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Surrogate modeling is used to support global sensitivity analyses (GSA) for the modeling and 

simulation of nuclear reactor assembly structural dynamics to demonstrate the pertinence of such methods 

to this application as well as the significant physical insights provided by GSA.  In addition to the 

knowledge gained related to the system sensitivity, insight gained from the accuracy of the GSA results 

may be used to compare with goodness-of-fit metrics that are traditionally used for verification of the 

surrogate model.  The coupled use of surrogate modeling and GSA reduces the number of full-order 

simulations required, substantially reducing total computational cost. This work focuses on the use of 

Gaussian Process surrogates in particular, and examines the robustness of these techniques to evaluate 

sensitivity by considering a variety of design of experiment strategies used to create the surrogate models. 

Numerical experiments based upon two finite element models representing stochastic dynamics 

for a pressurized water reactor, are used to evaluate the relationship between sensitivities computed from 

a full-order model versus those computed from a surrogate model, highlighting the effectiveness of 

utilizing GSA and surrogate modeling.  For the examples presented herein the historical significance of 

both forcing function characterization and model parameter definition is substantiated, in terms of the 

GSA providing insight as to dominant contributors to structural dynamic behavior.  For large sample 

sizes, negligible variation in the resultant sensitivities is shown with respect to the particular method by 

which a computational design of experiment is constructed to train the surrogates, that demonstrates 

stability and veracity of the results.  For small sample sizes, the use of Latinized Partially Stratified 

Sampling (LPSS) provided surrogates and associated sensitivities with lower error as compared to Latin 

Hypercube Sampling (LHS) and sampling via the Fourier Amplitude Sensitivity Test (FAST).  

Differences in GSA results imparted by examining time-domain versus spectral acceleration results, as 
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well as increasing model parameter variation further illustrated the effectiveness of advanced sampling 

methods.  Furthermore, the use of adaptive sampling and aggregate surrogate modeling techniques are 

introduced, with which incremental improvements were realized regarding the number of samples 

required to achieve accurate surrogate models. 
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Preface 

Computational modeling and simulation (M&S) provides a cost-effective means of 

answering difficult engineering questions.  Testing is often cost prohibitive, and analytical 

solutions are often impractical to solve for complex problems, thus rendering computational 

modeling tools attractive.  Moreover, computational models offer a means to diagnose (and 

prognosticate) the health of an engineering component or system.  Thus, computational modeling 

plays a meaningful role in the overall task of engineering which ultimately contributes to the 

health and welfare of real people.  Clean, reliable, and safe nuclear energy is one means of 

promoting such welfare. 

Philosophers write about the “concretization of the ideal,” in which otherwise idealistic 

notions are made concrete when put into practice.  To some extent, this dissertation aims to make 

concrete things that many practitioners may consider to be merely idealistic notions.  In fact, the 

methods employed within this dissertation are ripe for “concretization” in the context of 

engineering mechanics for nuclear power plants. 

Computational models are imperfect solutions of sets of differential equations, which 

themselves are incomplete representations of reality.  Furthermore, computational models carry 

with them certain pains.  For example, computational fluid dynamics models are heavily 

dependent upon the turbulence model chosen to resolve the flow regime, requiring extensive 

experimental benchmarking to demonstrate validity.  Random vibration of large systems likewise 

requires benchmarking of structural modes.  Such dynamic problems take significant 

computational time to solve, and once one numerical solution is obtained, little is known 

regarding the uncertainties and meaningful parameters that influence input/output relationships. 
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I desire to make a contribution to ease this pain by concretely demonstrating the 

application of advanced methods (i.e., the “ideal”) to the computational modeling and simulation 

of nuclear reactor stochastic dynamics.  My aim is to do something for which the result permits 

engineering practitioners to: 

1. Solve large dynamic problems in ways that are more computationally efficient than standard 
industrial practice. 

2. Effectively gain understanding of uncertainties and meaningful parameters that may not 
otherwise be apparent. 

The topics of Surrogate modeling and sensitivity analysis address both of these goals.  

That is, most dynamical systems can be characterized by some mathematical combination of 

their constituent parts (i.e., forcing functions, material properties, boundary conditions).  If those 

constituent parts are known then they can be used to solve numerical models in ways that are less 

computationally burdensome and more physically insightful to the practicing engineer, thus 

permitting movement towards more efficient simulations for nuclear power plants. 
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1.0  Introduction 

Systems, structures, and components (SSCs) key to the safe and reliable operation of 

nuclear power plants (NPP) experience non-negligible random flow-induced vibration (FIV) 

loading during normal operating conditions.  Furthermore, in accordance with the design basis 

for all operating plants, these same SSCs must be designed to withstand earthquakes and plant 

transients such as those associated with loss of coolant accidents (LOCA).  These types of 

loading conditions may be considered stochastic processes.  Quantification and propagation of 

uncertainties associated with characterizing the resultant structural dynamics, and therefore SSC 

reliability, constitutes a necessary but challenging endeavor. 

The commercial nuclear industry is faced with significant cost challenges, in terms of 

both new plant designs and aging management of the operating fleet (Nuclear Energy Institute, 

2014).  The status quo is becoming increasingly unacceptable in that new plant designs 

experience cost-overruns and operating plants experience high maintenance costs to care for 

degradation associated with material reliability.  Indeed, the future viability of nuclear energy 

hinges upon the ability of the industry to minimize cost while maintaining (or exceeding) current 

safety performance.  Such costs have been noted to depend upon shifting project management 

practices to maximize the amount of design work performed prior to construction, as well as the 

promise offered by advanced reactor technology (i.e., passive safety features, small modular 

reactors, liquid metal reactors, etc.) (MIT Energy Initiative, 2018).  Because engineering 

mechanics plays a central role in the design of a nuclear plant, methods that permit practitioners 

to enhance the credibility of modeling and simulation (M&S) of mechanics-based predictions  



 2 

(Oberkampf, et al., 2007), while minimizing engineering costs (i.e., man-hours and/or 

computational resources) are of acute interest.   

Uncertainty pervades engineering processes for nuclear plants, which span across many 

disciplines such as probabilistic risk assessment (PRA) and companion safety analysis, up-front 

component design for a new plant (i.e., forcing function development, sub-scale and start-up 

testing), the aging management of operating plants (i.e., stress corrosion cracking, fracture 

mechanics, and non-destructive examinations (NDE)), to the design of fuel (i.e., core loading 

pattern optimization, departure from nucleate boiling (DNB) correlations).  Such uncertainties 

are sometimes easily correlated with one another, but often are not, and could be classified as 

aleatory in some instances and epistemic in others.  Epistemic uncertainties could include that 

associated with having very small data sets from limited component inspections, while aleatory 

uncertainties could include the characterization of random turbulence in a particular flow 

domain.  Furthermore, the contribution of uncertainties in design parameters to key outputs of 

interest is largely unknown in the early stages of design. Key outputs may include anything from 

stress intensities necessary to satisfy allowable limits per (ASME, 2017) to component 

reliabilities that directly influence core damage frequencies determined in PRA.  This ill-posed 

portrait causes the design process to iterate, and thus take longer. For portions of new plants, 

construction often begins prior to design finalization, and therefore, in-field design changes 

occur which introduce very high construction costs.  That is, an inefficient design process does 

not permit constructors the ability to await design finalization to begin construction for all 

systems of a nuclear plant.  For an operating plant, lack of understanding of parameters can also 

manifest itself with increased maintenance costs.  A better way forward, in which the 

contribution of parameter uncertainties may be quantified and adopted into design (and 
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companion aging management) processes is explored in this dissertation through the use of 

global sensitivity analysis (GSA) applied to stochastic dynamic applications associated with 

nuclear reactor structures.  It is envisioned that if parameter uncertainties and the influence 

thereof can be properly understood early in the engineering analysis, then the (intertwined) 

design, analysis, construction, operations, and maintenance processes may become less iterative 

and thus more parsimonious. 

In accordance with guidance provided by (United States Nuclear Regulatory 

Commission, 2017), new reactor designs are to complete a Comprehensive Vibration 

Assessment Program (CVAP) to evaluate FIV.  License renewals similarly need to satisfy 

(United States Nuclear Regulatory Commission, 2017), but usually do so by demonstrating 

similarity to a valid prototype plant rather than completing a full analysis and test program, 

depending on the plant licensing basis.  The CVAP includes extensive computational dynamic 

analysis, as described in (Westinghouse Electric Company, 2011), as well as a companion 

measurement and inspection program.  The measurement and inspection program, as described 

in (Westinghouse Electric Company, 2015), recommends placing sensors in the locations that are 

dynamically correlated to the component response quantity of interest, which is generally near 

locations of high cyclic stress intensity.  Correspondingly, the vibration analysis program 

establishes expected measurements (predictions) and associated acceptance criteria, which are 

based on the material fatigue life.  Extensive verification and empirical validation of numerical 

models, for both forcing functions (e.g., turbulence and acoustic phenomena) and structural 

response, are employed to develop the predictions (Palamara, et al., 2015).  The vibration 

analysis program thus requires the construction, verification, and validation of multiple 
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engineering simulations covering disciplines of both fluid and structural mechanics, and the 

interactions thereof. 

One particular challenge to such analyses lies in the quantification and propagation of 

uncertainty of forcing functions associated with random turbulence.  Flow within a nuclear 

reactor coolant system is highly turbulent.  The high turbulence is necessary for core cooling and 

heat transfer, but also creates a substantial vibratory forcing function on the associated 

mechanical components and assemblies.  For analysis of reactor internals, M.K. Au-Yang 

developed methods for determining forcing functions in a downcomer annulus (Au-Yang & 

Jordan, 1980), modeling random vibration induced by turbulent flow (Au-Yang & Connelly, 

1977), and summarized the majority of his published work in (Au-Yang, 2001).  Guidelines for 

practice are then based on the work of Au-Yang and others for dynamic analysis of nuclear 

components subjected to FIV (ASME, 2017).  Recent industry efforts such as (Banyay, et al., 

2015) have sought to improve the methods described in (ASME, 2017) and part of the aim of this 

work is directed toward supporting such industry efforts to promote the implementation of state-

of-the-art analysis methods which can both lower computational costs and enhance the state of 

knowledge provided by dynamic analysis. 

The forcing functions from turbulent flow acting on the various components of a nuclear 

reactor assembly can be characterized as a stochastic process (Tennekes & Lumley, 1972). As 

such, the dynamic structural response to turbulent loading is correspondingly random (Blevins, 

2001), and accounting for this randomness is of paramount importance to proper system 

modeling.  The spectral shape (i.e., the non-dimensional power spectral density, PSD) of the 

forcing random process may be known from prior test data of similar components in similar 

plants, but a best-estimate of the forcing function amplitude is generally difficult to determine.  
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Note that within the nuclear industry, the term “best estimate” analysis has been defined as an 

analysis that is “free of deliberate pessimism regarding selected acceptance criteria” and 

“includes uncertainty analysis” (International Atomic Energy Agency, 2008).  Therefore, in 

practice, plant designers use biased approaches that bound the scatter in the available data to 

characterize forcing functions.  In so doing, this may produce conservative design margins, but 

can result in over-designed equipment and contribute to a lack of understanding of the actual 

structural dynamic behavior of critical components. Furthermore, such approaches can lead to 

misleading conclusions regarding the true design margin of a given component or system; 

contributing to a false sense of confidence in a high margin (Type II error) or a false impression 

that a component has a low margin (i.e., is at risk of failure, Type I error). Driven largely by 

recent major structural failures caused by FIV in the nuclear industry, such as the steam 

generators at San Onofre (United States Nuclear Regulatory Commission, 2015) or the steam 

dryer at Quad Cities (United States Nuclear Regulatory Commission, 2013), recent revisions to 

the NRC regulatory guide (United States Nuclear Regulatory Commission, 2017) increasingly 

demand that bias and uncertainty be accounted for in prototype reactor designs.  Note that the 

industry guidelines offer some flexibility in the sense that they do not necessarily require 

rigorous uncertainty quantification but rather require that uncertainty and bias have been 

accounted for in the design process.  For example, regulatory guidance accepts an extensive 

uncertainty analysis such as described in (ASME, 2009), but regulators also accept a more 

simple uncertainty analysis, which demonstrates adequate bias to ensure conservative margins.  

Although the preceding discussion focuses primarily on FIV loads during normal operating 

conditions, quantification and propagation of uncertainties associated with modeling and 

simulation for safety analysis (i.e., LOCA) are likewise necessary (Kaizer, 2013). 



 6 

Within a reactor assembly, multiple forcing functions are present that are attributed to 

different excitation mechanisms that have to do with component geometry, local coolant 

velocities and temperature, spectral shape functions, and overall plant configuration (i.e., reactor 

coolant pump or piping design).  These individual fluid-borne forcing functions coupled with the 

structural dynamics, which depend on yet other uncertain model parameters such as joint 

stiffness, damping, and gap interface dimensions, constitute the total observed structural 

response.  From this total response, it is often unclear which particular forcing functions or 

model parameters are the most relevant for the response of a given component.  The effect of the 

different forcing functions and model parameters on the vibration response of a given component 

can vary significantly, with some having a relatively large effect and others being practically 

negligible.  For example, the forcing function acting on an adjacent assembly (e.g., core barrel 

shell) may be more influential to the response of a given component (e.g., support columns or 

lower support structure) than the forcing function acting directly on that component. 

Misunderstanding the contributions of certain phenomenological behavior (e.g., the relative 

contribution of loads) can lead to excessive expense, such that analysts expend resources 

answering the wrong questions.  For example, misunderstanding the contribution of boundary 

conditions and forcing functions to structural dynamic models may lead to studies employing 

advanced Computational Fluid Dynamics (CFD) models to accurately characterize forcing 

functions that do not meaningfully influence the structural response.  Sensitivity analysis can, in 

part, serve to reduce this excessive effort and cost (Saltelli, et al., 2008). For example, sensitivity 

analysis in this context could inform the selection of the parameters to which model outputs are 

most sensitive.  The ability to down-select parameters can inform where analytical or 
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experimental investment may be warranted to reduce epistemic uncertainties, or where real-time 

instrumentation and controls might focus to optimize plant operations and maintenance. 

While local methods of sensitivity analysis provide only limited insight as to the 

influence of one variable while the others are fixed, and correlation-based GSA may only offer 

insight as to linearity or monotonicity of multiple terms, variance-based GSA provides a means 

of quantifying influence contributed by multiple uncertain parameters to changes (i.e., variance, 

scatter, “chaos”) in key results of interest.  Variance-based GSA, such as described in (Saltelli, et 

al., 2008), (Gratiet, et al., 2016), (Cannavo, 2012), and (Pianosi, et al., 2015), requires running a 

model a large number of times to properly characterize the relative importance of the various 

uncertain parameters (Schenk & Schueller, 2005).  It is therefore of interest to explore options to 

either reduce the number of full-order runs (i.e., finite element analysis realizations) required to 

characterize sensitivity, or to altogether replace the full-order model with a surrogate model, 

which runs with minimal computational expense yet captures the relevant trends in the physical 

model. Surrogate modeling techniques aim to model physical phenomena using some means 

other than direct solution of the standard equations for the system physics (e.g., partial 

differential equations). This is useful when solving the governing equations is computationally 

expensive or when the governing equations are not known and the trends must be inferred from 

experimental data.  Furthermore, several works have already applied the use of surrogate models 

for sensitivity analysis, successfully reducing the computational expense significantly such as 

(Shahsavani & Grimvall, 2011), (Hou, et al., 2016), (Cheng, et al., 2017). 

Figure 1.1 shows an influence diagram used to construct an illustrative simplified cost-

benefit analysis.  In this postulated scenario, assumed cost quantities are shown in Table 1.1.  In 

the influence diagram, the “Analysis Method” parallelogram represents an index associated with 
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three different approaches that may be taken to solve this problem.  The “Number of Design 

Iterations” trapezoid is used to simulate how, as a design matures through time and thus iterates, 

the different analysis methods trend in terms of a cost comparison (represented by the hexagon).  

Design iterations are intended to represent a situation in which the physical geometry of a 

component changes, or a particular forcing function changes (perhaps due to an enhanced state 

of knowledge) and thus the dynamic response and corresponding ASME Code margins (i.e., 

design basis) change.  In practice, both of these types of design iterations occur often; Chapter 

4.0 considers the former situation (physical parameters), and Chapter 3.0 considers the latter 

situation (forcing functions).  The study presented in Chapter 3.0  performs sensitivity studies on 

a fixed geometry and thus does not consider changes in geometric parameters, so the surrogates 

built and employed herein would not necessarily be valid in the context of geometry changes.  

On the other hand, the study presented in Chapter 4.0  performs sensitivity studies on how 

changes in model parameters such as geometry, stiffness, and mass can influence key results 

while holding the forcing function magnitude constant.  Figure 1.2 then shows the results of how 

the engineering cost steadily increases when exercising a full-order model over many design 

iterations versus either supplementing a full-order model simulation with sensitivity analysis or 

by using a surrogate model in lieu of the full-order model (i.e., the items represented by the 

“Analysis Method” index).  That is, significant savings may be realized by simply using the 

knowledge gained through sensitivity analysis to reduce complexity (i.e., the number of applied 

forcing functions) in the full-order model used for subsequent analyses in the design process; this 

is shown on the blue line in Figure 1.2.  Further cost savings may be realized by altogether using 

a validated surrogate model in lieu of the full-order model in subsequent design iterations; this is 

shown on the green line in Figure 1.2.  An important consideration is that the veracity of a 
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surrogate model requires that the parameter changes associated with the design iterations fall 

within the range of the parameter space sampled during initial model training.  Therefore, there 

is a balance to achieve in which the sampled parameter space should be sufficiently large so as to 

bound the (future) parameter changes, but not so large so as to render the initial problem 

computationally prohibitive.  In short, if some initial investment is made upfront to understand 

parameter sensitivity for large dynamic models, then significant cost savings can be realized as 

the design iterates and subsequent simulations are required.   

 

 

 

Figure 1.1  Influence Diagram and Inputs for Postulated Cost-Benefit Analysis 
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Table 1.1  Cost Benefit Analysis Variables 

Variable Value Comment 

Number of Design Iterations 10 Through the design and analysis of nuclear reactor structures, design 
parameters evolve, which warrants multiple iterations of 
computational models. 

Cost of Full-order Model (per run) 10 hours Finite element models subjected to dynamic FIV loading. 

Cost of Initial Forcing Function 
Development (per function) 

100 hours Cost to run CFD and/or analyze test data to characterize forcing 
function. (e.g., boundary layer turbulence in downcomer annulus) 

Number of Forcing Function Inputs 10 Multiple forcing functions acing on an assembly. 

Number of runs needed for Design of 
Experiment 

200 Number of full-order runs required for Surrogate model construction 
and/or GSA. 

Cost of Surrogate Model construction 10 hours Time required to develop and train Surrogate model. 

Cost of Surrogate Model run 0.1 hours Representation of the small cost of Surrogate model runs (it is 
recognized that actual Surrogate model cost is well below 0.1 hours). 

 

 

 

 

Figure 1.2  Illustration of Cost-Benefit Analysis between Traditional Approach and the use of Sensitivity 
Analysis 

 

  

Higher up-front cost, but beneficial
with increasing iterations

Cost of running validated Surrogate model

Cost of running full-order model with
reduced set of loads, as informed by
sensitivity analysis

Cost of running full-order model with
re-development of loads each time
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In this work, a framework is developed to use surrogate models for sensitivity analysis 

for random vibrations in a set of nuclear reactor internals, specifically to understand how forcing 

functions acting in different locations and mechanical model parameters influence the response 

of the structure.  This is intended to support fast turnaround analyses for experimental (real-time 

or near real-time) plant diagnostics, operational prognostics, and component design in the 

presence of parameter uncertainties by informing decisions pertaining to the relative 

contributions of potentially contributing parameters.  This research does not necessarily seek an 

optimal surrogate modeling technique, but rather a robust surrogate modeling technique that fits 

the specific application.  For this purpose, Kriging (or Gaussian process regression) (e.g., 

(Nechak, et al., 2015) and (Huang, et al., 2011)) was used in this work. First, a full-order finite 

element model is used directly (i.e., without any complementary surrogate-model) to produce 

global sensitivity indices which do not meaningfully change upon generation of further full-order 

model realizations.  By first computing sensitivity indices from full-order runs, this provides a 

set of results against which the surrogate-computed sensitivity indices may be compared. Given 

these “converged” sensitivity indices, the sampling of the parameter space for the full-order 

model runs is then investigated by considering a computational design of experiment (DOE) 

using Latin Hypercube (LHS) and Latinized Partially Stratified sampling (LPSS) techniques.  

Thus stability is evaluated in terms of the GSA result when the Kriging surrogate is trained by 

different sampling as a means of providing confidence in the surrogate-based sensitivities.  One 

aim of this is to identify if it is practical to minimize the number of full-order runs required to re-

generate sensitivity indices by way of a trained Surrogate model. An engineering design 

organization could thus expect that significant economic benefit may be realized in the 

engineering design process of nuclear reactor structures by coupling the advantages offered by 



 12 

both Surrogate modeling and GSA.  The other aim, in this research, is to examine the 

relationship of the sensitivity indices to metrics in surrogate model validation.  This is novel in 

the sense that observation of the error of the sensitivity indices relative to a baseline provides 

insight as to the veracity of the Surrogate model with which the sensitivity indices are computed. 
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1.1 Dissertation Outline and Research Questions Addressed 

A brief outline of this dissertation is provided in Table 1.2. 

 

Table 1.2  Outline for Dissertation 

Chapter Topics Addressed 

1.0  Introduction 
Motivation for research by reviewing topics pertinent 
to nuclear reactor structural dynamics, and providing 
overview of Surrogate modeling and sensitivity 
analysis. 

2.0  Methodology Details provided for approaches to Random 
Vibration, Global Sensitivity Analysis, Surrogate 
Modeling  

3.0  Application to Stationary Random 
Vibration for Upper Internals 
Assembly 

Finite element model described, Full-order model 
based Sensitivity analysis, Surrogated-based 
sensitivity analysis based on Fourier Amplitude 
Sensitivity Test (FAST), LHS, and LPSS Design of 
Experiments (DOE), quantification of Surrogate 
verification error and Surrogate-based GSA accuracy. 

4.0  Application to Non-Stationary 
Random Vibration of Reactor 
System 

Finite element model described, Full-order model 
based Sensitivity analysis, Surrogated-based 
sensitivity analysis based on LHS, and LPSS DOEs, 
quantification of Surrogate verification error and 
Surrogate-based GSA accuracy. 
 
Additional examinations to the effects imparted by 
increasing parameter variation, and comparing effect 
of spectral versus transient results. 

5.0  Effectiveness of Surrogate 
Modeling Methodological Changes 

Using the system finite element model (SFEM) from 
Chapter 4.0 , introduce the effectiveness of 
methodological changes associated with an aggregate 
surrogate modeling technique and adaptive sampling. 

