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Hierarchical Reinforcement Learning (RL) has gained popularity in recent years in 

designing RL algorithms that converge in complex environments. Convergence of RL algorithms 

remains an active area of research, and no single approach has been found to work for all RL 

applications. Feudal networks (FuNs) are a hierarchical RL technique attempting to address 

portability and other problems by defining an internal structure for an RL agent using a Manager-

Worker hierarchy. A Manager is that portion of the system utilizing a low temporal resolution 

component for setting goals to maximize rewards from the environment, while the Worker utilizes 

a high temporal resolution component for selecting among action primitives to maximize rewards 

from the Manager. This thesis provides an overview of reinforcement learning and the FuN 

architecture, then compares the relative convergence rates of untrained FuNs to FuNs constructed 

by Workers with different physical embodiments under a trained Manager. 
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1.0  INTRODUCTION 

Reinforcement Learning (RL) is the study of agents and how they learn by trial and error. This 

field formalizes the idea of rewarding or punishing an agent for its behavior, making it more likely 

to repeat or forego that behavior in the future. RL algorithms are categorized by the mathematical 

or algorithmic structure used to design an agent. Hierarchical RL, for example, is a subset of RL 

algorithms that structures an agent in a way that leverages multiple layers of abstraction. 

 Unlike supervised or unsupervised learning, which provide a learning agent with labeled 

or unlabeled training examples, RL agents use trial and error to seek rewards by interacting with 

the environment. In scenarios where RL algorithms converge, they are commonly considered “data 

hungry” compared to supervised and unsupervised learning algorithms in the sense that they might 

require many interactions with the environment to converge [1]. One use-case for hierarchical RL 

architectures is to attempt to reduce the total number of agent-environment interactions required 

to solve a problem, thus improving convergence rates. 

As recently as 2017 the Option-Critic architecture was considered state-of-the-art, but the 

FeUdal Network (FuN) architecture shown in Figure 1 below was demonstrated to outperform the 

Option-Critic architecture in a variety of test scenarios [2][3]. Since the advent of FuN 

architectures, no hierarchical RL studies have been observed to outperform the FuN architecture 

in any task, making the FuN architecture the state-of-the-art hierarchical RL technique at the time 

of publication.  
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This work provides a contribution towards understanding the FuN architecture. This is 

accomplished by first providing a solid foundation for RL concepts, using that foundation to 

thoroughly explore FuNs, and finally leveraging the knowledge of FuNs to define an appropriate 

sub-problem for experimentation. The sub-problem explored in this thesis responds to the requests 

of the hierarchical RL community in [2] and [3] by addressing the transferability of a Manager to 

untrained Workers under different physical embodiments. Specifically, transitional policies of the 

supervisor (Manager) will be transferred to actors (Workers) with different embodiments under 

controlled conditions. This will be tested on variations of the cart-pole environment as shown in 

Figure 3 [4].  

 

 
 

Figure 1. FeUdal Network (FuN) Architecture 
  



 

 3 

2.0  REINFORCEMENT LEARNING 

RL is the study of agents and how they learn by trial and error. The field was largely inspired by 

natural phenomena, and it has been suggested that humans learn using hierarchy [5]. The field of 

RL at large has recently experienced several notable breakthroughs, including: 

• Google Deepmind’s algorithm beating the world champion in the (computationally 

complex, previously considered intractable) game of Go [6] 

• OpenAI’s algorithm that is currently qualifying for world championship video game 

tournament participation in the online multiplayer game of DOTA2 [7] 

These are only a subset of recent highly publicized results from the field of RL, which 

remains an active research area [8][9][10]. Because RL formalizes the study of decision making, 

it could potentially impact any field in which decisions are made. 

The agent-environment interaction loop shown in Figure 2 below shows the fundamental 

progression followed by all RL agents. An agent takes action 𝑎𝑡 to modify the state 𝑥𝑡 and receives 

reward through a reward function 𝑅𝑡. 

RL notation is not always consistent; however, the work of this thesis was primarily 

inspired by [3], and the notation in the following sections shall be presented in a way that is 

consistent with that used in [3].  
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The objective of an RL agent is to determine an optimal policy. Approaches to this problem 

are varied and have inspired the discussion in Section 3.0 as to how feudal networks determine an 

optimal policy. The remainder of this section reviews common terminology from the field of RL 

to prepare the reader for a thorough discussion of hierarchical RL as it relates to the FuN 

architecture.  

 

 
 

Figure 2. Agent-Environment Interaction Loop 
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2.1 ACTION SPACES 

Different environments enable an agent to take different kinds of actions. The agent is technically 

not tied to any specific physical embodiment but is responsible for selecting a valid action from 

the action space 𝑎𝑡 ∈ 𝐴. Since the action itself is commonly taken by some physical embodiment 

in the environment (e.g. a robot), it would be appropriate to think of an agent as the brain. An 

action can be anything that changes the state in some way but is selectable by the agent. 

Disturbances and noise inherent to the environment don’t count as actions. The set of all valid 

actions, 𝐴, in a given environment is called the action space and is the set from which actions, 𝑎, 

are selected by the agent. A time index 𝑎𝑡 may be used to denote actions at the current time. 

2.2 POLICIES AND AGENTS 

A policy is a rule used by an agent to determine what actions to take. The terms “agent” and 

“policy” are sometimes used as synonyms, but formally the policy is a function within the agent 

used to select actions. The agent is a structure containing the policy and the ability to sense the 

environment and collect rewards from it, as well as structure to define and train the policy (e.g. 

parameters learned through neural networks).  
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Deterministic and stochastic policies are denoted as:   

 

 
 𝜇(𝑥𝑡) = 𝑎𝑡 (2-1) 

 
 𝑎𝑡~𝜋(. |𝑥𝑡) (2-2) 

 
 
 

Policies may be parameterized so that an agent’s behavior can be modified using optimization 

algorithms. The parameters of the policy are denoted by 𝜃. To highlight the connection between 

these parameters and the policy, policies are sometimes written as 𝜇𝜃(𝑥𝑡) or 𝜋𝜃(. |𝑥𝑡). 

2.3 TRAJECTORIES 

A trajectory 𝜏 (also known as an episode or rollout) is a sequence of states and actions in the world. 

The initial state of the world is 𝑥0, and in some problems this is considered to have been drawn 

from some starting state distribution 𝜌0. The transition from one state to the next may not always 

be deterministic. Even if the policy selects an action with the intention of moving to another state, 

some unintended state might result. This uncertainty in the state transition can be quantified 

through a state transition distribution 𝑥𝑡+1. 

 
 
 𝜏 = (𝑥0, 𝑎0, 𝑥1, 𝑎1, … ) (2-3) 
 
 𝑥0~𝜌0(. ) (2-4) 
 
 𝑥𝑡+1~𝑃(. |𝑥𝑡 , 𝑎𝑡) (2-5) 
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2.4 REWARD AND RETURN 

The reward function 𝑅(𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1) is used to define the rewards that the agent can collect from 

the environment. The goal of the agent is to maximize some notation of cumulative reward over a 

trajectory. The design of the reward function influences the behaviors expressed by an agent.  

