

Title Page

Accelerating Real-Time, High-Resolution Depth Upsampling on FPGAs

by

David Langerman

B.S. Computer Engineering, South Dakota School of Mines & Technology, 2017

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

University of Pittsburgh

2019

 ii

Committee Membership Page

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

David Langerman

It was defended on

March 22, 2019

and approved by

Jingtong Hu, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Alex Jones, Ph.D., Professor

Department of Electrical and Computer Engineering

Thesis Advisor: Alan D. George, Ph.D., Mickle Chair Professor

Department of Electrical and Computer Engineering

 iii

Copyright © by David Langerman

2019

 iv

Abstract

Accelerating Real-Time, High-Resolution Depth Upsampling on FPGAs

David Langerman, M.S.

University of Pittsburgh, 2019

While the popularity of high-resolution, computer-vision applications (e.g. mixed reality,

autonomous vehicles) is increasing, there have been complementary advances in time-of-flight

(ToF) depth-sensor resolution and quality. These advances in ToF sensors provide a platform that

can enable real-time, depth-upsampling algorithms targeted for high-resolution video systems with

low-latency requirements. This thesis demonstrates that filter-based upsampling algorithms are

feasible for real-time, low-power scenarios, such as those on HMDs. Specifically, the author

profiled, parallelized, and accelerated a filter-based depth-upsampling algorithm on an FPGA

using high-level synthesis tools from Xilinx. We show that our accelerated algorithm can

accurately upsample the resolution and reduce the noise of ToF sensors. We also demonstrate that

this algorithm exceeds the real-time requirements of 90 frames-per-second (FPS) and 11 ms

latency of mixed-reality hardware, achieving a lower-bound speedup of 40 times over the fastest

CPU-only version and a 4.7 times speedup over the original GPU implementation [1].

 v

Table of Contents

1.0 Introduction ... 1

2.0 Related Work .. 3

3.0 Background ... 5

3.1 Noise-Aware Filter for Depth Upsampling (NAFDU) ... 5

3.2 Time-of-Flight (ToF) Sensors .. 7

3.3 Hardware Testbed .. 8

4.0 Approach ... 10

4.1 NAFDU on High-Performance Desktop PC ... 10

4.2 NAFDU Optimization and Parallelization ... 11

4.3 Design for High-Level Synthesis ... 12

5.0 Experimental Results .. 15

5.1 NAFDU on Desktop PC .. 15

5.2 NAFDU on FPGA ... 17

5.2.1 Performance Results ... 17

5.2.2 Resource Utilization .. 18

6.0 Discussion... 20

7.0 Conclusions .. 22

Bibliography .. 24

 vi

List of Figures

Figure 1. NAFDU System Diagram, “Books” from Middlebury Dataset Used [16] 8

Figure 2. "Art" from Middlebury Dataset [16] ... 10

Figure 3. FPGA NAFDU Accelerator Diagram for Kernel Width n .. 13

Figure 4. RMSE vs. Kernel Width .. 15

Figure 5. NAFDU CPU Execution Times .. 16

Figure 6. Zynq UltraScale+ MPSoC Resource Utilization ... 18

Figure 7. Zynq UltraScale+ MPSoC Performance-per Watt .. 19

 1

1.0 Introduction

Mixed-reality (XR) technology has grown more popular in recent years and is expected to

become a 1.65-billion-dollar industry by 2024 [2]. The advent of this technology introduces many

challenges from both the hardware and software perspectives. It is well known that the de facto

standard for “real-time” image processing was 30 FPS. Augmented reality technology completely

redefines “real-time” computer vision. Advanced head-mounted displays (HMDs) for mixed-

reality applications have native resolutions greater than 2160×1200 (2.5 million) pixels displaying

at 90 frames per second (FPS), which translates to roughly 11 ms [3] [4] from scene capture to

render. This new real-time requirement is well beyond the previously defined “real-time”

benchmark of 33 ms. Any dropped frames can result in a loss of realism at best, and motion

sickness at worst [5]. Considering these requirements, performing complex image-processing

algorithms, such as image-based depth inference, on this high-resolution data in real time is a

challenging task. In XR apps, it is often essential to be able to infer depth from images and/or

sensors to display images on surfaces perceived by the user. Traditional algorithms to infer depth

using camera sources alone, such as disparity mapping, fail in non-textured regions, and high-

accuracy algorithms based on Markov-random-field models do not satisfy the accuracy and

performance requirements of mixed-reality systems [6]. Methods based on the fusion of both color

and depth information often achieve high accuracy; but, even on systems accelerated with a GPU,

methods that claim real-time performance often fail to meet the strict demands of mixed-reality

systems [7].