6.0  Conclusions of Dissertation Summary of research contributions and 
recommendations for building upon this work.   
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Table 1.3 summarizes the questions sought to explore by this research, and provides an 

outline of where responses to these questions may be found in this dissertation. 

 

Table 1.3  Research Questions 

Question Response 

Can a Kriging surrogate accurately represent an Upper 
Internals (UI) model subjected to stationary FIV and a 
SFEM subjected to non-stationary loading? 

Yes, see Sections 3.3.1 and 4.2.4 

Does the sampling method impart a significant effect on 
the accuracy of the surrogate model, or the global 
sensitivities computed from the surrogate model for 
either application? 

Yes at small sample sizes, but not at 
larger sample sizes, see Sections 3.3.2 
and 4.2.2 

How does the surrogate model accuracy change, and 
does the effectiveness of LPSS become more 
pronounced, when the input parameter variance is 
increased? 

See Section 4.2.3.1 

How do the sensitivities associated with acceleration 
response spectra change when evaluating non-stationary 
loading of the SFEM? 

See Section 4.2.3.2 

How does the use of an aggregate surrogate model 
improve the verification error? 

See Section 5.1 

How does the use of adaptive sampling improve the 
verification error? 

See Section 5.2 

How might correlation versus variance-based methods 
of GSA differ? 

See Section 5.3 
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2.0  Methodology 

In the studies presented herein, finite element analysis serves as the “full-order model” of 

the system of interest, which is used to generate the baseline sensitivity indices, as well as to 

create the datasets to train the surrogate models – from which sensitivity indices will be likewise 

computed and verified against those from the full-order model. The overall methodology used 

seeks to combine the construction of a computational DOE, sensitivity analysis, and surrogate 

modeling as illustrated by the three parallel workflows in Figure 2.1.  In the first workflow, GSA 

is performed on the full-order model using the Fourier Amplitude Sensitivity Test (FAST) 

algorithm as one means of computing sensitivity indices.  This is done to establish the “true” 

sensitivity indices to compare with those computed by exercising a surrogate model. Using these 

full-order model evaluations from the FAST GSA, surrogate models for different numbers of 

realizations from the finite element analysis are constructed (for the UI FIV model). In 

workflows 2 and 3, the full-order model is run using two different methods for computational 

DOE as an alternate means of building a surrogate model for GSA. The three workflows are then 

compared to evaluate the effectiveness of these different sampling methods for use in the 

dynamic analysis of a nuclear reactor assembly as well as the stability of the GSA results 

computed from the various surrogates. 

The models evaluated within this document constitute simulations of random vibration, 

for which the methodology is discussed in Section 2.1.  One desires to compute sensitivities from 

those models, for which the methodology is discussed in Section 2.2.  To calculate those 

sensitivities in a computationally efficient manner, surrogate models are constructed, for which 

the methodology is discussed in Section 2.3.  Finally, to construct surrogate models, a training 
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data set is necessary and so sampling strategies for developing such a training set are discussed 

in Section 2.4. 

 

 

 

Figure 2.1  Flow Chart of Analytical Workflow involving model definition, Computational DOE, Surrogate 
Training, and GSA 
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2.1 Random Vibration 

2.1.1 Stationary Random Vibration 

Flow-induced random vibrations in reactor internals can often be characterized as 

stationary, ergodic random processes ( (Tennekes & Lumley, 1972), (Blevins, 2001)). The 

stationary property follows from the steady-state operating conditions under which nuclear 

reactors typically operate; hence the vibration characteristics do not change with time. Thanks to 

the ergodic property, the mean and autocorrelation function of the forcing process, 𝑧(𝑡), can be 

defined, respectively, from a single realization as (Bendat & Piersol, 2010): 

𝜇 = lim
𝑇→∞

1
𝑇
� 𝑧(𝑡) 𝑑𝑡
𝑇

0
 (1) 

𝑅(𝜏) = lim
𝑇→∞

1
𝑇
� 𝑧(𝑡)𝑧(𝑡 + 𝜏) 𝑑𝑡
𝑇

0
 (2) 

 

where 𝜏 is the time lag.  The autocorrelation function may be thought of as a correlation between 

the values of the random process at two different times, 𝑡 ands 𝑡 + 𝜏.  Physically, 𝜏 should be 

chosen as a sufficiently small time lag as to resolve the highest frequencies of interest, which 

may pertain to the time scale of the dominant turbulent eddies or the dynamics of the structure 

itself. 

The forcing random process (e.g., applied force and displacement loading) can be 

transformed to the frequency domain, with the power spectral density (PSD) function given by 

the Wiener-Khintchine transform of the autocorrelation function: 
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𝐺(𝜔) = � 𝑅(𝜏)𝑒−𝜔𝜔
∞

−∞
 𝑑𝜏 (3) 

This 𝐺 PSD term is used to define the forcing function in the finite element problem, 

which is correspondingly solved in the frequency domain across a frequency range adequate to 

encompass at least 95% of the dominant vibration modes (e.g., 0 to 500 Hz).  The finite element 

method with modal superposition was used herein to solve for the system output PSDs 

(specifically, the commercial finite element analysis software ANSYS was used (ANSYS, 

2016)).  In particular, the natural frequencies, 𝜔, and corresponding mode shapes, 𝜙, of the 

structure were computed using the Lanczos algorithm (Rajakumar & Rogers, 1991).  Then, the 

single degree-of-freedom (SDOF) transfer functions were used to calculate the response PSDs, 

as briefly outlined below. 

The full equation of motion solved herein by the finite element method may be expressed 

in terms of displacement 𝑢 as a function of free (𝑓) and restrained (𝑟) mass, 𝑀, stiffness, 𝐾, and 

damping, 𝐶, matrices subjected to forcing function, 𝐹: 

�
�𝑀𝑓𝑓� �𝑀𝑓𝑓�
�𝑀𝑓𝑓� [𝑀𝑓𝑓]

� �
�̈�𝑓
�̈�𝑓
� + �

�𝐶𝑓𝑓� �𝐶𝑓𝑓�
�𝐶𝑓𝑓� [𝐶𝑓𝑓]

� �
�̇�𝑓
�̇�𝑓
� + �

�𝐾𝑓𝑓� �𝐾𝑓𝑓�
�𝐾𝑓𝑓� [𝐾𝑓𝑓]

� �
𝑢𝑓
𝑢𝑓� = �

{𝐹}
{0}� (4) 

Projecting the governing equations onto the system mode shapes, the equation of motion for 

modal dynamics of which a solution is sought may be expressed as: 

�̈�𝑗 + 2𝜁𝑗𝜔𝑗�̇�𝑗 + 𝜔𝑗2𝑦𝑗 = Λ𝑗 (5) 

where 𝑗 is the mode number (from 1 to 𝑛), and 𝑦, and 𝜁, are the corresonding generalized 

displacement amplitude, and damping ratio for each of the modes, and Λ is the modal load.  Note 

that 𝜔𝑗 is a system property (i.e., the square root of stiffness of the 𝑗𝜔ℎ mode divided by mass of 

the 𝑗𝜔ℎ mode).  For the 𝑗𝜔ℎ mode, the modal loads are defined in terms of modal participation 

factors for nodal excitation 𝛾𝑗 as: 
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Λ𝑗 = 𝛾𝑗 = �𝜙𝑗�
𝑇{𝐹} (6) 

Ultimately, the FIV analysis done in Chapter 3.0  computes the mean squared axial strain 

response of the upper support skirt.  Therefore, it was necessary to obtain the RMS response 

from a PSD analysis.  Given the damping of the 𝑗𝜔ℎ mode, 𝜁𝑗 , the corresponding SDOF transfer 

function, 𝐻𝑗, for an input force may be computed as: 

𝐻𝑗(𝜔) =
1

𝜔𝑗2 − 𝜔2 + 𝑖�2𝜁𝑗𝜔𝑗𝜔�
 (7) 

For nodal force excitations, the dynamic and pseudo-static modal PSDs can then be expressed in 

terms of these transfer functions and mode superposition as: 

𝜌𝑗𝑗(𝜔) = �� 𝛾𝑙𝑗𝛾𝑚𝑗𝐻𝑗∗(𝜔)𝐻𝑗(𝜔)�̅�𝑙𝑚(𝜔)
𝑓1

𝑚=1

𝑓1

𝑙=1

 

�̅�𝑙𝑚(𝜔) =
1
𝜔4 𝐺�𝑙𝑚(𝜔) 

(8) 

where 𝛾𝑙𝑗 and 𝛾𝑚𝑗 are the participation factors from the modal analysis for modes 𝑗 and 𝑘, 

respectively, corresponding to force excitation 𝑙 and 𝑚, respectively, and 𝐻∗ indicates the 

complex conjugate of 𝐻.  �̅�𝑙𝑚(𝜔) and 𝐺�𝑙𝑚(𝜔) represent the input force and acceleration PSDs, 

respectively, which are supplied to the finite element analysis through forcing function 

development in this case (i.e., pre-defined).  The number of nodal and base PSDs is denoted by 

𝑟1 and 𝑟2, respectively.  Furthermore, for uncorrelated PSD inputs, 𝑙 = 𝑚. 

The PSD responses may thus be expressed in terms of the modal PSDs, 𝜌𝑗𝑗 and �̅�𝑙𝑚, as 

dynamic and pseudo-static parts, respectively in terms of the modal strains and static strains as: 

𝐺𝑑𝑖(𝜔) = ��𝜙�𝑖𝑗𝜙�𝑖𝑗𝜌𝑗𝑗(𝜔)
𝑛

𝑗=1

𝑛

𝑗=1

 (9) 
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𝐺𝑠𝑖(𝜔) = �� �̅�𝑖𝑙�̅�𝑖𝑚�̅�𝑙𝑚(𝜔)
𝑓2

𝑚=1

𝑓2

𝑙=1

 

Where modal and static strain terms 𝜙� and �̅�, respectively, would be calculated using standard 

mesh-based differentiation and approximation from the associated displacement terms, 𝜙 and 𝐴. 

Finally, the mean square strain response (𝜖2) may be expressed as: 

𝜖𝑓𝑖
2 = � 𝐺𝑑𝑖(𝜔)𝑑𝜔

∞

0

+ � 𝐺𝑠𝑖(𝜔)𝑑𝜔
∞

0

 (10) 

in which ∫ 𝐺𝑑𝑖(𝜔)𝑑𝜔∞
0  is the variance of the 𝑖𝜔ℎ relative (dynamic) free strains, and 

∫ 𝐺𝑠𝑖(𝜔)𝑑𝜔∞
0  is the variance of the 𝑖𝜔ℎ pseudo-static strains; note that no covariance terms are 

included in the formulation used herein, and each forcing function was defined without 

correlation.  A summary of the relevant theory of stochastic dynamics may be found in (Ortiz, et 

al., 1995).  
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2.1.2 Non-Stationary Random Vibration 

Various transient scenarios for which a nuclear plant must be designed are non-stationary 

random processes, such as a loss of coolant accident (LOCA) or an earthquake.  These events are 

non-stationary in that the mean value and frequency structure can be time varying.  These events 

are typically simulated as time-histories through transient finite element analysis to estimate 

structural dynamic behavior for purposes of reactor component qualification. 

2.1.2.1 Finite Element Formulation 

The detailed finite element method is not presented here, as details may be found in 

(Reddy, 2006) or Section 6.2.4 of (ANSYS, 2016), but the basic governing equations are shown 

as follows.  Starting from the discretized equation of motion as Equation (4), and adding time 

discretization by using subscript 𝑛 to indicate time step dependence: 

[𝑀]{�̈�𝑛+1} + [𝐶]{�̇�𝑛+1} + [𝐾]{𝑢𝑛+1} = {𝐹𝑛+1} (11) 

where �̈�𝑛+1, �̇�𝑛+1, and 𝑢𝑛+1 are the nodal acceleration, velocity, and displacement vectors at 

time 𝑡𝑛+1, and 𝐹𝑛+1 is the associated applied load.  Let 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡.  The Newmark time 

integration scheme used herein, in which 𝛼 and 𝛿 are the integration parameters per (Hughes, 

1987), marches through time by defining the velocity and displacement vectors as: 

{�̇�𝑛+1} = {�̇�𝑛} + [(1 − 𝛿){�̈�𝑛} + 𝛿{�̈�𝑛+1}]Δ𝑡 (12) 

{𝑢𝑛+1} = {𝑢𝑛} + {�̇�𝑛}Δ𝑡 + ��
1
2
− 𝛼� {�̈�𝑛} + 𝛼{�̈�𝑛+1}� Δ𝑡2 

(13) 

by combination of equations (11) through (13), a single-step time integration equation in terms of 

unknown {𝑢𝑛+1} and the known mass, stiffness, and damping matrices may be written as: 
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(𝑎0[𝑀] + 𝑎1[𝐶] + [𝐾]){𝑢𝑛+1}

= {𝐹𝑛+1} + [𝑀](𝑎0{𝑢𝑛} + 𝑎2{�̇�𝑛} + 𝑎3{�̈�𝑛})

+ [𝐶](𝑎1{𝑢𝑛} + 𝑎4{�̇�𝑛} + 𝑎5{�̈�𝑛}) 

(14) 

where the time integration terms are summarized in Table 2.1. 

 

Table 2.1  Time Integration Coefficients used for Transient Finite Element Method 

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 

1
𝛼 Δ𝑡2

 
𝛿

𝛼 Δ𝑡
 

1
𝛼 Δ𝑡

 
1

2𝛼
− 1 

𝛿
𝛼
− 1 

Δ𝑡
2
�
𝛿
𝛼
− 2� 

 

 

Thus, the displacement at the 𝑛 + 1 time step may be computed.  The corresponding velocity and 

acceleration can then be calculated using: 

{�̇�𝑛+1} = 𝑎1({𝑢𝑛+1} − {𝑢𝑛}) − 𝑎4{�̇�𝑛} − 𝑎5{�̈�𝑛} (15) 

{�̈�𝑛+1} = 𝑎0({𝑢𝑛+1} − {𝑢𝑛}) − 𝑎2{�̇�𝑛} − 𝑎3{�̈�𝑛} (16) 

2.1.2.2 Acceleration Response Spectra 

Given the transient solution of a finite element analysis subjected to nonstationary 

loading, it is often insightful to express the response as a function of frequency.  In the case of 

non-stationary data, the autocorrelation function becomes not only a function of time lag, 𝜏, but 

time, 𝑡, itself, since the mean value changes with time.  As such, for non-stationary data, 

Equation (2) becomes: 
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𝑅(𝑡, 𝑡 − 𝜏) = lim
𝑇→∞

1
𝑇
� 𝑧(𝑡)𝑧(𝑡 + 𝜏) 𝑑𝑡
𝑇

0
 (17) 

While the previously discussed PSD method works well for the simulation of stationary 

random vibration, the response spectrum method is primarily used for characterizing the 

frequency content of non-stationary random vibration within the nuclear industry.  Approaches 

of formulating response spectra are vast, and a brief survey of noteworthy contributions to this 

topic is provided in Appendix B.  A concise definition of a response spectrum is provided in 

Paragraph N-1110(d) of (ASME, 2017) as follows:  

“The response spectrum is defined as a plot of the maximum response (acceleration, velocity, or 

displacement) of a family of idealized linear single-degree-of-freedom damped oscillators as a function of 

natural frequencies (or periods) of the oscillators to a specified vibratory motion input at their supports.” 
In practice, response spectra are used in dynamic analyses of nuclear power plants per 

(United States Nuclear Regulatory Commission, 2014), and can be computed using such 

software as (Converse & Brady, 1992) (a Matlab implementation of this code is provided in 

Appendix B).  In fact, the methodology for response spectra calculation laid out in 

(Westinghouse Electric Company, 1976) cites (Tsai, 1972), and both of those documents are 

cited in Appendix N of (ASME, 2017), in terms of pertinent codes and standards.  To evaluate 

the response spectra, it is first necessary to consider the equation of motion at some arbitrary 

location for a simple oscillator: 

�̈� +
𝑐
𝑚
�̇� +

𝑘
𝑚
𝑢 = −�̈� (18) 

If 𝜔 = �𝑗
𝑚

 is the undamped natural frequency and 𝜁 = 𝑐
2𝑚𝜔

 is the percent of critical damping, 

then Equation (18) may be expressed as: 

�̈� + 2𝜁𝜔�̇� + 𝜔2𝑦 = −�̈� (19) 
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Following the derivation of response spectra from this general equation of motion per (Nigam & 

Jennings, 1969), let the forcing acceleration be approximated as a segmentally linear function 

−�̈�𝑖 −
Δ�̈�𝑖
Δ𝜔𝑖

(𝑡 − 𝑡𝑖), for which the solution to Equation (19) is given by: 

𝑦 = 𝑒−𝜁𝜔(𝜔−𝜔𝑖) �𝐶1 sin𝜔�1 − 𝜁2(𝑡 − 𝑡𝑖) + 𝐶2 cos𝜔�1 − 𝜁2(𝑡 − 𝑡𝑖)�

−
𝑎𝑖
𝜔2 +

2𝜁
𝜔3

Δ�̈�𝑖
Δti

−
1
𝜔2

Δ�̈�𝑖
Δti

(𝑡 − 𝑡𝑖) 
(20) 

where 𝐶1 and 𝐶2 are constants of integration given as: 

𝐶1 =
1

𝜔�1 − 𝜁2
�𝜁𝜔𝑦𝑖 + �̇�𝑖 −

2𝜁2 − 1
𝜔2

Δ�̈�𝑖
Δ𝑡𝑖

+
𝜁
𝜔
�̈�𝑖  � (21) 

𝐶2 = 𝑦𝑖 −
2𝜁
𝜔3

Δ�̈�𝑖
Δ𝑡𝑖

+
�̈�𝑖
𝜔2 

(22) 

Substituting 𝐶1 and 𝐶2 into Equation(20) yields: 

𝒚𝑖+1 = 𝑨(𝜁,𝜔,Δ𝑡𝑖)𝒖𝑖 + 𝑩(𝜁,𝜔,Δ𝑡𝑖)�̈�𝑖  (23) 

where 𝒚𝒊 = �
𝑦𝑖
�̇�𝑖�, and variables 𝑨 and 𝑩 indicate matrix quantities which are detailed in (Nigam 

& Jennings, 1969). 

As an alternative method of determining the response spectra, according to 

(Westinghouse Electric Company, 1976) a Laplace transform of Equation (19) provides an 

expression for the relative displacement (with respect to foundation) as a function of time: 

𝑢(𝑡) = 𝑢(0)𝑒−𝛼𝜔𝜔 �cos(𝑝𝑡) +
𝜁 sin(𝑝𝑡)

𝜚
� + �̇�(0)

𝑒−𝜁𝜔𝜔 sin(𝑝𝑡)
𝑝

−
∫ �̈�(𝛾)𝑒−𝜁𝜔(𝜔−𝛾) sin𝑝(𝑡 − 𝛾)𝑑𝛾𝜔
0

𝑝
 

(24) 
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where 𝑝 = 𝜔𝜚 and 𝜚 = �1 − 𝜁2.  Given the time-dependent relative displacement from 

Equation(24), the absolute displacement and acceleration may be derived, and thus, a set of 

equations for the relative displacement and velocity at the 𝑛𝜔ℎ time interval can be determined.   

Finally, whether using the method per (Nigam & Jennings, 1969) or (Westinghouse 

Electric Company, 1976), the absolute response acceleration at the 𝑖𝜔ℎ time interval is: 

�̈�𝑖 + �̈�𝑖 = −(𝜔2𝑢𝑖 + 2𝜁𝜔�̇�𝑖) (25) 

Hence, if the displacement and velocity of the oscillator are known at some time 𝑡0, the state of 

the oscillator at all subsequent times 𝑡𝑖 can be computed by application of Equations (23) and 

(25).  This calculation is repeated for each natural frequency of the dynamic system, and the 

absolute maximum acceleration at each frequency is plotted as a function of that frequency  to 

produce the acceleration response spectrum.   
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2.2 Global Sensitivity Analysis 

While many methods of sensitivity analysis exist (Morgan, et al., 1992), GSA is 

employed herein as a variance-based technique, which surveys the full parameter space by 

evaluating all values each parameter could have with respect to one another, considering the 

probability distribution defined for each parameter.  As such, GSA appropriately handles 

situations in which multiple parameters could have different magnitudes, and the combined 

effect of those different magnitudes has some effect on the desired outcome; this may be 

contrasted with respect to varying parameters on a one-at-a-time basis.  GSA provides insight as 

to the relative importance of multiple parameters (e.g., forcing functions or physical 

characteristics), which mutually influence the system response of interest.  Furthermore, GSA 

can also account for uncertainty in the input parameter space, so that each plausible combination 

of relative parameter variations is considered.   

