
 

  

Personalized Medicine: Application To A Breast Cancer Study 
 
 
 
 
 
 
 
 
 

by 
 

Chenxin Yang 
 

BS in Pharmacy, The Second Military Medical University, China, 2013 
 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 
 

the Department of Biostatistics 
 

Graduate School of Public Health in partial fulfillment 
  

of the requirements for the degree of 
 

Master of Science 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2019



 ii 

UNIVERSITY OF PITTSBURGH 
 

GRADUATE SCHOOL OF PUBLIC HEALTH 
 
 
 
 
 
 

This thesis was presented 
 

by 
 
 

Chenxin Yang 
 
 

It was defended on 
 

April 15, 2019 
 

and approved by 
 

Chaeryon Kang, PhD, Assistant Professor, Department of Biostatistics 
Graduate School of Public Health, University of Pittsburgh 

 
Douglas Landsittel, PhD, Professor, Department of Biomedical Informatics 

School of Medicine, University of Pittsburgh 
 

Thesis Advisor: Gong Tang, PhD, Associate Professor, Department of Biostatistics 
Graduate School of Public Health, University of Pittsburgh 

  



 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Chenxin Yang 
 

2019 
 
 
 

 



 iv 

Personalized Medicine: Application To A Breast Cancer Study 
 

Chenxin Yang, MS 
 

University of Pittsburgh, 2019 
 
 

Abstract 
 

In randomized clinical trials, investigators compare the clinical outcomes among treatment 

arms and make claims on the effectiveness of experimental treatments versus the standard ones. 

Recent developments in biotechnology and associated biomarkers have led to advances in 

evaluating heterogeneous patient response and the relationship between treatment responses and 

certain biomarkers. Precision medicine, therefore, is becoming very popular in the healthcare 

industry. It is of great public health significance that proper implementation of precision medicine 

leads to informed and efficient decision making and patient management in clinical practice. 

Traditionally discovery of a predictive marker of treatment benefit is performed via a test of the 

interaction term between treatment and the marker of interest in a regression model that predicts 

the clinical outcome of interest. Recently a new paradigm has been proposed by redefining the 

search for predictive markers, as the search for an optimal individualized treatment rule (ITR) on 

treatment selection. Here we describe this new approach and apply those methods to a breast cancer 

study to identify clinical and genomic markers that are predictive of treatment benefit. The R 

package “personalized” was used in the implementation. Application of some of these methods 

does identify optimal ITRs that lead to improved outcomes based on the empirical estimates. 

However, validation via random splitting of training and testing datasets suggested that the 

findings may be resulted from over-fitting. These ITR-based methods provide a powerful tool for 

us to identify predictive markers for treatment response, but caution should be taken especially 

with high-dimensional marker data. 



 v 

Table of Contents 

Preface ........................................................................................................................................... ix 

1.0 Introduction ............................................................................................................................. 1 

1.1 Individualized Treatment Rules .................................................................................... 1 

1.2 A Sub-study of the NSABP Protocol B-41 Trial .......................................................... 2 

2.0 Optimal Individualized Treatment Rules ............................................................................. 6 

2.1 Individualized Treatment Rule (ITR) .......................................................................... 7 

2.2 Selection of The Loss Function ...................................................................................... 9 

2.3 Validation ...................................................................................................................... 11 

2.4 The “personalized” Package in R ............................................................................... 12 

3.0 Application to The NSABP B-41 Study .............................................................................. 17 

3.1 Analytical Methods ....................................................................................................... 17 

3.2 Results ............................................................................................................................ 19 

3.2.1 T + L Versus Trastuzumab .............................................................................. 19 

3.2.2 Trastuzumab-containing Regimens Versus Lapatinib .................................. 42 

4.0 Discussion............................................................................................................................... 46 

Appendix A Example R Code .................................................................................................... 47 

Bibliography ................................................................................................................................ 51 



 vi 

List of Tables 

Table 1 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, the Logistic Loss ..... 21 

Table 2 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, the Hinge Loss ........ 24 

Table 3 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, the Logistic Loss ... 26 

Table 4 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, the Hinge Loss ...... 28 

Table 5 T+L (Treatment) VS Trastuzumab (Control), All Covariates, the Logistic Loss ........... 31 

Table 6 T + L (Treatment) VS. Trastuzumab (Control), All Covariates, the Hinge Loss ............ 32 

Table 7 T + L (Treatment) VS. Trastuzumab (Control), Validated Clinical Markers, the Logistic 

Loss ............................................................................................................................................... 35 

Table 8 T + L (Treatment) VS. Trastuzumab (Control), Validated Clinical Markers, the Hinge Loss

....................................................................................................................................................... 36 

Table 9 T + L VS Trastuzumab, Validated Gene Models, the Logistic Loss ............................... 38 

Table 10 T + L (Treatment) VS. Trastuzumab (Control), Validated Gene Models, the Hinge Loss

....................................................................................................................................................... 39 

Table 11 T + L (Treatment) VS. Trastuzumab (Control), Validated Overall Models, the Logistic 

Loss ............................................................................................................................................... 40 

Table 12 T + L (Treatment) VS. Trastuzumab (Control), Validated Overall Models, the Hinge Loss

....................................................................................................................................................... 41 

Table 13 Trastuzumab-containing Regimens (Treatment )VS Lapatinib (Control), .................... 43 

Table 14 Trastuzumab-containing Regimens (Treatment )VS Lapatinib (Control), .................... 44 



 vii 

List of Figures 

Figure 1 Example Boxplot ............................................................................................................ 14 

Figure 2 Example Density Plot ..................................................................................................... 14 

Figure 3 Example Conditional Plot............................................................................................... 15 

Figure 4 Example Interaction Plot ................................................................................................ 15 

Figure 5 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario(1), Boxplot

....................................................................................................................................................... 21 

Figure 6 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario(1), Desnsity 

Plot ................................................................................................................................................ 22 

Figure 7 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario(1), Interaction 

Plot ................................................................................................................................................ 22 

Figure 8 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario(1), 

Conditional Plot ............................................................................................................................ 23 

Figure 9 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario (1) &(2)... 23 

Figure 10 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario (3) &(4). 25 

Figure 11 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario (1) &(3). 25 

Figure 12 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario (2) &(4). 26 

Figure 13 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, Scenario (1) & (2)

....................................................................................................................................................... 27 

Figure 14 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, Scenario (3) & (4)

....................................................................................................................................................... 29 



 viii 

Figure 15 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, Scenario (1) & (3)

....................................................................................................................................................... 29 

Figure 16 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, Scenario (2) & (4)

....................................................................................................................................................... 30 

Figure 17 T+L (Treatment) VS Trastuzumab (Control), All Covariates, Scenario (1) & (2) ...... 31 

Figure 18 T + L (Treatment) VS. Trastuzumab (Control), All Covariates, Scenario (3) & (4) ... 33 

Figure 19 T + L (Treatment) VS. Trastuzumab (Control), All Covariates, Scenario (1) & (3) ... 33 

Figure 20 T + L (Treatment) VS. Trastuzumab (Control), All Covariates, Scenario (2) & (4) ... 34 

Figure 21 T + L (Treatment) VS. Trastuzumab (Control), Validated Clinical Markers, Scenario (1) 

& (2) .............................................................................................................................................. 35 

Figure 22 T + L (Treatment) VS. Trastuzumab (Control), Validated Clinical Markers, Scenario (3) 

& (4) .............................................................................................................................................. 37 

Figure 23 T + L (Treatment) VS. Trastuzumab (Control), Validated Genomic Markers, Scenario 

(1) & (2) ........................................................................................................................................ 38 

Figure 24 T + L (Treatment) VS. Trastuzumab (Control), Validated Genomic Markers, Scenario 

(3) & (4) ........................................................................................................................................ 39 

Figure 25 T + L (Treatment) VS. Trastuzumab (Control), Validated Overall Models, Scenario (1) 

& (2) .............................................................................................................................................. 41 

Figure 26 T + L (Treatment) VS. Trastuzumab (Control), Validated Overall Models, Scenario (3) 

& (4) .............................................................................................................................................. 42 

Figure 27 Trastuzumab-containing Regimens (Treatment )VS Lapatinib (Control),................... 43 

Figure 28 Trastuzumab-containing Regimens (Treatment )VS Lapatinib (Control),................... 45 



 ix 

Preface 

I am heartily thankful to my advisor, Dr. Gong Tang, whose encouragement, guidance and 

support from the initial to the final level enabled me to develop an understanding of this topic. I 

also owe a deep sense of gratitude to my committee members, Dr. Douglas Landsittel and Dr. 

Chaeryon Kang, for their keen interest and generous help. This thesis would not be possible 

without their kind and selfless support. 

I would also like to express my deep sense of thanks to the Department of Biostatistics of 

Pitt Public Health, where I spend very meaningful and fulfilled two years. I am genuinely thankful 

to every faculty and staff for their heart-warming help and co-operation throughout my study 

period.



