

FEUDAL NETWORKS FOR HIERARCHICAL REINFORCEMENT LEARNING
REVISITED

by

Alexander Scott Augenstein

Bachelor of Science in Electrical Engineering

University of Pittsburgh, 2015

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2019

 ii

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Alexander Scott Augenstein

It was defended on

March 26, 2019

and approved by

Zhi-Hong Mao, Ph.D., Professor
Department of Electrical and Computer Engineering

Department of Bioengineering

Ahmed Dallal, Ph.D., Assistant Professor
Department of Electrical and Computer Engineering

Liang Zhan, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

 Thesis Advisor: Zhi-Hong Mao, Ph.D., Professor
Department of Electrical and Computer Engineering

Department of Bioengineering

 iii

Copyright © by Alexander Scott Augenstein

2019

 iv

Hierarchical Reinforcement Learning (RL) has gained popularity in recent years in

designing RL algorithms that converge in complex environments. Convergence of RL algorithms

remains an active area of research, and no single approach has been found to work for all RL

applications. Feudal networks (FuNs) are a hierarchical RL technique attempting to address

portability and other problems by defining an internal structure for an RL agent using a Manager-

Worker hierarchy. A Manager is that portion of the system utilizing a low temporal resolution

component for setting goals to maximize rewards from the environment, while the Worker utilizes

a high temporal resolution component for selecting among action primitives to maximize rewards

from the Manager. This thesis provides an overview of reinforcement learning and the FuN

architecture, then compares the relative convergence rates of untrained FuNs to FuNs constructed

by Workers with different physical embodiments under a trained Manager.

FEUDAL NETWORKS FOR HIERARCHICAL REINFORCEMENT LEARNING
REVISITED

Alexander Scott Augenstein, M.S.

University of Pittsburgh, 2019

 v

TABLE OF CONTENTS

NOMENCLATURE .. IX

ACKNOWLEDGEMENTS ... XII

1.0 INTRODUCTION .. 1

2.0 REINFORCEMENT LEARNING ... 3

2.1 ACTION SPACES ... 5

2.2 POLICIES AND AGENTS ... 5

2.3 TRAJECTORIES .. 6

2.4 REWARD AND RETURN .. 7

2.5 THE RL PROBLEM ... 8

2.6 VALUE FUNCTIONS ... 9

2.7 BELLMAN EQUATIONS .. 10

2.8 MARKOV DECISION PROCESSES.. 11

3.0 HIERARCHICAL REINFORCEMENT LEARNING .. 12

3.1 AN OVERVIEW OF FEUDAL NETWORKS ... 14

3.2 ELEMENTS OF FEUDAL NETWORKS... 15

3.2.1 Convolutional Neural Network ... 16

3.2.2 Differentiable Embedding ... 17

3.2.3 Recurrent Neural Network ... 18

 vi

3.2.4 Long-Short-Term Memory ... 19

3.2.5 SoftMax ... 21

3.3 UPDATING FEUDAL NETWORKS .. 22

3.3.1 Backpropagation Through Time .. 23

3.3.2 Dilated Long-Short-Term Memory .. 26

3.3.3 Von Mises-Fisher Distribution.. 26

3.3.4 Cosine Similarity Measure .. 29

3.3.5 Advantage Actor-Critic Algorithm .. 30

4.0 METHODS ... 31

4.1 EXPERIMENT DESCRIPTION ... 32

4.2 EXPERIMENT ARCHITECTURE ... 33

5.0 RESULTS ... 36

5.1 UNTRAINED WORKER AND UNTRAINED MANAGER 36

5.2 UNTRAINED WORKER AND TRAINED MANAGER 39

6.0 DISCUSSION ... 41

7.0 CONCLUSIONS AND FUTURE WORK ... 42

APPENDIX. SOFTWARE IMPLEMENTATION .. 44

BIBLIOGRAPHY ... 46

 vii

LIST OF TABLES

Table 1. Experiment Parameters for Untrained Agent (Manager and Worker) 38

Table 2. Experiment Parameters for Trained Manager under Different Embodiments 40

 viii

LIST OF FIGURES

Figure 1. FeUdal Network (FuN) Architecture ... 2

Figure 2. Agent-Environment Interaction Loop ... 4

Figure 3. Cart-Pole Environment .. 9

Figure 4. Option-Critic Architecture... 13

Figure 5. FuN Comparison to Option-Critic on Zaxxon and Asterix ... 13

Figure 6. LSTM Detailed Topology ... 20

Figure 7. Neural Network Detailed Topology .. 25

Figure 8. Von Mises-Fisher Distribution in Two Dimensions with Zero Mean 28

Figure 9. VPG Algorithm ... 34

Figure 10. Multiple Cart-Pole Embodiments .. 35

Figure 11. Baseline Results starting from Untrained Agent ... 37

Figure 12. Results starting from Trained Manager ... 39

 ix

NOMENCLATURE

Symbol Description

𝑥𝑡 Full State

𝑓𝑝𝑒𝑟𝑐𝑒𝑝𝑡 Convolutional Neural Network Function

𝑓𝑀𝑟𝑛𝑛 Dilated Long-Short-Term Memory Function

𝑓𝑊𝑟𝑛𝑛 Long-Short-Term Memory Function

𝑧𝑡 Observed State

𝑠𝑡 Partial Observed State

𝑔𝑡 Goal

𝑎𝑡 Action

𝑤𝑡 Goal Embedding

𝑈𝑡 Option Embedding

𝜑 Goal Embedding Function

𝑅𝑡 Reward Function

𝑟𝑡 Reward from Environment

𝐴 Action Space

𝜋 Stochastic Policy

𝜃 Parameter Vector

𝜋𝜃 Parameterized Stochastic Policy

 x

Symbol Description

𝜇 Deterministic Policy

𝜇𝜃 Parameterized Deterministic Policy

𝑃 State Transition Probability

𝜏 Trajectory

𝜌0 Initial State Distribution

𝑡 Time

𝛾 Discount Factor

𝐽𝜋 Expected Return under Policy 𝜋

𝑉𝜋 Value Function under Policy 𝜋

𝑄𝜋 State-Action Value Function under Policy 𝜋

𝜋∗ Optimal Policy

𝑉∗ Optimal Value Function

𝑄∗ Optimal State-Action Value Function

𝐽∗ Optimal Expected Return

𝐴𝜋 Advantage Function under Policy 𝜋

ℎ𝑡
𝑀, ℎ𝑡

𝑊 Hidden State Vectors

𝑓𝑡 , 𝑖𝑡, 𝐶̃𝑡, 𝑜𝑡 Neural Network Layers

𝑎𝑗 Network Layer Input

𝑊𝑓 , 𝑊𝑖, 𝑊𝐶 , 𝑊𝑜, 𝑤𝑗 Trainable Network Weights

𝑏𝑓 , 𝑏𝑖, 𝑏𝑐, 𝑏𝑜 , 𝑏𝑗 Trainable Network Biases

𝜎 Activation Function

 xi

Symbol Description

𝑑𝑐𝑜𝑠 Cosine Similarity Function

𝑧𝑗 Linear Map

𝜂 Learning Rate

λ, 𝜆′ Regularization Weights

𝛿𝑗 Network Layer Error

𝐶 Cost Function

∇ Gradient

∈ Element of Set

⨀ Hadamard (Element-wise) Product

⋅ Dot Product

‖. ‖𝑝 P-Norm

← Update

≔ Defined As

𝐸[.] Expectation Functional

 xii

ACKNOWLEDGEMENTS

The basis for this research stemmed from my passion for developing safe and robust systems that

interact with the real world in interesting ways. As new technologies emerge that further our need

for automated systems that can work with and around humans, continually improved algorithms

capable of rapidly learning to respond to a myriad of unforeseen challenges prior to deployment

must be developed and made accessible to technology leaders. How will we achieve these goals?