Formulations for the reward function include the finite-horizon undiscounted return and 

the infinite-horizon discounted return.  

 
 

 𝑅(𝜏) = ∑ 𝑟𝑡 , 𝑡 ∈ {0, … , 𝑇} (2-6)  
 

 𝑅(𝜏) = ∑ 𝛾𝑡𝑟𝑡 , 𝑡 ∈ [0, ∞) (2-7) 
 
 
 

The finite-horizon undiscounted return sums up all rewards obtained in a fixed number of steps, 

and the infinite-horizon discounted return which sums all rewards over time [11]. The infinite-

horizon discounted return decreases successive expected rewards by some factor 𝛾𝑡, 𝛾 ∈ (0,1), 

and is used to ensure the infinite sum remains bounded. 
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2.5 THE RL PROBLEM 

The goal of the RL agent is to select a policy which maximizes the expected return when the agent 

acts according to it. The expected return under a given policy 𝜋 is denoted as 𝐽(𝜋). The central 

optimization problem in RL is to determine the optimal policy 𝜋∗, which can be determined from 

𝐽(𝜋). 

 
 

 𝐽(𝜋) = E
𝜏~𝜋

[𝑅(𝜏)] (2-8) 

 
 𝜋∗ = argmax

𝜋
𝐽(𝜋) (2-9) 

 
 
 

One technique used to iteratively update estimates of an optimal policy is the policy gradient 

method. Policy gradients are discussed in detail in [12], and alternative iterative techniques in [13]. 

Figure 3 shows a typical environment for the cart-pole problem. A cart on a frictionless 

track is controlled by forces that can be applied in the left or right directions (along the track). The 

cart is coupled to an unactuated frictionless rigid pendulum. The objective of this problem is to 

keep the pole balanced upright and the cart at the center of the track. If this were to be formulated 

as a reinforcement learning problem, rewards could be collected by an agent for satisfying the 

above goals. This environment is used in this research to investigate properties of FuNs with minor 

modifications, as discussed in Section 4.2. 
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Figure 3. Cart-Pole Environment 

2.6 VALUE FUNCTIONS 

It can be useful to know how valuable it is to land in a particular state or how valuable it is to take 

one action (among multiple possible actions) from a given state. A value function 𝑉𝜋(𝑥𝑡) 

quantifies the expected return due to starting in state 𝑥𝑡 and acting according to policy 𝜋 thereafter. 

An action-value function or Q-function 𝑄𝜋(𝑥𝑡, 𝑎𝑡) quantifies the expected return after taking 

action 𝑎𝑡 from state 𝑥𝑡 then always acting according to policy 𝜋 thereafter. The advantage function 

quantifies the relative advantage of taking one action over another from a given state and is defined 

as 𝐴𝜋(𝑥𝑡, 𝑎𝑡). 

 
 

 𝐴𝜋(𝑥𝑡, 𝑎𝑡) = 𝑄𝜋(𝑥𝑡, 𝑎𝑡) − 𝑉𝜋(𝑥𝑡) (2-10) 
 

 𝑎∗ = argmax
𝑎

𝑄∗(𝑥𝑡, 𝑎𝑡) (2-11) 
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These notions are useful for comparing how valuable it is to land in one state versus another, or to 

quantify how much better it is to take one action compared to another. The optimal value function 

is denoted 𝑉∗(𝑥𝑡), and the optimal Q-function is denoted 𝑄∗(𝑥𝑡, 𝑎). An optimal policy will select 

the action that maximizes the expected return starting from 𝑥𝑡. Given the optimal Q-function, the 

optimal action can be inferred.   

2.7 BELLMAN EQUATIONS 

Value functions in RL problems obey a set of self-consistency conditions known as the Bellman 

equations. The basic idea of the Bellman equations can be captured by the notion of cost-to-go. 

This is the notion that a state’s “value” is identical to the reward collected by landing there plus 

the value of the next state. The Bellman equations can be written as follows [11][14]. 

 
 

 𝑉𝜋(𝑥𝑡) = E
𝑎~𝜋,   𝑥𝑡+1~𝑃

[𝑅(𝑥𝑡, 𝑎𝑡) + 𝛾𝑉𝜋(𝑥𝑡+1)] (2-12) 

 

 𝑄𝜋(𝑥𝑡, 𝑎𝑡) = E
𝑥𝑡+1~𝑃

[𝑅(𝑥𝑡, 𝑎𝑡) + 𝛾 E
𝑥𝑡+1~𝜋

𝑄𝜋(𝑥𝑡+1, 𝑎𝑡+1)] (2-13) 

 
 𝑉∗(𝑥𝑡) = max

𝑎
E

 𝑥𝑡+1~𝑃
[𝑅(𝑥𝑡, 𝑎𝑡) + 𝛾𝑉∗(𝑥𝑡+1)] (2-14) 

 

 𝑄∗(𝑥𝑡, 𝑎𝑡) = E
𝑥𝑡+1~𝑃

[𝑅(𝑥𝑡, 𝑎𝑡) + 𝛾 max
𝑎𝑡+1

𝑄∗(𝑥𝑡+1, 𝑎𝑡+1)] (2-15) 
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2.8 MARKOV DECISION PROCESSES 

A Markov Decision Process (MDP) is the formal setting used implicitly in the RL problem 

definition. RL problems assume the Markov property, which states that state transitions depend 

only on the most recent state and action [11]. An MDP is a 5-tuple (𝑥, 𝐴, 𝑅, 𝑃, 𝜌0) consisting of 

the state space 𝑥, the action space 𝐴, the reward function 𝑅, the state transition probability 𝑃, and 

the initial state distribution 𝜌0 [15].
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3.0  HIERARCHICAL REINFORCEMENT LEARNING 

Hierarchical RL is a branch of RL that leverages a specific structural assumption for all its 

algorithms. Specifically, it assumes that problems can be separated into high-level and low-level 

objectives. Before the introduction of FuN, the dominant architecture was the Option-Critic 

architecture, shown in Figure 4 below. Intuitively, the Option-Critic architecture demonstrates the 

notion of hierarchy by appealing to a critic to select the best option (each option defining a policy) 

that is best for the given context (which includes the current state and rewards collected). Option-

Critic architecture trains many policies that are context dependent, allowing for the emergence of 

complex behaviors by combining learned primitives. In this way, Option-Critic is hierarchical. 

A comparative analysis between the performance of FuNs and the Option-Critic 

architecture was first presented in [3]. The results compare the peak performance of the Option-

Critic architecture as published to that of feudal networks across two different tasks. The plots 

indicate that feudal networks achieved higher scores on these benchmark tasks. 

