem such as this one, we recognize

that our eigenvector matrix � serves as a new basis

⇠(t) = �⌘(t) (B.20)

such that

M⌘̈ + C⌘̇ +K⌘ = Pufu + Pwfw (B.21)

where

M = �TMg�, C = �TCg�, K = �TKg�, Pu = �TPug, Pw = �TPwg. (B.22)

Recognizing once again that our objective is to add damping to each mode in this model,

we follow through with the elementary transformation that will bring (B.19) into physical

coordinates. Since

C = �TCg�, (B.23)

we have that

Cg = ��TC��1
. (B.24)

An expression for ��1 can be developed from the orthogonality property of the modes
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by

M = �TMg� (B.25)

I = M�1M =
�
M�1�TMg

�
� = ��1� (B.26)

��1 =
�
M�1�TMg

�
(B.27)

which leads to

Cg =
�
Mg�M�1

�
C
�
M�1�TMg

�
. (B.28)

Finally, the damped structural dynamic model, in physical coordinates, is given by

Mg ⇠̈ +Cg ⇠̇ +Kg⇠ = Pugfu +Pwgfw. (B.29)

We furthermore suppose that we are able to measure the displacement and velocity of the

structure at specific locations along this structure. An output/measurement equation of the

form

y =

2

4Cd 0

0 Cv

3

5

2

4⇠

⇠̇

3

5 (B.30)

is defined. We assume that we are only able to measure transverse displacements and veloc-

ities, and not rotations. This is reflected in the construction of Cd and Cv. At this point, we

can identify the open loop, damped dynamics model by equations (B.29) and (B.30).

By defining a state vector, x =
h
⇠ ⇠̇

iT
, we can transform these equations into their

equivalent state space representation

ẋ =

2

4 0 I

�M�1
g
Kg �M�1

g
Cg

3

5 x+

2

4 0

M�1
g
Pwg

3

5 fw +

2

4 0

M�1
g
Pug

3

5 fu (B.31)

y =

2

4Cd 0

0 Cv

3

5 x. (B.32)

249



The state space system matrices are given by

A =

2

4 0 I

�M�1
g
Kg �M�1

g
Cg

3

5 , B1 =

2

4 0

M�1
g
Pwg

3

5 , B2 =

2

4 0

M�1
g
Pug

3

5 , (B.33)

C2 =

2

4Cd 0

0 Cv

3

5 . (B.34)

The disturbance input force vector, fw ! w and the control input force vector fu ! u,

arriving at the form:

ẋ = Ax+B1w +B2u (B.35)

y = C2x. (B.36)

The process for constructing these beam models is performed twice: we formulate two can-

tilevered beams, independent of one another and with slightly di↵erent model parameters,

and thereafter couple these cantilevered beams through an interface sti↵ness element to

formulate the composite, fixed-fixed beam structure. The beams, and interface sti↵ness el-

ement, have the model parameters shown in table 6. We note that the bandwidth that is

included in the beam models is controlled by the size of the elements used. The number of

elements was chosen so that a reasonably high number of modes would be included for mod-

eling and controller synthesis. This choice was made primarily for the purpose of generating

models that are considered to be high-order in control theory.

In addition, the code that was written for beam and interconnection sti↵ness element

creation can also accept inputs related to disturbance input, control input, and measurement

locations. Of course, arbitrary selection of these locations will inevitably place certain modes

into the uncontrollable or unobservable subspaces of the system, making it impossible to

sense/control certain system modes. Nevertheless, the chosen input/measurement locations

are shown in table 7. Although these parameters may be vector-valued (which is permitted

by the code created for this step in the research), we have posed a single-input multi-output

controller architecture for each beam.
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Table 6: Input data for finite element Euler-Bernoulli beam and element creation.

Beam Data

Beam #1 Beam #2 Interconnection

Element

Mass density (⇢), kg/cm3 7.8 7.8 7.8

Elastic modulus (E), Pa 200⇥ 109 200⇥ 109 200⇥ 109

# Elements 10 15 1

Total length (L), cm 100 150 10

Element width (b), cm 5 5 5

Element height (h), cm .5 .5 .5

Boundary conditions Fixed-free Fixed-free Free-free

Figure 58: This figure depicts the relative location of control inputs (ui), disturbance inputs

(wi), and measurements (yi) along the length of each respective beam, with the approximate

location of the uncertain interconnection sti↵ness element (e�) shown.
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Table 7: Input data for beam measurement, disturbance, and control input locations. Dis-

tances are with respect to the fixed-end boundary condition.

