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ABSTRACT 

Impact of Age and Obesity on Anthropometry 
 

Zachary Forest Merrill, PhD 
 

University of Pittsburgh, 2019 
 
 
 
 

Current anthropometric models do not account for the variations of age, obesity, and 

individual body shape within the American working population.  The goals of this dissertation 

are to determine the associations of age and body mass index (BMI) with commonly used 

anthropometric parameters, develop predictive regression models to accurately determine these 

parameters in individuals, and develop predictive regressions for body fat in adults.  A data set of 

280 working adults was collected, consisting of 88 skinfold and anthropometric measurements, 

along with a full body dual energy x-ray absorptiometry (DXA) scan.  Body segment parameters 

(BSPs) including segment mass, center of mass, and radius of gyration, along with body 

composition, were determined from the analyses of these DXA scans. 

Several significant effects of age, BMI, and individual body shape were found on body 

composition and the BSPs of interest.  Specifically, the results showed significant changes in the 

center of mass and radius of gyration in large segments including the torso and thigh, with 

increasing age and obesity.  When including individual body measurements to make predictive 

BSP models, the parameters of interest could be predicted with less than 5% root mean square 

error, and all of the predictions were more accurate than established anthropometric data sets, 

which had average errors of up to 60%.  The body fat predictions improved upon previous 

statistical models by including age and BMI along with several skinfold and anthropometric 

measures.  Body fat percentage was predicted with average errors of less than 10%, while 

established models result in errors of up to 33%. 
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In order to determine the importance of including representative BSP sets, static lifting 

and dynamic slipping sensitivity analyses were performed using various age, BMI, and 

anthropometric inputs. The static lifting task demonstrated variations of up to 12% in calculated 

L5/S1 compression force, based on the age and BMI inputs used, while the slipping task showed 

variations in hip joint forces and moments of up to 22% between individuals, highlighting the 

need for representative segment parameters. 
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1.0 Introduction 

1.1 Anthropometry Applications and Development 

1.1.1  Anthropometry Applications 

Body segment parameters (BSPs), which include the length, mass, center of mass 

(COM), and radius of gyration (RG) of body parts, are used in a number of applications related to 

human factors and ergonomics, static and dynamic biomechanical modeling, and military and 

automobile operations.  Applications utilizing BSP information, such as static and ergonomic 

modeling tools (Chaffin, Andersson, and Martin, 2006), and inverse dynamics applications (de 

Looze et al., 1992), have been proven to depend on accurate anthropometric inputs (Chaffin and 

Muzaffer, 1991; Desjardins et al., 1998; Pearsall and Costigan, 1999; Rao et al., 2006), 

highlighting the need for using representative, accurate segment parameter inputs. 

Depending on how BSP data sets are derived, they can be optimized for different specific 

purposes, while being limited in their potential applications. For example, studies using dynamic 

analysis optimization (Chen et al., 2011; Hansen et al., 2014; Venture, Ayusawa, and Nakamura, 

2009) are collected with predefined joint centers and segment end points that optimize the results 

for use in inverse dynamics calculations.  The works of Chandler (1975), Dempster (1955), 

Hanavan (1964), McConville (1980), and Young (1983) have studied the mass distribution, 
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inertial properties, and space requirements of military personnel, while research by Reed and 

Ebert (2013) has observed body shape and surface modeling of seated operators, making these 

results directly applicable to military and automobile related applications. 

Recent work performed by the University of Michigan Transportation Research Institute 

(UMTRI) has developed statistical models of body shapes, for military personnel (Reed and 

Ebert, 2013) and children (Park and Reed, 2015).  These studies are particularly interesting 

because they account for overall body shape, which is particularly useful for inclusion in 

ergonomic modeling of lower back compressive forces, and the related injury risk, along with 

automobile design. 

1.1.2  Development Methods 

Previous work has approached the need for representative anthropometric sets by 

developing parameter sets for specific populations, such as the elderly (Chambers et al., 2010; 

Chambers et al., 2011), obese adults (Matrangola, 2008), children (Ganley and Powers, 2004; 

Park and Reed, 2015), and military personnel (Dempster, 1955; Hanavan, 1964; McConville et 

al., 1980; Reed and Ebert, 2013), however there are no available data sets which account for the 

specific variations in age, obesity, and individual body and segment shape in the American adult 

population. 

Several methods for approximating BSPs have been developed and validated, including 

imaging, cadaver, static and dynamic analyses, and photogrammetric analysis.  Some of the 

earliest attempts used cadaver studies (Chandler, 1975; Clauser et al., 1969; Dempster, 1955) in 

order to directly measure the masses and inertial properties of body segments.  Cadaver methods 
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have the advantage of not relying on any density or mass distribution assumptions within each 

segment, however they do not allow for in vivo measurements.  While some of the specific 

parameters resulting from the studies may be adjusted to utilize different endpoints (Hinrichs, 

1990), the cadaver method of data collection does not easily allow for determination of segments 

using different endpoints or boundaries. 

Geometric methods of determining BSPs, such as those done by Hanavan (1964), allow 

for individual anthropometric approximations based on individual measurements, combined with 

estimations for tissue density and mass distribution within segments.  These methods have the 

advantage of producing individual level data sets from simple body measurements, however the 

parameters calculations are dependent on density and tissue distribution assumptions. 

Similarly to the geometric methods, photogrammetric methods (Dumas, Cheze, and 

Verriest, 2007; McConville et al., 1980; Sanders et al., 2015; Young et al., 1983) rely on 

measurements within individuals, however this method uses measurements of frontal and sagittal 

plane images.  Compared to the geometric method, the photogrammetric method allows for more 

measurements in each segment, with improved reliability, but similarly to the geometric method, 

this method depends on tissue density and mass distribution assumptions in order to calculate 

mass and inertial parameters. 

Dynamic analysis optimization methods have the advantage of directly approximating the 

measures of interest, without depending on any density or mass distribution assumptions by 

simultaneously collecting motion capture and force plate data (Chen et al., 2011; Hansen et al., 

2014; Venture, Ayusawa, and Nakamura, 2009).  While this method leads to results that are 

directly applicable to inverse dynamics analyses, the results are also subject to errors related to 

reflective marker motion cause by soft tissue artefacts, and the predefined segment endpoints and 
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joint rotation center assumptions may limit the further applications.  Finally, while methods such 

as cadaver and imaging methods can be used to predict parameters in individuals, the parameters 

collected by dynamic optimization are limited to the individuals from whom the data is collected, 

in addition to the requirements of time and computational effort. 

Imaging methods (Chambers et al., 2011; deLeva, 1996; Ganley and Powers, 2004; 

Merrill, Chambers, and Cham, 2017; Merrill et al., 2018) have the advantages of collecting in 

vivo measurements, and directly measuring tissue density and masses.  Additionally, the 

segments derived from imaging methods are not constrained by predefined segment boundaries 

or endpoints (Merrill et al., 2018), and can be altered depending on the desired applications.  

Unfortunately, imaging methods require expensive equipment for data collection and analysis, 

and in the case of computed tomography scanning, can expose study participants to high levels 

of radiation. 

Dual energy x-ray absorptiometry (DXA) scanning has the advantage over other imaging 

methods of being a low radiation and relatively inexpensive method of collecting in vivo BSPs 

and body composition.  Unlike geometric and photogrammetric methods, DXA scanning does 

not depend on any tissue density or mass distribution assumptions, and unlike dynamic analysis 

methods, DXA scans can be analyzed with various segment endpoints and boundaries, allowing 

for the same scan data to be applied for multiple applications, which may require differing 

segment definitions.  Combined with the collection of individual anthropometric measurements, 

DXA scanning is ideal for determining individual anthropometry, and quantifying statistical 

effects of age, obesity, and body shape.  The end result of this work includes validated BSP 

prediction models that can be used by others who do not have access to DXA scanning systems. 
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1.2 Goals and Specific Aims 

The overall goals of this dissertation are to quantify the associations of age, BMI, and 

overall body shape with DXA scan derived segment parameters, and develop predictive models 

for segment parameters and body fat in individuals, using statistical regressions that include age, 

BMI, and individual anthropometric measurements.  The specific aims and hypotheses are as 

follows: 

• Specific Aim 1: Quantify the impact of obesity and aging on normalized BSPs. 

o Hypothesis H1.1: BMI will have a significant effect on normalized BSPs, 

particularly on those of large body segments such as the trunk and thigh. 

o Hypothesis H1.2: Age will have a significant effect on normalized BSPs when 

added to models already using BMI. 

o Hypothesis H1.3: Effects of BMI on normalized BSPs (H1.1) will increase with 

advancing age. 

• Specific Aim 2: Develop validated regression models to predict BSPs that include 

BMI. 

o Hypothesis H2.1: By including age, gender and BMI as potential predictors along 

with other commonly used anthropometric variables, we will be able to predict 

BSPs with a root mean square error less than 5% of the mean. 

o Hypothesis H2.2: Predictions of BSPs in Hypothesis H2.1 will be more accurate 

than predictions derived from regression equations commonly used in the 

literature, both in development/training and validation samples. 
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• Specific Aim 3: Define torso segment parameters for thoracic, lumbar, and pelvis 

segments, and quantify the impacts of age, BMI, and SHS ratio on these parameters. 

o Hypothesis H3.1: Age and BMI terms will have significant associations with 

these parameters. 

o Hypothesis H3.2: Inclusion of the SHS ratio and its interactions with age and BMI 

will have significant effects on these parameters. 

• Specific Aim 4: Develop validated statistical models to predict body fat percentage 

in working adults. 

o Hypothesis H4.1: By including age, BMI, and anthropometric measures in 

addition to skinfold measures, we will be able to predict total body fat percentage 

with a root mean square error of less than 10% of the mean. 

o Hypothesis H4.2: Body fat percentage predictions from Hypothesis 4.1 will be 

more accurate than the predictions of existing models. 
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2.0 Age and Body Mass Index Associations with Body Segment Parameters 

2.1 Introduction 

Body segment parameters (BSPs), including the length, mass, center of mass, and radius 

of gyration of body parts, are used in many ergonomic applications, including the design of tools, 

protective clothing, equipment and workstations (Chaffin, Andersson, and Martin 2006). BSPs 

are also necessary to develop biomechanical tools and models required to minimize the risk of 

musculoskeletal injuries while performing occupational activities such as lifting or resulting 

from slips, trips and falls accidents (Durkin and Dowling 2003; Hughes et al. 2004; M 

Kuczmarski, R Kuczmarski, and Najjar 2000; Matrangola et al. 2008). Examples of specific 

applications utilizing BSPs include the 3D Static Strength Prediction Model and inverse 

dynamics calculations (Chaffin and Muzaffer 1991).  Such tools, which are used to calculate 

joint forces and moments during a specified task and to determine the fraction of the population 

capable of safely completing a task, require BSPs as input. 

As shown in Table 1, currently available BSP datasets are typically predicted from data 

collected in cadaver studies (Chandler et al. 1975; Dempster 1955), imaging techniques (deLeva 

1996), geometric modeling of the body (Hanavan, 1964; Pavol, Owings, and Grabiner 2002), 

inverse dynamics analyses (Hansen et al., 2014), static force plate analyses (Chen et al., 2011; 

Damavandi, Farahpour, and Allard, 2009), and photographic analysis (Jensen, 1978; Sanders et 
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al., 2015). Large differences in parameters have been found when these methods are compared 

(as large as 40%) (Pearsall and Costigan 1999). 

 

Table 1: Development of methods used to generate BSPs, including acquisition of source data and 

populations, along with advantages and disadvantages for each type. 

 

Method Studies Advantages Disadvantages 
Imaging Chambers et al, 

2011 
de Leva, 1996 
Merrill et al, 
2018 

• Allows for in vivo 
measurement 

• Exact tissue densities and 
masses may be calculated 

• Segment endpoints and 
boundaries can be 
adjusted depending on 
desired BSP application 

• Expensive equipment 
required for collection 
and analysis 

• Techniques such as CT 
or DXA will involve 
varying levels of 
radiation 

• Parameters are limited 
to the frontal plane 

Cadaver Chandler et al, 
1975 
Dempster, 1955 

• Exact tissue densities and 
masses can be calculated 

• Does not allow for in 
vivo measurements 

Geometric Hanavan, 1964 
Pavol, Owings, 
and Grabiner, 
2002 

• BSPs can be 
approximated from sets of 
simple in vivo 
anthropometric 
measurements 

• Relies on assumptions 
regarding tissue 
density and distribution 
within segments 

Dynamic analysis Chen et al., 2011 
Hansen et al., 
2014 
Venture, 
Ayusawa, and 
Nakamura, 2009 

• Allows for in vivo data 
collection, without any 
tissue density, volume, or 
distribution assumptions 

• Requires simultaneous 
motion capture and 
force plate data 
collection 

• Relies on accurate 
marker placement, and 
pre-defined segment 
endpoints 

Photogrammetric 
analysis 

Dumas, Cheze, 
and Verriest, 
2007 
Jensen, 1978 
McConville et 
al., 1980 
Sanders et al., 
2015 
Young et al., 
1983 

• Allows for in vivo 
collection with a camera 

• Parameters can be 
determined for frontal and 
sagittal planes 

• Relies on tissue 
density, volume, and 
shape assumptions 
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The elliptical method developed by Jensen (1978) is particularly interesting because it 

offers a noninvasive method of approximating segment parameters, by dividing each segment 

into a series of horizontal elliptical slices.  The primary disadvantage to using this method is that 

it relies on assumptions regarding tissue density and elliptical slice volume, which can impact 

segment parameter calculations, especially in the torso (Wicke and Dumas, 2010), while other 

methods using imaging or cadavers directly measure segment masses used to determine the 

desired parameters. 

Methods using inverse dynamics and force plate analyses (Chen et al., 2011; Damavandi, 

Farahpour, and Allard, 2009; Hansen et al., 2014) provide approaches to approximate segment 

parameters based on optimization equations, bypassing the need for tissue volume and density 

assumptions.  These methods are noninvasive, similar to the elliptical methods (Jensen, 1978; 

Sanders et al., 2015), however they still do not directly measure masses within body segments, 

meaning that these results cannot be easily adapted to differing segment definitions, which are 

especially prevalent when defining torso parameters (Merrill et al., 2018). 

BSPs are typically estimated using anthropometric models developed based on data 

collected from normal-weight young adults and do not account for variations in age, body shape, 

or obesity status present in a real-world working population (Durkin and Dowling 2003). While 

some studies have observed specific anthropometry sets for elderly (Chambers et al., 2011; 

Hoang and Mombaur, 2015) or obese (Matrangola et al., 2008) subsets of the population, they 

have not quantified the specific impacts of age and BMI on these parameters within the full adult 

population.  With over 60% of the US adult population having a BMI classified as being above 

normal weight (BMI ≥ 25.0 kg m-2), and nearly 35% having a BMI considered obese (BMI ≥ 

30.0 kg m-2) (Ogden et al., 2014), anthropometry sets derived from specific segment of the 
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population will not be able to accurately describe the changes in parameters for age and obesity 

status differences in the population as a whole. Thus, BSPs predicted based on methods 

developed in normal-weight young adults may not accurately represent the wide range of body 

mass index (BMI) and age across the working American population. In particular, estimates of 

BSPs using traditional predictive methods may be inaccurate for older adults, with the errors 

being functions of gender and mass distribution, and vary with the type of parameter of interest 

(Chambers et al. 2011). For example, large segments’ parameters such as those of the torso and 

thigh segments in older adults, differences of 20-50% were reported between the deLeva 

predicted estimates and DXA derived calculations (Chambers et al. 2011). 

Using BSPs that are not representative of the anthropometry of individuals in the 

workplace can lead to errors in the outputs of the static/dynamic modeling analyses (Chaffin and 

Muzaffer 1991).  More specifically, inverse dynamics models, specifically those calculating 

L5/S1 joint loading and related injury risk, have been shown to be sensitive to parameter 

estimations such as center of mass position, joint rotation center location, length, and mass (F de 

Looze et al. 1992; M de Looze et al. 1992; Desjardins, Plamondon, and Gagnon 1998).  Other 

dynamic analyses, such as those used for knee and hip kinetic calculations during gait produce 

varying results between different standard anthropometry sets in normal and overweight adults, 

with deviations as high as 60% (Pearsall and Costigan 1999; Rao et al. 2006).  Such large 

differences in calculated values can greatly decrease the accuracy of predicted injury risk during 

specific tasks. 

The objective of this study is to first determine if age and BMI have indeed a significant 

impact on the segment mass, center of mass and radius of gyration of the following major body 

segments: torso, thigh, shank, upper arm, and forearm. The analysis also considered the 
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possibility of nonlinear associations, differential age-BSP associations in those with lower and 

higher BMI, and differential BMI-BSP associations in different age groups. 

2.2 Methods 

2.2.1  Participants and Settings 

A total of 280 working adults participated in this study.  Participants were recruited 

according to gender, age, and BMI, in order to attempt to enroll equal numbers in four BMI 

categories (normal weight: 18.5 ≤ BMI < 25.0, overweight: 25.0 ≤ BMI < 30.0, obese: 30.0 ≤ 

BMI < 40.0, and morbidly obese BMI ≥ 40.0 kg m-2) across three age groups (21 ≤ age < 40), 

middle (40 ≤ age < 55), and old (55 ≤ age < 70). 

After obtaining informed written consent, each participant had his or her height and mass 

recorded to confirm eligibility based on BMI.  Female participants of child bearing age were then 

required to complete a pregnancy test, with a negative result being required for eligibility.  A 

whole body DXA scan (Hologic QDR 1000/W, Bedford, MA, USA) of each participant was then 

collected using the same methods used in prior studies (Chambers et al. 2010; Chambers et al. 

2011), with the participant lying supine as shown in Figure 1.  The scanner was calibrated daily 

using a radiographic phantom, according to the manufacturer’s instructions.  These scanners 

have shown to be consistent in the short and long term for tissue densities between 0.5 and 3.3 g 

cm-3 (Hangartner, 2007). 
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Figure 1: Example of a whole body DXA scan. 
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DXA scan processing procedures consisted of each scan being split into each major body 

segment of interest (torso, upper arm, forearm, thigh, and shank), defined using bony landmarks 

and anatomically defined planes (Chambers et al. 2010), as shown in Figure 2.  Each segment 

was then split into 3.9 cm tall slices, perpendicular to the long axes of the bones for the arms and 

legs, and horizontal for the torso, in a similar method as described by Ganley and Powers (2004).  

Pixel densities had assumed values of 2.5-3.0 g cm-3 for bone, 0.9 g cm-3 for fat, and 1.08 g cm-3 

for lean tissue. The segment mass, center of mass (COM) and radius of gyration (RG) were then 

calculated from the known slice heights and masses using a custom MATLAB script 

(Mathworks, Natick, MA, USA). 

Making the same assumptions as Ganley and Powers (2004), the center of mass of each 

slice was assumed to be at its geometric center, and the segments were modeled as sets of point 

masses along their longitudinal axes.  Each segment center of mass was calculated from the mass 

of each slice, and the distance from the proximal (superior for torso) border to the slice’s 

geometric center, summed and divided by the total segment mass.  The proximal moment of 

inertia for each segment was determined with the slice masses and distances from the proximal 

border, and the moment of inertia about the center of mass was calculated from the proximal 

moment of inertia, segment mass, and center of mass location using the parallel axis theorem.  

Finally, the radius of gyration was calculated as the square root of the moment of inertia about 

the center of mass, divided by the segment mass. 

All reported data for the forearm, upper arm, thigh, and shank were analyzed on the 

participants’ self-reported dominant side.  Values for segment mass were reported as percent of 

the total body mass.  COM locations were reported as percent of the segment length, where a 

higher value indicates that the COM is located further in the distal (inferior for the torso) 
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direction.  The RG values were also reported as percent of the segment length, with the RG 

location being measured from the calculated COM. 

 

 

 

Figure 2: Segmental boundaries of interest: (a) forearm, (b) upper arm, (c) torso, (d) thigh, (e) shank. 

 

 

2.2.2  Statistical Analysis 

The statistical analyses were conducted using JMP Pro 12® (SAS Institute, Cary, NC, 

USA) with statistical significance set at α = 0.05. All analyses were stratified by gender due to 

the significant differences between male and female participants. Parameters of interest were 

checked for normality, and log transformed as necessary before any further analysis.   

