

Title Page

FingerSight: A Vibrotactile Wearable Ring to Help the Blind Locate and Reach Objects in
Peripersonal Space

by

Shantanu Avinash Satpute

Bachelor of Engineering, Savitribai Phule Pune University, 2018

Submitted to the Graduate Faculty of

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science in Bioengineering

University of Pittsburgh

2019

 ii

Committee Membership Page

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Shantanu Avinash Satpute

It was defended on

March 29, 2019

and approved by

Roberta L. Klatzky, Ph.D., Professor, Department of Psychology, Carnegie Mellon

Zhi-Hong Mao, PhD., Professor, Department of Electrical and Computer Engineering and
Department of Bioengineering

Thesis Advisor: George Stetten, M.D., Ph.D., Professor, Department of Bioengineering

 iii

Copyright © by Shantanu Avinash Satpute

2019

 iv

Abstract

FingerSight: A Vibrotactile Wearable Ring to Help the Blind Locate and Reach Objects in
Peripersonal Space

Shantanu Avinash Satpute, M.S.

University of Pittsburgh, 2019

Visually impaired people need a solution to compensate for the lack of visual information.

Although assistive technologies exist to help them navigate through the environment, blind people

rely on groping to locate and reach objects in peripersonal space. FingerSight solves this problem

using visual-to-tactile substitution. Our prototype consists of four haptic tactors embedded into a

ring worn on the index finger, with a tiny camera mounted on top. The camera image is processed

using computer vision to control haptic feedback to the user. The four tactors are evenly spaced

around the finger. Users are instructed to move their hand towards the target by vibrating the tactor

in that direction, guiding their motion until they reach the target. At that point, all tactors vibrate

simultaneously.

Two experiments were conducted on normally-sighted participants, to test the functionality

of our prototype. The first revealed that participants could discriminate between the five different

haptic stimulations with a mean accuracy of 89.4%, which improved with additional training. In

the second experiment, participants were blindfolded and instructed to move their hand wearing

the device to reach one of four Light Emitting Diodes (LEDs) mounted on a cardboard sheet within

arm’s reach. Infrared markers mounted on the device enabled its location to be recorded by an

optical tracker. A computer vision algorithm located the LED in the camera image and controlled

the tactors using two different strategies: (1) Worst Axis First and (2) Adjacent Tactor Pair. Results

 v

revealed that participants could follow the haptic instructions to reach the target with similar

accuracy for both strategies, but that the time to reach the target was significantly different.

Using control systems analysis, a closed loop proportional-integral-derivative (PID)

controller and plant was simulated. A model for the plant was computed on the experimental data

using autoregressive-moving average with exogenous terms (ARMAX), with the human subject

acting as the plant. The control system was then optimized to find the best strategy for tactor

activation, laying the groundwork for a future generation of FingerSight.

 vi

Table of Contents

Preface ... xi

1.0 Introduction ... 1

1.1.1 Wearable haptic systems on the waist ... 2

1.1.2 Wearable haptic systems on the wrist ... 3

1.1.3 Wearable haptic systems on the tongue .. 4

1.1.4 Wearable haptic/audio systems on the head ... 5

1.1.5 Wearable haptic systems on the hand ... 6

2.0 Hardware Design .. 9

3.0 Computer Vision Algorithm .. 17

4.0 Motion Tracking ... 18

5.0 Experimental Methods ... 22

5.3.1 Experiment 1: Tactor Localization ... 24

5.3.2 Experiment 2: Guidance to Target .. 25

6.0 Results .. 31

7.0 Control System Analysis... 39

8.0 Conclusion ... 48

Appendix A Program for FingerSight .. 50

A.1 Program for FingerSight with Worst Axis First guidance strategy 50

A.2 Program for FingerSight with Adjacent Tactor Pair guidance strategy 56

A.3 Program to control the Arduino Uno Board ... 62

Appendix B NDI Optotrack Certus Setup using Ethernet ... 66

 vii

Appendix C SWAT Analysis of Technologies Commercially available to Visually

Impaired People. ... 71

Bibliography .. 72

 viii

List of Tables

Table 1 Confusion matrix of error for first attempt .. 32

Table 2 Confusion matrix of erros for best attempt .. 32

Table 3 Statistical comparisons of experimental variables using Student's t-test 36

Table 4 Performance of PID controller ... 46

 ix

List of Figures

Figure 1 Flexible 3D printed ring ... 11

Figure 2 Second generation of Ring ... 12

Figure 3 Velcro ring and camera holder ... 13

Figure 4 FingerSight Circuit Schematic ... 14

Figure 5 Array of ten markers embedded in a holder ... 19

Figure 6 Marker Array attached to camera holder .. 20

Figure 7 External Trigger and Synchronization Circuit ... 21

Figure 8 LED Placement ... 23

Figure 9 Velcro belt around haptic tactors ... 24

Figure 10 Numeric Keypad to report the vibrating tactor(s) .. 25

Figure 11 Guidance to Target ... 26

Figure 12 End of trial .. 27

Figure 13 Axes for guidance ... 28

Figure 14 Comparision Between Mean Error Proportions: Experiment 1 33

Figure 15 Histogram of R2 for linear approach to the initial stopping point. 35

Figure 16 Means of the five parameters for each strategy. The error bar is 1 s.e.m. 35

Figure 17 Illustration of regression of Euclidean distance ... 37

Figure 18 Motion in x and y directions for each guidance strategy.. 38

Figure 19 Classical control system block diagram for FingerSight .. 39

Figure 20 Illustration of input and output signals of the Plant ... 40

Figure 21 ARMAX model with 65.02% fit .. 43

 x

Figure 22 Simulation of control system in Simulink .. 44

Figure 23 Step response of the PID controller .. 45

Figure 24 Output of the plant regulated by the tuned PID controller ... 46

Figure 25 SWAT Analysis .. 71

 xi

Preface

This thesis has been written to fulfill the graduation requirement of the Master of Science

in Bioengineering. FingerSight is a patented technology by the University of Pittsburgh. I am glad

that I could make some contributions to the development of the technology.

This thesis would not have been possible without the excellent guidance and persistent

motivation from my research advisor, Dr. George Stetten. I am grateful to him for granting me an

opportunity to conduct research in the Visualization and Image Analysis (VIA) Laboratory, and

for the continued help and wise counsel in making this thesis a reality. Development of the

prototype for FingerSight would have been impossible without his vision and assistance. I wish to

thank Dr. Roberta Klatzky for introducing me to the whole new world of Psychophysics and for

all the support and feedback during the past two years. I wish to express sincere gratitude towards

Dr. Zhi-Hong Mao, for his exceptional guidance and co-operation in the control system analysis

of FingerSight.

I would especially like to thank my parents and my sister, who deserve a special note of

thanks. Thanks for motivating me to dream big, and for the endless encouragement and support. I

thank my friends in Pittsburgh for accompanying me in the ups and downs. Lastly, I would like to

thank my lab-mates for maintaining a positive and friendly environment, leading to more

productive research space. Special thanks to Janet Canady, for helping me with research and the

experimental setup.

I hope FingerSight will eventually be a successful commercial product and make a

difference in the lives of people who are deprived of sight. It was a pleasure contributing towards

the development of a novel device, meant for a noble cause.

 1

1.0 Introduction

It is estimated that 1 million Americans were legally blind in the year 2015, while 3.2

Million Americans had visual impairment [1]. According to a recent study by the National Eye

Institute, it is estimated that these numbers will skyrocket to 8 Million in 2050 [2]. Such a large

prevalence of visually impaired people in the society, provides us researchers an opportunity to

bring a change in their lives. It is common to see a blind person struggle with finding things due

to the lack of vision. Blind people have to grope around to reach objects. The motivation for

FingerSight, was to quickly and reliably guide blind people to locate and reach objects in

peripersonal space.

1.1 Related Work

Visually impaired people have relied on white canes and watch dogs as the primary

assistive tool for more than eighty years. Even though a lot of technologies have been researched

and implemented, it is a common sight that blind people still rely on them for assistance.

Various electronic technologies have been researched and implemented with the goal of

improving the lives of visually impaired people. Some, such as magnification systems and optical

character recognitions systems, have focused on helping the subject to read the printed page.

Others are focused on helping blind people navigate in unknown environment using haptic

feedback, which is our approach. The sections below include a review of related work in this area.

 2

1.1.1 Wearable haptic systems on the waist

 Around 1998 a wearable tactile navigation system was developed at MIT’s Media

Lab. They devised a haptic directional display with a matrix of 4x4 vibrators embedded in the back

of a vest [3]. The matrix of vibrators could generate five instructions to guide blind people: four

cardinal directions and a stop signal. The guidance system consisted of infrared transceivers and a

wearable computer, apart from the wearable haptic array. IR was used to determine the location of

the user which was transmitted to the computer. The computer, already knowing the location of

the target, then decided the shortest path to that target and activated corresponding vibrators to

instruct the participant to move accordingly.

Later, a belt worn around the waist called ‘ActiveBelt’ was developed at Keio University,

Japan. [4]. The belt had 8 vibrators controlled by a microcomputer. The 8 vibrators were designed

to communicate the four cardinal directions and the four primary intercardinal directions. In an

experiment, they used four different pulse intervals of vibrations, all with a 50% duty cycle. For

walking, it was found that a pulse interval of 1000 ms (vibrator on for 500 ms and off for 500 ms)

worked the best for most participants. Further, based on the feedback from the participants and the

outcomes the experiment, it was concluded that, for practical applications, four vibrators were

sufficient instead of 8, and that it is desirable for the vibrators to be activated only when the users

were lost.

The Tactile Wayfinder was another haptic belt, designed and tested in Germany [5]. The

Tactile Wayfinder had 6 vibrators embedded in a belt. However, unlike ActiveBelt, where only

one vibrator was turned on at a time, two vibrators could be turned on simultaneously, giving

participants a sense of an in-between direction. In an experiment with 13 sighted participants, it

was found that people could perceive the indicated direction with 15 degrees mean deviation.

 3

Furthermore, a navigation experiment was conducted on seven participants on two different routes

with 5 and 6 waypoints. It was reported that in 99% of the recorded positions of the users via GPS,

the deviation from the desired path was less than 15 meters. The user only received directional

information of the next waypoint. We thought that such a strategy of giving users an in-between

direction could be used to guide participants using FingerSight. We called it the “Two Tactor

Vector Method,” as discuss it in Chapter 5.3.2.

1.1.2 Wearable haptic systems on the wrist

In 2007, a basic single wrist-worn vibrator was tested on 8 legally blind patients at the

University of California, Santa Barbra [6]. It was tested in two modes, while walking on an 80 m

path with 45 and 90 degree turns. In the on-course mode, the vibrator was activated when the user

was oriented in the desired direction (towards the next waypoint). In the off-course mode, the

vibrator was activated when the participant was oriented in the wrong direction. Even admitting

the limitations of using a single vibrator, the authors demonstrated that a single binary signal

(on/off) could guide legally blind participants. Based on such a binary feedback, we have designed

a warmer-cooler strategy for hand guidance using FingerSight, which is also discussed in Chapter

5.3.2. The authors also reported that haptic feedback was just as efficient as audio feedback in

guiding legally blind participants.