Input / Output Definitions

Beam #1 Beam #2 Interconnection

Element (e�)

Location along beam length (cm)

Control input 10 75 N/A

Disturbance input 40 100 N/A

Measurement 20 50 N/A

The measurements at each location are decomposed into a position and velocity — this

means that for our state space system, we end up with (e↵ectively) two measurements for

each beam. The control and disturbance inputs are modeled as distributed forces across the

closest element to that location, as depicted in figure 55.
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APPENDIX C

STABILIZABILITY AND DETECTABILITY OF LIGHTLY-DAMPED

STRUCTURES

The system that we study is both stabilizable and detectable. Since we are interested

primarily in structural dynamic systems, this assumption is automatically satisfied, as these

types of systems do not have any unstable modes.

Theorem 19. All linear elastic structures with homogeneous equations of motion Mẍ +

Cẍ+Kx = 0 with positive definite mass, sti↵ness, and damping matrices are globally asymp-

totically stable. Therefore, all linear elastic structural systems are both stabilizable and de-

tectable.

Proof. We shall sketch a proof via Lyapunov stability theory.

We know that the kinetic energy, T , and the potential energy, V , of the system above

are characterized by

T =
1

2
ẋ
TMẋ, and V =

1

2
x
TKx (C.1)

Physically, this also makes sense since these quadratic equations must always be positive,

further reinforcing the requirement that the system mass and sti↵ness matrices be strictly

positive definite. We can formulate the total energy in this system as

H = T + V (C.2)

H(x, ẋ) =
1

2
ẋ
TMẋ+

1

2
x
TKx. (C.3)
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H � 0 since both M and K are both positive definite, and is equal to zero i↵ x = ẋ = 0.

We make the claim that

Ḣ = �ẋ
TCẋ (C.4)

A positive definite damping matrix can be defined in several ways:

• Using proportional damping. For some ↵, � 2 R+, C = ↵M + �K is positive definite,

since it is usually the sum of two scaled positive definite matrices. Furthermore, if K � 0

and M > 0 then C > 0 since x
T (M+K)x > 0. This is true since x

TMx > 0 for any x.

• Using modal damping. When constructing this type of model, as shown in appendix B,

we construct a damping model that is diagonal with strictly positive elements. We

showed that the damping matrix, in physical coordinates, was constructed from

Cg = ��TC��1 (C.5)

where C = diag(2⇣r!rMr) where each element corresponds to a mode. Since the eigen-

vectors of this system are going to be full rank due to the absence of any rigid body

modes and since all modes will be distinct, the matrix Cg will also be positive definite.

This arises from the property that for some positive definite matrix Q and some full rank

matrix R,

Q > 0 ) R
T
QR > 0. (C.6)

Using Mẍ+Kx = �Cẋ, we obtain

Ḣ =
1

2
ẋ
TMẍ+

1

2
ẍ
TMẋ+

1

2
ẋ
TKx+

1

2
x
TKẋ (C.7)

=
1

2
ẋ
T (Mẍ+Kx) +

1

2
(ẍTM+ x

TK)ẋ (C.8)

= �1

2
ẋ
TCẋ+

1

2
(Mẍ+Kx)T ẋ (C.9)

= �ẋCẋ. (C.10)

Therefore, Ḣ = �ẋ
TCẋ. Since C is positive definite, Ḣ  0, and energy is dissipating from

the system for all x, ẋ, ẍ 2 R
n. Furthermore, Ḣ = 0 i↵ ẋ = 0. Hence, H(x, ẋ) ! 0 as

t ! 1. We have shown that any linear elastic system with positive definite mass, sti↵ness,

and damping matrices is stable in the strict sense (global asymptotic stability). Since these
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types of systems are stable in the strict sense, they have no unstable modes. Since these

systems have no unstable modes, they are always stabilizable and detectable. Q.E.D.
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APPENDIX D

KYP LEMMA

Lemma 8 (The KYP Lemma, AKA: The Bounded Real Lemma). Suppose

Ĝ(s) ⇠

2

4 A B

C D

3

5 (D.1)

Then the following are equivalent:

1. ||G||1 �

2. There exists a X > 0 such that
2

4A
T
X +XA XB

B
T
X ��I

3

5+
1

�

2

4C
T

D
T

3

5
h
C D

i
< 0. (D.2)

The KYP (bounded real) lemma can be used to calculate the H1 norm of a sytem.

