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CLUSTERING METHODS WITH VARIABLE SELECTION FOR DATA

WITH MIXED VARIABLE TYPES OR LIMITS OF DETECTION

Shu Wang, PhD

University of Pittsburgh, 2019

ABSTRACT

Clustering has emerged as one of the most essential and popular techniques for discovering

patterns in data. However, challenges exist in application of clustering. First, many of the

existing clustering methods are only useful for data with either all continuous or all categor-

ical variables, despite the abundance of data with mixed variable types. Second, clustering

algorithms typically require complete data. But measurements for clinical biomarkers are

often subject to limits of detection (LOD). In addition, researchers are getting more inter-

est in knowing variable importance due to the increasing number of variables that become

available for clustering. To overcome aforementioned challenges, this dissertation proposes

clustering methods for mixed data with the ability of variable selection and handling censored

biomarker variables.

In the first section, we propose a hybrid density- and partition-based (HyDaP) algo-

rithm for mixed data. The HyDaP algorithm involves two steps: variable selection step and

clustering step. In the first step, variables that have much contribution to clustering will

be selected; in the second step, a novel dissimilarity measure will be applied on those se-

lected variables and obtain final results. Simulations and real data analysis were conducted

to compare the performance of the HyDaP algorithm with other commonly used clustering

algorithms.

In the second section, we propose a Bayesian finite mixture model to simultaneously

conduct variable selection, account for biomarker LOD and obtain clustering results. We put
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a spike-and-slab type of prior on each variable to obtain variable importance. To account for

LOD, we added one more step in Gibbs sampling that iteratively fills in censored biomarker

values. The same simulation settings and real data were used to evaluate its clustering

performance.

PUBLIC HEALTH SIGNIFICANCE: This dissertation proposes clustering algorithms

that can be applied to any mixed data with or without censored biomarkers like electronic

health record (EHR) data and other clinical data. The identified patient subgroups could

provide medical experts more knowledge of patient heterogeneity and the selected impor-

tant variables could let them better know where the heterogeneity comes from. Thus these

information could help develop precision medicine for better patient care.
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1.0 INTRODUCTION

In precision medicine, the prevention and treatment strategies are tailored according to

individual characteristics. Such practice has been greatly improved by using information

obtained from large databases (Council et al., 2011) including electronic health record (EHR)

which contains patient information such as demographics, daily charts, medical history, lab

results, medication use, billing information and others (Häyrinen et al., 2008). In order to

efficiently process data and extract useful information, machine learning methods are often

applied (Coorevits et al., 2013). Clustering is an important aspect of unsupervised machine

learning methods which aims to uncover hidden patient subgroups that may have different

diagnoses and treatment responses in EHR data. Further investigations on these subgroups

together with current clinical guidelines could help design precision medicine strategies to

further assist physicians in providing better patient care (Jensen et al., 2012).

The main challenge in applying clustering methods on clinical data is that most clinical

data contain mixed types of variables (both continuous and categorical). However, most

clustering methods can only handle single type of variables - either all continuous or all

categorical. In addition, the increasing amount of collected clinical information motivates

the need of distinguishing important variables, namely variable selection, for better interpre-

tation. Therefore, the main objective of this dissertation is to develop clustering methods

that can be used on mixed data and with the ability of variable selection.

In Chapter 2, we proposed a non-parametric method from a frequentist perspective; and

in Chapter 3, we proposed a model-based method from a Bayesian perspective. Both are able

to conduct variable selection and cluster mixed data. For the method proposed in Chapter 3,

we took advantage of its parametric form and incorporated the ability of handling censored

biomarkers, which is a common issue we may encounter in clinical data.
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Chapter 2 introduces proposed hybrid density- and partition-based (HyDaP) clustering

algorithm that is able to cluster mixed data as well as conduct variable selection. Simula-

tions across different scenarios were conducted to compare its clustering performance with

other existing methods. A real EHR data was also used to demonstrate the performance

of the HyDaP algorithm. Chapter 3 introduces proposed Bayesian finite mixture model

with variable selection that is able to cluster mixed data, conduct variable selection, and

handle censored biomarker variables simultaneously. Simulation settings used in Chapter 2

were re-conducted to compare clustering performance of Bayesian finite mixture model with

variable selection with other methods including the HyDaP algorithm. The EHR data was

re-analyzed for performance evaluation. Chapter 4 concludes with discussions of proposed

clustering methods and future work directions.
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2.0 HYBRID DENSITY- AND PARTITION-BASED CLUSTERING

ALGORITHM FOR DATA WITH MIXED-TYPE VARIABLES

2.1 INTRODUCTION

The basic concept of clustering is to divide individuals into a number of subgroups such

that individuals within the same subgroup have more similar characteristics, as defined

by a set of variables, than the individuals who belong to different subgroups. One of the

main challenges in clustering is how to define “dissimilarity” between subjects with data

of mixed variable types (continuous and categorical). If all variables are continuous, we

can view the collection of information from an individual as a data point, or a vector of

variables in a high-dimensional covariate space. The distance between the data points of

two individuals is used to determine the dissimilarity between these two subjects so that

a closer distance indicates lower dissimilarity. If all variables are categorical, dissimilarity

measures (or similarity measures) were proposed to evaluate how often two individuals are

in the same category among those variables. In this context we will use “distance” and

“dissimilarity” interchangeably. Gower distance (Gower, 1971), distance defined in factorial

analysis of mixed data (FAMD) (Pagès, 2014), and K-prototypes (Huang, 1998) are possible

methods to address the above mentioned issue.

Gower distance was proposed to measure dissimilarity between subjects with mixed types

of variables. The distance measure used in FAMD can be applied on mixed data as well,

even though FAMD was not originally intended for clustering. Distance measure defined in

K-prototypes is similar to Gower distance, but it incorporates a user-defined weight for each

type of variables. Therefore, K-prototypes assumes that all categorical variables have the

same weight, and that all continuous variables have the same weight. This design may not

3



be practical if within the same variable type, some are clinically more important than others

in terms of clustering.

Finite mixture model (FMM) (McCutcheon, 1987; Moustaki, 1996) is a model-based

clustering method that bypasses the challenge of defining dissimilarity between subjects

with mixed types of variables. It assumes that the data is a mixture of several parametric

distributions. The unknown distributional parameters including cluster membership can

be solved via maximizing likelihood using the expectation-maximization (EM) algorithm.