Another strap with 8 vibrators that could be worn around the wrist was developed at the

University of California, Santa Cruz, in 2015, and tested on 10 bind participants [7]. The authors

stressed that haptic instructions did not negatively impact user’s ability to listen to sounds from

the environment, since blind people depend on such auditory feedback from the environment to

accomplish various tasks in life thereby proving haptic instructions to be superior than auditory

 4

instructions not only in terms of practicality of use, but also in terms of ease of following

instructions. The authors reported that with haptic instructions participants could more closely

follow the desired path while walking. However, accuracy in following a desired path can be

achieved at the expense of higher time to reach the destination. In interviews with participants, it

was noted that they preferred haptic feedback to audio since it does not interrupt their hearing. In

addition to directional control while walking by activating a single vibrator to direct the user, they

also implemented a rotational control when the user was misoriented by more than 67.5 degrees.

In order to indicate the user to rotate in the direction of the waypoint, vibrators were sequentially

activated one after another in clockwise or anticlockwise direction

The Kahru tactile indoor navigator was developed at Carnegie Mellon University in 2001,

in the form of a harness consisting of 6 vibrating motors [8]. The vibrating motors generated six

different tactors that could instruct the user to move in the four cardinal directions as well as to

speed up or slow down. Communication with the vest/harness was established using an infrared

receiver, which activated appropriate vibrators.

1.1.3 Wearable haptic systems on the tongue

A Tongue Display Unit was introduced by the University of Wisconsin. The authors had

proposed that the way the brain processes visual information could be retained by stimulating the

tongue with an electrode array. Signals could be sent to the brain via a different pathway that deals

with touch. It was hypothesized that blind people could learn to perceive touch as sight in the

visual cortex. An array of 12x12 flexible electrodes was developed that stimulated the nerves on

the tongue in order to convey visual information picked up by a camera to the participant. It was

reported that after about 15 hours of training, the user loses the on-the-tongue sensations and

 5

perceives stimulations as shapes and features in space [9]. A few other researchers have continued

to work on tongue display to help blind people navigate around obstacles and to detect correct

stability and posture [10] [11]. However, it is evident upon market records that tongue displays did

not find a viable expression in terms of practicality of use and commercialization.

1.1.4 Wearable haptic/audio systems on the head

Head mounted assistive devices are the most widely used kind of wearable devices. The

vOICe system is a technology that was developed and patented by Philips Co. It converts visual

information from images into sound patterns. Loudness and frequency of sound represent

corresponding visual information such brightness, position and elevation [12].

Intelligent glasses (IG) are an application of vision and touch stimulating interface

developed as a novel electronic travel aid (ETA). The intelligent glasses provide tactile maps of

spaces, in turn helping blind people navigate in the environment. The visuo-tactile ETA consists

of stereo cameras placed on the eyes (glasses) that acquire binocular visual information. This visual

information is processed by a scene analyzer that implements computer vision algorithms whose

output is fed to a braille-like tactile display based on shape memory alloy. An experiment was

conducted on 20 healthy sighted participants to evaluate performance on (1) Shape and direction

recognition, (2) Environment structure understanding, and (3) Navigation using tactile maps. The

mean correct discrimination was different for different shapes and the worst for circle. Exploration

times ranged from about 5 seconds to 55 seconds depending on the shape. All subjects could

successfully recognize all the directions. A task where participants had to touch the tactile display

and then match it with one of the visual maps handed to them demonstrated that 90% of

 6

participants could acquire a good understanding of the environment by touch. Further, 5

participants were taken to the entrances of 4 different rooms and asked to explore the tactile display

of the room and then report what they felt as a drawing. Out of 5, three subjects could successfully

recognize the navigation environment [13]. It is evident that placing stereo cameras on glasses is

a promising approach for head mounted assistive devices.

“Seeing AI” is an ongoing research project at Microsoft in collaboration with Pivothead

that proposes to utilize the power of AI to describe text, colors, currency and object to the low

vision community using audio feedback. While wearing these unique glasses, the user can just

swipe the touch panel on the eyewear to take a photo. It then can analyze the image and can

translate image to speech to describe attributes of the person or object or just read text [14] [15].

The company wishes to commercialize the device and help the blind community. Seeing AI can

also be used just as a smartphone application, using the phone camera to take pictures. It is reported

that the application can scan barcodes, identify people and objects and can even describe facial

expressions of people and can describe scenes.

1.1.5 Wearable haptic systems on the hand

 Our approach is to mount the tactors on the hand, in part because of the high density of

mechanoreceptors. Out of the four mechanoreceptors responsible for sensory information

conveyed using touch, Pacini and Meissner receptors are involved in sensing vibrations. Meissner

receptors respond to touch or high amplitude, low frequency stimuli, whereas Pacini receptors

respond to vibration or low amplitude, high frequency stimuli [16]. We believe the vibrators used

in FingerSight stimulate the Pacini receptors. The two-point discrimination threshold (TPDT) is

the least for fingers at 2.5 mm, meaning that two different points on the finger must be only 2.5

 7

mm apart to perceive them as two different points. The TPDT of skin is different for different body

parts. It is extremely high for calf, thigh, belly, back, chest and arms, but substantially lower for

fingers, thumbs and on different parts of the face [17]. Given that the fingers have the best (highest)

haptic resolution, they are an appropriate target for haptic devices. In 2008 an innovative tactile

device that could be wrapped around the fingertip was developed [18]. The device was constructed

using electroactive polymer and soft actuators, which can stimulate the skin without any

electromagnetic transmission. Their softness and flexibility make them adaptable to any contours

of the human body, especially the fingertip where the haptic resolution is the best. The device can

simulate braille code or other codes that can provide haptic instructions to blind people. Even

though the device sounds very flexible, its high voltage requirement and low bandwidth present a

challenge to their practicality for use in everyday lives.

 Two prototypes for a vibrotactile display to be worn around the wrist and the forearm were

developed at the University of British Columbia, Canada. Both the displays consisted of 2

vibrating DC motors similar to the ones used in FingerSight, spaced 60mm apart. The vibrators

were worn by clinicians and activated intermittently at 140 Hz to alert the clinicians about

undesirable heart rate changes of a patient during treatment. It was proposed that the vibrations

could be used to send such basic alerts without distracting the clinicians, as a good way to replace

the auditory alarms that are generally used. Experiments were conducted using the prototypes and

it was concluded was both the prototypes worked equally well [19]. Such an interface can be

modified to help in navigating blind people.

 Several wearable and smart technologies have been researched and developed. However,

there have been mixed reviews about the viability of such wearable acoustic/tactile assistive

devices. Cognitive overload can be one of the major problems when arbitrary mappings from the

 8

senses to spatial information are used. Furthermore, auditory feedback potentially interferes with

the user’s ability to pick up auditory cues from the environment. Additionally, tactile interfaces

work precisely only on the fingers and tongue. Thus, it is a the most practical to stimulate receptors

on the fingers [20].

1.2 Related work from our Lab

PalmSight, an assistive technology helping the blind to locate and grasp objects, was

developed at the Carnegie Mellon University. PalmSight consisted of binocular cameras mounted

on the user’s hand and five vibrators attached to the back of the same hand. It used computer vision

methods to generate depth map and then identify and locate the target object in 3D space, and

activating corresponding vibration to help grab/grasp an object [21].

 9

2.0 Hardware Design

The prototype developed for FingerSight in this thesis consists of a ring worn around the

index finger embedded with four small tactile buzzers/vibrators (Adafruit part number 1201)

commonly found in cell phones and mounted on which is a small camera. These vibrators, which

in contact with the skin are known in the haptics community as tactors, are interfaced with an

Arduino Uno board that that controls the pattern of vibration. The Arduino Uno board and the

camera are each connected by universal serial bus (USB) to a computer that runs an algorithm to

decide which vibrator(s) is/are turned on depending on the visual information acquired from the

camera. The camera provides a video frame with a resolution of 480 x 640 to the computer every

0.5 seconds. The frame is processed using a computer vision algorithm that is described in Chapter

3. The computer vision algorithm detects a target object and based on the location of that object in

the frame, activates one or more of the tactors, thereby delivering haptic instructions to guide the

user to move the hand in left, right, up, down or straight forward directions relative to finger. The

tactors are activated depending on various guidance strategies that we have developed, which are

explained in the chapter 5.3.2.

We have devised experiments to evaluate the functionality of our prototype and the user’s

ability to follow haptic instructions using an optical tracking system (NDI Optotrack Certus),

which is capable of tracking the 3D location of infrared (IR) light emitting diodes (LEDs). We

mounted an array of 10 IR-LEDs on the ring, thus permitting continuous tracking of its location

and orientation, as described in Chapter 4.

 10

2.1 Iterations of the FingerSight Ring Prototype

We have gone through multiple iterations of the design of the FingerSight ring prototype.

Within the basic design of the ring with four tactors and a camera, we needed to ensure that the

vibration of a given tactor could be localized. Considering the small surface area around the base

of a finger, one of the biggest challenges of designing the ring was taking into account that the ring

could transmit the vibration from a given tactor to other parts of the finger, making it difficult for

the user/participant to discriminate and localize these vibrations.

The first version of the ring was 3D-printed using a flexible material (Ninjaflex

Thermoplastic Elastomer). It did not accommodate a camera, since the initial objective was to test

if the tactors can be embedded into the ring in such a way that it could fit around the index finger.

The challenging part was accommodating the relatively big size of the tactors (10 mm diameter),

as compared to the small diameter of the index finger and space between it and the middle finger,

leaving an extremely small permissible gap between each of the vibrators.

In our first prototype, a ring was printed (refer to Figure 1) and a circuit was built to

interface the haptic tactor with an Arduino UNO board. At this point, we realized that the variations

between the diameters of index fingers of different users is a particular challenge, especially since

the tactors have to be in the four cardinal directions around the index finger, for users to correctly

perceive the haptic instruction. Thus, a ‘one size fits all’ ring made of a non-stretchable material

did not work, because, depending on the diameter of the particular index finger, the four tactors

would not end up spaced by 90 degrees around that finger. Also due to the extremely small gap

between each tactor and the large width of the printed material, vibrations were transmitted through

the ring to the entire finger, making the user feel as if all the vibrators were activated. Moreover,

the limited accuracy of the 3D printer (LULZBOT Taz6) in manufacturing such a small device

 11

holding four tactors was difficult. Thus, tactor discrimination and localization were challenging

using this version of the ring.

Figure 1 Flexible 3D printed ring

In the second prototype we used a flexible rubber hair-band made from Silicone (Part

number: 38205_A) to act as a ring as shown in Figure 2. Each tactor was individually attached the

hair band ring using heat shrink tubing. Since the only link between the tactors was the flexible

rubber band, localization of vibrations was better. Separate from the vibrator band, a second ring

was designed, and 3D printed to act as a camera holder. After comparing a number of camera

models, we settled on a small cylindrical USB camera commercially available for inspecting

plumbing systems, because of its small size (lens diameter= 7mm), visual angle of 70 degrees and

low cost ($13).The two rings worn together served as a prototype which we tested in the laboratory.