 1 

1.0 Introduction 

1.1 Individualized Treatment Rules 

In randomized clinical trials, study participants are randomly assigned to a control arm and 

one or several experimental arms. The control arm represents standard regimen or practice and the 

experimental arms represent the new or alternative regimens that are suspected to be superior to 

the control arm in a certain outcome. When the superiority of the experimental regimen is 

demonstrated at the conclusion of a study, the experimental regimen will replace the control 

regimen and become the new standard practice. More studies will be developed to either confirm 

the finding or test whether this newly developed standard can be further improved. This ever-

lasting procedure has been the blue print for drug development and policy improvement in past 

decades. In recent years it has been recognized that patients may respond to the same treatment 

differently, which is caused by the heterogeneity among different individuals. It has becoming an 

emerging issue especially with the availability of large amount of biomarkers and genomic markers 

from recent vast development in biotechnology. For example, breast cancer patients with hormone 

receptor-positive tumors benefit from hormonal treatments such as tamoxifen and anastrozole but 

those with hormone receptor-negative tumors do not.[1,2] Herceptin reduces the risk of recurrence 

by 50% in breast cancer patients with Her2-positive tumors but its benefit in patients with Her2-

negative tumors is minimal if any.[3] Accounting for this heterogeneity represents a significant 

challenge which has motivated the trend toward personalized medicine over recent years.[4, 5] 

Models that use individual characteristics to predict the optimal treatment that achieves the best 
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response are critical for patients and treating physicians to make informed decisions on their 

treatment selection.  

Assuming larger outcomes are preferable, optimal individualized treatment rules (ITRs) 

are the treatment assignment rules that assign the treatment which maximizes the outcome of the 

overall population based on their characteristics. The term ITRs is derived initially from dynamic 

treatment regimes, a concept proposed by Murphy (2003)[6] that focuses more on the change of 

treatment according to participants characteristics along time. A number of studies have been 

conducted on this topic. Qian and Murphy (2011)[7] used 𝑙𝑙1-penalized least squares to estimate the 

optimal ITRs. Zhao et al. (2012) estimated optimal ITR using an outcome-weighted method with 

the hinge loss used. Chen et al. (2017)[8] provided a general framework for subgroup identification 

under different scenarios. Other studies focused on the methodology behind subgroup 

identification. For example, Zhou et al.[9] proposed a different method to address variable selection 

in finding optimal ITRs using residual weighted learning (RWL).  

An R package, “personalized”, has been recently developed to implement some of the 

aforementioned methods for estimating the optimal ITRs under various choices of loss functions 

and providing subgroup identification.[10]  

1.2 A Sub-study of the NSABP Protocol B-41 Trial 

The data considered in this thesis is a subset from the National Surgical Adjuvant Breast 

and Bowel Project (NSABP) B-41 clinical trial, a three-armed, randomized, phase III study.[12] 

529 women participants with early stage operable HER2-positive breast cancer were enrolled from 

July 16, 2007 to June 30, 2011. All participants were over 18 years old and had ECOG performance 
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status of 0 or 1 at study entry. Participants were randomly assigned to receive one of three treatment 

regimens with 1:1:1 ratio. Each participant would at first receive four cycles of standard 

doxorubicin 60 mg/m² and cyclophosphamide 600 mg/m² intravenously on day 1 every 3 weeks 

followed by four cycles of weekly paclitaxel (80 mg/m²) intravenously on days 1, 8, and 15, every 

4 weeks. Concurrently with weekly paclitaxel, participants would receive either trastuzumab 

weekly, lapatinib daily, or weekly trastuzumab plus lapatinib daily until surgery. All participants 

would receive trastuzumab after surgery until the completion of 52 weeks of HER2-targeted 

therapy. At the end of neoadjuvant treatments of 6 to 7 months, breast surgery (lumpectomy or 

mastectomy) was performed and participants’ pathological response status was ascertained. 

Pathological complete response (pCR) is defined as the absence of any invasive component in the 

resected breast specimen and absence of cancer on H&E evaluation of all resected lymph nodes 

following completion of neoadjuvant therapy (ypT0/Tis ypN0) among participants with HER2-

positive tumors and under neoadjuvant HER2-targeting regimens. The aim of NSABP B-41 trial 

is to compare the two lapatinib-containing treatment arms to the trastuzumab-only arm with pCR 

as the primary endpoint. 

Trastuzumab is the first human epidermal growth factor receptor 2 (HER2) targeting 

monoclonal antibody that was approved by the United States Food and Drug Administration 

(FDA) as a first-line treatment, combined with paclitaxel, for HER2-positive breast cancer. for the 

treatment of HER2-overexpressing metastatic breast cancer (MBC).[13,14] Lapatinib is a small 

molecule inhibitor of epidermal growth factor receptor (EGFR) and HER2. It has been shown that 

trastuzumab can block the signal transaction and thus suppress the overexpressing of HER2.[15] A 

study has shown that lapatinib has synergy effects with trastuzumab.[16] Therefore, it is expected 

that trastuzumab in combination with lapatinib would have more promising outcomes.  
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Among 529 women enrolled in the trial, 519 participants had their pathological response 

determined. Breast pathological complete response was noted in 93 (52·5%, 95% CI 44·9–59·5) 

of 177 participants in the trastuzumab group, 91 (53·2%, 45·4–60·3) of 171 participants in the 

lapatinib group (p=0·9852); and 106 (62·0%, 54·3–68·8) of 171 participants in the combination 

group (p=0·095). Based on these results, the study concluded that substitution of lapatinib for 

trastuzumab did not improve pCR. Although combined HER2-targeted therapy led to higher pCR 

than the regimen with trastuzumab-alone in addition to chemotherapy, the difference was not 

statistically significant. Given that participants achieving pCR have much better prognosis in terms 

of long-term outcomes, discovery of useful prognostic and predictive clinical and genomic markers 

for pCR is imperative for developing rules that optimize treatment benefit for individual 

participants.  

In a correlative study on B-41, the Nanostring PAM50 assay was performed on core biopsy 

samples from 271 study participants prior to neoadjuvant treatments: 94 of them received 

trastuzumab, 95 of them received lapatinib, and the remaining 82 subjects received a combination 

of trastuzumab and lapatinib. The PAM50 assay (using the PAM50-RUO CodeSet) simultaneously 

measures the expression levels of 72 target sequences, including eight endogenous invariant 

mRNA targets, six positive quality control targets, and eight negative quality control targets 

consisting of probes with no sequence homology to human RNA. At the end, expression levels 

from 50 cancer-related genes were recorded and used to determine the intrinsic subtype of the 

tumors among four categories: Luminal A, Luminal B, Her2-enriched and Basal.[17] To better 

understand whether any of the clinical or genomic markers may predict treatment benefit in pCR, 

we considered two sets of analyses: (1) trastuzumab-containing regimens (176 participants in total) 

versus lapatinib only (95 participants), and (2) trastuzumab combined with lapatinib (82 
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participants) versus trastuzumab alone (94 participants). For both comparisons, the recommended 

treatment is compared with the treatment received to determine the optimal treatment, using 

treatment effects. In the following context, we will denote one treatment arm as the “control arm” 

and the other treatment arm as the “treatment arm” for convenience. 

In this thesis, we applied the R package “personalized” to identify an optimal 

individualized treatment rule and determine participant subgroups who would have achieved 

optimal pCR had they followed the estimated optimal treatment rule using data from these 271 

NSABP B-41 trial participants. For each of the two comparisons, we define one treatment regimen 

as the treatment and another as the control for brevity. In the comparison between trastuzumab 

combined with lapatinib and trastuzumab, the former is the treatment; in the comparison between 

trastuzumab containing regimens and lapatinib, trastuzumab containing regimens are the 

treatment. The rule is defined based on a benefit score that is an estimated function of the markers: 

if the benefit score of a study participant is higher than the cut-point, she will be recommended the 

treatment; otherwise, the control will be recommended. Subgroup identification is accomplished 

using three different sets of potential markers: (1) clinical characteristics, including age, race, 

lymph node status, estrogen-receptor status, human epidermal growth factor receptor 2 (HER2) 

status and tumor size, (2) genomic markers, including breast cancer subtype and various genes, 

and (3) both clinical characteristics and genomic markers.  

This thesis is organized as follows. In Section 2, we review and compare different 

methodologies regarding value function approximation, especially the selection of loss functions. 

In Section 3, we apply the methodology discussed in Section 2 on the NSABP B-41 trial data using 

the “personalized” package in R. In Section 4, problems and future studies are discussed. Related 

R code is given in the Appendix A. 
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2.0 Optimal Individualized Treatment Rules 

Randomized clinical trials are designed to compare the efficacy of new treatment regimens 

to that of a standard regimen in terms of average effects across some participant population. When 

there is strong evidence to support the superiority of one of more regimens to the standard one, 

investigators would claim a positive trial and recommend treating similar participants with the 

newly found superior regimen(s) in future practice. This has been the model for drug development 

in many fields of medicine, especially cancer, in past decades. Investigators understand that 

participant response to treatments may not be homogeneous, that is, certain participants would 

benefit from replacing the standard treatment by the new treatment but other participants may not. 

Especially in the treatment of cancer participants, newer treatments such as new antibodies, second 

or third generations of chemotherapies and immunotherapies often lead to unexpected 

complications or deadly adverse events. It becomes imperative to identify markers that can be used 

to determine which participants would benefit from the new treatment and which participants 

would not. The determination of a predictive marker, a patient attribute that can be used to predict 

differential benefit from one treatment over another, is traditionally done via testing the interaction 

between treatment and the marker or participant characteristic under consideration.[18] In the past, 

study design for screening predictive markers of treatment benefit were hampered by two issues: 

(1) a marker study usually requires a quadrupled sample size comparing to a similar superiority 

clinical trial on efficacy; (2) there are very few useful clinical markers. Recent developments in 

microarray and RNA/DNA sequencing technologies provide an unique opportunity for 

investigators to explore predictive utility of the vast amount of genomic signatures. Demands for 

genomic predictive markers of treatment benefit has since stimulated statistical methodologies for 
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providing valid and effective discoveries other than the traditional approach by testing interactions 

in past few years. Recently Qian and Murphy (2011)[7] and Zhao et al. (2012)[19] provided a 

framework for defining ITR and proposed statistical methods to estimate optimal ITRs via 

optimizing a loss function. The methodology of R package “personalized” is mainly based on the 

methods built in this framework by further developments proposed by Xu et al. (2015)[11] and Chen 

et al. (2017)[8]. In the following context, we will use their notations and introduce the framework, 

recently proposed methods and application under the setting of two treatment arms and a binary 

outcome. 