In this thesis, we demonstrate that filter-based approaches for depth upsampling can

achieve XR real time on low-power devices that would be present in mixed-reality headsets. Our

 2

headset consists of a high-resolution color camera as well as a low-resolution ToF depth sensor.

The goal of this research is to perform real-time upsampling of the low-resolution ToF data to

match the resolution of the color image, which will then be rendered to an HMD. This case is a

typical scenario for augmented reality apps in which real-time scene depth is necessary for virtual

objects to interact with real-world surfaces.

Upsampling depth data in real time from a ToF sensor is challenging due to several factors.

First, ToF sensors are notoriously noisy and suffer from the “flying pixel” problem [6]. This

phenomenon can introduce noise which cannot be easily modeled, making it difficult to filter with

traditional methods [8]. Second, ToF sensors tend to have inadequately small resolutions, requiring

them to be upsampled by a large factor to match typical rendering resolutions. This situation can

be computationally intensive and tends to result in noisy, inaccurate depth images [7]. To improve

accuracy, methods have been developed to fuse data from both ToF sensors and high-resolution

cameras [6]; however, many of these methods are too computationally intensive to meet the real-

time constraints of modern XR apps on mainstream desktop CPUs and GPUs. We propose that

previously developed methods can leverage hardware acceleration using modern high-level

synthesis (HLS) tools for field-programmable gate arrays (FPGAs) to achieve high-resolution,

low-latency depth upsampling for mixed-reality apps. Specifically, this thesis describes a case

study in which the Noise-Aware Filter for Real-Time Depth Upsampling (NAFDU) [9] is tested

on a CPU platform, then accelerated using Vivado HLS and evaluated on the Xilinx Zynq

UltraScale+ MPSoC device on the ZCU102 board.

 3

2.0 Related Work

In [7] and [10], low-resolution depth data from a ToF sensor is fused with a high-resolution

color image using a novel region-growing, energy-minimization algorithm. The authors show that

their method achieves high accuracy on the industry-standard Middlebury dataset compared to

many other methods. However, the algorithm’s execution time is dependent on image content. A

particularly noisy depth image could cause execution time to be very long depending on its

distance from the final output. Additionally, the algorithm’s iterative, nondeterministic behavior

imposes severe restrictions for real-time apps.

 Yuan, M. details a framework for temporal upsampling using a hybrid camera [11]. This

approach achieves high accuracy, but it was shown to be unable to handle rapid scene-changes,

such as those occurring in a typical head-mounted display scenario when a user quickly turns his

or her head.

A unique approach to the problem of running augmented-reality apps on mobile devices

was proposed by Shea in [12], where scene data from a mobile device was uploaded to an external

cloud server with a high-powered GPU. This methodology was successful in reducing the overall

power consumption of the system while also maintaining a high degree of image quality compared

to processing entirely on the mobile device. However, the interaction delay of their system was 55

ms, which does not fall within the 11 ms constraint of a typical, real-time application.

In [9], Chan details a straightforward sensor-fusion algorithm, which applies a modified

Joint-Bilateral Upsampling (JBU) filter to low-resolution depth data and high-resolution color data

[9]. This method shows high accuracy relative to other more computationally intensive methods.

Further, the algorithm itself is tightly bounded in execution time with respect to input, which is

 4

favorable compared to energy-minimization techniques like the ones used in [10], [13], and [14].

Though the execution time cited in the original paper of 49 ms falls outside of the 11 ms constraint

of real-time apps, due to the desirable characteristics of the algorithm, NAFDU was chosen to be

accelerated on hardware for this study.

 5

3.0 Background

In this section, background information regarding the NAFDU will be outlined.

Subsequently, the tools, hardware, and acceleration frameworks that were used in this study will

be summarized.

3.1 Noise-Aware Filter for Depth Upsampling (NAFDU)

As previously stated, NAFDU was selected for hardware acceleration. This method is

based on a traditional bilateral filter, which is expressed in Equation 3-1.