Moreover, it is able to transfer the task of selecting the optimal number of clusters into

model selection problem which is much more straightforward. However, its main drawback

is that all the distributional assumptions are conditional on the unknown cluster, making

those assumptions unverifiable from the data.

In order to identify cluster memberships, it is also important to know the underlying data

structure. For example, whether distinct clusters exist in the feature space; or if no natural

clusters exist but the data is heterogeneous enough to be partitioned. Such information

is crucial in understanding data, selecting clustering methods, and interpreting clustering

results. However, to our knowledge, none of the existing methods incorporates this data

structure information into clustering.

To address the limitations of the existing methods, we propose a Hybrid Density- and

Partition-based (HyDaP) algorithm to identify clusters for data with mixed types of variables

and use this method to discover sepsis phenotypes using demographic and clinical data in

EHR for sepsis patients at university affiliated hospitals.

In Section 2.2 we introduce the most commonly used dissimilarity measures and clustering

algorithms; in Section 2.3 we define three data structures and propose a new clustering algo-

rithm, HyDaP; in Section 2.4 we present performance comparisons among different methods

under various simulation settings; in Section 2.5 we demonstrate the use of HyDaP algorithm

to identify sepsis phenotypes; and Section 2.6 is discussion.
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2.2 REVIEW OF DISSIMILARITY MEASURES AND CLUSTERING

ALGORITHMS

In this section, we briefly review some existing dissimilarity measures and clustering algo-

rithms. In addition, we discuss the pros and cons of each measure or algorithm.

2.2.1 Dissimilarity measures

Minkowski distance is a family of dissimilarity measures for numeric variables. Let xi be a

vector (xi1, xi2, ..., xip)
T representing p variables of subject i. For subjects i and i′, Minkowski

distance between the two is defined as follows:

d(xi,xi′) =

(
p∑
j=1

|xij − xi′j|m
) 1

m

,m > 1

where m is related to the shape of unit circle which is a two-dimensional contour with

every point on the contour at distance of 1 from the center (0, 0). Different choices of m

lead to different distance measures. For example, m = 2 leads to the famous Euclidean

distance which is intuitive and able to represent physical distances. When m = 1, we obtain

Manhattan distance which is often used to detect hyperrectangular clusters. When m→∞,

we obtain Chebyshev (maximum) distance which is the same as chess board distance since it

is defined as the greatest value of the differences among all dimensions. A potential problem

of using the Minkowski distance is that variables with larger variances tend to dominate the

others (Xu and Wunsch, 2005; Shirkhorshidi et al., 2015), therefore, it is recommended to

perform variable standardization (that is, rescale the variable by dividing by its standard

deviation) before applying this measure.

Other dissimilarity measures for numeric variables include cosine similarity measure,

Pearson correlation, Mahalanobis distance, to name a few. Cosine similarity measures the

angle between two vectors regardless of vector magnitudes. It is usually applied if we are not

interested in magnitudes, for example, for text mining as it captures text meanings instead

of counting numbers (Xu and Wunsch, 2005; Han et al., 2011). Pearson correlation is usually
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used in clustering gene expression data (Xu and Wunsch, 2005), but it is sensitive to outliers.

Mahalanobis distance is scale-invariant, and takes into account variable correlations.

When variables are all categorical, simple matching dissimilarity is usually used:

d(xi,xi′) =

p∑
j=1

δ(xij, xi′j),

where δ(xij, xi′j) = I(xij 6= xi′j) indicating whether variable j are the same for individuals i

and i′.

None of above-mentioned dissimilarity measures can be applied to mixed data. Gower

distance was proposed to calculate the distance between subjects with mixed types of vari-

ables. Let X be a data matrix with n × p dimensions. Let the first h variables of X be

continuous and the (h + 1)th to pth variables be multilevel categorical variables or symmet-

ric binary variables. Let Xj be a vector (x1j, x2j, ..., xnj)
T representing variable j. Gower

distance between individuals i and i′ is defined as:

d(xi,xi′) =

p∑
j=1

dj(xi,xi′),

where

dj(xi,xi′) =


|xij−xi′j |

max(Xj)−min(Xj)
if j ∈ {1, 2, ..., h}

I(xij 6= xi′j) if j ∈ {h+ 1, h+ 2, ..., p},

max(Xj) = xi?j if xi?j > xij for all i,

min(Xj) = xi?j if xi?j 6 xij for all i.

Gower distance for an asymmetric binary variable is calculated differently. Asymmetry

occurs when similarity within one level is perceived to be higher compared to the other level.

For example, breast cancer (yes/no) could be viewed as an asymmetric binary variable since

individuals with breast cancer are much more similar than those without breast cancer (which

could include men and women, adolescents and elder people). If variable j is an asymmetric
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binary variable, then the Gower distance between individuals i and i′ with respect to this

variable is defined as:

dj(xi,xi′) =

0 if xij = xi′j and they are the level with larger similarity

1 otherwise.

In practice, there is one issue in applying Gower distance: as we will later show in simulations,

Gower distance tends to give much larger weights to categorical variables than to continuous

ones. This is because the distance due to a categorical variable is always 0 or 1, the minimum

and the maximum of possible distance values, granting categorical variables more power in

distinguishing subjects.

Another distance that could be used for mixed types of variables is the distance defined

in FAMD:

d2(xi,xi′) =

p∑
j=1

d2
j(xi,xi′),

where

d2
j(xi,xi′) =

(xij − xi′j)2 if j ∈ {1, 2, ..., h}∑Cj

l=1
1
pjl

(
yijl
pjl
− yi′jl

pjl
)2 if j ∈ {h+ 1, h+ 2, ..., p},

yijl = I(xij = Ljl),

Cj∑
l=1

yijl = 1; j ∈ {h+ 1, h+ 2, ..., p}

Cj is number of levels of categorical variable j; pjl is proportion of lth category of variable j;

Ljl is lth category of variable j.