2.1 Individualized Treatment Rule (ITR) 

Assuming that in a randomized clinical trial with two treatments, T, coded as -1 and 1, data 

on the binary outcome 𝑌𝑌 ∈ {0,1} and potential markers 𝑍𝑍 = {𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑑𝑑} are collected from n 

subjects. Let Λ = {−1,1}, an ITR is a map D from the space of Z to Λ: 𝑇𝑇 = 𝐷𝐷(𝑍𝑍) ∈ Λ. Let 𝑃𝑃𝐷𝐷 

represent the distribution of (𝑇𝑇,𝑌𝑌,𝑍𝑍) under a given ITR D, 𝐸𝐸𝐷𝐷(𝑌𝑌) be the expected value of the 

outcome Y under 𝑃𝑃𝐷𝐷, a larger value of 𝐸𝐸𝐷𝐷(𝑌𝑌) then indicates better outcomes, assuming larger 

outcomes are more desirable. 𝐸𝐸𝐷𝐷(𝑌𝑌) can also be called the value function and be written as 𝑣𝑣(𝐷𝐷). 

An optimal ITR is a treatment assignment rule D that maximizes a value function should D be 

implemented. With observed data {𝑍𝑍,𝑇𝑇,𝑌𝑌}, let 𝜋𝜋 = 𝑃𝑃𝑃𝑃(𝑇𝑇 = 1|𝑍𝑍), a popular value function is: 

𝑣𝑣(𝐷𝐷) = 𝐸𝐸𝐷𝐷(𝑌𝑌) = ∫𝑌𝑌 𝑑𝑑𝑃𝑃𝐷𝐷 = ∫𝑌𝑌 𝑑𝑑𝑃𝑃𝐷𝐷

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = ∫𝑌𝑌 𝐼𝐼(𝑇𝑇=𝐷𝐷(𝑍𝑍))

𝑝𝑝𝑝𝑝[𝑇𝑇|𝑍𝑍]
𝑑𝑑𝑑𝑑 =𝐸𝐸 �𝐼𝐼�𝑇𝑇=𝐷𝐷(𝑍𝑍)�

𝑇𝑇𝑇𝑇+1−𝑇𝑇2
𝑌𝑌�, (1) 

where, 𝐼𝐼()  is an indicator function. In randomized clinical trials, 𝜋𝜋  is a known constant. In 

observational studies, 𝜋𝜋(𝑍𝑍) is usually estimated from a regression model of T on Z. 
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Subsequently, an optimal ITR, 𝐷𝐷∗, is a rule that maximizes this value function: 

𝐸𝐸𝐷𝐷∗(𝑌𝑌) = max {𝐸𝐸𝐷𝐷(𝑌𝑌),𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷} 

From  

𝐸𝐸(𝑌𝑌|𝑇𝑇 = 1, D) + 𝐸𝐸(𝑌𝑌|𝑇𝑇 = −1, D) − 𝑣𝑣(𝐷𝐷) = 𝐸𝐸 �𝐼𝐼�𝑇𝑇≠𝐷𝐷(𝑍𝑍)�

𝑇𝑇𝑇𝑇+1−𝑇𝑇2
𝑌𝑌�, (2) 

When Y is nonnegative, the optimal ITR 𝐷𝐷∗ should minimize the right hand side of the 

above equation, which can be assessed as a weighted classification error for classifying 𝑇𝑇 using 𝑍𝑍. 

For a given data, the optimal ITR can be estimated by minimizing the empirical value: 

1
𝑛𝑛
∑ 𝑌𝑌𝑖𝑖

𝑇𝑇𝑖𝑖𝜋𝜋+
1−𝑇𝑇𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1 𝐼𝐼�𝑇𝑇𝑖𝑖 ≠ 𝐷𝐷(𝑍𝑍𝑖𝑖)�, (3) 

with 𝐷𝐷(Z) regarded as a classifier on the space of Z. This can be further written as  

1
𝑛𝑛
∑ 𝑌𝑌𝑖𝑖

𝑇𝑇𝑖𝑖𝜋𝜋+
1−𝑇𝑇𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1 𝐼𝐼 �𝑇𝑇𝑖𝑖 ≠ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(𝑍𝑍𝑖𝑖)��, (4) 

where 𝑓𝑓() is a function from the space of Z to the set of real numbers, R; 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)=1 if 𝑡𝑡 > 0 and 

0 if 𝑡𝑡 < 0, and 𝐷𝐷(Z) is defined as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(Z)�. Zhao et al. (2012)[19] linked maximizing the value 

function to minimizing a weighted misclassification error with classifying each subject into -1 or 

1 according to the sign of 𝑓𝑓(𝑍𝑍). If an observation i is associated with a large weight at 𝑌𝑌𝑖𝑖
𝑇𝑇𝑖𝑖𝜋𝜋+

1−𝑇𝑇𝑖𝑖
2

, 

the optimal classifier 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(Z)� will tend to assign this subject to the observed 𝑇𝑇𝑖𝑖. Observations 

associated with small weights will be assigned to the group that is opposite to 𝑇𝑇𝑖𝑖. Minimizing (4) 

is computationally challenging since it is a weighted sum of 0-1 loss functions which are neither 

continuous nor convex.  
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2.2 Selection of The Loss Function 

 

A surrogate hinge loss function with a penalty term was adopted by Zhao et al. (2012)[19]: 

1
𝑛𝑛
∑ 𝑌𝑌𝑖𝑖

𝑇𝑇𝑖𝑖𝜋𝜋+
1−𝑇𝑇𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1 �1 − 𝑇𝑇𝑖𝑖𝑓𝑓(𝑍𝑍𝑖𝑖)�

+
+ 𝜆𝜆𝑛𝑛‖𝑓𝑓‖2, (5) 

where t+ = max (𝑡𝑡, 0) and ‖𝑓𝑓‖ is some norm for function 𝑓𝑓. The penalty term 𝜆𝜆𝑛𝑛‖𝑓𝑓‖2 was added 

for model regularization. One could use a linear combination of Z to represent 𝑓𝑓: 𝑓𝑓(𝑍𝑍) = 𝛽𝛽0 +

𝛽𝛽1𝑍𝑍1 + ⋯+ 𝛽𝛽𝑝𝑝𝑍𝑍𝑝𝑝 or 𝑓𝑓(𝑍𝑍) = ∑ 𝛽𝛽𝑖𝑖𝐾𝐾(𝑍𝑍,𝑍𝑍𝑖𝑖)𝑖𝑖=1,2,…,𝑛𝑛 + 𝛽𝛽0, where 𝐾𝐾(. , . ) is a pre-determined kernel 

function. The estimated ITR will be 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓�𝑍𝑍; 𝛽̂𝛽�) with 𝛽̂𝛽 obtained from minimizing (5). Zhao et 

al. (2012)[19] named this method as outcome weighted learning (OWL) and showed that the 

empirical risk function (4) under the estimated optimal ITR would converge to the risk function 

(2) under the optimal ITR under some regularity conditions.  

 Chen et al. (2017)[8] provided a general framework for subgroup identification via ITR by 

extending to other types of loss function. Assume that the counterfactual outcomes from a subject 

are 𝑌𝑌(1) and 𝑌𝑌(−1), had the subject taken treatment 𝑇𝑇 = 1 or 𝑇𝑇 = −1, respectively. In practice, 

only one of the two counterfactual outcomes can be observed from a participant, 𝐼𝐼(𝑇𝑇 = 1)𝑌𝑌(1) and 

𝐼𝐼(𝑇𝑇 = −1)𝑌𝑌(−1) can be used to denote the participant’s outcome result, where 𝐼𝐼(∙) is the indicator 

function for each value of Y. The propensity score Pr(𝑇𝑇 = 1|𝑍𝑍) = 𝜋𝜋(𝑍𝑍) is always known in 

randomized trials, and can be estimated in observational studies. Assuming 𝑓𝑓(𝑍𝑍) is a function of 

baseline covariates that can be used to predict treatment assignment via 𝐷𝐷(𝑍𝑍) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(Z)�, then 

for a given loss function  𝑀𝑀(𝑦𝑦, 𝑣𝑣)  that satisfy the following two assumptions: (1) 𝑀𝑀𝑣𝑣(𝑦𝑦, 𝑣𝑣) =
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𝜕𝜕𝜕𝜕(𝑦𝑦,𝑣𝑣) 
𝜕𝜕𝜕𝜕

 is increasing in 𝑣𝑣 for any given 𝑦𝑦, (2) 𝑈𝑈(𝑦𝑦) ≡ 𝑀𝑀𝑣𝑣(𝑦𝑦, 0) is monotone in 𝑦𝑦, Chen et al. 

(2017)[8] considered minimizing the risk function 𝑙𝑙𝑊𝑊(𝑓𝑓) = 𝐸𝐸�𝑙𝑙𝑊𝑊(𝑓𝑓,𝑍𝑍)� where: 

𝑙𝑙𝑊𝑊(𝑓𝑓, 𝑧𝑧) = 𝐸𝐸 �
𝑀𝑀{𝑌𝑌,𝑇𝑇𝑇𝑇(𝑍𝑍)}

𝑇𝑇𝑇𝑇(𝑍𝑍) + (1 − T)/2
|𝑍𝑍 = 𝑧𝑧� 

= 𝐸𝐸[𝑀𝑀{𝑌𝑌,𝑓𝑓(𝑍𝑍)}|𝑇𝑇 = 1,𝑍𝑍 = 𝑧𝑧] + 𝐸𝐸[𝑀𝑀{𝑌𝑌,−𝑓𝑓(𝑍𝑍)}|𝑇𝑇 = −1,𝑍𝑍 = 𝑧𝑧]. 