𝑃 =
1

𝑘𝑝
∑ 𝐼𝑞 𝑓(‖𝑝 − 𝑞‖) 𝑔(‖𝐼𝑝 − 𝐼𝑞‖)𝑞∈ Ω

Bilateral Filter Kernel

In Equation 3-1, q and p are pixel coordinates in the original image. 𝐼𝑞 is the pixel value

in the at pixel 𝑝, Ω is the neighborhood centered at 𝑝. Usually, both 𝑓 and 𝑔 are gaussian functions;

𝑓 is referred to as the domain term, and 𝑔 is referred to as the range term. The 𝑘𝑝 term is the

normalization term and is equal to the sum of the domain and range terms over the current

neighborhood.

NAFDU is based on the JBU filter proposed by Kopf [15], in which the bilateral filter is

used for upsampling by taking the range term from a separate, high-resolution image. The

3-1

 6

assumption made by the JBU is that the high-resolution image will have similar, more detailed

structural information about the scene, which can be referenced for the low-resolution image. Chan

illustrates that the method of using a second image to calculate the range term of the bilateral filter

can lead to the phenomenon known as “texture-copying” [9]. Texture-copying in the JBU filter is

due to the erroneous assumption that the color image will exhibit similar structural characteristics

in its gradient as the depth data (i.e. observing a color-varying surface that may, in fact, be

physically flat) [9]. NAFDU addresses this assumption by introducing a sigmoid blending

function, α, which is used to make the range term dependent on both the color image and the depth

image. The assumption is that if a given area has a small depth gradient, it is likely flat, and

therefore the range term from the depth data should be used for upsampling, even if a large color

gradient is observed. Similarly, if a high color gradient is observed in conjunction with a high

depth gradient, the range term from the high-resolution data is preferred because it is assumed to

be more accurate. This blending function has the effect of preserving edges during upsampling,

while also avoiding the texture-copy phenomenon in flat areas that may have high color variations.

The adjusted range term for the NAFDU upsampling filter is expressed in Equation 3-2.

𝑟𝑝 = α(∆Ω) g(‖Ĩp- Ĩq‖)+(1-α(∆Ω)) h(‖Ip↓- Iq↓‖)

NAFDU Kernel

In Equation 3-2, Ĩp and Ĩq are the pixel values in the color image in the neighborhood, Ω,

centered at 𝑝; ∆Ω is the absolute difference between the maximum- and minimum-valued pixels in

3-2

 7

the current neighborhood; ℎ and 𝑔 are gaussian functions; α(∆Ω) is the sigmoid blending function.

A more thorough explanation of the NAFDU algorithm is presented in [9].

3.2 Time-of-Flight (ToF) Sensors

ToF sensors are growing in popularity and are shrinking in cost. This newfound demand is

driven by their ability to produce relatively high-resolution depth maps at high frame rates

compared with other depth sensor types such as structured light sensors. ToF sensors have two

main components: a light source, usually a diffused near-infrared laser, and an image sensor. At

each frame, the laser sends out a series of modulated pulses. The number of pulses and the

wavelength of the pulse is dependent on the sensor. When the photons from the pulse are reflected

back at the sensor, the time that it took for each photon to leave the light source and arrive back at

the sensor is measured. The time-of-flight for each photon is proportional to the distance from the

sensor and used to infer the depth at that point in space.

Another popular type of depth sensor is called a structured-light sensor. These sensors also

use near-infrared emitters, but instead of modulated pulses, a pattern is projected onto the scene at

each frame. Based on the distortion of this pattern, the scene structure can be inferred using simple

computer-vision techniques. These sensors can also produce high-quality, high-resolution depth

maps. The disadvantage compared to ToF sensors is the real-time image processing that

necessitates extra device logic to process the collected pattern to infer scene depth. ToF sensors do

not require complex logic, and therefore they can scale to higher resolutions more easily.

 8

3.3 Hardware Testbed

The hardware testbed used in this case study is a 2048×1536 resolution color camera

coupled to a 320×240 resolution ToF sensor. A diagram of the processing flow of this testbed is

shown in Figure 1. A frame is simultaneously collected from the color camera and the depth sensor.

The depth map is then upsampled to the target resolution using the nearest-neighbor method, which

uses a negligible amount of processing power, but produces a low-quality upsampled depth map.

This low-quality depth map is then streamed to the NAFDU alongside the color image. It is notable

that the pixel correspondence between these two images must be calibrated beforehand since the

NAFDU algorithm relies on similarity between two images at the same pixel coordinate. The

output of the NAFDU block is the high-quality, high-resolution depth map which can be used for

later rendering in an augmented reality app.