First-order global sensitivity indices for output 𝑦 = 𝑓(𝒑) given input parameters 

𝒑 = (𝑝1,𝑝2, … ,𝑝𝑛) are defined as (Saltelli, et al., 2008):   

𝑆𝑖 =
𝑉[𝐸(𝑦|𝑝𝑖)]

𝑉(𝑦)  (26) 

where V[⋅] denotes the variance operator. The expected value of 𝑦 can be evaluated by the 𝑛 

dimensional integral: 

𝐸(𝑦) = � 𝑓(𝒑)𝑑𝒑
𝐼𝑛

 (27) 

in which 𝐼𝑛 is the 𝑛 dimensional unit hypercube.  The Fourier amplitude (FAST) method is used 

for the present study to approximate Equation (27) by converting the 𝑛 dimensional integral into 

a one-dimensional integral as a function of a new variable 𝑠.   
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2.2.1 Fourier Amplitude Sensitivity Test (FAST) Method 

The essence of FAST is to generate a curve in the parameter space that is a periodic 

function of each parameter, with a different frequency for each.  The contribution of each input is 

measured by the contribution of its characteristic frequency Ω𝑖 to the outputs (Morgan, et al., 

1992).  First, per (Cannavo, 2012) the function 𝑓(𝒑) may be expanded as: 

𝑓(𝒑) = 𝑓0 + � � 𝑓𝑖1…𝑖𝑠�𝑝𝑖1 , … ,𝑝𝑖𝑠�
𝑖1<⋯<𝑖𝑠

𝑛

𝑠=1

 (28) 

While the first summation is over the 𝑛 input variables, the second summation is over all 

possible combinations of 𝑠 different input variables, hence at most 2𝑛 components.  The function 

𝑓(𝒑) = 𝑓𝑖1…𝑖𝑠�𝑝𝑖1 , … ,𝑝𝑖𝑠� can then be expressed as a Fourier series: 

𝑓(𝒑) = � � …
∞

𝑗2=−∞

∞

𝑗1=−∞

� 𝐶𝑗1𝑗2…𝑗𝑛

∞

𝑗𝑛=−∞

𝑒𝑗2𝜋(𝑗1𝑝1+𝑗2𝑝2+⋯+𝑗𝑛𝑝𝑛) (29) 

With Fourier coefficients: 

𝐶𝑗1𝑗2…𝑗𝑛 = � 𝑓(𝑝)𝑒𝑗2𝜋(𝑗1𝑝1+𝑗2𝑝2+⋯+𝑗𝑛𝑝𝑛)𝑑𝑝
𝐼𝑛

 (30) 

The variances 𝑉 of the function 𝑓(𝑝) equate to the sums of the parts of the Fourier coefficients: 

𝑉�𝑓𝑖1…𝑖𝑠� = � … � �𝐶𝑗𝑖1…𝑗𝑖𝑠
�

∞

𝑗𝑖𝑠=−∞

∞

𝑗𝑖1=−∞

 (31) 

A multi-dimensional integral must be solved to calculate the Fourier coefficients of 

Equation (30).  In order to solve the 𝑛 dimensional integral, every input can be expressed as a 

function of a new independent variable 𝑠 as: 

𝑝𝑖(𝑠) =
1
2

+ sin−1(sin(Ω𝑖𝑠)) (32) 
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where the set {Ω1, … ,Ω𝑛} is linearly independent of integer frequencies.  Applying the change of 

variable, the expected value of 𝑦 can then be expressed as 1
2𝜋 ∫ 𝑓(𝑠)𝑑𝑠𝜋

−𝜋 .  Solution of this 

integral for the expected value of 𝑦 involves an analysis of variance (ANOVA) decomposition, 

which includes the calculation of the Fourier coefficients 𝐶𝑗𝑖.  The Fourier coefficients can be 

estimated by numerical integration of: 

𝐶𝑗𝑖 =
1

2𝜋
�𝑓(𝑠)𝑒−𝑗2𝜋𝑗𝑖Ω𝑖𝑠𝑑𝑠
𝜋

−𝜋

 (33) 

One can compute the Fourier coefficients to some desired accuracy by selecting enough values 

of 𝑠, where 𝑀 is some user-defined integer: 

𝑠 = 2𝜋𝜋
𝑀� ,    𝜋 = 1,2, … ,𝑀 (34) 

The number of discrete intervals used to evaluate this integral is thus defined by variable 𝑀.  Per 

(McRae, et al., 1980), the choice of 𝑀 and the number of inputs 𝑘 govern the number of model 

runs used to compute the GSA indices.  Therefore, as the number of inputs typically given for a 

problem of interest, the parameter 𝑀 can be adjusted to control the number of model runs 

required to estimate the global sensitivity indices.  Finally, the numerator of Equation (26) 

needed for computing the global sensitivity indices is calculated as: 

𝐸(𝑦|𝑝𝑖) = ��𝐶𝑗𝑖�
𝑖

 (35) 

Substituting Equation (35) into Equation (26) provides the first-order global sensitivity indices as: 

𝑆𝑖 =
𝑉�∑ �𝐶𝑗𝑖�𝑖 �
𝑉(𝑦)  (36) 
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2.2.2 Correlation based Methods 

Correlation based methods constitute one class of approaches for GSA which seek to 

provide insight as to the statistical dependence between variables.  For example, the Spearman 

rank correlation method assesses how well the relationship between two variables can be 

explained using a monotonic function.  In Chapter 5.0 , the GSA performed on SFEM briefly 

evaluates a Spearman rank correlation method in addition to FAST.   

Given a set of uncertain inputs 𝑥1𝑥2 … 𝑥𝑛, and the corresponding outputs 𝑦1𝑦2 … 𝑦𝑛, the 

absolute value of the rank correlation provides a measure of the relative degree to which change 

in variable 𝑥𝑖 contributes to change in output 𝑦𝑖.  More negative rank correlation values indicate 

a strong negative monotonic tendency (i.e., output decreases while input increases) while more 

positive rank correlation values indicate a strong positive monotonic tendency (i.e., output 

increases while input increases).  Two statistically independent quantities would have an 

expected rank correlation of zero.   

Define the rank as the relative position label of the observations within the variable (e.g., 

1st, 2nd, 3rd, etc.), so for the inputs as: 

𝑅𝑖𝑛 = �𝑟𝑖
(𝑗) ∈ {1, … ,𝑛}: 𝑟𝑖

(𝑗) > 𝑟𝑖
(𝑗) ⇔ 𝑥𝑖

(𝑗) > 𝑥𝑖
(𝑗), 𝑗 ∈ {1, … ,𝑛}� (37) 

The rank transformed model response then is 𝑅𝑜𝑜𝜔 = �𝑟𝑦
(1), 𝑟𝑦

(2), … , 𝑟𝑦
(𝑛)�.  The Spearman 

rank-order correlation coefficient may be expressed as: 
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𝑟𝑠 =
∑ �𝑅𝑖𝑖𝑛 − 𝑅�𝑖𝑛�(𝑅𝑖𝑜𝑜𝜔 − 𝑅�𝑜𝑜𝜔)𝑛
𝑖

�∑ �𝑅𝑖𝑖𝑛 − 𝑅�𝑖𝑛�
2𝑛

𝑖 �∑ (𝑅𝑖𝑜𝑜𝜔 − 𝑅�𝑜𝑜𝜔)2𝑛
𝑖

 
(38) 

Where: 

𝑅𝑖𝑖𝑛 rank of 𝑥𝑖 within the set of observations [𝑥1𝑥2 … 𝑥𝑛]𝑇 

𝑅𝑖𝑜𝑜𝜔 rank of 𝑦𝑖 within the set of observations [𝑦1𝑦2 … 𝑦𝑛]𝑇 

𝑅�𝑖𝑛,𝑅�𝑜𝑜𝜔  average ranks, across all 𝑛 observations, of 𝑅𝑖𝑖𝑛 and 𝑅𝑖𝑜𝑜𝜔 respectively 
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2.3 Surrogate Modeling 

2.3.1 Gaussian Process Regression 

In recent years, reduced-order modeling techniques (e.g. (Grigoriu, 2010), (Grigoriu & 

Field, 2014)) and surrogate modeling methods (e.g., (Paez, et al., 1997)) have gained popularity 

for random vibration problems.  One popular surrogate modeling method is kriging, otherwise 

known as Gaussian process modeling or Gaussian process regression, which has been shown to 

be effective for stochastic structural dynamics.  For example, (Abbiati, et al., 2017) successfully 

used Kriging in conjunction with hybrid simulation to establish an active learning method in the 

context of structural reliability analysis for seismic applications.  Kriging has the advantage 

when compared to some other popular surrogate modeling strategies of providing an error metric 

in the variance of the surrogate model, and has been successfully studied alongside methods of 

sensitivity analysis (Gratiet, et al., 2016). 

A kriging model, ℳ𝐾, serving as a surrogate for the full-order model ℳ (e.g., the 

random vibration finite element model), is expressed in accordance with (Rasmussen & 

Williams, 2005), (Sacks, et al., 1989), and (Lataniotis, et al., 2017), in which the bold-faced 

variables indicate a vector quantity: 

ℳ𝐾(𝒙) = 𝚿(𝒙) + 𝜎2𝑹(𝒙;𝜃) (39) 

in which 𝚿(𝒙) = 𝒇𝑻(𝒙)𝜷 is the mean value (or trend) constructed from regression coefficients 𝜷 

and basis functions 𝒇(𝒙), which is computed as the summation: 

𝚿(𝒙) = � 𝛽𝛼𝑓𝛼(𝒙)
𝛼∈𝑨𝑀,𝑃

 
(40) 
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where the basis functions were taken as multivariate polynomials of the form 𝑓𝛼(𝒙) = ∏ 𝑥𝛼𝑖𝑀
𝑖=1  , 

𝜶 = {𝛼1,𝛼2, … ,𝛼𝑀} is a vector of indices, and 𝑨𝑀,𝑃 = {𝜶: |𝜶| ≤ 𝑃} that yield polynomials in 

the 𝑀 input variables up to degree 𝑃.  For this work, ordinary Kriging was used in which the 

mean (trend) had a constant yet unknown value, which may be simply expressed as 𝒇𝑻(𝒙)𝛽 =

𝑓1(𝑥)𝛽1 = 𝛽1 (Marelli & Sudret, 2014), in which case 𝑃 = 1. 

The second term in Eq. (39) 𝜎2𝑅(𝒙;𝜃) is a zero-mean stationary Gaussian random 

process with variance 𝜎2 and autocorrelation function 𝑅(𝒙;𝜽) with which a correlation matrix 𝑹 

is populated. For this work, 𝑅(𝒙;𝜽) = 𝑅(𝑥, 𝑥′;𝜽) is an 𝑛-dimensional separable ellipsoidal 

correlation function expressed as:  

𝑅(𝑥, 𝑥′;𝜃) = 𝑅(ℎ), where 𝒉 = ���
𝒙𝒊 − 𝒙𝒊′
𝜽𝒊

�
𝟐𝒏

𝒊=𝒌

 (41) 

where the parameter 𝜃 is determined using maximum likelihood estimation (MLE).   

MLE is used with a specified trend and correlation function, and a Kriging surrogate is 

established by estimating parameters 𝛽 (for trend), and 𝜎2,𝜃 (for correlation) which maximize 

the likelihood of realizing the actual (known) function evaluations (i.e., from full-order model 

ℳ).  The operations by which MLE is used to perform this calculation are detailed in  

(Lataniotis, et al., 2017) or (Sundar & Shields, 2018).  
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2.3.2 Genetic Aggregation 

Although a surrogate model such as the Kriging method described could be applied 

directly following a training cycle to estimate system responses, a challenge with surrogate 

modeling is that different training processes or model initializations will produce different 

surrogate models of differing accuracy.  One approach to combat this variability is the method of 

Genetic Aggregation, which leverages a universal criterion applicable to any particular type of 

surrogate model to support the automatic selection of an optimal ensemble of surrogate models.  

Figure 2.2 summarizes the Genetic Aggregation method used herein, for which details are 

provided in the following discussion. 

Chapter 5.0  of this work employs this Genetic Aggregation algorithm which aims to 

construct an optimal aggregate surrogate model (Ben Salem & Tomaso, 2018), and is denoted 

with abbreviation 𝐺𝐴.  Thus, the resultant surrogate model is not one mathematical model (e.g., 

Kriging or polynomial regression) but is rather an ensemble of 𝑁𝑀 surrogate models ℳ∗, with an 

estimation produced through a weighted combination of those models as: 

ℳ𝐺𝐺(𝒙) = �𝑤𝑗

𝑁𝑀

𝑗=1

ℳ𝑗
∗(𝒙) (42) 

Details on the sub-surrogates with which these aggregate surrogates are constructed may 

be found in (Lancaster & Salkauskas, 1981) for moving least squares, (Smola & Scholkopf, 

1998) for support vector regression, and (Abrahamsen, 1997) for various correlation functions 

that may be used for Kriging. 
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Let the computational data (“design points” or “training points”) be established from 𝑁 

realizations of a full-order finite element model providing 𝒚 given inputs 𝒙 thus forming the set 

of design points z= (𝒙,𝒚). 

As discussed in (Ben Salem & Tomaso, 2018), the weight factors are determined by 

minimizing the error from multiple perspectives.  Specifically, a penalized predictive score (PPS) 

is assigned to each candidate surrogate with respect to the computational data set 𝒛 which 

combines three terms: internal accuracy measured as a root mean squared error (RMSE) ℛ𝑅𝑀𝑅𝑅, 

predictive capability measured by k-fold cross validation ℛ𝑗−𝐶𝐶, and a roughness penalty ℛ𝜇. 

𝑃𝑃𝑆(ℳ∗, 𝒛) = Λ𝛼ℛ𝑅𝑀𝑅𝑅 + Λ𝛽ℛ𝑗−𝐶𝐶 + Λ𝛾ℛ𝜇 (43) 

where the coefficients weight the contribution of each term for the PSS and, in this 

implementation, are related as Λ𝛼 = 2Λ𝛽 and Λ𝛽 = 2Λ𝛾.  The formulation for the ℛ𝑅𝑀𝑅𝑅 and 

ℛ𝑗−𝐶𝐶 terms are detailed in Section 2.2 of (Ben Salem & Tomaso, 2018), and ℛ𝜇 is based on a 

Bending Energy Functional per (Duchon, 1977). 

Having thus established some universal metric by which the accuracy of each model may 

be measured, the question then becomes how to best weight each surrogate model (i.e., find 𝑤𝑗 

for ℳ𝑗
∗ from Equation (42)).  Per (Ben Salem & Tomaso, 2018), the weight factor values are 

based on a correlation matrix of the error terms used in establishing the PPS under the constraint 

that ∑ 𝑤𝑗
𝑁𝑀
𝑗 = 1 as: 

𝑤 =
𝐶−1[𝐼]

[𝐼]𝑇𝐶−1[𝐼]
 (44) 

in which 𝐶 is the matrix of the PPS errors 𝐸𝑖 and 𝐸𝑗 (i.e., 𝐸𝑗 = 𝑃𝑃𝑆�ℳ𝑗
∗�) of candidate 

surrogates multiplied by one another: 
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𝐶𝑖𝑗 =
1
𝑁
𝐸𝑖𝐸𝑗  (45) 

Recognizing that there is a vast combination of plausible surrogate models (e.g., different 

mean and correlation kernels of a Kriging model), a genetic algorithm is used to increase the 

probability of achieving the most effective aggregate surrogate model by solving the 

optimization problem: 

min
𝑊

𝑃𝑃𝑆(ℳ𝐺𝐺, 𝒛) (46) 

Thus, this is why the surrogate modeling method is termed “Genetic Aggregation”; it 

uses a genetic algorithm by which sequential generations determine the optimal aggregate 

surrogate model.  The genetic algorithm is a well-accepted technique for stochastic optimization, 

and the implementation found within ANSYS DesignXplorer (ANSYS, 2016) was used for this 

work.   
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Figure 2.2  Flow Chart of Genetic Aggregation Method 
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2.3.3 Verification Criteria 

Given the following nomenclature, Table 2.2 shows various goodness-of-fit criteria with 

which surrogate model quality may be assessed, as a means of verification.  Within this work 

MRR and RRMS metrics are used, as they offer slightly different perspectives on surrogate 

model accuracy.  The MRR provides a “worst case” error metric pertaining to the surrogate 

solution which is most different from the full-order model solution, whereas the RRMS provides 

an averaged measure of error across all 𝑁 design points. 

These verification criteria are applied to the Kriging surrogates (per Section 2.3.1) used 

in Chapters 3.0  and 4.0 , as well as to the Genetic Aggregation surrogates (per Section 2.3.2) 

used in Chapter 5.0 .   

 

𝑦𝑖 Value of the output parameter at the 𝑖𝜔ℎ sampling point 

𝑦�𝑖 Value of the Surrogate model ℳ at the 𝑖𝜔ℎ sampling point 

𝑦� Arithmetic mean of the values of 𝑦𝑖 
𝜎𝑦 Standard deviation of the values of 𝑦𝑖 
𝑁 Number of sampling points (i.e., “design points”) 
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Table 2.2  Surrogate Model Goodness of Fit Criteria 

Criterion Equation 

Coefficient of Determination (𝑅2) 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑁
𝑖=1
∑ (𝑦𝑖 − 𝑦�)2𝑁
𝑖=1

 

Maximum Relative Residual (MRR) max
𝑖=1:𝑁

��
𝑦𝑖 − 𝑦�𝑖
𝑦𝑖

�� 

Root Mean Square Error (RMSE) �
1
𝑁
�(𝑦𝑖 − 𝑦�𝑖)2
𝑁

𝑖=1

 

Relative Root Mean Square Error (RRMS) �
1
𝑁
��

𝑦𝑖 − 𝑦�𝑖
𝑦𝑖

�
2𝑁

𝑖=1

 

Relative Maximum Absolute Error 
1
𝜎𝑦

max
𝑖=1:𝑁

(|𝑦𝑖 − 𝑦�𝑖|) 

Relative Average Absolute Error 
1
𝜎𝑦

1
𝑁
�|𝑦𝑖 − 𝑦�𝑖|
𝑁

𝑖=1
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2.4 Design of Experiment Sampling Strategies 

A critical component to creating any surrogate model, including Gaussian Process 

Regression, as detailed in Section 2.3, is the training dataset.  The surrogate model is only as 

good as the training dataset, and therefore, the dataset should be ensured to contain the important 

features of the system of interest.  However, it is also important to attempt to minimize the size 

of the training dataset required, as generating this data is typically the dominating computational 

expense for any associated problem.  Different variants of stratified sampling are studied herein.  

In stratified sampling, the sample space for an input parameter is divided into strata, and input 

values are obtained by sampling separately from within each stratum instead of from the 

distribution as a whole, as is done for random Monte Carlo sampling.  It has been shown that 

stratified sampling, such as LHS, can yield substantially improved sampling errors in terms of 

properly characterizing a probability density function with a given number of samples 

(Chrisman, 2014).  In fact, for univariate analysis it has been shown that the sampling error of 

Monte Carlo goes down as the order of 1
√𝑁

, whereas the sampling error for LHS decreases as the 

order of 1
𝑁

 per (Aistleitner, et al., 2012) and (Loh, 1995), for example. 

Specifically, the training data sets were generated by exercising a full-order finite 

element model for which computational DOEs were constructed using Latin Hypercube 

Sampling (LHS) and a generalized Latin Hypercube sampling method called Latinized Partially 

Stratified Sampling (LPSS) (Shields & Zhang, 2016).   
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2.4.1 Latin Hypercube Sampling 

In contrast to random Monte Carlo sampling, LHS is a way to randomly sample a 

parameter space that aims to spread the sample points evenly across all possible values (McKay, 

et al., 1979).  One of its first implementations of LHS was in a Sandia National Laboratory 

computer program simply entitled “Latin Hypercube Sampling” (Iman, et al., 1980).  As a 

version of stratified sampling, LHS partitions each input parameter distribution into intervals of 

equal probability, selects one sample from each interval, and shuffles the sample for each input 

so that there is no correlation.  To generate Μ samples using LHS, each input distribution is 

divided into Μ intervals of equal probability.  A given sample is generated by selecting one value 

at random from each of the inputs, but without replacement, from the Μ sample values for each 

input.  This results in Μ samples, with each input being used only once (Morgan, et al., 1992). 

LHS operates by dividing each vector component (parameter) 𝑝𝑖 into Μ disjoint subsets 

(strata) of equal probability Ξik; where 𝑖 = 1,2, … ,𝑁 and 𝑘 = 1,2, … ,Μ.  Samples of each 

parameter are drawn from the respective strata according to Equation (47). 

𝑝𝑖𝑗 = 𝐷𝑋𝑖
−1(𝑈𝑖𝑗) (47) 

where 𝑈𝑖𝑗 are independent, identically, and uniformly distributed samples on the domain �𝜉𝑗𝑙 , 𝜉𝑗𝑜� 

with 𝜉𝑗𝑙 = 𝑗−1
𝑀

 and 𝜉𝑗𝑜 = 𝑗
𝑀

.  A term 𝑝𝑖𝑗 is randomly selected from each parameter (without 

replacement) and these terms are grouped to produce a sample, and then that process is repeated 

𝑀 times (Shields & Zhang, 2016). 
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2.4.2 Latinized Partially Stratified Sampling 

The LPSS method developed in (Shields & Zhang, 2016) performs simultaneous Latin 

sampling of all variables and stratified sampling of subsets of variables, and has been shown to 

provide variance reduction in the context of parameter interactions.  In the case of simulating 

FIV phenomena and system finite element modeling, such as explored within this dissertation, 

often parameter interactions can exist in terms of (uncorrelated) forcing functions or physical 

model parameters. 

LPSS is achieved by first defining a partially stratified sampling (PSS) design, as 

described in (Shields & Zhang, 2016), and as follows.  Let Θ𝑖 , 𝑖 = 1, … ,𝑁𝑅 denote 𝑁𝑅 disjoint 𝑁𝑖-

dimensional orthogonal subspaces of the 𝑁-dimensional sample space.  PSS divides each 

subspace Θ𝑖 into a collection of 𝑀𝑖 disjoint subsets Ξ𝑖𝑗; 𝑘 = 1,2, … ,𝑀𝑖.  Lower 𝑁𝑖 dimensional 

random samples 𝒑𝑖𝑗 = �𝑝𝑖𝑗1,𝑝𝑖𝑗2, … ,𝑝𝑖𝑗𝑁𝑖� are generated within each stratum Ξ𝑖𝑗 of subspace 

Θ𝑖 according to the stratified sampling method.  Then, full 𝑁-dimensional samples 𝒑 are 

assembly by randomly grouping the lower-dimensional samples generated in each subspace.  

The most significant challenge to PSS is to identify the optimal subspace decomposition.  In 

some cases, it may be clear which variables are interacting which will inform the PSS subspace 

definitions, but such cases are the exception.  Indeed, the variables which are interacting are not 

known a priori in the present work applied to nuclear reactor internals structural dynamics.  

Coupling PSS with “Latinized” stratified sampling (LSS) helps to alleviate this concern. 

LSS permits one to simultaneously reduce variance associated with both the main and 

interaction effects by constructing, on a given 𝑁𝑖-dimensional subspace, a true stratified 

sampling design that is at the same time an LHS design.  The procedure for accomplishing LSS 
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is described in Table 2.3.  Note that this method is colloquially called “Su-Do-Ku” sampling as a 

low dimensional LSS grid resembles the popular game. 

 

 

Table 2.3  LSS Method Procedure 

Step Description 
1 Draw an LHS from the subspace 

2 Stratify the domain as desired ensuring that the stratification is consistent with an LHS 
design 

3 For each stratum, randomly select a point 𝑝𝑖 from each component of the LHS (without 
replacement) such that the sample 𝑝 = {𝑝1,𝑝2, … ,𝑝𝑁} lies within the stratum 

4 Repeat for each stratum of the design. 
 

 

Finally, LPSS involves the use of LSS in combination with PSS.  Following the 

definition of a PSS design, samples from the lower-dimensional subspaces are then drawn 

according to the LSS method.  Thus, with LPSS, it is sufficient to stratify a set of variables 

together simply based on the possibility that they may interact.  If the chosen parameters do 

interact then the savings, in terms of variance reduction (and associated accuracy of surrogate 

model and GSA, in this application), will be amplified by reduction in both the main effects and 

interactions.  If the chosen parameters do not interact, there will be no increase in variance since 

the main effects are also being filtered thanks to LSS. 

Implementation of the LPSS method in the form of Matlab code is shown in Appendix A. 
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2.4.3 Adaptive Sampling 

Sampling, training, and verifying a Surrogate model in a serial manner can prove 

computationally inefficient if it turns out that the number of samples initially chosen to perform 

the computational DOE exceeds the number of (intelligently-drawn) samples actually required to 

achieve some desired level of model accuracy.  This principle is illustrated in Figure 2.3.  Let 𝑁 

samples fed through a computational DOE such as LHS or LPSS yield some verification error, 

and set that error equal to the verification tolerance.  Next, let some smaller number of samples 

𝑛1 be fed through a computational DOE, such that 𝑛1 ≪ 𝑁, recognizing that it is likely that the 

verification error upon drawing 𝑛1 samples will exceed the verification tolerance.  Adaptive 

sampling explores the situation which, upon subsequent iterations 𝑖 of adding 𝑛𝑅 refinement 

points it may be that 𝑛𝑖 samples yields equivalent verification error to that produced by 𝑁 

samples even while 𝑛𝑖 < 𝑁 because the refinement points are intelligently drawn from places 

within the parameter space which best serve to reduce error. 
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Figure 2.3  Illustration of Adaptive Sampling Principle 

 

 

For the present study, the initial computational DOE used to train the surrogate model for 

SFEM (see Section 5.2) used LHS to randomly sample the parameter space.  The LHS DOE 

provided a set of data with which the surrogate model was initially trained.  Given the relatively 

high dimensionality of the SFEM sensitivity analysis, it is expected that some parameters may 

converge much more easily than others (i.e., require fewer samples to be adequately resolved).  
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Adaptive sampling provides a means by which subsequent full-order model solutions may prove 

most effective in achieving an accurate surrogate model so that computational expense may be 

minimized. 