No other hierarchical RL algorithm has since demonstrated superior performance 

compared to the FuNs approach. While FuNs are state-of-the-art, some properties of this 

architecture have not yet been thoroughly investigated. Several important quandaries arose within 

the RL community for further investigation [2][3], one of which is to observe transfer properties 

of a Manager to different physical embodiments (which are handled by the Worker). This research 

is focused on the transferability of a trained Manager to different physical embodiments and an in-



 

 13 

depth analysis of each component of the FuN architecture is presented in preparation for breaking 

the FuN architecture down into a simpler sub-problem, thereby addressing the research question. 

 

 
 

 
Figure 4. Option-Critic Architecture 

 
 

 
 

Figure 5. FuN Comparison to Option-Critic on Zaxxon and Asterix  
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3.1 AN OVERVIEW OF FEUDAL NETWORKS 

Figure 1 shows a feudal network as described in [3], based upon the work in [17]. Feudal networks 

are considered hierarchical since the agent is split into a structure with distinct separation between 

long-term objectives and short-term actions. In this architecture, the Manager plays the role of a 

supervisor in that it sets goals for the Worker, but it is not directly responsible for taking actions. 

The Worker is responsible for selecting actions to achieve the goal set by the Manager. Actions 

result in a state update. If the action taken by the Worker is aligned with the goal set by the Manager 

(measured through a cosine similarity), the Worker gets rewarded and as a result the learning step 

of the algorithm won’t substantially change the way the Worker interprets the Manager’s goals 

(e.g. minimal update to 𝑈𝑡). 

If the action does not satisfy the goal of the Manager, the Worker gets no reward from the 

Manager. This more strongly impacts Worker interpretation of the goals set by the Manager. The 

Manager collects goals directly from the environment, and thus attempts to maximize the 

collection of these rewards. The Manager rewards the Worker for taking actions that align with 

the goals even when the Manager sets poor goals (e.g. goals that do not maximize rewards from 

the environment). The Manager will learn to set better goals when the Worker performs well but 

the goals aren’t achieving the desired result. By setting better goals, the Manager can collect more 

rewards from the environment. However, the Worker can be trained to follow the goals set by the 

Manager even when the higher-level objectives aren’t being satisfied. In this way, the Worker gets 

a rich set of reward signals in a potentially sparsely rewarded environment. 
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After the Manager and the Worker are trained at solving some tasks in tandem (e.g. the 

algorithm converged), the job of learning how to solve new tasks is essentially a problem for the 

Manager. The Worker, at this point, learned how to apply action primitives, so the Manager will 

rely on the Worker to use those primitives to satisfy a new goal. 

If the Manager is trained but the Worker is untrained (such as when the physical 

embodiment of the Worker changes abruptly), faster training times would be expected compared 

to an untrained network [3].  

3.2 ELEMENTS OF FEUDAL NETWORKS 

The following discussion steps through the feudal network of Figure 1 to clarify terminology as it 

relates to functions shown, followed by a detailed discussion of the structure and function of each 

element in the network. 

At the input to the network, the full state of the environment 𝑥𝑡 is perceived and mapped 

via 𝑓𝑝𝑒𝑟𝑐𝑒𝑝𝑡(. ) into some potentially informationally lossy state representation 𝑧𝑡 shared by both 

the Manager and the Worker.  

This state representation is mapped again by a differentiable embedding 𝑓𝑀𝑠𝑝𝑎𝑐𝑒(. ) (e.g. a 

typical neural network) containing a D-dimensional view of the world for the Manager. The most 

recent internal state of the Manager ℎ𝑡
𝑀 along with 𝑠𝑡 are mapped into a goal 𝑔𝑡 at the current 

timestep through a Recurrent Neural Network (RNN) denoted as 𝑓𝑀𝑟𝑛𝑛(. ).  A linear 

transformation without bias 𝜑 maps the recent goals set by the manager (over some time horizon 

(𝑡 − 𝑐) to (𝑡)) into an embedding vector 𝑤𝑡 used to inform the Worker of the Manager’s goals. 
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The shared perception 𝑧𝑡 is also mapped to a matrix 𝑈𝑡 through an RNN in the Worker 

portion of the network via 𝑓𝑊𝑟𝑛𝑛. 𝑈𝑡 encodes how the Manager’s goals might inform the Worker 

as to which specific action to take. The mapping 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑈𝑡𝑤𝑡) produces a policy 𝜋𝑡, a vector 

of probabilities indicating the likelihood of the Worker selecting one among the available actions 

given the Manager’s goals. 

3.2.1 Convolutional Neural Network 

The function 𝑓𝑝𝑒𝑟𝑐𝑒𝑝𝑡(. ) maps the complete state space 𝑥𝑡 to an observation 𝑧𝑡 shared by both the 

Worker and the Manager. This mapping is performed by a Convolutional Neural Network (CNN), 

which is a class of deep neural networks that can be applied to visual imagery for tasks such as 

state estimation [18].  

Qualitatively, CNN’s may be a natural choice as a visual module because they exploit 

structure in pixel space. In the case of [3], the CNN is used to find an appropriate lower 

dimensional observation. In this research, since access to full-state is available, a CNN will not be 

required to estimate the state. 

  



 

 17 

3.2.2 Differentiable Embedding 

The FuN architecture uses a differentiable embedding in the design of: 

 
 

 𝑓𝑀𝑠𝑝𝑎𝑐𝑒(𝑧𝑡) = 𝑠𝑡 (3-1) 
 
 
 

A fully connected neural network is a typical instantiation of an embedding and is differentiable 

based on appropriate selection of the activation function (e.g. sigmoidal). A neural network is the 

instantiation used in the FuN architecture. 

An embedding in graph applications such as this learning problem, or more generally as 

defined in [19], is a mapping from discrete objects to vectors of real numbers. Individual 

dimensions in the vectors may or may not have any inherent meaning, but the overall patterns of 

location and distance of an embedding are used for efficiently training a network. 

The FuN architecture requires a differentiable embedding because the embedding itself is 

trainable. The training process uses gradient updates and thus the embedding must be at least once-

differentiable. Since 𝑠𝑡 is the way the Manager sees the world, it may be advantageous for the 

Manager to change the way they view the world (e.g. update the embedding). This changing of 

Manager vision may translate to the ability to set better goals. The differentiable embedding 

𝑓𝑀𝑠𝑝𝑎𝑐𝑒 is on the Manager branch and is thus updated slowly compared to the Worker which 

operates on a faster temporal resolution.  
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3.2.3 Recurrent Neural Network 

RNN’s are used in two locations in the FuN architecture. 

