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Abstract 

Relationship Between Variation in the TP53 Gene and Patient Outcomes Following Severe 

Traumatic Brain Injury 

 

Kaleigh Mellett, BSN 

 

University of Pittsburgh, 2019 

 

 

 

 

Traumatic brain injury (TBI) is a leading cause of death and disability with millions of 

people living with long-term complications or disability related to TBI in the United States alone. 

This study examined the relationship between the p53 coding gene (TP53) and outcome variability 

following severe TBI. p53 has a known impact on neuronal apoptosis following TBI, which 

warrants investigation into TP53 genetic variability as a prognosticator for TBI outcomes (assessed 

using the Glasgow Outcome Scale, Neurobehavioral Scale, and Disability Rating Scale.) 

Participants (n = 429) were recruited from the UPMC Presbyterian Hospital with a Glasgow Coma 

Score 8 and were followed for 24 months. The single nucleotide polymorphism (SNP) rs1042522 

was analyzed using restriction fragment length polymorphism (RFLP) and digested with BstuI 

restriction enzyme. Individuals with the CC genotype (Arginine homozygotes) were at risk for 

poorer outcomes following TBI at the 24-month point when compared to CG/GG variants. The 

findings provide preliminary evidence that p53 plays a role in recovery following TBI and, if 

replicated, may warrant investigation into p53 targeted therapies for risk allele carriers.  
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1.0 Introduction 

Traumatic brain injury (TBI) is a leading cause of death and disability in the United States 

with approximately 2.5 million emergency department visits, 282,000 hospitalizations, and 50,000 

deaths related to TBI annually [1]. The Center for Disease Control and Prevention (CDC) reported 

a 47% increase in TBI-related emergency department visits and 5% decrease in death rates from 

2007 to 2013, suggesting an increase in the number of survivors of TBI [1]. Survivors often face 

chronic symptoms that reduce quality of life [2-6]. An estimated 5.3 million people in the United 

States alone are living with long-term complications or disability related to TBI [5]. 

TBI is defined as a disruption in normal brain function caused by external force to the head 

from either a direct assault (e.g. bump, collision) or indirect injury (e.g. jolt, whiplash). The extent 

of injury can range from mild to severe [1, 3]. This study focused on severe TBI. Despite similar 

extent and mechanism of injury, the difference in outcomes after TBI has been highly documented. 

There is high variability of both recovery rates and post-injury quality of life, suggesting that 

predisposing factors to outcomes following TBI may exist [6].  

The neuronal damage following TBI occurs in two stages. The injury during the primary 

stage is sustained from the traumatic event itself. The external force to the head causes 

acceleration-deceleration or torsional forces on the neurons, damaging a localized site of glial cells, 

nerve fibers, and interrupting the blood brain barrier [3]. The secondary stage develops hours to 

days after the initial injury as inflammation is initiated at the site of the injury and expands to 

neighboring tissue, expanding the damage. Ischemia at the site initiates anaerobic respiration, thus 

accumulating lactic acid. The release of glutamate and other excitatory neurotransmitters causes 

ion channel leakage. Calcium leakage into the cell and mitochondria triggers free-radical 
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generation, exacerbating neuronal damage and cell death [3, 7]. Gene activation that promotes 

apoptosis is another cause of cell death following TBI. Apoptosis of neuronal cells is thought to 

be deleterious in this instance, though the mechanism of neuronal apoptosis has not yet been clearly 

identified [7, 8]. Research has been done looking at methods to decrease apoptosis after TBI [9, 

10]. 

The purpose of study was to explore the relationship between the Arg72Pro single 

nucleotide polymorphism (SNP, rs1042522), of the p53 encoding gene (TP53) and patient 

outcomes following severe TBI. The gene TP53 encodes the tumor protein called p53 which plays 

a critical role in apoptosis and DNA damage repair via cell cycle control [11]. The TP53 gene is 

located on chromosome 17p13.1[12]. In unstressed cells, the p53 protein is kept inactive and at 

low levels by its negative regulator, MDM2 [13, 14]. A number of stressors are known to rapidly 

activate p53, such as DNA damage, hypoxia, oxidative and nutritional stresses, ribonucleotide 

depletion, and disruption of nucleolar function. Stimulation of p53 induces apoptosis by 

transactivating proapoptotic proteins including Noxa, PUMA, Bax, Bid, Bad, p53AIP1, and PERP, 

while also repressing antiapoptotic proteins Bcl-2 and Survivin [15]. p53 response also contributes 

to cell-cycle arrest or progression, senescence, DNA repair, autophagy, and cell metabolism [13, 

14]. The p53 protein is located in the nucleus of cells throughout the body where it directly binds 

to DNA under both basal conditions and stress. However, p53 is significantly more bound after 

genotoxic insults which stabilize p53 [12, 13]. The stability and transcriptional activity of p53 are 

regulated by protein-protein interactions and post-translational modifications, including 

methylation, phosphorylation, acetylation and ubiquitylation [16].  