Chen et al. (2017)[8] proposed to define the optimal ITR as {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑊𝑊0(𝑍𝑍)} that minimizes the above 

risk function, where 𝑓𝑓𝑊𝑊0(𝑍𝑍) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑙𝑙𝑊𝑊(𝑓𝑓).  

For the OWL method by Zhao et al. (2012)[19], the loss function M(y,v)=y max{1-v,0}. A couple 

of other loss functions were suggested by Chen et al. (2017)[8], for example, M(y,v)=(y-v)2 for 

continuous outcome y and M(y,v)=-[yv-log{1+exp(-v)}] for binary outcome y.  

Using an approximation similar to the OWL method with 𝑓𝑓𝑊𝑊 = ∑ 𝛽𝛽𝑘𝑘𝐵𝐵𝑘𝑘(𝑍𝑍)𝐾𝐾
𝑘𝑘=1 , where 

𝐵𝐵𝑘𝑘(𝑍𝑍),𝑘𝑘 = 1, … ,𝐾𝐾  are some basis functions, one can estimate 𝛽𝛽  by minimizing the empirical 

version of the loss function. Then use 𝑓𝑓𝑊𝑊� = ∑ 𝛽𝛽𝑘𝑘�𝐵𝐵𝑘𝑘(𝑍𝑍)𝐾𝐾
𝑘𝑘=1  as the benefit score to define the 

optimal ITR as sign(𝑓𝑓𝑊𝑊� ). In practice when the dimension of Z is large, Chen et al. (2017)[8] 

recommended applying regularization on the variable selection via adding a penalty term.  

In randomized clinical trials, where the treatment assignment is independent from 𝑍𝑍, one 

could readily estimate the improvement conditional on treatment by following quantities: 

𝐸𝐸(𝑌𝑌|𝐷𝐷∗(𝑍𝑍) = 1, T = 1) − 𝐸𝐸(𝑌𝑌|𝐷𝐷∗(𝑍𝑍) = 1, T = −1), 

and 

𝐸𝐸(𝑌𝑌|𝐷𝐷∗(𝑍𝑍) = −1, T = −1) − 𝐸𝐸(𝑌𝑌|𝐷𝐷∗(𝑍𝑍) = −1, T = 1), 

where 𝐷𝐷∗() is the estimated optimal ITR.  
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2.3 Validation 

In practice, investigators will try various basis functions and assess the performance of the 

estimated optimal ITR by comparing the empirical risk function under various settings. As with 

any complex modeling of high dimensional data, over-fitting of the data may lead to overly 

enthusiastic results. As one approach to reduce the potential for overfitting, Huling and Yu 

(2018)[10] recommended an internal validation procedure by randomly splitting the observed data 

into a training set and a testing set. In each split, the optimal ITR developed from the training set 

is applied to the testing test and assess the improved performance in outcome had the estimated 

optimal ITR been followed. For example, for a randomized clinical trial, one may identify 

subgroups in the testing data 𝐸𝐸𝑗𝑗,𝑘𝑘 = {𝑖𝑖:𝑇𝑇𝑖𝑖 = 𝑗𝑗,𝐷𝐷(𝑧𝑧𝑖𝑖) = 𝑘𝑘}, 𝑗𝑗,𝑘𝑘 = −1,1. Then assess the stability of 

results by comparing the empirical means of the response variable between 𝐸𝐸−1,−1 and 𝐸𝐸1,−1, and 

between 𝐸𝐸−1,1 and 𝐸𝐸1,1. If the markers under consideration are informative in predicting treatment 

benefit, one would observe consistent improvement in average response between patients who 

were assigned to the estimated optimal ITR and those who were not across these numerous random 

splittings. Failure in producing a consistent pattern of improvement may indicate that there is no 

strong evidence from the data to support the predictive utility of those markers. However, the lack 

of evidence may due to two possibilities: (1) the markers are not informative and the proposed 

algorithm for obtaining an optimal ITR is over-fitting the data, (2) the decrease in sample size in 

the random splitting practice leads to reduced power for detecting an optimal ITR based on those 

markers.  
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2.4 The “personalized” Package in R 

The “personalized” package is built by Huling and Yu (2018) under the framework 

proposed by Chen et. Al (2017).[8] This package provides a quick and convenient way for subgroup 

identification. For a given data with covariate Z, outcome of interest Y and treatment 𝑇𝑇 = 1 or 

𝑇𝑇 = −1, users are able to use the covariates Z to predict the optimal treatment between 𝑇𝑇 = 1 and 

𝑇𝑇 = −1 that can maximize the expected outcome of interest under the given treatment assignment 

rule. A propensity score function, which is a function that uses subject covariates to predict the 

probability of treatment T = 1, needs to be specified before subgroup identification. Then, the main 

build-in function of this package, fit.subgroup(), can be used to identify treatment subgroups. 

Within this function, loss function for benefit score calculation and the cut-off point for treatment 

assignment can be selected. Many loss functions that satisfies the assumptions in Section 2.2 are 

available: square loss 𝑀𝑀(𝑦𝑦, 𝑣𝑣) = (𝑦𝑦 = 𝑣𝑣)2, the logistic loss 𝑀𝑀(𝑦𝑦, 𝑣𝑣) = 𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝑒𝑒𝑒𝑒𝑒𝑒{−𝑣𝑣}), 

the hinge loss 𝑀𝑀(𝑦𝑦, 𝑣𝑣) = 𝑦𝑦 ∗ max (0, 1 − 𝑣𝑣) etc. Loss function can be specified under the option 

loss within fit.subgroup() function. Under each loss function, the option cutpoint allows users to 

define the cut-off value for treatment recommendation. The cutpoint can be a constant or a quantile 

of benefit scores. The average outcomes within each subgroup by treatment they received are then 

reported in the output, together with the improvement of outcome following the subgroup 

separation and the range of benefit scores.  

These results can be biased estimates because the implemented ITR is estimated from the 

same dataset with high-dimensional marker data, and the imbedded variable selection and model 

regularization would lead to overfitting. Validation is therefore necessary. Using the build-in 

function validate.subgroup(), unbiased results can be obtained by bootstrap bias correction or 

repeated training/testing splitting by choosing between method = "boot" or method = 
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"training_test_replication". For boostrap bias correction, a statistic is first estimated by the 

training data, then the bias with regard to that statistic is estimated by bootstrap samples extracted 

with replacement using whole data. Then a bias-corrected statistic can be obtained by these two 

values. For repeated training/testing splitting method, data is randomly partitioned into training 

and testing sets at a ratio that can be defined arbitrarily by users, the average outcome values for 

the training set, thus the predicted average outcomes given the same covariates under different 

treatment, are then estimated by the empirical average of outcomes in the testing set. This method 

allows us to obtain unbiased assessment on the implementation of the estimated optimal ITR in 

the study population. Many replications are performed for both methods. 

Plots of average outcomes within each subgroup by treatment status are available after 

fit.subgroup() or validate.subgroup(). Available options are boxplot, density plot, conditional plot 

and interaction plot specified by “type = ” option. Boxplots reflect the range and quantiles of 

average outcomes; density plots describe the distribution of the average outcomes; conditional 

plots show the relationship between benefit scores and the smoothed mean outcomes conditional 

on treatment received; interaction plots display the interaction of average outcomes for different 

subgroups and treatment status. Figure 1 to Figure 4 show an example of the four kind of graphs 

from a simulation study with a binary outcome.  
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Figure 1 Example Boxplot 

Figure 2 Example Density Plot 
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Figure 3 Example Conditional Plot 

Figure 4 Example Interaction Plot 

One convenient way to check the improvement from following an ITR would be look at 

the conditional plot and interaction plot. As Figure 3 shows, outcome for the control group (red 

line) decreases as benefit score increases; outcome for the treatment group (blue line) increases as 

benefit score increases. A non-parallel pattern of conditional plot like this indicates that following 
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the ITR improves the overall outcome. In Figure 4, a crossed graph means that patients have higher 

outcome, hence better response, when they received recommended treatment, suggesting benefit 

from ITRs. For the sake of brevity, this thesis will mainly discuss interaction plots as an indicator 

for improvement from ITRs. 
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3.0 Application to The NSABP B-41 Study 

3.1 Analytical Methods 

The NSABP B-41 trial data was collected from 271 adult participants with operable HER2-

positive breast cancer. During their neoadjuvant chemotherapy, 82 of these participants received 

trastuzumab, 95 participants received a combination of trastuzumab and lapatinib, and the rest 94 

participants received lapatinib only. Mastectomy or lumpectomy surgery was then performed after 

the treatment. Collected baseline covariates includes clinical markers such as age, race, and 

genomic markers, such as breast cancer subtype and cancer related gene expression. The outcome 

of interest, also the primary endpoint of NSABP B-41 trial, is pCR that coded as 1 or 0, with 1 

represents complete response, 0 otherwise. Participants with a benefit score higher than the 

cutpoint would be assigned to the treatment, otherwise, the control would be recommended. Under 

each subgroup of treatment recommendation, the average outcome of participants who received 

the recommendation and the average outcome of participants who did not received the 

recommendation are compared, then treatment effects conditional on subgroups, 𝐸𝐸[𝑌𝑌|𝑇𝑇 =

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅] − 𝐸𝐸[𝑌𝑌|𝑇𝑇 ≠ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅]  for the control, and 𝐸𝐸[𝑌𝑌|𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇,𝑇𝑇 =

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅] − 𝐸𝐸[𝑌𝑌|𝑇𝑇 ≠ 𝑇𝑇𝑇𝑇𝑇𝑇,𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅] for the treatment, are computed.  