Although this iteration of prototype was uncomfortable to wear and bulky, since it consisted of

 12

two different rings, it demonstrated that the vibrations of the right intensities could be localized

and related to images processed from the camera.

Figure 2 Second generation of Ring

We next considered using a more comfortable and flexible material for the ring. We chose

a flexible white elastic material commercially available for use in clothing (width: 19mm, Model

number: Dritz 9322W) sewed into a ring, with the four tactors glued to its inner surface as shown

in Figure 3, so that the vibrators were directly in contact with the skin of the index finger and

remained equally spaced over a range of finger sizes as the elastic stretched evenly between each

tactor. This, in turn, ensured better vibration localization, making it easy for the user to

discriminate vibration between one tactor and another. A small loop of elastic on the top (north)

of the ring acted as the camera holder. The prototype was tested, and an optimum intensity of

vibration was used as discussed in Section 2.3. The elastic ring suffered from an unfortunate

 13

tendency to cut off the blood supply to the finger, especially in subjects with larger fingers, so we

abandoned this prototype

Figure 3 Velcro ring and camera holder

Our final prototype consisted of a Velcro strap (Product Number: 90340) and a custom

camera holder. (See Figure 6 in chapter 4) Under the strap, the four tactors were individually

attached to the finger using a two-sided Scotch tape with a width of 0.5 inch. A sperate camera

holder was 3D printed, such that the Velcro passed through a notch in its base. The camera housed

in the holder had a resolution 640x 480, with a visual angle of 70 degree. At the top of the camera

holder, we attached a curved housing for an array of ten infrared diodes to track the movements of

the user during the experiments. For more details on 3D tracking refer to chapter 4.0.

 14

2.2 Hardware Design

Figure 4 FingerSight Circuit Schematic

The four tactors M1, M2, M3 and M4 are driven by an Arduino Uno. Voltage spikes are

produced by the motor and the diodes connected in reverse bias act as surge protectors, which

protects the microcontroller. The 0.1µF ceramic capacitors connected in parallel also absorb these

voltage spikes. To drive the tactors, 75 mA of current is needed. Since the Arduino can source

current only up to 40 mA, a transistor is used to amplify current.

 15

2.3 Design Parameters

In the design of FingerSight, there are multiple cognitive and ergonomic factors to consider

to ensure the functioning of the device. During our initial testing trials, we explored parameters

such as which finger is best suited for the ring, as well as intensity of vibrations at which haptic

instructions are delivered to ensure correct perception of these vibrations.

The two-point discrimination threshold of all the five fingers is almost the same,

approximately 2 mm [17][22]. People are usually accustomed to pointing at things using their

index finger. Also, as compared to the other fingers, the index finger has the advantage of freedom

of large movements. Even though the pinky finger has the same advantage, its use raises the

problem of the other fingers occluding the camera. Also, the index finger has larger circumference

than the pinky, which ensures a bigger gap between the tactors. Further, mounting the camera on

the top of the index finger guarantees that other fingers do not occlude the camera or the target.

The tactors were mounted in the north (dorsal), east (medial), west (lateral) and south

(ventral) directions on the index finger. In all cases, we used the dominant hand. During initial

testing in the laboratory, it was evident that when the tactors were not aligned in the cardinal

directions, it was more difficult to discriminate between vibrations from different tactors. For

example, in order to perceive the north (top) vibration and to distinguish it from other vibrations,

it was important that the tactor was clearly located in the north direction. We believe this is due

to a greater ease in using easily defined, and therefore more easily differentiable, directions.

As discussed earlier, one of the problems faced was transmission of vibration to the entire

base of the finger by the ring, and also the skin to an extent. To overcome this problem, we decided

to explore different intensities of vibration. The intensity of vibration felt by the user depends on

DC voltage applied to the tactors, as they are essentially vibrating motors. When 5 Volt DC voltage

 16

was applied to the tactors, the intensity of vibration was high but it also lead to higher transmission

of vibration. To reduce transmission and better localize the vibration, a voltage of 4V was applied,

which made the motor slower by 20% which reduced the transmission of vibration ultimately

making it easy to discriminate one tactors vibration from another. It also benefited by reducing the

distracting vibration noise substantially. However, when all four haptic tactors were activated

simultaneously (which we did to instruct the user to move straight or in order to indicate that they

are very close to the target object), we applied only 3.33 V across the tactor in order to reduce the

noise and facilitate better haptic instruction discrimination.

The next design parameter that needed to be optimized was the number of haptic

instructions delivered to the user every second. Initially we felt that the higher the number of

instructions per second, the faster the response would be. However, during testing on

sighted/healthy people, we realized that operating at faster than 2 instructions per second lead to

redundant signals. For example, even if 5 haptic instructions were delivered a second, people

would only perceive and act on two of them. Since, the subject pool for our experiments would

consist of sighted/healthy people, we were constrained to no more than this number of instructions

per second. The participants were also not habitual to the haptic instructions on the finger. With

persistent use, one might be able to respond to more than 2 haptic instructions per second.

 17

3.0 Computer Vision Algorithm

As stated earlier, the camera captures a frame every half a second. To detect the target

object, a computer vision algorithm was implemented using OpenCV. Connected pixels in a frame

that have a similar property are called a blob. In our case, connected pixels with a hue-saturation-

value (HSV) in a defined range formed blobs. Since we used LEDs mounted on a large cardboard

sheet as the target objects in our experiments, an algorithm was implemented to detect circular

blobs.

First of all, we define an HSV range to determine whether a given pixel is a member of the

blob or not. Upper and lower limits of HSV differ from color to color. Further, the frame acquired

from the camera is converted from red-green-blue (RGB) to HSV color space. A binary mask is

then created using the defined range of HSV values and a series of erosions and dilations is used

to remove small areas due to noise. The result is an effective segmentation of the pixels within

the LED from the black background.

Further, the contour of the blob is computed. A circle with minimum radius that encloses

the blob is computed and displayed on the frame. The (x,y) coordinates and the radius of the circle

are extracted to compute the correct haptic instruction to be delivered to the user. The (x,y) image

coordinates based indicate the direction in which to move in the x and y directions towards the

detected blob. Since the target appears bigger as one moves towards it, the radius of the circle

indicated how far the user is from the target. If there is no blob detected in a given frame, no haptic

instruction is delivered, indicating to the user that the target object is not in the field of view of the

camera.

 18

4.0 Motion Tracking

To verify the functionality of FingerSight, and to evaluate performance of different

guidance strategies, tracking the location of the finger of participants while performing the

experiment was necessary. NDI (Northern Digital Inc.) Optotrack Certus, is a high precision, high

accuracy and high-speed optical tracker that was used for the purpose of tracking [23].

In order to collect 3D position of the finger of participants, software developed by Northern

Digital named First Principles was used. Detailed instructions on setting up the Optotrack Certus

is included in the Appendix. The Optical tracking system consists of a position sensor, a system

control unit (SCU), a strober, and a set of markers. The position sensor is comprised of three

cameras that determine the location of markers. Markers used in the experiment were special

infrared (IR) LEDs, each containing four independent light-emitting elements in a small square to

improve accuracy. The markers are connected to the system control unit via a strober, which is

responsible for activating and deactivating infrared light emitting diodes. The three cameras built

into the optical tracker sense the location of these IR-LEDs, and report the 3D positions to the

computer, which are then displayed and stored using First Principles software.

To correctly record hand motion of participants in response to haptic instructions that are

delivered, we designed a rigid body containing an array of ten markers to be attached to the ring.

A minimum of three of the markers have to be properly oriented in the field of view of the three

cameras of the position sensor to correctly determine the pose (orientation and location) of the

rigid body. To ensure this minimum over a range of hand orientations, a 3D structure shaped as a

curved cap was printed in which were embedded the ten markers as shown in Figure 5.

 19

Figure 5 Array of ten markers embedded in a holder

The advantage of having ten markers was that even if participants rotated their finger or

wrist during experiments, the position sensor would still be able to track at least three of the

markers. The First Principles software records the position of each marker that is visible, and from

these computes and records the position of origin of the rigid body and orientations of the x,y and

z axes of the rigid body., which are defined by the user relative to the markers. Marker R in Figure

5 was set as the origin of our rigid body and markers M and Q used in addition to define the x, y

and z axes. Further, a rectangular surface defined by points abcd was attached to the camera holder,

which in turn attached to the ring (as shown in figure 6).

 20

Figure 6 Marker Array attached to camera holder

The data collected from the optical tracker consisted of the coordinates of each visible

marker and the coordinates of the origin of the rigid body in global coordinates (optical tracker

coordinates) and the orientations of the x, y and z axes of the array. Using the data collection

software, the frequency at which these measurements are recorded can be adjusted. For our

experiment we used a tracking frequency of 20 Hz. Participants were asked to move their hand in

particular tactor vibrations, with these haptic instructions being delivered at a frequency of 2 per

second. Thus, a tracking frequency of 20 Hz was sufficient to supply 10 locations for every haptic

instruction.

A challenge we faced was synchronizing the tracker with the FingerSight system, in order

to correctly analyze data. We needed to time-stamp the haptic instructions to know when a certain

haptic instruction was delivered relative to the movement of the participant based on the tracking

data. To accomplish this, we used the external triggering function of the tracker. An RS232

connection was established between the system control unit (SCU) of the tracker and an Arduino

Uno that controlled the Target LEDs for the experiment (see Fig. 7). This is the same Arduino

 21

used to control the tactors (see Figure 4 in Chapter 2) Using the RS232, the SCU was triggered by

the Arduino to start data collection. To synchronize the tracker with the FingerSight experiment,

we used the internal clock of the tracker. The tracker was operated at 20 Hz and the SCU clock

line was connected to a decade counter, whose output thus went high twice a second and was used

to trigger the haptic instruction by the Arduino. In this manner, complete synchronization was

achieved between the tracking and the haptic instructions.

Figure 7 External Trigger and Synchronization Circuit

 22

5.0 Experimental Methods

This chapter discusses the experimental methods in detail. It describes the subject

population, experimental setup, design, procedure, and measures.

5.1 Subject population

With IRB approval at Carnegie Mellon University, experiments were conducted with

volunteer undergraduates recruited from the Psychology Department subject pool. The participant

pool consisted of 19 males and 11 females. All 30 participants were sighted with no known visual

impairments and had the ability to feel vibration in their hand and control hand movement

normally. All participants signed a consent form before the experiment. The experiments lasted

for less than an hour.

5.2 Stimuli

Four white Light Emitting Diodes (LEDs) inserted into a black cardboard poster acted as

the target objects (refer to schematic shown in Figure 7 in Chapter 4). The four LEDs were placed

in arbitrary locations to form a quadrilateral with no sides parallel or equal, as shown in Figure 8,

to ensure that participant could not easily predict target location.