For each BSP, least squares linear regression models were first fit using only BMI and 

BMI2 as predictors in order to describe how BMI affected the parameters of interest, regardless 

of age.  Next, to quantify the effect of age on top of the effect of BMI, age and age2 were added 

to the initial BMI-only models.  Finally, to examine whether age-BSP association varied with 
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BMI (or alternatively whether BMI-BSP association varied with age) the age x BMI, age2 x 

BMI, age x BMI2, and age2 x BMI2 interaction terms were added to the model.  The coefficient 

of determination (R2) was recorded for each model, and the increases (ΔR2) were recorded for the 

model including the age and BMI terms, and the final model also including all of the interaction 

terms. 

The nested models F-test was then used in order to determine the significance of adding 

set of predictors to the models.  This test involved the relative decreases in the sum of squared 

errors in the final two sets of models, and allowed for the quantification of the significance of the 

increase in R2 between models, again with statistical significance set at α = 0.05. 

2.3 Results 

The study population consisted of 280 working adults (148 female) ages 21-70 (mean: 

44.9 ± 13.4 years), as shown in Tables 2 (females) and 3 (males).  Descriptive statistics for all 

segment parameters divided by gender, age, BMI, and combined age and BMI groups are 

provided in Tables 4 and Table 6 for females, and Tables 5 and 7 for and males.  Figure 3 shows 

representative scatter plots for the torso parameters males and females, plotted with the 

regression line for the initial model only using BMI and BMI2 as predictors. 

The effect of both BMI and BMI2 was found statistically significant for 7 and 6 BSPs (out 

of 15) in female and male participants, respectively (Table 8). More specifically, in female 

subjects, using only BMI and BMI2 alone explained about 50% of the variability in the torso 

radius of gyration, 10-20% of the variability in the shank COM, shank radius of gyration, 
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forearm COM and upper arm radius of gyration, and 5-10% in the torso COM and thigh COM.  

Similarly, in male subjects, BMI and BMI2 alone explained about 50% of the variability in torso 

radius of gyration, 30% of the variability in forearm mass, torso mass and COM, 10-20% of the 

variability in forearm radius of gyration, shank COM, and shank radius of gyration, and 5-10% 

of the variability in thigh COM and radius of gyration. 

Adding age and age2 to the model used only BMI revealed significant aging effects on 8 

and 12 BSPs (out of 15) in female and male participants, respectively (P1 values in Tables 9 and 

10). In the female participants, aging effects were statistically significant for the torso segment 

(all 3 BSPs), the thigh mass and COM, the upper arm mass, the shank mass and COM.  In male 

participants, aging effects were statistically significant for more BSPs than in female participants 

and included the torso segment (all 3 BSPs), the thigh mass and radius of gyration, upper arm 

mass and COM, the forearm COM and radius of gyration, and the shank (all 3 BSPs).  More 

specifically, the age terms explained 5-10% beyond the variability explained by BMI terms alone 

in female torso and thigh mass, and torso radius of gyration, and 14% of the additional variability 

in torso COM.  In males, the additional age terms explained 15-20% of the variability in thigh 

mass and radius of gyration, and torso COM, and 5-10% of the variability in torso radius of 

gyration, upper arm mass and radius of gyration, and forearm COM and radius of gyration. 
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Table 2: Female research participant characteristics 

 

 

 

 

 

 

 

 

 

 

Table 3: Male research participant characteristics

  All female Age Group  BMI Group  
  Young Middle Old Normal Overweight Obese Morb. Obese 
N 148 51 44 53 35 40 41 32 
Mass (kg) 
Mean ± SD 
[min,max] 

 
85.0±23.3 

[41.9,149.6] 

 
85.6±26.2 

[41.9,149.6] 

 
84.7±22.5 

[50.4,135.0] 

 
84.7±21.3 

[51.8,140.5] 

 
59.5±6.0 

[41.9,69.0] 

 
74.3±8.0 

[57.8,90.9] 

 
89.7±8.4 

[72.6,112.9] 

 
120.4±12.3 

[100.2,149.6] 
Stature (cm) 
Mean ± SD 
[min,max] 

 
163.5±6.1 

[149.5,177.9] 

 
164.2±6.7 

[150.6,177.9] 

 
164.1±5.4 

[149.5,174.6] 

 
162.4±6.0 

[151.5,175.4] 

 
163.5±5.0 

[150.6,176.2] 

 
164.1±6.8 

[149.5,174.6] 

 
163.8±5.8 

[152.7,175.4] 

 
162.3±6.7 

[151.5,177.9] 
BMI (kg m-2) 
Mean ± SD 
[min,max] 

 
31.8±8.7 

[18.5,57.6] 

 
31.6±9.1 

[18.5,53.3] 

 
31.5±8.6 

[19.6,49.8] 

 
32.3±8.5 

[21.0,57.6] 

 
22.2±1.8 

[18.5,24.9] 

 
27.5±1.3 

[25.2,29.9] 

 
33.4±2.8 

[30.0,40.0] 

 
45.6±3.5 

[41.3,57.6] 
Age (y) 
Mean ± SD 
[min,max] 

 
45.8±13.2 

[21,70] 

 
29.9±4.8 
[21,39] 

 
48.3±5.0 
[40,54] 

 
59.1±3.7 
[55,70] 

 
44.7±14.2 

[21,70] 

 
46.2±13.2 

[24,66] 

 
45.8±13.5 

[21,63] 

 
46.7±12.2 

[23,68] 

  All male Age Group  BMI Group  
  Young Middle Old Normal Overweight Obese Morb. Obese 
N 132 45 49 38 33 41  38 20  
Mass (kg) 
Mean ± SD 
[min,max] 

 
94.9±24.6 

[54.2,159.4] 

 
93.2±23.4 

[59.7,159.4] 

 
94.2±26.2 

[54.2,158.0] 

 
97.9±24.0 

[55.8,156.7] 

 
69.3±7.7 

[54.2,81.8] 

 
84.7±7.4 

[71.8,101.5] 

 
106.5±12.9 
[79.1,131.6] 

 
136.3±13.5 

[114.6,159.4] 
Stature (cm) 
Mean ± SD 
[min,max] 

 
176.5±6.9 

[160.0,192.8] 

 
177.4±5.7 

[164.3,190.8] 

 
175.5±7.4 

[160.0,188.5] 

 
176.8±7.5 

[162.3,192.8] 

 
175.3±6.5 

[160.4,185.6] 

 
175.7±6.6 

[163.3,188.4] 

 
178.3±7.9 

[160.0,192.8] 

 
176.7±5.6 

[165.4,185.5] 
BMI (kg m-2) 
Mean ± SD 
[min,max] 

 
30.4±7.2 

[19.2,48.8] 

 
29.6±7.1 

[19.9,48.8] 

 
30.4±7.7 

[19.9,46.9] 

 
31.2±6.9 

[19.2,47.0] 

 
22.5±1.7 

[19.2,24.9] 

 
27.4±1.2 

[25.2,30.0] 

 
33.4±3.0 

[30.1,39.9] 

 
43.6±2.5 

[40.0,48.8] 
Age (y) 
Mean ± SD 
[min,max] 

 
44.0±13.6 

[21,69] 

 
27.7±5.4 
[21,38] 

 
46.9±4.7 
[40,54] 

 
59.5±3.8 
[55,69] 

 
40.4±14.1 

[21,66] 

 
44.2±14.8 

[21,68] 

 
44.6±12.5 

[22,66] 

 
48.2±11.9 

[28,69] 



18 

 

Figure 3: Sample scatter plots for the torso segment parameters in females (left) and males (right).  Lines 

plotted are the results of the initial linear regression analysis of BMI and BMI2 on the parameters of interest, 

and do not account for age. 
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Table 4: Descriptive statistics of female BSPs, stratified by age and BMI groups.  Values are given as mean ± 

standard deviation. 

 

 

 

The age x BMI interaction terms had minimal effects on the BSPs both in female and 

male participants (P2 values in Tables 9 and 10).  More specifically, these effects were 

statistically significant for only 3 out 15 BSPs in female and male groups, with additional 

variability ranging from 5-10% for torso, forearm, and shank COM in females, and upper arm 

mass, and forearm mass, COM, and radius of gyration in males. 

  
All Female 

Age Group  BMI Group  
Young Middle Old Normal Overweight Obese Morb. Obese 

N 148 51 44 53 35 40 41 32 
Thigh COM 
(%SL) 45.8 ± 1.6 45.7 ± 1.5 45.4 ± 1.7 46.2 ± 1.6 45.7 ± 1.5 45.7 ± 1.4 45.5 ± 1.7 46.5 ± 1.9 

Thigh Mass 
(%BW) 11.8 ± 1.5 12.3 ± 1.4 11.6 ± 1.5 11.6 ± 1.4 11.4 ± 1.2 11.7 ± 1.0 12.1 ± 1.6 12.2 ± 2.0 

Thigh Rg (%SL) 25.7 ± 0.5 25.6 ± 0.4 25.7 ± 0.5 25.8 ± 0.6 25.7 ± 0.6 25.8 ± 0.5 25.6 ± 0.4 25.7 ± 0.5 
Torso COM 
(%SL) 54.4 ± 1.3 53.9 ± 1.0 54.3 ± 1.1 54.9 ± 1.4 54.4 ± 1.0 54.1 ± 1.1 54.1 ± 1.4 55.0 ± 1.4 

Torso Mass 
(%BW) 43.5 ± 3.5 42.2 ± 2.7 44.0 ± 3.6 44.4 ± 3.8 42.8 ± 2.6 43.0 ± 2.9 44.1 ± 4.5 44.2 ± 3.5 

Torso Rg (%SL) 27.3 ± 0.7 27.5 ± 0.7 27.3 ± 0.6 27.2 ± 0.6 28.0 ± 0.7 27.4 ± 0.5 27.1 ± 0.5 26.8 ± 0.4 
Upper Arm COM 
(%SL) 49.6 ± 2.3 49.8 ± 1.9 50.0 ± 2.5 49.2 ± 2.6 49.6 ± 2.1 49.9 ± 2.5 50.0 ± 2.2 49.0 ± 2.6 

Upper Arm Mass 
(%BW) 3.5 ± 0.4 3.4 ± 0.4 3.5 ± 0.5 3.6 ± 0.4 3.3 ± 0.3 3.4 ± 0.3 3.5 ± 0.4 3.8 ± 0.5 

Upper Arm Rg 
(%SL) 25.4 ± 0.9 25.4 ± 0.9 25.3 ± 1.0 25.4 ± 0.8 25.3 ± 0.7 25.2 ± 0.9 25.2 ± 0.9 25.9 ± 0.9 

Forearm COM 
(%SL) 41.3 ± 1.4 41.4 ± 1.0 41.0 ± 1.3 41.5 ± 1.7 41.7 ± 0.9 41.6 ± 0.9 41.4 ± 1.1 40.7 ± 2.2 

Forearm Mass 
(%BW) 1.4 ± 0.2 1.4 ± 0.2 1.4 ± 0.2 1.3 ± 0.2 1.5 ± 0.1 1.4 ± 0.1 1.4 ± 0.2 1.2 ± 0.2 

Forearm Rg 
(%SL) 26.7 ± 0.5 26.6 ± 0.5 26.6 ± 0.4 26.7 ± 0.6 26.9 ± 0.5 26.6 ± 0.3 26.6 ± 0.5 26.6 ± 0.7 

Shank COM 
(%SL) 40.1 ± 1.3 40.4 ± 1.1 40.0 ± 1.2 39.9 ± 1.6 41.1 ± 0.9 40.3 ± 0.9 39.6 ± 1.0 39.5 ± 1.8 

Shank Mass 
(%BW) 4.2 ± 0.6 4.4 ± 0.5 4.1 ± 0.7 4.1 ± 0.5 4.5 ± 0.4 4.3 ± 0.5 4.1 ± 0.6 3.9 ± 0.7 

Shank Rg (%SL) 26.1 ± 0.6 26.1 ± 0.5 26.2 ± 0.5 26.2 ± 0.6 26.4 ± 0.5 26.1 ± 0.5 26.0 ± 0.5 26.0 ± 0.6 
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Table 5: Descriptive statistics of male BSPs, stratified by age and BMI groups.  Values given as mean ± sd. 

  
All Male 

Age Group BMI Group 

Young Middle Old Normal Overweight Obese Morb. 
Obese 

N 132 45 49 38 33 41 38 20 
Thigh COM 
(%SL) 46.5 ± 1.9 46.2 ± 1.2 46.6 ± 2.5 46.9 ± 1.5 47.2 ± 1.5 47.0 ± 1.4 45.8 ± 2.5 45.9 ± 1.4 

Thigh Mass 
(%BW) 11.1 ± 1.3 11.7 ± 0.8 11.1 ± 1.5 10.3 ± 0.8 11.0 ± 0.9 10.9 ± 1.0 11.6 ± 1.7 10.5 ± 1.1 

Thigh Rg (%SL) 25.3 ± 0.4 25.2 ± 0.4 25.2 ± 0.4 25.5 ± 0.4 25.4 ± 0.4 25.3 ± 0.4 25.2 ± 0.4 25.2 ± 0.5 
Torso COM 
(%SL) 53.0 ± 1.3 52.4 ± 1.1 53.1 ± 1.3 53.7 ± 1.2 52.5 ± 1.0 52.5 ± 0.9 53.2 ± 1.2 54.6 ± 1.1 

Torso Mass 
(%BW) 43.6 ± 3.2 42.4 ± 2.9 43.5 ± 3.3 45.0 ± 2.8 41.8 ± 2.4 42.8 ± 2.8 44.1 ± 2.7 47.0 ± 3.2 

Torso Rg (%SL) 27.3 ± 0.7 27.5 ± 0.7 27.2 ± 0.6 27.0 ± 0.6 27.8 ± 0.6 27.4 ± 0.5 27.0 ± 0.4 26.5 ± 0.7 
Upper Arm COM 
(%SL) 49.2 ± 2.3 49.4 ± 2.3 48.8 ± 2.3 49.4 ± 2.4 50.2 ± 2.3 48.8 ± 2.1 48.7 ± 2.2 49.1 ± 2.5 

Upper Arm Mass 
(%BW) 3.8 ± 0.4 3.9 ± 0.5 3.9 ± 0.3 3.7 ± 0.4 3.7 ± 0.3 3.9 ± 0.3 4.0 ± 0.5 3.8 ± 0.4 

Upper Arm Rg 
(%SL) 25.3 ± 0.9 25.2 ± 0.9 25.3 ± 1.0 25.3 ± 0.8 25.2 ± 1.0 25.2 ± 0.9 25.4 ± 0.7 25.5 ± 0.9 

Forearm COM 
(%SL) 41.5 ± 0.9 41.5 ± 0.8 41.3 ± 0.8 41.8 ± 1.1 41.5 ± 1.1 41.6 ± 0.8 41.5 ± 0.7 41.7 ± 1.0 

Forearm Mass 
(%BW) 1.6 ± 0.3 1.7 ± 0.2 1.6 ± 0.4 1.6 ± 0.2 1.8 ± 0.2 1.7 ± 0.1 1.6 ± 0.2 1.4 ± 0.2 

Forearm Rg 
(%SL) 26.5 ± 0.3 26.5 ± 0.3 26.5 ± 0.2 26.6 ± 0.3 26.6 ± 0.3 26.5 ± 0.3 26.4 ± 0.3 26.5 ± 0.4 

Shank COM 
(%SL) 40.7 ± 0.9 40.7 ± 0.9 40.5 ± 1.0 41.0 ± 0.9 41.3 ± 0.8 40.7 ± 0.8 40.4 ± 0.9 40.5 ± 1.1 

Shank Mass 
(%BW) 4.1 ± 0.5 4.2 ± 0.5 4.0 ± 0.5 4.0 ± 0.4 4.4 ± 0.4 4.1 ± 0.3 3.9 ± 0.4 3.5 ± 0.4 

Shank Rg (%SL) 26.4 ± 0.6 26.4 ± 0.6 26.4 ± 0.5 26.4 ± 0.6 26.8 ± 0.5 26.4 ± 0.5 26.2 ± 0.5 26.2 ± 0.5 
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Table 6: Parameters for females in each BMI category, within each age group. 

 
  

FEMALE Young Middle Old 
NW  OW  OB  MO  NW  OW  OB  MO  NW  OW  OB  MO  

N 13  13  13  12  10  13  13  8  12  14  15  12  
Thigh COM (%SL) 45.7 ± 1.0 45.1 ± 1.3 45.8 ± 1.4 46.5 ± 2.0 45.8 ± 1.8 45.8 ± 1.5 44.3 ± 1.6 46.3 ± 1.6 45.7 ± 1.8 46.3 ± 1.1 46.2 ± 1.4 46.8 ± 2.1 

Thigh Mass (%BW) 12.2 ± 1.1 11.9 ± 0.7 12.7 ± 1.4 12.6 ± 2.3 10.7 ± 0.9 11.6 ± 1.2 12.2 ± 1.5 11.9 ± 1.9 11.0 ± 1.0 11.6 ± 1.0 11.6 ± 1.6 11.9 ± 1.9 

Thigh Rg (%SL) 25.6 ± 0.4 25.7 ± 0.2 25.5 ± 0.4 25.8 ± 0.6 25.7 ± 0.5 25.8 ± 0.4 25.5 ± 0.4 25.7 ± 0.6 25.7 ± 0.8 25.8 ± 0.6 25.7 ± 0.4 25.7 ± 0.5 

Torso COM (%SL) 54.0 ± 0.8 53.7 ± 1.0 53.4 ± 1.3 54.5 ± 0.8 54.3 ± 1.0 54.1 ± 1.0 54.0 ± 1.4 55.0 ± 1.0 54.8 ± 1.2 54.6 ± 1.0 54.9 ± 1.4 55.5 ± 1.9 

Torso Mass (%BW) 41.5 ± 1.5 42.3 ± 2.4 42.2 ± 3.6 42.7 ± 3.0 43.7 ± 3.0 43.6 ± 3.8 44.2 ± 3.9 44.9 ± 4.0 43.4 ± 2.8 43.1 ± 2.3 45.6 ± 5.4 45.3 ± 3.2 

Torso Rg (%SL) 28.4 ± 0.5 27.6 ± 0.6 27.2 ± 0.2 26.9 ± 0.3 28.0 ± 0.6 27.3 ± 0.4 27.1 ± 0.6 26.6 ± 0.4 27.5 ± 0.7 27.4 ± 0.4 27.1 ± 0.7 26.7 ± 0.4 

Upper Arm COM (%SL) 49.5 ± 2.2 50.1 ± 2.0 50.0 ± 1.5 49.3 ± 1.9 49.3 ± 2.3 50.2 ± 3.0 50.9 ± 2.3 49.1 ± 2.2 49.9 ± 2.0 49.4 ± 2.5 49.1 ± 2.5 48.5 ± 3.4 

Upper Arm Mass (%BW) 3.2 ± 0.2 3.4 ± 0.3 3.4 ± 0.4 3.5 ± 0.5 3.3 ± 0.4 3.5 ± 0.4 3.4 ± 0.3 4.0 ± 0.6 3.3 ± 0.3 3.5 ± 0.4 3.6 ± 0.5 3.8 ± 0.3 

Upper Arm Rg (%SL) 25.6 ± 0.8 25.0 ± 0.8 25.1 ± 0.9 26.1 ± 0.6 25.2 ± 0.8 24.9 ± 1.1 25.2 ± 1.0 26.2 ± 0.9 25.1 ± 0.6 25.7 ± 0.6 25.2 ± 0.9 25.5 ± 1.1 

Forearm COM (%SL) 42.1 ± 1.3 41.1 ± 0.5 41.3 ± 0.8 41.3 ± 1.1 41.4 ± 0.5 41.2 ± 0.6 41.0 ± 1.1 40.4 ± 2.6 41.4 ± 0.5 42.4 ± 0.9 41.8 ± 1.3 40.3 ± 2.7 

Forearm Mass (%BW) 1.5 ± 0.1 1.4 ± 0.1 1.4 ± 0.2 1.3 ± 0.2 1.5 ± 0.1 1.5 ± 0.1 1.4 ± 0.2 1.3 ± 0.2 1.5 ± 0.2 1.4 ± 0.1 1.3 ± 0.2 1.2 ± 0.3 

Forearm Rg (%SL) 26.9 ± 0.7 26.5 ± 0.2 26.5 ± 0.3 26.6 ± 0.4 26.8 ± 0.3 26.6 ± 0.4 26.5 ± 0.3 26.6 ± 0.7 26.9 ± 0.4 26.7 ± 0.4 26.8 ± 0.6 26.5 ± 0.9 

Shank COM (%SL) 41.5 ± 0.7 40.6 ± 0.9 39.8 ± 0.6 39.8 ± 1.3 40.9 ± 1.0 39.9 ± 0.8 39.6 ± 1.0 39.6 ± 1.6 40.7 ± 0.8 40.3 ± 0.9 39.6 ± 1.3 39.0 ± 2.4 

Shank Mass (%BW) 4.8 ± 0.2 4.3 ± 0.4 4.3 ± 0.5 4.1 ± 0.6 4.3 ± 0.4 4.3 ± 0.6 4.0 ± 0.6 3.9 ± 1.1 4.3 ± 0.3 4.2 ± 0.3 4.0 ± 0.6 3.7 ± 0.5 

Shank Rg (%SL) 26.3 ± 1.0 26.2 ± 1.3 26.0 ± 1.4 25.7 ± 2.0 26.2 ± 1.8 26.2 ± 1.5 26.0 ± 1.6 26.2 ± 1.6 26.8 ± 1.8 25.8 ± 1.1 26.1 ± 1.4 26.2 ± 2.1 
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Table 7: Parameters for males in each BMI category, within each age group. 