 
 

 𝑓𝑀𝑟𝑛𝑛(𝑠𝑡) = 𝑔𝑡 (3-2) 
 

 𝑓𝑊𝑟𝑛𝑛(𝑧𝑡) = 𝑈𝑡 (3-3) 
 
 
 

These RNN’s are instantiated by long-short-term memory networks, or LSTM’s. One is a standard 

LSTM and the other is a novel approach presented originally in [3]. Both types are detailed in the 

following sections but are only a subset of many possible LSTM architectures [20]. 

RNN’s use internal states to process sequences of inputs. This internal state introduces 

dynamic behavior in time which can have an input response that is either finite-impulse or infinite-

impulse. Finite-impulse networks can be used to approximate infinite-impulse networks. This 

approximation is sometimes used during computation to avoid numeric issues during 

implementation. Properties of RNNs are addressed at length in [21].  
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3.2.4 Long-Short-Term Memory 

The LSTM consists of several neural networks with different weights, biases, and activations 

assembled in a specific structure. For a thorough discussion of neural networks, see Section 3.3.1. 

Consistent with the notation of Figure 6 below, the LSTM equations are as follows [21]. 

 
 

 𝑓𝑡 = 𝜎 (𝑊𝑓 (
ℎ𝑡−1

𝑥𝑡
) + 𝑏𝑓) (3-4) 

 

 𝑖𝑡 = 𝜎 (𝑊𝑖 (
ℎ𝑡−1

𝑥𝑡
) + 𝑏𝑖) (3-5) 

 

 𝐶̃𝑡 = tanh (𝑊𝐶 (
ℎ𝑡−1

𝑥𝑡
) + 𝑏𝐶) (3-6) 

 
 𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡 (3-7) 

 

 𝑜𝑡 = 𝜎 (𝑊𝑜 (
ℎ𝑡−1

𝑥𝑡
) + 𝑏𝑜) (3-8) 

 
 ℎ𝑡 = 𝑜𝑡tanh (𝐶𝑡) (3-9) 

 
 
 

The cell state 𝐶𝑡 and the internal state ℎ𝑡 are contain the memory of the cell, which are iteratively 

modified by their most recent value and the current state. 𝑓𝑡, 𝑖𝑡, 𝐶̃𝑡, and 𝑜𝑡 are network layers with 

trainable weights 𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , 𝑊𝑜, trainable biases 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐, 𝑏𝑜, with either sigmoidal 𝜎(. ) or 

hyperbolic tangent tanh(. ) activations. All multiplications shown are matrix multiplications. 
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Figure 6. LSTM Detailed Topology 
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3.2.5 SoftMax 

The SoftMax function is defined as follows. 

 
 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽) =
exp(𝛽𝑗)

∑ exp(𝛽𝑘)
, 𝑘 = {1,2, … 𝐾}, 𝑗 ∈ 𝑘 (3-10) 

 
 ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(. ) = 1 (3-11) 

 
 
 

This is used in the FuN architecture to define a discrete probability distribution over a finite set of 

actions (infinite action spaces being quantized). This is done by defining the policy as: 

 
 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝑡𝑤𝑡): 𝐴 → 𝜋 (3-12) 
 
 
 

Since the policy is 1-dimensional, the vector output of the SoftMax function translates to indexes 

and scalar probabilities. This implies: 

 
 

 𝑎𝑡~𝜋 (3-13) 
 
 
 

The actions selected by feudal networks are defined by the output of a SoftMax function, because 

the output of the SoftMax function defines the policy. 
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3.3 UPDATING FEUDAL NETWORKS 

After the Worker selects an action from the policy, the state is updated to reflect any changes. 

Based on the outcome, the Worker receives a reward that impacts the policy gradient and 

ultimately the LSTM parameters defining 𝑈𝑡. A policy gradient is a measure of error incorporating 

the current policy, the reward collected from the most recent action, and some estimate of what 

the reward could have been if the optimal action was taken. The policy gradient calculation is 

dependent on the training algorithm used, as discussed in 3.3.5. 

It would be possible to train feudal networks using a single policy gradient backpropagated 

through the network from the output of Worker, but this approach is not used by the architecture 

in [3]. As discussed in the cosine similarity Section 3.3.4, this design choice allows the goal to 

retain semantic meaning (e.g. it corresponds to a direction in state space) as opposed to becoming 

a hard-to-interpret internal latent variable. The training of the Manager and the training of the 

worker is somewhat decoupled by intentionally not passing a gradient between the two. 

Instead of passing the policy gradient, the Manager branch updates according to: 

 
 

 ∇𝑔𝑡 = 𝐴𝑡
𝑀∇𝜃𝑑𝑐𝑜𝑠(𝑠𝑡+𝑐 − 𝑠𝑡, 𝑔𝑡(𝜃)) (3-14) 

 
 
 

𝑑𝑐𝑜𝑠 is the cosine similarity function and 𝐴𝑡
𝑀 is the Manager advantage function. The policy 

gradient update relies on value function estimates made by an internal critic as described in Section 

3.3.5. 
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3.3.1 Backpropagation Through Time 

RNN’s are updated using a process known as backpropagation through time. The standard 

backpropagation algorithm used to update a feedforward neural network is discussed before 

extending to the process of BPTT. 

The structure of a typical neural network includes an input layer, one or more hidden layers, 

and an output layer. Each layer contains a specified number of nodes, and each node performs a 

scalar mapping according to an “activation function” 𝜎. The nodes from one layer to the next are 

fully connected through a weight matrix 𝑤, and offset at each layer by a bias 𝑏. The vector output 

of a layer is called 𝑎𝑗, which maps the vector input 𝑧𝑗 through an activation function 𝑎𝑗 as: 

 
 

 𝑧𝑗 ≔ 𝑤𝑗𝑎𝑗−1 + 𝑏𝑗 (3-15) 
 

 𝑎𝑗 = 𝜎𝑗(𝑧𝑗) (3-16) 
 
 
 

The superscripts indicate the layer used for the calculation. In this section, the convention used 

throughout follows the specification shown in Figure 7. 

Activations for all output nodes 𝑎3 can be calculated by presenting a feature vector 𝑥𝑖 at 

the input of the neural network. Through the following manipulations, the neural network will 

forward propagate the information at the input and produce some combination of activations at the 

output:  
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 𝜎 = 𝜎2(𝑧) = 𝜎3(𝑧) ≔ (1 + exp(−𝑧))−1 (3-17) 
 

 𝜎′(𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧)) (3-18) 
 

 𝑎1 = 𝑥𝑖 (3-19) 
 

 𝑧2 = 𝑤2𝑎1 + 𝑏2 (3-20) 
 

 𝑎2 = 𝜎(𝑧2) (3-21) 
 

 𝑧3 = 𝑤3𝑎2 + 𝑏3 (3-22) 
 

 𝑎3 = 𝜎(𝑧3) (3-23) 
 
 
 

After forward propagation, network performance can be evaluated against known training output 

𝑦 with deviations accounted for according to some cost function 𝐶. 