It is my mission to drive society towards a direction of improved understanding of RL and its

applications.

My contribution is a small push in the right direction, as the topic of this thesis was posed

as an open research question by leaders in reinforcement learning community. In truth, I could not

have achieved this level of success without a strong support group. I would like to thank my family,

friends, and partner who all supported me throughout this process with kindness and

understanding. I would also like to thank my advisor for his continued encouragement that

empowered me to realize the passions that sparked my research interest. My gratitude goes to my

colleague Kevin Brodmerkel for his thorough review and insights on this document. Lastly, I

would like to thank the committee members for their continued guidance, some of whom I have

known for almost a decade. Between work and continued education, this has been a long-

anticipated achievement. Thank you all for your unwavering support.

 1

1.0 INTRODUCTION

Reinforcement Learning (RL) is the study of agents and how they learn by trial and error. This

field formalizes the idea of rewarding or punishing an agent for its behavior, making it more likely

to repeat or forego that behavior in the future. RL algorithms are categorized by the mathematical

or algorithmic structure used to design an agent. Hierarchical RL, for example, is a subset of RL

algorithms that structures an agent in a way that leverages multiple layers of abstraction.

 Unlike supervised or unsupervised learning, which provide a learning agent with labeled

or unlabeled training examples, RL agents use trial and error to seek rewards by interacting with

the environment. In scenarios where RL algorithms converge, they are commonly considered “data

hungry” compared to supervised and unsupervised learning algorithms in the sense that they might

require many interactions with the environment to converge [1]. One use-case for hierarchical RL

architectures is to attempt to reduce the total number of agent-environment interactions required

to solve a problem, thus improving convergence rates.

As recently as 2017 the Option-Critic architecture was considered state-of-the-art, but the

FeUdal Network (FuN) architecture shown in Figure 1 below was demonstrated to outperform the

Option-Critic architecture in a variety of test scenarios [2][3]. Since the advent of FuN

architectures, no hierarchical RL studies have been observed to outperform the FuN architecture

in any task, making the FuN architecture the state-of-the-art hierarchical RL technique at the time

of publication.

 2

This work provides a contribution towards understanding the FuN architecture. This is

accomplished by first providing a solid foundation for RL concepts, using that foundation to

thoroughly explore FuNs, and finally leveraging the knowledge of FuNs to define an appropriate

sub-problem for experimentation. The sub-problem explored in this thesis responds to the requests

of the hierarchical RL community in [2] and [3] by addressing the transferability of a Manager to

untrained Workers under different physical embodiments. Specifically, transitional policies of the

supervisor (Manager) will be transferred to actors (Workers) with different embodiments under

controlled conditions. This will be tested on variations of the cart-pole environment as shown in

Figure 3 [4].

Figure 1. FeUdal Network (FuN) Architecture

 3

2.0 REINFORCEMENT LEARNING

RL is the study of agents and how they learn by trial and error. The field was largely inspired by

natural phenomena, and it has been suggested that humans learn using hierarchy [5]. The field of

RL at large has recently experienced several notable breakthroughs, including:

• Google Deepmind’s algorithm beating the world champion in the (computationally

complex, previously considered intractable) game of Go [6]

• OpenAI’s algorithm that is currently qualifying for world championship video game

tournament participation in the online multiplayer game of DOTA2 [7]

These are only a subset of recent highly publicized results from the field of RL, which

remains an active research area [8][9][10]. Because RL formalizes the study of decision making,

it could potentially impact any field in which decisions are made.

The agent-environment interaction loop shown in Figure 2 below shows the fundamental

progression followed by all RL agents. An agent takes action 𝑎𝑡 to modify the state 𝑥𝑡 and receives

reward through a reward function 𝑅𝑡.

RL notation is not always consistent; however, the work of this thesis was primarily

inspired by [3], and the notation in the following sections shall be presented in a way that is

consistent with that used in [3].

 4

The objective of an RL agent is to determine an optimal policy. Approaches to this problem

are varied and have inspired the discussion in Section 3.0 as to how feudal networks determine an

optimal policy. The remainder of this section reviews common terminology from the field of RL

to prepare the reader for a thorough discussion of hierarchical RL as it relates to the FuN

architecture.

Figure 2. Agent-Environment Interaction Loop

 5

2.1 ACTION SPACES

Different environments enable an agent to take different kinds of actions. The agent is technically

not tied to any specific physical embodiment but is responsible for selecting a valid action from

the action space 𝑎𝑡 ∈ 𝐴. Since the action itself is commonly taken by some physical embodiment

in the environment (e.g. a robot), it would be appropriate to think of an agent as the brain. An

action can be anything that changes the state in some way but is selectable by the agent.

Disturbances and noise inherent to the environment don’t count as actions. The set of all valid

actions, 𝐴, in a given environment is called the action space and is the set from which actions, 𝑎,

are selected by the agent. A time index 𝑎𝑡 may be used to denote actions at the current time.

2.2 POLICIES AND AGENTS

A policy is a rule used by an agent to determine what actions to take. The terms “agent” and

“policy” are sometimes used as synonyms, but formally the policy is a function within the agent

used to select actions. The agent is a structure containing the policy and the ability to sense the

environment and collect rewards from it, as well as structure to define and train the policy (e.g.

parameters learned through neural networks).

 6

Deterministic and stochastic policies are denoted as:

 𝜇(𝑥𝑡) = 𝑎𝑡 (2-1)

 𝑎𝑡~𝜋(. |𝑥𝑡) (2-2)

Policies may be parameterized so that an agent’s behavior can be modified using optimization

algorithms. The parameters of the policy are denoted by 𝜃. To highlight the connection between

these parameters and the policy, policies are sometimes written as 𝜇𝜃(𝑥𝑡) or 𝜋𝜃(. |𝑥𝑡).

2.3 TRAJECTORIES

A trajectory 𝜏 (also known as an episode or rollout) is a sequence of states and actions in the world.

The initial state of the world is 𝑥0, and in some problems this is considered to have been drawn

from some starting state distribution 𝜌0. The transition from one state to the next may not always

be deterministic. Even if the policy selects an action with the intention of moving to another state,

some unintended state might result. This uncertainty in the state transition can be quantified

through a state transition distribution 𝑥𝑡+1.

 𝜏 = (𝑥0, 𝑎0, 𝑥1, 𝑎1, …) (2-3)

 𝑥0~𝜌0(.) (2-4)

 𝑥𝑡+1~𝑃(. |𝑥𝑡 , 𝑎𝑡) (2-5)

 7

2.4 REWARD AND RETURN

The reward function 𝑅(𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1) is used to define the rewards that the agent can collect from

the environment. The goal of the agent is to maximize some notation of cumulative reward over a

trajectory. The design of the reward function influences the behaviors expressed by an agent.

Formulations for the reward function include the finite-horizon undiscounted return and

the infinite-horizon discounted return.