“Refinement Points” were thus employed when constructing and verifying the surrogate 

model.  Adaptive sampling was accomplished for the present study by the Universal Prediction-

based Surrogate Modeling Adaptive Refinement Technique (UP-SMART) algorithm described 

in (Ben Salem, et al., 2017).  The following briefly describes the UP-SMART algorithm. 

Let ℳ denote a real-valued function defined such that 𝒚 = ℳ(𝒙).  In the present 

application, ℳ represents the finite element model.  ℳ can be estimated by obtaining a set of 𝑁 

samples which relate the inputs 𝒙 to the outputs 𝒚; let 𝒛 denote these observations.  These 

observations are the “design points” solved, as determined by the DOE sampling.  Using the 

observations 𝒛 a Kriging surrogate model ℳ𝐾 is constructed which mimics the behavior of ℳ 

per methods described in Section 2.3.1.  For exploration of adaptive sampling in this dissertation, 

an aggregate surrogate model ℳ𝐺𝐺 is used, as described in Section 2.3.2. 

The UP-SMART adaptive sampling method draws points based on the cross-validation 

error of the aggregate surrogate model.  The idea of surrogate model verification recognizes that 

training and evaluating statistical performance of a surrogate model on the same data with which 

it was trained yields an optimistic (and thus misleading) result (i.e., the surrogate model may not 

generalize to accurately estimate unseen samples).  Typically, at least one portion of the data is 

assigned as the training set while the remainder is used for testing.  For more thorough analysis, 

cross-validation splits the data multiple times and evaluates the predictive capabilities of a model 

when trained with and tested against multiple splits of the same data set.  For example, the 

“leave-one-out” cross-validation methods leaves one point out of the population of data and uses 
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the remainder of the data set to train the model to predict that (excluded) point.  The predictions 

of the left-out points provide a distribution across the parameter space of which locations can be 

best (or worst) predicted.  It is upon such a distribution, termed the Universal Prediction (UP) 

distribution, that new samples are defined with the adaptive sampling method used herein. 

The UP distribution (Ben Salem, et al., 2017) is defined as a weighted empirical 

distribution, in which the weights 𝜅 are computed as: 

𝜅𝑖,𝑛(𝑥) =
1 − 𝑒

−
𝑑�(𝑥,𝑥𝑖)�

2

𝜌2

∑ �1 − 𝑒
−
𝑑��𝑥,𝑥𝑗��

2

𝜌2 �𝑁
𝑗=1

 
(48) 

where 𝑑�(𝑥, 𝑥𝑖)� is the distance between the 𝑖𝜔ℎ design point and the input parameter value 𝑥, 

and 𝜌 is a smoothing parameter.  Thus, 𝜅𝑖,𝑛(𝑥) increases with the distance between the 𝑖𝜔ℎ design 

point 𝑥𝑖 and 𝑥.  Using this smoothed weight function, the UP distribution is defined as: 

𝜇(𝑛,𝑥)(𝑑𝑦) = �𝜅𝑖,𝑛(𝑥)𝛿ℳ𝑛,−𝑖(𝑥)
𝐺𝐺 (𝑑𝑦)

𝑛

𝑖=1

 (49) 

 (Ben Salem, et al., 2017) states that this probability measure is “the empirical distribution of all 

the predictions provided by cross-validation sub-models weighted by local smoothed masses”.  

Thus, the Dirac function 𝛿ℳ𝑛,−𝑖(𝑥)
𝐺𝐺  and the local smoothed mass term is 𝜅𝑖,𝑛(𝑥) provide this 

empirical distribution. 

The local UP variance and mean are then defined within (Ben Salem, et al., 2017) as: 

𝑚�𝑛(𝑥) = �𝑦𝜇(𝑛,𝑥) (𝑑𝑦) = �𝜅𝑖,𝑛(𝑥)ℳ𝑛,−𝑖(𝑥)
𝐺𝐺 (𝑥)

𝑛

𝑖=1

 (50) 
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𝜎�𝑛2(𝑥) = ��𝑦 −𝑚�𝑛(𝑥)�
2
𝜇(𝑛,𝑥) (𝑑𝑦)
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𝐺𝐺 (𝑥) −𝑚�𝑛(𝑥)�

2
𝑛

𝑖=1

 

(51) 

The UP-SMART thus samples points where the UP distribution variance, as defined by 

Equation (51), is maximal.  During the refinement iterations, selection of the parameter value for 

the 𝑛 + 1 point is determined as: 

𝑥𝑛+1 ∈ argmax
𝑥∈𝐗

�𝛾𝑛(𝑥)� (52) 

𝛾𝑛(𝑥) = 𝜎�𝑛2(𝑥) + 𝛿𝑑𝑋𝑛(𝑥) (53) 

Where: 

𝜎�𝑛2(𝑥) UP variance at point 𝑥 for step 𝑛 
𝑑𝑋𝑛(𝑥) A given distance on ℝ𝑝 
𝑋𝑛 The sample set used to build the surrogate model 
𝐗 User-defined parameter space 
𝛿 Distance penalization 

In recent years adaptive sampling techniques have found some interest in applications 

related to nuclear energy, such as in (Idaho National Laboratory, 2015), but have not gained 

widespread acceptance or use.  It is therefore the intent of this dissertation to provide an 

introduction as to the potential value offered by adaptive sampling, by implementing one such 

method (which is not necessarily claimed to be optimal but rather illustrative), as discussed in 

5.0 . 
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2.5 Integrated Computational Framework 

In the interest of summarizing how the methods described in Chapter 2.0 fit together 

within this work, Figure 2.4 illustrates how a random vibration finite element analysis (Section 

2.1) may be used to accomplish a GSA (Section 2.2) by using a Surrogate model (Section 2.3) 

trained by a computational DOE (Section 2.4), thus forming a computational framework with 

which experiments are performed in Chapters 3.0  for an UI FIV problem and 4.0  for the SFEM.  

The novelty of this work lies not  necessarily in any one of the particular methods described in 

the preceding subsections, but rather in the integration of these methods in such a workflow for a 

nuclear reactor application. 

Beginning with a set of data determined via a computational DOE, such as LHS or LPSS, 

Kriging surrogate models were trained with which GSA was performed.  In parallel to using 

surrogates, GSA was performed directly on the full-order finite element models in order to 

establish benchmark sensitivities.  These sensitivities were compared in order to study the error 

associated with surrogate-based GSA and the role of the sampling method with which the 

surrogates were trained.  This is studied using two separate finite element models; one a 

stationary FIV of a reactor UI and the other a SFEM subjected to LOCA loading. 
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Figure 2.4  Integrated Workflows 

 

  



 50 

3.0  Application to Stationary Random Vibration for Upper Internals Assembly 

According to the introduction to stochastic dynamics for nuclear reactor structures 

described in Chapter 1.0 , and employing the methods described in Chapter 2.0 , the response of 

the Upper Internals (UI) assembly of a nuclear reactor subject to FIV is investigated in this 

Chapter (Banyay, et al., 2019).  Particularly within the upper plenum of a reactor the flow is 

chaotic.  Decomposition of the various flow characteristics into distinct forcing functions (e.g., 

jetting, cross-flow, etc.) constitutes a challenge unto itself, which is not specifically addressed by 

this dissertation (see (Au-Yang, 2001) for example).  That said, once distinct forcing functions 

have been established, a finite element analysis is used to simulate the structural dynamics and 

thus compute displacements, strain, and stress.  The structures themselves are generally 

constructed of geometrically simple shapes, in part, due to ASME Code design guidelines, as 

shown in Subsection NG of (ASME, 2017), and also for purposes of manufacturability and 

regulatory acceptance.  As such, various structures, such as lower and upper support columns, 

can be rightly approximated as a combination of axisymmetric beams, as well as shell elements 

and lumped masses within a finite element model.  Thus, while the computational model is 

intended to simulate a complex system, simplicity of some features in the mechanical component 

design permit the finite element analysis to credibly use such element types as beams and shells.  

As an example, Figure 3.1 shows an UI assembly for the AP1000 plant. 
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Figure 3.1  Upper Internals Assembly for the AP1000 Plant (from (Westinghouse Electric Company, 2011) 
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3.1 Finite Element Analysis Description 

A finite element model of the UI section of the reactor assembly was built in ANSYS 

using linear hexahedral elements.  All structural components were taken to be austenitic stainless 

steel with density 7,850 𝑗𝑘
𝑚3, Poisson’s ratio 0.3, and elastic modulus 2 × 1011𝑃𝑎.  The material 

was considered linear elastic and geometric nonlinearities were not considered, as small 

displacement theory is considered a reasonable assumption for FIV during normal operating 

conditions of a reactor. The structure was supported with simple supports at the top rim of the 

upper support skirt, in the sense that displacement was zero in all three translational degrees of 

freedom, and subjected to three direct-applied forcing functions to the support columns acting in 

the radially outward direction, lateral forcing functions on each of the upper core plate and upper 

support plate acting in mutually perpendicular directions, and a vertical forcing function on the 

upper core plate.  The model, including boundary conditions and loads is shown in Figure 3.2.  

The output of interest from this model was assumed to be the axial (normal) strain, denoted 𝜖, of 

the upper support skirt in the interest of simulating a virtual strain gauge measurement; see 

Figure 3.2.   
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Figure 3.2  Upper Internals Model, Mesh, and Boundary Conditions 

 

 

Two types of loads were applied to the structure:  

1. Cross-flow loads on the support columns, and  

2. Base motions applied to the upper core plate and upper support plate.  

For the FIV problem, all forcing functions are defined as force or acceleration PSDs acting on 

un-constrained nodes (i.e., not imposed at the support locations).  Cross-flow loads correspond to 

forces induced on the columns by turbulent flow of coolant over the columns. Here, cross-flow 

loads were modeled as a stochastic process that is fully correlated along the length of the 
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column. To more accurately predict forced response, the cross-flow loading could be defined 

with an uncertain correlation length and permitted to vary between one and three diameters along 

the length of the column (consistent with that observed by Mulcahy for turbulent cross-flow 

(Mulcahy, 1982)).  However, this length variation was considered a secondary effect and, for this 

study, was not considered. The term “base motion” is used for displacements applied to the 

upper core plate and upper support plate as those loads are caused by adjacent reactor 

components which were not included in the finite element model (e.g., base motion imparted 

from the core barrel to the upper support plate). 

Both the direct-applied and base motion loading were applied from 0 – 2,000 Hz with 

exponential spectral decay of 𝐺(𝜔) ∝ 𝜔−1.75, as illustrated in Figure 3.3. This spectral decay 

appears consistent with the non-dimensional forced response PSDs provided by (Au-Yang & 

Jordan, 1980) and (Mulcahy, 1982).  For comparison, forced response data from a column-like 

structure exposed to cross-flow loading from a CVAP hot functional test program is shown in 

Figure 3.3 with dashed lines.  The peaks in the forced response correspond to the natural 

frequencies of the structure, but it may be seen that the broadband decay of the applied forcing 

function is consistent with the data. Statistical analysis of this same dataset reveals that the 

forced response is Gaussian, ergodic and stationary. 
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Figure 3.3  Forcing Function Non-Dimensional Power Spectral Density (with beam forced response data 
overlaid) 

 

 

For GSA, the magnitude of the PSD was scaled as shown by the 𝜆 terms in Table 3.1.  In 

this analysis, the 𝜆 terms were assigned a Uniform distribution on the range [0.9, 1.1], from 

which random samples were drawn for the computational DOE.  The magnitude of the force and 

displacement PSDs were chosen based on the approximate order of magnitude of which these 

loads have been recorded from various historical instrumented Hot Functional Tests and sub-

scale tests of PWRs. 
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Table 3.1  Forcing Functions Applied to Upper Internals Finite Element Model 

Forcing Function Type of Excitation PSD Scaling 

Cross-Flow across Support 
Columns Force 

𝐺�𝑥𝐹(𝜔)𝑈𝑅𝐶.𝐶𝐶𝑛𝜔𝐶𝑓 = 𝜆𝑈𝑅𝐶.𝐶𝐶𝑛𝜔𝐶𝑓 × 𝐺𝑥𝐹(𝜔) 

𝐺�𝑥𝐹(𝜔)𝑈𝑅𝐶.𝑀𝑖𝑑 = 𝜆𝑈𝑅𝐶.𝑀𝑖𝑑 × 𝐺𝑥𝐹(𝜔) 

𝐺�𝑥𝐹(𝜔)𝑈𝑅𝐶.𝑂𝑜𝜔𝐶𝑓 = 𝜆𝑈𝑅𝐶.𝑂𝑜𝜔𝐶𝑓 × 𝐺𝑥𝐹(𝜔) 

Base motion applied to 
Upper Core Plate and Upper 
Support Plate 

Displacement 

𝐺�𝑥𝛿(𝜔)𝑈𝐶𝑃.𝑅𝑑𝑘𝐶 = 𝜆𝑈𝐶𝑃.𝑅𝑑𝑘𝐶 × 𝐺𝑥𝛿(𝜔) 

𝐺�𝑧𝛿(𝜔)𝑈𝑅𝑃.𝑅𝑑𝑘𝐶 = 𝜆𝑈𝑅𝑃.𝑅𝑑𝑘𝐶 × 𝐺𝑧𝛿(𝜔) 

𝐺�𝑦𝛿(𝜔)𝑈𝐶𝑃.𝐹𝐹𝑐𝐶 = 𝜆𝑈𝐶𝑃.𝐹𝐹𝑐𝐶 × 𝐺𝑦𝛿(𝜔) 

 

3.2 Sensitivity Analysis of Stationary Random Vibration for UI Assembly 

3.2.1 Sensitivity Analysis of Full-Order Model using FAST 

The FAST method (Section 2.2.1) was applied directly using the finite element analysis 

(i.e., full-order model) in order to compute benchmark global sensitivities against which those 

obtained from various Surrogate models could be compared. Using the SAFE toolbox 

documented in (Pianosi, et al., 2015) (for which the underlying methodology is similar to that 

implemented in UQLab (Marelli & Sudret, 2014)), GSA was performed.  An increasing number 

of samples were generated for the 6 inputs to the full-order model until convergence of the 

sensitivity indices was observed.  The number of simulations required to produce sensitivity 

indices that did not change more than 0.3% (or a sensitivity index magnitude of 0.0005) upon 

further samples was 5,000.  Convergence of the sensitivity indices is plotted in Figure 3.4, from 
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which it may be seen that there was no substantial change in the magnitude of the sensitivity 

indices as sample sizes greater than 512.  Specifically, between 1,728 and 5,000 samples, the 

sensitivity indices associated with the base motion loads differed by less than 0.0005 and those 

associated with cross-flow loads differed by less than 3.6 × 10−5. 

 

 

Figure 3.4  Full-order Model GSA Convergence 

 

Prior to examining results using surrogate modeling in place of the full-order model, the 

physical significance of the GSA results is noteworthy.  The GSA results show that the base 

motion loads acting in the lateral direction at both the UCP and USP each account for 41% of the 

output variance, the UCP vertical forcing function accounts for 16% of the output variance, and 

the sum total of the direct-applied cross-flow loads account for less than 1% of the output 
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variance.  This is meaningful in the sense that the dynamic response of the UI assembly is 

governed more by turbulence that imparts loads to the interface joints (i.e., upper support flange) 

than turbulence that acts directly upon the upper support columns.   

This sort of observation serves to inform key engineering decisions related to up-front 

design investments as well as in diagnostics during plant operation.  For example, to borrow a 

principle of decision theory, the expected value of perfect information would be much greater to 

define the forces associated with base motion loads than direct-applied cross-flow loads, during 

the design stage of a new reactor.  Correspondingly, given the extreme difficulty of placing 

sensors within an operating reactor environment, it is valuable to understand that measuring the 

flow field directly by placing a sensor within the upper plenum would provide very limited 

insight into the structural dynamic behavior of the UI structures. 

3.2.2 Surrogate-based Sensitivity Analysis 

Multiple avenues were evaluated by which a Kriging surrogate, per Section 2.3.1, is 

trained from various computational data sets.  The global sensitivities obtained from the 

Surrogate models in these subsections are determined using FAST (Section 2.2.1).  In particular, 

it is of interest to examine the change in GSA results having to do with increasing the sample 

size and changing the sampling method.  To that end, the three workflows illustrated in Figure 

2.1 were employed for the GSA.   
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3.2.2.1 Surrogate trained by FAST Samples 

Using the model evaluations from the FAST GSA (addressed in Section 3.2.1), a Kriging 

surrogate was built for four sample sizes (i.e., the number of samples drawn from the full-order 

model used to train the surrogate).  Given that this problem had 6 random inputs, the minimum 

number of samples drawn from the full-order model and evaluated using FAST was 393 (Cukier, 

et al., 1978), and the subsequent three sample sizes considered were 512, 1,000, and 1,728. 

Then, in order to provide credibility of using a surrogate for GSA, sensitivity indices 

were determined via FAST using 10,000 samples drawn from these surrogate models 

(implemented in SAFE (Pianosi, et al., 2015)), which are shown in Figure 3.5, and the surrogate-

based sensitivities were compared to those computed directly from the full-order model.  The 

black circles on Figure 3.5 represent the benchmark sensitivities against which the surrogate-

based sensitivities are compared (i.e., the sensitivities associated with 5,000 samples from Figure 

3.4), and the differences between the surrogate-computed first order sensitivity indices 𝑆1𝑅𝑜𝑓𝑓 and 

those computed from the full-order model 𝑆1𝐹𝑅𝐺 are then shown on Figure 3.6.   
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Figure 3.5  GSA from Kriging Surrogates trained with FAST at varying Sample Sizes 

 

Figure 3.6  FAST-trained Surrogate-based Sensitivities vs Benchmark 
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3.2.2.2 Surrogate trained by LHS and LPSS 

The effectiveness of using the LHS and LPSS sampling methods described in Sections 

2.4.1 and 2.4.2, respectively, in establishing an accurate surrogate with which sensitivities can be 

calculated was evaluated.  Using workflows 2-3 from Figure 2.1, the two different sampling 

methods of computational DOEs were used to construct a surrogate model for GSA. Following 

workflow 2, the Kriging surrogate was constructed from samples generated by LHS. Following 

workflow 3, the Kriging surrogate was built from samples generated from LPSS. The LPSS 

designs assumed the crossflow loads were grouped for stratification and the base motion 

displacement loads were grouped for stratification. This LPSS design is described in Table 3.2 

and results in samples sizes of 27, 64, 125, 512, 1000, and 1728 samples from which the 

surrogate model was trained. LHS of the same size were used for a fair comparison.  

 

Table 3.2  Setup of Partially Stratified Sampling Design  

forcing function sub-domain 
dimension (Ni) 

strata number of 
samples 

cross-flow  
(inner, middle, outer on upper support column) 3 

3 
4 
5 
8 
10 
12 

27 
64 
125 
512 
1000 
1728 

base motion  
(upper core plate, upper support plate, vertical) 3 

number of dimensions 6  
 

 

All global sensitivity analyses were again performed by drawing 10,000 samples from the 

surrogates using FAST as implemented within (Pianosi, et al., 2015).  For each sample size (i.e., 

the number of samples used to train the surrogate), the resultant first-order Sensitivity indices are 

shown in Figure 3.7 and Figure 3.8 based on LHS and LPSS, respectively, in which the black 
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circles are the benchmark sensitivities computed from the full-order model directly.  It may be 

seen that the sensitivities are very similar between those computed from surrogates trained from 

LHS or LPSS, with a maximum relative difference of 0.98% on the cross-flow load sensitivities 

or 0.002% on the base motion load sensitivities.  This data (i.e., workflows 2 and 3 from Figure 

2.1), along with the surrogate-based sensitivities established from FAST sampling (workflow 1 

from Figure 2.1) is shown in Table 3-3 as well.  Figure 3.9 and Figure 3.10 show the differences 

between the surrogate-based sensitivities and those from the full-order model.  Aside from the 

lowest sample numbers (e.g., 27 or 64), increasing the sample size beyond 125 had an almost 

negligible effect on the resulting surrogate-based sensitivities.     