 Classification or regression accuracy improvements are achieved by adjusting the network 

parameters to reduce the cost. By gradient descent, the gradient of the cost function can be used to 

update network parameters in a direction of reduced cost. 

The following are the backpropagation algorithm calculations corresponding to Figure 7:  
 
 

 𝛿3 = ∇𝑎𝐶⨀𝜎′(𝑧3) (3-24) 
 

 𝛿2 = ((𝑤3)𝑇𝛿3)⨀𝜎′(𝑧2) (3-25) 
 

 𝜆 ≔ 𝜂
𝜆′

𝑛
 (3-26) 

 

 𝑏2 ← 𝑏2 − 𝜂 (
𝜕𝐶

𝜕𝑏2)
𝑇

= 𝑏2 − 𝜂𝛿2 (3-27) 

 
 𝑏3 ← 𝑏3 − 𝜂𝛿3 (3-28) 

 

 𝑤2 ← (1 − λ)𝑤2 − 𝜂 (
𝜕𝐶

𝜕𝑤2)
𝑇

= (1 − 𝜂λ)𝑤2 − 𝜂𝛿2(𝑎1)𝑇 (3-29) 

 
 𝑤3 ← (1 − λ)𝑤3 − 𝜂𝛿3(𝑎2)𝑇 (3-30) 
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𝜂 is the learning rate, 𝜆′ is a regularization weight, and 𝛿 is layer error. The last four lines show 

the update step of the standard backpropagation algorithm. 

BPTT is nearly identical but is used to update a recurrent network represented by 

approximating it as a finite-response network through the process of unfolding. That is to say that 

if all the states and actions over some time horizon are stored in memory, there exists an equivalent 

feedforward network that represents the recurrent network over that period. Unfolding is the 

process of representing the recurrent network as a feedforward network over the stored timeframe 

(information that is not stored in memory might reasonably be neglected as in [22]). BPTT is then 

implemented by applying the standard backpropagation algorithm analogous to the discussion 

above with additional layers. After all the errors have been calculated, the network is folded back 

up by summing all suggested updates at each point in time for each weight and bias. 

 

 
 

Figure 7. Neural Network Detailed Topology 
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3.3.2 Dilated Long-Short-Term Memory 

Dilated LSTM (dLSTM) is a novel architecture introduced in [3] and is used for the mapping 

function: 

 
 

 𝑓𝑀𝑟𝑛𝑛(𝑠𝑡) = 𝑔𝑡 (3-31) 
 
 
 

The only difference between the dLSTM and a standard sequence of LSTM cells is the update 

rule. For standard LSTM cells, every cell would update with every backward pass through the 

network. In the case of the dLSTM, batches of cells are frozen while only every 𝑟𝑡ℎ cell is updated. 

Reference [3] claims that this modification helps the LSTM improve its ability to retain long term 

information. Ablative analysis suggested that the lowered temporal resolution was useful for the 

Manager but not for the Worker, which justified the use of a standard LSTM for the Worker.  

3.3.3 Von Mises-Fisher Distribution 

The FuN architecture assumes that the direction in state space, 𝑠𝑡−𝑐 − 𝑠𝑡, follows a Von Mises-

Fisher distribution. One question that is not directly addressed in [3] is whether this is a reasonable 

assumption. Some insights can be gained by inspecting properties of the distribution in two 

dimensions. 
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Figure 8 shows the Von Mises-Fisher distribution in two dimensions. General properties 

of the distribution are discussed in [23]. The distribution is defined on an angular interval, in this 

case (−𝜋, 𝜋]. The distribution has a single maximum for all 𝜅 > 0. When 𝜅 = 0, samples from 

this distribution are uniformly random over the interval. Assuming this distribution describes the 

state transition 𝑠𝑡−𝑐 − 𝑠𝑡, the situation when 𝜅 = 0 is equivalent to not knowing an expected 

direction through state space. As 𝜅 increases, the distribution begins to concentrate on a single 

mean value. In the case when 𝜅 → ∞, the state transition will be in the direction of the mean value 

with probability approaching 1. 

Consider a grid-world where the state transition describes movement from one location on 

the grid to another. In this scenario the Von Mises-Fisher distribution has very clear semantic 

meaning, as state transitions are expected to move in the distribution’s mean direction along the 

grid. The Von Mises-Fisher distribution in this case is like a compass, and whichever direction it 

points in is the direction the state is most likely to transition. Good goals would then provide a 

strong sense of direction (large 𝜅), since the intrinsic reward is defined by the alignment between 

the goal and the state transition and these will more likely align when the goal (a known direction) 

is highly likely to agree with the state transition (large 𝜅 in the same direction as the goal). 

Conversely, poor goals would contain almost no directional information (small 𝜅), as this would 

shape the distribution as uniform over all angles and thus make it very unlikely that the state 

transition will align with the direction of the goal. 

The Von Mises-Fisher distribution in higher dimensions retains an analogous sense of 

semantic meaning in terms of setting a direction in state space transitions. The state space itself 

may or may not have spatial significance but the grid-world example above provides insight into 

the types of problems which a Von Mises-Fisher distribution can reasonably be expected to model. 
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Figure 8. Von Mises-Fisher Distribution in Two Dimensions with Zero Mean 
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3.3.4 Cosine Similarity Measure 

The Worker gets internal rewards for taking actions aligned with the Manager’s goals. The Worker 

never directly observes the Manager’s goals but is instructed through the vector 𝑤𝑡. The goals 

themselves retain semantic meaning due to the Von Mises-Fisher distribution assumed on the state 

transitions. The state transitions 𝑠𝑡−𝑐 − 𝑠𝑡 will update in a way that tends to progress along the 

same heading. The states will move in a certain direction for a while without substantially changing 

direction. The direction is provided by the Manager through 𝑔𝑡, but the Worker is directly 

responsible for taking actions, and thus determines the way the states transition. The goal 𝑔𝑡 is a 

vector as is the state transition 𝑠𝑡−𝑐 − 𝑠𝑡. If the goal and the state transition align this statement is 

equivalent to them pointing in the same direction. 

The cosine similarity measure is a way of quantifying how closely vectors are aligned: 

 
 

 𝑑𝑐𝑜𝑠(𝛼, 𝛽) =
𝛼∙𝛽

‖𝛼‖2‖𝛽‖2
 (3-32) 

 
 

 
The result is bounded in the interval [−1, 1]. If the result is 1, the vectors are pointing in the same 

direction with arbitrary positive magnitude. If the result is −1, the vectors are pointing in opposite 

directions with arbitrary positive magnitude. Any value in between means the vectors are 

misaligned. The key takeaway is that the cosine similarity only compares the heading, not the 

magnitude. In this way, the goal retains a semantic meaning. The goal vector points in the physical 

direction in state space the Manager wants to move. If the state transitions are going in this 

direction, regardless of how fast or slow, the cosine similarity will be close to unity and the Worker 

will receive a large intrinsic reward. 
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3.3.5 Advantage Actor-Critic Algorithm 

The Worker’s policy 𝜋 is trained using the Asynchronous Advantage Actor-Critic (A3C) algorithm 

as defined in [24], but the authors in [3] note that any off-the-shelf deep reinforcement learning 

algorithm can be substituted for updating the policy. This informs the experiment design in this 

research since it implies that any policy gradient algorithm can be used in place of A3C without 

loss of generality.  