 23

Figure 8 LED Placement

5.3 Design

Participants were seated at a table (91 x 60) facing the poster containing the LED targets.

Four tactors (vibrators) were taped against the skin around the base of the index finger of their

dominant hand, oriented in the 4 cardinal directions around the axis of the finger. A disposable

Velcro belt, attached to the camera-holder and array of tracker markers, was then wrapped around

the tactors (as shown in Figure 9). A detailed hardware description is reported in Chapter 2.1. The

subsequent experiment was divided into two parts, which are explained in the following sections

(5.3.1 and 5.3.2).

 24

Figure 9 Velcro belt around haptic tactors

5.3.1 Experiment 1: Tactor Localization

In the first experiment, we tested if the participants could tell which tactors(s) were

activated. The participants held their dominant hand steady. Initially, the various tactor positions

(left, top, right, bottom, all 4) were demonstrated to familiarize the participant. Then, over a series

of 15 trials, each haptic instruction was tested three times, in random order. For each test, the

tactor(s) vibrated for 90 milliseconds, after which participants reported what they felt by means of

a numeric keypad. As shown in Figure 10, keys with arrows pointing in the four cardinal directions

were used to report single pulses, and the central key (number 5) corresponded to all 4. The

corresponding responses were recorded by the program along with the correct signals. If a

participant made more than 3 errors, the 5 possible stimuli were again presented and named. The

experiment was then repeated for these participants.

 25

Figure 10 Numeric Keypad to report the vibrating tactor(s)

5.3.2 Experiment 2: Guidance to Target

In this experiment, the participant attempted to move the hand wearing the FingerSight

apparatus in the direction of the perceived vibration in order to reach the target. If they felt the left

tactor vibrating, they moved their hand in left direction, and so on, for each cardinal direction.

When all four tactors were activated, it indicated that their finger was aligned with the target object,

in which case they were supposed to move straight forward, closer to the target object. Before the

first target approach, each of the five haptic instructions was manually executed three times and

labeled, to re-familiarize participants.

The participants were then blindfolded, and a curtain that covered the four target objects

during the initial part of the study was removed. To begin each trial, participant sat with their palm

 26

resting at the center of the table. All the target LEDs were approximately at a distance of 76.2 cm

from the starting point. One of the four target LEDs was turned on. At this point, participants had

to first search for the target by sweeping their hand in different directions so that the target object

would become visible to the camera, similar to how a sighted person might search for a target. As

soon as the target object was in the frame of the camera, participants got a vibration indicating the

direction of the target object. The participants received two haptic instructions per second. When

participants were properly aligned and within approximately 10 centimeters of the target, all the

tactors were activated for 3 seconds, instructing the participant to move their finger forward to

touch the target.

Figure 11 Guidance to Target

 27

Figure 12 End of trial

In order to guide the participant’s hand, we initially considered four different guidance

strategies, determining the pattern of vibrations used to instruct the participant how to move to the

target. The four guidance strategies (described below) are the following: (1) Worst Axis First, (2)

Adjacent Pair, (3) Two Tactor Vector, and (4) Warmer-Cooler.

For ease of understanding, we refer to the left/right axis as x, the up/down axis as y axis,

and the forward/backwards axis as z. So, to correct the left/right location of the target in the camera

frame, participants would move their hand along the x axis. To correct the up/down location of the

target in the camera frame, participants would move their hand along the y axis. When all the four

tactors were activated, the participants would move towards the target along the z axis. Figure 13

shows the three axes with respect to the 4 LED targets on the black poster.

 28

Figure 13 Axes for guidance

(1) Worst Axis First, as the name suggests, is based on an algorithm that determines if the

participant is further away in x direction or in y direction and indicates the user correct in the worst

direction first. For example, if the Cartesian coordinates of the target object relative to the center

of the frame (where the target is desired to be) are (20,50) the user gets a signal to move their hand

upward first, in turn minimizing the distance (error) in y direction. Once the y distance falls below

a certain threshold, the participant is indicated to move in the x direction i.e. towards the right.

Thus, with each new frame received from the camera, we determine the worst axis and correct it

first. The threshold was based on the size (radius) of the target object in the acquired frame. If the

center of an axis was a pixel that fell within the contours of the blob, the algorithm considered the

subject to be aligned in that specific direction. (It was hypothesized that this strategy would make

it easier for participants to attend to the signal since it focused on moving their hand only in one

cardinal direction at a time.

 29

(2) The Adjacent Pair strategy (also called the Adjacent Tactor Pair) is based on signaling

the participant to move in both the x and y directions, by alternating signals between right-left and

up-down, one after the other. Thus, instead of first correcting one of the directions completely,

participants are guided in both x and y directions, if appropriate, over a sequence of two

instructions. From the earlier example, if the Cartesian co-ordinates of the target object were

(20,50), the signal would guide them to move right and up with the next two instructions. Once

the finger was correctly aligned in one of the directions, the participants would get the same

directional indication twice or more in succession, which in turn also informed them that they were

aligned in the other direction. Subsequent mis-alignment would reinstate the alternation of both

instructions.

(3) The Two Tactor Vector strategy was designed to test if two adjacent tactors could be

activated at the same time to stimulate a vibration in the intermediate direction of the two tactors.

Thus, if the target object was located at (20,50), we would simultaneously activate both the top

and the right tactor. It was hypothesized that this would indicate the participant to move in an in-

between direction similar to tracking a vector in between the two direction. Ideally this would

minimize errors in both the directions simultaneously, which meant the participants would get

close to the target object more quickly. If the participant was already aligned in one of the axes,

only one tactor was activated.

(4) The Warmer-Cooler strategy was based on determining if the participant was moving

closer the target object or away from it. Participants would search for the object and try to reach it

without any directional haptic feedback. The only haptic instruction was whether the distance from

the target was getting smaller or larger. If the finger was moving closer to the target object, then a

tactor would be activated to indicate that they were moving in the correct direction.

 30

In pilot testing all four of the hand guidance strategies, we found that the Two Tactor

Vector and Warmer-Cooler strategies were ineffective. The problem with the Two Tactor Vector

strategy was that it was difficult to determine which two tactors were activated; the likely problem

was cross-talk due to transmission of vibration through bone and soft tissue. The Warmer-Cooler

strategy failed because the lack of a directional feedback led to unsystematic search for

improvement. Thus, it was evident that these two strategies could not effectively guide participants

to reach the target object, and would lead to arm and hand fatigue in any reasonable experiment

searching for the target.

Following the pilot study, the formal experiment was conducted with the two remaining

guidance strategies, namely Worst Axis First and Adjacent Pair. This experiment consisted of four

trials performed by subjects, two trials per guidance strategy. To make sure that subject could not

predict the location of target, a different target was used in each trial. For a particular guidance

strategy, the target object was LED 1 and LED 4 (diagonal pair), while for the other strategy the

target objects were LED 2 and LED 3 (refer to Figure 13). The sequence of strategy and targets

was counterbalanced across participants, to ensure there was no bias in the experiment.

 31

6.0 Results

This chapter discusses the results of the two experiments described in the previous chapter.

6.1 Tactor Localization Results

All 30 participants completed Experiment 1. To analyze if participants got better at tactor

discrimination with some additional training, we compared the first attempt and the best attempt

for each participant. 18 participants repeated the experiment, since they initially reported three or

more signals incorrectly. Table 1 and table 2 show the confusion matrix of errors after the first and

best (last) training periods. The numbers 1 through 5 each represent a particular haptic instruction:

(1) top, (2) right, (3) bottom, (4) left, and (5) all tactors activated. Only incorrect responses are

shown, in which the reported instruction does not correspond to the activated tactor; thus, the

diagonals of the matrices are left blank.

 32

Table 1 Confusion matrix of error for first attempt

Activated

Reported

1 2 3 4 5 Total Errors Error Proportion

1 0 7 3 2 12 0.13

2 4 9 10 2 25 0.28

3 15 5 0 0 20 0.22

4 5 6 0 0 11 0.12

5 10 0 3 4 17 0.19

Table 2 Confusion matrix of erros for best attempt

Activated

Reported

1 2 3 4 5 Total Errors Error Proportion

1 0 0 1 0 4 0.04

2 1 9 4 2 16 0.18

3 4 2 0 2 8 0.09

4 7 5 0 1 13 0.14

5 5 0 1 1 7 0.08

The bar chart shown below in Figure 14 shows the comparison between the first and best

attempts. It is evident that the mean number of errors were generally reduced significantly with

additional training, especially for haptic instructions 2, 3, and 5, for which errors were larger at

first. In summary the total proportion of errors reduced from 18.75% to 11.25%

 33

Figure 14 Comparision Between Mean Error Proportions: Experiment 1

6.2 Guidance to Target Results

 The same thirty blindfolded participants who had completed Experiment 1 performed

Experiment 2. During each trial, with a specific guidance strategy and a specific target, the haptic

instruction delivered to the participant and the corresponding tracked locations of the markers were

recorded. In order to analyze guidance to the target, we considered the distance of the participant’s

finger from the target in the x, y, and z directions, as well as the Euclidean distance of the finger

from the target in three-dimensional space, given by the equation below, where (xt, yt, zt) are the

co-ordinates of the target location.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = √((𝑥𝑥 − 𝑥𝑥𝑡𝑡)2 + (𝑦𝑦 − 𝑦𝑦𝑡𝑡)2 + (𝑧𝑧 − 𝑧𝑧𝑡𝑡)2))

0.13

0.28

0.22

0.12

0.19 0.19

0.04

0.18

0.09

0.14

0.08

0.11

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 INSTRUCTION 4 INSTRUCTION 5 MEAN ERROR
PROPORTION

Error Proportion_first Error Proportion_best

 (6-1)

 34

From the data it was evident that subjects generally approached the target linearly with

respect to time (as shown in Figure 17) in terms of the Euclidean distance from the point in time

when they received the first haptic instruction until they were 10 cm from the target. A regression

line was fit to the Euclidean distance vs. time during these periods. Figure 17 shows a

representative example with the two guidance strategies. The goodness of fit (R2) of this linear

regression is shown as a histogram for the participant population in figure 15 for each guidance

strategy. The slope of the linear fit and the time to approach the stopping point below 10 cm were

measured for each trial. We also measured movement beyond that point, in terms of the minimum

Euclidean distance reached relative to the LED and the total trial duration.

Out of the 30 participants, only data collected from 22 could be analyzed. Data collected

from the remaining 8 participants had to be discarded, because 6 subjects had missing data from

the tracker for an entire guidance strategy consisting of two trials, and 2 subjects had an

unacceptable linear fit (R2 < 0.6). For one of the subjects, who apparently had difficulty at the

beginning of a trial responding correctly to the tactors, we kept the overall results after adjusting

the period of descent to begin only when he started moving correctly in response to the haptic

instruction.

The graphs shown below in Figure 16 summarizes the results. It shows, for each guidance

strategy, the mean R2 and the slope of the regression on Euclidean distance to the initial stopping

at below 10 cm, along with the duration of that approach. Also shown is total time for the trial

and the minimum Euclidean distance, where the trial ceased.