Figure 3.11 and Figure 3.12 show the results associated with the surrogates trained from 

FAST sampling, LHS, and LPSS overlaid on the same graph.  Of significance is that even 

though the surrogates used to calculate these sensitivities were constructed from different 

sampling strategies, the resultant global sensitivities do not appreciably differ from one another, 

which serves to demonstrate the stability of the GSA results for this type of system. 
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Table 3.3  Sensitivity Indices Computed from Surrogate Models 

Forcing 
Function NFullOrderRuns 

Cross-Flow 
(Inner) 

Cross-Flow 
(Mid) 

Cross-Flow 
(Outer) 

Upper Support 
Plate Lateral 

Upper Core 
Plate Lateral 

Upper Core 
Plate Vertical Sum 

Kriging Model 
built from 
LPSS 

27 3.61 x 10-5 6.11 x 10-5 2.53 x 10-4 0.4107 0.4116 0.1626 0.985 
64 3.71 x 10-7 2.58 x 10-6 6.31 x 10-5 0.4124 0.4087 0.1632 0.984 
125 3.24 x 10-7 2.92 x 10-6 6.30 x 10-5 0.4125 0.4086 0.1633 0.984 
512 3.16 x 10-7 3.09 x 10-6 6.28 x 10-5 0.4125 0.4085 0.1634 0.984 
1000 3.17 x 10-7 3.13 x 10-6 6.28 x 10-5 0.4124 0.4085 0.1634 0.984 
1728 3.16 x 10-7 3.15 x 10-6 6.29 x 10-5 0.4124 0.4085 0.1634 0.984 

Kriging Model 
built from 
LHS 

27 8.29 x 10-6 6.04 x 10-5 2.87 x 10-4 0.4270 0.3912 0.1665 0.985 
64 3.21 x 10-7 3.14 x 10-6 6.19 x 10-5 0.4126 0.4085 0.1633 0.984 
125 3.18 x 10-7 3.08 x 10-6 6.25 x 10-5 0.4126 0.4084 0.1634 0.984 
512 3.16 x 10-7 3.13 x 10-6 6.27 x 10-5 0.4125 0.4084 0.1634 0.984 
1000 3.17 x 10-7 3.18 x 10-6 6.27 x 10-5 0.4124 0.4085 0.1634 0.984 
1728 3.18 x 10-7 3.18 x 10-6 6.29 x 10-5 0.4124 0.4085 0.1634 0.984 

Kriging Model 
built from 
FAST GSA 
samples 

393 3.18 x 10-7 3.20 x 10-6 6.28 x 10-5 0.4124 0.4085 0.1634 0.984 
512 3.16 x 10-7 3.14 x 10-6 6.30 x 10-5 0.4124 0.4085 0.1634 0.984 
1000 3.17 x 10-7 3.19 x 10-6 6.28 x 10-5 0.4124 0.4085 0.1634 0.984 
1728 3.17 x 10-7 3.18 x 10-6 6.29 x 10-5 0.4124 0.4085 0.1634 0.984 
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Figure 3.7  Comparison of Sensitivities from LHS-Trained Surrogate Models 

 

Figure 3.8  Comparison of Sensitivities from LPSS-Trained Surrogate Models  
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Figure 3.9  Comparison of LHS-trained and LPSS-trained Surrogate-based Sensitivities to Benchmark for 
Base Motion loads 

 

Figure 3.10  Comparison of LHS-Trained and LPSS-Trained Surrogate-based Sensitivities to Benchmark for 
Cross-Flow Loads  



 66 

 

Figure 3.11  Surrogate-based Sensitivities vs. Benchmark for Base Motion Loads 

 

Figure 3.12  Surrogate-based Sensitivities vs. Benchmark for Cross-Flow Loads 
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3.3 Discussion from Evaluation of UI Flow-Induced Vibration 

3.3.1 Surrogate Model Accuracy 

It is of interest to determine how the relative difference in sensitivity indices compares 

with an independent measure of surrogate model accuracy, such as the error between output 

strains predicted by the Surrogate model and an independent (i.e., not used to train the surrogate 

models) set of data from the full-order model.  To examine this, 100 full-order simulations were 

randomly sampled from a Uniform distribution independent of the training sets of data used to 

establish the Surrogate models.  Then, the trained Surrogate models were exercised on this 

independent dataset of 100 to evaluate how well the surrogate model estimations agreed with the 

full-order model results.  The measure of error chosen for these tests was the root mean squared 

(RMS) error based on the Frobenius Norm, which may be defined as: 

‖𝐸‖𝐹 ≡ �
1
𝑚
���𝜖𝐹𝑜𝑙𝑙𝑂𝑓𝑑𝐶𝑓𝑀𝑜𝑑𝐶𝑙 − 𝜖𝑅𝑜𝑓𝑓𝑜𝑘𝐹𝜔𝐶𝑀𝑜𝑑𝐶𝑙�𝑖�

2
𝑚

𝑖=1

 (54) 

where 𝜖𝐹𝑜𝑙𝑙𝑂𝑓𝑑𝐶𝑓𝑀𝑜𝑑𝐶𝑙 and 𝜖𝑅𝑜𝑓𝑓𝑜𝑘𝐹𝜔𝐶𝑀𝑜𝑑𝐶𝑙 are the 𝑖𝜔ℎ result predicted by the full-order model 

and Kriging model, respectively.  Variable 𝜖 represents the axial strain on the upper support 

skirt.  Figure 3.13 shows the RMS error between the full-order model and surrogate models 

constructed from three different DOE strategies, LHS, LPSS, and FAST sample points, and each 

with a varying number of training datasets from 27 to 1,728.  A decrease in error by 

approximately a factor of 10 is observed with increasing sample size beyond 64 for all 

Surrogates and, while some small variability is observed from the Surrogates which were trained 

from the different DOE methods, the error is less than 0.01 𝜇𝜖, and thus judged negligibly small, 
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in every case for samples sizes of 125 and greater.  Given the negligible changes in GSA results 

above 125 samples, for this stationary FIV problem, there is minimal accuFigure 3.13Figure 3.9 

and Figure 3.10 For further comparison, these results were also compared with a Box-Behnken 

design (Montgomery, 2013) in the interest of understanding how such a traditional DOE 

approach may perform, and the RMS error of the Box-Behnken design was 15% higher than that 

associated with LHS, LPSS, and FAST. 

 

 

 

Figure 3.13  Surrogate Model Verification by Comparison to Test Set using Root Mean Squared Error 
(Strain) 
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3.3.2 GSA Comparison from Full-Order Model versus Surrogate Models 

Although at sample sizes of greater than 500, the differences in surrogate-based GSA 

results with respect to full-order model GSA results were shown to be small, and also insensitive 

to the method used to sample the parameter space (e.g., FAST, LHS, or LPSS), some noteworthy 

differences were observed for smaller sample sizes. First, LHS and LPSS reduced the number of 

samples needed to assess sensitivity as compared to sampling the parameter space directly with 

FAST.  The minimum number of samples used for FAST was 393, based on the number of 

integration points needed to resolve the underlying periodic functions for the dimensionality of 

this problem.  In terms of both the surrogate verification error and global sensitivities, LHS and 

LPSS provide comparable results at 64 samples.  Second, for the very small sample size of 27 

the error of the global sensitivities determined from the surrogate trained with LPSS is 

substantially lower than that trained with LHS.  As such, although interaction effects may not be 

strong, the variance reduction provided by LPSS as compared with LHS for a very small number 

of samples is insightful. 

The similar behavior amongst the three methods of sampling the parameter space, as well 

as the agreement between the surrogate-based sensitivities and those computed from the full-

order model, provides confidence in the stability of the results.  Furthermore, the agreement 

between sensitivity indices calculated by the surrogate and full-order models lends credence as to 

the veracity of the surrogate models.  Although the surrogate verification error was quantified in 

terms of a strain value and the global sensitivity values are unitless, a comparison between these 

errors may be observed by comparing Figure 3.13 to Figure 3.6 for FAST, and to Figure 3.9 and 

Figure 3.10 for LHS and LPSS. 
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One particularly significant physical insight from the results relates to the downcomer.  

The downcomer forcing function has historically received significant interest (e.g., (Au-Yang & 

Jordan, 1980)), and to some extent this study helps to substantiate the significance of that 

particular forcing function.  The downcomer forcing function acts directly upon lower internals 

components, such as the core barrel, and that motion is then coupled with UI components 

through the upper support flange.  From this study, it is apparent that the downcomer forcing 

function not only directly affects the lower internals response (e.g., core barrel), but also 

manifests itself as a base motion load on the UI structures and proves even more dominant as a 

base motion load than the cross-flow loads acting directly upon the UI components.  This is a 

meaningful observation in the sense that much effort has traditionally been devoted to 

characterizing flow fields in the upper plenum region of the reactor.  It is thus apparent that from 

the perspective of the structural dynamic response of the upper support assembly subjected to 

flow-induced excitation, rigorous characterization of the upper plenum flow field may be, to 

some extent, unwarranted.  As a caution, this point is not necessarily generalizable to all PWRs, 

but is nonetheless a meaningful observation for the particular analysis presented herein. 

These observations have implications in terms of both nuclear component design and 

diagnostics.  For design of a complex reactor assembly, characterization of forcing functions 

incurs significant engineering cost involving scale model test programs and computationally 

expensive computational fluid dynamics (CFD) simulations.  Thus, if the forced response of a 

complex assembly is governed by a select few forcing functions, albeit of uncertain magnitude, a 

surrogate model defined by those forcing functions may be exercised easily to make risk 

informed decisions to focus on development of specific forcing functions during the design 

process.  For diagnostics, dynamic instrumentation of an operating reactor incurs great cost to 
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plant owners.  Thus, if a given component is experiencing anomalous behavior, which is 

observable from its structural dynamic behavior, and it is known which few forcing functions 

govern the associated forced response, the amount of required dynamic instrumentation may be 

limited in order to diagnose potential problems.  Furthermore, an inverse problem may be 

constructed and parameterized so as to seek optimal, or most-likely, values of the dominant 

forcing functions. 

3.3.3 Conclusions from Upper Internals FIV Evaluation 

A surrogate model prototypic of an UI reactor subassembly was constructed.  This model 

included 6 independent forcing functions (with variance) and one output forced response variable 

(axial strain).  The global sensitivity analyses showed that for the response variable of interests, 

three of the total six forcing functions dominate the response of the structure.  Three different 

workflows were studied in which Kriging surrogates were trained using different methods of 

sampling the parameter space; namely FAST, LHS, and LPSS.  For large sample sizes, all 

approaches produced accurate global sensitivities, which provides confidence in the model 

results and suggests a stable sensitivity analysis result.  For relatively small sample sizes, LHS 

and LPSS were shown to yield surrogates with improved accuracy relative to those yielded from 

FAST sample points.  For very small sample sizes, LPSS is shown to yield improved accuracy 

relative to LHS. 

The optimal selection of Kriging trend and correlation functions depends on the 

application at-hand. Recently, novel model selection criterion and model averaging technique 

that employs the information-theoretic multimodel inference have been documented (Sundar & 

Shields, 2018).  Similarly, aggregate surrogate modeling methods adaptively trained by a unique 
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universal predictive distribution have recently been documented in (Ben Salem, et al., 2017) and  

(Ben Salem & Tomaso, 2018) initially explored in (Banyay, et al., 2018).  Chapters 4.0 and 5.0  

involve the application of GSA and Kriging methods, as well as aggregate surrogate modeling, 

for a reactor assembly model with non-linearities (i.e., non-linear springs and dampers) and non-

stationary loading (i.e., loss-of-coolant-accident acoustic or seismic loads).   
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4.0  Application to Non-Stationary Random Vibration of Reactor System 

Reactor assembly system finite element models (SFEMs) are ubiquitous throughout the 

design and analysis of key systems, structures, and components within PWRs, and not only 

within Westinghouse (Palamara, et al., 2015), but across the commercial nuclear industry per 

(Ko & Kim, 2012) and (Ko & Kim, 2013), for example.  Despite the centrality of SFEMs to the 

general mechanical and civil design of such high-consequence facilities, uncertainty 

quantification of such computational models is generally lacking amongst nuclear industry 

practitioners.  Not performing proper uncertainty quantification can lead to overdesigned 

components and excessive engineering expenses when it comes to the qualification of key 

equipment.  Furthermore, fiscal pressures within the present commercial nuclear industry are 

driving engineering organizations to challenge the status quo and develop creative ways by 

which the promise offered by nuclear energy may continue to be delivered in a cost effective 

manner.  As such, it may be argued that a necessary first step towards an optimal framework for 

doing computational mechanics in a parsimonious manner is to understand the sensitivity of 

SFEMs. Thankfully, there is significant precedent for uncertainty quantification in computational 

structural mechanics applications as evidenced by guidance provided by (ASME, 2006) and 

deployed in studies such as (Hossain, et al., 2015).   

This chapter seeks to present the application of surrogate modeling and GSA methods to 

a stochastic dynamic finite element analysis of a reactor system.  This chapter builds upon the 

work presented in Chapter 3.0  by additionally considering the following complexities: 

• Non-linear response behavior with multiple outputs and more input parameters 
than previous (described in Section 4.1) 

• Non-stationary loading (per methodology described in Section 2.1.2) 
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4.1 Finite Element Analysis Description 

Figure 4.1 and Figure 4.2 show a typical PWR and an associated SFEM, respectively. 

 

 

 

Figure 4.1  Illustration of Typical Pressurized Water Reactor Assembly 
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Figure 4.2  Illustration of System Finite Element Model 

 

 

This model includes approximately 3,000 degrees of freedom consisting of various 

element types (e.g., beam, shell, spring, damper, etc.).  Due primarily to non-linearities 

associated with the SFEM (Palamara, et al., 2015), such as displacement-dependent spring 

constants, as well as the non-stationary loading conditions associated with loss of coolant 

accident (LOCA) and seismic events (required by nuclear design analysis), the SFEM is 

executed as a transient finite element analysis using implicit time integration as briefly described 

in Section 2.1.2.   

For purposes of the sensitivity analysis, the model was parameterized as follows.  The 

input parameters chosen pertained to model features such as stiffness, damping, gap dimensions, 

and masses, which vary between various otherwise-similar PWR Reactor Vessel Internals (RVI) 

structures.  In some cases, this variation represents a true change in the underlying physical 
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parameter, thus constituting an aleatory uncertainty.  In other cases, the variation represents the 

differences imposed to the finite element model in order to bound the plausible scatter, so as to 

achieve conservative design margins; these basically represent epistemic uncertainties.  The 

output of interest focused upon by this work was lateral acceleration of the Reactor Vessel 

Closure Head (RVCH). 

A preliminary GSA was performed with 16 potentially-important input parameters, and 

those 16 parameters were down-selected to the six parameters which best account for the 

variance in the model results of interest.  These input parameters are simply identified as P1 

through P16 herein, and all pertain to some structural feature of the SFEM such as mass, 

stiffness, damping, or a gap dimension.  The choice to use 6 rather than 16 parameters was 

intended to more clearly illustrate the surrogate modeling and GSA process for research 

purposes, although it is recognized that the surrogates could have been trained and this GSA 

performed using all 16 parameters.  The pertinent plots of the coefficient of determination (𝑅2) 

and rank correlation coefficient (per Section 2.2.2) for this down-selection are shown in Figure 

4.3, and the parameters are briefly described in Table 4.1.  Specifically, the output of interest to 

this analysis is P17 (acceleration of RVCH) and so P4, P10, P11, P15, and P16 constitute the 

input parameters most strongly correlated with P17.  For the GSA runs performed on SFEM, 

these parameters were varied ±5% about their nominal value (sampled from a Uniform 

distribution), to account for the typical range of variation on these particular parameters between 

many operating PWRs. 
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Table 4.1  SFEM Parameters 

Parameter Number Description (1) Identifier 

P4 Rotational Stiffness at Location 3 𝑘(𝜃)3 

P10 Damping 𝜁 

P11 Vertical Gap at Location 5 𝑔(𝑦)5 

P12 Number of Components at Location 6 𝑁6 

P15 Stiffness at Location 9 𝑘9 

P16 Stiffness at Location 10 𝑘10 

 

Note: 
1. The location identifiers are left intentionally generic in this dissertation so as to protect information which may be 

considered proprietary.  It is judged adequate for purposes of this research to merely identify locations with generic 
numbers. 

 

 

Given the six parameters which most influence the model result of interest, a full-

factorial DOE was constructed in order to identify statistically significant 2-term interaction 

effects present amongst those parameters via analysis of variance (ANOVA), which is 

summarized in Figure 4.4 using the terms described in Table 4.2.   
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Table 4.2  Analysis of Variance Variability Table Results 

Variability Table Result Explanation(1) 

Effect Describes the size and direction of the relationship between a term and the 
response variable. 

Coef Describes the size and direction of the relationship between a term in the 
model and the response variable. 

SE Coef Estimates the variability between coefficient estimates that one would 
obtain if taking samples from the same population again and again 

T-Value Measures the ratio between the coefficient and its standard error 

P-Value A probability that measures the evidence against the null hypothesis. 
Lower probabilities provide stronger evidence against the null hypothesis. 
 
The null hypothesis is that the coefficient equals 0, which implies that 
there is no association between the term and the response. 

 
Note: 

1. Explanations taken from https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/how-
to/factorial/analyze-variability/interpret-the-results/all-statistics-and-graphs/coded-coefficients-table. 

 

 

Determination of the significance of 2-term interactions is done by first performing 

ANOVA upon the full-factorial DOE.  All possible 2-term interactions between all 6 parameters 

are included in the ANOVA, and the top four interactions for which the p-value was smallest are 

identified and highlighted red (indicating their unimportance).   

Next, ANOVA was again performed on those results from the full-factorial DOE 

excluding the terms for which the p-value was greater than 0.1 in order to more clearly see which 

2-term interactions carried the greatest statistical significance.  For example, the P4 and P16 

interaction had a p-value of 0.100 from the first ANOVA performed on the full set of 2-term 

interactions.  When the ANOVA was performed a second time excluding those 2-term 

interactions with larger p-values, the p-value for the P4 and P16 interaction decreased to 0.087 

thus providing some confirmation that 2-term interaction had statistical significance.   

https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/how-to/factorial/analyze-variability/interpret-the-results/all-statistics-and-graphs/coded-coefficients-table
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/how-to/factorial/analyze-variability/interpret-the-results/all-statistics-and-graphs/coded-coefficients-table
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Finally, it may be seen that P4 and P16, and P15 and P16 interact, as the two-term p-

values are less than 0.10 upon truncating the non-influential terms.  The p-value evaluates how 

well the sample data (i.e., finite element analysis solutions) support the argument that the null 

hypothesis is true; a low p-value suggests that the sample data provides enough evidence that the 

null hypothesis can be rejected and is thus a parameter of importance.  Note that the p-value of 

0.10 was somewhat arbitrarily chosen as a reasonable means of filtering which interactions are 

influential versus those which are not.   

Given the observations of significant 2-term interactions, the subdomains for LPSS were 

set up as shown in Table 4.3 in a manner analogous to the LPSS design used in Chapter 3.0  (see 

Table 3.2).  That is, as described in Section 2.4.2, variance reduction can be expected from an 

LPSS design if terms of which interaction effects may be present are grouped together within a 

given sub-domain.  As such, P4, P15, and P16 are all grouped together in one subdomain, and 

the remaining three parameters a grouped together on a second subdomain. 

 

 

Table 4.3  Subdomains for LPSS of SFEM 

Model parameters sub-domain 
dimension (Ni) 

strata number of 
samples 

P4, 𝑘(𝜃)3P15, 𝑘9 
P16, 𝑘10 

3(1) 
3 
4 
5 
8 
10 
12 

27 
64 
125 
512 
1000 
1728 

P10, 𝜁 
P11, 𝑔(𝑦)5 
P12, 𝑁6 

3 

number of dimensions 6  
 
Note: 

1. Indicated sub-domain established based on observed 2-way interactions between P4 – P16 and P15 – P16 terms 
from ANOVA. 
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Figure 4.3  Down-Selection of Parameters for SFEM Sensitivity Analysis 

rank correlation based
global sensitivities

coefficient of determination 
(R2)
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Figure 4.4  Identification of Input Parameter Interactions for SFEM 

 

Estimated Effects and Coefficients for P17 (coded units)

Term         Effect       Coef SE Coef T      P
Constant              0.165052  0.000064  2572.15  0.000
P4         0.000929   0.000464  0.000064     7.24  0.000
P10       -0.001629  -0.000814  0.000064   -12.69  0.000
P11       -0.002856  -0.001428  0.000064   -22.26  0.000
P12       -0.000693  -0.000346  0.000064    -5.40  0.000
P15        0.001398   0.000699  0.000064    10.89  0.000
P16       -0.000987  -0.000494  0.000064    -7.69  0.000
P4*P10     0.000136   0.000068  0.000064     1.06  0.295
P4*P11     0.000139   0.000070  0.000064     1.08  0.285
P4*P12     0.000104   0.000052  0.000064     0.81  0.422
P4*P15    -0.000043  -0.000021  0.000064    -0.33  0.741
P4*P16     0.000216   0.000108  0.000064     1.68  0.100
P10*P11   -0.000144  -0.000072  0.000064    -1.12  0.270
P10*P12   -0.000115  -0.000058  0.000064    -0.90  0.373
P10*P15    0.000090   0.000045  0.000064     0.70  0.486
P10*P16   -0.000110  -0.000055  0.000064    -0.85  0.398
P11*P12   -0.000095  -0.000048  0.000064    -0.74  0.463
P11*P15    0.000136   0.000068  0.000064     1.06  0.294
P11*P16   -0.000063  -0.000032  0.000064    -0.49  0.626
P12*P15    0.000084   0.000042  0.000064     0.66  0.516
P12*P16   -0.000101  -0.000051  0.000064    -0.79  0.434
P15*P16   -0.000239  -0.000120  0.000064    -1.86  0.069
Ct Pt                 0.000423  0.000517     0.82  0.418

S = 0.000513350   PRESS = 0.0000258850
R-Sq = 95.69%     R-Sq(pred) = 89.92%    R-Sq(adj) = 93.43%

Estimated Effects and Coefficients for P17 (coded units)

Term         Effect       Coef SE Coef T      P
Constant              0.165052  0.000061  2689.49  0.000
P4         0.000929   0.000464  0.000061     7.57  0.000
P10       -0.001629  -0.000814  0.000061   -13.27  0.000
P11       -0.002856  -0.001428  0.000061   -23.27  0.000
P12       -0.000693  -0.000346  0.000061    -5.64  0.000
P15        0.001398   0.000699  0.000061    11.39  0.000
P16       -0.000987  -0.000494  0.000061    -8.04  0.000
P4*P10     0.000136   0.000068  0.000061     1.11  0.273
P4*P11     0.000139   0.000070  0.000061     1.13  0.263
P4*P16     0.000216   0.000108  0.000061     1.76  0.084
P10*P11   -0.000144  -0.000072  0.000061    -1.17  0.248
P11*P15    0.000136   0.000068  0.000061     1.11  0.272
P15*P16   -0.000239  -0.000120  0.000061    -1.95  0.057
Ct Pt                 0.000423  0.000495     0.85  0.397

S = 0.000490955   PRESS = 0.0000195432
R-Sq = 95.21%     R-Sq(pred) = 92.39%    R-Sq(adj) = 93.99%

Estimated Effects and Coefficients for P17 (coded units)

Term         Effect       Coef SE Coef T      P
Constant              0.165052  0.000062  2662.64  0.000
P4         0.000929   0.000464  0.000062     7.49  0.000
P10       -0.001629  -0.000814  0.000062   -13.14  0.000
P11       -0.002856  -0.001428  0.000062   -23.04  0.000
P12       -0.000693  -0.000346  0.000062    -5.59  0.000
P15        0.001398   0.000699  0.000062    11.28  0.000
P16       -0.000987  -0.000494  0.000062    -7.96  0.000
P4*P16     0.000216   0.000108  0.000062     1.74  0.087
P15*P16   -0.000239  -0.000120  0.000062    -1.93  0.059
Ct Pt                 0.000423  0.000500     0.85  0.401

S = 0.000495904   PRESS = 0.0000184991
R-Sq = 94.73%     R-Sq(pred) = 92.79%    R-Sq(adj) = 93.87%

Remove Non-
influential 

interactions

Remove 
Non-

influential 
interactions
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4.2 Sensitivity Analysis of Non-Stationary Random Vibration for SFEM 

Having demonstrated in Chapter 3.0 the successful use of a surrogate model to perform 

GSA, a similar approach is employed for the SFEM.  As before, Kriging surrogates were 

developed through LHS and LPSS.  Sections 4.2.1 and 4.2.2 show the behavior of the SFEM 

using equivalent methods to those used in Sections 3.2.1 and 3.2.2 for the UI FIV model.   