 𝑅(𝜏) = ∑ 𝑟𝑡 , 𝑡 ∈ {0, … , 𝑇} (2-6)

 𝑅(𝜏) = ∑ 𝛾𝑡𝑟𝑡 , 𝑡 ∈ [0, ∞) (2-7)

The finite-horizon undiscounted return sums up all rewards obtained in a fixed number of steps,

and the infinite-horizon discounted return which sums all rewards over time [11]. The infinite-

horizon discounted return decreases successive expected rewards by some factor 𝛾𝑡, 𝛾 ∈ (0,1),

and is used to ensure the infinite sum remains bounded.

 8

2.5 THE RL PROBLEM

The goal of the RL agent is to select a policy which maximizes the expected return when the agent

acts according to it. The expected return under a given policy 𝜋 is denoted as 𝐽(𝜋). The central

optimization problem in RL is to determine the optimal policy 𝜋∗, which can be determined from

𝐽(𝜋).

 𝐽(𝜋) = E
𝜏~𝜋

[𝑅(𝜏)] (2-8)

 𝜋∗ = argmax

𝜋
𝐽(𝜋) (2-9)

One technique used to iteratively update estimates of an optimal policy is the policy gradient

method. Policy gradients are discussed in detail in [12], and alternative iterative techniques in [13].

Figure 3 shows a typical environment for the cart-pole problem. A cart on a frictionless

track is controlled by forces that can be applied in the left or right directions (along the track). The

cart is coupled to an unactuated frictionless rigid pendulum. The objective of this problem is to

keep the pole balanced upright and the cart at the center of the track. If this were to be formulated

as a reinforcement learning problem, rewards could be collected by an agent for satisfying the

above goals. This environment is used in this research to investigate properties of FuNs with minor

modifications, as discussed in Section 4.2.

 9

Figure 3. Cart-Pole Environment

2.6 VALUE FUNCTIONS

It can be useful to know how valuable it is to land in a particular state or how valuable it is to take

one action (among multiple possible actions) from a given state. A value function 𝑉𝜋(𝑥𝑡)

quantifies the expected return due to starting in state 𝑥𝑡 and acting according to policy 𝜋 thereafter.

An action-value function or Q-function 𝑄𝜋(𝑥𝑡, 𝑎𝑡) quantifies the expected return after taking

action 𝑎𝑡 from state 𝑥𝑡 then always acting according to policy 𝜋 thereafter. The advantage function

quantifies the relative advantage of taking one action over another from a given state and is defined

as 𝐴𝜋(𝑥𝑡, 𝑎𝑡).

 𝐴𝜋(𝑥𝑡, 𝑎𝑡) = 𝑄𝜋(𝑥𝑡, 𝑎𝑡) − 𝑉𝜋(𝑥𝑡) (2-10)

 𝑎∗ = argmax
𝑎

𝑄∗(𝑥𝑡, 𝑎𝑡) (2-11)

 10

These notions are useful for comparing how valuable it is to land in one state versus another, or to

quantify how much better it is to take one action compared to another. The optimal value function

is denoted 𝑉∗(𝑥𝑡), and the optimal Q-function is denoted 𝑄∗(𝑥𝑡, 𝑎). An optimal policy will select

the action that maximizes the expected return starting from 𝑥𝑡. Given the optimal Q-function, the

optimal action can be inferred.

2.7 BELLMAN EQUATIONS

Value functions in RL problems obey a set of self-consistency conditions known as the Bellman

equations. The basic idea of the Bellman equations can be captured by the notion of cost-to-go.

This is the notion that a state’s “value” is identical to the reward collected by landing there plus

the value of the next state. The Bellman equations can be written as follows [11][14].

 𝑉𝜋(𝑥𝑡) = E
𝑎~𝜋, 𝑥𝑡+1~𝑃

[𝑅(𝑥𝑡, 𝑎𝑡) + 𝛾𝑉𝜋(𝑥𝑡+1)] (2-12)

 𝑄𝜋(𝑥𝑡, 𝑎𝑡) = E
𝑥𝑡+1~𝑃

[𝑅(𝑥𝑡, 𝑎𝑡) + 𝛾 E
𝑥𝑡+1~𝜋

𝑄𝜋(𝑥𝑡+1, 𝑎𝑡+1)] (2-13)

 𝑉∗(𝑥𝑡) = max

𝑎
E

 𝑥𝑡+1~𝑃
[𝑅(𝑥𝑡, 𝑎𝑡) + 𝛾𝑉∗(𝑥𝑡+1)] (2-14)

 𝑄∗(𝑥𝑡, 𝑎𝑡) = E
𝑥𝑡+1~𝑃

[𝑅(𝑥𝑡, 𝑎𝑡) + 𝛾 max
𝑎𝑡+1

𝑄∗(𝑥𝑡+1, 𝑎𝑡+1)] (2-15)

 11

2.8 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) is the formal setting used implicitly in the RL problem

definition. RL problems assume the Markov property, which states that state transitions depend

only on the most recent state and action [11]. An MDP is a 5-tuple (𝑥, 𝐴, 𝑅, 𝑃, 𝜌0) consisting of

the state space 𝑥, the action space 𝐴, the reward function 𝑅, the state transition probability 𝑃, and

the initial state distribution 𝜌0 [15].

 12

3.0 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical RL is a branch of RL that leverages a specific structural assumption for all its

algorithms. Specifically, it assumes that problems can be separated into high-level and low-level

objectives. Before the introduction of FuN, the dominant architecture was the Option-Critic

architecture, shown in Figure 4 below. Intuitively, the Option-Critic architecture demonstrates the

notion of hierarchy by appealing to a critic to select the best option (each option defining a policy)

that is best for the given context (which includes the current state and rewards collected). Option-

Critic architecture trains many policies that are context dependent, allowing for the emergence of

complex behaviors by combining learned primitives. In this way, Option-Critic is hierarchical.

A comparative analysis between the performance of FuNs and the Option-Critic

architecture was first presented in [3]. The results compare the peak performance of the Option-

Critic architecture as published to that of feudal networks across two different tasks. The plots

indicate that feudal networks achieved higher scores on these benchmark tasks.

No other hierarchical RL algorithm has since demonstrated superior performance

compared to the FuNs approach. While FuNs are state-of-the-art, some properties of this

architecture have not yet been thoroughly investigated. Several important quandaries arose within

the RL community for further investigation [2][3], one of which is to observe transfer properties

of a Manager to different physical embodiments (which are handled by the Worker). This research

is focused on the transferability of a trained Manager to different physical embodiments and an in-

 13

depth analysis of each component of the FuN architecture is presented in preparation for breaking

the FuN architecture down into a simpler sub-problem, thereby addressing the research question.

Figure 4. Option-Critic Architecture

Figure 5. FuN Comparison to Option-Critic on Zaxxon and Asterix

 14

3.1 AN OVERVIEW OF FEUDAL NETWORKS

Figure 1 shows a feudal network as described in [3], based upon the work in [17]. Feudal networks

are considered hierarchical since the agent is split into a structure with distinct separation between

long-term objectives and short-term actions. In this architecture, the Manager plays the role of a

supervisor in that it sets goals for the Worker, but it is not directly responsible for taking actions.

The Worker is responsible for selecting actions to achieve the goal set by the Manager. Actions

result in a state update. If the action taken by the Worker is aligned with the goal set by the Manager

(measured through a cosine similarity), the Worker gets rewarded and as a result the learning step

of the algorithm won’t substantially change the way the Worker interprets the Manager’s goals

(e.g. minimal update to 𝑈𝑡).