 35

Figure 15 Histogram of R2 for linear approach to the initial stopping point.

Figure 16 Means of the five parameters for each strategy. The error bar is 1 s.e.m.

 36

From Figure 16 it appears that the mean slope, duration, and total time are all lower for the

Adjacent Pair strategy, as compared to the Worst Axis First strategy. The correlation (R2) and

minimum Euclidean distance at the end of the trial, in contrast, are very similar. A paired t-test

was performed on each of the five variables to test if they were significantly different for the two

strategies. The results are summarized in Table 3 below.

Table 3 Statistical comparisons of experimental variables using Student's t-test

Mean difference: Worst-First

minus Adjacent-Pair

Test Statistic (t)

p

R2 for linear approach -0.57 0.57 (ns)

Slope of approach -2.24 0.04*

Duration of approach 3.24 0.004**

Total trial time 3.28 0.004**

Minimum Euclidean distance -0.62 0.54 (ns)

The differences in slope and approach duration to reach the target location, as well as total

trial time, are significantly different for the two guidance strategies, with an advantage for the

Adjacent Pair guidance. As noted above, R2 and minimum Euclidean distance were similar for

the two guidance strategies, indicating comparable regularity in approach toward the final stopping

 37

point and the final distance from the target. This conclusion was supported by the finding that the

t-test failed to reach significance.

Figure 17 shows a representative example of the slopes and correlation of the regression

line for the two different strategies. While it appears that an exponential might be a better fit for

the Worst-First strategy, the linear fit meets our criterion, and it is clear that the regressions reflect

the slower approach to the target for Worst-Fit.

Figure 17 Illustration of regression of Euclidean distance

An explanation for the disadvantage of the Worst Axis First is that while correcting the

more distant direction from the target, participants could not adequately monitor the other, causing

them to drift, with the results of decreasing overall accuracy and increasing time. Just this trend

 38

is clearly visible in the sample below showing a participant’s trajectory on the x and y axes for

each strategy. There is a clear zig-zag as corrections trade off in Worst First, as opposed to the

regular approach on both axes for Adjacent Pair, as shown in Figure 18.

Figure 18 Motion in x and y directions for each guidance strategy

 39

7.0 Control System Analysis

Classical control theory principles can be used to understand the behavior of a dynamic

system and to regulate that system. The system that is being controlled is called a plant, and the

system controlling the plant is referred to as the controller. Feedback is fed from the output of the

plant back to the controller, informing the controller about the current state of the plant (see Fig.

19). Depending on the reference signal Xref and the output of the plant X, the controller can

feedforward an appropriate signal u to the plant, in turn regulating the plant. In the framework of

classical control, the human subject who is being guided to reach the target acts as the plant. The

FingerSight, system consisting of the camera, Arduino Uno and the four haptic tactors, act as the

controller, as shown in Figure 19.

Figure 19 Classical control system block diagram for FingerSight

 40

7.1 Model of the Plant

Since a human being is involved in the control loop, the output of the plant contains

unpredictable noise and disturbances. Data acquired by the optical tracker during a representative

trial with the Adjacent-Pair guidance strategy was used to model the plant. The two directions of

guidance, namely x and y, were decoupled to analyze the response of the plant. The input signal to

the plant is a rectangular pulse with a duration of 90 ms, delivered once each second. During this

pulse, one of the tactors in x direction (left/right) or in y direction (top/bottom) is activated. The

output of the plant is the location of the finger in that corresponding direction. In other words, if

the input to the plant is a pulse directing the human to move their hand in the left or right direction,

the corresponding output of plant is the responding changes in the x coordinate of the hand. This

continues until the output of the plant is matched with the xtarget, the x coordinate of the target

object. Figure 20 shows the input and output of the plant for a representative example using the

Adjacent-Pair guidance strategy.

Figure 20 Illustration of input and output signals of the Plant

 41

As already stated, since the plant consists of a human user, the output of the plant is prone

to large errors and disturbances. This can be clearly seen in the representative output of the plant

as shown in in Figure 21. In order to model the relationship between the input and output of the

plant, an ARMAX model is used. ARMAX stands for autoregressive-moving average with

exogenous terms. ARMAX modelling is useful in the reliable estimation of stochastic dynamics

of a system in the presence of strong noise and dominating disturbances [24] [25]. The relationship

between input and output and the error are estimated using a recursive extended last square (RELS)

method. This method minimizes the sum of squares of prediction errors [26]. For a system with

input u(k), also termed the exogenous variable, output y(k), also called the autoregressive variable,

and moving average or white noise e(k), the linear differential equation of ARMAX model can is

given by the following equation:

𝑦𝑦(𝑘𝑘) + 𝑒𝑒1𝑦𝑦(𝑘𝑘 − 1) + ⋯+ 𝑒𝑒𝑛𝑛𝑎𝑎𝑦𝑦(𝑘𝑘 − 𝑒𝑒𝑎𝑎)

= 𝑏𝑏1𝑒𝑒(𝑘𝑘 − 𝑒𝑒𝑘𝑘) + ⋯+ 𝑏𝑏𝑛𝑛𝑏𝑏𝑒𝑒(𝑘𝑘 − 𝑒𝑒𝑘𝑘 − 𝑒𝑒𝑏𝑏 + 1) + 𝑒𝑒1𝑒𝑒(𝑘𝑘 − 1) + ⋯

+ 𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒(𝑘𝑘 − 𝑒𝑒𝑐𝑐) + 𝑒𝑒(𝑘𝑘)

𝑒𝑒𝑎𝑎 = 𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑒𝑒𝑒𝑒𝑑𝑑

𝑒𝑒𝑏𝑏 = 𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑧𝑧𝑒𝑒𝑛𝑛𝑜𝑜𝑑𝑑 + 1

 𝑒𝑒𝑐𝑐 = 𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶 𝑒𝑒𝑜𝑜𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

𝑒𝑒𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑 𝑑𝑑ℎ𝑒𝑒𝑑𝑑 𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑏𝑏𝑒𝑒𝑜𝑜𝑜𝑜𝑛𝑛𝑒𝑒 𝑑𝑑ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑑𝑑 𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑒𝑒 𝑜𝑜𝑒𝑒𝑑𝑑𝑝𝑝𝑒𝑒𝑑𝑑

For ease of understanding, the above equation can be rewritten as follows, where q is the

delay operator.

(7-1)

 42

𝐴𝐴(𝑞𝑞)𝑦𝑦(𝑘𝑘) = 𝐵𝐵(𝑞𝑞)𝑒𝑒(𝑘𝑘 − 𝑒𝑒𝑘𝑘) + 𝐶𝐶(𝑞𝑞)𝑒𝑒(𝑘𝑘)

ARMAX (na, nb, nc, nk) models are defined by the four parameters na, nb, nc, nk. The

parameter na describes the number of previous output samples that affect the present output.

Similarly, the parameter nb+1 describes the number of previous inputs that affect the current

output.

The system identification toolbox in MATLAB provides a user-friendly graphical user

interface to formulate ARMAX models based on the input and output data [27]. Using this toolbox,

ARMAX models of various orders were formulated, trading the complexity of the model off

against the goodness of the corresponding fit. ARMAX (2,1,1,1) was found to yield an acceptable

fit, in which the input to the plant and white noise explained 65.02% of variation in the output of

the plant. ARMAX(2,1,1,1) as shown in Figure 21. The equation for this model and the transfer

function of the plant obtained from it is given by the equations (7-3) and (7-4) respectively.

(1 − 1.839𝑞𝑞−1 + 0.839𝑞𝑞−2)𝑦𝑦(𝑘𝑘)

= (−9.785𝑞𝑞−1 + 8.394𝑞𝑞−2)𝑒𝑒(𝑘𝑘) + (1 + 0.768801𝑞𝑞−1)𝑒𝑒(𝑘𝑘)

𝑇𝑇𝑛𝑛𝑒𝑒𝑑𝑑𝑜𝑜𝑒𝑒𝑛𝑛 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑜𝑜𝑒𝑒 𝐺𝐺(𝑧𝑧) =
𝑌𝑌(𝑍𝑍)
𝑋𝑋(𝑧𝑧) =

(−9.785𝑧𝑧−1 + 8.394𝑧𝑧−2)
(1 − 1.839𝑧𝑧−1 + 0.839𝑧𝑧−2).

(7-2)

(7-3)

(7-4)

 43

Figure 21 ARMAX model with 65.02% fit

7.2 Simulation of the Control System

The transfer function for the plant obtained from the ARMAX model was used to simulate

a closed-loop control system based on a proportional-integral-derivative (PID) controller to

regulate the plant.

The transfer function of a discrete PID controller is as follows:

𝐶𝐶(𝑍𝑍) = 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
𝑇𝑇𝑆𝑆
2
𝑍𝑍 + 1
𝑍𝑍 − 1

+ 𝐾𝐾𝐷𝐷
𝑍𝑍 − 1
𝑍𝑍𝑇𝑇𝑆𝑆

𝐾𝐾𝑃𝑃 = 𝑃𝑃𝑛𝑛𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑑𝑑𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒

𝐾𝐾𝐼𝐼 = 𝐼𝐼𝑒𝑒𝑑𝑑𝑒𝑒𝐼𝐼𝑛𝑛𝑒𝑒𝑒𝑒 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒

𝐾𝐾𝐷𝐷 = 𝐷𝐷𝑒𝑒𝑛𝑛𝑒𝑒𝐷𝐷𝑒𝑒𝑑𝑑𝑒𝑒𝐷𝐷𝑒𝑒 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒

(7-5)

 44

𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑛𝑛𝑒𝑒

The output of controller u(t) for a PID controller is equal to

𝑒𝑒(𝑑𝑑) = 𝐾𝐾𝑃𝑃𝑒𝑒(𝑑𝑑) + 𝐾𝐾𝐼𝐼∫𝑒𝑒(𝑑𝑑)𝑒𝑒𝑑𝑑 + 𝐾𝐾𝐷𝐷
𝑒𝑒𝑒𝑒(𝑑𝑑)
𝑒𝑒𝑑𝑑

Using the MATLAB Simulink program, a closed loop control system was simulated as

shown in Figure 22. The PID controller was tuned using the built-in PID tuner in Simulink. Manual

adjustments were made to the response time and the transient behavior was optimized to minimize

rise time and settling time. Figure 23 shows the step response of the tuned PID controller, along

with the control parameters.