A synchronous version of this algorithm was discovered shortly after A3C, and empirically 

it has been shown to improve sample efficiency, as compared to A3C [25]. This class of algorithms 

have come to be known as Advantage Actor-Critic algorithms.  

It is called “advantage” actor-critic is due to the estimate of the advantage function used in 

the policy updates: 

 
 

 ∇𝜋𝑡 = 𝐴𝑡
𝐷∇𝜃 log(𝜋(𝑎𝑡|𝑥𝑡; 𝜃)) (3-33) 

 
 

The advantage is defined as: 

 
 

 𝐴𝑡
𝐷 = (𝑅𝑡 + 𝛼𝑅𝑡

𝐼 − 𝑉𝑡
𝐷(𝑥𝑡; 𝜃)) (3-34) 

 
 
 

The reward function 𝑅𝑡 is the reward from the environment. The intrinsic reward function 𝑅𝑡
𝐼 

comes from the alignment between the state update. The goal, 𝛼, is a positive constant that 

amplifies or attenuates the effect of intrinsic rewards. 𝑉𝑡
𝐷(𝑥𝑡; 𝜃) is an estimate of the value function 

from an internal critic.
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4.0  METHODS 

Since FuN defines a clear separation between Manager and Worker, the Manager is expected to 

be capable of learning a transition policy independently of the primitive actions the Worker uses 

to enact these transitions. The hypothesis of this experiment is that the transition policy of the 

Manager is transferrable between agents with different embodiments. 

If the transition policy is transferable, convergence for an agent given a trained Manager 

and untrained Workers of different physical embodiments should require less time than the case 

of an untrained Manager and untrained Workers of different physical embodiments. 

Preliminary evidence in support of this hypothesis was presented in [3] by modifying 

temporally sensitive aspects of previously trained agents. Training these agents versus an untrained 

control group demonstrated that learning with this specific set of prior information significantly 

outperformed other methods. This might imply reduced training times under trained Managers 

when formally testing untrained Workers of different physical embodiments. Results addressing 

this are presented in Section 5.0. 
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4.1 EXPERIMENT DESCRIPTION 

The question concerns only the relative convergence rate of the Worker under a trained Manager 

given different physical embdiments. In this section, based on the properties of the FuN 

architecture, a justification for a simplified network is suggested for testing only the Worker branch 

of the architecture under controlled conditions. The network is as that studied in [18]. 

The CNN used in the original FuN paper was used to find an appropriate low dimensional 

observation of the full state. In this experiment the full state is observable, implying: 

 
 

 𝑓𝑝𝑒𝑟𝑐𝑒𝑝𝑡(𝑥𝑡) = 𝑥𝑡 = 𝑧𝑡 (4-1) 
 
 
 

The goal of a trained Manager will be fixed in steady-state by making some assumptions on the 

timescale of interest. For this problem, it is asserted that the Manager’s goal is “far away”. This 

implies that 𝑔𝑡 is constant over the last 𝑐 timesteps if 𝑐 is small compared to the number of steps 

required to approach the goal. Thus, 𝑔𝑡 will not change over the next 𝑐 timesteps regardless of the 

actions of the Worker. The instructions the Manager provides to the Worker, represented as 

𝜙(𝑔𝑡−𝑐, … , 𝑔𝑡) = 𝑤𝑡 will then be constant. For this experiment, 𝑤𝑡 will be set manually. This is 

reasonable because the output of the dLSTM will produce entries for the goal vector bounded by 

[−1, 1], the goals all align for all 𝑐, and in the most extreme scenario all of the goals will point in 

a direction such that the linear projection 𝜙(𝑔𝑡−𝑐 , … , 𝑔𝑡) will not lose any information in the 

projected direction.  
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For the untrained Manager the linear projection 𝜙(𝑔𝑡−𝑐 , … , 𝑔𝑡) could project in any 

direction (including any orthogonal dimensions). In the most extreme cases, most of the 

information will be lost during projection. Based on this, for the untrained Manager a vector 𝑤𝑡 of 

small positive magnitude 𝜖 in a random direction will be used. In the case of both the trained or 

untrained Manager, the Worker will still be able to calculate an intrinsic reward and thus have 

access to the requisite information needed for updates during training. 

4.2 EXPERIMENT ARCHITECTURE 

OpenAI Gym [4] is a publicly available codebase used in this experiment. This resource is intended 

to standardize the process of setting up and testing RL algorithms by providing a framework for 

observing and acting in a variety of environments. Using Gym or some other standardized 

environment also makes these results more accessible for other RL researchers familiar with Gym. 

Thus Gym is used in this research in an attempt to make the results more transparent. 

Spinning Up in Deep RL [15] is another public code repository made available by OpenAI. 

This codebase allows for simple implementation of standard RL algorithms in Gym environments. 

The Spinning Up code implements several algorithms relevant to this research. One such algorithm 

is the Vanilla Policy Gradient (VPG), which will be used to generate policy updates for our 

network. In Section 3.3.5 it was discussed that any off-the-shelf deep RL algorithm can be used to 

implement the policy gradient in the FuN architectureand, since VPG is available for off-the-shelf 

use from the Spinning Up codebase, VPG is the method of choice for this research. 
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Figure 9 outlines the pseudocode for the VPG algorithm. This will be used to update the Worker 

branch of the FuN network as constructed from Section 4.1. Implementation details shown in the 

Appendix were used in conjunction with the Spinning Up and Gym code repositories to implement 

the Worker branch for this experiment. 

The Worker branch has access to the full state; thus, a CNN was omitted from the shared 

perceptual module. The setup in Section 4.1 eliminates the need to explicitly define a network for 

the Manager between 𝑧𝑡 and 𝑤𝑡, where 𝑤𝑡 is manually defined. For the cart-pole problem, the goal 

can be quantified by a scalar (negative for positioning the cart to the left and positive for 

positioning the cart to the right). Examples of different physical embodiments from the experiment 

are shown in Figure 10. 

 
 

 
 

 
Figure 9. VPG Algorithm 
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In this experiment, 𝑐 = 200 (corresponding to the episode length), 𝑤𝑡 was set according to Table 

1 and Table 2, and 𝛼 (the intrinsic reward weight defined on [0,1]) was set to 1 for all experiments 

to maximize the effect of intrinsic reward. The goals for the Manager were held constant 

throughout an episode due to the assertions in Section 4.1. For example, the trained Manager was 

simulated by setting a constant goal of 1, corresponding to continuous rightward motion (so long 

as the pendulum remains within 15 degrees from vertical, which if not satisfied will end the 

episode).  