The target maximum latency of the accelerated algorithm is 11 ms, matching the frame

time of popular mixed-reality headsets [3] [4]. We acknowledge that the latency must be lower in

Figure 1. NAFDU System Diagram, “Books” from Middlebury Dataset Used [16]

 9

practice to account for other processing in the rendering pipeline; however, 11 ms was judged to

be a reasonable initial target for a proof-of-concept experiment.

 10

4.0 Approach

In this section, the approach in each stage of the research is outlined. The first stage

includes the steps taken to optimize and parallelize NAFDU on a desktop PC. These initial steps

were taken to assess the scalability of the algorithm. In the final stage of this research, NAFDU

was accelerated using Vivado HLS and run on the Xilinx ZCU102 MPSoC.

4.1 NAFDU on High-Performance Desktop PC

The following steps were used to validate the algorithm of the original CPU codebase: a

single depth-map and color-image were read as input, the depth-map resolution was reduced using

the resize function in OpenCV, and then the NAFDU algorithm was used to restore the depth map

to its original size. The new image was then compared to the original using root-mean-square error

(RMSE) as a metric. Multiple kernel window sizes were tested to assess their effect on RMSE,

which are shown later in Section 5.1. The Middlebury image dataset was used throughout this

Figure 2. "Art" from Middlebury Dataset [16]

 11

study for evaluating the quality of upsampled depth maps [16] [17]. Example images from this

dataset can be seen in Figure 1 and Figure 2.

4.2 NAFDU Optimization and Parallelization

After evaluating the serial baseline, a series of optimizations were applied. The goal of

these optimizations was to ensure that the desktop version of NAFDU could be compared fairly to

the FPGA implementation in terms of speed and accuracy. The Open Specification for

Multiprocessing (OpenMP) framework offers a set of compiler directives integrated into the GNU

C Compiler (GCC) to efficiently parallelize code written in C/C++. OpenMP was used in this

study to parallelize the NAFDU algorithm on CPU in order to evaluate it for scalability.

NAFDU operates in a manner typical of most convolution-style computer-vision

algorithms: two outer loops iterate through all pixels (line-by-line; pixel-by-pixel) and two inner

loops iterate through the spatial neighborhood around the pixel specified by the outer loops.

OpenMP directives were applied to the outer loop to reduce the number of total thread forks and

thus minimize parallel overhead. Three thread-scheduling schemes were tested: static, dynamic,

and guided. Static scheduling does not provide any load-balancing, and simply partitions the

problem into fixed block sizes at compile time. Dynamic scheduling provides load balancing of

threads at runtime but does so at the cost of performance. Guided scheduling is akin to dynamic

scheduling, but it adjusts the concurrent block sizes from large chunks to small as the program

executes. Guided scheduling was proven to yield the best performance of the three for all cases,

with static scheduling a close second. It is well known that dynamic scheduling tends to yield the

largest parallel overhead due to the additional requirement of runtime load balancing [18]. The

 12

code was benchmarked for runtime and parallel efficiency for one through eight threads on a

desktop PC with an Intel Core i7 4790k @ 4.6 GHz and 16 GB of RAM. Runtime was calculated

with microsecond precision by calling omp_get_wtime() immediately before and after the

NAFDU function call, and subtracting the two values. Reported values are averages of 100 runs.

After assessing the parallelizability of NAFDU, the initial codebase was optimized by

translating floating-point arithmetic to fixed-point arithmetic, which led to a dramatic speedup.

Due to the insignificant difference in speed but notable increase in accuracy, 64-bit integers were

used in place of 32-bit integers, using 23 bits of fractional precision. This design optimization

removed all floating-point instructions from the codebase and resulted in less than a 1% decrease

in accuracy but provided a 1.5 to 4.0 times speedup for all tested kernel widths.

4.3 Design for High-Level Synthesis

HLS was selected over a hardware description language in this research for two main

reasons. First, the increased productivity afforded by HLS allowed for rapid experimentation with

multiple architectures. Second, given that HLS is a relatively new and constantly evolving

technology, there is desire in the academic community to see HLS being used in different

application scenarios, in this case, a real-time XR app. Vivado HLS was chosen due to the authors’

familiarity with Xilinx tools.

 13

A detailed diagram of the accelerator developed in the final design is shown in Figure 3.