2.2.2 K-means-based clustering algorithms

K-means (MacQueen et al., 1967) is the most well-known and applied clustering method in

practice. The basic idea is to partition subjects with respect to minimizing the within-cluster

sum of squares (WCSS). This algorithm is very efficient and has been the root of many later

developed ones. It is usually used together with Euclidean distance. To cluster categorical

data, K-modes (Huang, 1998) algorithm was developed by replacing Euclidean distance with

simple matching dissimilarity measure, and replacing mean with mode to represent cluster

centers.
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To identify clusters with mixed types of variables, the partition around medoids (PAM)

(Kaufman and Rousseeuw, 2009) has been proposed. PAM is a modification of K-means

with a different definition of cluster centers. Unlike K-means which uses within-cluster mean

to represent its centers, PAM uses medoids which are actual data points in the dataset. This

makes defining centers of categorical variables possible. Moreover, medoids are analogous to

medians and hence PAM is more robust to outliers. One drawback however is that PAM is

computationally intensive and inefficient, making it less ideal for processing large data sets.

K-prototypes algorithm is another modified version of K-means with the ability of han-

dling mixed types of variables. Its centers are called prototypes, which use within-cluster

mean to represent continuous variables and mode for categorical variables. The distance

between subjects i and i′ is defined as:

d(xi,xi′) =
h∑
j=1

dj(xi,xi′) + γ

p∑
j=h+1

dj(xi,xi′),

where

dj(xi,xi′) =

(xij − xi′j)2 if j ∈ {1, 2, ..., h}

I(xij 6= xi′j) if j ∈ {h+ 1, h+ 2, ..., p},

and γ is a user-defined weight parameter for categorical variables. K-prototypes lacks flex-

ibility in variables weights as it assumes equal importance for variables of the same type.

Moreover, the tuning parameter γ is user-defined rather than data-driven.

2.2.3 Hierarchical clustering

Hierarchical clustering is another category of clustering methods. It first grows a dendro-

gram which is a tree-like diagram showing hierarchical structure of subjects and then cuts

the dendrogram to obtain clusters. One advantage of hierarchical clustering is that the gen-

erated dendrogram is very informative and provides information of cluster structure besides

cluster assignments. Its disadvantages include no global objective function, a greedy type of

procedure, the sensitivity to outliers, and inefficient for large data sets.
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2.2.4 Extended clustering framework

In many situations researchers are also often interested in variables’ importance, not just clus-

ter identification. Motivated by this interest, sparse clustering framework (Witten and Tib-

shirani, 2010) was proposed. It incorporates feature selection through a Lasso-type penalty,

and adds variable weights to the objective function:

Maximize

p∑
j=1

wjfj(Xj; Θ)

with restriction w‖2 6 1, ‖w‖1 6 s, wj > 0 ∀j. where n is number of subjects; p is number

of features; w = (w1, w2, ..., wp)
T is the weight vector; Θ is a parameter vector restricted

to lie in a set D; fj(Xj; Θ) is some function that involves feature j only; and s is a L1

norm restriction, which is a tuning parameter in the algorithm. We could plug in many

algorithms like K-means, hierarchical clustering into this framework to obtain sparse version

algorithms. One of the main attractions of sparse clustering is that it conducts data-driven

variable selection and clustering simultaneously. However, the selection of tuning parameter

s may not be straightforward.

Many partition-based algorithms require pre-specification of K, the optimal number of

clusters, but how to choose it is another important question. The consensus clustering

framework (Monti et al., 2003; Wilkerson and Hayes, 2010) can help determine number of

clusters and obtain cluster memberships simultaneously. In addition, it can assess stability of

discovered clusters. Consensus clustering incorporates results from multiple runs of an inner-

loop clustering algorithm (e.g., K-means) on sub-sampled subjects. For each pair of subjects,

a consensus index is obtained by calculating proportion of times the pair was assigned to

the same cluster among times both pair members were sampled. The consensus index can

then serve as a similarity measure and subjected to a hierarchical clustering algorithm to

form final clusters. Choosing K is achieved by checking the consensus matrix heatmaps

and cluster-consensus values. The number of clusters that yields the cleanest heatmap and

highest cluster-consensus values is preferred.
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2.2.5 Density-based clustering

Another important category of clustering methods is density-based clustering. All above-

mentioned algorithms are distance-based methods which are more appropriate for detecting

clusters that are convex shaped and with similar sizes and densities. If the underlying clusters

have arbitrary shapes, density-based clustering algorithms may work better. Density-based

spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996) and ordering

points to identify the clustering structure (OPTICS) (Ankerst et al., 1999) are two widely

used density-based algorithms. DBSCAN does not need input of K, and it is robust to noise.

However, it is not well suited for high dimensional data or for clusters with varying densities.

OPTICS is an improved method which can detect clusters with varying densities while not

being over sensitive to its user-specified tuning parameters.

2.2.6 Model-based clustering

FMM is a model-based clustering method assuming that the data is consists of K latent

clusters. Its density function is defined as:

f(X) =
K∑
k=1

πkgk(X),

where πk is the cluster mixture probability,
∑K

k=1 πk = 1; and gk is the conditional distribu-

tion given cluster k. For a sample of size n, the log-likelihood can be written as:

L =
n∑
i=1

log f(xi) =
n∑
i=1

log
K∑
k=1

πkgk(xi).

FMM assumes conditional independence given cluster k, that is, gk(xi) =
∏p

j=1 gk(xij), and

the EM algorithm is usually used to obtain the MLE. The posterior probability of each

subject belonging to each cluster can be calculated as:

p̂(k|xi) =
π̂kĝk(xi)∑K
k=1 π̂kĝk(xi)

.

Subjects are then assigned to the cluster with which the posterior probability is the largest.

These probabilities help discriminate core subjects (those with high probability of belonging
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to assigned cluster) and border subjects (those with low probability of belonging to assigned

cluster) within each cluster. Given the parametric form of FMM, formal inference is possi-

ble. In addition, selecting the number of clusters becomes a model selection problem. The

main drawback however is its unverifiable distributional assumptions; all the inferences are

conducted conditional on unknown cluster assignments.

There are some other approaches to handle mixed types of variables. These include

categorizing all continuous variables (Haripriya et al., 2015) or converting categorical vari-

ables into continuous or dummy variables and then treat the dummy variables as continuous

(Hennig and Liao, 2013). However, both ideas will lead to information loss. Another com-

mon idea is to cluster continuous part of the data and categorical part separately. The final

clusters are obtained by ensembling these two sets of clustering results (Reddy and Kavitha,

2012). This method impractically weigh continuous and categorical variables equally and

ignore possible mutual influences between the two variable types.