If the action does not satisfy the goal of the Manager, the Worker gets no reward from the

Manager. This more strongly impacts Worker interpretation of the goals set by the Manager. The

Manager collects goals directly from the environment, and thus attempts to maximize the

collection of these rewards. The Manager rewards the Worker for taking actions that align with

the goals even when the Manager sets poor goals (e.g. goals that do not maximize rewards from

the environment). The Manager will learn to set better goals when the Worker performs well but

the goals aren’t achieving the desired result. By setting better goals, the Manager can collect more

rewards from the environment. However, the Worker can be trained to follow the goals set by the

Manager even when the higher-level objectives aren’t being satisfied. In this way, the Worker gets

a rich set of reward signals in a potentially sparsely rewarded environment.

 15

After the Manager and the Worker are trained at solving some tasks in tandem (e.g. the

algorithm converged), the job of learning how to solve new tasks is essentially a problem for the

Manager. The Worker, at this point, learned how to apply action primitives, so the Manager will

rely on the Worker to use those primitives to satisfy a new goal.

If the Manager is trained but the Worker is untrained (such as when the physical

embodiment of the Worker changes abruptly), faster training times would be expected compared

to an untrained network [3].

3.2 ELEMENTS OF FEUDAL NETWORKS

The following discussion steps through the feudal network of Figure 1 to clarify terminology as it

relates to functions shown, followed by a detailed discussion of the structure and function of each

element in the network.

At the input to the network, the full state of the environment 𝑥𝑡 is perceived and mapped

via 𝑓𝑝𝑒𝑟𝑐𝑒𝑝𝑡(.) into some potentially informationally lossy state representation 𝑧𝑡 shared by both

the Manager and the Worker.

This state representation is mapped again by a differentiable embedding 𝑓𝑀𝑠𝑝𝑎𝑐𝑒(.) (e.g. a

typical neural network) containing a D-dimensional view of the world for the Manager. The most

recent internal state of the Manager ℎ𝑡
𝑀 along with 𝑠𝑡 are mapped into a goal 𝑔𝑡 at the current

timestep through a Recurrent Neural Network (RNN) denoted as 𝑓𝑀𝑟𝑛𝑛(.). A linear

transformation without bias 𝜑 maps the recent goals set by the manager (over some time horizon

(𝑡 − 𝑐) to (𝑡)) into an embedding vector 𝑤𝑡 used to inform the Worker of the Manager’s goals.

 16

The shared perception 𝑧𝑡 is also mapped to a matrix 𝑈𝑡 through an RNN in the Worker

portion of the network via 𝑓𝑊𝑟𝑛𝑛. 𝑈𝑡 encodes how the Manager’s goals might inform the Worker

as to which specific action to take. The mapping 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑈𝑡𝑤𝑡) produces a policy 𝜋𝑡, a vector

of probabilities indicating the likelihood of the Worker selecting one among the available actions

given the Manager’s goals.

3.2.1 Convolutional Neural Network

The function 𝑓𝑝𝑒𝑟𝑐𝑒𝑝𝑡(.) maps the complete state space 𝑥𝑡 to an observation 𝑧𝑡 shared by both the

Worker and the Manager. This mapping is performed by a Convolutional Neural Network (CNN),

which is a class of deep neural networks that can be applied to visual imagery for tasks such as

state estimation [18].

Qualitatively, CNN’s may be a natural choice as a visual module because they exploit

structure in pixel space. In the case of [3], the CNN is used to find an appropriate lower

dimensional observation. In this research, since access to full-state is available, a CNN will not be

required to estimate the state.

 17

3.2.2 Differentiable Embedding

The FuN architecture uses a differentiable embedding in the design of:

 𝑓𝑀𝑠𝑝𝑎𝑐𝑒(𝑧𝑡) = 𝑠𝑡 (3-1)

A fully connected neural network is a typical instantiation of an embedding and is differentiable

based on appropriate selection of the activation function (e.g. sigmoidal). A neural network is the

instantiation used in the FuN architecture.

An embedding in graph applications such as this learning problem, or more generally as

defined in [19], is a mapping from discrete objects to vectors of real numbers. Individual

dimensions in the vectors may or may not have any inherent meaning, but the overall patterns of

location and distance of an embedding are used for efficiently training a network.

The FuN architecture requires a differentiable embedding because the embedding itself is

trainable. The training process uses gradient updates and thus the embedding must be at least once-

differentiable. Since 𝑠𝑡 is the way the Manager sees the world, it may be advantageous for the

Manager to change the way they view the world (e.g. update the embedding). This changing of

Manager vision may translate to the ability to set better goals. The differentiable embedding

𝑓𝑀𝑠𝑝𝑎𝑐𝑒 is on the Manager branch and is thus updated slowly compared to the Worker which

operates on a faster temporal resolution.

 18

3.2.3 Recurrent Neural Network

RNN’s are used in two locations in the FuN architecture.

 𝑓𝑀𝑟𝑛𝑛(𝑠𝑡) = 𝑔𝑡 (3-2)

 𝑓𝑊𝑟𝑛𝑛(𝑧𝑡) = 𝑈𝑡 (3-3)

These RNN’s are instantiated by long-short-term memory networks, or LSTM’s. One is a standard

LSTM and the other is a novel approach presented originally in [3]. Both types are detailed in the

following sections but are only a subset of many possible LSTM architectures [20].

RNN’s use internal states to process sequences of inputs. This internal state introduces

dynamic behavior in time which can have an input response that is either finite-impulse or infinite-

impulse. Finite-impulse networks can be used to approximate infinite-impulse networks. This

approximation is sometimes used during computation to avoid numeric issues during

implementation. Properties of RNNs are addressed at length in [21].

 19

3.2.4 Long-Short-Term Memory

The LSTM consists of several neural networks with different weights, biases, and activations

assembled in a specific structure. For a thorough discussion of neural networks, see Section 3.3.1.

Consistent with the notation of Figure 6 below, the LSTM equations are as follows [21].

 𝑓𝑡 = 𝜎 (𝑊𝑓 (
ℎ𝑡−1

𝑥𝑡
) + 𝑏𝑓) (3-4)

 𝑖𝑡 = 𝜎 (𝑊𝑖 (
ℎ𝑡−1

𝑥𝑡
) + 𝑏𝑖) (3-5)

 𝐶̃𝑡 = tanh (𝑊𝐶 (
ℎ𝑡−1

𝑥𝑡
) + 𝑏𝐶) (3-6)

 𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡 (3-7)

 𝑜𝑡 = 𝜎 (𝑊𝑜 (
ℎ𝑡−1

𝑥𝑡
) + 𝑏𝑜) (3-8)

 ℎ𝑡 = 𝑜𝑡tanh (𝐶𝑡) (3-9)

The cell state 𝐶𝑡 and the internal state ℎ𝑡 are contain the memory of the cell, which are iteratively

modified by their most recent value and the current state. 𝑓𝑡, 𝑖𝑡, 𝐶̃𝑡, and 𝑜𝑡 are network layers with

trainable weights 𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , 𝑊𝑜, trainable biases 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐, 𝑏𝑜, with either sigmoidal 𝜎(.) or

hyperbolic tangent tanh(.) activations. All multiplications shown are matrix multiplications.

 20

Figure 6. LSTM Detailed Topology

 21

3.2.5 SoftMax

The SoftMax function is defined as follows.