This streaming architecture benefits scalability when applied to high-resolution images, such as

those in our testbed (2048×1536). It has been shown that frame-based accelerators, in which the

entire video frame must be kept in memory for computation, are limited by the amount of BRAM

(block RAM) on the device [19], which restricts the image resolutions that can be supported.

Frame-based designs that do not rely on BRAM are forced to fetch data from off-chip memory,

which can add significant latency and jitter to the design. The stream-based architecture used in

this study does not have this limitation because the resource utilization increases only with kernel-

size, and by extension adder-tree depth, not image resolution, which only increases the length of

the line buffers.

In this design, video data is streamed in as a 16-bit stream. The upper byte is the high-

resolution guidance image pixel and the lower byte is the depth pixel. It is notable that the color

image must be converted to grayscale before it is streamed to this accelerator. After the kernel

buffers are filled, the domain and range weights are calculated for each pixel in the depth kernel.

All terms are calculated in parallel and the weights are accumulated. This accumulation causes a

large adder tree to be produced when using large kernel sizes. After all terms are accumulated, the

Figure 3. FPGA NAFDU Accelerator Diagram for Kernel Width n

 14

output is divided by the sum of the weights to maintain the intensity of the original depth image.

This design results in minimal latency and consistent performance at high clock frequencies, but

it does so at the cost of resource usage, though with small kernels (3 px, 5 px, 7 px) resource usage

on our test platform is minimal.

Both execution time and power efficiency were gathered for the FPGA design. Execution

time was calculated by recording the time between when the first pixel is sent to the accelerator

and when the last pixel is processed. Memory transfer times are ignored in our study. This is

justified because this accelerator would be used to stream pixels directly from a camera and depth

sensor and would not need to fetch data from DDR in an actual system. System power was recorded

with a WhatsAppTM power meter attached to the ZCU102. Average readings were recorded with

and without the accelerator present in the design. Reported FPS-per-watt are based on the

maximum power that the accelerator adds to the system, which accounts for both dynamic and

static power of the accelerator. We reason that since the development board contains many

unnecessary processing elements and peripherals, overall system power was not relevant and

would artificially decrease the reported efficiency of the accelerator.

 15

5.0 Experimental Results

In this section, detailed results will be presented from both the CPU and FPGA stages of

the case study. The CPU results include error reduction and execution times for selected kernel

widths, and the FPGA results include execution times and resource utilization on the Xilinx

ZCU102 board.

5.1 NAFDU on Desktop PC

In Figure 4, we show the expected error reductions when NAFDU is used to correct a depth

map which has been injected with noise. As expected, as the spatial kernels increase in size, the

error decreases in the resulting image. Notably, the final RMSE stabilizes at ~12% for floating

point and ~14% for fixed point regardless of increasing the kernel radius. The authors therefore

10%

11%

12%

13%

14%

15%

16%

17%

18%

19%

20%

5 10 15 20 25 30 35 40

R
o

o
t-

M
ea

n
-S

q
u

ar
e

Er
ro

r

Kernel Width

RMSE Floating Point RMSE Fixed Point

Figure 4. RMSE vs. Kernel Width

 16

judged a 25 px kernel width to be a reasonable maximum target for our hardware designs, as it is

the smallest kernel which achieves this accuracy. However, due to long compilation times, the 13

px kernel was the maximum kernel size that was able to be implemented in hardware for this study.

Simulation results indicate that performance of the 25 px kernel would be similar to others tested.

Execution times for the parallelized version of NAFDU on a CPU are shown in Figure 5.

Results for floating-point and fixed-point versions of NAFDU are included in the graph. The graph

demonstrates that for the floating-point version, we achieved a speedup of 4.62 when using eight

threads in the 25 px kernel case. The fixed-point version for the same kernel, conversely, only

achieved a speedup of 3.66 when using eight threads over the serial baseline. We reason that the

lower speedup is due to resource contention of the integer math units when the number of threads,

eight, is larger than the number of physical cores, in this case four.