The purpose of this thesis is to examine if there is the application of ITRs application on 

the NSABP B-41 trial data would improve the outcome. As previous studies have proven, 

trastuzumab has significantly better efficacy than lapatinib on treating HER2 positive breast 

cancer.[12,20] Our focus is thus the comparison of trastuzumab plus lapatinib (T + L) versus 

trastuzumab. We also compared treatment effects between trastuzumab containing treatment, thus 
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trastuzumab alone or trastuzumab plus lapatinib (trastuzumab-containing regimens), and lapatinib 

in order to detect participants with gene types that are more sensitive to lapatinib.  

Three types of models are constructed using the variables in the data, clinical marker 

models, genomic marker models and overall models. The clinical marker models include age, race, 

lymph node status, HER2 gene status, estrogen-receptor status and tumor size. Due to the fact that 

fit.subgroup cannot handle missing data, subjects with missing values have to be removed from 

the analysis (29 out of 176, 16.5%, subjects removed for T + L VS Trastuzumab and 53 out of 

271, 19.6%, subjects for trastuzumab containing regimens VS lapatinib). To avoid overfitting in 

later validation process, we choose to remove variables with more than 30 missing values. Here, 

tumor grade is removed from clinical marker models because it has too many missing values. The 

gene models are constructed by breast cancer subtype and gene expression of 58 genes. The overall 

models use all covariates in clinical markers and genomic markers. Generalized additive model 

(GAM) only applies to continuous variables, but categorical variables are included in each of these 

model. Therefore, we did not use GAM as the loss function. The hinge loss is used instead. For 

each of the three kinds, four scenarios are applied: (1) subgroup identification using the logistic 

loss; the median value of benefit scores is set as the cutoff point for treatment recommendation. 

(2) subgroup identification using the logistic loss; 0 is set as the cutoff point for treatment 

recommendation. (3) subgroup identification using the hinge loss and Gaussian, thus Radial Basis 

Function (RBF) kernel; the median value of benefit scores is set as the cutoff point for treatment 

recommendation. (4) subgroup identification using the hinge loss and Gaussian (RBF) kernel; 0 is 

set as the cutoff point for treatment recommendation. The models under the logistic loss uses the 

loss function 𝑀𝑀(𝑦𝑦, 𝑣𝑣) = 𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝑒𝑒𝑒𝑒𝑒𝑒{−𝑣𝑣}), which is specified by setting the option loss to 
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"logistic_loss_lasso", while the hinge loss uses the loss function 𝑀𝑀(𝑦𝑦, 𝑣𝑣) = 𝑦𝑦 ∗ max (0, 1 − 𝑣𝑣) 

specified by "owl_hinge_loss".  

Treatment effects of the two recommendation groups might balance out and cause a 

seemingly overall beneficial treatment effect value when treatment effects of the two subgroups 

have similar absolute values but of different signs. To better examine the gain from individualized 

treatment assignment, treatment effects conditional on subgroups are reported instead. Positive 

treatment effects for both groups means the following the recommendation would improve the 

outcome.  

To evaluate overoptimism of the estimated treatment rule and to obtain unbiased results, 

we perform validation by splitting the data into the training sets and the testing sets repeatedly. 

Here, we use 25% of the data as the training sets, and the rest 75% as the testing sets. The data is 

first randomly partitioned into these two sets, then subgroup treatment effects for the training sets 

are estimated by empirical average values of treatment effects in the testing sets. As the number 

of replications increases, the average results for all replications would approach the real values, 

and we can obtain unbiased estimates of the average outcomes for the training set. The number of 

replications is set to 100 in this study. 

3.2 Results 

3.2.1  T + L Versus Trastuzumab 

In this section, we compare treatment effects between T + L and trastuzumab. Participants 

in the treatment group are those who received trastuzumab plus lapatinib during neoadjuvant 
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therapy (82 subjects), and participants in the control group received only lapatinib during 

neoadjuvant therapy (94 subjects). After deleting subjects with missing values, there are 72 

participants left in T + L group, and 75 participants in Trastuzumab group. 

We first use clinical markers to find the optimal individualized treatment. For the sake of 

simplicity, we use the numbers of scenarios stated in Section 3.1 to describe each setting. We first 

assess the results of optimal ITRs using the data itself without validation. Under each scenario, 

participants who received the recommended treatment have larger outcomes, and positive 

treatment effects for each subgroup are obtain, meaning the individualized treatment assignment 

improve the outcomes. For clinical marker models, the results of scenario (1) and (2) are shown in 

Table 1. Cut-points are specified in the parentheses after row names. The number in each cell is 

the average outcome of participants under that situation, and n marks the number of participants 

in each category. When we set the median value of benefit scores as the cutpoint, 78 participants 

are assigned to the control and 69 participants are assigned to the treatment. When 0 is used as the 

cut-point, 70 participants are assigned to the control and 77 participants are assigned to the 

treatment In both subgroups, treatment effects are positive. Less participants are assigned to the 

treatment in scenario (1). Higher average outcomes and treatment effect for each treatment group 

are achieved in scenario (1). Figure 5 to 8 show boxplot, density plot, interaction plot and 

conditional plot for scenario (1), respectively. It is clearer in the graphs that participants always 

have higher outcomes when they received the recommendation than when they received the other 

treatment. From Figure 7, the interaction plot, we can measure the gain of ITRs by the difference 

of average outcomes for each treatment. Figure 9 shows the comparison between scenario (1) and 

scenario (2), with the graph to the left representing scenario (1) and the graph to the right 

representing scenario (2). It can be observed that the blue line representing received treatment to 
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the right has a smaller slope, meaning that the improve of outcomes is smaller in scenario (2) when 

participants follow the treatment recommendation. This corresponds to what we observes in Table 

1. In following analysis, we will only report the comparison of interaction plots of different 

scenarios since they are more straightforward.  

 

Table 1 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, the Logistic Loss 

 

Cut-off 

 Recommended 

Control 

Recommended 

Treatment 

 

Median 

Received Control  0.65 (n = 40) 0.4 (n = 35) 

Received Treatment 0.53 (n = 38) 0.62 (n = 34) 

Improvement  0.12 (n = 78) 0.22 (n = 69) 

 

0 

Received Control  0.69 (n = 36) 0.38 (n = 39) 

Received Treatment  0.56 (n = 34) 0.58 (n = 38) 

Improvement  0.14 (n = 70) 0.19 (n = 77) 

 

 
Figure 5 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario(1), Boxplot 
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Figure 6 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario(1), Desnsity Plot 

 

 
Figure 7 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario(1), Interaction Plot 
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Figure 8 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario(1), Conditional Plot 

Figure 9 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario (1) &(2) 

Next, we examine the results using the hinge loss and Gaussian kernel. Table 2 shows the 

results of scenario (3) and scenario (4). The change of cutpoint does not significantly influence 

resulted treatment effects. More participants are assigned to the treatment group when 0 is set as 

the cut-point. The comparison plot of different cutpoints (Figure 10) shows that using 0 as the cut-
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point (the graph to the right) leads to better improvement of the outcome. Figure 11 and Figure 12 

show the comparisons between different loss functions when the cutpoint remains the same. The 

graphs in Figure 11 is resulted from the clinical marker models using the logistic loss (left) and 

the hinge loss (right). The median value of benefit scores is set as the cutpoint for both models. 

The graphs in Figure 12 shows the comparison between the logistic loss (left) and the hinge loss 

(right) for clinical marker models using 0 as the cutpoint. The hinge loss separate the participants 

in a more strict way, since the average outcomes of participants who received the same treatment 

in both subgroups differs more distinctively in scenario (3) and (4). 

 

Table 2 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, the Hinge Loss 

 

Cut-off 

 Recommended 

Control 

Recommended 

Treatment 

 

Median 

Received Control  0.67 (n = 49) 0.27 (n = 26) 

Received Treatment  0.32 (n = 25) 0.70 (n = 47) 

Improvement  0.35 (n = 74) 0.43 (n = 73) 

 

0 

Received Control  0.71 (n = 49) 0.19 (n = 26) 

Received Treatment  0.16 (n = 19) 0.72 (n = 53) 

Improvement  0.56 (n = 68) 0.52 (n = 79) 
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Figure 10 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario (3) &(4) 

 

 
Figure 11 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario (1) &(3) 
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Figure 12 T + L (Treatment) VS. Trastuzumab (Control), Clinical Markers, Scenario (2) &(4) 

The individualized treatment rule is then evaluated using genomic markers. The estimated 

treatment effects are shown in Table 3. Although both subgroups have positive treatment effects, 

the values under scenario (1) are smaller than values under scenario (2). Besides, the number of 

participants in the control recommended group varies greatly. Most participants (137/176) are 

assigned to the treatment under scenario (2), and the distribution of participants is less balanced 

within each subgroup. As shown in Figure 13, the estimated average outcomes of both subgroups 

varies more dramatically for participants who received the control, but they remain relatively 

stable for participants who received the treatment.  