Because of p53s proapoptotic activity, it is a known tumor suppressor gene and has been 

highly studied in human longevity, cancer risk and survival [12, 17]. Despite p53 beign well-
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studied in cancer, few have looked at the relationship between p53 and TBI. It has been 

acknowledged that p53 contributes to neuronal cell apoptosis and autophagy, as well as 

transactivating genes that play a role in neuronal cell repair and regeneration, supporting 

warranting investigation into of the relationship between p53 and TBI outcomes [15, 18, 19]. 

Exploratory animal studies have also identified changes in expression of p53 following closed 

head injury [20], ischemic brain injury [21], lateral fluid percussion mediated injury [22], and p53 

deficient mice [8, 23]. Specifically, these animal models have found an upregulation of p53 in the 

nucleus of injured cells following TBI [22].  

Martínez-Lucas et al. was the first human study to look at TP53 in patients with TBI. The 

study looked at the most common polymorphism in TP53, Arg72Pro (rs1042522), where a 

Cytosine (C) to Guanine (G) base change leads to replacement of arginine (Arg) with proline (Pro) 

at position 72 within the resulting gene product [8]. Previous research found that the Arg variant 

(CC) is at least five times more efficient at inducing apoptosis than the homozygous or 

heterozygous Pro variant (CG/GG) [24]. In a sample of  90 patients with TBI Glasgow Coma Scale 

(GCS) score 8, and the Glasgow Outcome Scale (GOS) was used at the time of discharge from 

the hospital and 6 months following. The homozygous Arg/Arg genotype was significantly 

associated with poorer outcomes when compared to the Proline variants. These findings warrant 

further investigation of p53 as an independent risk factor for outcomes after TBI [8]. 
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2.0 Specific Aim and Purpose 

The aim of this study is to further explore the Arg72Pro variation of TP53 as a predictor of 

outcome variability following severe TBI. This study expands on the findings and addresses 

limitations of the Martínez-Lucas et al. study by including a larger sample size, looking at outcome 

measures at 3, 6, 12, and 24 months following injury, and including the disability rating scale 

(DRS) and the neurobehavioral rating scale (NRS) as more granular outcome measures. GOS, 

NRS, and DRS  are commonly used reliable and valid measures of outcomes after TBI [25-27]. 

Following this study, it is the goal that the findings can be replicated and applied to develop and 

consider TP53 genotype-targeted therapy for the TBI population. The development and use of 

precision health care could hold promise in preventing and treating symptoms in patients who 

sustained a TBI.  
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3.0 Hypothesis 

In agreement with Martínez-Lucas et al. findings [8], the expected outcome is that the 

Arginine homozygote (CC) genotype will show significantly poorer outcomes compared to Proline 

variants (CG/GG) at the 6-month outcome measure. It is also expected to see continued difference 

in outcomes (GOS) at the 12-month and 24-month measures. It is anticipated that across the three 

time points, the Pro homozygotes will show the most desirable outcomes, the Arg homozygotes 

will show the least desirable outcomes. With the larger population, it is probable to find a stronger 

outcome variation between the heterozygous Arg/Pro individuals versus the homozygous 

individuals. The NRS and DRS measures are anticipated to mirror the results of the GOS and be 

able to better define the correlation between p53 and outcomes following TBI. 
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4.0 Methods and Measurements 

4.1 Participants 

The parent study from which the demographic data, clinical data, patient outcome data and 

biospecimens were derived was approved by the University of Pittsburgh Institutional Review 

Board. Next of kin provided written informed consent; consent was obtained at follow up visits 

when possible. This ongoing study includes patients admitted to the UPMC Presbyterian Hospital 

neuro trauma intensive care unit. Inclusion criteria were admitted for a closed head injury with a 

Glasgow Coma Score (GCS) 8 without effects of drugs, alcohol, paralytics or sedatives, age 16 

to 80 years old, draining cerebrospinal fluid (CSF) via external ventricular drain as standard of 

care, and not brain dead. 