 

 
 

Figure 10. Multiple Cart-Pole Embodiments
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5.0  RESULTS 

Baseline performance for an untrained agent is presented in Section 5.1. Section 5.2 shows training 

times for the case of the untrained Worker with different embodiments. Goals are manually 

adjusted as shown in Table 1 and Table 2. The cart-pole environment is used to train the Worker. 

Different embodiments arise from different initializations of the cart and pole masses and the 

pendulum length.  

5.1 UNTRAINED WORKER AND UNTRAINED MANAGER 

Figure 11 aggregates training times for an initially untrained agent across the combinations of 

random seeds and cart-pole parameters as shown in Table 1 below.  
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Figure 11. Baseline Results starting from Untrained Agent 
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Table 1. Experiment Parameters for Untrained Agent (Manager and Worker) 
 

 

  

𝒘𝒕 𝒈𝒕 Random Seed Cart Mass 
(kg) 

Pole Mass 
(kg) 

Pole Length 
(m) 

−10−5 1 0 1 1 1 

10−5 1 1 1.5 1.5 1.5 

−10−5 1 2 6 1 1 

10−5 1 3 0.75 1 1 

−10−5 1 4 1.25 0.5 0.5 

10−5 1 5 4 2 2 

−10−5 1 6 1 1 1 

10−5 1 7 1 1.1 1.1 
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5.2 UNTRAINED WORKER AND TRAINED MANAGER 

Figure 12 shows training times for an agent initialized with a trained Manager and different 

embodiments across the combinations of random seeds and cart-pole parameters as shown in Table 

2 below.  

 
 

 
 

Figure 12. Results starting from Trained Manager 
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Table 2. Experiment Parameters for Trained Manager under Different Embodiments 
 
 

 

𝒘𝒕 𝒈𝒕 Random Seed Cart Mass Pole Mass Pole Length 

1 1 0 1 1 1 

1 1 1 1.5 1.5 1.5 

1 1 2 6 1 1 

1 1 3 0.75 1 1 

1 1 4 1.25 0.5 0.5 

1 1 5 4 2 2 

1 1 6 1 1 1 

1 1 7 1 1.1 1.1 
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6.0  DISCUSSION 

The plots aggregated in Figure 11 correspond to the case of the untrained Manager and untrained 

Worker. This result uniformly converges in fewer total environment interactions than in Figure 12, 

representing the case of an untrained Worker across different embodiments under a trained 

Manager. The baseline experiment exhibits a lower peak performance than that of the simulation 

incorporating a trained Manager. This implies that an agent exhibits faster overall convergence 

rates given a trained Manager and different embodiments of the Worker. This result might have 

been anticipated from an information theoretic perspective, given that an agent constructed from 

a trained Manager and untrained Worker is initialized with more task specific knowledge than in 

the case where both the Manager and Worker are untrained.  

 The sub-problem studied in this experiment was deconstructed into that of training LSTM 

based networks using policy gradient methods, and the results presented here remain consistent 

with existing research on similar networks such as that presented in [18]. 

 This experiment supplies test data that corroborates with what the authors in [3] assumed 

to be a property of the FuN architecture. The result turned out to be consistent with expectation, 

thus the data from this research enables future work on the FuN algorithm to progress with the 

confidence that it achieves the objective of portability across physical embodiments by leveraging 

hierarchy.
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7.0  CONCLUSIONS AND FUTURE WORK 

This research has illustrated that the FuN architecture exhibits faster overall convergence given a 

trained Manager and different embodiments of the Worker. This was demonstrated by observing 

the result that low-information goals (small 𝑤𝑡) inhibit the worker from collecting intrinsic or 

external rewards, while informative goals support the mutual success of the Worker and the 

Manager in the sense that the latter test setup led to faster convergence. 

 To compare training times for the Worker under varying levels of prior knowledge of the 

Manager, a testbed was constructed by customizing existing open-source code. This approach was 

used to improve the portability of these findings for the RL community.  

The architecture for this experiment minimized sensitivity to potential interactions between 

training of the Manager and the Worker by making a slowly-time-varying assumption. This 

temporal decoupling of the training of the Manager from the training of the Worker resulted in a 

network that could be trained through a single policy gradient algorithm to capture all relevant 

aspects of Worker training. 

 This demonstrated that an agent containing an untrained Worker under different 

embodiments can be trained in less time under a trained Manager than an untrained one, which 

agreed with the hypothesis of the experiment (and thus agreed with expectations). 
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Open questions regarding the FuN architecture include setting goals at multiple timescales, 

scaling agents to large environments, and nesting feudal networks in such a way that hierarchies 

can include multiple levels of Managers operating on different timescales. The field of hierarchical 

RL does not necessarily stop with feudal networks. It is possible that completely novel 

architectures can become the state-of-the-art. Hierarchical RL is by no means considered a solved 

problem and research in this area continues to be performed. 
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APPENDIX. SOFTWARE IMPLEMENTATION 

The following python code defines the network topology used to implement the Worker branch: 

  

The reward function in the Spinning Up implementation of vpg.py was modified by using the 

above code for the network definition, passing 𝑤𝑡 as embedding_vec and appending a 

𝑑𝑐𝑜𝑠(𝑠𝑡+𝑐 − 𝑠𝑡, 𝑔𝑡) term to the rewards definition with 𝑔𝑡 hard coded as a 1. 
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The environment selected was the cartpole environment. Repository code was manually 

modified in the __init__ section of cartpole.py from the Gym source code (which defines the entire 

cartpole environment). Experiments were run by manually modifying the masscart, masspole, and 

length parameters in Gym and passing different random seeds through the Spinning Up UI.  



 

 46 

 
 
 
 
 

BIBLIOGRAPHY 

[1] Y. LeCun, “Predictive Learning”, Neural Information Processing Systems, 2016, [online],  
      Available: https://www.youtube.com/watch?v=Ount2Y4qxQo 

 
[2] V. Mnih, “Frontiers Lecture I: Recent Advances, Frontiers and Future of Deep RL”, Deep  

      RL Bootcamp, August 2017, [online],  
      Available: https://sites.google.com/view/deep-rl-bootcamp/lectures  

 
[3] A.S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, K.  

Kavukcuoglu, “FeUdal Networks for Hierarchical Reinforcement Learning”, eprint  
arXiv: 1703.01161v2, March 2017. 

 
[4] OpenAI et al. “OpenAI Gym”, [online], Available: https://gym.openai.com/ 

 
[5] M.M. Botvinick, Y. Niv, A.C. Barto, “Hierarchically Organized Behavior and its Neural  

Foundations: A Reinforcement Learning Perspective”, Cognition, vol. 113, no. 3, pp.  
262-280, December 2009.  