Of preliminary interest is quantification of the percent change in model outputs when a 

single input parameter is varied.  Figure 4-5 through Figure 4-7 show how six model outputs  

(including RVCH lateral acceleration (P17) and five other acceleration response at different 

locations/directions) change, relative to their nominal value, with respect to variation of each of 

three separate input parameters, P6, P8, and P15.  It may be seen that the structural dynamic 

system behavior is indeed non-linear with respect to the range of variation on the three selected 

input parameters.  Furthermore, it may be seen that some model outputs are more sensitive to a 

given input change, and that the sensitivity of a given model output is significantly different for 

each input parameter.  For example, it may be seen that the percent change for most model 

outputs shown in Figure 4-7, which pertain to ±10% variation in input P15 significantly exceed 

the percent change for the same model outputs shown in Figure 4-5 and Figure 4-6, which 

pertain to ±50% and ±20% variation in inputs P6 and P8, respectively.  This implies that input 

parameter P15 has far higher relative importance than P6 and P8.  While such a conclusion 

would be true if varying one factor at a time, that inference may not necessarily be true for cases 

in which multiple factors possess uncertainty, and thus could vary from their nominal value.  

That is, interaction and combinatorial effects could produce significant non-linearities in model 
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output trends, which would motivate the use of GSA, which surveys the full parameter space 

considering all possible combinations of input parameters.  Such a GSA is presented in the 

following sections.  While Figure 4-5  through Figure 4-7 offer some perspective on the different 

potential responses of interest, the GSA which follows in this chapter focuses upon the lateral 

acceleration of the RVCH, since that constitutes a key SFEM output response which drives the 

stress within numerous sub-components of the reactor system.  The RVCH lateral acceleration is 

identified as parameter P17 herein. 

 

 

 

Figure 4.5  Single Factor Sensitivity of 6 Outputs to Input P6 
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Figure 4.6  Single Factor Sensitivity of 6 Outputs to Input P8 

 

Figure 4.7  Single Factor Sensitivity of 6 Outputs to Input P15 
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4.2.1 Sensitivity Analysis of Full-Order Model using FAST 

Figure 4.8 shows the full-order SFEM GSA results using FAST with 5,000 and 8,000 

samples, from which it can be seen that the difference in sensitivities upon changing sample size 

is negligible.  Unlike the GSA results presented in Chapter 3.0 in which three of the six 

parameters imparted nearly zero variance to the model output of interest, five of the six 

parameters included in the SFEM GSA contribute at least 5% variance to the model output of 

interest (P17, lateral acceleration of the RVCH).  Referring to Table 4.1 for the parameter 

identifiers, it may be seen that stiffness between two components in the reactor system 𝐾9 (P15) 

carries the greatest sensitivity, following by the number of components, 𝑁6 (P12).  While 

damping, 𝜁, shows a non-negligible sensitivity, it by no means renders the sensitivity of multiple 

other terms negligible.  Terms 𝐾9 and 𝑁6 are local features of the system associated with specific 

components but impart a significant influence on results of key interest.  This insight on the 

relative sensitivity of damping is important in the sense that damping is often perceived to be a 

parameter which imparts much greater variance to model results than other terms, which was not 

the case here. 
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Figure 4.8  Full-Order Model GSA Results for SFEM using FAST 

 

 

4.2.2 Surrogate-based Sensitivity Analysis 

Figure 4.9 shows the Kriging-based GSA results as well as the associated full-order 

model based GSA results, using both LHS and LPSS.  As in Chapter 3.0 , the sample sizes were 

determined by the stratification of the domains for LPSS, as shown in Table 4.3. 
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Figure 4.9  Surrogate-based GSA Results for SFEM, Compared to Full-Order GSA Results using LHS and 
LPSS, Respectively 

 

 

Figure 4.10 and Figure 4.11 show the difference between the surrogate-based GSA 

results and those from the full-order model.  While the accuracy associated with LHS and LPSS 

is nearly equivalent at sample sizes of 125 or greater, most LPSS results show notably lower 

error for sample sizes of 27 and 64.  At 27 samples, the parameters for which the GSA error is 

less for LPSS than LHS include damping 𝜁 (P10), vertical gap at location 5 𝑔(𝑦)5 (P11), number 

of components at location 6 𝑁6 (P12), and stiffness at location 10 𝑘10 (P16), which was 4 of 6 

parameters.  This is somewhat interesting in the sense that GSA error was low for the 𝜁, 𝑔(𝑦)5, 

and 𝑁6 terms which had no notable 2-way interactions from the ANOVA (see Figure 4.4), while 

greater variance reduction for LPSS may have been expected from terms for which significant 
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interactions were present.  At 64 samples, the parameters for which the GSA error is less for 

LPSS than LHS include torsional stiffness at location 3 𝑘(𝜃)3, damping 𝜁, vertical gap at 

location 5 𝑔(𝑦)5, number of components at location 6 𝑁6, and stiffness at location 9 𝑘9 (5 of 6 

parameters). 

Figure 4.12 shows an illustration of the RVCH acceleration response to two of the most 

influential parameters.  The curved shape of this response surface illustrates the value of GSA as 

opposed to single-factor sensitivities (i.e., the line plots shown in Figure 4-5 through Figure 4-7), 

as the two terms have a non-linear effect with respect to one another.  That is, stiffness at 

location 9 𝑘9 (P15) and number of components at location 6 𝑁6 (P12) have a combined effect on 

the RVCH acceleration (P17) which changes in a different direction depending on the particular 

magnitudes of each parameter, and which could easily be misunderstood if all factors were held 

constant except for one.  This interaction effect is further annunciated when considering the 

combined influences that stiffness at location 9 𝑘9 (P15) and stiffness at location 10 𝑘10 (P16) 

have on the same result, as shown in Figure 4.13 and Figure 4.14, where the effect that P16 

imparts on output P17 depends on the value of P15. 
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Figure 4.10  Difference between Kriging-based and Full-Order GSA Results of SFEM (Bar Graph) using 
LHS and LPSS, Respectively 
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Figure 4.11  Difference between Kriging-based and Full-Order GSA Results of SFEM (Line Graph) 
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Figure 4.12  Illustration of Kriging Surface for Output P17 with respect to 𝑵𝑵 (P12) and 𝒌𝒌 (P15) 

 

Figure 4.13  Illustration of Kriging Surface for Output P17 with respect to 𝒌𝒌𝒌 (P16) and 𝒌𝒌 (P15) 
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Figure 4.14  Slices through Kriging Surface for Output P17 with respect to 𝒌𝒌𝒌 (P16) and 𝒌𝒌 (P15) 
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4.2.3 Comparison Studies 

To show the changes in sensitivity analysis results due to variations in the amount by 

which input parameters are varied, as well as the manner in which the dynamic results are post-

processed, the next series of studies re-evaluated the GSA with two variations in the SFEM 

analysis problem structure. 

First, although the ±5% range about which the input parameters were varied initially is 

based upon typical plant-to-plant variations within the operating fleet of PWRs, this is 

recognized to be a relatively small range.  For example, as operating plants age, degradation 

mechanisms (i.e., wear, embrittlement) manifest themselves in which case some model 

parameters could depart further from the nominal values (Barker, 2017).  Therefore, Section 

4.2.3.1 explores the surrogate-based sensitivity analysis for the case in which the input parameter 

ranges are varied by ±25%. 

Second, while the maximum acceleration from the transient analysis is used in practice 

for ASME Code design analysis of reactor equipment, and is therefore the model output of 

interest chosen to evaluate within Sections 4.2.1 and 4.2.2, the magnitude of the acceleration 

response spectrum is also of practical engineering interest.  Particularly, for a SFEM which is 

used to develop loading for detailed sub-model stress evaluations (i.e., reactor components not 

explicitly resolved in the SFEM itself), spectral amplitudes are important if a particular sub-

model is attached to the system and has a resonant frequency coincident with the amplified 

portion of the acceleration response spectrum.  Therefore, Section 4.2.3.2 explores the surrogate-

based sensitivity analysis for the case in which the output of interest is the amplitude of the first 

vibration mode observed from the acceleration response spectrum. 
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4.2.3.1 Effect of Increasing Input Parameter Variance 

The same subset of six parameters was chosen to explore for the sensitivity analyses with 

the larger ranges of perturbation: rotational stiffness at location 3 (P4), damping (P10), vertical 

gap at location 5 (P11), number of components at location 6 (P12), and stiffness at location 9 

(P15), for which a brief description is provided in Table 4.1.  The resultant interactions plot is 

shown in Figure 4.15, from which it may be seen that interaction effects are much more 

pronounced for the larger range of perturbation as compared with the companion plot generated 

from the ±5% case per Figure 4.16, in the sense that the slope of the lines between the two 

interacting parameters diverge.  For example, focusing upon the P4 – P15 interaction, it may be 

seen that the slope the change in RVCH lateral acceleration P17 when P15 is varied ±25% is 

larger for when P4 is at 25% above its nominal value (red dashed line) as compared to when P4 

is held at 25% below its nominal value (blue solid line). 
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Figure 4.15  Interaction Plot for Lateral Acceleration Response with ±25% Variation   
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Figure 4.16  Interaction Plot for Lateral Acceleration Response with ±5% Variation 
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The first-order global sensitivities for the SFEM in which each of the six input parameter 

were varied by ±25% are shown in Figure 4.17, which is based on drawing 12,000 samples of the 

full-order model using FAST.  These global sensitivities may be compared with those for the 

SFEM in which each of the six input parameters were varied by ±5% per Figure 4.8.  For the 

analysis with higher variance, parameter 𝑘9 remains the parameter of highest importance, but the 

relative importance of parameters 𝜁 and 𝑁6 become reversed by increasing the range of 

perturbation.  This suggests that stiffness at a particular location within the SFEM remains the 

dominant parameter independent of the range of perturbation, but that damping may impart a 

more significant effect on key SFEM outputs as the range of perturbation is increased.  It makes 

some intuitive sense that as the variation in damping is increased, it could become more 

influential with respect to other terms.  It is also somewhat interesting that the non-influential 

terms, 𝑘(𝜃)3, 𝑔(𝑦)5, and 𝑘10, all were shown to be even less influential for the ±25% variation 

case in that the first order sensitivities were lower.  

Upon inspection of Figure 4.17, it may be seen that the sum of the first-order sensitivities 

for 8,000 samples falls below 1.0.  As the first-order indices represent the main effect 

contribution of each input factor to the variance of the output, this could suggest the presence of 

interaction effects, and therefore nonzero higher-order sensitivities, for the situation that the 

range of parameter variation is increased from ±5% to ±25%.  As discussed in Section 4.4 and 

4.5 of (Saltelli, et al., 2008), Sobol’s method could be used to quantity the interaction effects.  

Using 𝑆 to denote a sensitivity index per Section 2.2, the sum of the first-order and higher order 

sensitivities indices can be expressed as: 

�𝑆𝑖
𝑖

+ ��𝑆𝑖𝑗
𝑗>𝑖𝑖

+ ���𝑆𝑖𝑗𝑙
𝑙>𝑗𝑗>𝑖𝑖

+ 𝑆123…𝑗 = 1 (55) 
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Although these higher-order indices could be computed (e.g., using UQ Lab (Marelli & Sudret, 

2014)), it may be seen from Figure 4.17 that, when using 12,000 samples, the sum of first-order 

sensitivities does equal 1.0.  Therefore, although from 8,000 samples it could appear as though 

there may be higher-order sensitivities, in fact, the sensitivity analysis had not used a sufficient 

number of samples to obtain accurate sensitivities. 

 

 

 

Figure 4.17  Full-Order SFEM Global Sensitivities with ±25% Parameter Variance 

 

 

Figure 4.18 shows the GSA error with respect to increasing sample size for LHS and 

LPSS trained Kriging surrogates.  At 27 samples, the GSA error associated with LPSS is less 

than that for LHS for parameters 𝑔(𝑦)5, 𝑁6, and 𝑘9 (3 of 6 parameters).  At 64 samples, the GSA 
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error associated with LPSS is less than that for LHS for parameters 𝜁, 𝑔(𝑦)5, 𝑁6, and 𝑘10 (4 of 6 

parameters).  Thus, the LPSS error is more consistently lower than the LHS error for the ±5% 

case (see Figure 4.11) than for the ±25% case (see Figure 4.18).  Therefore, the effectiveness of 

LPSS in developing a surrogate for which the GSA error is smaller than that provided by LHS is 

slightly less observable when the parameter perturbations are increased.  This is somewhat 

surprising in that greater interaction effects were present for the ±25% case than the ±5% case 

(see Figure 4.15 compared to Figure 4.16), which might lead one to think that LPSS would 

impart greater variance reduction compared to LHS and thus result in lower GSA error, but that 

is not necessarily the case for the SFEM analysis. 
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Figure 4.18  Convergence of Surrogate-based Global Sensitivity Indices for System Finite Element Model 
with ±25% variation on input parameters 

 

 

In order to better understand these results, a full factorial computational DOE was 

performed on the SFEM in which the model parameters were varied ±25%.  The DOE results are 

summarized in Table 4.4 within which the parameters with a p-value less than 0.10 are 

highlighted in the center column pertaining to lateral RVCH acceleration.  From this, it may be 
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seen that only two of the six parameters used from the ±5% variation case show a p-value of less 

than 0.10, P11 and P12, while the other four parameters had noticeably larger p-values.  The 

factorial DOE p-value differences between the ±5% and ±25% variation cases are consistent with 

the prior observations of differences between Figure 4.8 and Figure 4.17, in that both measures 

show that the range of perturbation can change the degree to which variance in the result of 

interest (e.g., lateral RVCH acceleration) is influenced by changes in particular parameters. 

The third (right-most) column of Table 4.4 shows the results from the same full-factorial 

DOE as was done for lateral RVCH acceleration, but for vertical RVCH acceleration.  Here 

again, the parameters with a p-value of less than 0.10 are highlighted, but it may be seen that 

those parameters are different from those of low p-value for lateral acceleration.  Between the 

two outputs, of those terms for which the p-value was less than 0.10, only two parameters are 

shared (vertical gap at location 5 (P11), number of components at location 6 (P12)), while all 

other parameters with a low p-value were found to be non-influential to the other result.  This 

difference in what was significant suggests that the parameters which could be truncated from 

the full set due to lack of significance, and the parameters which could be grouped together for 

LPSS, would change based on the model output of interest. 
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Table 4.4  Factorial DOE Result for Pressure Vessel Acceleration with ±25% Input Parameter Variation 

Input Parameter 
P-Value 

Lateral RVCH Acceleration (P17) Vertical RVCH Acceleration (P18) 

P1 0.000 0.697 

P2 0.889 0.000 

P3 0.198 0.926 

P4 0.263 0.000 

P5 0.057 0.359 

P6 0.110 0.590 

P7 0.118 0.293 

P8 0.948 0.119 

P9 0.483 0.763 

P10 0.385 0.003 

P11 0.000 0.063 

P12 0.000 0.035 

P13 0.014 0.781 

P14 0.710 0.013 

P15 0.684 0.000 

P16 0.000 0.152 
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4.2.3.2 Evaluation of Acceleration Response Spectra Variation 

Figure 4.19 provides a typical acceleration time-history response.  The acceleration value 

of interest from this plot is the maximum value which occurs at approximately a time of 1.07 

seconds, and this maximum acceleration over time quantity represents the output of interest 

studied up to this point of the present Chapter. 

 

 

 

Figure 4.19  Acceleration Time Histories for RVCH lateral motion 
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Whereas the majority of the SFEM analyses presented in this dissertation focus upon an 

output which is a maximum over time, this section seeks to explore the performance of these 

same methods but with respect to an output from the acceleration response spectrum (per Section 

2.1.2.2).  The maximum acceleration over the transient is based on the superposition of multiple 

vibration modes at a given moment in time, so focusing on one particular mode of the response 

spectrum was found to provide different insights on the surrogate-based GSA behavior. 

In some situations, the magnitude of the acceleration response at a particular frequency 

may be of greater interest than the maximum acceleration over the transient.  For example, if a 

component attached to those represented by SFEM has a particular resonant frequency of 

concern.  Examples of such components may include the control rod drive mechanism (CRDM), 

and piping attached to the inlet or outlet nozzles, as shown in Figure 4.21, as well as components 

of a simplified head assembly (SHA) as shown in Figure 4.20.  Such components are not 

specifically resolved in the SFEM, but the SFEM is used to generate dynamic loads which 

constitute forcing functions to subsequent structural evaluations of these components.  Therefore, 

particular resonant frequencies of components associated with CRDMs, SHA, or piping, for 

example, could respond with significant dynamic amplification when exposed to particular 

frequencies of the SFEM acceleration response spectrum. 

For evaluating the dynamics at a resonant frequency of interest, it is insightful to plot the 

dynamic result as acceleration response spectra, as shown in Figure 4.22 as an overlay or in 

Figure 4.23 as a contour.  Note that Figure 4.19, Figure 4.22, and Figure 4.23 were generated 

from the LHS 27-sample run, for illustration purposes.  Even for such a small number of 

samples, the variation on acceleration amplitude in Figure 4.22 is clearly observable and, on a 
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relative basis, more exaggerated than the variation in the peak acceleration over time per Figure 

4.19. 

 

 

 

Figure 4.20  Reactor Vessel Closure Head with Simplified Head Assembly 
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Figure 4.21  Typical Pressurized Water Reactor Schematic 
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Figure 4.22  Acceleration Response Spectra Overlay of RVCH Lateral Motion 

 

Figure 4.23  Contour Plot of Acceleration Response Spectra (acceleration magnitude represented by color 
scale) 
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Maintaining parameter variations of ±5% (as used in Sections 4.2.1 and 4.2.2), and 

focusing on the acceleration magnitude of the first resonant frequency as the output of interest, 

Figure 4.24 shows the first-order global sensitivities (computed via FAST per Section 2.2.1) 

from the full-order SFEM.  Comparing these sensitivities to those for the maximum acceleration 

over time per Figure 4.8 reveals that the importance of parameters 𝜁 and 𝑁6 is significantly 

increased while 𝑘9 is decreased, and the remaining parameters are of near-negligible importance 

which is the same for both examining the maximum acceleration over time and the spectral 

acceleration.  The change in relative importance between the 𝜁, 𝑁6, and 𝑘9 terms likely has some 

to do with the agreement between resonant frequencies of the associated components (i.e., the 

specific RVI components at location 6 or 9) and the frequency at which the maximum 

acceleration occurs.  That is, per Figure 4.22 and Figure 4.23, the maximum acceleration occurs 

at approximately 25 Hz, and so it may be that the resonant frequency of sub-components near 

location 6 (which pertain to 𝑁6) fall closer to 25 Hz than those at location 9 (which pertain to 

𝑘9), and so variance in 𝑁6 imparts greater variance in the acceleration response at that frequency 

than does variance in 𝑘9.  Furthermore, the vibration amplitude is known to vary in inverse 

proportion of the square root of the damping ratio 𝜁 (Blevins, 2001), and so this parameter would 

likewise be expected to strongly influence the magnitude of the spectral response. 
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Figure 4.24  Global Sensitivity Indices for System Finite Element Model Response Spectra 
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Figure 4.25 shows convergence of the first-order sensitivities when Kriging surrogates 

are trained with LHS and LPSS for a series of training set sizes.  It is apparent that at low sample 

sizes of 27 and 64, the GSA error associated with Kriging surrogates trained by LPSS is lower 

than the error for those trained by LHS, in some cases by over an order of magnitude.  The 

improvement offered by LPSS makes some intuitive sense because the frequency, 𝜔, which may 

be simply viewed as a function of �𝑗
𝑚

, would be directly affected by parameters that affect the 

mass or stiffness (i.e., five of the six parameters studied here), and thus establishing subdomains 

in which such terms are grouped according to their interactions via LPSS could result in lower 

errors as compared to LHS which does not establish such subdomains.  Correspondingly, the 

range of variation in the spectral acceleration being greater than the range of variation in the 

maximum acceleration of the transient could further serve to render LPSS more effective in 

yielding lower errors at small sample sizes. 
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Figure 4.25  Convergence of Surrogate-based Global Sensitivity Indices for System Finite Element Model 
Acceleration Response Spectra  
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4.2.4 Surrogate Model Accuracy 

Using the Relative RMS and Maximum Relative Residual error metrics per Section 2.3.3 

for the SFEM surrogate models, Figure 4.26 illustrates the surrogate model accuracy with respect 

to an increasing number of samples for the case of the relatively small ±5% range of variation on 

the input parameters.  Consistent with prior observations from Chapter 3.0  for the UI FIV 

model, as well as the lower GSA error for SFEM from Section 4.2.2, the surrogate model 

verification error associated with LPSS is generally between 10 – 25% lower than that for LHS 

at the lower sample sizes of 27 and 64. 

Figure 4.27 shows the surrogate model accuracy with respect to sample size, but with a 

larger ±25% range of variation on the same input parameters.  The increase in surrogate model 

accuracy with LPSS compared to LHS is even more significant than for the larger range of 

parameter variation.  For example, at 27 samples the surrogate verification error is approximately 

50% lower for LPSS than for LHS.  The difference between the ±5% and ±25% case is 

consistent with the interaction effects also being more significant with a larger range of variation, 

such as was illustrated in Figure 4.15 and Figure 4.16.  Such consistency is considered 

reasonable as the stronger interaction effects manifest themselves in effective variance reduction 

provided by LPSS, and therefore a greater degree to which surrogate model accuracy is 

improved for smaller sample sizes, when compared with LHS. 

Even at the lowest sample size of 27, the surrogate model verification error for LPSS was 

less than 1.5% and 3% for the Relative RMS and Maximum Relative Residual error metrics, 

respectively.  For most practical purposes, these errors are small enough to render such a 

surrogate acceptable, which suggests that a mere 27 sample computational DOE can prove quite 

useful for this application. 
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Of additional interest is the output response histogram shown in Figure 4.28 for three 

different numbers of LHS samples.  It may be seen that increasing the sample size does introduce 

variations in the distribution of results, but the magnitude of such variations is judged negligibly 

small.  This variation in the output is consistent with the surrogate model errors in this range of 

sample sizes presented in subsequent subsections. 

 

 

 

Figure 4.26  Verification of Kriging Surrogate for SFEM with ±5% Input Parameter Variation 
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Figure 4.27  Verification of Kriging Surrogate for SFEM with ±25% Input Parameter Variation 

 

 

Figure 4.28  Histogram of SFEM Output P17 with Varying Number of Training Samples  



 

115 

4.3 Conclusions from Evaluation of System Finite Element Model 

This chapter demonstrates the extensibility of the surrogate-based GSA methodology 

shown useful for a reactor subassembly subjected to stationary random vibration in Chapter 3.0 

to a reactor equipment SFEM, for which the finite element model included non-linearity and was 

subjected to non-stationary loading.  The SFEM was parameterized with a total of sixteen model 

parameters for which there are plant-to-plant variations or for which the magnitude changes over 

the course of the reactor life due to aging.  Of these sixteen, the six most dominant parameters 

were chosen to explore for the GSA studies.  As a baseline case, a parameter variation range of 

±5% about nominal was chosen to represent the normal amount of variation for these parameters 

amongst the operating fleet of PWRs, and a larger parameter variation range of ±25% was 

additionally studied to represent further departure from nominal values that some parameters 

may experience due to nuclear plant aging-related degradation mechanisms.  Interaction effects 

were observed between those six parameters from a factorial DOE, which were used to 

determine the arrangement of the subdomains for LPSS. 