 

MALE 
Young Middle Old 

NW OW OB MO NW OW OB MO NW OW OB MO 

N 13 13 13 6 14 14 14 7 6 14 11 7 

Thigh COM (%SL) 47.1 ± 1.1 46.2 ± 1.0 45.8 ± 1.0 44.9 ± 0.9 47.2 ± 1.4 47.3 ± 1.3 45.5 ± 4.1 46.4 ± 1.6 47.4 ± 2.4 47.4 ± 1.5 46.4 ± 0.8 46.4 ± 1.1 

Thigh Mass (%BW) 11.4 ± 0.6 11.8 ± 0.9 12.1 ± 0.6 11.4 ± 1.2 11.1 ± 0.6 10.6 ± 0.9 11.9 ± 2.4 10.2 ± 0.8 9.9 ± 1.1 10.4 ± 0.7 10.6 ± 0.8 10.0 ± 0.9 

Thigh Rg (%SL) 25.4 ± 0.3 25.1 ± 0.2 25.0 ± 0.4 25.0 ± 0.5 25.3 ± 0.4 25.2 ± 0.4 25.1 ± 0.5 25.2 ± 0.5 25.8 ± 0.3 25.5 ± 0.5 25.4 ± 0.3 25.4 ± 0.4 

Torso COM (%SL) 52.0 ± 0.9 52.4 ± 0.8 52.4 ± 1.2 53.5 ± 1.1 52.6 ± 0.8 52.2 ± 0.9 53.4 ± 1.0 54.9 ± 0.7 53.3 ± 0.9 52.9 ± 1.0 53.9 ± 0.9 55.1 ± 0.8 

Torso Mass (%BW) 41.8 ± 1.9 41.9 ± 2.6 42.2 ± 2.7 45.2 ± 4.4 41.0 ± 2.7 43.1 ± 3.0 44.9 ± 2.5 46.9 ± 2.6 43.9 ± 1.9 43.4 ± 2.7 45.5 ± 1.3 48.5 ± 2.1 

Torso Rg (%SL) 28.2 ± 0.4 27.6 ± 0.4 27.2 ± 0.3 26.9 ± 1.1 27.7 ± 0.5 27.4 ± 0.5 26.8 ± 0.5 26.5 ± 0.3 27.4 ± 0.9 27.2 ± 0.4 26.9 ± 0.3 26.3 ± 0.3 

Upper Arm COM (%SL) 51.1 ± 2.1 49.0 ± 1.5 48.8 ± 2.3 48.2 ± 3.0 49.4 ± 2.4 48.8 ± 2.4 47.8 ± 1.9 49.2 ± 2.3 50.4 ± 2.4 48.6 ± 2.4 49.6 ± 2.4 49.9 ± 2.3 

Upper Arm Mass (%BW) 3.6 ± 0.2 3.9 ± 0.2 4.2 ± 0.7 3.9 ± 0.2 3.8 ± 0.3 3.9 ± 0.3 4.0 ± 0.2 3.7 ± 0.4 3.4 ± 0.3 3.8 ± 0.4 3.7 ± 0.4 3.7 ± 0.4 

Upper Arm Rg (%SL) 25.1 ± 1.0 25.3 ± 0.7 25.2 ± 0.9 25.5 ± 1.1 25.2 ± 0.9 25.0 ± 1.3 25.6 ± 0.6 25.8 ± 0.7 25.3 ± 1.1 25.2 ± 0.7 25.4 ± 0.7 25.1 ± 1.0 

Forearm COM (%SL) 41.4 ± 0.6 41.1 ± 0.6 41.7 ± 0.6 41.9 ± 1.3 40.9 ± 0.9 41.7 ± 0.7 41.1 ± 0.5 41.9 ± 0.5 43.0 ± 1.0 41.9 ± 0.9 41.5 ± 1.0 41.4 ± 1.2 

Forearm Mass (%BW) 1.8 ± 0.1 1.6 ± 0.1 1.7 ± 0.2 1.4 ± 0.1 1.8 ± 0.2 1.7 ± 0.1 1.6 ± 0.2 1.4 ± 0.2 1.7 ± 0.1 1.7 ± 0.1 1.6 ± 0.1 1.3 ± 0.2 

Forearm Rg (%SL) 26.7 ± 0.2 26.5 ± 0.3 26.4 ± 0.3 26.6 ± 0.6 26.5 ± 0.2 26.6 ± 0.2 26.3 ± 0.2 26.4 ± 0.3 26.8 ± 0.3 26.5 ± 0.3 26.6 ± 0.3 26.6 ± 0.2 

Shank COM (%SL) 41.5 ± 0.6 40.5 ± 0.6 40.5 ± 0.8 40.0 ± 0.9 40.9 ± 0.8 40.6 ± 1.1 40.0 ± 0.7 40.5 ± 1.2 41.8 ± 0.5 40.8 ± 0.7 40.8 ± 1.1 40.8 ± 1.2 

Shank Mass (%BW) 4.6 ± 0.3 4.2 ± 0.3 4.1 ± 0.4 3.5 ± 0.1 4.3 ± 0.4 4.0 ± 0.3 3.8 ± 0.4 3.4 ± 0.4 4.3 ± 0.2 4.1 ± 0.3 3.9 ± 0.4 3.6 ± 0.5 

Shank Rg (%SL) 26.8 ± 1.1 26.3 ± 1.0 26.0 ± 1.0 26.3 ± 0.6 26.8 ± 1.4 26.4 ± 1.3 26.0 ± 4.1 26.3 ± 1.6 26.6 ± 2.4 26.4 ± 1.5 26.6 ± 0.8 26.2 ± 1.1 
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Table 8: P, R2, and beta values for BMI and BMI2 for each segment parameter.  Beta values are provided as 

estimate ± standard error. 

FEMALE Thigh M Thigh COM Thigh Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.118 

 
0.168 ± 0.107 0.107 

 
-0.189 ± 0.117 0.086 

 
-0.060 ± 0.035 

BMI2 0.187 0.039 -0.002 ± 0.002 0.052 0.065 0.003 ± 0.002 0.076 0.022 0.001 ± 0.0005 
  Torso M Torso COM Torso Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.126 

 
0.391 ± 0.254 0.041 

 
-0.186 ± 0.090 <0.001 

 
-0.194 ± 0.036 

BMI2 0.188 0.032 -0.005 ± 0.004 0.016 0.084 0.003 ± 0.001 <0.001 0.492 0.002 ± 0.001 
  Upper Arm M Upper Arm COM Upper Arm Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.275 

 
0.032 ± 0.029 0.292 

 
0.168 ± 0.173 0.001 

 
-0.174 ± 0.062 

BMI2 0.649 0.146 -0.0001 ± 0.0004 0.333 0.01 -0.003 ± 0.002 0.006 0.132 0.003 ± 0.001 
  Forearm M Forearm COM Forearm Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.309 

 
-0.012 ± 0.012 0.002 

 
0.236 ± 0.093 0.741 

 
-0.012 ± 0.037 

BMI2 0.838 0.216 0.00004 ± 0.0002 0.012 0.161 -0.004 ± 0.001 0.962 0.056 -0.00003 ± 0.001 
  Shank M Shank COM Shank Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.066 

 
-0.074 ± 0.040 <0.001 

 
-0.295 ± 0.087 0.002 

 
-0.124 ± 0.039 

BMI2 0.197 0.126 0.001 ± 0.001 0.008 0.208 0.003 ± 0.001 0.005 0.105 0.002 ± 0.001 

          MALE Thigh M Thigh COM Thigh Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.049 

 
0.243 ± 0.131 0.076 

 
-0.344 ± 0.192 0.076 

 
-0.077 ± 0.043 

BMI2 0.065 0.037 -0.004 ± 0.002 0.142 0.071 0.004 ± 0.003 0.127 0.055 0.001 ± 0.001 
  Torso M Torso COM Torso Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.455 

 
0.206 ± 0.276 0.133 

 
-0.663 ± 0.110 <0.001 

 
-0.204 ± 0.050 

BMI2 0.875 0.322 0.001 ± 0.004 0.546 0.325 0.002 ± 0.002 0.006 0.506 0.002 ± 0.001 
  Upper Arm M Upper Arm COM Upper Arm Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.015 

 
0.101 ± 0.041 0.056 

 
-0.462 ± 0.239 0.519 

 
-0.044 ± 0.093 

BMI2 0.020 0.051 -0.001 ± 0.001 0.084 0.045 0.006 ± 0.004 0.635 0.019 0.001 ± 0.001 
  Forearm M Forearm COM Forearm Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.152 

 
-0.041 ± 0.029 0.754 

 
-0.025 ± 0.097 <0.001 

 
-0.123 ± 0.030 

BMI2 0.532 0.282 0.0003 ± 0.0004 0.796 0.002 0.0005 ± 0.001 <0.001 0.122 0.002 ± 0.0005 
  Shank M Shank COM Shank Rg 
  P R2 β ± SE P R2 β ± SE P R2 β ± SE 
BMI 0.236 

 
-0.043 ± 0.036 0.017 

 
-0.222 ± 0.092 <0.001 

 
-0.241 ± 0.053 

BMI2 0.994 0.454 -3.8E-6 ± 0.001 0.049 0.126 0.003 ± 0.001 <0.001 0.202 0.003 ± 0.001 
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Table 9 (Females): P values for BMI, age, and BMI x age interaction terms, as well as nested P values for adding age and interaction terms.  P1 

represents the significance of adding age and age2 terms to the initial model only using BMI terms, and P2 represents the significance of adding the BMI 

x age interaction terms to the model only using BMI and age terms.  ∆R21 represents the increase in R2 between the fitted models. 

 

  

FEMALE Thigh 
M 

Thigh 
COM 

Thigh 
Rg 

Torso 
M 

Torso 
COM 

Torso 
Rg 

Upper 
Arm M 

Upper Arm 
COM 

Upper 
Arm Rg 

Forearm 
M 

Forearm 
COM 

Forearm 
Rg 

Shank 
M 

Shank 
COM 

Shank 
Rg 

BMI 0.028 0.066 0.105 0.157 0.006 <0.001 0.202 0.359 0.007 0.355 0.025 0.438 0.078 <0.001 0.005 

BMI2 0.053 0.027 0.097 0.230 0.002 <0.001 0.489 0.293 0.002 0.907 0.009 0.626 0.218 0.001 0.015 

Age 0.030 0.082 0.675 0.072 0.225 0.984 0.967 0.263 0.798 0.614 0.216 0.395 0.537 0.301 0.587 

Age2 0.070 0.053 0.831 0.152 0.068 0.622 0.773 0.229 0.724 0.458 0.210 0.297 0.737 0.199 0.490 

Age x BMI 0.191 0.429 0.581 0.788 0.034 0.334 0.799 0.886 0.074 0.266 0.388 0.707 0.201 0.046 0.778 

Age2 x BMI 0.139 0.327 0.576 0.961 0.017 0.465 0.792 0.986 0.095 0.188 0.659 0.541 0.213 0.029 0.726 

Age x BMI2 0.149 0.539 0.646 0.881 0.040 0.337 0.766 0.960 0.100 0.217 0.379 0.809 0.196 0.032 0.812 

Age2 x BMI2 0.103 0.420 0.641 0.957 0.020 0.454 0.775 0.912 0.129 0.153 0.065 0.626 0.206 0.019 0.755 

P1 (Age only) <0.001 0.036 0.185 <0.001 <0.001 <0.001 0.009 0.423 0.905 0.167 0.645 0.171 0.015 0.014 0.382 

∆R2
1 0.077 0.033 0.021 0.070 0.140 0.053 0.040 0.013 0.003 0.018 0.007 0.021 0.037 0.034 0.013 

P2 (Age x BMI) 0.106 0.446 0.942 0.212 0.038 0.245 0.726 0.505 0.089 0.121 0.007 0.309 0.786 0.020 0.970 

∆R2
2 0.047 0.024 0.006 0.036 0.055 0.018 0.011 0.023 0.049 0.038 0.081 0.031 0.011 0.062 0.004 
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Table 10 (Males): P values for BMI, age, and BMI x age interaction terms, as well as nested P values for adding age and interaction terms.  P1 

represents the significance of adding age and age2 terms to the initial model only using BMI terms, and P1 represents the significance of adding the BMI 

x age interaction terms to the model only using BMI and age terms.  ∆R21 represents the increase in R2 between the fitted models. 

 

MALE Thigh 
M 

Thigh 
COM 

Thigh 
Rg 

Torso 
M 

Torso 
COM 

Torso 
Rg 

Upper 
Arm M 

Upper Arm 
COM 

Upper 
Arm Rg 

Forearm 
M 

Forearm 
COM 

Forearm 
Rg 

Shank 
M 

Shank 
COM 

Shank 
Rg 

BMI 0.005 0.054 0.008 0.919 0.180 <0.001 0.004 0.056 0.645 0.369 0.221 <0.001 0.554 0.006 <0.001 

BMI2 0.005 0.113 0.017 0.489 0.032 0.017 0.007 0.082 0.536 0.841 0.198 <0.001 0.620 0.020 <0.001 

Age 0.665 0.714 0.005 0.172 0.260 0.580 0.535 0.096 0.986 0.087 0.018 0.002 0.250 0.067 0.251 

Age2 0.707 0.533 <0.001 0.509 0.823 0.967 0.276 0.085 0.911 0.122 0.007 0.002 0.451 0.037 0.194 

Age x BMI 0.417 0.515 0.016 0.073 0.945 0.958 0.221 0.718 0.721 0.037 0.080 0.007 0.730 0.322 0.799 
Age2 x 
BMI 0.319 0.598 0.022 0.069 0.863 0.900 0.202 0.655 0.625 0.023 0.062 0.012 0.641 0.236 0.615 

Age x 
BMI2 0.570 0.441 0.013 0.114 0.885 0.892 0.389 0.751 0.662 0.071 0.086 0.006 0.812 0.372 0.883 

Age2 x 
BMI2 0.440 0.521 0.018 0.099 1.000 0.839 0.340 0.666 0.556 0.043 0.074 0.010 0.728 0.266 0.696 

P1 (Age 
only) <0.001 0.176 <0.001 <0.001 <0.001 <0.001 0.001 0.013 0.959 0.530 0.002 <0.001 <0.001 0.003 0.034 

∆R2
1 0.171 0.022 0.194 0.090 0.151 0.064 0.055 0.041 0.004 0.010 0.054 0.058 0.039 0.046 0.029 

P2 (Age x 
BMI) 0.229 0.748 0.119 0.063 0.125 0.913 0.031 0.414 0.277 0.025 0.002 0.035 0.704 0.287 0.447 

∆R2
2 0.035 0.014 0.043 0.041 0.030 0.003 0.074 0.028 0.039 0.060 0.118 0.065 0.009 0.033 0.022 
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2.4 Discussion 

Overall, the results indicate that there are significant associations of age, BMI, and the 

interactions between age and BMI with several body segment parameters in the working adult 

population.  Additionally, the results revealed that age explains a significant amount of 

variability in BSPs above and beyond variability explained by BMI alone.  The final regression 

models, show in Table 11, include the associations of BMI, age, and all of their interactions.  

While these equations have not been validated on an individual basis, they are still suitable for 

use in population based estimates.  

The results of this study build upon previous preliminary analyses (Merrill, Chambers, 

and Cham, 2017) by observing the effects of age and BMI on the parameters of all major body 

segments, determining their associations with BMI terms, and more rigorously quantifying the 

improvement and statistical significance of adding age and the age x BMI interaction terms to 

the models.  Further, this work improves upon other previous studies observing specific segment 

of the population such as the elderly and obese (Chambers et al., 2011; Hoang and Mombaur, 

2015; Matrangola et al., 2008) by observing the changes in these parameters over wide ranges of 

age and obesity status, and quantifying the statistical associations of age and BMI on BSPs. 

The results of the only BMI analysis indicated that BMI is significantly associated with 

certain BSPs in a non-linear manner in working adults. With the obesity epidemic in the labor 

force, such information could be used to provide more accurate insights into how BMI impacts 

the risk of musculoskeletal injuries in the workplace. For example, as anticipated, the fraction of 

the total body mass in the torso increases with BMI.   Additionally, greater BMI is associated 

with a decreased torso radius of gyration in men and women, indicating that with greater BMI, 
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the mass of the torso becomes more concentrated in the area of the torso closer to the center of 

mass, as opposed to gaining mass throughout the torso.  The results may impact internal back 

forces and moments in common site of injuries, e.g. L5/S1 disc. The results validate the need to 

take into take into account BMI when predicting BSPs, as up to 50% of the variability in some 

BSPs is explained by BMI. Thus, selecting a method to predict BSPs should be done with 

caution, by making sure the BMI characteristics of the population used to develop that specific 

method is comparable with the current population of interest. 

 

 Table 11: Final regression equations for the full models using age, BMI, and all interactions. 

   
Int Age Age2 BMI BMI² Age*BMI Age*BMI² Age²*BMI Age²*BMI² 

T
O

R
SO

 COM M 54.958 -0.189 3.41E-03 -0.0606 -2.29E-03 3.93E-03 1.25E-04 -1.16E-04 -4.40E-09 
F 27.625 1.722 -0.0215 1.652 -0.0233 -0.110 1.57E-03 1.39E-03 -1.98E-05 

M M 122.438 -4.491 0.0543 -4.962 0.0680 0.270 -3.64E-03 -3.26E-03 4.48E-05 
F 62.409 -0.629 1.31E-03 -1.341 0.0143 0.0415 -3.41E-04 -8.51E-05 -1.36E-06 

Rg M 32.590 -0.025 -2.65E-04 -0.203 1.39E-03 -1.47E-03 5.84E-05 4.21E-05 -1.03E-06 
F 40.099 -0.326 2.56E-03 -0.728 9.82E-03 0.0206 -3.03E-04 -1.74E-04 2.62E-06 

T
H

IG
H

 COM M 30.846 0.911 -8.14E-03 1.367 -0.0264 -0.0742 1.34E-03 7.13E-04 -1.32E-05 
F 34.356 0.964 -0.0131 0.597 -4.59E-03 -0.0575 6.61E-04 7.96E-04 -9.59E-06 

M M -9.478 1.109 -0.0160 1.098 -0.0114 -0.0569 6.10E-04 8.31E-04 -9.75E-06 
F 30.926 -1.338 0.0167 -1.191 0.0209 0.0839 -1.37E-03 -1.06E-03 1.72E-05 

Rg M 44.214 -0.875 0.0101 -1.215 0.0192 0.0552 -8.76E-04 -6.22E-04 9.80E-06 
F 30.801 -0.215 2.50E-03 -0.307 3.96E-03 0.0122 -1.51E-04 -1.38E-04 1.69E-06 

SH
A

N
K

 COM M 59.660 -0.970 0.0134 -0.988 0.0127 0.0526 -7.27E-04 -7.49E-04 1.06E-05 
F 18.479 1.591 -0.0197 1.556 -0.0264 -0.105 1.67E-03 1.28E-03 -2.03E-05 

M M 3.881 0.125 -2.09E-03 0.0509 -8.41E-04 -7.23E-03 7.60E-05 1.16E-04 -1.31E-06 
F -4.092 0.479 -5.32E-03 0.599 -9.39E-03 -0.0319 4.77E-04 3.47E-04 -5.16E-06 

Rg M 30.639 0.142 -3.12E-03 -0.274 4.66E-03 -7.89E-03 6.98E-05 1.85E-04 -2.17E-06 
F 30.395 -0.142 1.92E-03 -0.215 2.57E-03 6.92E-03 -8.64E-05 -9.63E-05 1.25E-06 

U
PP

E
R

 A
R

M
 

COM M 73.803 -1.061 0.0142 -1.118 0.0132 0.0504 -6.77E-04 -7.40E-04 1.08E-05 
F 29.220 0.551 -3.14E-03 0.934 -0.0109 -0.0157 8.00E-05 -2.17E-05 1.97E-06 

M M -8.506 0.573 -7.02E-03 0.620 -6.63E-03 -0.0283 3.04E-04 3.51E-04 -3.96E-06 
F 1.411 0.060 -7.02E-04 0.128 -2.02E-03 -4.56E-03 7.90E-05 5.27E-05 -8.36E-07 

Rg M 23.735 0.238 -3.98E-03 0.141 -2.91E-03 -0.0197 3.69E-04 3.21E-04 -5.86E-06 
F 53.169 -1.167 0.0124 -1.711 0.0244 0.0693 -9.43E-04 -7.22E-04 9.59E-06 

FO
R

E
A

R
M

 COM M 68.923 -1.581 0.0207 -1.720 0.0273 0.0940 -1.41E-03 -1.19E-03 1.73E-05 
F 64.695 -0.828 5.16E-03 -1.383 0.0204 0.0486 -7.35E-04 -2.78E-04 4.23E-06 

M M -7.392 0.580 -7.47E-03 0.544 -7.19E-03 -0.0345 4.56E-04 4.47E-04 -6.03E-06 
F 3.400 -0.113 1.55E-03 -0.144 2.34E-03 8.41E-03 -1.38E-04 -1.11E-04 1.77E-06 

Rg M 43.570 -0.743 8.38E-03 -1.081 0.0170 0.0465 -7.30E-04 -5.17E-04 8.04E-06 
F 26.009 0.162 -2.68E-03 8.09E-03 6.65E-04 -8.60E-03 8.21E-05 1.57E-04 -1.83E-06 
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The findings indicated that age also impacts BSPs, perhaps to a lesser extent than BMI. 