Table 3 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, the Logistic Loss 

Cut-off 

Recommended 

Control 

Recommended 

Treatment 

Median 

Received Control 0.60 (n = 47) 0.47 (n = 47) 

Received Treatment 0.56 (n = 41) 0.56 (n = 41) 
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Improvement 0.04 (n = 88)         0.09 (n = 88) 

0 

Received Control 0.84 (n = 25) 0.42 (n = 69) 

Received Treatment 0.57 (n = 14) 0.56 (n = 68) 

Improvement 0.27 (n = 39) 0.14 (n = 137) 

Figure 13 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, Scenario (1) & (2) 

We then change the loss function to the hinge loss, using Gaussian kernel. Similarly, 

participants are evenly assigned to both treatments under scenario (3) when the median benefit 

score is chosen as the cutpoint, but more participants are recommended the treatment when 0 is 

the cutpoint. The comparison plot of interactions (Figure 14) shows that under scenario (4), the 

average outcome of participants who received the treatment but assigned to the control and that of 

participants who received the treatment and assigned to the treatment are closer to each other 

(right), compared with scenario (3) (left). For the control recommended subgroup, this difference 

is smaller. When the four scenarios are compared together, the hinge loss seems to separate the 

Table 3 Continued
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data better, especially for participants who received the treatment. As shown in the comparison 

plot between scenario (1) to the left and scenario (3) to the right (Figure 15), and the comparison 

plot between scenario (2) to the left and scenario (4) to the right (Figure 16), the blue line that 

representing participants who received T + L have steeper slopes in graphs to the right. This means 

that the average outcome of these participants in each subgroups differs more significantly than 

that of participants who received trastuzumab, the control. 

Table 4 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, the Hinge Loss 

Cut-off 

Recommended 

Control 

Recommended 

Treatment 

Median 

Received Control 0.68 (n = 65) 0.21 (n = 29) 

Received Treatment 0.26 (n = 23) 0.68 (n = 59) 

Improvement 0.42 (n = 88) 0.47 (n = 88) 

0 

Received Control 0.75 (n = 51) 0.28 (n = 43) 

Received Treatment 0.41 (n = 22) 0.62 (n = 60) 

Improvement 0.34 (n = 73) 0.34 (n = 103) 
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Figure 14 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, Scenario (3) & (4) 

Figure 15 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, Scenario (1) & (3) 
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Figure 16 T + L (Treatment) VS. Trastuzumab (Control), Genomic Markers, Scenario (2) & (4) 

All covariates, both clinical markers and genomic markers, are then combined together to 

evaluate the gain from ITR under the same scenarios. For scenario (1) and (2), the choice of 

cutpoint yields great influence to treatment effects. 74 participants are assigned to the control under 

scenario (1), but only 5 participants are in the same subgroup under scenario (2). Almost all 

participants are assigned to the treatment under scenario (2) (See Table 5). Participants are 

unevenly distributed for the control recommended group under scenario (2), which leads to a high 

treatment effect 0.75 since the only participant in the category “received the treatment but 

recommended the control” has an outcome of 0. In Figure 17, the graph to the right represents 

scenario (2). The steep slope of the blue line representing participants who received T + L is 

resulted from the above mentioned uneven distribution. The red lines in both graphs represent 

participants who received the control, and they are approximately parallel. 
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Table 5 T+L (Treatment) VS Trastuzumab (Control), All Covariates, the Logistic Loss 

Cut-off 

Recommended 

Control 

Recommended 

Treatment 

Median 

Received Control 0.64 (n = 42) 0.39 (n = 33) 

Received Treatment 0.56 (n = 32) 0.58 (n = 40) 

Improvement 0.08 (n = 74) 0.18 (n = 73) 

0 

Received Control 0.75 (n = 4) 0.52 (n = 71) 

Received Treatment 0 (n = 1) 0.58 (n = 71) 

Improvement 0.75 (n = 5) 0.06 (n = 142) 

Figure 17 T+L (Treatment) VS Trastuzumab (Control), All Covariates, Scenario (1) & (2) 

We then move on to scenario (3) and (4), where the loss function is the hinge loss using 

Gaussian kernel. Overall, no significant change is observed as the cutpoint varies. The median 

benefit score is more restricted than 0 as the cutpoint, since more people under scenario (4) are 
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assigned to the treatment. In Figure 18, the graph to the left shows the interaction of average 

outcomes under scenario (3), and the graph to the right shows the interaction of average outcomes 

under scenario (4). The average outcome of participants who received the control in both 

subgroups remains relatively stable when the cutpoint varies, but that of participants who received 

the treatment is a little higher under scenario (3), meaning a slightly better separation of T + L 

sensitive participants. Similarly, Figure 19 and Figure 20 show the comparison of treatment effects 

of different loss function using same cutpoints. Compared to scenario (1) in Figure 19 (left), 

scenario (3) to the right of Figure 19 better improves the outcome, since the average outcomes of 

two subgroups differ greatly in the plot to the right. When 0 is set as the cutpoint, scenario (2) 

achieves better improvement for the treatment (Figure 20to the left), but scenario (3) achieves 

better improvement for the control (Figure 20 to the right). 

Table 6 T + L (Treatment) VS. Trastuzumab (Control), All Covariates, the Hinge Loss 

Cut-off 

Recommended 

Control 

Recommended 

Treatment 

Median 

Received Control 0.70 (n = 54) 0.095(n = 21) 

Received Treatment 0.25 (n = 20) 0.69 (n = 52) 

Improvement 0.45 (n = 74) 0.60 (n = 73) 

0 

Received Control 0.80 (n = 41) 0.21 (n = 34) 

Received Treatment 0.25 (n = 12) 0.63 (n = 60) 

Improvement 0.55 (n = 53) 0.43 (n = 94) 
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Figure 18 T + L (Treatment) VS. Trastuzumab (Control), All Covariates, Scenario (3) & (4) 

Figure 19 T + L (Treatment) VS. Trastuzumab (Control), All Covariates, Scenario (1) & (3) 
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Figure 20 T + L (Treatment) VS. Trastuzumab (Control), All Covariates, Scenario (2) & (4) 

Overall, the subgroup identification results under all scenarios look promising that the 

application of ITRs to the NSABP B-41 trail data can improve the outcome both for those who 

received trastuzumab combined with lapatinib and for those who received trastuzumab alone. 

However, as previous stated, above results can be biased estimates of treatment effects, since the 

comparison of treatment effects of same participants under different treatments is not conducted. 

In order to obtain unbiased results, we then conduct validations. The results displayed below are 

average values of the 100 replications, with SE indicating the standard error of that value among 

all replications. This also leads to non-integer values of sample sizes (n) in each category. 

For clinical marker models using the logistic loss, the results of subgroup separation change 

significantly after validation. Under both scenarios, treatment effects of control recommendation 

groups become negative, meaning participants have better outcomes when not following the 

recommendation. Although treatment effects remain the same for treatment recommendation 

groups, their values are small (Table 7). Besides, in each subgroup, participants who received the 

treatment always have higher outcomes. This can also be reflected in Figure 21, with the plot to 
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the left representing scenario (1) and the plot to the right representing scenario (2). For all 

participants, those who are recommended the control have higher outcomes on average under both 

scenarios. This seems contrary to what we observed that patients always have higher outcome on 

average when receiving the treatment. However, if we further examine the scale of the interaction 

plot, the difference of average outcomes between two subgroups are pretty small, less or around 

0.1. This difference is likely to be caused by some noise and therefore can be ignored. 

Table 7 T + L (Treatment) VS. Trastuzumab (Control), Validated Clinical Markers, the Logistic Loss 

Cut-off Recommended Control Recommended Treatment 

Median 

Received Control 0.57 (SE = 0.1395, n = 15.07) 0.47 (SE = 0.1814, n = 3.74) 

Received Treatment 0.59 (SE = 0.1039, n = 14.44) 0.54 (SE = 0.1509, n = 3.75) 

Improvement -0.02 (SE = 0.1353, n = 29.51) 0.07 (SE = 0.2889, n = 7.49) 

0 

Received Control 0.56 (SE = 0.1542, n = 6.66) 0.44 (SE = 0.1311, n = 12.56) 

Received Treatment 0.58 (SE = 0.2023, n = 6.76) 0.56 (SE = 0.1562, n = 11.02) 

Improvement -0.02 (SE = 0.1908, n = 13.42) 0.12 (SE = 0.1712, n = 23.58) 

Figure 21 T + L (Treatment) VS. Trastuzumab (Control), Validated Clinical Markers, Scenario (1) & (2) 
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We then examine the validated results for clinical marker models using the hinge loss. 

Under both scenario (3) and (4), we correctly assign participants into two subgroups in a way that 

participants in both subgroups have positive treatment effects, thus higher outcome values when 

follow the recommendations (Table 8). Appear in the interaction plots of average outcomes (Figure 

22), two lines representing different treatment status crossed in both plot, meaning that for some 

patients, receiving the control would lead to better response than the treatment. However, this 

improvement is very small. Under both cutpoints, the improvement is less than 0.05, which is 

almost negligible. 

Table 8 T + L (Treatment) VS. Trastuzumab (Control), Validated Clinical Markers, the Hinge Loss 

Cut-off Recommended Control Recommended Treatment 

Median 

Received Control 0.60 (SE = 0.1592, n = 9.42) 0.45 (SE = 0.1288, n = 9.51) 

Received Treatment 0.56 (SE = 0.1389, n = 9.58) 0.65 (SE = 0.1073, n = 8.49) 

Improvement 0.04 (SE = 0.2078, n = 19) 0.20 (SE = 0.1682, n = 18) 

0 

Received Control 0.59 (SE = 0.1659, n = 5.83) 0.47 (SE = 0.1271, n = 13.15) 

Received Treatment 0.56 (SE = 0.1441, n = 6.76) 0.69 (SE = 0.1307, n = 11.26) 

Improvement 0.02 (SE = 0.2419, n = 12.59) 0.22 (SE = 0.2015, n = 24.41) 
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Figure 22 T + L (Treatment) VS. Trastuzumab (Control), Validated Clinical Markers, Scenario (3) & (4) 

Genomic marker models using the logistic loss do not achieve meaningful separation after 

validation. Under both scenario (1) and (2), participants always have better outcomes when they 

receive the treatment, trastuzumab plus lapatinib, regardless of the recommended treatment (Table 

9). As the cutpoint varies, the gain of ITR for does not vary much for the control recommendation. 