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽) =
exp(𝛽𝑗)

∑ exp(𝛽𝑘)
, 𝑘 = {1,2, … 𝐾}, 𝑗 ∈ 𝑘 (3-10)

 ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(.) = 1 (3-11)

This is used in the FuN architecture to define a discrete probability distribution over a finite set of

actions (infinite action spaces being quantized). This is done by defining the policy as:

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝑡𝑤𝑡): 𝐴 → 𝜋 (3-12)

Since the policy is 1-dimensional, the vector output of the SoftMax function translates to indexes

and scalar probabilities. This implies:

 𝑎𝑡~𝜋 (3-13)

The actions selected by feudal networks are defined by the output of a SoftMax function, because

the output of the SoftMax function defines the policy.

 22

3.3 UPDATING FEUDAL NETWORKS

After the Worker selects an action from the policy, the state is updated to reflect any changes.

Based on the outcome, the Worker receives a reward that impacts the policy gradient and

ultimately the LSTM parameters defining 𝑈𝑡. A policy gradient is a measure of error incorporating

the current policy, the reward collected from the most recent action, and some estimate of what

the reward could have been if the optimal action was taken. The policy gradient calculation is

dependent on the training algorithm used, as discussed in 3.3.5.

It would be possible to train feudal networks using a single policy gradient backpropagated

through the network from the output of Worker, but this approach is not used by the architecture

in [3]. As discussed in the cosine similarity Section 3.3.4, this design choice allows the goal to

retain semantic meaning (e.g. it corresponds to a direction in state space) as opposed to becoming

a hard-to-interpret internal latent variable. The training of the Manager and the training of the

worker is somewhat decoupled by intentionally not passing a gradient between the two.

Instead of passing the policy gradient, the Manager branch updates according to:

 ∇𝑔𝑡 = 𝐴𝑡
𝑀∇𝜃𝑑𝑐𝑜𝑠(𝑠𝑡+𝑐 − 𝑠𝑡, 𝑔𝑡(𝜃)) (3-14)

𝑑𝑐𝑜𝑠 is the cosine similarity function and 𝐴𝑡
𝑀 is the Manager advantage function. The policy

gradient update relies on value function estimates made by an internal critic as described in Section

3.3.5.

 23

3.3.1 Backpropagation Through Time

RNN’s are updated using a process known as backpropagation through time. The standard

backpropagation algorithm used to update a feedforward neural network is discussed before

extending to the process of BPTT.

The structure of a typical neural network includes an input layer, one or more hidden layers,

and an output layer. Each layer contains a specified number of nodes, and each node performs a

scalar mapping according to an “activation function” 𝜎. The nodes from one layer to the next are

fully connected through a weight matrix 𝑤, and offset at each layer by a bias 𝑏. The vector output

of a layer is called 𝑎𝑗, which maps the vector input 𝑧𝑗 through an activation function 𝑎𝑗 as:

 𝑧𝑗 ≔ 𝑤𝑗𝑎𝑗−1 + 𝑏𝑗 (3-15)

 𝑎𝑗 = 𝜎𝑗(𝑧𝑗) (3-16)

The superscripts indicate the layer used for the calculation. In this section, the convention used

throughout follows the specification shown in Figure 7.

Activations for all output nodes 𝑎3 can be calculated by presenting a feature vector 𝑥𝑖 at

the input of the neural network. Through the following manipulations, the neural network will

forward propagate the information at the input and produce some combination of activations at the

output:

 24

 𝜎 = 𝜎2(𝑧) = 𝜎3(𝑧) ≔ (1 + exp(−𝑧))−1 (3-17)

 𝜎′(𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧)) (3-18)

 𝑎1 = 𝑥𝑖 (3-19)

 𝑧2 = 𝑤2𝑎1 + 𝑏2 (3-20)

 𝑎2 = 𝜎(𝑧2) (3-21)

 𝑧3 = 𝑤3𝑎2 + 𝑏3 (3-22)

 𝑎3 = 𝜎(𝑧3) (3-23)

After forward propagation, network performance can be evaluated against known training output

𝑦 with deviations accounted for according to some cost function 𝐶.

 Classification or regression accuracy improvements are achieved by adjusting the network

parameters to reduce the cost. By gradient descent, the gradient of the cost function can be used to

update network parameters in a direction of reduced cost.

The following are the backpropagation algorithm calculations corresponding to Figure 7:

 𝛿3 = ∇𝑎𝐶⨀𝜎′(𝑧3) (3-24)

 𝛿2 = ((𝑤3)𝑇𝛿3)⨀𝜎′(𝑧2) (3-25)

 𝜆 ≔ 𝜂
𝜆′

𝑛
 (3-26)

 𝑏2 ← 𝑏2 − 𝜂 (
𝜕𝐶

𝜕𝑏2)
𝑇

= 𝑏2 − 𝜂𝛿2 (3-27)

 𝑏3 ← 𝑏3 − 𝜂𝛿3 (3-28)

 𝑤2 ← (1 − λ)𝑤2 − 𝜂 (
𝜕𝐶

𝜕𝑤2)
𝑇

= (1 − 𝜂λ)𝑤2 − 𝜂𝛿2(𝑎1)𝑇 (3-29)

 𝑤3 ← (1 − λ)𝑤3 − 𝜂𝛿3(𝑎2)𝑇 (3-30)

 25

𝜂 is the learning rate, 𝜆′ is a regularization weight, and 𝛿 is layer error. The last four lines show

the update step of the standard backpropagation algorithm.

BPTT is nearly identical but is used to update a recurrent network represented by

approximating it as a finite-response network through the process of unfolding. That is to say that

if all the states and actions over some time horizon are stored in memory, there exists an equivalent

feedforward network that represents the recurrent network over that period. Unfolding is the

process of representing the recurrent network as a feedforward network over the stored timeframe

(information that is not stored in memory might reasonably be neglected as in [22]). BPTT is then

implemented by applying the standard backpropagation algorithm analogous to the discussion

above with additional layers. After all the errors have been calculated, the network is folded back

up by summing all suggested updates at each point in time for each weight and bias.

Figure 7. Neural Network Detailed Topology

 26

3.3.2 Dilated Long-Short-Term Memory

Dilated LSTM (dLSTM) is a novel architecture introduced in [3] and is used for the mapping

function:

 𝑓𝑀𝑟𝑛𝑛(𝑠𝑡) = 𝑔𝑡 (3-31)

The only difference between the dLSTM and a standard sequence of LSTM cells is the update

rule. For standard LSTM cells, every cell would update with every backward pass through the

network. In the case of the dLSTM, batches of cells are frozen while only every 𝑟𝑡ℎ cell is updated.

Reference [3] claims that this modification helps the LSTM improve its ability to retain long term

information. Ablative analysis suggested that the lowered temporal resolution was useful for the

Manager but not for the Worker, which justified the use of a standard LSTM for the Worker.

3.3.3 Von Mises-Fisher Distribution

The FuN architecture assumes that the direction in state space, 𝑠𝑡−𝑐 − 𝑠𝑡, follows a Von Mises-

Fisher distribution. One question that is not directly addressed in [3] is whether this is a reasonable

assumption. Some insights can be gained by inspecting properties of the distribution in two

dimensions.

 27

Figure 8 shows the Von Mises-Fisher distribution in two dimensions. General properties

of the distribution are discussed in [23]. The distribution is defined on an angular interval, in this

case (−𝜋, 𝜋]. The distribution has a single maximum for all 𝜅 > 0. When 𝜅 = 0, samples from

this distribution are uniformly random over the interval. Assuming this distribution describes the

state transition 𝑠𝑡−𝑐 − 𝑠𝑡, the situation when 𝜅 = 0 is equivalent to not knowing an expected

direction through state space. As 𝜅 increases, the distribution begins to concentrate on a single

mean value. In the case when 𝜅 → ∞, the state transition will be in the direction of the mean value

with probability approaching 1.