2.3 PROPOSED HYBRID DENSITY- AND PARTITION-BASED

CLUSTERING (HYDAP) ALGORITHM FOR MIXED DATA

To address the limitations of the existing clustering methods in handling data containing

mixed types of variables, we propose a hybrid density- and partition-based clustering (Hy-

DaP) algorithm which consists of a pre-processing step (step 1) and a clustering step

(step 2). The pre-processing step identifies the data structure formed by continuous variables

and recognizes the important variables for clustering. In the clustering step, our proposed

dissimilarity measure is used to obtain a dissimilarity matrix, which can be fed into PAM to

obtain the final results. We describe the HyDaP algorithm in detail below.

2.3.1 Pre-processing step (Step 1)

To help with variable selection and better understand the data set, we first define 3 data

structures for the space spanned by the continuous variables as: natural cluster structure
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(data structure 1); partitioned cluster structure (data structure 2); and homogeneous struc-

ture (data structure 3). Once the data structure is known, we apply tailored variable selection

procedures. At the end of the pre-processing step, a set of selected variables will proceed to

the clustering step (step 2) (Figure 1).

K>1

>1 clusters

Run density-based clustering algorithm

1a. Run sparse K-means on all 
numeric variables

1b. Calculate Cramer’s V 
between cluster membership 
in 1a and categorical variables

Keep those with high weights

Final variable set

1 cluster

Select K for all continuous variables with consensus clustering

Keep those with high values

Data 
Structure 

Identification

Variable 
Selection

Keep those with high values

1b. Calculate Cramer’s V 
between cluster membership 
in 1a and categorical variables

1a. Keep all numeric variables

Final variable set

K=1

1a. Remove all numeric variables

1b. Calculate pairwise Cramer’s 
V among categorical variables

Keep those with high values

Final variable set

Data structure 1
(Natural cluster structure)

Data structure 2
(Partitioned cluster structure)

Data structure 3
(Homogeneous structure)

Figure 1: Flowchart of Step 1 of the HyDaP algorithm

2.3.1.1 Data structure identification Data spanned in the covariate space of con-

tinuous variables can be divided into two scenarios: with and without natural clusters. A

hypothetical example of these two scenarios is depicted in Figure 2. We can observe that

both Data 1 and Data 2 contain two variables, but natural clusters only exist in Data 1.

Although this conclusion is straightforward for Data 1 and Data 2, when data is spanned

in a high-dimensional space, it is impossible to visually examine existence of natural clus-

ters. Therefore, we use a density-based clustering algorithm (e.g., OPTICS) and resulted

reachability plot to help understand the spatial structure of the data. Reachability plot is
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a bar plot showing ordered reachability distances among subjects (Ankerst et al., 1999). A

reachability plot provides an overall 2-dimensional spatial structure of a dataset regardless

of its original dimensions. The horizontal axis of the plot is the processing order and the

vertical axis is the reachability distance. Each trough on the reachability plot can be viewed

as a single cluster. Edges between two side-by-side troughs represent the distance between

two closest border points from the corresponding two clusters. Higher edges imply that the

corresponding two clusters are farther apart while lower edges or unclear edges imply that

clusters are not that distinct from each other.
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Figure 2: Illustration of different reachability plots

If we observe multiple troughs in a reachability plot, as illustrated in reachability plot

of Data 1 in Figure 2, this indicates existence of distinct clusters, i.e., the corresponding

dataset has natural clusters. We call this type of structure natural cluster structure (data

structure 1 ) and aim to identify these distinct clusters. If we only observe one trough or

no clear through in the reachability plot (e.g., reachability plot of Data 2 in Figure 2), this

indicates that distinct clusters do not exist. Then we will investigate whether data points

in the continuous covariate space are sufficiently heterogeneous to be further partitioned.

We use consensus clustering framework for all continuous variables to access the possible
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heterogeneity by checking the selected optimal number of clusters. If we obtain ≥ 2 clusters

in consensus clustering, this indicates that heterogeneity exists and we can obtain stable

clusters through partitioning. We call this type of structure partitioned cluster structure

(data structure 2 ). If the optimal number of clusters is one from the consensus clustering

results, this indicates that continuous part of the data is highly homogeneous and cannot

be further partitioned. We call this type of structure homogeneous structure (data structure

3 ).

2.3.1.2 Variable selection After identifying the data structure, we conduct data struc-

ture tailored variables selection.

Under the natural cluster structure, distinct clusters can be determined by continuous

variables. Therefore, we would like to select those having high contributions. As shown in

Figure 1, we apply sparse K-means on all continuous variables and keep those with high

weights (suggestions of the weight threshold can be found in Section 2.3.3.2). Number of

clusters under this structure can be determined by the number of troughs in the reachability

plot. Next, we calculate Cramer’s V between each categorical variable and the cluster mem-

bership obtained from sparse K-means. We will only select categorical variables with high

Cramer’s V values. Cramer’s V has been used to measure the association between nominal

variables. It ranges from 0 to 1. A larger number indicates a stronger association, vice versa.

Unlike the p-value, Cramer’s V is not affected by the sample size. Researchers suggested the

use of 0.3 as the cutoff value, namely Cramer’s V larger than 0.3 indicates a moderate to

strong association.

Under the partitioned cluster structure, distinct clusters do not exist; however, covariate

space of all continuous variables are sufficiently heterogeneous to be further partitioned. This

structure indicates that all of the continuous variables together contribute to heterogeneity

but none of them has the driving influence. Therefore, we keep all continuous variables and

run consensus K-means to select the optimal number of clusters. Next, we calculate Cramer’s

V between each categorical variable and the cluster membership obtained from consensus

K-means. We will only select categorical variables with high Cramer’s V values.

Under the homogeneous structure, no distinct cluster exists and we are not able to fur-
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ther partition continuous covariate space into ≥ 2 homogeneous subgroups. Therefore, we

dropped all continuous variables as they are non-distinguishable across clusters. Next, we

calculate pairwise Cramer’s V values among categorical variables and only select pairs with

high Cramer’s V values.

2.3.2 Clustering step (Step 2)

After variables with high contributions are selected, we proceed to the final clustering step.

This step is the same across all data structures. We calculate the dissimilarities between

subjects using our proposed dissimilarity measure, a modified version of the Gower distance.