 
[6] OpenAI, “OpenAI Five”, 2018, [online], Available: https://blog.openai.com/openai-five/ 
 
[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L.  

Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G.V.D. Driessche, T.  
Graepel, D. Hassabis, “Mastering the Game of Go without Human Knowledge”, 
Nature, vol. 550, pp. 354-359, October 2017. 

 
[8] J. Sanito, R. Fernandez., A. Swaminathan, K. Tran, K. Hofmann, M. Hausknecht,  

      “Reinforcement Learning Explained”, Microsoft Research, 2019, [online],  
      Available: https://www.edx.org/course/reinforcement-learning-explained-3 

 
[9] D. Silver, “Introduction to Reinforcement Learning”, COMPM050/COMPGI13:  

      Advanced Topics, 2015, [online],  
      Available: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html 

 
[10] R. Dror and A. Ng, “Reinforcement Learning and Control”, CS229: Machine Learning,  

      2018, [online], Available: http://cs229.stanford.edu/notes/cs229-notes12.pdf 
 
[11] R.S. Sutton and A.G. Barto, “Reinforcement Learning: An Introduction” (2nd Edition).  

      Cambridge, USA: The MIT Press, 2018. 

https://www.youtube.com/watch?v=Ount2Y4qxQo
https://sites.google.com/view/deep-rl-bootcamp/lectures
https://gym.openai.com/
https://blog.openai.com/openai-five/
https://www.edx.org/course/reinforcement-learning-explained-3
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://cs229.stanford.edu/notes/cs229-notes12.pdf


 

 47 

[12] R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, “Policy Gradient Methods for  
      Reinforcement Learning with Function Approximation”, Advances in Neural  
      Information Processing Systems, vol. 12, pp. 1057-1063, 2000. 

 
[13] C. Szepesvari, “Algorithms for Reinforcement Learning”, San Rafael, USA: Morgan &  

      Claypool Publishers, 2009.  
 
[14] H. Yu and D. Bertsekas, “Weighted Bellman Equations and their Applications in  

Approximate Dynamic Programming”, Laboratory for Information and Decision  
Systems Report 2876, October 2012 

 
[15] OpenAI et al. “OpenAI Spinning Up”, 2018, [online],  

      Available: https://spinningup.openai.com/ 
 
[16] P.L. Bacon, D. Precup, J. Harb, “The Option-Critic Architecture”, eprint arXiv:  

      1609.05140, September 2016. 
 
[17] P. Dayan and G.E. Hinton, “Feudal Reinforcement Learning”, Advances in Neural  

      Information Processing Systems, vol. 5, pp. 271-278, December 1992. 
 
[18] T.N. Sainath, O. Vinyals, A. Senior, H. Sak, “Convolutional, Long Short-Term Memory,  

Fully Connected Deep Neural Networks”, IEEE International Conference on  
Acoustics, Speech and Signal Processing, pp. 4580-4584, April 2015. 

 
[19] H.Y. Cai, V.W. Zheng, K.C.C. Chang, “A Comprehensive Survey of Graph Embedding:  

Problems, Techniques, and Applications”, IEEE Transactions on Knowledge and Data  
Engineering, vol. 30, no. 9, pp. 1616-1637, September 2018. 
 

[20] K. Greff, R.K. Srivastava, J. Koutnik, B.R. Steunebrink, J. Schmidhuber, “LSTM: A Search  
Space Odyssey”, IEEE Transactions on Neural Networks and Learning Systems, vol.  
28, no. 10, pp. 2222-2232, October 2017. 

 
[21] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long-Short-Term  

      Memory (LSTM) Network”, eprint arXiv: 1808.03314v4, November 2018. 
 
[22] G. Hinton, “Recurrent Neural Networks”, CSC2535: Advanced Machine Learning, 2013,  

      [online], Available: https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf 
 
[23] “Von Mises-Fisher Distribution”, January 2019, [online],  

      Available: https://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution  
 
[24] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K.  

Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning”, eprint  
arXiv: 1602.01783, February 2016.  

 
  

https://spinningup.openai.com/
https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution


 

 48 

[25] J. Schulman, X. Chen, and P. Abbeel, “Equivalence Between Policy Gradients and  
             Soft Q-Learning” eprint arXiv: 1704.06440, April 2017. 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Experiment Parameters for Untrained Agent (Manager and Worker)
	Table 2. Experiment Parameters for Trained Manager under Different Embodiments

	LIST OF FIGURES
	Figure 1. FeUdal Network (FuN) Architecture
	Figure 2. Agent-Environment Interaction Loop
	Figure 3. Cart-Pole Environment
	Figure 4. Option-Critic Architecture
	Figure 5. FuN Comparison to Option-Critic on Zaxxon and Asterix
	Figure 6. LSTM Detailed Topology
	Figure 7. Neural Network Detailed Topology
	Figure 8. Von Mises-Fisher Distribution in Two Dimensions with Zero Mean
	Figure 9. VPG Algorithm
	Figure 10. Multiple Cart-Pole Embodiments
	Figure 11. Baseline Results starting from Untrained Agent
	Figure 12. Results starting from Trained Manager

	NOMENCLATURE
	ACKNOWLEDGEMENTS
	1.0  INTRODUCTION
	2.0  REINFORCEMENT LEARNING
	2.1 ACTION SPACES
	2.2 POLICIES AND AGENTS
	2.3 TRAJECTORIES
	2.4 REWARD AND RETURN
	2.5 THE RL PROBLEM
	2.6 VALUE FUNCTIONS
	2.7 BELLMAN EQUATIONS
	2.8 MARKOV DECISION PROCESSES

	3.0  HIERARCHICAL REINFORCEMENT LEARNING
	3.1 AN OVERVIEW OF FEUDAL NETWORKS
	3.2 ELEMENTS OF FEUDAL NETWORKS
	3.2.1 Convolutional Neural Network
	3.2.2 Differentiable Embedding
	3.2.3 Recurrent Neural Network
	3.2.4 Long-Short-Term Memory
	3.2.5 SoftMax

	3.3 UPDATING FEUDAL NETWORKS
	3.3.1 Backpropagation Through Time
	3.3.2 Dilated Long-Short-Term Memory
	3.3.3 Von Mises-Fisher Distribution
	3.3.4 Cosine Similarity Measure
	3.3.5 Advantage Actor-Critic Algorithm


	4.0  METHODS
	4.1 EXPERIMENT DESCRIPTION
	4.2 EXPERIMENT ARCHITECTURE

	5.0  RESULTS
	5.1 UNTRAINED WORKER AND UNTRAINED MANAGER
	5.2 UNTRAINED WORKER AND TRAINED MANAGER

	6.0  DISCUSSION
	7.0  CONCLUSIONS AND FUTURE WORK
	APPENDIX. SOFTWARE IMPLEMENTATION
	BIBLIOGRAPHY