Consider a grid-world where the state transition describes movement from one location on

the grid to another. In this scenario the Von Mises-Fisher distribution has very clear semantic

meaning, as state transitions are expected to move in the distribution’s mean direction along the

grid. The Von Mises-Fisher distribution in this case is like a compass, and whichever direction it

points in is the direction the state is most likely to transition. Good goals would then provide a

strong sense of direction (large 𝜅), since the intrinsic reward is defined by the alignment between

the goal and the state transition and these will more likely align when the goal (a known direction)

is highly likely to agree with the state transition (large 𝜅 in the same direction as the goal).

Conversely, poor goals would contain almost no directional information (small 𝜅), as this would

shape the distribution as uniform over all angles and thus make it very unlikely that the state

transition will align with the direction of the goal.

The Von Mises-Fisher distribution in higher dimensions retains an analogous sense of

semantic meaning in terms of setting a direction in state space transitions. The state space itself

may or may not have spatial significance but the grid-world example above provides insight into

the types of problems which a Von Mises-Fisher distribution can reasonably be expected to model.

 28

Figure 8. Von Mises-Fisher Distribution in Two Dimensions with Zero Mean

 29

3.3.4 Cosine Similarity Measure

The Worker gets internal rewards for taking actions aligned with the Manager’s goals. The Worker

never directly observes the Manager’s goals but is instructed through the vector 𝑤𝑡. The goals

themselves retain semantic meaning due to the Von Mises-Fisher distribution assumed on the state

transitions. The state transitions 𝑠𝑡−𝑐 − 𝑠𝑡 will update in a way that tends to progress along the

same heading. The states will move in a certain direction for a while without substantially changing

direction. The direction is provided by the Manager through 𝑔𝑡, but the Worker is directly

responsible for taking actions, and thus determines the way the states transition. The goal 𝑔𝑡 is a

vector as is the state transition 𝑠𝑡−𝑐 − 𝑠𝑡. If the goal and the state transition align this statement is

equivalent to them pointing in the same direction.

The cosine similarity measure is a way of quantifying how closely vectors are aligned:

 𝑑𝑐𝑜𝑠(𝛼, 𝛽) =
𝛼∙𝛽

‖𝛼‖2‖𝛽‖2
 (3-32)

The result is bounded in the interval [−1, 1]. If the result is 1, the vectors are pointing in the same

direction with arbitrary positive magnitude. If the result is −1, the vectors are pointing in opposite

directions with arbitrary positive magnitude. Any value in between means the vectors are

misaligned. The key takeaway is that the cosine similarity only compares the heading, not the

magnitude. In this way, the goal retains a semantic meaning. The goal vector points in the physical

direction in state space the Manager wants to move. If the state transitions are going in this

direction, regardless of how fast or slow, the cosine similarity will be close to unity and the Worker

will receive a large intrinsic reward.

 30

3.3.5 Advantage Actor-Critic Algorithm

The Worker’s policy 𝜋 is trained using the Asynchronous Advantage Actor-Critic (A3C) algorithm

as defined in [24], but the authors in [3] note that any off-the-shelf deep reinforcement learning

algorithm can be substituted for updating the policy. This informs the experiment design in this

research since it implies that any policy gradient algorithm can be used in place of A3C without

loss of generality.

A synchronous version of this algorithm was discovered shortly after A3C, and empirically

it has been shown to improve sample efficiency, as compared to A3C [25]. This class of algorithms

have come to be known as Advantage Actor-Critic algorithms.

It is called “advantage” actor-critic is due to the estimate of the advantage function used in

the policy updates:

 ∇𝜋𝑡 = 𝐴𝑡
𝐷∇𝜃 log(𝜋(𝑎𝑡|𝑥𝑡; 𝜃)) (3-33)

The advantage is defined as:

 𝐴𝑡
𝐷 = (𝑅𝑡 + 𝛼𝑅𝑡

𝐼 − 𝑉𝑡
𝐷(𝑥𝑡; 𝜃)) (3-34)

The reward function 𝑅𝑡 is the reward from the environment. The intrinsic reward function 𝑅𝑡
𝐼

comes from the alignment between the state update. The goal, 𝛼, is a positive constant that

amplifies or attenuates the effect of intrinsic rewards. 𝑉𝑡
𝐷(𝑥𝑡; 𝜃) is an estimate of the value function

from an internal critic.

 31

4.0 METHODS

Since FuN defines a clear separation between Manager and Worker, the Manager is expected to

be capable of learning a transition policy independently of the primitive actions the Worker uses

to enact these transitions. The hypothesis of this experiment is that the transition policy of the

Manager is transferrable between agents with different embodiments.

If the transition policy is transferable, convergence for an agent given a trained Manager

and untrained Workers of different physical embodiments should require less time than the case

of an untrained Manager and untrained Workers of different physical embodiments.

Preliminary evidence in support of this hypothesis was presented in [3] by modifying

temporally sensitive aspects of previously trained agents. Training these agents versus an untrained

control group demonstrated that learning with this specific set of prior information significantly

outperformed other methods. This might imply reduced training times under trained Managers

when formally testing untrained Workers of different physical embodiments. Results addressing

this are presented in Section 5.0.

 32

4.1 EXPERIMENT DESCRIPTION

The question concerns only the relative convergence rate of the Worker under a trained Manager

given different physical embdiments. In this section, based on the properties of the FuN

architecture, a justification for a simplified network is suggested for testing only the Worker branch

of the architecture under controlled conditions. The network is as that studied in [18].

The CNN used in the original FuN paper was used to find an appropriate low dimensional

observation of the full state. In this experiment the full state is observable, implying:

 𝑓𝑝𝑒𝑟𝑐𝑒𝑝𝑡(𝑥𝑡) = 𝑥𝑡 = 𝑧𝑡 (4-1)

The goal of a trained Manager will be fixed in steady-state by making some assumptions on the

timescale of interest. For this problem, it is asserted that the Manager’s goal is “far away”. This

implies that 𝑔𝑡 is constant over the last 𝑐 timesteps if 𝑐 is small compared to the number of steps

required to approach the goal. Thus, 𝑔𝑡 will not change over the next 𝑐 timesteps regardless of the

actions of the Worker. The instructions the Manager provides to the Worker, represented as

𝜙(𝑔𝑡−𝑐, … , 𝑔𝑡) = 𝑤𝑡 will then be constant. For this experiment, 𝑤𝑡 will be set manually. This is

reasonable because the output of the dLSTM will produce entries for the goal vector bounded by

[−1, 1], the goals all align for all 𝑐, and in the most extreme scenario all of the goals will point in

a direction such that the linear projection 𝜙(𝑔𝑡−𝑐 , … , 𝑔𝑡) will not lose any information in the

projected direction.

 33

For the untrained Manager the linear projection 𝜙(𝑔𝑡−𝑐 , … , 𝑔𝑡) could project in any

direction (including any orthogonal dimensions). In the most extreme cases, most of the

information will be lost during projection. Based on this, for the untrained Manager a vector 𝑤𝑡 of

small positive magnitude 𝜖 in a random direction will be used. In the case of both the trained or

untrained Manager, the Worker will still be able to calculate an intrinsic reward and thus have

access to the requisite information needed for updates during training.