Assume that the first h variables are continuous and the rest are categorical. Our proposed

dissimilarity between subjects i and i′ is defined as:

d(xi,xi′) =

p∑
j=1

dj(xi,xi′)∑
o 6=o′ dj(xo,xo′)

,

where

dj(xi,xi′) =


|xij−xi′j |

max(Xj)−min(Xj)
if j ∈ {1, 2, . . . , h}

I(xij 6= xi′j) if j ∈ {h+ 1, h+ 2, . . . , p}

max(Xj) = xi?j if xi?j > xij for all i,

min(Xj) = xi?j if xi?j 6 xij for all i.

Our modification is based on the idea of standardization to avoid variables with high

variability be extremely influential to clustering results. It is motivated by the definition

of Gower distance for categorical variables as they receive extreme dissimilarity values 0 or

1, which could exhibit high variability. This allows them to exert greater influence in the

clustering results even if they are less informative than the continuous ones.

Below we show how our modification on dissimilarities is analogous to the standardization

on continuous variables. Standardized squared Euclidean distance between subjects i and i′

with respect to a continuous variable j is:

d2
j(xi,xi′) =

{
xij

sd(Xj)
− xi′j
sd(Xj)

}2
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which can be re-written as:

d2
j(xi,xi′) =

(xij − xi′j)2

n−2
∑

o 6=o′(xoj − xo′j)2
,

where the numerator is the original squared Euclidean distance, the denominator is propor-

tional to the sum of all pairwise distances. We adopt this idea to standardize the Gower

distance, namely we divide the original Gower distance of variable j by sum of all pairwise

Gower distance of variable j as shown above.

If after the pre-processing step all selected variables are continuous, we can just apply

usual clustering methods to obtain the final clustering results.

2.3.3 Parameters selection

In this section we provide general suggestions on the selection of (1) the optimal number of

clusters; (2) continuous variables under natural cluster structure.

2.3.3.1 Number of clusters Under the natural cluster structure, the number of clus-

ters can be decided by the number of troughs in the reachability plot. Under the partitioned

cluster structure, the number of clusters can be selected from the results of the consensus

clustering. Under the homogeneous structure, we only select categorical variables in deter-

mining cluster membership. Hence we suggest constructing a dissimilarity matrix using our

proposed dissimilarity measure and then plot the number of clusters against the correspond-

ing within-cluster sum of dissimilarities. In this plot, we look for an elbow for the optimal

number of clusters.

2.3.3.2 Selecting continuous variables under the natural cluster structure Se-

lection of the continuous variables with high weights under the natural cluster structure

could be subjective because of the choice of the weight threshold. We suggest applying

sparse K-means for continuous part of each bootstrapping data set and then calculate the

between-cluster sum of squares (BCSS). We then order these variables by their median BCSS

from the smallest to the largest and plot the median (with 2.5th quantile and 97.5th quan-

tile interval) of BCSS. Then we drop variables whose BCSS values are small or far away
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from the others. Our suggestion here is a heuristic one. Users can always incorporate other

information and make their own judgements.
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Table 1: Simulation settings

Variable Clustera Sim 1(a) Sim 1(b) Sim 2(a) Sim 2(b) Sim 3

1 N(−2, 2)b N(−2, 2) N(−2, 2) Beta(0.1, 5)
x1 2 N(2, 2) N(−1, 2) N(2, 2) Beta(0.1, 5) + 0.3 N(0, 0.5)

3 N(6, 2) N(0, 2) N(6, 2) Beta(0.1, 5) + 0.5

1 N(20, 1) N(20, 1) N(20, 1) Beta(0.2, 5)
x2 2 N(25, 1) N(24, 1) N(25, 1) Beta(0.1, 5) + 0.3 N(−3, 1)

3 N(18, 1) N(21, 1) N(18, 1) Beta(0.1, 5) + 0.5

1 N(0, 1) N(5, 1) N(0, 1) Beta(0.2, 3)
x3 2 N(−7, 1) N(8, 1) N(−7, 1) Beta(0.2, 3) + 0.3 N(4, 2)

3 N(4, 1) N(7, 1) N(4, 1) Beta(0.2, 3) + 0.5

1 Beta(0.1, 3)
x4 2 N(0, 1) N(0, 1) N(0, 1) Beta(0.1, 3) + 0.3 N(0, 1)

3 Beta(0.2, 3) + 0.5

1 M(0.1, 0.1, 0.8) M(0.3, 0.3, 0.4) M(0.05, 0.05, 0.9)
x5 2 M(0.1, 0.8, 0.1) N(40, 1) M(0.3, 0.3, 0.4) N(0, 0.01) M(0.05, 0.9, 0.05)

3 M(0.8, 0.1, 0.1) M(0.4, 0.3, 0.3) M(0.9, 0.05, 0.05)

1 N(−1, 1) M(0.3, 0.3, 0.4) M(0.3, 0.3, 0.4)
x6 2 N(1, 1) M(0.4, 0.3, 0.3) M(0.4, 0.3, 0.3)

3 N(−2, 1) M(0.3, 0.4, 0.3) M(0.3, 0.4, 0.3)

1 N(0, 1) M(0.9, 0.05, 0.05)
x7 2 N(−1, 1) M(0.3, 0.3, 0.4) M(0.05, 0.9, 0.05)

3 N(2, 1) M(0.05, 0.05, 0.9)

1 N(2, 1)
x8 2 N(1, 1) M(0.3, 0.3, 0.4)

3 N(0, 1)

x9 ∼ x11 1,2,3 N(0, 1)

1 M(0.3, 0.3, 0.4)
x12 2 M(0.4, 0.3, 0.3)

3 M(0.3, 0.4, 0.3)

1 M(0.9, 0.05, 0.05)
x13 2 M(0.05, 0.9, 0.05)

3 M(0.05, 0.05, 0.9)

1 M(0.05, 0.05, 0.9)
x14 2 M(0.05, 0.9, 0.05)

3 M(0.9, 0.05, 0.05)

aSample sizes for 3 clusters are 40, 40 and 120; bvariables with bolded distributions are truly important in clustering
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2.4 SIMULATION STUDIES

In this section we use simulations to evaluate the performance of the HyDaP algorithm

relative to the existing approaches. Assuming that there are 3 underlying true clusters with

cluster sizes of 40, 40, and 120. In terms of variable importance, we considered scenarios

(1) both variable types contribute to clustering, (2) only continuous variables contribute

to clustering, and (3) only categorical variables contribute to clustering. In terms of data

structures, all 3 data structures were covered in simulations. Details of the distributions and

parameters used in these simulation settings are shown in Table 1.