0
.2

6

0
.6

7

1
.3

3

4
.3

4

1
6

.4
2

0
.2

0

0
.4

4

0
.7

6 2
.3

0

8
.0

0

0
.1

6

0
.2

8

0
.4

5

1
.3

3

4
.5

1

0
.1

5

0
.2

4

0
.3

9

1
.1

2

3
.5

5

0
.1

5

0
.2

7

0
.4

4

1
.2

9

4
.3

8

0
.1

4

0
.2

0

0
.2

9

0
.7

1 2
.2

8

0
.1

2

0
.1

6

0
.2

2

0
.4

6

1
.3

3

0
.1

0

0
.1

5

0
.1

9

0
.4

1

1
.1

8

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

3 5 7 13 25 3 5 7 13 25 3 5 7 13 25 3 5 7 13 25

1 2 4 8

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Kernel Width / Cores

Floating Point Fixed Point

Figure 5. NAFDU CPU Execution Times

 17

5.2 NAFDU on FPGA

The results shown for the accelerated NAFDU were gathered using Vivado HLS version

2018.2. Results include pixel latency and theoretical framerates as well as resource utilization for

2048×1536 images. The development board used was the Xilinx ZCU102 for selected kernel

widths up to 13 px.

5.2.1 Performance Results

The target frame time for real-time, high-resolution image processing was previously

defined as 11 ms. In our tests, for all kernel sizes, we report that the performance on the Zynq

UltraScale+ MPSoC is comparable to expected results from simulations. The clock rate on

hardware was 300 MHz. The total throughput of the test system was limited by the host software,

which was a simple direct memory access (DMA) system running on top of Petalinux. This system

passes data to the accelerator from an image loaded by software into DDR. The performance results

are a lower bound on what could be expected with a production-level system, which could interface

directly with camera data as a stream instead of passing data to the accelerator from DDR. Even

considering this lower-bound performance, our design achieves a frame time of 10.5 ms for all

kernels, which meets the target of 11 ms. This frame time also represents a speedup of 40 compared

to the fastest CPU version for the 13 px kernel and a factor of 4.7 times improvement over the

original GPU implementation. All kernels tested had identical frame times, showcasing the

scalability of our streaming architecture with respect to image resolution. However, increasing the

kernel size of the design significantly impacts resource utilization, and is therefore the limiting

factor in this design.

 18

5.2.2 Resource Utilization

The final resource utilization percentages for all kernel sizes tested can be found in Figure

6. The kernel size, and by extension the line buffers and adder trees, significantly impacts the

amount of resources used in the design. Adder trees are automatically generated by the HLS

synthesizer to handle the two-dimensional multiply-accumulate reduction over the entire kernel.

Upon deeper analysis, these adder trees use a significant number of LUTs to handle fully-pipelined

integer multiply-accumulations. This could be reduced by increasing the initialization interval of

the NAFDU pipeline from 1 clock cycle, which would slow down the design but require less

resources to implement the adder trees.

0%

2%

4%

6%

8%

10%

12%

3 5 7 13

R
es

o
u

rc
e

U
ti

liz
at

io
n

Kernel Width (px)

FF%

DSP%

BRAM%

LUT%

Figure 6. Zynq UltraScale+ MPSoC Resource Utilization

 19

The performance per watt for each kernel width appears to scale quadratically with kernel

size, as shown in Figure 7. We see that the smallest kernel width yields the highest performance

per watt because all kernel sizes maintained the same framerate while the resource utilization

increased. FPS-per-watt results for designs between 3 px and 7 px kernel widths also suggest that

this device can achieve real-time performance at sub-watt power, a common target for embedded-

system designs.

237

197

125

58

0

50

100

150

200

250

3 5 7 13

FP
S-

P
er

-W
at

t

Kernel Width

Figure 7. Zynq UltraScale+ MPSoC Performance-per Watt

 20

6.0 Discussion

As shown in the results above, the NAFDU algorithm performs well on FPGAs, and

outperforms both the original GPU implementation and the parallelized CPU version.

Additionally, the target framerate of 90 FPS and target latency of 11 ms is met. Further, the authors

show that the FPGA used also has a comparatively low power requirement, making it feasible to

install directly on an HMD, which would not be the case for the high-performance CPU or GPU.

While the resource utilization scales poorly with kernel size, as shown in Figure 6, kernel sizes

generally are not larger than 5 px wide. In fact, the original implementation on a GPU only used a

3 px kernel [9]. Granted, this was on a 640 × 480 image, but since higher resolution images are

targeted in this study, it was concluded that a 3 px kernel is not large enough to reduce noise in the

output depth map. The area of the kernel covered a much smaller area of the total image and was

more sensitive to local noise as a result.