4.2 EXPERIMENT ARCHITECTURE

OpenAI Gym [4] is a publicly available codebase used in this experiment. This resource is intended

to standardize the process of setting up and testing RL algorithms by providing a framework for

observing and acting in a variety of environments. Using Gym or some other standardized

environment also makes these results more accessible for other RL researchers familiar with Gym.

Thus Gym is used in this research in an attempt to make the results more transparent.

Spinning Up in Deep RL [15] is another public code repository made available by OpenAI.

This codebase allows for simple implementation of standard RL algorithms in Gym environments.

The Spinning Up code implements several algorithms relevant to this research. One such algorithm

is the Vanilla Policy Gradient (VPG), which will be used to generate policy updates for our

network. In Section 3.3.5 it was discussed that any off-the-shelf deep RL algorithm can be used to

implement the policy gradient in the FuN architectureand, since VPG is available for off-the-shelf

use from the Spinning Up codebase, VPG is the method of choice for this research.

 34

Figure 9 outlines the pseudocode for the VPG algorithm. This will be used to update the Worker

branch of the FuN network as constructed from Section 4.1. Implementation details shown in the

Appendix were used in conjunction with the Spinning Up and Gym code repositories to implement

the Worker branch for this experiment.

The Worker branch has access to the full state; thus, a CNN was omitted from the shared

perceptual module. The setup in Section 4.1 eliminates the need to explicitly define a network for

the Manager between 𝑧𝑡 and 𝑤𝑡, where 𝑤𝑡 is manually defined. For the cart-pole problem, the goal

can be quantified by a scalar (negative for positioning the cart to the left and positive for

positioning the cart to the right). Examples of different physical embodiments from the experiment

are shown in Figure 10.

Figure 9. VPG Algorithm

 35

In this experiment, 𝑐 = 200 (corresponding to the episode length), 𝑤𝑡 was set according to Table

1 and Table 2, and 𝛼 (the intrinsic reward weight defined on [0,1]) was set to 1 for all experiments

to maximize the effect of intrinsic reward. The goals for the Manager were held constant

throughout an episode due to the assertions in Section 4.1. For example, the trained Manager was

simulated by setting a constant goal of 1, corresponding to continuous rightward motion (so long

as the pendulum remains within 15 degrees from vertical, which if not satisfied will end the

episode).

Figure 10. Multiple Cart-Pole Embodiments

 36

5.0 RESULTS

Baseline performance for an untrained agent is presented in Section 5.1. Section 5.2 shows training

times for the case of the untrained Worker with different embodiments. Goals are manually

adjusted as shown in Table 1 and Table 2. The cart-pole environment is used to train the Worker.

Different embodiments arise from different initializations of the cart and pole masses and the

pendulum length.

5.1 UNTRAINED WORKER AND UNTRAINED MANAGER

Figure 11 aggregates training times for an initially untrained agent across the combinations of

random seeds and cart-pole parameters as shown in Table 1 below.

 37

Figure 11. Baseline Results starting from Untrained Agent

 38

Table 1. Experiment Parameters for Untrained Agent (Manager and Worker)

𝒘𝒕 𝒈𝒕 Random Seed Cart Mass
(kg)

Pole Mass
(kg)

Pole Length
(m)

−10−5 1 0 1 1 1

10−5 1 1 1.5 1.5 1.5

−10−5 1 2 6 1 1

10−5 1 3 0.75 1 1

−10−5 1 4 1.25 0.5 0.5

10−5 1 5 4 2 2

−10−5 1 6 1 1 1

10−5 1 7 1 1.1 1.1

 39

5.2 UNTRAINED WORKER AND TRAINED MANAGER

Figure 12 shows training times for an agent initialized with a trained Manager and different

embodiments across the combinations of random seeds and cart-pole parameters as shown in Table

2 below.

Figure 12. Results starting from Trained Manager

 40

Table 2. Experiment Parameters for Trained Manager under Different Embodiments

𝒘𝒕 𝒈𝒕 Random Seed Cart Mass Pole Mass Pole Length

1 1 0 1 1 1

1 1 1 1.5 1.5 1.5

1 1 2 6 1 1

1 1 3 0.75 1 1

1 1 4 1.25 0.5 0.5

1 1 5 4 2 2

1 1 6 1 1 1

1 1 7 1 1.1 1.1

 41

6.0 DISCUSSION

The plots aggregated in Figure 11 correspond to the case of the untrained Manager and untrained

Worker. This result uniformly converges in fewer total environment interactions than in Figure 12,

representing the case of an untrained Worker across different embodiments under a trained

Manager. The baseline experiment exhibits a lower peak performance than that of the simulation

incorporating a trained Manager. This implies that an agent exhibits faster overall convergence

rates given a trained Manager and different embodiments of the Worker. This result might have

been anticipated from an information theoretic perspective, given that an agent constructed from

a trained Manager and untrained Worker is initialized with more task specific knowledge than in

the case where both the Manager and Worker are untrained.

 The sub-problem studied in this experiment was deconstructed into that of training LSTM

based networks using policy gradient methods, and the results presented here remain consistent

with existing research on similar networks such as that presented in [18].

 This experiment supplies test data that corroborates with what the authors in [3] assumed

to be a property of the FuN architecture. The result turned out to be consistent with expectation,

thus the data from this research enables future work on the FuN algorithm to progress with the

confidence that it achieves the objective of portability across physical embodiments by leveraging

hierarchy.

 42

7.0 CONCLUSIONS AND FUTURE WORK

This research has illustrated that the FuN architecture exhibits faster overall convergence given a

trained Manager and different embodiments of the Worker. This was demonstrated by observing

the result that low-information goals (small 𝑤𝑡) inhibit the worker from collecting intrinsic or

external rewards, while informative goals support the mutual success of the Worker and the

Manager in the sense that the latter test setup led to faster convergence.

 To compare training times for the Worker under varying levels of prior knowledge of the

Manager, a testbed was constructed by customizing existing open-source code. This approach was

used to improve the portability of these findings for the RL community.

The architecture for this experiment minimized sensitivity to potential interactions between

training of the Manager and the Worker by making a slowly-time-varying assumption. This

temporal decoupling of the training of the Manager from the training of the Worker resulted in a

network that could be trained through a single policy gradient algorithm to capture all relevant

aspects of Worker training.

 This demonstrated that an agent containing an untrained Worker under different

embodiments can be trained in less time under a trained Manager than an untrained one, which

agreed with the hypothesis of the experiment (and thus agreed with expectations).

 43

Open questions regarding the FuN architecture include setting goals at multiple timescales,

scaling agents to large environments, and nesting feudal networks in such a way that hierarchies

can include multiple levels of Managers operating on different timescales. The field of hierarchical

RL does not necessarily stop with feudal networks. It is possible that completely novel

architectures can become the state-of-the-art. Hierarchical RL is by no means considered a solved

problem and research in this area continues to be performed.

 44

APPENDIX. SOFTWARE IMPLEMENTATION

The following python code defines the network topology used to implement the Worker branch:

The reward function in the Spinning Up implementation of vpg.py was modified by using the

above code for the network definition, passing 𝑤𝑡 as embedding_vec and appending a

𝑑𝑐𝑜𝑠(𝑠𝑡+𝑐 − 𝑠𝑡, 𝑔𝑡) term to the rewards definition with 𝑔𝑡 hard coded as a 1.

 45

The environment selected was the cartpole environment. Repository code was manually

modified in the __init__ section of cartpole.py from the Gym source code (which defines the entire

cartpole environment). Experiments were run by manually modifying the masscart, masspole, and

length parameters in Gym and passing different random seeds through the Spinning Up UI.