The LPSS and LHS methods were employed to sample the parameter space from which 

Kriging surrogates were constructed and used to estimate GSA.  The use of LPSS was again 

shown to be particularly effective at providing accurate surrogate models even for low sample 

sizes.  For the smallest number of samples explored, and using LPSS, the magnitude of the 

surrogate model verification error was approximately 0.3% Maximum Relative Residual when 

using ±5% variation about the nominal values of model parameters, and less than 3% when using 

±25% about nominal.  The corresponding Maximum Relative Residual errors associated with 

LHS increased to approximately 0.5% and 5%, for the ±5% and ±25% parameter variation cases, 

respectively.  Although LHS provides a less accurate surrogate model at small sample sizes, the 
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resultant errors may be considered acceptable for many practical engineering applications.  Thus, 

the relatively accurate surrogate models obtained through both LHS and LPSS provides 

confidence in the stability of the result.  Such stability may permit one to not invoke advanced 

sampling methods if the computational cost is tractable (i.e., generating a larger number of 

samples) and/or error requirements do not demand optimal accuracy. 

However, despite the low surrogate verification errors at low sample sizes, the GSA error 

for some model parameters approached 25% or over 100%, for the ±5% and ±25% variation 

cases, respectively, for these same sample sizes.  For the studies considered herein, 

approximately 500 samples were required in order for the GSA error to fall below 5% for all 

parameters, for both sampling strategies.  Therefore, although the effectiveness of LPSS is 

evident at low sample sizes, the GSA error is much higher than the surrogate verification error, 

which may suggest a need for much larger sample sizes to achieve accurate global sensitivities.  

This may be visualized in Figure 4.29 and Figure 4.30 within which the RRMS surrogate 

verification error, as a percentage, is compared with the absolute value of GSA error (which is 

not a percentage but rather computed as a ratio of 𝑅1
𝐾𝐾𝑖𝐾−𝑅1𝐵𝐵𝑛𝐵ℎ𝑚𝑚𝐾𝑚

𝑅1
𝐵𝐵𝑛𝐵ℎ𝑚𝑚𝐾𝑚 ).  Thus, per Figure 4.29 and 

Figure 4.30, the rate of improvement of both error metrics with respect to increasing the number 

of samples is comparable, but the magnitudes differ by approximately a factor of 100. 
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Figure 4.29  Overlay Comparison of Surrogate Verification RRMS Error and GSA Error for LHS 

 

Figure 4.30  Overlay Comparison of Surrogate Verification RRMS Error and GSA Error for LPSS 
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In such a case that a larger sample size is required, at least for this application, it appears 

that the differences imparted by LHS or LPSS are small.  That is, upon examination of Figure 

4.10 and Figure 4.11, for example, the GSA errors are of similar magnitude between the LHS 

and LPSS methods.  Thus, to achieve small GSA errors, a larger number of samples are required, 

which renders the improvements offered by LPSS over LHS somewhat less apparent.  The 

importance of the relationship between verification and GSA error should be emphasized for the 

engineering practitioner; just because the surrogate verification error is negligibly small, that 

does not necessarily indicate that the associated GSA error will be similarly small. 

Per the general topic of numerical coarsening, as explored in many domains such as 

meshing of rigid objects in finite element analysis (Hattangady, 1999) and data-driven finite 

element modeling (Chen, et al., 2015), derivatives tend to coarsen a model (higher error), while 

integrals tend to smooth (lower error).  In that sense, since sensitivity analyses may be thought of 

as taking derivatives across a high-dimensional space, it is postulated that the expansion of error 

from surrogate verification to GSA may be likened to a form of numerical coarsening. 
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5.0  Effectiveness of Surrogate Modeling Methodological Changes 

Three methodological changes, and their effectiveness for direct surrogate modeling and 

subsequent GSA of the SFEM addressed in Chapter 4.0  are explored in this chapter.  First, 

whereas the studies in both Chapter 3.0  and 4.0  employed Kriging surrogates of a single mean 

and variation kernel, Section 5.1 explores the effectiveness of an aggregate surrogate modeling 

method termed Genetic Aggregation per Section 2.3.2.  Second, whereas the studies in both 

Chapter 3.0  and 4.0  used sampling methods (e.g., FAST, LHS, and LPSS) which established 

the sampling points prior to Surrogate training, an adaptive sampling approach is presented and 

likewise deployed in Section 5.2 per Section 2.4.3.  Such an approach adaptively samples the 

parameter space based upon the surrogate verification error quantified during the training 

procedure and is thus intended to provide a means of intelligently selecting samples to more 

effectively minimize error as compared to non-adaptive sampling approaches.  Finally, the 

different insights offered by variance-based GSA via FAST (Section 2.2.1) and rank correlation-

based GSA (Section 2.2.2) are shown in Section 5.3, in order to emphasize to the practitioner the 

careful interpretation required in considering different types of GSA results. 
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5.1 Effect of Aggregate Surrogate Model 

As in Chapter 4.0 , relative RMS and maximum relative residual surrogate verification 

quantities, as described in Section 2.3.3, are used as the error metrics of interest in this section.  

The main idea behind the use of genetic aggregation is that there are a large number of 

combinations for possible surrogate models.  The algorithm thus helps exploring the set of 

surrogate models since it is impractical to compute all possible surrogates.  It is recognized that 

numerous techniques of building aggregate surrogate models could be explored, each with 

certain advantages and disadvantages, but this brief study is intended to show the potential 

benefit offered by the use of such advanced approaches to surrogate modeling for this 

application.   

For equivalent computational DOEs, the surrogate model error between Kriging per 

Section 2.3.1 (with ordinary trend and ellipsoidal correlation) and genetic aggregation surrogate 

per Section 2.3.2 is compared in Table 5.1 and Table 5.2 for LPSS and LHS, respectively.   

Irrespective of sample size, genetic aggregation consistently provides a significant reduction in 

both error metrics, for both LHS and LPSS.  Specifically, the relative RMS error decreases by 

between 5 – 20% for three different sample sizes. 

Considering LHS with 27 samples to be a “base case”, it may be seen that the reduction 

in error is more substantial by using LPSS to train an equivalent Kriging surrogate model type 

than maintaining the LHS DOE, but changing to an aggregate surrogate model.  That is, the 

relative RMS error reduces from 1.29% for LHS to 1.07% for LPSS when using a Kriging 

surrogate, whereas the RMS error only reduces to 1.21% when maintaining the LHS DOE but 

switching from a single kernel Kriging surrogate to a genetic aggregation surrogate.  At the 

higher sample sizes of 64 and 125, LPSS generally shows higher relative RMS error but lower 
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maximum relative residual error than LHS.  Considering the respective error definitions in Table 

2.2, this relationship suggests that the maximum amount by which the surrogate prediction 

differs from the full-order model solution is best minimized by LPSS, while an averaged amount 

by which many surrogate predictions differ from corresponding full-order model solutions is 

effectively minimized by LHS. 

 

 

Table 5.1  Comparison of Surrogate Error Metrics between Kriging and Aggregate Surrogate Model using 
LPSS 

Sample 
Size 

Kriging Genetic Aggregation 
Relative RMS 

(%) 
Max. Relative 
Residual (%) 

Relative RMS 
(%) 

Max. Relative 
Residual (%) 

27 1.07 2.80 1.01 2.47 
64 0.68 2.11 0.60 1.67 
125 0.53 1.32 0.42 0.89 
 

 

Table 5.2  Comparison of Surrogate Error Metrics between Kriging and Aggregate Surrogate Model using 
LHS 

Sample 
Size 

Kriging Genetic Aggregation 
Relative RMS 

(%) 
Max. Relative 
Residual (%) 

Relative RMS 
(%) 

Max. Relative 
Residual (%) 

27 1.29 3.31 1.21 3.94 
64 0.59 2.89 0.49 1.57 
125 0.39 1.34 0.33 1.20 
 

 

Examining the sequential generations, as governed by a generic algorithm per Equation 

(46), which aim to develop a weighted combination of surrogates which best minimize the 

penalized predictive score (PPS) for output parameter P17 in Table 5.3, it may be seen that after 

the 2nd generation of an aggregate surrogate model, no additional changes were made between 

the 3rd and 12th generation.  Specifically, after 2 generations the genetic aggregation found an 
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optimally-weighed ensemble of seven surrogate models consisting of three Kriging surrogates, 

three support vector regression surrogates, and one moving least squares surrogate.  In that sense, 

the RMS error obtained by genetic aggregation algorithm converged because after only one 

generation, the optimal combination of surrogate models (i.e., those which best minimized the 

PPS error) was found and ceased to change upon subsequent generations of the genetic 

algorithm.  Considering another output parameter P18, the formulation of aggregate surrogate 

models corresponding to twelve generations of the genetic aggregation method are shown in 

Table 5.4, from which it may be seen that the optimal combination of surrogate models changed 

three times between the first and twelfth generation, with reduction in RMS error upon each 

change.  Thus, in the case of output parameter P18 the optimal aggregate model consisted of 

three different Kriging models of differing kernel variation and regression functions.  The choice 

to limit the number of generations to twelve was somewhat arbitrary and based on visual 

inspection of the error reduction achieved by increasing the number of generations.  
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Table 5.3  Genetic Aggregation Training Generations for output parameter P17 

Generation Weight Surrogate Type RMS Error  
(𝜖) 

1 1.0 Kriging, Gaussian kernel, anisotropic variation, full quadratic 
regression 

0.000473 

2 – 12 

0.184 Linear basis function, full quadratic regression, Gaussian support vector 
kernel type 

0.000441 

0.026 Support vector regression, 𝜖 = 1 × 10−8, Gaussian support vector 
kernel type, Laplace loss function 

0.190 Kriging, Gaussian kernel with anisotropic variation, full quadratic 
regression 

0.146 Kriging, damped Sin kernel with anisotropic variation, constant 
regression 

0.132 Moving least squares, Wendland weighting function type, full quadratic 
polynomial type 

0.188 Kriging, Bessel kernel with anisotropic variation, full quadratic 
regression 

0.134 Linear basis function, pure quadratic regression, damped Sinus support 
vector kernel type 

 

 

 

Table 5.4  Genetic Aggregation Training Generations for output parameter P18 

Generation Weight Surrogate Type RMS Error  
(𝜖) 

1 1.0 Kriging, damped Sin kernel with anisotropic variation, constant 
regression 

0.000732 

2 – 9 
0.143 Support vector regression, 𝜖 = 1 × 10−8, Gaussian support vector 

kernel type, Laplace loss function 0.000659 
0.857 Kriging, damped  Sin kernel with anisotropic variation, constant 

regression 
10 1.0 Kriging, cubic kernel with anisotropic variation, constant regression 0.000622 

11 – 12 

0.400 Kriging, cubic kernel with anisotropic variation, constant regression 

0.000609 0.330 Kriging, damped Sin kernel with anisotropic variation, constant 
regression 

0.270 Kriging, cubic kernel with anisotropic variation, linear regression 
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5.1.1 Correlation of Cross-Validation and Verification Points 

The goodness of fit metrics shown in Section 2.3.3 were calculated for SFEM in three 

different ways: 

1. Training Points, which measure the quality of the interpolation.  These are the points 
provided to fit the surrogate model parameters.  It is expected that the points with which 
the Surrogate model is trained may be accurately reproduced by the Surrogate model 
itself.  Therefore, good quality is always expected for the learning points. 

2. Verification Points, which measure the quality of the prediction against an independent 
set of data separate from the training data.  This is considered the standard and intuitive 
way by which Surrogate model quality may be assessed. 

3. Cross-Validation Points, which measure the stability and reliability of the Surrogate 
model by leaving out a certain portion of the training set, for use in testing against the 
model built from the samples included in the training set, and is repeated multiple times 
(e.g., k-fold or leave-one-out (LOO) methods).   

The error with respect to the verification and cross-validation points was very well-

correlated, as shown in Figure 5.1, with which the verification point error may be partially 

inferred from the cross-validation point error.  Within this plot, each circle represents the error 

for a given SFEM output which was predicted from the surrogate, for a total of 26 predicted 

quantities.  In most of the studies in Chapters 3.0  and 4.0 , in addition to the training samples, 

100 additional samples were generated from the full-order model for purposes of computing 

error for a set of verification points.  Therefore, the cross-validation error provides a reasonable 

means of assessing the model accuracy.  The strong degree to which the circles fall along the 45° 

line illustrated by Figure 5.1 suggests that, for this application, the cross-validation error 

provides an accurate estimate of the verification error.  In such a case, the need to compute 

additional samples for verification purposes could be alleviated.  Furthermore, Figure 5.2 

illustrates a histogram of the percent differences accumulated across multiple plants (i.e., 

multiple sets of data corresponding to that shown in Figure 5.1 for one plant).  From Figure 5.2 it 



 

125 

may be seen that the percent differences are centered about zero, although in many cases the 

cross-validation error was very low with respect to the verification point error as evidence by the 

large number of data points with -100% difference.  Thus, the use of errors for the cross-

validation points can prove insightful for assessing surrogate model quality for the SFEM 

analysis.  Although the SFEM explored herein was not particularly computationally expensive to 

execute, such an observation could prove quite useful for applications with substantially more 

expensive full-order models. 

 

 

Figure 5.1  RMS Error Metric Comparison between Verification and Cross-Validation Points 
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Figure 5.2  Histogram of Percent Differences between Cross-Validation and Verification Point Errors 
 

 

5.2 Effect of Adaptive Sampling 

This subsection is intended to offer some preliminary insight as to the potential 

improvements offered by adaptively sampling the parameter space, as opposed to treating the 

parameter sampling, surrogate training, and surrogate verification as a serial process. 

The case in which 125 LHS samples were used to train a Kriging surrogate for SFEM 

with ±25% parameter variation was chosen for study in this subsection, considering two 
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additional cases of varying the balance of initially-sampled versus adaptively-sampled points as 

described in Table 5.5, and the same surrogate verification error metrics previously considered 

for SFEM.  It may be seen that as the relative proportion of adaptive samples is increased, the 

RMS and relative residual errors with respect to the verification points decreases, although the 

cross-validation error actually increased.  Thus, the differences between verification and cross-

validation error observed in this introductory study of adaptive sampling suggests that the 

correlation between these error metrics may not be as strong as suggested by the study in Section 

5.1.1. 

 

Table 5.5  Cases Considered to Study the Effect of Adaptive Sampling 

Total Number of 
Samples 

NLHS NAdaptive Cross-Validation Verification 
RRMS MRR RRMS MRR 

125 
125 0 0.209 0.627 0.331 1.197 
75 50 0.248 0.709 0.251 1.067 
50 75 0.236 0.730 0.217 0.588 

 

 

To provide some graphical insight as to the adaptive refinement points which were 

selected subsequent to LHS, based on the UP-distribution described in Section 2.4.3, Figure 5.3 

through Figure 5.5 show the points which were sampled for the 3rd case shown in Table 5.5 (50 

LHS, 75 adaptive).  Specifically, Figure 5.3 and Figure 5.4 show the scatter of points selected 

across the domain of parameters P12 (𝑁6) and P15 (𝑘9), which are the two parameters which 

imparted the greatest sensitivity to RVCH acceleration of the SFEM (per Figure 4.8).  When 

viewed with respect to a single parameter, it may be observed that the majority of the adaptive 

refinement points were placed towards the extreme ends of the parameter space.  Extending this 

to view with respect to two parameters simultaneously, Figure 5.5 shows the scatter of points 
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selected across the bivariate parameter space including both P12 and P15 (i.e., Figure 5.5 shows 

the combination of data points from Figure 5.3 and Figure 5.4).  While upon visual inspection, a 

large proportion of points within the parameter space are placed at the extreme ends (i.e., near a 

value of either 0.75 or 1.25 for P12 or P15), in actuality the majority of the samples included at 

least one point selected from an intermediate value for a given parameter, even though this 

cannot be easily viewed from a scatter plot.  The adaptive refinement algorithm used tended to 

define samples in which four or five of the six parameter values were placed at the extreme, but 

the remaining one or two parameter values were selected at an intermediate point within the 

parameter space.  The first 20 refinement samples chosen for this case are detailed in Table 5.6, 

within which the parameter values selected at intermediate points within the parameter space are 

highlighted yellow.  Of the total of 75 refinement samples selected for this study, 50 included a 

parameter magnitude of intermediate value for one parameter, 32 included an intermediate 

parameter value for two parameters, 17 included an intermediate parameter value for three 

parameters, and seven included an intermediate parameter value for four parameters.  For a given 

parameter, between 15 and 22 of the total 75 refinement samples included an intermediate point 

(e.g., for P15, 19 of the 75 samples included a value between 0.751 and 1.249).  The selection of 

these points by the UP-SMART algorithm (per Section 2.4.3) thus suggests that while many 

points towards the extreme ends of the parameter space tend to increase universal prediction 

(UP) variance, and so were chosen in order to optimally decrease UP variance, in the majority of 

adaptive samples at least one intermediate parameter value was selected. 
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Figure 5.3  Comparison of Latin Hypercube and Adaptive Refinement Samples for P4 

 

Figure 5.4  Comparison of Latin Hypercube and Adaptive Refinement Samples for P10 
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Figure 5.5  Comparison of Latin Hypercube and Adaptive Refinement Samples for P4 and P10  
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Table 5.6  Adaptive Refinement Point Placement 

P4 
𝑘(𝜃)3 

P10 
𝜁 

P11 
𝑔(𝑦)5 

P12 
𝑁6 

P15 
𝑘9 

P16 
𝑘10 

1.2495 0.0500 1.2495 1.2495 0.7505 0.7505 
1.2495 0.0300 1.2495 1.2495 1.2495 1.2495 
0.7505 0.0500 0.7505 1.2006 0.7505 0.7505 
1.2495 0.0342 1.2495 0.7505 0.7505 0.7505 
0.7505 0.0300 0.7505 1.2495 0.7505 0.7505 
1.2495 0.0500 0.7505 1.2495 1.2495 1.2495 
0.7505 0.0300 0.7505 0.7505 0.7505 0.7505 
0.7505 0.0300 1.0039 1.2495 1.2495 0.7505 
0.7505 0.0500 1.2495 1.2495 1.2495 1.2495 
0.7505 0.0500 0.7505 1.2156 0.7524 1.2495 
0.7505 0.0500 0.7505 0.7505 1.2245 1.2495 
0.7505 0.0500 1.2495 1.0097 1.0615 1.2495 
1.2495 0.0300 1.2495 1.2495 1.0411 1.2495 
0.7505 0.0379 0.7505 1.0036 1.2068 1.2495 
1.2495 0.0500 1.2495 0.7505 0.9932 0.7505 
0.7505 0.0500 1.2495 0.7505 1.2495 0.8848 
1.2495 0.0300 0.7505 0.9154 1.2495 1.1020 
1.0014 0.0500 0.7505 0.7505 1.1044 0.7505 
1.0033 0.0500 0.9827 1.2495 1.2268 1.2495 

 

5.3 Correlation versus Variance-Based Global Sensitivity Methods 

Throughout this dissertation, the FAST method was employed as a variance-based means 

of computing global sensitivity.  FAST computes first-order global sensitivities that equate to 

those from Sobol’s method per (Saltelli, et al., 2008), but Sobol’s method can provide additional 

insight as to the 2nd order sensitivities for situations in which the interaction of multiple 

parameters significantly imparts variance to key outputs of interest.  The need to compute 

higher-order sensitivities can be deduced by the summation of the first-order global sensitivities.  
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If the summation of first-order sensitivities is nearly equal to 1.0 (one heuristic would be 0.98 or 

greater), then the higher order terms are negligible.  Indeed, that is the case (and so FAST was 

clearly appropriate) for all studies performed throughout this dissertation. 

While FAST was found to provide useful insight as to relative parameter importance 

within this work, means of performing variance-based sensitivity analysis (e.g., FAST) is not 

provided in many commercial software packages.  Indeed, numerous commercial software codes 

provide measures of parameter importance which are based solely on rank correlation, even 

though some literature recommends computing global sensitivities with multiple methods, since 

the insights offered by each method may be different.  Note that the absolute values of the 

sensitivities should be considered in comparing relative importance between FAST and rank 

correlation; the rank correlation provides insight as to if the result is monotonically decreasing or 

increasing whereas the variance-based global sensitivity does not provide information regarding 

the directionality of the relationship.  With that in mind, a subset of the FAST GSA results are 

compared to rank correlation based GSA results in this subsection.  It is hoped that this 

subsection may provide some preliminary motivation for engineering practitioners to consider 

the merits provided by variance-based methods for GSA. 

Formulating the problem in an equivalent manner to Section 4.2 using LHS, Figure 5.6 

shows the Spearman rank correlation based global sensitivities, from which it may be seen that 

P11 (vertical gap at location 5, 𝑔(𝑦)5 per Table 4.1) is the most influential parameter, followed 

by P15 (stiffness at location 9, 𝑘9) and P10 (damping, 𝜁), while P12 (number of components at 

location 6, 𝑁6) is one of the least influential parameters.  The rank correlation measure of relative 

importance thus provides different results from the variance-based global sensitivities computed 

via FAST, such as illustrated in Figure 4.8 in which 𝑔(𝑦)5 is identified to be among the least 
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influential parameters and 𝑁6  is among the most influential parameters.  To provide additional 

graphical insight, Figure 5.7 through Figure 5.9 show scatter plots of the Latin hypercube 

samples used for this study, including a line drawn though the point cloud for which the slope 

provides some indicative measure of parameter sensitivity.  Figure 5.7 and Figure 5.8 show 

relatively strong and weak negative monotonic trends for P11 and P12, respectively, regarding 

the relationship between the RVCH acceleration response and the model parameter magnitude, 

which manifests itself as rank correlation coefficients of approximately -0.6 and -0.2 per Figure 

5.6.  Correspondingly, Figure 5.9 shows a relatively strong monotonic trend for P15 which 

manifests itself as a rank correlation coefficient of approximately 0.4 per Figure 5.6.  The global 

sensitivities computed with Spearman’s rank correlation are plotted alongside those computed 

via FAST in Figure 5.10. 

As partially illustrated in Figure 4-5 through Figure 4-7, the SFEM results do not 

necessarily follow a monotonic trend with respect to changes in single model parameters.  

Therefore, since the rank correlation coefficient is a measure related to monotonicity and the 

first-order sensitivity computed via FAST is based upon the variance, the differences in relative 

sensitivity provided by FAST versus rank correlation make some intuitive sense.  However, 

these different measures of sensitivity have implications in terms of characterizing relative 

importance of parameters in terms of whether the analyst is interested in which parameters best 

relate to monotonicity of a result, in which case one would use rank correlation, or which 

parameters best explain the variance of a result, in which case one would use a variance-based 

method such as FAST or Sobol’s method.  Therefore, when relative parameter importance is 

quantified, it is key to describe the method by which that importance was computed so that the 
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sensitivity analysis result may be appropriately characterized and thus parameters of high 

importance be intelligently selected.   