Filter based approaches like the NAFDU are not generally considered state-of-the art in

terms of accuracy. It could be argued that filtering approaches will never be as accurate as energy

minimization (EM) approaches like Markov Random Fields, however, there are many reasons why

these algorithms are infeasible for mixed reality designs. HMDs are increasing in screen resolution,

so algorithms used in depth-mapping pipelines must be highly scalable with respect to input and

output resolution. The authors therefore deem filter-based approaches to depth-upsampling to

generally be more viable for real-time applications than EM approaches. EM algorithms generally

scale poorly with large output resolutions, because adding pixels to the output depth map serves

to increase the output solution space, which EM approaches attempt to fit to some probabilistic

model. Additionally, from a hardware acceleration perspective, EM approaches introduce huge

 21

amounts of data dependencies, since each iteration of the minimization depends on the result of

the last. Thus, the inherent serialization in these algorithms makes massive parallelism difficult to

achieve, which is necessary in the case of GPU implementations. EM algorithms also are generally

not bound in execution time, and some inputs may process much slower than others. This

nondeterministic execution pattern makes EM algorithms difficult to map to a dataflow

architecture, such as an FPGA, where design blocks with fixed execution times are necessary.

Fixed execution time is necessary in FPGA designs because pipelining a dataflow architecture

with variable execution time is nearly impossible, since a physical bound must be set on how deep

the pipeline must be. The only solution for these real-time, iterative algorithms is to short circuit

the processing pipeline after some number of iterations, and either produce an incomplete output,

or force execution of the entire pipeline to stall while the output is computed. The depth and

frequency at which these execution stalls occur is application dependent and would likely result in

an extremely inefficient design.

 22

7.0 Conclusions

In summary, the goal of this research was to demonstrate that filter-based depth-

upsampling algorithms, as opposed to energy minimization algorithms, are suitable for hardware

acceleration to meet the high-resolution, real-time constraints imposed by mixed-reality apps. The

NAFDU algorithm was selected for this purpose due to its relatively low algorithmic complexity,

deterministic execution time, and high upsampling accuracy compared to more complex methods.

We parallelized NAFDU on a desktop PC to demonstrate its scalability and assess the error

introduced by quantizing floating-point arithmetic to fixed-point. Subsequently, we designed and

developed a NAFDU accelerator using Vivado HLS which showed significant performance gains

when executed on the Zynq UltraScale+ MPSoC platform. The final design achieved a 10.5 ms

frame time for the largest kernel width tested, 13 px, and therefore meets the real-time requirement

for mixed-reality apps of 11 ms. This execution time achieves a 40× speedup over the fastest CPU

version and a 4.7 improvement over the original GPU implementation of NAFDU. Kernel widths

smaller than 13 px also achieve high performance-per-watt, demonstrating that low-power,

embedded systems could leverage the NAFDU accelerator and still maintain high framerates. The

accelerated version of NAFDU meets the real-time, high-resolution constraints imposed by mixed-

reality apps and is a demonstration of how filter-based depth-upsampling algorithms can be applied

in XR apps to enhance overall depth-map quality.

Future work on this topic involves further benchmarking and parallelization of the NAFDU

on new embedded GPUs, which could be used in an HMD. Specifically, the NVIDIA Tegra AGX

will be used to compare the performance-per-watt of new embedded GPUs to FPGAS. Given the

difficulty of programming and optimizing designs for FPGAs, a useful study would be to

 23

investigate if an embedded GPU can closely match the processing power and energy-efficiency of

the FPGA design. The results from this study would indicate whether the GPU is a more attractive

option for XR real-time processing on HMDs, given the relative ease of programming as well as

cost.

 24

Bibliography

[1] D. Langerman, S. Sabogal, B. Ramesh and A. George, "Accelerating Real-Time, High-

Resolution Depth Upsampling on FPGAs," in IEEE International Conference on Image

Processing Applications and Systems, Nice, France, 2018.

[2] "Augmented Reality Market Size By Component," Global Market Insights, December 2017.

[Online]. Available: https://www.gminsights.com/industry-analysis/augmented-reality-ar-

market. [Accessed 17 August 2018].

[3] A. Binstock, "Powering the Rift," Oculus.com, [Online]. Available:

https://www.oculus.com/blog/powering-the-rift/.

[4] HTC, "VIVE Specs," HTC, 2018. [Online]. Available:

https://www.vive.com/us/product/vive-virtual-reality-system/. [Accessed 2018].