 46

BIBLIOGRAPHY

[1] Y. LeCun, “Predictive Learning”, Neural Information Processing Systems, 2016, [online],
 Available: https://www.youtube.com/watch?v=Ount2Y4qxQo

[2] V. Mnih, “Frontiers Lecture I: Recent Advances, Frontiers and Future of Deep RL”, Deep

 RL Bootcamp, August 2017, [online],
 Available: https://sites.google.com/view/deep-rl-bootcamp/lectures

[3] A.S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, K.

Kavukcuoglu, “FeUdal Networks for Hierarchical Reinforcement Learning”, eprint
arXiv: 1703.01161v2, March 2017.

[4] OpenAI et al. “OpenAI Gym”, [online], Available: https://gym.openai.com/

[5] M.M. Botvinick, Y. Niv, A.C. Barto, “Hierarchically Organized Behavior and its Neural

Foundations: A Reinforcement Learning Perspective”, Cognition, vol. 113, no. 3, pp.
262-280, December 2009.

[6] OpenAI, “OpenAI Five”, 2018, [online], Available: https://blog.openai.com/openai-five/

[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L.

Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G.V.D. Driessche, T.
Graepel, D. Hassabis, “Mastering the Game of Go without Human Knowledge”,
Nature, vol. 550, pp. 354-359, October 2017.

[8] J. Sanito, R. Fernandez., A. Swaminathan, K. Tran, K. Hofmann, M. Hausknecht,

 “Reinforcement Learning Explained”, Microsoft Research, 2019, [online],
 Available: https://www.edx.org/course/reinforcement-learning-explained-3

[9] D. Silver, “Introduction to Reinforcement Learning”, COMPM050/COMPGI13:

 Advanced Topics, 2015, [online],
 Available: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

[10] R. Dror and A. Ng, “Reinforcement Learning and Control”, CS229: Machine Learning,

 2018, [online], Available: http://cs229.stanford.edu/notes/cs229-notes12.pdf

[11] R.S. Sutton and A.G. Barto, “Reinforcement Learning: An Introduction” (2nd Edition).

 Cambridge, USA: The MIT Press, 2018.

https://www.youtube.com/watch?v=Ount2Y4qxQo
https://sites.google.com/view/deep-rl-bootcamp/lectures
https://gym.openai.com/
https://blog.openai.com/openai-five/
https://www.edx.org/course/reinforcement-learning-explained-3
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://cs229.stanford.edu/notes/cs229-notes12.pdf

 47

[12] R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, “Policy Gradient Methods for
 Reinforcement Learning with Function Approximation”, Advances in Neural
 Information Processing Systems, vol. 12, pp. 1057-1063, 2000.

[13] C. Szepesvari, “Algorithms for Reinforcement Learning”, San Rafael, USA: Morgan &

 Claypool Publishers, 2009.

[14] H. Yu and D. Bertsekas, “Weighted Bellman Equations and their Applications in

Approximate Dynamic Programming”, Laboratory for Information and Decision
Systems Report 2876, October 2012

[15] OpenAI et al. “OpenAI Spinning Up”, 2018, [online],

 Available: https://spinningup.openai.com/

[16] P.L. Bacon, D. Precup, J. Harb, “The Option-Critic Architecture”, eprint arXiv:

 1609.05140, September 2016.

[17] P. Dayan and G.E. Hinton, “Feudal Reinforcement Learning”, Advances in Neural

 Information Processing Systems, vol. 5, pp. 271-278, December 1992.

[18] T.N. Sainath, O. Vinyals, A. Senior, H. Sak, “Convolutional, Long Short-Term Memory,

Fully Connected Deep Neural Networks”, IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 4580-4584, April 2015.

[19] H.Y. Cai, V.W. Zheng, K.C.C. Chang, “A Comprehensive Survey of Graph Embedding:

Problems, Techniques, and Applications”, IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 9, pp. 1616-1637, September 2018.

[20] K. Greff, R.K. Srivastava, J. Koutnik, B.R. Steunebrink, J. Schmidhuber, “LSTM: A Search
Space Odyssey”, IEEE Transactions on Neural Networks and Learning Systems, vol.
28, no. 10, pp. 2222-2232, October 2017.

[21] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long-Short-Term

 Memory (LSTM) Network”, eprint arXiv: 1808.03314v4, November 2018.

[22] G. Hinton, “Recurrent Neural Networks”, CSC2535: Advanced Machine Learning, 2013,

 [online], Available: https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf

[23] “Von Mises-Fisher Distribution”, January 2019, [online],

 Available: https://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution

[24] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K.

Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning”, eprint
arXiv: 1602.01783, February 2016.

https://spinningup.openai.com/
https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution

 48

[25] J. Schulman, X. Chen, and P. Abbeel, “Equivalence Between Policy Gradients and
 Soft Q-Learning” eprint arXiv: 1704.06440, April 2017.

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Experiment Parameters for Untrained Agent (Manager and Worker)
	Table 2. Experiment Parameters for Trained Manager under Different Embodiments

	LIST OF FIGURES
	Figure 1. FeUdal Network (FuN) Architecture
	Figure 2. Agent-Environment Interaction Loop
	Figure 3. Cart-Pole Environment
	Figure 4. Option-Critic Architecture
	Figure 5. FuN Comparison to Option-Critic on Zaxxon and Asterix
	Figure 6. LSTM Detailed Topology
	Figure 7. Neural Network Detailed Topology
	Figure 8. Von Mises-Fisher Distribution in Two Dimensions with Zero Mean
	Figure 9. VPG Algorithm
	Figure 10. Multiple Cart-Pole Embodiments
	Figure 11. Baseline Results starting from Untrained Agent
	Figure 12. Results starting from Trained Manager

	NOMENCLATURE
	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION
	2.0 REINFORCEMENT LEARNING
	2.1 ACTION SPACES
	2.2 POLICIES AND AGENTS
	2.3 TRAJECTORIES
	2.4 REWARD AND RETURN
	2.5 THE RL PROBLEM
	2.6 VALUE FUNCTIONS
	2.7 BELLMAN EQUATIONS
	2.8 MARKOV DECISION PROCESSES

	3.0 HIERARCHICAL REINFORCEMENT LEARNING
	3.1 AN OVERVIEW OF FEUDAL NETWORKS
	3.2 ELEMENTS OF FEUDAL NETWORKS
	3.2.1 Convolutional Neural Network
	3.2.2 Differentiable Embedding
	3.2.3 Recurrent Neural Network
	3.2.4 Long-Short-Term Memory
	3.2.5 SoftMax

	3.3 UPDATING FEUDAL NETWORKS
	3.3.1 Backpropagation Through Time
	3.3.2 Dilated Long-Short-Term Memory
	3.3.3 Von Mises-Fisher Distribution
	3.3.4 Cosine Similarity Measure
	3.3.5 Advantage Actor-Critic Algorithm

	4.0 METHODS
	4.1 EXPERIMENT DESCRIPTION
	4.2 EXPERIMENT ARCHITECTURE

	5.0 RESULTS
	5.1 UNTRAINED WORKER AND UNTRAINED MANAGER
	5.2 UNTRAINED WORKER AND TRAINED MANAGER

	6.0 DISCUSSION
	7.0 CONCLUSIONS AND FUTURE WORK
	APPENDIX. SOFTWARE IMPLEMENTATION
	BIBLIOGRAPHY