Proof. To do this, we will show that 2.) implies 1.). We will first show that if y = Gu, then

||y||2 �||u||2.

From the first block of the LMI given by 2.), we see that AT
X +XA < 0. This is seen

by a simple Schur Complement argument of this LMI. What this implies is that A is stable,

since this is just a Lyapunov Inequality. Because the LMI in 2.) is strict, we can say that
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there exists some ✏ > 0 such that
2

4A
T
X +XA XB

B
T
X �(� � ✏)I

3

5+
1

�

2

4C
T

D
T

3

5
h
C D

i
(D.3)

=

2

4A
T
X +XA XB

B
T
X ��I

3

5+
1

�

2

4C
T

D
T

3

5
h
C D

i
+

2

40 0

0 ✏I

3

5 < 0. (D.4)

Next, by letting y = Gu, we have that the state-space representation is

ẋ = Ax+Bu x(0) = 0 (D.5)

y = Cx+Du. (D.6)

Now, we can let some energy functional given by V (x) = x
T
Xx. Then, the LMI implies

2

4x

u

3

5
T 2

4

2

4A
T
X +XA XB

B
T
X �(� � ✏)I

3

5+
1

�

2

4C
T

D
T

3

5
h
C D

i
3

5

2

4x

u

3

5 (D.7)

=

2

4x

u

3

5
T 2

4A
T
X +XA XB

B
T
X �(� � ✏)I

3

5

2

4x

u

3

5+
1

�

2

4x

u

3

5
T 2

4C
T

D
T

3

5
h
C D

i
2

4x

u

3

5 (D.8)

=

2

4x

u

3

5
T 2

4A
T
X +XA XB

B
T
X �(� � ✏)I

3

5

2

4x

u

3

5+
1

�
y
T
y (D.9)

= x
T (AT

X +XA)x+ x
T
XBu+ y

T
B

T
Xx� (� � ✏)uT

u+
1

�
y
T
y (D.10)

= (Ax+Bu)TXx+ x
T
X(Ax+Bu)� (� � ✏)uT

u+
1

�
y
T
y (D.11)

= ẋ
T
Xx+ x

T
Xẋ� (� � ✏)||u||2+1

�
||y||2 (D.12)

V̇ (x)� (� � ✏)||u||2+1

�
||y||2< 0. (D.13)
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Now integrating (D.13) in time,

Z
T

0

✓
V̇ (x(t))� (� � ✏)||u(t)||2+1

�
||y(t)||2

◆
dt (D.14)

= V (x(T ))� V (x(0))� (� � ✏)

Z
T

0

||u(t)||2dt+ 1

�

Z
T

0

||y(t)||2< 0. (D.15)

But, since A is stable, limt!1 x(t) = 0, which implies that limt!1 V (x(t)) = 0. Since we

said that x(0) = 0, we also have V (x(0)) = 0. This means that V (x(0)) = V (x(1)) = 0.

Since this is the case,

lim
T!1


V̇ (x(T ))� V̇ (x(0))� (� � ✏)

Z
T

0

||u(t)||2dt+ 1

�

Z
T

0

||y(t)||2dt
�

(D.16)

= 0� 0� (� � ✏)

Z 1

0

||u(t)||2dt+ 1

�

Z 1

0

||y(t)||2dt (D.17)

= �(� � ✏)||u||22+
1

�
||y||22< 0. (D.18)

Thus, we have that

||y||22< (�2 � ✏�)||u||22. (D.19)

We then have from (D.19) that

||G||21 (�2 � ✏�) < �
2 (D.20)

||G||1< �. (D.21)

Q.E.D.
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APPENDIX E

KYP DUAL PROOF

Suppose 9 an K s.t.
���
���Fl(G, K̄)

���
���
1

 �. By lemma 2, this implies 9 a q > 0 s.t.

2

6664

Q(A+B2K)T + (A+B2K)Q B1 Q(C1 +D12K)T

B
T

1 ��I D
T

11

(C1 +D12K)Q D11 ��I

3

7775
< 0 (E.1)

Let Y = KQ. Then,

2

6664

QA
T + Y

T
B

T

2 + AQ+B2Y B1 QC
T

1 + Y
T
D

T

12

B
T

1 ��I D
T

11

C1Q+D12Y D11 ��I

3

7775
< 0 (E.2)

=

2

6664

QA
T + Y K

T
B

T

2 + AQ+B2KQ B1 QC
T

1 +QK
T
D

T

12

B
T

1 ��I D
T

11

C1Q+D12KQ D11 ��I

3

7775
< 0 (E.3)

=

2

6664

Q(A+B2K)T + (A+B2K)Q B1 Q(C1 +KD12)T

B
T

1 ��I D
T

11

(C1 +D12K)Q D11 ��I

3

7775
< 0 (E.4)
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Now, suppose 9Q > 0 and Y s.t.