Figure 22 Simulation of control system in Simulink

(7-6)

 45

Figure 23 Step response of the PID controller

The values of the gains and the performance parameters of the PID controller are

summarized in Table 4 shown below. The output of the plant regulated by the tuned PID controller

exhibits much less disturbance and noise, as shown in Figure 24. The transfer function of the PID

controller can be written as follows, with a sample time of 0.5 s:

𝐶𝐶(𝑍𝑍) = (−0.0300) − (0.00117)
(0.5)

2
𝑍𝑍 + 1
𝑍𝑍 − 1

+ (0.03844)
𝑍𝑍 − 1
0.5𝑍𝑍

𝐶𝐶(𝑍𝑍) =
(0.0466)𝑍𝑍2 − (0.1242)𝑍𝑍 + 0.0769

𝑍𝑍2 − 𝑍𝑍

(7-7)

 (7-8)

 46

Table 4 Performance of PID controller

KP -0.0300

KI -0.00117

KD 0.03844

Rise Time 5.6 s

Settling Time 64.4 s

Closed Loop Stability Stable

Figure 24 Output of the plant regulated by the tuned PID controller

 47

Since the plant model was based on actual motion data collected from the tracker, this

simulation of the control system may provide insights into possible improvements to the

FingerSight prototype and hand guidance strategy.

 48

8.0 Conclusion

This thesis demonstrates that FingerSight can be used by visually impaired people to locate

and reach objects in their peripersonal space. The experiments demonstrated that untrained people

can discriminate haptic feedback in four cardinal directions, and that this feedback can be used to

guide them to target objects. Presumably, a habitual visually impaired user would quickly

capitalize on experience to perform even more effectively. Since FingerSight does not rely on

audio/sonic feedback, nor does it generate high-dB sound, FingerSight should minimally if at all

interfere with the sounds in the environment that blind people rely on for performing other tasks.

Objects used in day to day activities tend to be substantially larger than the LEDs used as target

objects in our experiment. We believe that the task of locating and guiding the hand in the direction

of larger objects is a much simpler task that can likely be accomplished in a significantly smaller

time.

FingerSight is a commercially viable device, in terms of prospective expense of fabrication,

power consumption, and ease of use. Its current cost of components, $60, would be reduced by

mass fabrication. Computation could be offloaded to a cloud-based agent or a smartphone

application. Such accessible enabling technologies are critical in alleviating the known linkage

between poverty and vision loss [28].

 49

8.1 Future Work

FingerSight can be trained to recognize objects used in day-to-day lives by training a neural

network, which a neural network on a case to case basis to recognize objects that a given visually

impaired person uses. This would enhance commercial value. As noted above, FingerSight could

be interfaced with a smart phone, using an Android and an OIS application, based on the principles

of the current algorithms for object detection and guidance strategy. The application could be

enhanced with the capability to receive audio commands. The visually impaired user could just

say “FingerSight: Find my Wallet”, and the application would respond to haptic feedback to locate

and reach the object, as done by users in Experiment 2. The guidance strategy can further be

improved on the basis of the PID controller shown in chapter 7.

During the course of the development of the prototype for FingerSight, we presented

FingerSight at two networking and commercialization events. Investors and companies thought

that FingerSight is a promising device and has the potential to change the lives of those deprived

of sight.

 50

Appendix A Program for FingerSight

Appendix A.1 and A.2 consist of the program for FingerSight, used in the experiments,

written using Python. Appendix A.3 consists of the program used to interface the Arduino,

programmed using the Arduino IDE.

A.1 Program for FingerSight with Worst Axis First guidance strategy

from collections import deque
import numpy as np
import argparse
import imutils
import cv2
import serial
import time
import math
#print("THIS IS DONE")
arduino = serial.Serial('/dev/tty.usbserial-DN02MZ74',9600)
time.sleep(2) #wait for 2 secounds for the communication to get established
arduino.readline() #read the serial data and print it as li
ap = argparse.ArgumentParser()
ap.add_argument("-b", "--buffer", type=int, default=64,
 help="max buffer size")
args = vars(ap.parse_args())

if not args.get("video", False):
 camera = cv2.VideoCapture(0)

LED_HSV_Lower = (0,0,235)
LED_HSV_Upper = (180,18,255)
pts = deque(maxlen=args["buffer"])
see=0

import xlwt
wb=xlwt.Workbook()

 51

sheet=wb.add_sheet("Experiment_Part2")

count=[]
rad=[]
erx=[]
ery=[]
instr=[]
cenlocx=[]
cenlocy=[]
#print("Start Data Collection")
a=time.time()
arduino.write(('6').encode())
time.sleep(0.1)

while True:
 arduino.write(('8').encode())
 ser_data = arduino.readline()
 (grabbed, frame) = camera.read()

 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 # construct a mask for the color "green", then perform
 # a series of dilations and erosions to remove any small
 # blobs left in the mask
 mask = cv2.inRange(hsv, greenLower, greenUpper)
 mask = cv2.erode(mask, None, iterations=2)
 mask = cv2.dilate(mask, None, iterations=2)
 # find contours in the mask and initialize the curren
 # (x, y) center of the ball
 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)[-2]
 center = None

 # only proceed if at least one contour was found
 if len(cnts) > 0:
 see=1
 # find the largest contour in the mask, then use
 # it to compute the minimum enclosing circle and
 # centroid
 c = max(cnts, key=cv2.contourArea)
 ((x, y), radius) = cv2.minEnclosingCircle(c)
 M = cv2.moments(c)
 center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
 sf = frame.shape

 52

 # only proceed if the radius meets a minimum size
 #if radius > 10:
 # draw the circle and centroid on the frame,
 # then update the list of tracked points
 cv2.circle(frame, (int(x), int(y)), int(radius),(0, 255, 255), 2)
 cv2.circle(frame, center, 5, (0, 0, 255), -1)
 cv2.circle(frame, (int(sf[1]/2),int(sf[0]/2)), 5, (0,0,255), -1)
 cv2.line(frame, (int(sf[1]/2),0),(int(sf[1]/2),int(sf[0])),(255,0,0),1,1)
 cv2.line(frame, (0,int(sf[0]/2)),(int(sf[1]),int(sf[0]/2)),(255,0,0),1,1)
 if radius>0:
 #print("Radius= %d",radius)
 Xerror= abs((sf[1]/2)-center[0])
 Yerror= abs((sf[0]/2)-center[1])
 #print(Xerror,Yerror)
 if radius>140:
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 erx.append(Xerror)
 ery.append(Yerror)
 cenlocx.append(center[0])
 cenlocy.append(center[1])
 instr.append("SH")
 #arduino.write(('7').encode())

 #print("Go straight and Hit the Dot")
 #arduino.write(('1').encode())
 #arduino.write(('2').encode())
 #arduino.write(('3').encode())
 arduino.write(('9').encode())
 time.sleep(2)
 arduino.write (('0').encode())
 time.sleep(0.5)
 #arduino.write(('1').encode())
 #arduino.write(('2').encode())
 #arduino.write(('3').encode())
 arduino.write(('9').encode())
 time.sleep(2)
 arduino.write(('0').encode())
 #print("************ THE END *************")
 break

 if center[0]<(sf[1]/2)+1*radius and center[0]>(sf[1]/2)-1*radius and
center[1]<(sf[0]/2)+1*radius and center[1]>(sf[0]/2)-1*radius:

 53

 print("Go Straight and Hit The DOT")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 erx.append(Xerror)
 ery.append(Yerror)
 cenlocx.append(center[0])
 cenlocy.append(center[1])
 instr.append("S")
 arduino.write(('7').encode())
 #arduino.write(('1').encode())
 #arduino.write(('2').encode())
 #arduino.write(('3').encode())
 arduino.write(('5').encode())
 time.sleep(0.2)
 arduino.write(('0').encode())

 elif Xerror>Yerror:
 print("Fix LEFT RIGHT")
 if center[0]<(sf[1]/2):
 print("Go Left <------ <---- <----- <-------")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 erx.append(Xerror)
 ery.append(Yerror)
 cenlocx.append(center[0])
 cenlocy.append(center[1])
 instr.append("L")
 arduino.write(('7').encode())

 arduino.write(('4').encode())
 time.sleep(0.07)
 arduino.write(('0').encode())
 elif center[0]>(sf[1]/2):
 #print("Go RIGHT ----> -------> ---------->")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 erx.append(Xerror)
 ery.append(Yerror)
 cenlocx.append(Xerror)

 54

 cenlocy.append(Yerror)
 instr.append("R")
 arduino.write(('7').encode())

 arduino.write(('2').encode())
 time.sleep(0.07)
 arduino.write(('0').encode())
 else:
 print("######### SOME CONDITION I DID NOT THINK OF
PART 1###")
 elif Yerror>Xerror:

 print("")

 if center[1]<(sf[0]/2):
 #print("go up ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 erx.append(Xerror)
 ery.append(Yerror)
 cenlocx.append(center[0])
 cenlocy.append(center[1])
 instr.append("U")
 arduino.write(('7').encode())

 arduino.write(('1').encode())
 time.sleep(0.07)
 arduino.write(('0').encode())
 elif center[1]>(sf[0]/2):
 #print("go down \/\/\/\/\/\/\/")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 erx.append(Xerror)
 ery.append(Yerror)
 cenlocx.append(center[0])
 cenlocy.append(center[1])
 instr.append("D")
 arduino.write(('7').encode())

 arduino.write(('3').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 55

 else:

 b=time.time()
 c=b-a
 count.append(c)
 rad.append(0)
 erx.append(0)
 ery.append(0)
 cenlocx.append(0)
 cenlocy.append(0)
 instr.append("M")

 pts.appendleft(center)

 # show the frame to our screen
 cv2.imshow("Frame", frame)

 key = cv2.waitKey(1) & 0xFF

 # if the 'q' key is pressed, stop the loop

for i in range (0,len(rad)):
 sheet.write(i,0,count[i])
 sheet.write(i,1,rad[i])
 sheet.write(i,2,erx[i])
 sheet.write(i,3,ery[i])
 sheet.write(i,4,cenlocx[i])
 sheet.write(i,5,cenlocy[i])
 sheet.write(i,6,instr[i])
wb.save("Part2_Worst_LED3_Sub29")

cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()

 56

A.2 Program for FingerSight with Adjacent Tactor Pair guidance strategy

from collections import deque
import numpy as np
import argparse
import imutils
import cv2
import serial
import time
import math

arduino = serial.Serial('/dev/tty.usbserial-DN02MZ74',9600)
time.sleep(2) #wait for 2 secounds for the communication to get established
arduino.readline() #read the serial data and print it as line

ap = argparse.ArgumentParser()
ap.add_argument("-b", "--buffer", type=int, default=64,
 help="max buffer size")
args = vars(ap.parse_args())

if not args.get("video", False):
 camera = cv2.VideoCapture(0)

LED_HSV_Lower = (0,0,235)
LED_HSV_Upper = (180,18,255)
pts = deque(maxlen=args["buffer"])
see=0
import xlwt
wb=xlwt.Workbook()
sheet=wb.add_sheet("Exp_both")

count=[]
rad=[]
inst=[]
cenx=[]
ceny=[]
a=time.time()
arduino.write(('6').encode())
time.sleep(0.1)

while True:
 arduino.write(('8').encode())
 ser_data = arduino.readline()

 57

 (grabbed, frame) = camera.read()

 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 # construct a mask for specified HSV limits
 # a series of dilations and erosions to remove any small
 # blobs left in the mask
 mask = cv2.inRange(hsv, LED_HSV_Lower, LED_HSV_Upper)
 mask = cv2.erode(mask, None, iterations=2)
 mask = cv2.dilate(mask, None, iterations=2)
 # find contours in the mask and initialize the current
 # (x, y) center of the ball
 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)[-2]
 center = None