Furthermore, in subsequent optimization studies which could be informed by global 

sensitivity results, caution should be used in determining the most appropriate sensitivity 

method.  For example, if one desired to construct an inverse problem in which the gap at location 

5 𝑔(𝑦)5 (P11) were of interest to estimate, which is not directly measurable during plant 

operation, from RVCH acceleration, which is directly measurable during plant operation, then 

the rank correlation results suggest that a monotonically increasing measurement of RVCH 

acceleration indicates a correspondingly decreasing 𝑔(𝑦)5, although the FAST results suggest 

that 𝑔(𝑦)5 contributes relatively little variance to that measured for RVCH acceleration. 

 

 

 

Figure 5.6  Spearman Rank Correlation Coefficient Global Sensitivities for SFEM 
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Figure 5.7  Scatter Plot between Vertical Gap at Location 5 (P11) and RVCH Acceleration 

 

Figure 5.8  Scatter Plot between Number of Components at Location 6 (P12) and RVCH Acceleration 
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Figure 5.9  Scatter Plot between Stiffness at Location 9 (P15) and RVCH Acceleration 

 

Figure 5.10  Comparison of Global Sensitivities between Variance-based and Correlation Methods 
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6.0  Conclusions of Dissertation 

This work offers a robust perspective as to the pertinence of surrogate modeling and 

global sensitivity analysis (GSA) for nuclear reactor stochastic dynamics with a focus on 

structural vibration, as well as the effect imparted through different sampling methodologies for 

constructing a computational experiment.  While direct incorporation of stochastic simulation 

methods such as surrogate modeling and GSA is presently not commonplace in the context of 

design and analysis of nuclear power facilities, this dissertation demonstrates the stability of such 

methods for use in support of two different domains of structural dynamic analysis for reactor 

assemblies.  The agreement in surrogate model accuracy metrics and GSA results amidst 

multiple sampling techniques provides confidence as to the credibility of such methods.   

The computational models selected represent a spectrum of domains of work for 

practicing engineers in the nuclear industry.  The upper internals (UI) flow-induced vibration 

(FIV) problem studied in Chapter 3.0  examined stationary FIV in order to simulate normal 

operating conditions experienced on a continuous basis at nuclear power plants, as well as the 

conditions under which testing is performed prior to starting up a new plant.  While the model 

fidelity of the UI FIV analysis was adequate to resolve strain, the system finite element model 

(SFEM) analysis studied in Chapters 4.0  and 5.0  constituted a coarser model used for purposes 

of generating interface loads, which are subsequently used in higher-resolution sub-models for 

computing strain.  The SFEM analysis thus examined the non-stationary loading associated with 

a loss of coolant accident (LOCA), which is an event necessary to consider in faulted scenarios 

(i.e., not normal operating conditions) necessary for design basis analysis. 
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Gaussian Process Regression (Kriging) surrogates were trained by way of Latin 

hypercube (LHS), Latinized partially stratified (LPSS), and Fourier amplitude sensitivity test 

(FAST) methods.  In the presence of parameter interactions, the effectiveness of LPSS was 

observed to be most pronounced at small sample sizes in terms of reducing the error with respect 

to both surrogate model verification metrics as well as the error associated with surrogate-based 

GSA results relative to those computed directly from full-order models.  For the upper internals 

FIV analysis, both LHS and LPSS were shown to be superior sampling strategies as compared to 

using FAST directly to sample the parameter space, with respect to training accurate surrogate 

models to achieve accurate GSA results with a minimal number of samples.  For sample sizes 

greater than 125, nearly equivalent GSA results were achieved for all sampling methods, which 

demonstrate stability in the surrogate-based GSA methodology, and thus demonstrate the 

veracity of the GSA results overall, provided sufficient samples can be generated. 

For the SFEM analysis, a number of comparison studies were performed.  First, Section 

4.2.3.1 examines the effect of increasing input parameter variance.  The increased parameter 

variance significantly increased the surrogate model verification error for a given number of 

samples.  The increased variance also tended to exacerbate the parameter interaction effects thus 

rendering the improvements offered by LPSS over LHS more pronounced, in terms of surrogate 

verification error.  Second, Section 4.2.3.2 examined the effect of changing the output of interest 

from the maximum acceleration of the time-history to the maximum acceleration at the first 

mode of the acceleration response spectrum.  As the variation in amplitude of vibration at the 

first mode proved significantly greater than the variation in the maximum amplitude of vibration 

over time, the improvements offered by LPSS over LHS in achieving accurate GSA results were 

demonstrated. 
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Methodological changes are introduced in Chapter 5.0  in order to motivate further 

research and alert practitioners to the possibilities offered by such changes.  Namely, the effect 

of using an aggregate surrogate modeling approach and effect of adaptive sampling are explored 

in Sections 5.1 and 5.2, respectively, wherein incremental improvements in surrogate model 

accuracy by the use of such methods are demonstrated.  Also, variance-based GSA versus rank-

correlation analysis methods are briefly explored in Section 5.3, wherein the different insights 

offered by these approaches to quantifying parameter importance are elucidated.  Deeper 

exploration of such methods and variants thereof could constitute a form of future research. 

While related work has explored the extensibility of similar principles to those addressed 

in this dissertation for thermal transient analysis (Banyay, et al., 2012) and hydrodynamics 

(Banyay, et al., 2014) within reactor applications, it is expected that modeling and simulation of 

many physics besides structural dynamics could likewise realize the benefits of such methods.  

Examples could include, but are not limited the simulation of severe accidents for reactor safety 

analysis and probabilistic risk assessment (Fauske & Associates, LLC, 2019), and full spectrum 

LOCA (Westinghouse Electric Company, 2016). 

Additional methodological advances to potentially explore in future work may include 

the linkage of GSA with state-of-the-art inverse problem methodologies such as developed by 

(Wang & Brigham, 2017) and (Walsh & Aquino, 2017).  In principle, understanding of 

parameter sensitivities could prove beneficial in the context of challenging inverse problems, 

such as faced within nuclear reactor environments when many quantities of interest are not 

directly observable.  Specifically, Figure 6.1 shows the configuration of a typical assembly of 

reactor internals highlighting some potential components and degradation mechanisms which 

could be explored via inverse mechanics methods per (Gerard, et al., n.d.) and (Westinghouse 
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Electric Company, 2009).  For example, efficient quantification of the sensitivity imparted by 

monitor-able parameters at various locations (e.g., external vibration) on forms of degradation 

such as stress corrosion cracking of core barrel welds, or radial support wear could lead to 

enhanced methods of non-destructive evaluations or advanced sensing in the interest of structural 

health monitoring. 
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Figure 6.1  Illustration of Typical Reactor Internals Assembly with Potential Applications for Inverse 
Mechanics Problems involving Sensitivity Analysis 
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Appendix A 

Matlab Code for Latinized Partially Stratified Sampling 

In accordance with Section 2.4.2, this appendix shows the Matlab scripts used to 

accomplish LPSS. 

The PSS design is first defined in terms of the sample design vectors.  In both the UI FIV 

and SFEM analyses investigated within this dissertation, the PSS design included two sets of 

three subdomains. The strata were then defined with varying degrees of resolution within a 

switch statement.  Upon defining the strata and subdomains, the LPSS function was called.  

 
%%-----------------------------------------------------------------------%% 
% Use of Partially Stratified Sampling (PSS) for Reactor Internals FIV    %   
% PSS_UpperInternalsVibration.m - 09/13/2016                              %  
% ... modified June 2017 to accomodate latinized PSS 
% Author: Michael D. Shields, Civil Eng,JHU; modified by Greg Banyay      % 
%                                                                         % 
% This demonstration plots __ sample points of a 6 dimensional partially  % 
% stratified sample design with three subdomains defined by pairing the   % 
% direct-applied forcing function magnitudes & angles and the base motion % 
% forcing function magnitudes & angles. The full 6-dimensional sample     % 
% (given by variable x) is constructed by                                 % 
% randomly pairing values from the three subdomains.                      % 
%%-----------------------------------------------------------------------%% 
clear;  clc;    close all; 
% addpath(genpath('T:\Surrogate\LPSS')); 
% addpath(genpath('T:\Surrogate\PSS')); 
% addpath(genpath('T:\Surrogate\LSS')); 
 
%% Partially stratified sample design vectors 
pss_design =    [3,...      % cross-flow loads {x1 through x3} 
                3];         % lateral & vertical base motion loads {x4, x5, 
x6} 
 
for ii = 1:7         
             
    switch ii 
        case 1; pss_strata =    [5, 5]; 
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        case 2; pss_strata =    [8, 8]; 
        case 3; pss_strata =    [10, 10]; 
        case 4; pss_strata =    [12, 12]; 
        case 5; pss_strata =    [13, 13]; 
        case 6; pss_strata =    [3,  3]; 
        case 7; pss_strata =    [4,  4];% additional case for small DOE check     
    end 
 
    x{ii} = LPSS(pss_design,pss_strata); 
 
    x_NotLatinized{ii} = PSS(pss_design,pss_strata); 
 
    for i = 1:size(x{ii},2) 
 
        figure(100+ii); 
        subplot(6,1,i);         plot(x{ii}(:,i));  hold on; 
                                plot(x_NotLatinized{ii}(:,i)); 
        legend('LPSS','PSS');   title(['parameter #', num2str(i)]); 
 
    end 
 
end 
 

 

The LPSS function is defined as follows, within which the LSS function is called. 

 
function [x_lpss] = LPSS(lpss_design,lpss_strata) 
 
%% Latinized Partially Stratified Sampling 
 
nDim = sum(lpss_design); 
nSamples = lpss_strata(1).^lpss_design(1); 
 
col = 0; 
for i = 1:length(lpss_design); 
    nStrata = lpss_strata(i)*ones(1,lpss_design(i)); 
    x_lpss(:,col+1:col+lpss_design(i)) = LSS(nStrata); 
    x_lpss(:,col+1:col+lpss_design(i)) = 
_lpss(randperm(nSamples),col+1:col+lpss_design(i)); 
    col = col+lpss_design(i); 
end 
 

 

 

The LSS procedure is thus invoked with the following function. 

 
function x = LSS(nStrata) 
 
%% Copyright (C) Shields Uncertainty Research Group (SURG) 
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% All Rights Reserved 
% Johns Hopkins University 
% Department of Civil Engineering 
% Updated: 16 July 2015 
% Michael D. Shields 
 
%% "Latinized" Stratified Sampling 
% Generates a sample set on U(0,1) that is simultaneously a Latin hypercube  
% sample and a stratified sample as described in: 
% Shields, M.D. and Zhang, J. "The generalization of Latin hypercube  
% sampling" Reliability Engineering and System Safety. (in review) 
 
% Input: 
% nStrata ----- Defines the design stratification   
%               Vector (1 x nRVs) 
%               Each column defines the number of stratifications to make 
%                   in that direction. 
% Example: nStrata = [25,25] produces a 2D design with 25x25  
% stratification and 625 total samples 
%  
% Output:  
% x ----------- Generated samples 
%               Array (nSamples x nRVs) 
% 
%% Initialize variables 
nSamples = prod(nStrata); 
nRVs = length(nStrata); 
 
%% Draw Latinized Stratified Samples 
 
% Draw a Latin hypercube sample 
x_temp = lhsdesign(nSamples,nRVs); 
x = zeros(size(x_temp)); 
 
% Array to identify the candidate strata in each dimension for the LHS 
% samples 
strata = zeros(size(x_temp)); 
 
% Identify the candidate strata in each dimension for the LHS samples 
for i = 1:nRVs 
    y = 1/nStrata(i):1/nStrata(i):1; 
    for j = 1:nSamples 
        for k = 1:length(y) 
            if x_temp(j,i) < y(k) && strata(j,i) == 0 
                strata(j,i) = k; 
                continue 
            end 
        end     
    end 
end 
 
% Place the components of the LHS into the strata one-by-one 
for i = 1:length(nStrata) 
    l = 1; 
    for j = 1:prod(nStrata(1:i)) 
        if l > nStrata(i) 
            l = 1; 
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        end 
        for k = 1:prod(nStrata)/prod(nStrata(1:i)) 
            for m = 1:length(strata) 
                if strata(m,i) == l 
                    x((j-1)*(prod(nStrata)/prod(nStrata(1:i)))+k,i) = 
x_temp(m,i); 
                    strata(m,i) = 0; 
                    break 
                end 
            end 
        end 
        l = l+1; 
    end 
end 
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Appendix B 

Discussion of Spectral Response Method 

The method employed herein was itself verified against the method attributed to Jennings 

in (Nigam & Jennings, 1969).  Jennings likewise uses a single degree-of-freedom oscillator 

model and thus starts with the same equation of motion as Equation (19), but uses 𝛽 instead of 𝛼 

for the damping term and 𝑎(𝑡) instead of �̈� for the base acceleration term; his model is shown in 

Figure 6.2. 
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Figure 6.2  Jennings' Method Oscillator Model (Nigam & Jennings, 1969) 

 

 

Jennings then concludes with an equation of equivalent form to Equation (25), and then 

goes on to express the acceleration response spectrum as: 

𝑆𝐹(𝜔,𝛽) = max
𝑖=1,𝑁

[�̈�𝑖(𝜔,𝛽)] (56) 

Where �̈�𝑖 is the acceleration of the mass at time 𝑡𝑖.  Note that Jennings traces the use of 

response spectra from strong-motion earthquakes to Benioff, Biot, and Housner publications 

spanning from 1934 to 1941.  Also, Jennings co-authored (Jennings, et al., 1968) along with 

Housner and Tsai in which they develop envelope functions for simulation of earthquakes and, in 
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so doing, attribute one mathematical model for use in generating “accelerograms” to a Shinozuka 

paper from 1967. 

That approach is similar to that referred to as the Spectral Response Method (SRM) in 

numerous publications such as (Shinozuka & Deodatis, 1991), (Lang, et al., 2007), and (Shields, 

2010).  In (Shinozuka & Deodatis, 1991), the concept of the SRM is attributed to S.O. Rice in 

1954 and state that Shinozuka and Jan first applied the SRM to simulation of a multi-

dimensional, multi-variate nonstationary problem in 1972.  The SRM is described as follows. 

While (Shinozuka & Deodatis, 1991) did not necessarily pioneer the SRM, as they state, 

their paper serves as a detailed review of the method by gathering and compiling material that 

could only be found in several different papers.  Starting with a one-dimensional univariate 

stationary stochastic process, 𝑓0(𝑡) with autocorrelation function 𝑅𝑓0𝑓0(𝜏) and two-sided power 

spectral density function 𝑆𝑓0𝑓0(𝜔), (Shinozuka & Deodatis, 1991) provide a detailed derivation of 

the expression shown here as Equation (57), where Φ𝑗 is an independent random phase angle 

uniformly distributed in the range [0, 2𝜋]. 

𝑓0(𝑡) = √2��2𝑆𝑓0𝑓0(𝜔𝑗)Δ𝜔�
1
2 cos(𝜔𝑗𝑡 + Φ𝑗)

∞

𝑗=0

 (57) 

For simulation purposes, the 𝑖𝜔ℎ sample function may be expressed as: 

𝑓(𝑖)(𝑡) = √2 ��2𝑆𝑓0𝑓0(𝜔𝑛)Δ𝜔�
1
2 cos�𝜔𝑛𝑡 + Φ𝑛

(𝑖)�
𝑁−1

𝑛=0

 (58) 

The 𝑛𝜔ℎ frequency 𝜔𝑛 and frequency increment Δ𝜔 may be determined by the upper cut-off 

frequency of interest 𝜔𝑜 (i.e., that above which the PSD magnitude may be considered 

negligible) and the value of 𝑁 chosen for the summation: 

𝜔𝑛 = 𝑛Δ𝜔,         𝑛 = 0,1,2, … ,𝑁 − 1 (59) 
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Δ𝜔 = 𝜔𝑜
𝑁�  (60) 

The Fast Fourier Transform (FFT) may be used to accomplish this in a more 

computationally efficient manner 

𝑓(𝑖)(𝑝Δ𝑡) = 𝑅𝑒 �� √2�2𝑆𝑓0𝑓0(𝑛Δ𝜔)Δ𝜔�
1
2𝑒𝑖𝜙𝑛

(𝑖)
𝑒𝑖𝑛𝑝2𝜋 𝑀⁄

𝑀−1

𝑛=0

� ,       𝑝 = 0,1, … ,𝑀 − 1 (61) 

To express this in a more concise form, let: 

𝐴𝑛 = �2𝑆𝑓0𝑓0(𝑛Δ𝜔)Δ𝜔�
1
2,     𝑛 = 0,1, … ,𝑀 − 1 (62) 

𝐵𝑛 = √2𝐴𝑛𝑒𝑖𝜙𝑛
(𝑖)

,     𝑛 = 0,1, … ,𝑀 − 1 (63) 

Therefore, combining equations (61), (62), and (63) provides: 

𝑓(𝑖)(𝑝Δ𝑡) = 𝑅𝑒 �� 𝐵𝑛𝑒𝑖𝑛𝑝2𝜋 𝑀⁄
𝑀−1

𝑛=0

� ,       𝑝 = 0,1, … ,𝑀− 1 (64) 

Note that in order to leverage the computational efficiency offered by the FFT, let 𝑀 = 2𝜇 where 

𝜇 is a positive integer.   

In 2007, (Lang, et al., 2007) extended this work to address nonstationary stochastic 

processes.  In so doing, they effectively re-derive Equation (57) in terms of a non-stationary PSD 

𝑆𝑓0𝑓0(𝑡,𝜔𝑛) as: 

𝑓(𝑖)(𝑡) = √2 ��2𝑆𝑓0𝑓0(𝑡,𝜔𝑛)Δ𝜔�
1
2 cos�𝜔𝑛𝑡 + Φ𝑛

(𝑖)�
𝑁−1

𝑛=0

 (65) 

Then, three different methods are offered by which a (non-stationary) evolutionary PSD may be 

formulated: the short-time Fourier transform, Wavelet transform, and Hilbert transform.  The 

short-time Fourier transform (STFT) is chosen for use in this work.  Note that the STFT method 

is consistent with the “spectrogram” function built into Matlab.  The STFT may be written as: 
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𝑆𝑓0𝑓0(𝑡,𝜔) = �𝑓2(𝜏)ℎ2(𝑡 − 𝜏)
∞

−∞

𝑑𝜏 𝑑𝑡 (66) 

where ℎ(𝑡) is an appropriate window function (e.g., Hanning window) and 𝜏 is the time delay. 

The evolutionary power spectrum (ES) is documented for the simulation of non-

stationary stochastic processes by (Shields, 2010).  Note that Section 3.2.1 of (Shields, 2010) 

cites (Jennings, et al., 1968) (written by the same P.C. Jennings as in (Nigam & Jennings, 1969)) 

as being one method by which the 𝐴(𝑡,𝜔) (termed “envelope function” in (Jennings, et al., 

1968)) can be evaluated.  Assuming that the stationary PSD 𝑆𝑓0𝑓0(𝜔) exists such that 

𝑑𝑆𝑓0𝑓0(𝜔) = 𝑆𝑓0𝑓0(𝜔)𝑑𝜔 and a modulating function 𝐴(𝑡,𝜔) is a real function of both frequency 

𝜔 and time 𝑡, the ES may be written as (using the same nomenclature as the preceding 

discussion): 

𝑆𝑓0𝑓0(𝑡,𝜔) = 𝐴2(𝑡,𝜔)𝑆𝑓0𝑓0(𝜔) (67) 

Given this discussion, it is understood that the SRM differs somewhat from the 

“accelerograms” referred to by (Jennings, et al., 1968) (i.e., if Shinozuka attributes the first use 

of the SRM to his work in 1972, then his prior work in 1967 was likely not equivalent to the 

SRM).  Furthermore, the SRM is a method by which the spectrum, as a PSD, may be represented 

as a time-history.  In conclusion, the SRM is effectively the means by which the time-history is 

developed for loading the SFEM, whereas the response spectrum method is used for plotting the 

resultant transient response on the frequency domain. 

Matlab implementation of the USGS Open-File Report 92-296A (Converse & Brady, 

1992) algorithm for computing acceleration response spectra is shown in the following table. 
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function RESP = ACCESLRS(arg1, arg2, arg3, arg4) 
% arg1: acceleration time-history 
% arg2: time step size for acceleration time-history 
% arg3: vector of frequencies 
% arg4: percent critical damping 
p_tsteps =  length(arg1); 
p_dt =      arg2; 
p_fcount =  length(arg3); 
p_d =       arg4; 
for i = 1:p_fcount 
    p_w =   2 * pi() * arg3(i); 
    p_wd =  p_w * (1 - p_d^2)^0.5; 
    p_w2 =  p_w^2; 
    p_w3 =  p_w^3; 
     
    p_zd =  0; 
    p_zv =  0; 
    p_za =  0; 
    p_xd1 = 0; 
    p_xv1 = 0; 
     
    p_f1 =  (2.0 * p_d) / (p_w3 * p_dt); 
    p_f2 =  1.0 / p_w2; 
    p_f3 =  p_d * p_w; 
    p_f4 =  1.0 / p_wd; 
    p_f5 =  p_f3 * p_f4; 
    p_f6 =  2.0 * p_f3; 
     
    p_e =   exp(-p_f3 * p_dt); 
    p_s =   sin(p_wd * p_dt); 
    p_c =   cos(p_wd * p_dt); 
     
    p_g1 =  p_e * p_s; 
    p_g2 =  p_e * p_c; 
     
    p_h1 =  p_wd*p_g2 - p_f3*p_g1; 
    p_h2 =  p_wd*p_g1 + p_f3*p_g2; 
     
    for ii = 1:(p_tsteps-1) 
        p_dug =     arg1(ii+1) - arg1(ii); 
         
        p_z1 =      p_f2 * p_dug; 
        p_z2 =      p_f2 * arg1(ii); 
        p_z3 =      p_f1 * p_dug; 
        p_z4 =      p_z1 / p_dt; 
         
        p_b =       p_xd1 + p_z2 - p_z3; 
        p_a =       p_f4*p_xv1 + p_f5*p_b + p_f4*p_z4; 
         
        p_xd2 =     p_a*p_g1 + p_b*p_g2 + p_z3 - p_z2 - p_z1; 
        p_xv2 =     p_a*p_h1 - p_b*p_h2 - p_z4; 
         
        p_xd1 =     p_xd2; 
        p_xv1 =     p_xv2; 
     
        p_aa =      -p_f6*p_xv1 - p_w2*p_xd1; 
        p_f =       abs(p_xd1); 
        p_g =       abs(p_xv1); 
        p_h =       abs(p_aa); 
         
        if p_f >= p_zd,     p_zd = p_f;     end 
        if p_g >= p_zv,     p_zv = p_g;     end 
        if p_h >= p_za,     p_za = p_h;     end 
         
    end 
    RESP(i,1) =     p_zd; 
    RESP(i,2) =     p_zv; 
    RESP(i,3) =     p_za; 
end 
end 
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