2

6664

QA
T + Y

T
B

T

2 + AQ+B2Y B1 QC
T

1 + Y
T
D

T

12

B
T

1 ��I D
T

11

C1Q+D12Y D11 ��I

3

7775
< 0 (E.5)

Let K = Y Q
�1. Then

2

6664

Q(A+B2K)T + (A+B2K)Q B1 Q(C1 +D12K)T

B
T

1 ��I D
T

11

(C1 +D12K)Q D11 ��I

3

7775
< 0 (E.6)

=

2

6664

QA
T +QK

T
B

T

2 + AQ+B2KQ B1 QC
T

1 +QK
T
D

T

12

B
T

1 ��I D
T

11

C1Q+D12KQ D11 ��I

3

7775
< 0 (E.7)

=

2

6664

QA
T + Y

T
B

T

2 + AQ+B2Y B1 QC
T

1 + Y
T
D

T

12

B
T

1 ��I D
T

11

C1Q+D12Y D11 ��I

3

7775
< 0. (E.8)

Meaning that the following optimization problems are equivalent:

Form 1

min
K

���
���Fl(G, K̄)

���
���
1

(E.9)

Form 2

min
�,Q,Y

�

2

6666664

�Q 0 0 0

0 QA
T + AQ+ Y

T
B

T

2 +B2Y B1 QC
T

1 + Y
T
D

T

12

0 B
T

1 ��I D
T

11

0 C1Q+D12Y D11 ��I

3

7777775
< 0

(E.10)

with the optimal controller given by K = Y Q
�1. Q.E.D.
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APPENDIX F

PULLING OUT THE DELTA’S IN A PARAMETRICALLY-UNCERTAIN

STATE SPACE SYSTEM

The � in figure 59 is an uncertainty block. Putting a system into this form allows us to

analyze it in di↵erent ways, and is sometimes requisite for controller synthesis. The � matrix

can be real or complex, but it is perhaps easiest to consider the real case.

Before we get into this, the way that this type of system is handled is to create virtual

or artificial uncertainty states. These additional inputs and outputs allow us to represent

the nominal system, P with unknown parameters, which we can call �i, entering as feedback

gains around the additive input and output. The model description would look like:

ẋ = Ax+B1w +B2u+B�u� (F.1)

z = C1x+D11w +D12u+D1�u� (F.2)

y = C2x+D21w +D22u+D2�u� (F.3)

y� = C�x+D1,�u+D2,�u� (F.4)

u� = diag(�1I1, �2I2, . . . , �kIk) (F.5)

where y is our sensor measurement, z is our performance output, and y� and u� are related

to the uncertainty terms.

What we see, from things mentioned before, is that we are modeling the system such

that we can actually represent the uncertainty as a linear fractional transformation with the
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Figure 59: Generalized regulator framework with controller and uncertainty block.

plant P . This helps with modeling and analysis (it is easy to connect LFTs with other LFTs,

as the connection is still an LFT).

Our uncertain state space system, with real parametric uncertainty, can assume the

form

ẋ =

 
A+

kX

i=1

�iAi

!
x+

 
B +

kX

i=1

�iBi

!
u (F.6)

y =

 
C +

kX

i=1

�iCi

!
x+

 
D +

kX

i=1

�iDi

!
u (F.7)

where we clearly see that the uncertainty is entering the system via �1, . . . �k. These can be

real or complex, however, we will consider the real case for now and will assert that they must

satisfy ||�i||1< 1. This norm constraint can be achieved by some modeling choices.

To get the system into the 5-equation system shown at the beginning of this appendix,

an approach that has roots in what is called a Gilbert realization must be used — see paper

by Morton and McAfoos [89].