 # only proceed if at least one contour was found
 if len(cnts) > 0:
 see=1
 # find the largest contour in the mask, then use
 # it to compute the minimum enclosing circle and
 # centroid
 c = max(cnts, key=cv2.contourArea)
 ((x, y), radius) = cv2.minEnclosingCircle(c)
 M = cv2.moments(c)
 center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
 print("centre=", center)
 print("radius=",radius)
 sf = frame.shape
 cv2.circle(frame, (int(x), int(y)), int(radius),(0, 255, 255), 2)
 cv2.circle(frame, center, 5, (0, 0, 255), -1)
 cv2.line(frame, (int(sf[1]/2),0),(int(sf[1]/2),int(sf[0])),(255,0,0),1,1)
 cv2.line(frame, (0,int(sf[0]/2)),(int(sf[1]),int(sf[0]/2)),(255,0,0),1,1)
 if radius > 0:
 print("circle found with raduis r= %d",radius)
 if radius>140:
 b=time.time()
 c=b-a
 count.append(c)

 58

 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("SH")
 print("Go staright and hit the target")
 #arduino.write(('1').encode())
 #arduino.write(('2').encode())
 #arduino.write(('3').encode())
 arduino.write(('9').encode())
 time.sleep(2)
 arduino.write (('0').encode())
 time.sleep(0.5)
 #arduino.write(('1').encode())
 arduino.write(('9').encode())
 #arduino.write(('3').encode())
 #arduino.write(('4').encode())
 time.sleep(2)
 arduino.write (('0').encode())
 print("also the end of the program")
 break

 if center[0]<(sf[1]/2)+2*radius and center[0]>(sf[1]/2)-2*radius:
 print("left right alligned---")
 if center[1]<(sf[0]/2)+2*radius and center[1]>(sf[0]/2)-2*radius:

 print("UP DOWN ALIGNE||||||||||||||||||||||||||||||||||||")
 print("...................GO STAIGHT AHEAD..................all buzz")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("S")
 #arduino.write(('1').encode())
 #arduino.write(('2').encode())
 #arduino.write(('3').encode())
 arduino.write(('5').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 elif center[1]<(sf[0]/2)-2*radius:

 59

 print("GO UP")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("U")
 arduino.write(('1').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())
 updown=1

 elif center[1]>(sf[0]/2)+2*radius:
 print("GO DOWN")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("D")
 updown=2
 arduino.write(('3').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 elif center[0]<(sf[1]/2)-2*radius:
 print("Go Left <------ <---- <----- <-------")
 leftright=1
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("L")
 arduino.write(('4').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 if center[1]<(sf[0]/2)+2*radius and center[1]>(sf[0]/2)-2*radius:
 print("ALREADY ALIGNED IN THE VERTCAL DIRECTION")
 elif center[1]<(sf[0]/2)-2*radius:
 print("go up ^^^^^^^^^^^^^^^^^^^^^^^^")

 60

 b=time.time()
 c-b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("U")
 updown=1
 arduino.write(('1').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 elif center[1]>(sf[0]/2)+2*radius:
 print("go DOWN \/\/\/\/\/")
 updown=2
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("D")
 arduino.write(('3').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 elif center[0]>(sf[1]/2)+2*radius:
 print("Go RIGHT ----> -------> ---------->")
 leftright=2
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("R")
 arduino.write(('2').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 if center[1]<(sf[0]/2)+2*radius and center[1]>(sf[0]/2)-2*radius:
 print("ALREADY ALIGNED IN TOP-BOTTOM AXIS")
 elif center[1]<(sf[0]/2)-2*radius:
 print("go up ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^")

 61

 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("U")
 updown=1
 arduino.write(('1').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 elif center[1]>(sf[0]/2)+2*radius:
 print("go down \/\/\/\/\/\/\/")
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(radius)
 cenx.append(center[0])
 ceny.append(center[1])
 inst.append("D")
 updown=2
 arduino.write(('3').encode())
 time.sleep(0.07)
 arduino.write (('0').encode())

 cv2.line(frame, (int(sf[1]/2),0),(int(sf[1]/2),int(sf[0])),(255,0,0),1,1)
 cv2.line(frame, (0,int(sf[0]/2)),(int(sf[1]),int(sf[0]/2)),(255,0,0),1,1)

 else:
 b=time.time()
 c=b-a
 count.append(c)
 rad.append(0)
 cenx.append(0)
 ceny.append(0)
 inst.append("M")
 # update the points queue
 pts.appendleft(center)

 # show the frame to our screen
 cv2.imshow("Frame", frame)

 key = cv2.waitKey(1) & 0xFF

 62

 # if the 'q' key is pressed, stop the loop

for i in range (0,len(rad)):
 sheet.write(i,0,count[i])
 sheet.write(i,1,rad[i])
 sheet.write(i,2,cenx[i])
 sheet.write(i,3,ceny[i])
 sheet.write(i,4,inst[i])
wb.save("Part2_both_LED2_Sub30")

cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()

A.3 Program to control the Arduino Uno Board

int data;
const int motorPina = 3; //a
const int motorPinb = 5; //b
const int motorPinc = 9; //c
const int motorPind = 10; //d
const int buff1 = 6; //From SCU via Certus
const int buff2 = 7; //From SCU via certus
int LED3 = A0;
int LED4 = A1;
int LED1 = A4;
int LED2 = A5;
int clk_decade = 12; //output of the decade counter which is (freq of SCU clock/10),
active high
//int storedState_clk_decade;
bool waiting_for_negative_edge;

void setup()
{
 Serial.begin(9600); //initialize serial COM at 9600 baudrate
 pinMode(LED_BUILTIN, OUTPUT); //make the LED pin (13) as output
 pinMode(motorPina, OUTPUT);
 pinMode(motorPinb, OUTPUT);
 pinMode(motorPinc, OUTPUT);
 pinMode(motorPind, OUTPUT);

 63

 pinMode(buff1, OUTPUT);
 pinMode(buff2, OUTPUT);
 digitalWrite (LED_BUILTIN, LOW);
 Serial.println("Hi!, I am Arduino");

 pinMode(LED1, OUTPUT);

}

void loop()
{
 analogWrite(LED2, 150);
 //analogWrite(LED4,150);

 if (Serial.available())
 {
 data = Serial.read();

 if (data =='1')
 {
 analogWrite(motorPina, 204);
 //delay(90);
 delay(120);
 analogWrite(motorPina, 0);
 }

 else if (data =='2')
 {
 analogWrite (motorPinb, 204);
 delay(90);

 analogWrite (motorPinb, 0);
 }

 else if (data == '3')
 {

 analogWrite (motorPinc, 204);
 delay(90);
 analogWrite (motorPinc, 0);
 }

 else if (data == '4')
 {
 analogWrite (motorPind, 204);
 //delay(90);

 64

 analogWrite (motorPind, 0);
 }

 else if (data == '0')
 {
 analogWrite (motorPina, 0);
 analogWrite (motorPinb, 0);
 analogWrite (motorPinc, 0);
 analogWrite (motorPind, 0);
 }

 else if (data == '5')
 {
 analogWrite (motorPina, 220);
 analogWrite (motorPinb, 220);
 analogWrite (motorPinc, 220);
 analogWrite (motorPind, 220);
 //190
 delay(90);
 //delay(180);
 analogWrite (motorPina, 0);
 analogWrite (motorPinb, 0);
 analogWrite (motorPinc, 0);
 analogWrite (motorPind, 0);
 }
else if (data == '9')
 {
 analogWrite (motorPina, 170);
 analogWrite (motorPinb, 170);
 analogWrite (motorPinc, 170);
 analogWrite (motorPind, 170);
 //delay(15000);
 //analogWrite (motorPina, 0);
 //analogWrite (motorPinb, 0);
 //analogWrite (motorPinc, 0);
 //analogWrite (motorPind, 0);

 }

 else if (data == '6')
 {

 digitalWrite(buff1, HIGH);
//delay(10);
 digitalWrite(buff1,LOW);

 65

//delay(10);
//digitalWrite(buff1,HIGH);

 }

 else if (data == '7')
 {
 digitalWrite(buff2,HIGH);
 delay(10);
 digitalWrite(buff2, LOW);
 //delay(10);
 //digitalWrite(buff2, HIGH);
 }
 }

 else if (data == '8')
 //Look for falling edge on clk_decade
 {
 while(digitalRead(clk_decade)==LOW); //Wait until HIGH

 waiting_for_negative_edge = true;

 while(waiting_for_negative_edge)
 {
 if (digitalRead(clk_decade)==LOW)
 {
 Serial.println('1');
 waiting_for_negative_edge = false;
 }
 }
 }
}

 66

Appendix B NDI Optotrack Certus Setup using Ethernet

i. Configure the host computer.

Configure the [Optotrak System] and [Ethernet Options] sections of the

optotrak.ini file at c:\ndigital\settings as follows.

[OPTOTRAK System]

ResetTimeout= 500

Driver= etherlink.dll

[Ethernet Options]

Server Address=172.16.3.30

Control Port=9999

Data Port=10000

Reset Delay=10000

Data Timeout=10000

ii. Configure the SCU

 Connecting Tera Term to Optotrak SCU

o Use a female DB9 to female DB9 cross linked/null modem cable (and usb to serial

adapter if required) to connect host computer to Optotrak SCU

o Open Tera Term

o Select Serial option and select serial port connected to Optotrak SCU

o Select Setup – Terminal from top tool bar

o Under new line select CR+LF for Receive and Transmit

o Select checkbox “Local Echo” and press okay

o Press enter in command line

 67

 Check current IP Address with Tera Term

o Type eniprd with a space afterwards (there is always a space after a command) and

press enter

o Note: commands are extremely sensitive and must include space. If a correction is

made to the command using backspace the command will not complete correctly

and must be reentered with no corrections

 Disable DHCP with Tera Term

o Type endhwr 0

Ensmrd

 Check DCHP status with Tera Term

o Type endhrd (space aftwards)

o Returns example 01400 where the first 0 indicates DHCP disabled

 Write the desired IP address to Optotrak SCU with Tera Term

o Type enipwr 192.168.101.2

o Important: Power cycle Optotrak SCU after this step!

 Check current IP address with Tera Term to ensure the IP address has been written correctly

o Type eniprd (space afterwards)

o Returns 192.168.101.2(plus 4 numbers)

 Check current subnet mask with Tera Term and note it for later

o Type ensmrd (space afterwards)

o Returns 255.255.255.0 or 255.255.252.0 usually

iii. Configure the Computer network card

 Open network and sharing center on host computer

 68

o Under local area connection options, uncheck internet protocol version 6

o Under local area connection options go to internet protocol version 4

o Set ip address manually to the same network but different ip address of the SCU

 Example: 192.168.101.11

o Set subnet mask the same as SCU

 Example: 255.255.255.0

iv. Configure First Principles

 Open First Principles

 Open settings – communications- ethernet

 Enter IP address of Optotrak SCU (192.168.101.2 in example)

 Query system to identify SCU connected

1. Network connection – through intermediate router, hub or switch

i. Connections

Use category 5 ethernet cable to connect the host computer and the SCU to

the router.

ii. Configure the host computer.