Under scenario (2), the absolute value of treatment effect decreases for the treatment 

recommendation, but it increases for the control group. Also, the number of participants that is 

assigned to the treatment increases. For all subgroups under both scenarios, participants who are 

recommended the control have higher outcomes on average. This is especially apparent under 

scenario (1), within participants who received the control, trastuzumab only (Figure 23). 
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Table 9 T + L VS Trastuzumab, Validated Gene Models, the Logistic Loss 

Cut-off Recommended Control Recommended Treatment 

Median 

Received Control 0.58 (SE = 0.1217, n = 14.36) 0.43 (SE = 0.1592, n = 8.84) 

Received Treatment 0.60 (SE = 0.164, n = 11.6) 0.56 (SE = 0.1099, n = 9.2) 

Improvement -0.02 (SE = 0.1702, n = 25.96) 0.13 (SE = 0.1602, n = 18.04) 

0 

Received Control 0.57 (SE = 0.2208, n = 7.81) 0.49 (SE = 0.1404, n = 16.03) 

Received Treatment 0.60 (SE = 0.206, n = 6.19) 0.55 (SE = 0.1063, n = 13.97) 

Improvement -0.04 (SE = 0.2155, n = 14) 0.05 (SE = 0.1611, n = 30) 

Figure 23 T + L (Treatment) VS. Trastuzumab (Control), Validated Genomic Markers, Scenario (1) & (2) 

The hinge loss cannot differentiate subgroups based on genomic markers of this data, 

either. Participants who received the treatment always obtain higher better outcomes on average. 

Thus, treatment effects for the control recommendation is always negative, but it is always positive 

for the treatment recommendation (Table 10). Interpretation to the interaction plot is similar: 
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patients always benefit more from the treatment. Participant who are assigned the control have 

slightly higher average outcomes than the treatment group under the hinge loss, which is likely to 

be cause by noise, too (Figure 24).  

Table 10 T + L (Treatment) VS. Trastuzumab (Control), Validated Gene Models, the Hinge Loss 

Cut-off Recommended Control Recommended Treatment 

Median 

Received Control 0.58 (SE = 0.1299, n = 11.48) 0.49 (SE = 0.1485, n = 11.86) 

Received Treatment 0.64 (SE = 0.1224, n = 10.52) 0.57 (SE = 0.1242, n = 10.14) 

Improvement -0.07 (SE = 0.1754, n = 22) 0.08 (SE = 0.161, n = 22) 

0 

Received Control 0.54 (SE = 0.1444, n = 9.57) 0.47 (SE = 0.143, n = 14.1) 

Received Treatment 0.58 (SE = 0.104, n = 9.52) 0.56 (SE = 0.1442, n = 10.81) 

Improvement -0.04 (SE = 0.176, n = 19.09) 0.08 (SE = 0.1787, n = 24.91) 

Figure 24 T + L (Treatment) VS. Trastuzumab (Control), Validated Genomic Markers, Scenario (3) & (4) 

Next, we assess the gain from ITR using all covariates. Under both scenarios, receiving the 

treatment always leads to higher average outcomes. In terms of the treatment recommendation, 0 



40 

is more lenient than the median value of benefit scores as the cutpoint, since around 28 participants 

are assigned to the treatment under scenario (2), while only around 11 participants are assigned to 

the treatment under scenario (1). The interaction between the recommended treatment and average 

outcomes can be clearly observed in Figure 25. Although differences of average outcomes exist 

between subgroups, the lines representing the treatment is above the control line, indicating no 

improvement from following ITRs. 

Table 11 T + L (Treatment) VS. Trastuzumab (Control), Validated Overall Models, the Logistic Loss 

Cut-off Recommended Control Recommended Treatment 

Median 

Received Control 0.59 (SE = 0.1294, n = 13.72) 0.51 (SE = 0.1884, n = 5.74) 

Received Treatment 0.67 (SE = 0.1006, n = 11.79) 0.56 (SE = 0.1086, n = 5.75) 

Improvement -0.09 (SE = 0.195, n = 25.51) 0.05 (SE = 0.1784, n = 11.49) 

0 

Received Control 0.46 (SE = 0.2364, n = 5) 0.56 (SE = 0.1582, n = 14) 

Received Treatment 0.63 (SE = 0.231, n = 4.37) 0.59 (SE = 0.1358, n = 13.63) 

Improvement -0.20 (SE = 0.2266, n = 9.37) 0.03 (SE = 0.2061, n = 27.63) 
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Figure 25 T + L (Treatment) VS. Trastuzumab (Control), Validated Overall Models, Scenario (1) & (2) 

The overall model was then fitted under the hinge loss. No significant gain is observed 

either. Interpretation of the resulted table is similar to previous results. One thing worth noticing 

is that under scenario (4), both subgroup achieve positive improvement. Nonetheless, for the 

control subgroup, this improvement is only 0.001, which might be caused by noise (Table 12). 

Appearing on the interaction plot, two lines for scenario (4) are overlapped on control subgroup 

(Figure 26) and no meaningful improvement can be observed. 

Table 12 T + L (Treatment) VS. Trastuzumab (Control), Validated Overall Models, the Hinge Loss 

Cut-off Recommended Control Recommended Treatment 

Median 

Received Control 0.60 (SE = 0.1534, n = 9.93) 0.50 (SE = 0.149, n = 9.28) 

Received Treatment 0.65 (SE = 0.1621, n = 9.07) 0.54 (SE = 0.1578, n = 8.72) 

Improvement -0.05 (SE = 0.2225, n = 19) 0.04 (SE = 0.2335, n = 18) 

0 

Received Control 0.64 (SE = 0.1808, n = 4.98) 0.48 (SE = 0.1763, n = 14.1) 

Received Treatment 0.64 (SE = 0.1671, n = 5.48) 0.53 (SE = 0.1312, n = 12.44) 

Improvement 0.001 (SE = 0.2282, n = 10.46) 0.06 (SE = 0.2051, n = 26.54) 
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Figure 26 T + L (Treatment) VS. Trastuzumab (Control), Validated Overall Models, Scenario (3) & (4) 

3.2.2  Trastuzumab-containing Regimens Versus Lapatinib 

It has been proven that trastuzumab has better efficacy than lapatinib.[12,20] The comparison 

between trastuzumab-containing regimens treatment and lapatinib is thus not very clinically 

meaningful. This analysis is done to assess if there is any participants have particular 

characteristics that are more sensitive to lapatinib. No significant improvement by following ITR 

is observed in any of the models we proposed under the four scenarios. In all models, patients in 

treatment subgroup always obtain higher outcomes on average than patients in control subgroup. 

For the sake of brevity, here we only report the validated subgroup identification results when all 

covariates are included.  

Overall, individualized subgroup identification does not improve participants’ outcome 

when comparing treatment effects of trastuzumab-containing regimens (the treatment) and 

lapatinib (the control). Table 13 shows that for both cutpoints under scenario (1) and (2), 

participants always have higher outcomes on average when receiving the treatment, irrespective 
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of the treatment recommendation. More directly, in the treatment and outcome interaction plot 

(Figure 27), the blue line is above the red line in both plots, meaning that the average outcome for 

participants who received the treatment are higher than that of participants who received the 

control in both treatment recommendation subgroups.  

Table 13 Trastuzumab-containing Regimens (Treatment )VS Lapatinib (Control), 

Validated Overall Models, the Logistic Loss 

Cut-off Recommended Control Recommended Treatment 

Median 

Received Control 0.45 (SE = 0.1778, n = 10.38) 0.42 (SE = 0.157, n = 7.9) 

Received Treatment 0.49 (SE = 0.1467, n = 20.05) 0.61 (SE = 0.1131, n = 16.67) 

Improvement -0.04 (SE = 0.1721, n = 30.43) 0.19 (SE = 0.1585, n = 24.57) 

0 

Received Control 0.25 (SE = 0.3048, n = 1.31) 0.43 (SE = 0.1258, n = 16.54) 

Received Treatment 0.31 (SE = 0.2841, n = 3.64) 0.57 (SE = 0.0707, n = 33.51) 

Improvement -0.19 (SE = 0.3003, n = 4.95) 0.14 (SE = 0.1516, n = 50.05) 

Figure 27 Trastuzumab-containing Regimens (Treatment )VS Lapatinib (Control), 

Validated Overall Models, Scenario (1) & (2) 
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Results for the hinge loss are similar to what we obtain under the logistic loss. Participants 

who received the treatment have higher average outcomes in both scenarios. Hence, treatment 

effects are always positive for the treatment recommendation, but always negative for the control 

recommendation. In the interaction plots for the two scenarios (Figure 28), the blue lines that 

representing treatment received group are above the red lines that representing control received 

group in both plots, indicating no improvement from ITRs. 