4.2 Evaluation of Functional and Neurobehavioral Outcomes 

Initial evaluations of patients were completed using the Glasgow Coma Scale (GCS). The 

GCS is a valid and reliable marker for traumatic brain injury, as it measures coma severity based 

on responsiveness of eye-opening, motor, and verbal responses. Subjects with a GCS 8 are 

classified as ‘severe’ traumatic brain injury [28]. After the initial injury, participants were followed 

for two years to complete outcome evaluations at 3, 6, 12, and 24 months [2]. A technician at the 

Brain Trauma Research Center (BTRC) completed the evaluations under the direction of a 

neuropsychologist.  
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The outcomes of interest for this study included the Glasgow Outcome Scale (GOS), 

Neurobehavioral Rating Scale (NRS), and Disability Rating Scale (DRS). The GOS is a valid and 

reliable measure [25], which objectively categorizes TBI outcomes based on their independence 

in daily functioning, as follows: 1 = death, 2 = persistent vegetative state, 3 = severe disability, 4 

= moderate disability, and 5 = good recovery [29].  

The NRS rates 27 items on a 7-level scale (0 = deficit absent, 1 = very mild, 2 = mild, 3 = 

moderate, 4 = moderately severe, 5 = severe, 6 = extremely severe) assessing behavioral 

manifestations of TBI. Some areas of interest include alertness, attention, fatigability, orientation, 

memory, motor behavior, expressive/reception language, mood disturbances, disinhibitory 

behavior or agitation, and capacity for self-insight [30]. The ratings for each item are tallied to 

create a summarive score. Possible scores range from 0, or no deficit, to 162, or deficits extremely 

severe. The NRS has an average inter-rater reliability of 74.3% and an average kappa statistic of 

0.40 [2]. The NRS requires individuals to be alive and able to participate in the assessment, so 

participants with a of GOS 1 and 2 are not included. The sample size for NRS was n = 150 at 3 

months, n = 175 at 6 months, n = 170 at 12 months, and n = 101 at 24 months.   

The DRS is an assessment used in both the acute hospital setting and the community, to 

evaluate functional outcomes and ability following TBI. The assessment measures three categories 

of impairment, disability, and handicap by rating subcategories of eye-opening, ability to 

communicate, motor responsiveness, cognitive skill necessary for self care, overall dependence, 

physical and cognitive abilities, and employment. The score ranges from 0, or no disability, to 30, 

being death. The DRS has been found to be both reliable and valid with an inter-rater reliability 

ranging from 93-98% in the inpatient setting [31]. The DRS sample sizes were n = 256 at 3 months, 

n = 251 at 6 months, n = 224 at 12 months, and n = 159 at 24 months. 
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4.3 Genotype Data Collection  

DNA samples for this study were extracted from one of two sources: blood (preferred) or 

cerebral spinal fluid (alternate). 10 mL whole venous blood was obtained via venipuncture, 

centrifuged to isolate the white blood cells, and extracted using a salting out protocol. CSF 

drainage was collected in a ventriculostomy bag as a part of routine clinical care, and the DNA 

was extracted using the manufacturers instruction for the Qiamp Midi kit (Qiagen, Valencia, CA, 

USA). All DNA samples were stored in 1x TE buffer at 4C [2].  

Restriction fragment length polymorphism (RFLP) was used to genotype participants. The 

primer set for rs1042522 was 5’-CTGGTAAGGACAAGGGTTGG-3’ as forward and 5’-

ACTGACCGTGCAAGTCACAG-3’ as reverse. The 397 base pair fragment was amplified by 

polymerase chain reaction (PCR). PCR was performed with 2l of diluted genomic DNA via the 

Denville Taq protocol which used a total volume of 36l with the following cycling conditions: 

35 cycles of 95C for 30 seconds, 56C for 36 seconds, 72C for 40 seconds, followed by 72C 

for 10 minutes and an indefinite hold at 10C. For samples that did not work with the Denville Taq 

protocol, the Qiagen Taq protocol was used on a 30l volume with the following cycling 

conditions: 95C for 15 minutes, followed by 35 cycles of 94C for 30 seconds, 54C for 1 minute 

30 seconds, and 72C for 1 minute and 30 seconds, then 72C for 10 minutes and an indefinite 

hold at 10C.  

The PCR fragments were then treated with 5 units of BstuI restriction enzyme, creating 

two short fragments (166 and 213 base pairs). A 2% agarose gel was run to separate the DNA 

fragments by size and to interpret the genotype of each participants DNA. Arg homozygotes (CC) 

showed a single band with no cut at 379 base pairs; Pro homozygotes (GG) showed two bands at 
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213 and 166 base pairs; and Proline heterozygotes (CG) showed all three bands at 379, 213, and 

166 base pairs. Genotype data was manually entered and verified by a secondary individual to 

reduce risk of human error. 