Configure the [Optotrak System] and [Ethernet Options] sections of the

optotrak.ini file at c:\ndigital\settings as follows.

[OPTOTRAK System]

ResetTimeout= 500

 69

Driver= etherlink.dll

[Ethernet Options]

Server Address=172.16.3.30

Control Port=9999

Data Port=10000

Reset Delay=10000

Data Timeout=10000

iii. Configure the SCU using Tera Term

 Disable DHCP with Tera Term

o Type endhwr 0

Ensmrd

 Check DCHP status with Tera Term

o Type endhrd (space aftwards)

o Returns example 01400 where the first 0 indicates DHCP disabled

iv. Configure the computer network card

 Open network and sharing center on host computer

o Under local area connection options, uncheck internet protocol version 6

o Under local area connection options go to internet protocol version 4

o Check ‘Obtain ip address manually’

v. First Principles configuration

 Open command prompt and run ipconfig command to verify the host ip

address

 70

 Run arp -a to get the ip address assigned to the SCU (You can get this from

the router’s default router settings webpage as well)

 Open First Principles

 Open settings – communications- ethernet

 Enter IP address of Optotrak SCU (192.168.101.2 in example)

 Query system to identify SCU connected

 71

Appendix C SWAT Analysis of Technologies Commercially available to Visually Impaired

People.

The following SWAT analysis (strength, weakness, opportunities and threats analysis) was

conducted on commercially available technologies by Janet Canady.

Figure 25 SWAT Analysis

 72

Bibliography

1. "Visual impairment, blindness cases in U.S. expected to double by 2050", National
Institutes of Health (NIH), 2019. [Online]. Available: https://www.nih.gov/news-
events/news-releases/visual-impairment-blindness-cases-us-expected-double-2050.
[Accessed: 26- Mar- 2019].

2. Varma, R et al, “Visual impairment and blindness in adults in the United States:
Demographic and Geographic Variations from 2015 to 2050,” JAMA
Ophthalmology, DOI:10.1001/jamaophthalmol.2016.1284.

3. S. Ertan, C. Lee, A. Willets, H. Tan, and A. Pentland, “A wearable haptic navigation
guidance system,” Digest of Papers. Second International Symposium on Wearable
Computers (Cat. No.98EX215), 1988.

4. K. Tsukada and M. Yasumura, “ActiveBelt: Belt-Type Wearable Tactile Display for
Directional Navigation,” UbiComp 2004: Ubiquitous Computing Lecture Notes in
Computer Science, pp. 384–399, 2004.

5. W. Heuten, N. Henze, S. Boll, and M. Pielot, “Tactile wayfinder,” Proceedings of the 5th
Nordic conference on Human-computer interaction building bridges - NordiCHI 08, 2008.

6. J. R. Marston, J. M. Loomis, R. L. Klatzky, and R. G. Golledge, “Nonvisual Route
following with Guidance from a Simple Haptic or Auditory Display,” Journal of Visual
Impairment & Blindness, vol. 101, no. 4, pp. 203–211, 2007.

7. G. Flores, S. Kurniawan, R. Manduchi, E. Martinson, L. M. Morales, and E. A. Sisbot,
“Vibrotactile Guidance for Wayfinding of Blind Walkers,” IEEE Transactions on Haptics,
vol. 8, no. 3, pp. 306–317, 2015.

8. F. Gemperle, N. Ota, and D. Siewiorek, “Design of a wearable tactile
display,” Proceedings Fifth International Symposium on Wearable Computers, 2001.

9. P. Bach-y-Rita, K. A. Kaczmarek, M. E. Tyler, and J. Garcia-Lara, “Form perception with
a 49-point electrotactile stimulus array on the tongue: A technical note,” in Journal of
Rehabilitation Research and Development , vol. 35, No. 4, 1998, pp. 427–430.

10. M. Ptito, “Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the
congenitally blind,” Brain, vol. 128, no. 3, pp. 606–614, 2005.

11. P. Bach-y-Rita, K. A. Kaczmarek, M. E. Tyler, and J. Garcia-Lara, “Form perception with
a 49-point electrotactile stimulus array on the tongue: A technical note,” in Journal of
Rehabilitation Research and Development , vol. 35, No. 4, 1998, pp. 427–430.

 73

12. “The vOICe - New Frontiers in Sensory Substitution,” The vOICe - New Frontiers in
Sensory Substitution. [Online]. Available: http://www.seeingwithsound.com/. [Accessed:
14-Mar-2019].

13. R. Velazquez, E. Fontaine, and E. Pissaloux, “Coding the Environment in Tactile Maps for
Real-Time Guidance of the Visually Impaired,” 2006 IEEE International Symposium on
MicroNanoMechanical and Human Science, 2006.

14. Seeing AI Project — Pivothead Wearable Imaging", Pivothead Wearable Imaging, 2019.
[Online]. Available: http://www.pivothead.com/seeingai/. [Accessed: 13- Mar- 2019].

15. G. Ng, P. Barralon, G. Dumont, S. Schwarz, and J. M. Ansermino, “Optimizing the Tactile
Display of Physiological Information: Vibro-Tactile vs. Electro-Tactile Stimulation, and
Forearm or Wrist Location,” 2007 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2007.

16. K. Myles and M. S. Binseel, The Tactile Modality: A Review of Tactile Sensitivity and
Human Tactile Interfaces. United States: Army research lab aberdeen proving ground md
human research and engineering directorate, 2007.

17. Weinstein and Sidney, Intensive and extensive aspects of tactile sensitivity as a function of
body part, sex, and laterality. 1968. The skin senses Proceedings of the First International
Symposium March, 1966 Tallahassee, Fla 195-222

18. Y. J. Liu, X. R. Wu, J. S. Leng, R. Davidson, and P. Taylor, “Tactile Display Based on
Controllable Fluid Actuator,” Materials Science Forum Progress in Light Metals,
Aerospace Materials and Superconductors, pp. 1669–1672, 2007.

19. G. Ng, P. Barralon, G. Dumont, S. Schwarz, and J. M. Ansermino, “Optimizing the Tactile
Display of Physiological Information: Vibro-Tactile vs. Electro-Tactile Stimulation, and
Forearm or Wrist Location,” 2007 29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2007.

20. R. Velázquez, “Wearable Assistive Devices for the Blind,” Wearable and Autonomous
Biomedical Devices and Systems for Smart Environment Lecture Notes in Electrical
Engineering, pp. 331–349, 2010.

21. Z. Yu, S. Horvath, A. Delazio, J. Wang, R. Almasi, R. Klatzky, J. Galeotti, G.
Stetten,”PalmSight: an assistive technology helping the blind to locate and grasp
objects” Technical Report, Robotics Institute, CMU, December, 2016

22. S. Lederman and R. Klatzky, "Haptic perception: A tutorial", Attention, Perception &
Psychophysics, vol. 71, no. 7, pp. 1439-1459, 2009. Available: 10.3758/app.71.7.1439

23. “Optotrak Certus User Guide,” manualzz.com. [Online]. Available:
https://manualzz.com/doc/28945333/optotrak-certus-user-guide. [Accessed: 14-Mar-
2019].

 74

24. “ARMAX Model Definitions (System Identification Toolkit),” ARMAX Model Definitions
(System Identification Toolkit) - LabVIEW 2013 System Identification Toolkit Help -
National Instruments. [Online]. Available: http://zone.ni.com/reference/en-
XX/help/372458D-01/lvsysidconcepts/modeldefinitionsarmax/. [Accessed: 23-Mar-
2019].

25. M. Mignolet and J. Red-Horse, “ARMAX identification of vibrating structures - Model
and model order estimation,” 35th Structures, Structural Dynamics, and Materials
Conference, 1994.

26. E. H. Fung, Y. Wong, H. Ho, and M. P. Mignolet, “Modelling and prediction of machining
errors using ARMAX and NARMAX structures,” Applied Mathematical Modelling, vol.
27, no. 8, pp. 611–627, 2003.

27. “data,” Estimate parameters of ARMAX model using time-domain data - MATLAB.
[Online]. Available: https://www.mathworks.com/help/ident/ref/armax.html#btdf35s-9.
[Accessed: 24-Mar-2019].

28. Kuper, H., et. al. “Does Cataract Surgery Alleviate Poverty? Evidence from a Multi-Centre
Intervention Study Conducted in Keyna, the Philippines and Bangladesh.” PloS Medicine.
5.11 (2010).

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 Introduction
	1.1.1 Wearable haptic systems on the waist
	1.1.2 Wearable haptic systems on the wrist
	1.1.3 Wearable haptic systems on the tongue
	1.1.4 Wearable haptic/audio systems on the head
	1.1.5 Wearable haptic systems on the hand

	2.0 Hardware Design
	Figure 1 Flexible 3D printed ring
	Figure 2 Second generation of Ring
	Figure 3 Velcro ring and camera holder
	Figure 4 FingerSight Circuit Schematic

	3.0 Computer Vision Algorithm
	4.0 Motion Tracking
	Figure 5 Array of ten markers embedded in a holder
	Figure 6 Marker Array attached to camera holder
	Figure 7 External Trigger and Synchronization Circuit

	5.0 Experimental Methods
	Figure 8 LED Placement
	Figure 9 Velcro belt around haptic tactors
	5.3.1 Experiment 1: Tactor Localization
	Figure 10 Numeric Keypad to report the vibrating tactor(s)

	5.3.2 Experiment 2: Guidance to Target
	Figure 11 Guidance to Target
	Figure 12 End of trial
	Figure 13 Axes for guidance

	6.0 Results
	Table 1 Confusion matrix of error for first attempt
	Table 2 Confusion matrix of erros for best attempt
	Figure 14 Comparision Between Mean Error Proportions: Experiment 1
	Figure 15 Histogram of R2 for linear approach to the initial stopping point.
	Figure 16 Means of the five parameters for each strategy. The error bar is 1 s.e.m.
	Table 3 Statistical comparisons of experimental variables using Student's t-test
	Figure 17 Illustration of regression of Euclidean distance
	Figure 18 Motion in x and y directions for each guidance strategy

	7.0 Control System Analysis
	Figure 19 Classical control system block diagram for FingerSight
	Figure 20 Illustration of input and output signals of the Plant
	Figure 21 ARMAX model with 65.02% fit
	Figure 22 Simulation of control system in Simulink
	Figure 23 Step response of the PID controller
	Table 4 Performance of PID controller
	Figure 24 Output of the plant regulated by the tuned PID controller

	8.0 Conclusion
	Appendix A Program for FingerSight
	Appendix B NDI Optotrack Certus Setup using Ethernet
	Appendix C SWAT Analysis of Technologies Commercially available to Visually Impaired People.
	Figure 25 SWAT Analysis

	Bibliography