Thus, including age in a BSP predictive model would increase the accuracy of that model for few 

BSPs, especially the variables related to the torso (both men and women) and thigh (men).  

When applied to dynamic lifting or gait models, the age dependent differences in these larger 

segments will likely have significant impacts on hip moment and joint contact force calculations, 

and L5/S1 moment calculations.  With the aging of the labor force, these age-related changes in 

BSPs are important to take into account. 

Finally, findings suggested that the contributions of BMI and age are to a large extent 

additive as the impact of the age-BMI interactions are minimal.  Including the interaction terms 

may be useful for the few parameters where the interaction terms are significant; however, for 

nearly all of the parameters, the interactions account for less than 10% additional explained 

variance. 

When predicting segment parameters, it is necessary to include effects age and BMI in 

order to obtain most accurate parameters for a given individual.  As an example of the variation 

in segment parameter calculation, Table 12 shows the torso segment parameters determined from 

the final age and BMI interaction models for males aged 25 and 65 years, with BMI of 20 and 40 

kg m-2.  The current gold standard deLeva (1996) model-based parameters are also included for 

comparison.  The calculated COM locations vary from 52.0 to 54.6 percent of the torso segment 

length, the mass fraction varies from 41.3 to 46.8 percent of the total body mass, and the radius 

of gyration calculations vary from 26.4 to 28.4 percent of the segment length.  By comparison, 

the deLeva model is reasonably close for calculating segment mass, but underestimates the COM 

and radius of gyration values (44.9 and 19.1 percent, respectively), meaning that it may not 

account for variations in mass distribution within the segment.  While the segment definitions 



29 

differ slightly, based on how the thighs are separated from the pelvis (Merrill et al., 2018), these 

differences do not affect the overall length of the torso segment, which could in turn impact the 

definition of parameters as percentages of segment length. 

 

 

Table 12: Sample torso parameter calculation for young and old (25 and 65 years, respectively), normal 

weight and morbidly obese male subjects, compared to the deLeva parameters. 

 

 Torso Parameter 
Age (y) BMI (kg m-2) COM (%SL) M (%BW) Rg (%SL) 

25 20 52.0 41.3 28.4 
65 20 53.5 45.2 27.8 
25 40 52.3 42.5 26.8 
65 40 54.6 46.8 26.4 

deLeva 44.9 43.5 19.1 

 

 

Compared to the somewhat similar method of determining individual BSPs pioneered by 

Jensen (1978), and used in more recent studies (Sanders et al., 2015), this study used a similar 

technique involving creating transverse slices through each body segment.  While Jensen’s 

elliptical method used smaller slices, it also relied on assumed tissue density and slice volume 

functions, whereas this study could use the actual DXA derived masses of each segment.  

Additionally, Jensen’s method involved the assumption that the segments had elliptical shaped 

cross sections of measured width and depth.  The results of this study likely provide more 

representative segment parameters in individuals due to actually measuring the masses of each of 

the slices. 
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While methods using optimization algorithms to determine parameters from inverse 

dynamics (Hansen et al., 2014) and static positioning on force plates (Chen et al., 2011; 

Damavandi, Farahpour, and Allard, 2009) can estimate segment parameters in a non-invasive 

manner, they are somewhat limited to predefined anthropometric sets due to the placements of 

visual markers, and assumptions regarding these marker locations relative to anatomical axes and 

rotation centers.  DXA scanning methods have the advantage of determining the masses of each 

pixel in the image, and determining segment boundaries based on specific anatomical landmarks, 

allowing more precise segment boundaries, which may be altered depending on the desired 

anthropometric data set and application (Merrill et al., 2018). 

Some of the limitations for this study include the lack of information regarding fitness 

history and activity levels within the sample population, suggesting that these results may not be 

representative for athletic populations with disability.  All of the DXA scans were collected with 

the participants lying supine, and thus a small amount of shifting in soft tissue likely occurred 

from the standing position.  Despite these limitations, the findings of this study demonstrate that 

the wide variations in segment parameters are significantly associated with age and obesity 

status, indicating that predictive models including these factors are needed for calculating 

accurate parameters.  Finally, regression equations only observe the associations of age and BMI 

with BSPs, and have not been validated to estimate BSPs for individuals or populations, therefor 

they should not be employed as predictive models. 
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3.0 Predictive Regression Modeling of Body Segment Parameters using Individual-Based 

Anthropometric Measurements 

3.1 Introduction 

Body segment parameters (BSPs), which include the length, mass, center of mass 

(COM), and radius of gyration (RG) of body parts, are used in a number of applications related to 

human factors and ergonomics, as well as static and dynamic biomechanical modeling.  Some of 

these specific ergonomic applications include the design of tools, protective clothing, equipment, 

and workstations (Chaffin, Andersson, and Martin, 2006) based on segment size and ranges of 

motion, while static models such as the 3D Static Strength Prediction Model are dependent on 

segment position, length, mass, and COM inputs (Chaffin and Muzaffer, 1991).  Inverse 

dynamics models use these inputs in addition to the segment inertial properties and dynamic data 

in order to determine joint contact forces and moments, along with their related injury risk during 

a specified task. 

The accuracy of the outputs of these biomechanics tools rely on the accuracy of the 

estimated segment parameters in the populations or individuals being studied.  For example, 

inverse dynamics models, such as those related to lifting and related injury risk, have been 

shown to be sensitive to parameter estimations such as center of mass position, joint rotation 

center location, length, and mass (de Looze, F et al., 1992; de Looze M et al., 1992; Desjardins, 



32 

Plamondon, and Gagnon, 1998).  Other dynamic analyses, such as those used for knee and hip 

kinematic calculations during gait, produce varying results between different standard 

anthropometry sets in normal and overweight adults, with deviations as high as 60% (Pearsall 

and Costigan, 1999; Rao et al., 2006).  Such large differences in modeling outputs can negatively 

affect the ability to predict injury risk, and reflect the need for accurate segment parameter 

inputs. 

In order to minimize these issues arising from modeling with non-representative BSPs, 

the sets of parameters used should be representative of the populations of interest or individuals 

being studied.  Some of the previous parameter estimations have used regression equations from 

cadaver data (Chandler et al., 1975; Dempster, 1955), imaging techniques (de Leva, 1996), 

geometric modeling of the body (Pavol, Owings, and Grabiner 2002), inverse dynamics analyses 

(Hansen et al., 2014), static force plate analyses (Chen et al., 2011; Damavandi, Farahpour, and 

Allard, 2009), and photographic analysis (Jensen, 1978; Sanders et al., 2015).  Comparisons 

between these methods have revealed that parameter predictions can vary by up to 40% (Durkin 

and Dowling, 2003).  Additionally, weight loss (Matrangola et al., 2008) and age-related changes 

in body composition (Hughes et al., 2004; Kuczmarski, Kuczmarski, and Najjar, 2000) can also 

affect parameter determination.  Because these methods separately study different population 

segments, such as normal weight young adults (de Leva, 1996), or older adults (Hughes et al., 

2004; Kuczmarski, Kuczmarski, and Najjar, 2000; Pavol, Owings, and Grabiner, 2002), they do 

not account for the wide ranges of age, body mass index (BMI) within the current population. 

Previous work has quantified the population level associations of age and BMI with BSPs 

in American adults (Merrill, et al., 2017). These associations were statistically and practically 

significant, and thus justify the need for BSP predictive data sets that reflect the effects of age 
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and obesity.  Thus, the goal of this study is to develop statistical predictive models to accurate 

estimate BSPs using individual-based predictors.  Previous research has indicated that there are 

significant relationships between age, BMI, and BSPs, so this study will build on these known 

relationships with the inclusion of individual anthropometric measurements.  These statistical 

models will be developed and validated on a population of American adult workers covering 

wide age and obesity ranges, and the results will be used for calculating representative BSPs in 

individuals. 

3.2 Methods 

3.2.1  Participants and Settings 

The study was approved by the University of Pittsburgh Institutional Review Board. A 

total of 280 working adults participated in this study.  Recruitment was stratified by age group, 

BMI group and gender in an attempt to accurately represent the working population 

characteristics.  More specifically, working men and women were recruited in equal numbers in 

four BMI categories (normal weight: 18.5 ≤ BMI < 25.0, overweight: 25.0 ≤ BMI < 30.0, obese: 

30.0 ≤ BMI < 40.0, and morbidly obese BMI ≥ 40.0 kg m-2) across three age groups (21 ≤ age < 

40), middle (40 ≤ age < 55), and old (55 ≤ age < 70). 

After obtaining written informed consent, each participant had his or her height and mass 

recorded in order to confirm eligibility based on BMI.  Female participants of child bearing age 
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were then required to complete a pregnancy test, with a negative result being required for 

eligibility.  Next, approximately 60 anthropometric measurements were collected (Table 13), 

including segment lengths, widths, depths, and circumferences.  All of the arm and leg 

measurements were collected for the dominant and non-dominant sides.  A whole body DXA 

scan (Hologic QDR 1000/W, Bedford, MA, USA) of each participant was then collected using 

the same methods used and described in prior studies (Chambers et al., 2010), with the 

participant lying supine (Figure 1). 

The analysis consisted of each scan being split into each major body segment of interest 

(torso, left and right upper arm, forearm, thigh, and shank), defined using bony landmarks and 

anatomically defined planes (Chambers et al., 2010), as shown in Figure 2.  Each segment was 

then split into 3.9 cm tall slices, perpendicular to the long axes of the bones for the arms and 

legs, and horizontal for the torso, in a similar method as described by Ganley and Powers (2004).  

Pixel densities had assumed values of 2.5-3.0 g cm-3 for bone, 0.9 g cm-3 for fat, and 1.08 g cm-3 

for lean tissue. The segment mass, center of mass (COM) and radius of gyration (RG) were then 

calculated from the known slice heights and masses using a custom MATLAB script 

(Mathworks, Natick, MA, USA).   

All reported data for the forearm, upper arm, thigh, and shank were analyzed on the 

participants’ self-reported dominant side.  Values for segment mass were reported as percent of 

the total body mass.  COM locations were reported as percent of the segment length, where a 

higher value indicates that the COM is located further in the distal (inferior for the torso) 

direction.  The RG values were also reported as percent of the segment length, with the RG 

location being measured from the calculated COM. 
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Table 13: Anthropometric measurements collected.  All arm and leg measurements were performed on left 

and right sides. 

Anthropometric variable Definition 
Waist circumference Circumference at the umbilicus 
Hip circumference Around largest part of the hip 
Upper thigh circumference Around proximal thigh 
Mid-thigh circumference Around point midway between proximal border of 

patella and inguinal crease 
Lower thigh circumference Around thigh1 cm above proximal border of patella 
Knee circumference Around medial and lateral femoral epicondyles 
Calf circumference Around largest part of calf 
Ankle circumference Around medial and lateral malleoli 
Upper arm circumference Around midpoint between acromion and olecranon 

processes 
Elbow circumference Around medial and lateral humeral epicondyles 
Lower arm circumference Around midpoint between lateral humeral epicondyle 

and ulnar styloid process 
Wrist circumference Around radial and ulnar styloid processes 
Hand thickness Thickness at center of palm 
Elbow width Distance between medial and lateral humeral 

epicondyles 
Wrist width Between radial and ulnar styloid processes 
Knee width Between medial and lateral epicondyles 
Ankle width Between medial and lateral malleoli 
Upper arm length Lateral humeral epicondyle to acromion 
Lower arm length Ulnar styloid process to lateral humeral epicondyle 
Thigh length Greater trochanter to knee joint center 
Shank length Knee joint center to lateral malleolus 
Inter-ASIS distance Between left and right ASIS 
Shoulder level trunk width Width at shoulder joint center level 
Breast level trunk width Width at nipple level 
Mid-breast level trunk width Width at level midway between nipple and L3-L4 
L3-L4 level trunk width Width at L3-L4 level 
Shoulder level trunk depth Depth at shoulder joint center level 
Breast level trunk depth Depth at nipple level 
Mid-breast level trunk depth Depth at level midway between nipple and L3-L4 
L3-L4 level trunk depth Depth at L3-L4 level 
Shoulder level axis depth Depth from the shoulder joint center/greater trochanter 

plane to the back at shoulder joint center level 
Breast level axis depth Depth from the shoulder joint center/greater trochanter 

plane to the back at nipple level 
Mid-breast level axis depth Depth from the shoulder joint center/greater trochanter 

plane to the back at level midway between nipple level 
and L3-L4 

L3-L4 level axis depth Depth from the shoulder joint center/greater trochanter 
plane to the back at L3-L4 

C7 height Distance from ground to C7 
Shoulder height Distance from ground to shoulder joint center 
ASIS height Distance from ground to ASIS 
Hip height Distance from ground to greater trochanter 
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3.2.2  Statistical Analysis 

All fifteen segment parameters of interest (mass, COM, and RG for the torso, thigh, 

shank, upper arm, and forearm) were separated by gender and checked for normality, then log 

transformed as necessary before any further analysis.  The full data set of 280 participants was 

randomly split into two subgroups: the training set, which contained 200 participants, and the 

testing set, which contained the remaining 80.  A multiple regression analysis was performed on 

the torso, thigh, shank, upper arm, and forearm segment parameters in the training subset with a 

backward elimination strategy for variable selection and stratified by gender.   The initial models 

contained age, BMI, age and BMI interaction terms, waist, hip, and neck circumferences, and all 

relevant physical measures taken of the body segment of interest.  While not direct measurement 

of all segments, the waist, hip, and neck circumferences were included to all initial models due to 

their relationship with overall body shape and mass distribution.  For each model, genders were 

analyzed separately.  In each step of the analysis, the predictor with the largest P-value was 

removed, and the analysis was repeated.  This process of removing the least significant predictor 

and repeating the analysis continued until the p-values for all predictors were below 0.10.  All 

analyses were performed in JMP Pro 12 (SAS Institute, Cary, NC, USA). 

Once the training set models were finalized, they were applied to the anthropometric 

measures in the testing set, so that the predicted and actual segment (in-vivo DXA-based) 

parameters could be compared in the testing set, and used as a method of validating the models.  

Within the testing set, the actual and predicted values were compared by calculating the absolute 

percent error, as well as the root mean square error (RMSE).  Additionally, the actual testing set 
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values were compared to a commonly used segment parameter prediction method (deLeva, 

1996). 

3.3 Results 

3.3.1  Overview 

The final study sample consisted of 280 working adults (148 female) ages 21-70 (mean: 

44.9 ± 13.4 years). A number of significant effects were found from the anthropometric 

measurements on the segment parameters of interest in women and men (Tables 14-18), with all 

but one of the models showing improvement over the prediction method using only age, BMI, 

and interaction terms (Table 19).  While not all of the models employed the additional 

anthropometric measures, the majority retained age, BMI, or interaction terms.  The majority of 

the average prediction errors and normalized RMSE values were within 5% of the actual DXA-

based values in the testing subset, while the parameter predictions based on the deLeva (1996) 

regressions demonstrated higher errors, in some cases up to 60% of the actual measured values 

(Table 20). 
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3.3.2  Torso 

The initial torso models included the following variables as potential predictors of the 

torso BSPs (COM, mass and radius of gyration): age, BMI, their squared and interaction terms in 

addition to waist, hip, and neck circumference, torso widths, depths, and axis depths (Table 13), 

and the inter-ASIS distance. The backward elimination regression analyses identified a number 

of age- and BMI- related terms among the statistically significant factors, but also various 

anthropometric predictors (Table 14). When including all the predictor variables identified by the 

backward elimination regression analyses as being significantly associated with the torso BSPs, 

the final regression model explained an average 51% and 74% of the variability in the torso 

BSPs in female and male participants included in the training set, respectively.  Including the 

anthropometric factors explained an additional 13 to 50% of the variability in the torso BSPs 

above and beyond that explained by the age- and BMI- related terms alone (Table 19).  Most 

importantly, when the final regression models were used to predict the torso BSPs in the testing 

set, the normalized RMSE values were less than 5%, and the percent prediction errors (relative to 

the actual in-vivo DXA-based BSPs) were 3% or less. In contrast, the percent prediction errors 

of the deLeva method ranged between 6% (torso mass) to 34% (torso radius of gyration) (Table 

20).
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Table 14: Torso regression results.  Beta values provided for the intercepts and all remaining (p < 0.10) predictors following the elimination process. 
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COM M 57.325 -0.0445 3.09E-04 -0.203 1.56E-03 -- 4.64E-05 -- -- -0.119 -- -- -0.145 0.213 -- -0.149 -- -- 0.102 0.105 

F 62.442 -- -2.11E-03 -0.614 9.03E-03 -- -- 1.66E-04 2.52E-06 -- 0.0567 -0.105 -- -- -- -- -0.143 -- -- 0.099 

M M 120.217 -3.831 0.0458 -5.333 0.0842 0.261 -4.16E-03 -3.11E-03 5.02E-05 -- -0.127 -- -- -- -- -0.536 -- 1.050 -0.336 0.266 

F 37.495 -- -- -1.274 9.10E-03 -- -- -- -- -- -- -- 0.261 -- -- -0.295 0.767 -- 0.445 -- 

Rg M 39.743 -0.417 3.28E-03 -0.546 5.38E-03 0.0177 -1.22E-04 -1.09E-04 -- -- 0.0261 -- -- -- -0.103 0.167 -0.0946 -0.0497 -- -- 

F 33.183 -0.0967 -- -0.347 4.72E-03 5.66E-03 -7.65E-05 -- -- -- -- 0.0821 -- -0.0483 -- -- -- -- -0.0712 -- 
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3.3.3  Thigh 

The thigh models initially included neck, waist, hip, knee, and three thigh 

circumferences, taken at the upper, middle, and lower thigh levels (Table 13), as well as knee 

width and thigh length.  Almost all of the models retained at least one of the age or BMI terms, 

and all included at least one of the thigh circumference measurements (Table 15).  For thigh 

COM, upper and lower thigh circumferences were both significant predictors, and both genders 

had ∆R2 values over 0.2 (Table 19).  Both genders also had similar ∆R2 values for RG 

predictions, however the female model retained almost all of the age, BMI, and interaction terms, 

while the male model was solely based on circumference measurements. 