[5] D. J. Zielinski, H. M. Rao, M. A. Sommer and R. Kopper, "Exploring the effects of image

persistence in low frame rate virtual environments," in IEEE Virtual Reality, Arles, France,

2015.

[6] I. Eichhardt, D. Chetverikov and Z. Jank´o, "Image-guided ToF depth upsampling: a survey,"

Machine Vision and Applications, Vols. 3-4, no. 28, pp. 267-282, 2017.

[7] V. Gandhi, J. Cech and R. Horaud, "High-resolution depth maps based on TOF-stereo

fusion," in Robotics and Automation IEEE International Conference, 2012.

[8] A. Belhedi, A. Bartoli, S. Bourgeois, V. Gay-Bellile, K. Hamrouni and P. Sayd, "Noise

modelling in time-of-flight sensors with application to depth noise removal and uncertainty

estimation in three-dimensional measurement," IET Computer Vision, vol. 9, no. 6, pp. 967-

977, 2015.

[9] D. Chan, H. Buisman, C. Theobalt and S. Thrun, "A noise-aware filter for realtime depth

upsampling," in Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and

Applications, 2008.

[10] G. D. Evangelidis, M. Hansard and R. Horaud, "Fusion of range and stereo data for high-

resolution scene-modeling," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 37, no. 11, pp. 2178-2192, 2015.

 25

[11] M.-Z. Yuan, L. Gao, H. Fu and S. Xia, "Temporal Upsampling of Depth Maps Using a

Hybrid Camera," IEEE Transactions on Visualization and Computer Graphics, 2018.

[12] R. Shea, A. Sun, S. Fu and J. Liu, "Towards Fully Offloaded Cloud-based AR: Design,

Implementation and Experience," in Proceedings of the 8th ACM on Multimedia Systems

Conference, Taipei, Taiwan, 2017.

[13] C. Pal and D. Scharstein, "Learning conditional random fields for stereo," in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, 2007.

[14] L. Yuan, X. Jin, Y. Li and C. Yuan, "Depth map super-resolution via low-resolution depth

guided joint trilateral up-sampling," Journal of Visual Communication and Image

Representation, no. 46, pp. 280-291, 2017.

[15] J. Kopf, M. F. Cohen, D. Lischinski and M. Uyttendaele, "Joint bilateral upsampling," ACM

Transactions on Graphics, vol. 3, no. 26, p. Article 96, 2007.

[16] S. D and R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo

correspondence," International Journal of Computer Vision, vol. 1/2/3, no. 47, pp. 7-42,

2002.

[17] R. S. D. Scharstein, "High-accuracy stereo depth maps using structured light," in IEE

Computer Society Conferences on Computer Vision and Pattern Recognition, Madison, WI,

2003.

[18] J. M. Bull, "Measuring Synchronisation and Scheduling Overheads in OpenMP,"

Proceedings of First European Workshop on OpenMP, vol. 8, p. 49, 1999.

[19] A. Gabiger-Rose, M. Kube, R. Weigel and R. Rose, "An FPGA-based fully synchronized

design of a bilateral filter for real-time image denoising," IEEE Transactions on Industrial

Electronics, vol. 8, no. 61, pp. 4093-4104, 2014.

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Figures
	1.0 Introduction
	2.0 Related Work
	3.0 Background
	3.1 Noise-Aware Filter for Depth Upsampling (NAFDU)
	3.2 Time-of-Flight (ToF) Sensors
	3.3 Hardware Testbed
	Figure 1. NAFDU System Diagram, “Books” from Middlebury Dataset Used

	4.0 Approach
	4.1 NAFDU on High-Performance Desktop PC
	Figure 2. "Art" from Middlebury Dataset

	4.2 NAFDU Optimization and Parallelization
	4.3 Design for High-Level Synthesis
	Figure 3. FPGA NAFDU Accelerator Diagram for Kernel Width n

	5.0 Experimental Results
	5.1 NAFDU on Desktop PC
	Figure 4. RMSE vs. Kernel Width
	Figure 5. NAFDU CPU Execution Times

	5.2 NAFDU on FPGA
	5.2.1 Performance Results
	5.2.2 Resource Utilization
	Figure 6. Zynq UltraScale+ MPSoC Resource Utilization
	Figure 7. Zynq UltraScale+ MPSoC Performance-per Watt

	6.0 Discussion
	7.0 Conclusions
	Bibliography