For each setting, 500 datasets were generated. Cluster analysis was performed on each

dataset using the proposed HyDaP algorithm. We compared its performance with PAM

with Gower distance, K-prototypes, FMM, and PAM with FAMD distance. Since we know

the true cluster labels, the adjusted rand index (ARI) was calculated and used to evaluate

the performances of different methods. ARI is used to measure the agreement between two

nominal variables. Its largest value is 1 indicating perfect agreement and its smallest value is

close to 0 indicating no agreement. For the purpose of evaluating clustering performance in

simulations, higher ARI values indicate better agreement with true cluster labels and hence

better performance. The reachability plot for each setting is illustrated in Figure 3. Table 2

summarizes the results of the pre-processing step of the HyDaP algorithm. The clustering

performance with respect to ARI across all simulation settings is shown in Table 3. To

examine the impact of conditional correlation on clustering performance, each simulation

setting was imbued with a pairwise correlation of 0.4 conditional on true cluster labels.

Results are shown in Table 5. Median along with the 2.5th and 97.5th percentiles were

reported for all statistics.

2.4.1 Setting 1: Both types of variables contribute to clustering

2.4.1.1 Natural cluster structure In simulation 1(a), we simulated a total of 5 vari-

ables: 4 continuous and 1 categorical. All except one continuous variable truly contribute

to clustering. The sole categorical variable also contributes to clustering.
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In Step 1 of the HyDaP algorithm, the reachability plot (Figure 3a) indicated 3 clusters.

Therefore, this setting has natural cluster structure as 3 distinct clusters exist. Table 2

shows the very low contribution of x4 from the sparse K-means and the strong association

between x5 and the clusters identified by the sparse K-means. We dropped x4 and kept all

the others.

In Step 2, we applied PAM along with the proposed dissimilarity measure on the selected

variables from Step 1: x1, x2, x3, and x5.

As shown in Table 3, HyDaP algorithm performed very well (ARI: 0.97 [0.92, 1.00]).

Although K-prototypes (ARI: 1.00 [0.96, 1.00]) and FMM (ARI: 1.00 [0.98, 1.00]) both

performed slightly better, our HyDaP algorithm was able to identify important variables.

PAM with Gower distance (ARI: 0.70 [0.58, 0.80]) and PAM with FAMD distance (ARI:

0.78 [0.66, 0.89]) performed poorly. This is not surprising of the results using the Gower

distance since it tends to downplay contributions of continuous variables, although in this

setting continuous variables x1 to x3 all have large contributions to clustering.

2.4.1.2 Partitioned cluster structure In simulation 1(b), we simulated a total of 14

variables: 11 continuous and 3 categorical. Six out of eleven continuous variables truly

contribute to clustering; two out of three categorical variables contribute to clustering.

In Step 1 of the HyDaP algorithm, Figure 3b indicated that no natural clusters exists.

After conducting consensus K-means, we chose 3 as the optimal number of clusters as its

corresponding cluster-consensus values were the largest. Thus, a partitioned cluster structure

was identified. All continuous variables were retained for the next step. Variable x12 was

dropped because of its small Cramer’s V with cluster assignments obtained in consensus

K-means.

In Step 2, PAM with proposed dissimilarity measure was applied on x1, x2,. . . , x11, x13,

and x14 to obtain final results.
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(a) Sim 1(a) (b) Sim 1(b)

(c) Sim 2(a) (d) Sim 2(b)

(e) Sim 3

Figure 3: Reachability plots in different simulation settings

21



Table 2: Results from pre-processing step in different simulation settings

Sim 1(a) Sim 1(b) Sim 2(a) Sim 2(b) Sim 3

Data Structure

1 2 1 1 3

Weight - Weight Weight -

x1: 0.49 (0.46, 0.52)

Keep all

continuous

variables

x1: 0.49 (0.46, 0.52) x1: 0.54 (0.51, 0.57)

Drop all

continuous

variables

x2: 0.59 (0.58, 0.61) x2: 0.59 (0.58, 0.61) x2: 0.51 (0.48, 0.54)

x3: 0.64 (0.62, 0.65) x3: 0.64 (0.62, 0.65) x3: 0.44 (0.38, 0.48)

x4: 0.00 (0.00, 0.02) x4: 0.00 (0.00, 0.02) x4: 0.50 (0.45, 0.54)

x5: 0.00 (0.00, 0.02)

Cramer’s V Cramer’s V Cramer’s V Cramer’s V
Pairwise

Cramer’s V

x5: 0.66 (0.57, 0.75) x12: 0.12 (0.05, 0.21) x5: 0.13 (0.06, 0.21) x6: 0.12 (0.05, 0.21) x5 x6: 0.12 (0.04, 0.20)

x13: 0.77 (0.69, 0.85) x7: 0.09 (0.04, 0.17) x5 x7: 0.69 (0.60, 0.77)

x14: 0.78 (0.69, 0.86) x8: 0.09 (0.04, 0.17) x6 x7: 0.12 (0.04, 0.19)

aall weights and cramer’s v values are presented in the form of median (2.5th percentile, 97.5th percentile).

Performance of the HyDaP algorithm is satisfactory (ARI 0.95 [0.87, 1.00]). Although

it was unable to eliminate continuous variables that are purely noise, the HyDaP algorithm

revealed that no continuous variable has driving effect but all of them together lead to

heterogeneity in the feature space spanned by all of these continuous variables. In this

setting, K-prototypes (ARI: 0.93 [0.79, 1.00]) and PAM with FAMD distance (ARI: 0.93

[0.84, 0.98]) also worked well while performance of FMM varied widely from sample to

sample (ARI: 0.98 [0.44, 1.00]). PAM with Gower distance did not perform as well as others

(ARI: 0.87 [0.76, 0.96]). This is because a noise categorical variable x12 was included and

Gower distance tends to amplify its contribution.