When applied to the testing subset, the thigh COM and RG models had normalized RMSE 

values below 5%, while the mass RMSE was much higher, at 11.6% (Table 20).  The thigh RG 

mean error was comparable to the torso prediction errors, at about 1.1%, however the COM and 

mass predictions were slightly higher, at 3.8 and 7.0%, respectively.  All three of the actual thigh 

parameters had errors of 16-38% when compared to the deLeva prediction methods (Table 20). 
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3.3.4  Shank 

The shank prediction models started with neck, waist, hip, knee, calf, and ankle 

circumferences, as well as knee and ankle widths, and shank length.  With the exception of shank 

COM in males, all of the other parameter predictions included at least one BMI term and calf 

circumference.  In both genders, hip and calf circumferences were included in the final mass 

models, while waist, knee, and calf circumferences were used in the RG models. 

All of the models other than COM in males showed R2 increases of over 0.2, with final 

R2 values over 0.85 for mass in both genders (Table 19).  The predictive power of the 

anthropometric model for shank COM in males showed a negligible increase of 0.004 over the 

previous model using only age and BMI terms.  This model only included hip circumference and 

ankle width, but none of the age terms, or any of the other terms generally associated with 

obesity, such as BMI or waist circumference (Table 16).  When applied to the testing sets, the 

COM and RG predictions were especially accurate, with RMSE under 2.5%, and average errors 

of all three shank parameters under 5% (Table 20).  Compared to the deLeva predicted 

parameters, the testing set parameters had higher error predictions, especially for RG predictions, 

with average error of over 60%. 
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Table 15:Thigh regression results.  Beta values provided for the intercepts and all remaining (p < 0.10) predictors following the elimination process. 

 

 

 

 

 

 

 

 

Table 16: Shank regression results.  Beta values provided for the intercepts and all remaining (p < 0.10) predictors following the elimination process. 
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COM M 58.572 -0.438 5.32E-03 -0.264 -- 0.0145 -- -1.76E-04 -- -0.107 -- -- -- -- 0.227 -- 

F 51.351 -0.172 2.08E-03 -- 1.24E-03 -- -- -- -- 0.111 -- -0.0947 -0.0894 -- 0.186 -- 

M M 11.882 -- -1.63E-04 -- -- -- -- -- -- -0.136 -0.0248 -- 0.120 -- -- -- 
F 32.272 -1.346 0.0148 -1.955 0.0262 0.0865 -1.29E-03 -9.63E-04 1.45E-05 -0.129 -- -- 0.116 0.115 -- 0.0927 

Rg M 24.421 -- -- -- -- -- -- -- -- 0.05 -- -0.0194 -0.0331 -0.0374 -- 0.129 

F 29.22 -0.196 0.00213 -0.129 -- 0.0061 -- -6.63E-05 -- -- -- -- -- -0.056 -- 0.0972 
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COM M 39.703 -- -- -- -- -- -- -- -- -- -- -0.0341 -- -- -- 0.603 
F 46.963 -- -1.87E-03 -0.553 6.75E-03 -- -- 1.20E-04 -1.78E-06 -0.110 -- -- -0.238 0.121 0.480 -- 

M M 3.663 -- -8.45E-05 -0.168 1.00E-03 -- -- -- 8.81E-08 -- -- -0.0127 -- 0.146 -- -- 
F 3.333 -0.0234 -- -0.217 1.32E-03 7.27E-04 -- -- -- -- -- -9.64E-03 -- 0.153 0.0508 -- 

Rg M 32.393 -- -2.19E-03 -0.281 4.82E-03 -- -- 1.32E-04 -1.87E-06 0.0372 -0.0132 -- 0.0905 -0.183 -- 0.170 
F 26.146 -- -- -- 4.59E-04 -- -- -- -- -- -0.0111 -- 0.0406 -0.150 0.196 -- 
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3.3.5  Upper Arm 

In addition to the age and BMI terms, the upper arm models started with waist, hip, neck, 

upper arm, and elbow circumferences, and elbow width.  The final model for predicting mass in 

females had an R2 value of about 0.5 (Table 19), however all of the other models had R2 of under 

0.25.  Even though the variance explained by the models approximately doubled for RG in males 

and COM in females, the overall values still remained under 15%.  The models for mass and RG 

in males, and mass and COM in females all included waist and elbow circumferences (Table 17). 

 

Table 17: Upper arm regression results.  Beta values provided for the intercepts and all remaining (p < 0.10) 

predictors following the elimination process. 

 

 

The final model for predicting RG in females is notable because it did not improve over 

the previous model, which included all of the age, BMI, quadratic, and interaction terms.  None 

of the anthropometric terms were significant in the final model, so the final R2 ended up slightly 

less than the previous model because the non-significant age, BMI, and interaction terms were 

removed during the backwards elimination process.  While the total variance explained by the 
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COM M 58.27 -0.229 2.50E-03 -- -- -- -- -- -- -- -- -- -- -0.124 

F 46.182 -- -- -- -- -- -- -- -- -- -0.0575 -- 0.337 -- 

M M -6.28 0.365 -4.02E-03 0.249 -- -0.0121 -- -- 1.33E-04 -- -0.0176 -- 0.153 -- 

F 2.432 -0.0243 1.07E-04 -0.0346 -- 7.55E-04 -- -- -- 0.0376 9.97E-03 -0.027 0.0411 0.0527 

Rg M 20.405 -- -- -0.122 -- -- -- -- -- -- 0.0268 -- 0.208 -- 

F 35.337 -0.385 4.60E-03 -0.418 3.14E-03 0.0120 -- -1.43E-04 -- -- -- -- -- -- 
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model was under 20% for RG for both genders, the RMSE was under 4% when applied to the 

testing set, with an average error of less than 3% (Table 20).  The upper arm COM prediction 

also had RMSE of less than 5%, while the mass prediction had a higher RMSE of about 10%.  

The errors compared to the deLeva predictions were again higher, ranging from approximately 

17% for COM location, to almost 40% for RG. 

3.3.6  Forearm 

The initial model for the forearm included the age and BMI terms along with waist, hip, 

neck, forearm, elbow, and wrist circumferences, wrist and elbow widths, and forearm length.  All 

of the final models included at least one of the age or BMI terms, and all except for mass in 

females included wrist circumference (Table 18).  While the mass predictions had the highest R2 

values, they also larger prediction errors in the testing set, with normalized RMSE of about 9%, 

and average errors over 7% (Table 20).  COM and RG predictions were more accurate when 

applied to the testing set, with RMSE under 2.5%, and average errors under 2%.  Compared to 

the deLeva parameter predictions, the forearm mass prediction error was slightly higher than the 

anthropometric model errors, at a little over 11%, however the average error in RG calculation is 

nearly 60%. 
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Table 18: Forearm regression results.  Beta values provided for the intercepts and all remaining (p < 0.10) predictors following the elimination process. 

 

 

 

 

 

 

 

 

 

 

Table 19: R2 values compared to old models (R20) using only BMI and age terms. 
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COM M 41.396 -0.0259 1.11E-03 -- 3.03E-03 -- 6.88E-05 -- -- -0.168 -- -- -0.203 -- 0.521 
F 48.113 -0.282 -- -0.529 8.05E-03 0.0177 -2.59E-04 -- -- -- -- -0.377 -0.221 -- 0.690 

M M -11.193 0.748 -9.58E-03 0.735 -0.010 -0.0441 6.09E-04 5.66E-04 -7.82E-06 -- -8.26E-03 -0.0145 -- 0.0430 0.0897 
F 1.042 -- -- -0.03 3.35E-04 -- -- -- -- 0.0214 -3.91E-03 -8.44E-03 0.0460 0.0243 -- 

Rg M 28.227 -0.0397 4.48E-04 -0.0913 1.40E-03 -- -- -- -- -- -- -- -- -0.0994 0.169 
F 24.706 -- -- -0.0409 -- -- -- -- -- -- 0.0160 -- -- -0.144 0.307 
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Rg 

R2 0.509 0.633 0.677 0.358 0.663 0.242 0.505 0.861 0.441 0.099 0.503 0.181 0.375 0.672 0.320 
R2

0 0.279 0.138 0.563 0.122 0.163 0.049 0.304 0.174 0.122 0.046 0.197 0.184 0.249 0.272 0.108 
∆R2 0.230 0.495 0.114 0.236 0.500 0.193 0.201 0.687 0.319 0.053 0.306 -0.003 0.126 0.400 0.212 
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R2 0.635 0.660 0.739 0.387 0.558 0.570 0.209 0.853 0.622 0.131 0.218 0.133 0.338 0.446 0.400 
R2

0 0.506 0.453 0.573 0.107 0.440 0.292 0.205 0.502 0.253 0.114 0.180 0.062 0.174 0.352 0.245 
∆R2 0.129 0.207 0.166 0.280 0.118 0.278 0.004 0.351 0.369 0.017 0.038 0.071 0.164 0.094 0.155 
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Table 20: Root mean square error (RMSE) values for the model predictions normalized to the actual 

measured values in the testing subset, and percent differences between the predicted and actual values, and 

between deLeva predicted and actual values, given as mean (sd). 

 

3.4 Discussion 

The new prediction models including individual anthropometric measures in addition to 

age and BMI terms have increased the accuracy over previous methods only considering gender 

(deLeva, 1996).  These improvements in accuracy are particularly notable in the torso and thigh 

segments.  The results show that the inclusion of the neck, waist, and hip circumferences are 

important to include along with BMI for all segment parameter predictions because they provide 

further insight into how mass is generally distributed throughout the body. 

 Torso Thigh Shank Arm Forearm 

 COM Mass Rg COM Mass Rg COM Mass Rg COM Mass Rg COM Mass Rg 

RMSE 1.675 5.241 1.596 4.812 10.951 1.665 2.408 5.681 1.468 4.623 10.032 3.374 2.122 9.030 1.432 

Diff 
(predicted) 

1.34 
(1.04) 

4.35 
(3.24) 

1.25 
(1.00) 

3.01 
(5.26) 

6.17 
(6.12) 

1.23 
(1.12) 
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(1.37) 
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(3.88) 
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3.63 
(2.90) 

7.48 
(6.34) 

2.68 
(2.05) 

1.57 
(1.38) 

6.81 
(5.78) 

0.88 
(1.06) 

Diff 
(deLeva) 

19.65 
(4.62) 

6.36 
(4.51) 

33.94 
(4.28) 

16.85 
(5.23) 

27.09 
(13.34) 

38.78 
(2.29) 

9.66 
(3.02) 

15.02 
(12.45) 

62.81 
(1.85) 

16.83 
(5.57) 

26.22 
(7.39) 

39.67 
(2.62) 

9.84 
(2.44) 

11.60 
(12.64) 

59.82 
(5.33) 
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3.4.1  Torso 

The torso parameter predictions in females, particularly COM and RG, retained several of 

the age and BMI terms as being significant, while also each including 3-4 torso width and depth 

measurements.  While all of the final R2 values for the female torso predictions are above 0.5, the 

increases are especially notable for mass and COM predictions (Table 19), indicating that 

changes in these parameters are highly dependent on the torso geometry of the individual.  The 

increase in variance explained for the torso RG is smaller than the other two parameters, 

indicating that the differences among individuals is mostly explained by age and BMI, with a 

smaller portion being dependent on torso measurements. 

Because the males had higher initial R2 values, and lower ∆R2 values compared to the 

females, the results indicate that while the final prediction models for males explain the majority 

of the variation, the models are largely controlled by the age and BMI factors, with 

anthropometric measurements playing a smaller role in parameter prediction.  For all three of the 

male torso models, shoulder level depth was a highly significant factor (p < 0.01), meaning that 

the volume of the top of the torso, independent of tissue composition (lean or adipose), plays an 

important role in predicting these parameters. 

3.4.2  Thigh 

In females, the models for thigh COM and RG retained most of the age and BMI 

predictors as being significant, meaning that while individual thigh anthropometry explains most 
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of the variation in thigh mass (∆R2 = 0.49), age and obesity status explain the distribution of 

mass within this thigh.  In males, most of the age and BMI factors are significant in COM 

prediction, while thigh mass and RG predictions are almost entirely dependent on circumference 

measurements.  The thigh RG prediction in males is entirely dependent on circumference 

measurements (neck, hip, knee, and upper and mid-thigh), and does not include any of the initial 

age or BMI predictors, indicating that this parameter is only dependent on the shape of the 

individual, and independent of age or obesity status. 

3.4.3  Shank 

With the exception of shank COM prediction in males, all of the prediction models 

included calf circumference.  The calf circumference measurement is notable because it is 

defined as the largest measurement around the calf, as opposed to other measurements, which are 

defined relative to anatomical landmarks.  The calf circumference is a highly significant 

predictor (p < 0.001) for shank mass in both genders because it is proportional to the maximum 

cross section of the shank, instead of being in a predefined location.  Similarly to the thigh RG in 

males, the COM value in males is also only predicted by anthropometric measurements, meaning 

that this value is also independent of age and obesity status. 
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3.4.4  Upper Arm 

The upper arm prediction models in females are interesting because the COM prediction 

does not use any age or BMI terms, while the RG prediction does not use any anthropometric 

measures.  The female RG model is the only one in the study which does not improve on the 

previous prediction method, because none of the new terms are included, while the non-

significant age and BMI terms are removed.  Although the female COM predictions only 

included waist and elbow circumferences, the new model more than doubled the amount of 

variation explained by the previous one using age and BMI terms, meaning that arm COM is 

another parameters that is only dependent on individual geometry. 

Arm COM in males included only age terms and the upper arm circumference, indicating 

that the COM location is independent of obesity, but varies with age and upper arm size.  Both 

upper arm mass and RG include waist and elbow circumferences, and at least one BMI term, 

meaning that they are dependent on bone structure, as well as whole-body mass distribution. 

3.4.5  Forearm 

All of the forearm models for males and females retained at least one of the age or BMI 

terms, as well as wrist or forearm circumferences.  With ∆R2 values as high as 0.4 (female 

forearm mass, Table 19), and each model including multiple circumference measurements, the 

forearm predictions appear to be highly dependent on individual anthropometric measures, in 

addition to the significant age and BMI terms. 
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Overall, nearly all of the observed statistical models benefitted from including individual 

anthropometric measurements.  In addition to observing the effects of age and BMI, data points 

such as waist and hip circumference provide additional measures of obesity, and whole body 

mass distribution.  By using randomly selected training and testing data sets, this study was able 

to develop and validate anthropometry based prediction models for the segment parameters of 

interest.  These anthropometric models were able to predict the parameters more precisely than 

previous modeling methods (deLeva, 1996).  In summary, the findings of the present study 

provide statistical tools that allow the prediction of BSPs using simple individual characteristics 

such as age, BMI and body measurements. 

Limitations of this study involve the study population, which consisted only of healthy 

American working aged adults with full time jobs.  Factors such as activity levels and overall 

fitness were not considered, and would likely impact body mass distribution.  Because the DXA 

scans were collected with the participants lying supine, some degree of weight shifting may have 

occurred, which would not be present during standing.  Additionally, for this study the specific 

segment definition used for the torso was chosen for its applicability to inverse dynamics 

calculations and individual variability (Merrill et al., 2018), and may not be directly comparable 

to other methods of trunk segment parameter calculations. 
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4.0 Impact of the Seated Height to Stature Ratio on Torso Segment Parameters 

4.1 Introduction 

Static modeling programs such as the Three-Dimensional Static Strength Prediction 

Program (3DSSPP) have proven to be valuable ergonomic tools for assessing strength 

capabilities and injury risk (Chaffin, 1997), especially when  assessing spinal loading and lower 

back injury risk during lifting tasks (Dreischarf 2016; Feyen 2000; Rajaee et al. 2015; Russell et 

al. 2007).  In order for static models to calculate representative joint contact force and muscle 

forces, accurate body segment parameter (BSP) inputs are required.  The latest version of 3DSSP 

uses BSP data sets determined based on values for the American industrial populations, as 

determined by the University of Michigan Center for Ergonomics (University of Michigan 

Center for Ergonomics, 2017).  Thus, the anthropometric data currently available in 3DSSP do 

not account for variations in age, obesity, or body shape present in the working population 

(Durkin and Dowling 2003; Matrangola et al. 2008).  With over 60% of the US work force being 

considered overweight (25.0 ≤ BMI < 30.0 kg m-2) or obese (BMI ≥ kg m-2) (Hertz 2004), and 

obesity rates increasing with increasing age, there is a need for BSP sets that account for 

variations in age and obesity.  BSPs predicted using traditional methods do not account for these 

variations and are inaccurate for older adults, with errors being dependent on gender and mass 

distribution (Chambers et al. 2011).  When considering specifically the American working adult 
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population, these errors reach as high as 20-30%, based on the age and obesity status of the 

individuals. 

The anthropometric models currently used by 3DSSPP (University of Michigan Center 

for Ergonomics, 2017) use torso segments split into the torso above and below the fifth lumbar 

vertebra, however the upcoming version will use torso segments that are split into three 

segments: thoracic torso, lumbar torso, and pelvis, segmented by the T12 and L5 vertebrae.  

Previous work has attempted to split the torso into multiple segments (deLeva 1996) based on 

anatomical landmarks, however updated imaging based methods for working adults have treated 

the torso as a single segment with combined thoracic and lumbar segments.  Because static 

models such as 3DSSPP determine the lower back compression and shear forces, anthropometric 

inputs need to include parameters derived from split torso segments, as opposed to using a single 

segment torso.  In addition to accounting for gender, age and obesity status, researchers at the 

University of Michigan Transportation Research Institute (UMTRI) have created statistical 

models to describe overall body shape in children (Park and Reed 2015) and adults (Reed and 

Ebert 2013) for use in automobile applications.  These surface models have shown that the ratio 

of subjects seated height to stature (SHS) has significant predictive effects on the statistical body 

shape models (Park and Reed 2015).  Because of the impact of SHS on overall body shape, this 

measure may also prove to be an important predictor in determining torso segment parameters 

for use in ergonomic applications. 

The objective of this study is two-fold: 

(1) Use established regression methods of determining body segment parameters to determine 

BSPs of interest (segment mass, center of mass, and radius of gyration) for the thoracic torso, 

lumbar torso and pelvis (based on the split torso used in 3DSSPP) and full torso.  
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(2) Explore the use SHS as a possible statistical predictor of these parameters in working adults.   

The findings of this study will be used in ergonomic modeling programs including 

3DSSPP to predict with a greater accuracy lower back forces, strength capabilities, and injury 

risks in populations of varying age, obesity status and overall body shape. 

4.2 Methods 

4.2.1  Study Population 

A total of 280 working adults participated in this study (Table 21).  Participants were 

recruited according to gender, age, and BMI, in order to attempt to enroll equal numbers in four 

BMI categories (normal weight: 18.5 ≤ BMI < 25.0, overweight: 25.0 ≤ BMI < 30.0, obese: 30.0 

≤ BMI < 40.0, and morbidly obese BMI ≥ 40.0 kg m-2) across three age groups (21 ≤ age < 40), 

middle (40 ≤ age < 55), and old (55 ≤ age < 70).  After obtaining informed written consent, each 

participant had his or her height and mass recorded to confirm eligibility based on BMI.  Female 

participants of child bearing age were then required to complete a pregnancy test, with a negative 

result being required for eligibility.  A whole body DXA scan (Hologic QDR 1000/W, Bedford, 

MA, USA) of each participant was then collected using the same methods used in prior studies 

(Chambers et al. 2010; Chambers et al. 2011; Merrill et al, 2018), with the participant lying 

supine as shown in Figure 4. 



54 

 

 

Figure 4: Sample DXA scan with torso delineation.  The solid white lines separate the torso segment from the 

rest of the body.  The thoracic torso segment is between the superior torso boundary and the dotted line.  The 

lumbar segment is between the dotted and dashed lines, and the pelvis segment is the inferior section below 

the inferior dashed line.  The full torso segment is between the superior torso boundary and the dashed line. 
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DXA scan processing procedures consisted of the torso first being separated from the rest 

of the body using anatomical landmarks and planes (Chambers et al. 2010; Merrill et al. 2018), 

as shown in Figure 4.  Next, based on the anthropometric requirements of the 3DSSP software, 

the torso was split into the thoracic, lumbar, and pelvis segments, with the thoracic segment 

ending at the T12/L1 juncture, and the lumbar segment ending at the superior border of the ilium.  