For each i = 1, . . . , k 2

4Ai Bi

Ci Di

3

5 2 R
(n+nu)⇥(n+ny) (F.8)
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Letting

ri
.
= rank

2

4Ai Bi

Ci Di

3

5 (F.9)

we can factor each matrix, using a singular value decomposition, for example, as

2

4Ai Bi

Ci Di

3

5 =

2

4Ei

Fi

3

5
h
Gi Hi

i
(F.10)

where 2

4Ei

Fi

3

5 2 R
(n+ny)⇥ri ,

h
Gi Hi

i
2 R

ri⇥(n+ny) (F.11)

leading us to being able to define the “expanded” state space system as

2

6666666664

ẋ

y

y�1

...

y�k

3

7777777775

=

2

6666666664

A B E1 . . . Ek

C D F1 . . . Fk

G1 H1 0 . . . 0
...

...
...

. . .
...

Gk Hk 0 . . . 0

3

7777777775

2

6666666664

x

u

u�1

...

u�k

3

7777777775

(F.12)

where we will refer to the dynamics matrix given above as Guss. We now have the formulation

for our “open loop uncertain system”. We can represent the uncertain system as an LFT

around (F.12), which is

y = Fu(Guss,�)u (F.13)

where � is mapping y� ! u� and has the structure

� =
n
diag(�1Ir1, . . . , �kIrk) : �i 2 R

o
(F.14)

One thing that we see is that uncertainty of this form is norm-bounded and permits the

uncertain parameter to exist anywhere within the set � with equal probability. Let’s get

into an example which can be found in [57].

We can consider a single mode transfer function (which what we get when we decouple

our system!), which maps the input force to the displacement output, with uncertainty in
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the damping and natural frequency squared terms.

G(s) =
1

s2 + 2⇣!(1 + �1)s+ !2(1 + �2)
(F.15)

This transfer function has the state space realization

2

4 Â B̂

Ĉ D̂

3

5 =

2

6664

0 1 0

�!2(1 + �2) �2⇣(1 + �1) 1

1 0 0

3

7775
(F.16)

If we write this system in the form of (F.6) and (F.7) we would have

Â =

2

4 0 1

�!2(1 + �2) �2⇣!(1 + �1)

3

5 =

2

4 0 1

�!2 �2⇣!

3

5+ �1

2

40 0

0 �2⇣!

3

5+ �2

2

4 0 0

�!2 0

3

5

(F.17)

=

2

4 0 1

�!2(1 + �2) �2⇣!(1 + �1)

3

5 = +�1

2

40

1

3

5
h
0 �2⇣!

i
+ �2

2

40

1

3

5
h
�!2 0

i
(F.18)

leading us to

2

4 Â B̂

Ĉ D̂

3

5 =

2

6666666664

0 1 0 0 0

�!2 �2⇣! 1 1 1

0 �2⇣! 0 0 0

�!2 0 0 0 0

1 0 0 0 0

3

7777777775

, � =

2

4�1 0

0 �2

3

5 (F.19)

where we can now see that we have formed the interconnection diagram shown in figure 59,

without any controller included. Nevertheless, this is one way for us to capture uncertainty

in this way.
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APPENDIX G

DEGRADATION FUNCTION DATA FOR THE PROBABILISTIC ROBUST

DYNAMIC OUTPUT FEEDBACK CASE

The tables included in this appendix contain the variance inflation factor and corresponding

probability estimates that were generated for stability and performance degradation function

construction in chapter 7.
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Table 8: Resulting probability estimates for controller 1 as a function of variance inflation

factor a. If the controlled system is found to be stable, it highly likely that it will also meet

the performance specification for the systems and controllers designed in this research.

Controller 1 Degradation Function Data

a P̂r(stable) P̂r(||Gprob||1 �
⇤)

0 1.0000 1.0000

0.5 1.0000 1.0000

1 0.9934 0.9934

1.6 0.9410 0.9410

2 0.8967 0.8967

2.5 0.8405 0.8405

3 0.8004 0.8004

5 0.6917 0.6917

10 0.6012 0.6011
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Table 9: Resulting probability estimates for controller 2 as a function of variance inflation

factor a. If the controlled system is found to be stable, it highly likely that it will also meet

the performance specification for the systems and controllers designed in this research.

Controller 2 Degradation Function Data

a P̂r(stable) P̂r(||Gprob||1 �
⇤)

0 1.0000 1.0000

0.5 1.0000 1.0000

1 0.9933 0.9933

1.6 0.9414 0.9414

2 0.8973 0.8973

2.5 0.8411 0.8410

3 0.7970 0.7970

5 0.6917 0.6917

10 0.5985 0.5985
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