2.4.2 Setting 2: Only continuous variables contribute to clustering

2.4.2.1 Natural cluster structure In simulation 2(a), we simulated a total of 5 vari-

ables: 4 continuous and 1 categorical. This setting is the same as simulation 1(a) except

that the sole categorical variable does not contribute to clustering.

In Step 1 of the HyDaP algorithm, x4 was dropped due to its low contribution in the

sparse K-means. Table 2 shows a weak association between the categorical variable x5 and

clusters identified by the sparse K-means.
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In Step 2, we applied the sparse K-means on x1, x2, and x3 as they are all continuous

variables.

In this setting, the HyDaP algorithm (ARI: 0.98 [0.94, 1.00]) and K-prototypes (ARI:

0.98 [0.92, 1.00]) both worked well. There were a few simulation runs the performance of

FMM was not satisfactory (ARI: 1.00 [0.56, 1.00]). PAM with Gower distance (ARI: 0.01

[-0.01, 0.04]) and PAM with FAMD distance (ARI: 0.09 [-0.01, 0.44]) performed extremely

poor. As mentioned in simulation 1(b), Gower distance tends to amplify the contributions

of the categorical variables. Meanwhile, FAMD was not originally designed for clustering.

2.4.2.2 Natural cluster structure In simulation 2(b), we simulated a total of 8 vari-

ables: 5 continuous and 3 categorical. Four out of five continuous variables truly contribute

to clustering and follow highly skewed distributions. None of the categorical variables con-

tributes to clustering.

In Step 1 of the HyDaP algorithm, Figure 3d shows 3 distinct clusters and hence this

setting was identified as natural cluster structure. We dropped x5 because of its small

contribution to clustering as shown in Table 2. All categorical variables were dropped as

well given their weak associations with clusters obtained in the sparse K-means.

In Step 2, we applied the sparse K-means on x1, x2, and x3 since they are all continuous

variables.

In this setting, the HyDaP algorithm performed the best (ARI: 0.98 [0.92, 1.00]). PAM

with Gower distance (ARI: 0.23 [0.00, 0.34]), K-prototypes (ARI: 0.58 [0.38, 0.99]), FMM

(ARI: 0.41 [0.33, 0.58]), and PAM with FAMD distance (ARI: 0.34 [0.08, 0.39]) all performed

poorly. This was expected for FMM because most of the continuous variables were not

normally distributed conditional on the true cluster labels.

2.4.3 Setting 3: only categorical variables contribute to clustering

2.4.3.1 Homogeneous structure In simulation 3, we simulated a total of 7 variables: 4

continuous and 3 categorical. None of the continuous variables truly contributes to clustering.

Two out of three categorical variables contribute to clustering.
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Table 3: Performance comparison under different simulation settings

Clustering Method ARI, median (2.5th percentile, 97.5th percentile)

Sim 1(a) Sim 1(b) Sim 2(a) Sim 2(b) Sim 3

HyDaP
0.97

(0.92, 1.00)

0.95

(0.87, 1.00)

0.98

(0.94, 1.00)

0.98

(0.92, 1.00)

0.75

(0.63, 0.85)

PAM + Gower distance
0.70

(0.58, 0.80)

0.87

(0.76, 0.96)

0.01

(-0.01, 0.04)

0.23

(0.00, 0.34)

0.71

(0.31, 0.84)

K-prototypes
1.00

(0.96, 1.00)

0.93

(0.79, 0.95)

0.98

(0.92, 1.00)

0.58

(0.38, 0.99)

0.17

(-0.01, 0.26)

Finite mixture model
1.00

(0.98, 1.00)

0.98

(0.44, 1.00)

1.00

(0.56, 1.00)

0.41

(0.33, 0.58)

0.72

(0.56, 0.85)

PAM + FAMD distance
0.78

(0.66, 0.89)

0.93

(0.84, 0.98)

0.09

(-0.01, 0.44)

0.34

(0.08, 0.39)

0.73

(0.22, 0.84)

In Step 1 of the HyDaP algorithm, Figure 3e indicates no natural clusters exist. Af-

ter conducting consensus K-means, the optimal number of clusters chosen was 1 because

cluster-consensus values were low for all numbers of clusters. Hence this was identified as

homogeneous structure. All continuous variables were dropped but categorical variables x5

and x7 were kept due to their strong association with each other as shown in Table 2.

In Step 2, PAM with proposed dissimilarity measure was applied on x5 and x7.

In this setting, the HyDaP algorithm performed the best (ARI: 0.75 [0.63, 0.85]) and K-

prototypes did the worst (ARI: 0.17 [-0.01, 0.26]). Performance of PAM with Gower distance

(ARI: 0.71 [0.31, 0.84]), FMM (ARI: 0.72 [0.56, 0.85]) and PAM with FAMD distance (ARI:

0.73 [0.22, 0.84]) were similar.

2.4.4 Standardizing continuous variables

To assess if pre-processing the data could change the performance of the existing methods, we

reanalyzed the datasets generated from all 5 simulation settings above. We first standardized

all continuous variables to a have mean 0 and variance 1 prior to subjecting them to the

clustering algorithms. There was minimal change in the clustering performance (Table 4)
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as compared to no standardization (Table 3). This was expected since the main challenge

in clustering mixed data is to balance the contribution between continuous and categorical

variables. Standardizing continuous variables alone was not expected to improve existing

methods. Note HyDaP algorithm was not applied to the standardized datasets so the results

in both tables were the same. In addition, the results for PAM with FAMD distance are the

same in both tables standardization was performed in both as recommended in the literature

(Pagès, 2014).