Each segment was split into 3.9 cm tall slices horizontal slices, in a similar method as described 

by Ganley and Powers (2004).  Pixel densities had assumed values of 2.5-3.0 g cm-3 for bone, 0.9 

g cm-3 for fat, and 1.08 g cm-3 for lean tissue. The segment mass, center of mass (COM) and 

radius of gyration (RG) were then calculated from the known slice heights and masses using a 

custom MATLAB script (Mathworks, Natick, MA, USA).  Values for segment mass were 

reported as percent of the total body mass.  COM locations were reported as percent of the 

segment length, where a higher value indicates that the COM is located further in the inferior 

direction.  The RG values were also reported as percent of the segment length, with the RG 

location being measured from the calculated COM.  The seated height to stature ratio (SHS) was 

estimated as follows:  

𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
𝐻𝐻𝐻𝐻𝐻𝐻 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 (𝑐𝑐𝑐𝑐)
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑐𝑐𝑐𝑐)
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Table 21: Descriptive statistics for the study population. Values are given as mean ± sd. 

 

 

 

 

 

 

4.2.2  Statistical Analysis 

The statistical analyses were conducted using JMP Pro 12® (SAS Institute, Cary, NC, 

USA) with statistical significance set at α = 0.05. All analyses were stratified by gender due to 

the significant differences in BSPs between male and female participants. Parameters of interest 

were checked for normality, and log transformed as necessary prior to further analysis.  For each 

of the parameters, linear regression models were first fit using BMI and age (linear and quadratic 

terms), as well as their interactions. Next, SHS and its interactions with age and BMI were added 

to the models. 

The coefficient of determination (R2) and its increases from models only including age 

and BMI terms to models including SHS-related terms (∆R2) were used to describe the added 

benefit in adding SHS to the predictive models.  Nested F-tests were used to describe the 

significance of including SHS and its interactions with age and BMI beyond the initial models 

 All Female Male 
N 280 148 132 
Age (years) 44.9 ± 13.4 45.8 ± 13.2 44.0 ± 13.6 
Mass (kg) 89.7 ± 24.4 85.0 ± 23.3 94.9 ± 24.6 
Height (cm) 169.6 ± 9.2 163.5 ± 6.1 176.5 ± 6.9 
BMI (kg m-2) 31.1 ± 8.1 31.8 ± 8.7 30.4 ± 7.2 
SHS 0.492 ± 0.018 0.490 ± 0.019 0.494 ± 0.017 
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only using age and BMI terms.  The nested F-tests were employed in order to quantify the 

overall significance of adding the SHS and interaction terms together, as opposed to analyzing 

the significance of adding the terms separately. 

4.3 Results 

The study population consisted of 280 working adults (148 female) ages 21-70 (mean: 

44.9 ± 13.4 years), as shown in Table 21.  The results showed that age, BMI, SHS, and their 

interactions had several significant associations with the full torso, thoracic torso, lumbar torso, 

and pelvis segment parameters (Tables 22 and 23). 

Age and BMI terms alone explained between 7 and 64 percent of the variability in the 

parameters in men, and between 5 and 47 percent in women (Table 24).  Increased BMI was 

associated with increased thoracic and full torso mass in women, however it did not have a 

significant effect on any of the mass parameters in men.  When observing the COM and radius of 

gyration, BMI had a significant effect on several of these parameters in men and women.  Age 

alone did not have any significant relationships with the parameters of interest in women, 

however it did have a significant association with the thoracic radius of gyration in men, with the 

values decreasing as age increased. 

Adding the SHS terms had significant effects on 2 out of the 12 parameters in men, and 6 

out of 12 in women, as determined from the nested F test.  The inclusion of the SHS terms 

explained and additional 0.2-6% of the variability in men, and 0.4-9% of the variability in 

women (Table 24).  The regression models for males had greater variability explained by the age 
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and BMI terms than for females for 10 out of the 12 parameters, however the models for females 

demonstrated larger improvements from adding the SHS terms for 8 out of 12 parameters. 
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Table 22: Regression results for females.  Bolded values indicate P < 0.05. 

  

FEMALE Thoracic M Thoracic COM Thoracic Rg 
P β ± SE P β ± SE P β ± SE 

Int 0.589 56.991 ± 6.803 <0.0001 79.243 ± 5.186 <0.0001 18.714 ± 1.807 
Age 0.097 -2.632 ± 0.110 0.770 0.174 ± 0.084 0.453 0.338 ± 0.029 
BMI 0.012 -3.179 ± 0.179 0.005 -0.395 ± 0.136 0.0002 0.274 ± 0.048 
Age² 0.161 3.30E-02 ± 1.24E-03 0.458 2.06E-03 ± 9.47E-04 0.347 -5.39E-03 ± 3.30E-04 
BMI² 0.012 3.65E-02 ± 2.68E-03 0.020 -1.70E-02 ± 2.04E-03 0.001 1.69E-03 ± 7.12E-04 
Age*BMI 0.076 0.170 ± 0.095 0.829 -0.016 ± 0.072 0.527 -0.016 ± 0.025 
Age*BMI² 0.114 -2.24E-03 ± 1.41E-03 0.700 4.14E-04 ± 1.07E-03 0.693 1.48E-04 ± 3.73E-04 
Age²*BMI 0.065 -1.98E-03 ± 1.07E-03 0.942 5.93E-05 ± 8.12E-04 0.381 2.49E-04 ± 2.83E-04 
Age²*BMI² 0.096 2.61E-05 ± 0.000 0.802 -2.98E-06 ± 1.19E-05 0.528 -2.61E-06 ± 4.13E-06 
SHS 0.038 16.669 ± 10.579 0.989 -74.970 ± 8.064 0.662 14.251 ± 2.810 
SHS*Age 0.664 -0.349 ± 0.802 0.616 -0.307 ± 0.611 0.746 0.069 ± 0.213 
SHS*BMI 0.602 0.677 ± 1.296 0.005 2.795 ± 0.988 0.091 -0.586 ± 0.344 

            Lumbar M Lumbar COM Lumbar Rg 
P β ± SE P β ± SE P β ± SE 

Int 0.129 -35.690 ± 5.782 <0.0001 18.220 ± 3.059 <0.0001 23.275 ± 1.202 
Age 0.094 1.445 ± 0.093 0.149 0.447 ± 0.049 0.740 0.319 ± 0.019 
BMI 0.133 1.352 ± 0.152 0.045 1.129 ± 0.080 0.294 0.232 ± 0.032 
Age² 0.142 -1.39E-02 ± 1.06E-03 0.164 -1.94E-03 ± 5.59E-04 0.548 -3.40E-03 ± 2.19E-04 
BMI² 0.218 -2.40E-02 ± 2.28E-03 0.193 -1.04E-02 ± 1.21E-03 0.563 -4.66E-03 ± 4.74E-04 
Age*BMI 0.404 -0.068 ± 0.081 0.626 -0.021 ± 0.043 0.319 -0.017 ± 0.017 
Age*BMI² 0.366 1.08E-03 ± 1.19E-03 0.628 3.07E-04 ± 6.32E-04 0.323 2.46E-04 ± 2.48E-04 
Age²*BMI 0.370 8.14E-04 ± 9.05E-04 0.733 1.64E-04 ± 4.79E-04 0.294 1.98E-04 ± 1.88E-04 
Age²*BMI² 0.346 -1.25E-05 ± 1.32E-05 0.743 -2.30E-06 ± 7.00E-06 0.312 -2.79E-06 ± 2.75E-06 
SHS 0.005 46.533 ± 8.992 0.801 43.533 ± 4.757 0.788 1.160 ± 1.869 
SHS*Age 0.354 -0.634 ± 0.682 0.291 -0.382 ± 0.361 0.516 -0.092 ± 0.142 
SHS*BMI 0.810 0.265 ± 1.102 0.183 -0.780 ± 0.583 0.625 0.112 ± 0.229 

            Pelvis M Pelvis COM Pelvis Rg 
P β ± SE P β ± SE P β ± SE 

Int 0.086 55.863 ± 5.191 <0.0001 48.044 ± 8.159 <0.0001 14.446 ± 3.867 
Age 0.673 1.160 ± 0.084 0.657 -1.177 ± 0.132 0.482 -0.199 ± 0.062 
BMI 0.867 -0.917 ± 0.136 0.0001 -0.434 ± 0.215 0.485 0.526 ± 0.102 
Age² 0.935 -1.84E-02 ± 9.48E-04 0.627 1.09E-03 ± 1.49E-03 0.492 -4.07E-04 ± 7.06E-04 
BMI² 0.482 -0.015 ± 2.05E-03 0.0003 0.038 ± 3.22E-03 0.297 5.54E-03 ± 1.52E-03 
Age*BMI 0.287 -0.078 ± 0.073 0.714 0.042 ± 0.114 0.937 4.28E-03 ± 0.054 
Age*BMI² 0.264 1.20E-03 ± 1.07E-03 0.658 -7.48E-04 ± 1.69E-03 0.871 -1.30E-04 ± 7.99E-04 
Age²*BMI 0.144 1.19E-03 ± 8.13E-04 0.889 -1.79E-04 ± 1.28E-03 0.957 -3.28E-05 ± 6.05E-04 
Age²*BMI² 0.130 -1.80E-05 ± 1.19E-05 0.849 3.55E-06 ± 1.87E-05 0.920 8.85E-07 ± 8.84E-06 
SHS 0.050 -103.417 ± 8.072 0.211 -15.948 ± 12.689 0.206 15.856 ± 6.014 
SHS*Age 0.901 0.076 ± 0.612 0.130 1.465 ± 0.962 0.270 0.505 ± 0.456 
SHS*BMI 0.0003 3.641 ± 0.989 0.013 -3.932 ± 1.555 0.049 -1.466 ± 0.737 

            Full Torso M Full Torso COM Full Torso Rg 
P β ± SE P β ± SE P β ± SE 

Int 0.150 21.301 ± 8.655 <0.0001 30.837 ± 4.227 <0.0001 8.619 ± 1.671 
Age 0.016 -1.188 ± 0.140 0.496 1.647 ± 0.068 0.943 0.301 ± 0.027 
BMI 0.003 -1.827 ± 0.228 0.023 1.521 ± 0.111 0.008 0.552 ± 0.044 
Age² 0.038 0.019 ± 0.002 0.183 -1.39E-02 ± 7.72E-04 0.682 -4.03E-03 ± 3.05E-04 
BMI² 0.005 0.012 ± 0.003 0.140 -3.48E-02 ± 1.67E-03 0.016 5.60E-04 ± 6.58E-04 
Age*BMI 0.398 0.103 ± 0.121 0.111 -0.095 ± 0.059 0.585 -0.013 ± 0.023 
Age*BMI² 0.520 -1.15E-03 ± 1.79E-03 0.104 1.43E-03 ± 8.73E-04 0.760 1.06E-04 ± 3.45E-04 
Age²*BMI 0.391 -1.17E-03 ± 1.36E-03 0.147 9.66E-04 ± 6.62E-04 0.494 1.80E-04 ± 2.62E-04 
Age²*BMI² 0.495 1.36E-05 ± 1.98E-05 0.134 -1.46E-05 ± 9.66E-06 0.663 -1.67E-06 ± 3.82E-06 
SHS 0.001 63.202 ± 13.460 0.447 -31.128 ± 6.573 0.773 33.483 ± 2.599 
SHS*Age 0.337 -0.982 ± 1.020 0.351 -0.466 ± 0.498 0.934 -0.016 ± 0.197 
SHS*BMI 0.569 0.942 ± 1.649 0.027 1.807 ± 0.806 0.002 -1.005 ± 0.318 
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Table 23: Regression results for males.  Bolded values indicate P < 0.05. 

MALE Thoracic M Thoracic COM Thoracic Rg 
P β ± SE P β ± SE P β ± SE 

Int 0.005 -29.546 ± 6.320 <0.0001 13.114 ± 4.213 <0.0001 35.828 ± 1.280 
Age 0.106 -0.585 ± 0.090 0.057 0.830 ± 0.060 0.046 -0.141 ± 0.018 
BMI 0.726 -0.058 ± 0.212 0.007 1.090 ± 0.141 0.021 -0.012 ± 0.043 
Age² 0.056 1.24E-02 ± 1.04E-03 0.104 -7.68E-03 ± 6.90E-04 0.026 -7.45E-04 ± 2.10E-04 
BMI² 0.709 2.34E-02 ± 3.26E-03 0.075 -1.01E-02 ± 2.17E-03 0.112 5.68E-04 ± 6.60E-04 
Age*BMI 0.462 0.080 ± 0.108 0.716 -0.026 ± 0.072 0.798 -5.62E-03 ± 0.022 
Age*BMI² 0.494 -1.14E-03 ± 1.66E-03 0.753 3.50E-04 ± 1.11E-03 0.741 1.12E-04 ± 3.36E-04 
Age²*BMI 0.487 -8.98E-04 ± 1.29E-03 0.680 3.55E-04 ± 8.58E-04 0.682 1.07E-04 ± 2.61E-04 
Age²*BMI² 0.502 1.32E-05 ± 1.96E-05 0.740 -4.34E-06 ± 1.30E-05 0.600 -2.09E-06 ± 3.96E-06 
SHS 0.836 154.453 ± 10.726 0.151 51.032 ± 7.151 0.825 -11.122 ± 2.173 
SHS*Age 0.140 -1.185 ± 0.798 0.334 -0.516 ± 0.532 0.039 0.337 ± 0.162 
SHS*BMI 0.031 -3.298 ± 1.514 0.558 -0.593 ± 1.009 0.655 -0.137 ± 0.307 

            Lumbar M Lumbar COM Lumbar Rg 
P β ± SE P β ± SE P β ± SE 

Int 0.257 70.813 ± 6.676 <0.0001 70.083 ± 3.790 <0.0001 38.249 ± 1.457 
Age 0.742 -3.327 ± 0.095 0.911 -5.61E-01 ± 0.054 0.871 -6.47E-01 ± 0.021 
BMI 0.673 -3.920 ± 0.224 0.004 0.157 ± 0.127 0.440 -0.755 ± 0.049 
Age² 0.643 3.50E-02 ± 1.09E-03 0.928 2.38E-03 ± 6.21E-04 0.921 6.59E-03 ± 2.39E-04 
BMI² 0.833 5.64E-02 ± 3.44E-03 0.037 -5.60E-03 ± 1.95E-03 0.577 1.13E-02 ± 7.51E-04 
Age*BMI 0.100 0.190 ± 0.114 0.954 3.74E-03 ± 0.065 0.131 0.038 ± 0.025 
Age*BMI² 0.125 -2.71E-03 ± 1.75E-03 0.984 1.97E-05 ± 9.96E-04 0.171 -5.27E-04 ± 3.83E-04 
Age²*BMI 0.126 -2.10E-03 ± 1.36E-03 0.911 -8.62E-05 ± 7.72E-04 0.192 -3.90E-04 ± 2.97E-04 
Age²*BMI² 0.149 3.00E-05 ± 2.07E-05 0.980 2.97E-07 ± 1.17E-05 0.233 5.40E-06 ± 4.51E-06 
SHS 0.022 -3.110 ± 11.332 0.694 -55.954 ± 6.432 0.169 5.654 ± 2.472 
SHS*Age 0.556 0.497 ± 0.843 0.068 0.880 ± 0.478 0.903 0.023 ± 0.184 
SHS*BMI 0.876 0.251 ± 1.599 0.594 0.485 ± 0.908 0.762 -0.106 ± 0.349 

            Pelvis M Pelvis COM Pelvis Rg 
P β ± SE P β ± SE P β ± SE 

Int 0.008 13.948 ± 5.926 0.0002 5.613 ± 8.836 0.001 13.913 ± 4.285 
Age 0.377 -0.033 ± 0.084 0.493 2.166 ± 0.126 0.631 0.572 ± 0.061 
BMI 0.186 -0.162 ± 0.199 0.081 1.222 ± 0.296 0.755 0.139 ± 0.144 
Age² 0.806 7.24E-03 ± 9.71E-04 0.472 -2.09E-02 ± 1.45E-03 0.823 -4.38E-03 ± 7.02E-04 
BMI² 0.134 -9.54E-03 ± 3.06E-03 0.242 -2.79E-02 ± 4.55E-03 0.816 -8.03E-03 ± 2.21E-03 
Age*BMI 0.983 2.22E-03 ± 0.102 0.465 -0.111 ± 0.152 0.726 -0.026 ± 0.073 
Age*BMI² 0.827 3.41E-04 ± 1.56E-03 0.514 1.52E-03 ± 2.32E-03 0.743 3.69E-04 ± 1.13E-03 
Age²*BMI 0.847 -2.34E-04 ± 1.21E-03 0.520 1.16E-03 ± 1.80E-03 0.756 2.71E-04 ± 8.73E-04 
Age²*BMI² 0.983 -3.86E-07 ± 1.83E-05 0.563 -1.59E-05 ± 2.73E-05 0.756 -4.12E-06 ± 1.33E-05 
SHS 0.744 11.021 ± 10.059 0.120 -2.222 ± 14.998 0.061 -4.473 ± 7.272 
SHS*Age 0.432 -0.589 ± 0.748 0.738 -0.374 ± 1.115 0.660 -0.238 ± 0.541 
SHS*BMI 0.674 0.599 ± 1.420 0.513 1.388 ± 2.116 0.359 0.946 ± 1.026 

            Full Torso M Full Torso COM Full Torso Rg 
P β ± SE P β ± SE P β ± SE 

Int 0.124 41.266 ± 6.896 <0.0001 35.696 ± 4.178 <0.0001 41.592 ± 1.521 
Age 0.073 -3.912 ± 0.098 0.311 0.129 ± 0.060 0.130 -0.321 ± 0.022 
BMI 0.930 -3.978 ± 0.231 0.096 0.567 ± 0.140 0.095 -0.240 ± 0.051 
Age² 0.191 4.74E-02 ± 1.13E-03 0.839 1.09E-03 ± 6.84E-04 0.093 2.64E-03 ± 2.49E-04 
BMI² 0.584 0.080 ± 0.004 0.621 -6.77E-03 ± 0.002 0.210 1.60E-03 ± 7.84E-04 
Age*BMI 0.025 0.269 ± 0.118 0.945 -0.005 ± 0.072 0.814 0.006 ± 0.026 
Age*BMI² 0.036 -3.85E-03 ± 1.81E-03 0.883 1.62E-04 ± 1.10E-03 0.909 -4.55E-05 ± 4.00E-04 
Age²*BMI 0.035 -3.00E-03 ± 1.41E-03 0.982 -1.90E-05 ± 8.51E-04 0.762 -9.40E-05 ± 3.10E-04 
Age²*BMI² 0.045 4.32E-05 ± 2.13E-05 0.959 -6.70E-07 ± 1.30E-05 0.889 6.55E-07 ± 4.70E-06 
SHS 0.016 151.344 ± 11.705 0.527 15.767 ± 7.091 0.226 -21.267 ± 2.581 
SHS*Age 0.431 -0.688 ± 0.870 0.772 -0.153 ± 0.527 0.127 0.295 ± 0.192 
SHS*BMI 0.068 -3.047 ± 1.652 0.882 -0.149 ± 1.001 0.642 0.170 ± 0.364 
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Table 24: R2, ∆R2, F, and P values for the full regressions including age, BMI, and SHS terms for females 

(top) and males (bottom).  R2I is for the initial model only using age and BMI terms, and R2F is for the full 

model also including the SHS terms.  ∆R2 is the additional variation explained by the model when adding the 

SHS, (SHS x Age), and (SHS x BMI) terms to the model only including the age and BMI terms.  The nested F 

test represents the statistical significance in adding these three terms to the model at the same time.  Bolded 

values indicate P < 0.05. 

 

4.4 Discussion 

Overall, the results indicate that there are several significant associations of age, BMI, 

SHS, and their interactions on the full and split torso segment parameters in working men and 

women.  Because this analysis observes the split torso in addition to the full torso segment, the 

results can provide more insight into the details of the torso anthropometry. 