4.4 Statistical Analysis 

The independent variable in this study is the SNP genotype. The Hardy-Weinberg 

equilibrium was tested on the SNP. The dependent variables are the GOS, DRS, and NRS at 3, 6, 

12, and 24-month time points. Potential covariates include age, sex, and severity of injury (GCS). 

GOS was dichotomized into poor outcomes (GOS 1, 2, 3) versus good outcomes (GOS 4, 5). For 

GOS, chi-squared test was used to analyze each time point separately. One-way ANOVA was used 

to analyze DRS and NRS by genotype. To see if a difference existed between Arg (CC) and Pro 

variants (CG/GG), independent sample T test and chi-squared test were run. A p-value 0.05 was 

considered significant. Multivariate regression analyses were run on time points and outcome 

measures trending significant to explore effects of potential covariates of genotype, age, race, sex, 

and initial GCS. Odds ratios and 95% confidence intervals were calculated. 
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5.0 Results 

A total of 429 participants with severe TBI were included in this analysis. The demographic 

characteristics of participants are outlined in Table 1. The average age was 37.38 years old (range 

16-77); 78.3% were male; and 85.5% were Caucasian. Sex and race were both found to have 

significant variation across genotypes (p  0.05). GCS scores were dichotomized (GCS 3-4; GCS 

5-8) to further breakdown severity of TBI. Participants with scores 3-4 show the poorest outcome, 

whereas participants scoring 5-8 exhibit some response to stimulation. 24.4% of participants 

scored a GCS of 3-4. The SNP (rs1042522) met the Hardy-Weinberg equilibrium.  

 

 

Table 1 Demographics of the participants included in study 
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Results from the chi-square test of the dichotomized GOS are outlined in Table 2. No 

significant difference was found between genotype and poor GOS at the 3-, 6-, 12-, or 24-month 

time points (p  0.05), though it trended towards significance at 24-months. In Table 3, using One-

way ANOVA, no association existed between genotype and NRS, though it trended towards 

significance at the 3-month time point. In Table 4, a significant association was found between 

genotype and DRS at the 24-month time point.  

 

 

Table 2 Glascow Outcomes Scale (GOS) Frequancy of Poor Outcomes by Genotype 

 

 

 

Table 3 Neurobehavioral Rating Scale (NRS) Average by Genotype 
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Table 4 Disability Rating Scale (DRS) Average by Genotype 

 

 

 

Table 5 summarizes all outcome measures for the Arg homozygotes (CC) and Pro 

heterozygotes and homozygotes (CG/GG). Outcome measures trended towards significance at the 

24-month point, though no association was found between genotype variance and outcome.  

Results that showed marginal significance or significance were analyzed with multivariate 

regression analysis. 

 

 

Table 5 Outcomes of Arginine homozygotes and Proline heterozygotes/homozygotes 

 

 

 

We found a difference in the 24-month GOS between participatns with CG versus CC 

(OR=0.27; p=.014), and initial GCS 3-4 vs 5-8 (OR=5.16; p<.001) when controlling for potential 

covariates. Sex also showed marginal significance female vs male (OR=1.99; p=.56). Multivariate 
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analysis of NRS at 3-months (Table 7) showed only significant difference in outcomes in age 

(p=.025). Multivariate analysis of DRS at 24-month (Table 8) showed significant difference in 

both CG vs CC (B=-3.82; p=.021) and GG vs CC (B=-3.31; p=.048), and initial GCS poor vs good 

(B=3.08; p=.021). 

 

 

Table 6 GOS 24-month Multivatiare Analysis for Poor Outcomes 

 

 

 

Table 7 NRS 3-month Multivariate Analysis 
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Table 8 DRS 24-month Multivariate Analysis 

 

 

 

Table 9 summarizes the multivariate analysis of Arg homozygotes (CC) and Pro 

heterozygotes and homozygotes (CG/GG) for GOS and DRS 24-months. Both showed that Arg 

homozygotes had significantly worse outcomes than Pro variants (GOS p=.048; DRS p=.022). 

Initial GCS also showed significant association (GOS p<.001; DRS p=.023). 

 

 

Table 9 GOS and DRS 24-month Multivariate Analysis of Arginine homozygotes and Proline 

heterozygotes/homozygotes 
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6.0 Discussion 

This study investigated the relationship between SNP rs1042522 of the p53 gene and 

outcomes following TBI. p53 plays a role in neuronal apoptosis following TBI, and variability in 

this gene has been shown in previous studies to have deleterious effects on TBI recovery [7, 8]. 