 

Table 14 Trastuzumab-containing Regimens (Treatment )VS Lapatinib (Control),  

Validated Overall Models, the Hinge Loss 

Cut-off  Recommended Control Recommended Treatment 

Median Received Control 0.42 (SE = 0.1555, n = 8.47) 0.45 (SE = 0.1596, n = 9.16) 

Received Treatment 0.56 (SE = 0.1108, n = 19.53) 0.58 (SE = 0.1158, n = 17.84) 

Improvement -0.14 (SE = 0.2134, n = 28) 0.13 (SE = 0.2174, n = 27) 

0 Received Control 0.06 (SE = 0.0962, n = 0.36) 0.39 (SE = 0.1071, n = 17.64) 

Received Treatment 0.60 (SE = 0.1624, n = 1.15) 0.54 (SE = 0.0766, n = 35.85) 

Improvement -0.55 (SE = 0.0906, n = 1.51) 0.15 (SE = 0.1365, n = 53.49) 
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Figure 28 Trastuzumab-containing Regimens (Treatment )VS Lapatinib (Control), 

Validated Overall Models, Scenario (3) & (4) 
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4.0 Discussion 

With recent advance in biotechnology, large amount of biomarkers from different 

platforms become available in the past decade. Precision medicine emerges as an important issue 

that these markers could help to identify patient heterogeneity in treatment response and lead to 

better patient management and more effective treatment regimens. Individualized treatment rule 

provides a useful perspective about precision medicine and obtaining an optimal ITR from existing 

data supplies a natural application in precision medicine. Following several methods that attempt 

to define and estimate an optimal ITR, Chen et al. (2017)[8] proposed a general framework for the 

optimality of an ITR under various choices of loss functions or risk functions, and subsequent 

estimation and inference procedure. Huiling and Yu (2018)[10] incorporated this framework into 

an R package, “personalized”. We applied this package to analyze a sub-study of the NSABP B-

41 study. [Robidoux et al., 2013] It was demonstrated that both clinical markers and genomic 

markers from the PAM50 panel could lead to much improved and promising patient management 

scheme had the estimated optimal ITR been applied to the same group of patients with the amount 

of improvement in the pCR varying from 0.43 to 0.56 in various subgroups, as shown in Tables 2, 

4 and 6 where the hinge loss function was applied. However, internal validation via repeatedly 

random splitting into training data sets and testing data sets did not produce consistent 

improvement in the pCR had the estimated optimal ITRs been applied to the testing datasets. The 

ITR-based methods provide a powerful tool to identify predictive treatment markers and optimal 

scheme for marker-directed treatment assignment, and lead to precision medicine in practice. 

However, the performance of the developed ITRs need to be validated via external validation 

before their application.   
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Appendix A Example R Code 

Below is an example of the workflow of subgroup identification using the “personalized” 

package in R. The process shown here is using the clinical markers model to compare treatment 

efficacy between T + L and Trastuzumab under the logistic loss. 

 

library(personalized) 

mydata_full = read.csv("filepath", header = T, stringsAsFactors = T) 

sapply(mydata_full, class) 

factors = c(4,8,9,10,11,12,106,108:110,112,114:130,132,133:135,195:198) 

mydata_full[,factors] = lapply(mydata_full[,factors], factor) 

groups = c(1,3) 

mydata_13 = mydata_full[mydata_full$TRT %in% groups,]  #select out group 1 and group 3 

 

levels(mydata_13$TRT) 

levels(mydata_13$TRT) = c(0,NA,1)  # 0 for Trastuzumab, 1 for Trastuzumab+Lapatinib 

levels(mydata_13$RACE) 

levels(mydata_13$RACE) = c(1,0,0,0,NA)   # 1 for White, 0 for non-white 

levels(mydata_13$ER) 

levels(mydata_13$ER) = c(1,0)  # 1 for positive, 0 for negative 

levels(mydata_13$LymphNodeInv) 

levels(mydata_13$LymphNodeInv) = c(1,0)  # 1 for positive, 0 for negative 

levels(mydata_13$HER2IHC) 

levels(mydata_13$HER2IHC) = c(0,0,0,1,NA)   # 1 for strong, 0 for weak 

levels(mydata_13$Subtype_BX) 

levels(mydata_13$Subtype_BX) = c(0,1,0,0) 

mydata_13$TRT = as.numeric(as.character((mydata_13$TRT))) 

mydata_13$PCRBRNode = as.numeric(as.character((mydata_13$PCRBRNode))) 

mydata_13$RACE = as.numeric(as.character((mydata_13$RACE))) 
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mydata_13$LymphNodeInv = as.numeric(as.character((mydata_13$LymphNodeInv))) 

mydata_13$ER = as.numeric(as.character((mydata_13$ER))) 

mydata_13$HER2IHC = as.numeric(as.character((mydata_13$HER2IHC))) 

mydata_13$Subtype_BX = as.numeric(as.character(mydata_13$Subtype_BX)) 

 

mydata_cm131 = 

mydata_13[,c("TRT","PCRBRNode","AGE","RACE","LymphNodeInv","ER","HER2IHC","MCSIZ", 

                            "pseudo_ID")] 

summary(mydata_cm131$TRT==1) 

mydata_cm13 = na.omit(mydata_cm131) 

summary(mydata_cm13$TRT==1) 

x_cm131 = data.matrix(mydata_cm13[,c(3:9)],rownames.force = NA) 

x_cm13 = x_cm131[,1:6] 

trt_cm13 = as.factor(mydata_cm13[,c(1)]) 

levels(trt_cm13) = c("Ctrl", "Trt")   # Trt: Trastuzumab+Lapatinib group; Ctrl: 

Lapatinib group 

trt_cm13 = as.character(trt_cm13) 

y_cm13 = as.numeric(mydata_cm13[,c(2)]) 

 

gene_type13 = mydata_13[c(133,137:194,200)] 

x_gn131 = data.matrix(gene_type13, rownames.force = NA) 

x_gn13 = x_gn131[,1:59]  

trt_gn13 = as.factor(mydata_13[,c(4)]) 

levels(trt_gn13) = c("Ctrl", "Trt")     

trt_gn13 = as.character(trt_gn13) 

y_gn13 = as.numeric(mydata_13$PCRBRNode) 

 

x_all131 = merge(x_cm131,x_gn131,by = "pseudo_ID") 

x_all13 = data.matrix(x_all131[,2:66]) 

 

propensity.func.13 <- function(x, trt) 82/(82+94)  
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# Find patients subgroups using clinical markers with the lasso 

 

# Since propensity score is constant, augmentation function is not necessary 

# fit.subgroup function does not work when there's missing data 

set.seed(123) 

subgrp13.cm.lasso <- fit.subgroup(x = x_cm13, y = y_cm13, trt = trt_cm13,  

                                  propensity.func = propensity.func.13, 

                                  loss = "logistic_loss_lasso", method = "weighting", 

                                  cutpoint = "median", larger.outcome.better = TRUE,  

                                  retcall = TRUE,nfolds = 10) 

summary(subgrp13.cm.lasso) 

 

set.seed(123) 

subgrp13.cm.lasso0 <- fit.subgroup(x = x_cm13, y = y_cm13, trt = trt_cm13,  

                                   propensity.func = propensity.func.13, 

                                   loss = "logistic_loss_lasso", method = "weighting", 

                                   cutpoint = 0, larger.outcome.better = TRUE,  

                                   retcall = TRUE,nfolds = 10) 

summary(subgrp13.cm.lasso0) 

 

# Compare received and recommended treatment  

received13.trt.lasso.cm = data.frame(subgrp13.cm.lasso$trt.received) 

recommended13.trts.lasso.cm = data.frame(subgrp13.cm.lasso$recommended.trts)   

compare13.trt.lasso.cm = cbind(received13.trt.lasso.cm, recommended13.trts.lasso.cm) 

compare13.trt.lasso.cm 

 

received13.trt.lasso0.cm = data.frame(subgrp13.cm.lasso0$trt.received) 

recommended13.trts.lasso0.cm = data.frame(subgrp13.cm.lasso0$recommended.trts)   

compare13.trt.lasso0.cm = cbind(received13.trt.lasso0.cm, 

recommended13.trts.lasso0.cm) 

compare13.trt.lasso0.cm 
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# Summarize significant covariates 

print(summarize.subgroups(subgrp13.cm.lasso), p.value = 0.05) 

print(summarize.subgroups(subgrp13.cm.lasso0), p.value = 0.05) 

 

# Cross validation for clinical markers model using multiple replications method 

class(subgrp13.cm.lasso) 

validation13.cm.lasso <- validate.subgroup(subgrp13.cm.lasso, B = 100,  

                         method = "training_test_replication",train.fraction = 0.75) 

                         validation13.cm.lasso 

 

validation13.cm.lasso0 <- validate.subgroup(subgrp13.cm.lasso0, B = 100,  

                          method = "training_test_replication",train.fraction = 0.75) 

                          validation13.cm.lasso0 

 

# Plots of patient outcomes conditional on treatment 

plotCompare(subgrp13.cm.lasso,subgrp13.cm.lasso0,type = "boxplot") 

plotCompare(subgrp13.cm.lasso,subgrp13.cm.lasso0,type = "density") 

plotCompare(subgrp13.cm.lasso,subgrp13.cm.lasso0,type = "interaction") 

plotCompare(subgrp13.cm.lasso,subgrp13.cm.lasso0,type = "conditional") 

 

plotCompare(validation13.cm.lasso,validation13.cm.lasso0,type = "boxplot") 

plotCompare(validation13.cm.lasso,validation13.cm.lasso0,type = "density") 

plotCompare(validation13.cm.lasso,validation13.cm.lasso0,type = "interaction") 

plotCompare(validation13.cm.lasso,validation13.cm.lasso0,type = "conditional") 
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