Females Thoracic Torso Lumbar Torso Pelvis Full Torso 
M COM Rg M COM Rg M COM Rg M COM Rg 

R2I 0.091 0.293 0.179 0.143 0.212 0.165 0.198 0.125 0.050 0.151 0.474 0.159 
R2F 0.121 0.334 0.197 0.194 0.229 0.169 0.291 0.184 0.093 0.227 0.497 0.216 
∆R² 0.030 0.041 0.019 0.051 0.016 0.004 0.092 0.059 0.043 0.076 0.023 0.058 

F 1.572 2.758 1.057 2.886 0.968 0.234 5.888 3.296 2.166 4.453 2.117 3.347 
P 0.199 0.045 0.369 0.038 0.410 0.873 0.001 0.023 0.095 0.005 0.101 0.021 

             
Males Thoracic Torso Lumbar Torso Pelvis Full Torso 

M COM Rg M COM Rg M COM Rg M COM Rg 
R2I 0.071 0.504 0.360 0.476 0.411 0.136 0.246 0.172 0.106 0.387 0.644 0.190 
R2F 0.132 0.519 0.383 0.500 0.431 0.151 0.251 0.191 0.137 0.439 0.646 0.219 
∆R² 0.060 0.015 0.022 0.025 0.020 0.015 0.005 0.019 0.031 0.051 0.002 0.028 

F 2.787 1.205 1.457 1.967 1.419 0.692 0.262 0.937 1.438 3.652 0.175 1.444 
P 0.044 0.311 0.230 0.123 0.241 0.559 0.853 0.425 0.235 0.015 0.913 0.234 
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The results indicate that as BMI increases, this excess mass is accumulated within the 

torso segment (as indicated by increased torso mass as a percentage of total body mass), however 

it is not evenly distributed within the torso, leading to differing COM and radius of gyration 

values.  Specifically, these changes can be observed in the COM locations for all four segments 

in women.  With increasing BMI, the COM values all move further in the inferior direction with 

the exception of the pelvis segment, which exhibits a superior shift in COM.  When viewed 

together with the significantly decreasing radius of gyration values (meaning the radius of 

gyration is closer to the segment center of mass) for the thoracic and full torso, it appears that the 

additional mass in women accumulates primarily in the same locations in the lower area of the 

torso.  Similar effects can be observed in the thoracic torso segment in men, where increased 

BMI is correlated with an inferior shift in the COM location, along with a decreased radius of 

gyration. 

The only statistically significant associations of age with the parameters of interest were 

observed in full torso mass in women, and thoracic torso radius of gyration in men.  Similar to 

the effects of increasing BMI in women, the increase in age corresponds to greater full torso 

mass as a percent of total body mass, indicating that even when BMI does not change, overall 

mass distribution may change with age.  With increasing age in men, the results are again 

analogous to increasing BMI, with the radius of gyration values decreasing, meaning that the 

segment mass tends to accumulate in a specific region, as opposed to throughout the whole 

segment.  Because lean body mass and bone density tends to decrease with age (Atlantis et al., 

2008; Jackson et al., 2012, St-Onge, 2005), the results indicate that individuals with similar BMI 

at different ages will likely have increased adipose tissue, which will contribute towards larger 
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torso mass percentage and mass distribution, similar to that observed in individuals with 

increased BMI. 

Additionally, the results indicate that the inclusion of the SHS metric, along with its 

interactions with age and BMI, explains a small but sometimes significant amount of additional 

variability beyond the variability explained by age and BMI alone.  The SHS term had a 

significant effect on the full torso mass and lumbar torso mass in men and women, however it 

only had a significant effect on thoracic torso mass in women.  Because a larger SHS reflects a 

longer torso relative to total stature, these effects of higher SHS on full torso mass (as a 

percentage of body mass) would be expected.  By performing this statistical analysis on the split 

torso parameters, the results show that both genders exhibit increased lumbar torso mass with 

increased SHS, while men do not demonstrate any relative increases in thoracic torso mass with 

increased SHS, indicating that individuals with longer torsos relative to total height have 

differing increases in mass distribution based on sex. 

The addition of the SHS and interaction terms to initial models only using age and BMI 

can provide significant improvement in variability explained in split torso parameters, especially 

in women.  While the increased segment masses would be expected due to the SHS indicating a 

longer torso relative to height, the collective SHS terms had significant relationships with the 

thoracic torso and pelvis COM locations, as well as the full torso radius of gyration in women.  

More precisely, the SHS x BMI interaction was significantly associated with each of these 

parameters, correlating with an inferior shift in thoracic COM, a superior shift in pelvis COM, 

and a decrease in full torso radius of gyration.  Because these effects are all in the same direction 

as those seen with increasing BMI, it appears that having an overall body shape characterized by 

a greater SHS tends to exacerbate the effects on increasing BMI on these parameters. 
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In order to determine the effect of these age, BMI, and SHS associated parameters on 

ergonomic calculations, a sensitivity analysis was performed for a lifting task in 3DSSPP 

(version 6.0.6), to determine the effects of varying torso and pelvis mass and center of mass on 

the L5/S1 disc compression forces.  Using a 163.5 cm tall female (the average of the female 

study population) model in the stoop lift position (Figure 5), and a downward force of 65 N on 

each hand, a total of 10 anthropometry inputs sets were applied: deLeva (1996) parameters at 

BMI of 20 and 45 kg m-2 (53.5 and 120.3 kg, respectively), and parameters from the results of 

this study for ages 25 and 65 years, BMI of 20 and 45 kg m-2, and SHS of 0.452 and 0.528, 

corresponding to the mean ± 2 standard deviations. 

 

 

 

Figure 5: Female model in the stoop lift position. 
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The results of this sensitivity analysis (Table 25) show that using the deLeva (1996) 

parameters result in significantly higher predictions for L5/S1 compression force at both BMIs.  

Within the low BMI group, the compression forces for the 65-year old models were nearly 

identical at low and high SHS (2132 and 2136 N, respectively), with larger differences appearing 

between the low and high SHS values for the 25 year old model (2231 vs 2106 N respectively). 

 

 Table 25: 3DSSPP sensitivity analysis results.  The analysis was performed for females in the stoop lift 

position, with a 65 N downward force applied to each hand.  Compression forces are provided in N. 

 

 

 

 

 

 

Within the high BMI (45 kg m-2) group, the effect of SHS increased at both ages, with 

high and low compression values of 3347 and 3193 N, respectively for the old group, and 3259 

and 2966 N respectively for the young group.  Because these results varied by nearly 400 N in 

the high BMI group, it is important to account for age and body shape, especially for high BMI 

individuals.  These differences in modeling outputs would likely increase for any gait or dynamic 

lifting, where the differing radius of gyration values would also contribute towards differences in 

L5/S1 compression calculations. 

Limitations for this study include the lack of information regarding fitness history and 

activity levels within the sample population, meaning that these results may not be representative 

for athletic or populations with disability.  All of the DXA scans were collected with the 

 
L5/S1 Compression 

BMI (kg m-2) 20 45 
Group (age in 
years, or deLeva) 25 65 deLeva 25 65 deLeva 
Low SHS 2231 2132 2505 2966 3193 3887 
High SHS 2106 2136 3259 3347 
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participants lying supine, and some amounts of shifting in soft tissue likely occurred from the 

standing position.  Additionally, the statistical regressions resulting from this investigation are 

not predictive in nature, and should not be used as such; their purpose is to investigate the 

associations of age, BMI, and SHS with the parameters of interest for potential future inclusion 

in predictive modeling.  Despite these limitations, the findings of this study indicate that age, 

BMI, and overall body shape as determined from SHS all have significant associations with torso 

and pelvis segment parameters.  Further, the results of the static sensitivity analysis show that 

these differences need to be included in ergonomic models in order to determine representative 

lower back compression forces, and their related injury risk. 
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5.0 Development and Validation of Body Fat Prediction Models in American Adults 

5.1 Introduction 

Obesity is a growing health concern in the American adult population (Hales et al., 

2017), with over 36% of adults over the age of 20 being classified as obese, defined by a body 

mass index (BMI) of 30.0 kg m-2 or greater (Ogden, 2014).  Obesity is also a significant factor 

for health conditions such as knee and hip osteoarthritis and type 2 diabetes, as well as for 

occupational injuries (Brown and Choi, 2015; Craig et al., 2006; Pollack and Cheskin, 2007), 

such as falls (Chau et al., 2004) and back injuries (Myers et al., 1999).  When considering body 

fat percentage (BFP) as a measurement of obesity status, high body fat, especially when 

combined with low BMI, is associated with increased all-cause mortality (Padwal et al., 2016) 

and cardiovascular disease mortality (Ortega et al., 2016).  While approximations of whole-body 

and abdominal obesity can be approximated with measures such as BMI and waist and hip 

circumferences, body composition information can provide additional insight into cardiovascular 

health risks (Ortega et al., 2016). 

While measures such as BMI, waist circumference, and waist to hip ratio can 

approximate body fat percentage and related health risks, imaging methods such as dual energy 

x-ray absorptiometry (DXA) scanning have been used as direct in-vivo measures of body 

composition, including body fat percentage (Chambers et al., 2014).  Other methods have used 
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skin fold measurements to model body fat percentage in the general population (Durnin and 

Womersley, 1974; Jackson and Pollock, 1978; Jackson, Pollock, and Ward, 1980) and the elderly 

(Chambers et al., 2014; Gause-Nillson and Dey, 2005; Kwok, Woo, and Lau, 2001; Visser, van 

den Heuvel, and Deurenberg, 1994).  These methods have used skin fold to directly predict body 

fat percentage (Chambers et al., 2014; Gause-Nillson and Dey, 2005; Kwok, Woo, and Lau, 

2001), or to predict body density (Durnin and Womersley, 1974; Jackson and Pollock, 1978; 

Jackson, Pollock, and Ward, 1980; Visser, van den Heuvel, and Deurenberg, 1994), which can 

then be used to approximate body fat percentage using the two compartment equation developed 

by Siri (Siri, 1961). 

Methods relying only on anthropometric measurements including circumference 

measurements and height (Hodgdon and Beckett, 1984a; Hodgdon and Beckett, 1984b; Woolcott 

and Bergman, 2018) have also been employed for the purpose of predicting body fat percentage.  

These methods have the advantage of accounting for individual body shape, while not requiring 

the equipment and training necessary to perform skinfold measurements.  Specifically, the 

relative fat mass metric (Woolcott and Bergman, 2018), approximates body fat percentage using 

only height and waist circumference, making it one of the most simple methods of determining 

obesity status in American adults. While these established methods have proven effective for 

military personnel (Hodgdon and Beckett, 1984a; Hodgdon and Beckett, 1984b), and provided 

improvement over BMI alone in the American adult population (Woolcott and Bergman, 2018), 

they do not account for the additional effect of age in predicting body composition.  When 

looking at correlations between anthropometric measures such as waist circumference and BMI 

with body composition, previous research has found that both age and race also play significant 

roles in predicting body fat percentage (Camhi et al., 2011; Deurenberg, Yap, and van Staveren, 
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1998; Jackson et al., 2002), and highlights how BMI alone does not provide accurate insight into 

body composition (Deurenberg, Yap, and van Staveren, 1998). 

Due to the wide age and obesity ranges presented in the American adult population 

(Luckhaupt et al., 2014), the known effects of age and BMI on predicting body composition 

(Jackson et al., 2002), and the significant predictive abilities of skinfolds (Durnin and 

Womersley, 1974; Jackson and Pollock, 1978; Jackson, Pollock, and Ward, 1980) and 

anthropometric measurements (Hodgdon and Beckett, 1984a; Hodgdon and Beckett, 1984b; 

Woolcott and Bergman, 2018) on body composition, accurate statistical models should attempt 

to include all of these inputs.  The objective of this study was to develop statistical regression 

models to predict body fat percentage in working men and women using all of these parameters, 

in order to develop a clinical tool that will provide the most accurate results, and improve over 

the existing prediction methods without the need for expensive imaging equipment. 

5.2 Methods 

A total of 228 working adults (116 female) ages 21-70 (mean: 44.4 ± 13.7 years, Table 

26) participated in this study.  Recruitment was stratified by BMI group, age group and gender to 

ensure a comprehensive representation of the current working population.  More specifically, 

male and female participants were recruited in equal numbers in three BMI categories (normal 

weight: 18.5 ≤ BMI < 25.0, overweight: 25.0 ≤ BMI < 30.0, and obese: 30.0 ≤ BMI < 40.0) 

across three age groups: young (21 ≤ age < 40), middle (40 ≤ age < 55), and old (55 ≤ age < 70).  
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The study was approved by the University of Pittsburgh Institutional Review Board, and written 

informed consent was obtained prior to any data collection. 

 

Table 26: Descriptive statistics for the study population.  Values are shown as mean (sd). 

 

 

 

Each participant had his or her height and mass recorded in order to confirm eligibility 

based on BMI.  Female participants of child bearing age were then required to complete a 

pregnancy test, with a negative result being required for eligibility.  Next, nine skinfold and 

thirteen anthropometric measurements were collected (Table 27).  All of the arm and leg 

measurements were collected for the right sides only.  Each measurement was collected three 

times, and the average of the three was used for analysis.  A whole body DXA scan (Hologic 

QDR 1000/W, Bedford, MA, USA) of each participant was then collected using the same 

methods used in prior studies (Chambers et al., 2014), with the participant lying supine as shown 

in Figure 1.  Body fat percentage was determined from the scan as total fat mass divided by total 

body mass. 

Before starting the statistical analysis, the full data set of 228 participants was randomly 

split into two subgroups: the training set, which contained 163 participants, and the testing set, 

which contained the remaining 65, with each set containing similar age and BMI distributions 

 N Age (y) Mass (kg) Height (cm) BMI (kg m-2) Asian (%) Black (%) White (%) 

All 228 44.4 (13.7) 81.3 (17.3) 170.0 (9.1) 28.0 (4.9) 3 30 67 
Female 116 45.6 (13.5) 75.3 (14.4) 163.8 (5.9) 28.0 (5.0) 1 34 65 
Male 112 43.2 (13.8) 87.5 (17.8) 176.5 (7.1) 28.0 (4.9) 4 26 70 
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(Table 28).  The two groups were used to first develop prediction models (training set), and 

validate the models (testing set). 

All analyses were performed in JMP Pro 12 (SAS Institute, Cary, NC, USA). 

Specifically, a backwards elimination regression analysis was performed on the whole body 

DXA determined body fat percentage in the training subset within each gender group.  The initial 

regression model contained age, BMI, age2 and BMI2 and all their interaction terms, all skinfold 

measurements, and circumferences of the neck, waist, hips, and limbs.  In each step of the 

analysis, the predictor with the largest P-value was removed, and the analysis was repeated.  This 

process of removing the least significant predictor and repeating the analysis continued until the 

p-values for all predictors were below 0.10.   

Once the training set model was finalized, it was applied to the anthropometric measures 

in the testing set, so that the predicted and actual segment parameters could be compared in the 

testing set, and used as a method of validating the models.  For comparison purposes, several 

previously validated body fat estimation methods were also applied to the testing data set.  These 

methods included those determined by Durnin and Womersly (1974), Hodgdon (1984a; 1984b), 

Jackson and Pollock (1978; 1980), and Woolcott (2018).  Within the testing set, the actual and 

predicted values were compared by calculating the absolute percent error, as well as the root 

mean square error (RMSE).  The actual body fat percentage values were compared to the new 

and existing prediction models in order to determine the average difference in predicted body fat 

value, ∆BFP.  Within each gender, t-tests were performed between each prediction method and 

the DXA measured body fat to determine if there were any significant differences, with 

statistical significance set at α = 0.05. 
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Table 27: Anthropometric measures collected for body fat prediction. 

 

  

Anthropometric variable Definition 
Chest skinfold Diagonal fold at 45 degree angle: one half the 

distance between the anterior axillary line and the 
nipple for men, one third the distance between the 
anterior axillary line and the nipple for women 

Mid-axillary skinfold Vertical fold, on the mid-axillary line at the level 
of the xyphoid process of the sternum 

Triceps skinfold Vertical fold, on the posterior midline of the upper 
arm, halfway between the acromion and olecranon 
processes, with the arm held freely to the side of 
the body 

Biceps skinfold Vertical fold; on the anterior aspect of the arm 
over the belly of the biceps muscle, 1 cm above 
the level used to mark the triceps site 

Subscapular skinfold Diagonal fold; 1 to 2 cm below the inferior angle 
of the scapula 

Vertical abdominal skinfold Vertical fold; 2 cm to the right of the umbilicus 
Horizontal abdominal skinfold Horizontal fold; 2 cm to the right of the umbilicus 
Suprailiac skinfold Diagonal fold; in line with the natural angle of the 

iliac crest taken in the anterior 
axillary line immediately superior to the iliac crest 

Thigh skinfold Vertical fold; on the anterior midline of the thigh, 
midway between the proximal border of the 
patella and the inguinal crease (hip) 

Waist circumference Circumference at the umbilicus 
Hip circumference Around largest part of the hip 
Upper thigh circumference Around proximal thigh 
Mid-thigh circumference Around point midway between proximal border of 

patella and inguinal crease 
Lower thigh circumference Around thigh1 cm above proximal border of 

patella 
Knee circumference Around medial and lateral femoral epicondyles 
Calf circumference Around largest part of calf 
Ankle circumference Around medial and lateral malleoli 
Upper arm circumference Around midpoint between acromion and 

olecranon processes 
Elbow circumference Around medial and lateral humeral epicondyles 
Lower arm circumference Around midpoint between lateral humeral 

epicondyle and ulnar styloid process 
Wrist circumference Around radial and ulnar styloid processes 
Hand thickness Thickness at center of palm 
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Table 28: Descriptive statistics for the training and testing subsets.  Values are shown as mean (sd). 

 

 

 

5.3 Results 

The final models predicted total body fat percentage within the testing subgroup with a 

root mean square error (RMSE) of 10.6% (Figure 6), compared to the Hodgdon, Durnin, 

Jackson, and Woolcott prediction methods, which had RMSE of 17.3, 29.7, 15.6, and 19.4%, 

respectively.  When directly comparing the body fat predictions to the DXA measured values, 

the Durnin and Woolcott predictions significantly overestimated body fat for males and females 

(Figure 7).  The Hodgdon formula significantly overestimated female body fat, and significantly 

underestimated male body fat, and the Jackson method significantly underestimated only female 

body fat.  Compared to the DXA measured values, the new prediction formula (Equations 5-1 

and 5-2) showed a ∆BFP of less than 0.10% for both males and females (Figure 7), and average 

absolute errors of less than 10% (Table 29).  For both equations, all circumference and skinfold 

measurements are measured in cm. 

  

 N Female Age (y) BMI (kg m-2) BFP 
All 228 117 44.4 (13.7) 28.0 (4.9) 29.3 (9.2) 
Training 163 82 44.3 (13.9) 28.1 (5.1) 29.2 (9.2) 
Testing 65 35 44.7 (13.2) 27.7 (4.6) 29.5 (9.1) 
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Equation (5-1) 

Female BFP = 225.43 – Age*12.42 + (Age2)*0.140 – BMI*14.43 + (BMI2)*0.266 + 

(Age*BMI)*0.893 – (Age*BMI2)*0.0154 – (Age2*BMI)*0.0100 + (Age2*BMI2)*0.000174 + 

(Waist circumference)*0.129 – (Hand thickness)*6.44 – (Vertical abdominal skinfold)*1.83 + 

(Thigh skinfold)*1.61 

 

 

Equation (5-2) 

Male BFP = 22.76 + Age2*0.00168 – BMI*0.700 + (BMI2)*0.0139 – (Age2*BMI)*0.000233 + 

(Age2*BMI2)*0.0000072 + (Hip circumference)*0.288 – (Mid-thigh circumference)*0.401 – 

(Hand thickness)*4.94 + (Subscapular skinfold)*2.22 + (Vertical abdominal skinfold)*1.60 + 

(Thigh skinfold)*1.69 

 

 

The final prediction models included several age and BMI terms for males and females, 

and accounted for over 80% of the variation in body fat percentage, with R2 values of 0.85 and 

0.87 for females and males, respectively.  The only anthropometric measures included in the 

female model were waist circumference and hand thickness, while the male model included hip 

and mid-thigh circumference, and hand thickness.  Both models also included the vertical 

abdominal and thigh skinfolds, while only the male model includes the subscapular skinfold. 
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Figure 6: Root mean square error for the testing group for the newly developed prediction model, and the 

Hodgdon, Durnin, Jackson, and Woolcott models. 

 

 

Figure 7: Predicted body fat differences, shown as predicted body fat minus DXA measured body fat for each 

established prediction method.  Error bars represent standard error.  * indicates p < 0.05 compared to DXA 

measured values. 
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Table 29: Average absolute percent errors for each prediction method.  Values given as mean (sd).  Errors 

calculated as the absolute difference between prediction methods and DXA measured values, divided by DXA 

measured values. 

 

 Predicted Hodgdon Durnin Jackson Woolcott 
All 8.7 (7.6) 14.9 (11.3) 33.3 (26.0) 11.3 (8.7) 14.7 (13.8) 
Female 8.4 (6.4) 13.2 (9.9) 20.3 (17.1) 12.4 (9.4) 11.2 (11.6) 
Male 9.1 (8.9) 16.9 (12.7) 48.5 (26.6) 10.1 (7.8) 18.8 (15.2) 

 

5.4 Discussion 

The objective of this study was to develop a new prediction model for body fat estimation 

in working men and women, accounting for a wide range of ages and obesity levels and variation 

in individual anthropometry.  Compared to previous methods of estimating body fat in adults, 

this new formula showed greatly improved accuracy in predicting the DXA derived body fat 

percentage, as demonstrated by the RMSE, ∆BFP, and average absolute errors.  The new 

prediction model is unique among other methods because it includes age, BMI, anthropometric 

measures, and skinfold measures, while the preexisting methods only use skinfolds (Durnin), 

anthropometric measurements (Hodgdon and Woolcott), or skinfolds and age (Jackson).  