The demographic characteristics of these participants resemble nationwide trends in severe 

TBI: predominately male, and Caucasian [1]. The distribution of genotype frequency reflects 

expected frequencies based on reference SNP reports (e.g. dpSNP). Caucasians are more likely to 

carry the G allele (72.6% G) than African Americans (33.1% G) and other races. 

Across all time points for GOS measures, unadjusted analyses indicated there were no 

significant differences between the three genotypes. This may show that genotype alone is not a 

strong predictor of outcome. However, when multivariate regression analysis was completed, CG 

was found to be a protective allele compared to CC (OR=.27; p=.014), as was GG (OR=.45; 

p>.05). This was a somewhat unexpected finding given the Martinez study. Their findings showed 

GG as indicator of better outcome, whereas our showed CG individuals had the best GOS across 

all time points [8]. The variance between our results could be from our larger sample size, or a 

result of participant drop out that prevented collecting GOS at all of the time points, for example 

participants who recovered well may have been less likely to need or attend clinic visits.  

 When comparing Arg homozygotes (CC) to Pro variants (CG/GG), Arg showed a trend 

towards significantly poorer GOS at 24-months (78.1% poor vs 62.6%; p=.083). No other time 

points showed significant difference, which again differs from the findings of Martinez, which 

found significant difference in GOS outcomes at the 6-month post-discharge between the Arg 

homozygotes and Pro homozygotes, and no significant difference in the heterozygotes [8]. This 
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may indicate that presence of Arg is not always an indicator of poor outcomes. However, upon 

multivariate regression analysis of Arg vs Pro variants, a significant difference was revealed. Arg 

was 2.7 times more likely to have a poor outcome than Pro (OR=0.36; p=.048). It also showed 

significant difference in GOS scored based on age and initial GCS, which is expected. Initial GCS 

had the strongest correlation (OR=4.89; p<.001) to GOS outcome. 

 NRS showed a trend towards significant difference at the 3-month point (p=.081), but no 

difference at any other time point. Upon multivariate analysis, only age was found to be 

significantly associated with NRS score (p=.025). The lack of findings for NRS may be because 

NRS requires participants to be alive and able to complete the assessment, so participants with a 

of GOS 1 and 2 could not be included. This could also show that NRS may not be the best measure 

for outcome following severe TBI because it looks more at granular outcomes, has a wide score 

range, and has a bias towards survivability. 

DRS showed significant difference in outcomes at 24-months between the 3 genotypes, 

with GG as the best outcome. This supported our hypothesis. This could mean that individuals 

with GG may have a better prognosis following injury. When comparing Arg homozygotes to Pro 

individuals, it showed Arg as a slight risk for worse outcome at 24-months (p=.079). Multivariate 

analysis of the genotypes at 24-months showed that the CC genotype is more likely than both CG 

and GG to have a poor DRS score (p=.021, p=.048). Comparison of variants at 24-months showed 

Arg also showed risk for worse outcome compared to Pro (p=.022). Initial GCS also shows 

significant association with DRS score (p=.023).  

 Our data demonstrates that two years after TBI, having the Arg homozygote variant allele 

(CC) for rs1042522 may be associated with a worse prognosis and could be considered a risk 

allele. Past publications show Arg homozygotes (CC) induce neuronal apoptosis at least five times 
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more efficient than Pro homozygotes or heterozygotes (CG/GG) [24]. These findings could be 

used as a prognosticator following TBI, and could warrant preventative genetic testing in high-risk 

TBI occupations or individuals.  

These findings could warrant the investigation of genotype-targeted therapy for p53 in the 

TBI population. A study done by Yang (2016) supports the administration of p53 inactivators 

following TBI. Their study delivered a p53 inhibitor, pifithrin- oxygen analogue (PFT- (O)), to 

lab control TBI-induced rats 5 hours post-injury to reduction of neuronal apoptosis. Results 

showed an improvement of motor and cognitive functions and supported p53 inhibitors as a 

targeted therapeutic strategy in TBI [32].  

Limitations of our study are as follows: first, attrition related to participant drop out or 

death. Second, the results may not strongly represent minorities and females, though our sample 

profile resembled national occurrence of TBI. Finally, p53 and neuronal apoptosis is complex, and 

by looking at only rs1042522, environmental impacts and other gene influences was not included. 
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7.0 Conclusion 

TBI affects many individuals and there is a need to better understand and improve 

outcomes for this population. This study offers data that contributes to the understanding of 

variations in outcomes following TBI. Rs1042522 of the TP53 gene should further be tested as a 

prognosticator following TBI, with Arg homozygotes predisposed to a worse outcome. The 

findings of this study support future exploration on genotype-specific treatments in order to 

improve patient outcomes for risk-allele carriers. 
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