Because the backward elimination regression process initially included all of the predictors this 

study did not suffer from the limitation of being restricted only to specific categories of inputs. 
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Compared to the established methods of predicting body fat percentage, the new model 

requires more measurements than the anthropometry-only methods used by Hodgdon (1984a; 

1984b) and Woolcott (2018), but with the benefit of providing significantly more accurate 

predictions in both men and women.  While the Woolcott model provides significant 

improvement (Woolcott and Bergman, 2018) over BMI alone for predicting body composition, it 

results in estimations that are about two percentage points higher than the new models (Figure 7).  

The Woolcott (2018) study and this study both used DXA scans to determine the actual body 

composition in participants, however the Woolcott study observed a larger sample size of 

American adults, while this study was limited to working adults with full time jobs.  Although 

physical activity information was not collected as part of this study, previous research has 

indicated that men and women with active full-time jobs, and men with sedentary full time jobs 

tend to be more active than unemployed adults (Van Domelen et al., 2011), so these potential 

differences in lifestyles and activity levels between the two study populations may have 

contributed towards different modeling outcomes for predicting body fat percentage. 

A similar comparison issue arises when observing the differences between the Hodgdon 

(1984a; 1984b) models and the results of this study, due to the Hodgdon models being developed 

for active duty US Navy personnel.  The Hodgdon studies observed participants that were both 

younger and less obese (Hodgdon 1984a; Hodgdon 1984b) than the participants in this study.  

Interestingly, this difference in population and models used lead to the Hodgdon method 

underestimating body fat in males, while overestimating body fat in females, indicating that with 

the increasing age and BMI, circumference measurements may play different roles in predicting 

body composition, and skinfold measurements are necessary for providing further predictive 

ability. 
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When comparing the Durnin (1974) and Jackson (1978; 1980) skinfold measurement 

models to the results of this study, the Durnin models greatly overestimated body fat in men and 

women, while the Jackson model underestimated body fat in women.  The Jackson model for 

men was the only prediction in this comparison to not significantly over or under estimate the 

DXA scan derived body fat percentage.  While both of these studies observed wide age ranges of 

adults (16-72 years for Durnin, and 18-61 years for Jackson) similar to this study, the study 

populations both had lower average BMI and body fat percentage, again demonstrating that the 

results of this study are necessary for use in the American working adult population. 

Another major difference between the results of this study and previous skinfold models 

is that  both the Durnin (1974) and Jackson (1978; 1980) models used sums of skinfolds to 

predict body composition instead of looking at the individual contributions of these variables, 

while this study observed the contributions of each skinfold site individually.  Observing each 

site individually allows changes in each site to be weighted differently relative to each other.  For 

example, Equation (5-2) (for males) shows that changes in the subscapular skinfold site lead to 

larger changes in body fat prediction than changes in the abdominal or thigh sites, while the 

Durnin or Jackson models would treat similar changes in any of the included sites as having the 

same impact on body fat prediction.  The models resulting from this study can therefore account 

for more of the individual variability in body composition relating to how and where excess body 

fat is stored, and how this body fat distribution changes with age, gender, and BMI. 

The new prediction methods also likely show improved accuracy and clinical relevance 

over existing methods because of the inclusion of waist (for females) and hip (for males) 

circumferences in the final models.  These measures have been previously established as 

predicting obesity status, and risk of developing obesity related health issues, such as type 2 
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diabetes, hypertension, insulin resistance, and dyslipidemia (Despres and Lemieux, 2006; 

Despres et al., 2008; Folsom et al., 2000; Lee et al., 2008), meaning that in addition to predicting 

body composition, these models may provide further insight into the development of more 

serious health risks. 

Unlike the other referenced methods of determining body fat, the new regression model 

employs hand thickness as a predictor for body fat in men and women, with increased hand 

thickness correlating with decreased body fat percentage.  Previous research into hand muscle 

thickness, grip strength, and body composition has found that increased hand muscle thickness is 

correlated with increased skeletal muscle mass (Morimoto et al., 2017), while the relationship 

between grip strength and body composition has yielded mixed or inconclusive results (Ingrova, 

Kralik, and Bartova, 2017; Lad et al., 2013, Miyatake et al., 2012).  The inclusion of hand 

thickness in the final statistical model is likely significant because it can serve as a proxy for grip 

strength and whole body muscle mass, and explain body fat percentage when included alongside 

age and BMI. 

While the models developed in this study account for overall body shape (from the waist, 

hip, and thigh circumferences) and localized body fat distribution (from the subscapular, 

abdominal, and thigh skinfolds measurements), they also account for the additional changes in 

body composition associated with age and BMI.  The inclusion of age is especially important for 

accurate composition calculations due to the decrease in lean body mass and bone density that 

occurs with increasing age (Atlantis et al., 2008; Jackson et al., 2012; St-Onge, 2005).  Because 

the models include this variety of inputs, a trained clinician is likely required to collect the 

necessary measurements, whereas more simple methods like relative fat mass (Woolcott and 

Bergman, 2018) can be determined by an individual without any clinical training.  The extra 
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requirements necessary for using these new models mean that they will likely be most useful in a 

clinical or medical setting where the ultimate goal is to most accurately determine body fat 

percentage. 

There were a few limitations for this study, mostly dependent on the population studied.  

While the study sample included a wide representation of age, race, and obesity levels, factors 

such as physical fitness and overall activity levels were not accounted for during recruitment.  

Because only working adults with full time jobs were eligible to participate in this study, the 

final prediction models are likely not applicable to special populations such as the elderly or 

athletes.  The population studied was also limited to participants with a BMI of less than 40.0 kg 

m-2 due to inaccuracy of abdominal and thigh skinfold measures in morbidly obese individuals, 

so the results may not be applicable to working adults with extreme levels of obesity.  Previous 

work relying on sums of skinfolds had the advantage of minimizing the inherent errors in 

skinfold measurements, which may vary by site, while these results offer the advantage of 

accounting for individual fat distribution at the cost of potentially decreased accuracy in the 

applications of the models due to the increased dependence on skinfold accuracy. 
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6.0 Discussion and Conclusions 

6.1 Summary 

The results of this dissertation highlight the associations of age, obesity, and overall body 

shape on anthropometry, and present validated predictive models for body segment parameters 

(BSPs) and body fat.  After investigating the initial relationships between age, body mass index 

(BMI) and the segment parameters of interest (Specific Aim 1), the predictive models were 

developed in order to produce representative parameter sets in individuals (Specific Aim 2), 

which are essential for accurate static and dynamic model calculations.  Further, the impact of 

overall body shape as determined by the seated height to stature ratio (SHS) was investigated 

(Specific Aim 3), which is especially important for ergonomic modeling involving lower back 

compression and shear forces, and their related risk of injury.  Finally, statistical methods similar 

to those used to predict segment parameters were used to develop predictive models for body fat 

percentage (Specific Aim 4). 

The criteria for Specific Aim 1 were met by first finding that out of 15 total segment 

parameters, BMI had significant associations with 7 parameters in females, and 6 parameters in 

males, with R2 values as high as 0.50.  Next, adding the age terms to the models had significant 

improvements in 8 parameters in females, and 12 in males, explaining an additional 5-20% of the 

variability.  Finally, including the age x BMI interaction terms had smaller impacts on the 
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analysis, with significant effects on 3 of the parameters in females, and 4 parameters in males, 

explaining an extra 1-11% of the variability.  Overall, the results of this analysis demonstrated 

that age and BMI both have significant associations with BSPs.  While these results are not 

predictive and should not be used as such, they indicate that age and BMI should be taken into 

account when developing predictive models. 

Specific Aim 2 built on the results of Specific Aim 1 by including the age and BMI 

terms, along with individual anthropometric measurements, in a backwards elimination 

regression to develop predictive BSP models.  The predictive models resulted in root mean 

square errors (RMSE) of less than 5% of the mean for all center of mass and radius of gyration 

parameters, and less than 10% of the mean for forearm, shank, and torso masses.  These models 

showed prediction errors of less than 7.5% for all parameters in males and females, compared to 

the errors from the established de Leva (1996) data set, which ranged from 6-63%. 

Specific Aim 3 contained similar goals to Specific Aim 1, however it also included the 

SHS ratio, along with age and BMI, and examined split torso parameters.  The SHS ratio has 

been found to be a predictive metric in body surface modeling in work done by the University of 

Michigan Transportation Research Institute (Park and Reed, 2015; Reed and Ebert, 2013), and 

serves as a general measurement of overall body shape.  While the SHS measurement was not 

directly collected during the study visits, its approximation based on hip height was compared to 

the actual SHS value on a sample of lab employees, and the estimation was found to be within 

5% of the actual measurement.  By adding SHS and its interactions of age and BMI to the 

models from Specific Aim 1, 6 of the 12 parameters in females, and 2 of the 12 in males showed 

significant improvements, with the variability explained increasing by up to 9%.  Similarly to 

Specific Aim 1, these results are not predictive models and should not be used as such, however 
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the results serve as motivation to include SHS when developing predictive BSP models, and 

determining specific torso parameters in individuals. 

Finally, Specific Aim 4 began with a backwards elimination regression process similar to 

Specific Aim 2, with the goal of developing predictive models to determine body fat percentage.  

The goal of this aim was to predict body fat percentage as accurately as possible, using a 

combination of age and BMI terms, along with skinfold and anthropometric measurements.  The 

final models included a combination of several age, BMI, skinfold, and anthropometric 

measures, and predicted body fat percentage with a RMSE of 10.6% of the mean.  Compared to 

four previously established body fat prediction methods, these models resulted in average errors 

of less than 10% of the mean, while the other prediction methods (Durnin and Womersly, 1974; 

Hodgdon and Beckett, 1984a; Hodgdon and Beckett, 1984b; Jackson and Pollock, 1978; 

Jackson, Pollock, and Ward, 1980; Woolcott and Bergman, 2018) ranged from 10-48%. 

Compared to other methods of anthropometric data collection, DXA scanning was 

selected due to its ability to noninvasively collect in vivo data, at a minimal cost compared to 

other imaging methods.  DXA scanning has proved especially valuable for these studies because 

it has enabled the calculations of parameters with different boundaries and endpoints (Merrill et 

al., 2018), as well as the splitting of major torso segments for specific ergonomic applications.  

Unlike geometric or photogrammetric methods which rely on tissue composition and density 

assumptions, DXA scan results can directly measure the masses and compositions necessary to 

determine body fat percentage and anthropometric parameters. 

While previous work has shown population level differences based on race in body 

composition (Camhi et al., 2011) and anthropometry (Shan and Bohn, 2003), it is likely that 

these differences are due to assumptions regarding tissue density and composition when relying 
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on geometric methods (Durkin, Dowling, and Scholtes, 2005).  Because the population of this 

study (Table 26) was a reflection of the diversity of the American adult population, all 

participants were analyzed together, and not separated by race.  Because the DXA scanning 

method allowed the analyses to bypass assumptions of tissue mass and distribution, and included 

several age, obesity, and geometric predictors, the resulting predictions in Specific Aims 2 and 4 

were able to address the adult population as a whole, regardless of race. 

6.2 Applications 

The most directly applicable sections of this work involve the predictive regressions 

derived for BSPs and body composition.  The static sensitivity analysis, observing the impacts of 

age, BMI, and SHS (Table 25), demonstrated the effects of varying torso parameters on L5/S1 

compression model outputs, and confirmed the need to account for the individual parameters.  

Further, individual body shape and anthropometric measurements should be used to predict 

segment parameters for all major body segments in order to calculate representative joint 

reaction forces and moments. 

6.2.1  Sensitivity Analyses 

The static sensitivity analysis performed for a lifting task with varying age, BMI, and 

SHS levels demonstrated the effects of changing anthropometric inputs on calculated L5/S1 
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compression forces (Table 25), and showed how these calculations differ from those determined 

from a previously established anthropometric data set.  The differences in these outputs appear to 

be largely driven by the pelvis and torso masses, with increasing masses leading to larger 

compression calculations.  Center of mass locations alone do not appear to be correlated with 

changes in compression forces, due to the mass and center of mass values being altered together, 

and not separately in this analysis.  Because altering torso center of mass locations leads to 

smaller differences than comparable changes in torso mass (as a fraction of whole body mass), 

the differences in torso mass present in the sample data sets being compared contribute more 

towards the differences in compression calculations. 

In order to quantify the effects of segment parameters on dynamic modeling outputs, the 

predicted thigh and shank segment parameters from Specific Aim 2 for a sample of male 

participants were applied to a gait trial with an unexpected slip perturbation.  The primary 

outputs for these models were the hip and knee joint reaction forces and moments or the 

perturbed (left) limb during the slip and response.  The eight male participants selected for this 

analysis covered wide age (26 – 69 years) and BMI (19.90 – 44.34 kg m-2) ranges. 

For each individual, the predicted thigh and shank parameters were calculated from the 

final regression models (Tables 15 and 16), and applied to a whole body 3D inverse dynamics 

model (Moyer, 2006).  The variables of interest for this analysis were the peak knee and hip 

response moments and forces (normalized to body mass), and the resulting differences in the 

values across subjects.  Sample hip moment results are provided in Figure 8.  The model outputs 

have minimal differences (across sets of anthropometric inputs) throughout most of the trial, 

however the peak flexion moments range from 0.98 to 1.23 Nm kg-1 during the slip response. 
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The resulting calculated differences (across sets of anthropometric inputs) in hip joint 

contact forces and moments varied by over 15% of the average for anterior, lateral, and superior 

forces, and flexion moments (Figures 9 and 10).  Differences in knee force and moment outputs 

were much smaller than the hip, with only the anterior and superior forces showing maximum 

differences of over 10% of the mean. 

 

 

Figure 8: Left hip normalized extension moment outputs during unexpected slip and response for each 

individual input set.  Positive moments represent extension, and negative moments represent flexion. 
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Figure 9: Normalized peak hip reaction forces.  Lines shown represent the minimum, average, and maximum 

model outputs for each measure, across all sets of anthropometric inputs. 

 

 

 

Figure 10: Normalized peak hip reaction moments.  Lines shown represent the minimum, average, and 

maximum model outputs for each measure, across all sets of anthropometric inputs. 
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While this sensitivity analysis is somewhat limited in that it only observed the changes in 

knee and hip kinetics, the results for the hip show that the modeling outputs can vary by up to 

15-20%, emphasizing the need for representative, individual anthropometric inputs.  The 

magnitudes of the differences observed would likely increase for movements involving larger 

segments such as the trunk.  Because the inverse dynamic model relies on force plate inputs 

along with kinematic motion capture data, the normalized anthropometric inputs altered were 

only based on the mass distribution within the body, and within segments, so that the whole body 

stature and mass did not change between subjects.  The results of this dynamic analysis along 

with the static lifting task serve to underscore the importance of accounting for individual body 

shape in addition to age and obesity status when predicting anthropometric data for 

biomechanics applications. 

6.2.2  Body Fat Definition of Obesity 

Compared to previously established body fat prediction methods (Durnin and Womersly, 

1974; Hodgdon and Beckett, 1984a; Hodgdon and Beckett, 1984b; Jackson and Pollock, 1978; 

Jackson, Pollock, and Ward, 1980; Woolcott and Bergman, 2018), the models developed in 

Specific Aim 4 proved to be more accurate, as indicated by their smaller RMSE and average 

errors.  While measures such as BMI and waist-hip ratio (WHR) can provide approximations of 

whole body and abdominal obesity, body composition can provide additional insight into 

cardiovascular health risks (Ortega et al., 2016).  A recently developed method of predicting 

obesity, relative fat mass (RFM), has proven to be more accurate in obesity predictions than 

BMI, while being similarly simple to calculate (Woolcott and Bergman, 2018).  In order to 
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observe the relative predictive ability of the body fat models, the DXA scan derived body fat 

percentages were compared to the obesity classifications of BMI, WHR, RFM, and the predictive 

models.  For defining obesity based on body fat percentage and RFM, the cutoff values 

determined by Woolcott and Bergman (2018) of 22.8% for males, and 33.9% for females were 

used, as were WHR cutoff values of 0.85 for females, and 0.90 for males (World Health 

Organization, 2008).  Table 30 shows the number of participants in the testing sub group (n = 65) 

defined as obese or non-obese by DXA scan derived body fat percentage, compared to the BMI, 

RFM, WHR, and Specific Aim 4 predicted methods. 

 

 

Table 30: DXA derived obesity status compared to BMI, RFM, WHR, and Aim 4 predicted models.  DXA 

obesity is determined from the actual values measured, while RFM and Aim 4 obesity is determined from the 

predictive models.  DXA, RFM, and Aim 4 used body fat percentage cutoffs of 22.8% for men, and 33.9% for 

women.  WHR uses obesity cutoffs of 0.85 for women, and 0.90 for men, while BMI uses a cutoff of 30.0 for 

men and women. 

 

 DXA 
obese 

DXA non 
obese 

BMI obese 19 1 

BMI non obese 16 29 

RFM obese 34 13 

RFM non obese 1 17 

WHR obese 23 7 

WHR non obese 12 23 

Aim 4 predicted obese 32 5 

Aim 4 predicted non obese 3 25 
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Compared to the BMI, RFM, and WHR definitions of obesity, the Aim 4 predicted 

models proved to be the most accurate, with 88% of the participants classified correctly.  The 

next most accurate method was RFM, with 78% classified correctly.  While the RFM method 

showed a small improvement in accurately diagnosing DXA derived obesity, it incorrectly 

classified more participants as being obese than the Aim 4 predictions.  Compared to the DXA 

derived body fat percentages, the Aim 4 predictions explained the most variability of the four 

methods compared, with R2 values of 0.717 for females, and 0.850 for males. 

6.3 Conclusions 

The results of this dissertation demonstrate the need to account for age, BMI, and 

individual characteristics when determining body segment parameters.  While the results 

provided in Specific Aims 1 and 3 are not predictive in nature, and not intended to be used as 

such, future related work may include developing validated predictive regressions using only age 

and BMI, so that more general population level parameters may be predicted when specific 

individual models are not available or necessary.  DXA scanning has proven to be an accurate, 

inexpensive method of determining in vivo composition and segment parameters, and the 

resulting predictive models translate this information so that it can be used in the absence of 

access to DXA scanning and analysis systems.  Additionally, these scans can be further utilized 

to describe mass distribution and tissue type by analysis on a pixel by pixel basis, and 

incorporated with established surface modeling methods to create a more descriptive definition 

of the body as a whole. 
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Along with a more detailed scan analysis process, an increase in the sample size would 

allow for the inclusion of more in depth body measurements utilized for the Specific Aim 2 

analysis.  For example, torso measurements could include torso circumferences collected the 

same points as the width and depth measurements, while limb measurements could include 

circumferences at several points along each segment, as opposed to the current method using 

only mid-length circumferences.  Other measurements such as hip depth (measured in the 

anterior-posterior direction), when combined with bony landmark measurements such as inter-

ASIS distance would provide insight into how soft tissue distribution relative to skeletal structure 

contributes towards segment parameters and body composition.  Because an increase in sample 

size would allow for an increase in the degrees of freedom available for building predictive 

statistical models, the additional measurements and their potential interaction with existing 

measurements could further explain the individual variability in body shape and mass 

distribution.  Improvements in the predictive modeling may be addressed with backwards 

elimination approaches similar to those used in Specific Aims 2 and 4, or with more advanced 

machine learning algorithms that have the ability to perform more in depth examinations of 

potential interactions between anthropometric measurements. 

Future work may also address the issue presented by the current DXA collection method, 

which only uses frontal plane imaging, with participants lying supine.  Ideally, scan data should 

be collected with participants standing upright, as they would be while performing gait and gait 

perturbation tasks, so that soft tissue distribution is not distorted.  Further, three dimensional data 

collection would allow for the calculation of centers of mass and moments of inertia along all 

three anatomical axes for each segment.  Finally, detailed three dimensional mass and 



92 

composition data can be combined with existing surface modeling techniques to create more 

descriptive full body statistical models. 
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