Table 4: Performance comparison with standardizing continuous variables

Clustering Method ARI, median (2.5th percentile, 97.5th percentile)

Sim 1(a) Sim 1(b) Sim 2(a) Sim 2(b) Sim 3

HyDaP
0.97

(0.92, 1.00)

0.95

(0.87, 1.00)

0.98

(0.94, 1.00)

0.98

(0.92, 1.00)

0.75

(0.63, 0.85)

PAM + Gower distance
0.70

(0.58, 0.80)

0.87

(0.76, 0.96)

0.01

(-0.01, 0.04)

0.23

(0.00, 0.34)

0.73

(0.28, 0.84)

K-prototypes
0.98

(0.95, 1.00)

0.97

(0.92, 1.00)

0.97

(0.89, 1.00)

0.36

(0.33, 0.67)

0.19

(0.00, 0.31)

Finite mixture model
1.00

(0.56, 1.00)

0.98

(0.44, 1.00)

1.00

(0.98, 1.00)

0.41

(0.33, 0.58)

0.72

(0.56, 0.85)

PAM + FAMD distance
0.78

(0.66, 0.89)

0.93

(0.84, 0.98)

0.09

(-0.01, 0.44)

0.34

(0.08, 0.39)

0.73

(0.22, 0.84)

2.4.5 Variables are conditionally correlated

To assess the impact of within-cluster correlation, simulations for each of the 5 settings above

was repeated with pairwise correlation of 0.4 for all continuous variables conditional on true

cluster labels. As summarized in Table 5, within-cluster correlation had little to no impact

on the performance of the HyDaP algorithm, PAM with Gower distance, K-prototypes, and

PAM with FAMD distance. In some situations, it led to worse performance of FMM. This is

expected since FMM assumes conditional independency, namely all variables are independent

with each other conditional on clusters labels. However, we did observe that in simulation

3 when none of the continuous variables contributes to clustering, the optimal number of
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clusters selected by the consensus K-means was 2 instead of 3 (figures not shown here). This

is understandable since all pairs of continuous variables are correlated given true cluster

labels, therefore, they share a lot of common information. To some extent we can use only

one of them without losing much information as all others as redundant. For any single

continuous variable we can potentially divide it into 2 subgroups that have some differences.

But this does not essentially mean these 2 subgroups can be viewed as 2 clusters. Therefore,

if we observe that 2 is the optimal number of clusters in consensus clustering results and

most pairs of continuous variables have high conditional correlations, we should be cautious.

One suggestion is that we could try to look for continuous variables that have similar clinical

meanings e.g., Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT),

since these variables are very likely to have high correlations within clusters. For these

variables we can only keep one of them in clustering to avoid such situation.

Table 5: Performance comparison with existence of correlation

Clustering Method ARI, median (2.5th percentile, 97.5th percentile)

Sim 1(a) Sim 1(b) Sim 2(a) Sim 2(b) Sim 3

HyDaP
0.97

(0.92, 1.00)

0.94

(0.33, 1.00)

1.00

(0.95, 1.00)

1.00

(0.97, 1.00)

0.74

(0.61, 0.83)

PAM + Gower distance
0.71

(0.59, 0.80)

0.87

(0.77, 0.95)

0.01

(-0.01, 0.04)

0.33

(0.21, 0.38)

0.73

(0.28, 0.83)

K-prototypes
0.98

(0.95, 1.00)

0.62

(0.32, 0.98)

0.97

(0.89, 1.00)

0.99

(0.95, 1.00)

0.13

(-0.01, 0.23)

Finite mixture model
1.00

(0.46, 1.00)

0.47

(0.36, 1.00)

1.00

(0.97, 1.00)

0.58

(0.46, 1.00)

0.29

(0.14, 0.82)

PAM + FAMD distance
0.79

(0.67, 0.88)

0.93

(0.34, 0.98)

0.34

(-0.01, 0.44)

0.35

(0.22, 0.41)

0.72

(0.22, 0.84)

2.4.6 Simulation summary

From the simulation studies, we found that our proposed HyDaP algorithm was consistently

the top or one of the top performers across all simulation settings. Moreover, we found that

(1) when categorical variables do not contribute much to clustering, PAM with Gower dis-
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tance performed poorly; (2) when continuous variables follow arbitrary distributions, FMM

may not perform well due to assumption violation; (3) when none of continuous variables

contributes to clustering, K-prototypes may fail; (4) performance of PAM with FAMD dis-

tance was not stable across different scenarios as its distance measure is not specifically

designed for clustering.

In terms of impact of standardizing continuous variables and conditional correlation,

we observed that: (1) standardizing continuous variables before clustering will not affect

clustering performance of any methods; (2) with existence of conditional correlation, most

methods including our HyDaP algorithm received little or no impact on clustering perfor-

mance. However, FMM did have worse results under many scenarios. This is expected since

conditional correlation violates the assumption of conditional independency FMM assumes.

2.5 REAL DATA APPLICATION

We used the EHR data collected from the Sepsis ENdotyping in Emergency CAre (SENECA)

project to demonstrate the use of our proposed HyDaP algorithm for identifying phenotypes

in patients with sepsis. The SENECA data contains 20,189 sepsis encounters collected from

12 University of Pittsburgh Medical Center (UPMC) healthcare systems from year 2010 to

2012. The goal is to explore whether clinical sepsis phenotypes are identifiable for a patient

that presents at the emergency department and whether the phenotypes are associated with

various clinical endpoints. The objectives of the analysis are to select the most important

variables among 30 demographic and clinical variables, and to identify homogeneous clusters

(phenotypes). Twenty eight variables were continuous and 2 were categorical. Although we

do not have much information about the optimal number of clusters for the data set, our

clinician colleagues suggested that larger numbers of clusters are preferred.

Data structure identification: The reachability plot in Figure 4 indicates that there is no

natural clusters in the SENECA data. Unlike the genetic data, we rarely observe natural

clusters in data collected from clinical settings. We then performed the consensus K-means

for all continuous variables, and the results are depicted in Figure 5 suggesting that the
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optimal number of clusters is 4, which indicates that the data structure of the SENECA

data belongs to partitioned cluster structure.

Figure 4: OPTICS reachability plot for the SENECA data

Variable selection: Under partitioned cluster structure we kept all continuous variables.

For categorical variables, Cramer’s V is 0.05 between gender and cluster membership from

consensus clustering and it is also 0.05 between race and cluster membership. Therefore, we

dropped gender and race before proceeding to the final clustering step.
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Figure 5: Consensus K-means results of SENECA data

Clustering step: All categorical variables were excluded after the pre-processing step, so

we took the results from the consensus K-means as our final clustering results. In terms of

variable importance, all continuous variables together had contributions to the obtained par-

titions but none of them showed dominant impact. Neither gender nor race were important

clustering variables. We obtained 4 clusters with relatively balanced sample sizes: 6, 625,

5, 512, 5, 385, and 2, 667. Within each cluster, distributions of some important clinical end-

points are shown in top left plot of Figure 6. We can observe that Cluster 1 has the lowest

proportion for all clinical endpoints while Cluster 2 has the second lowest ones. Cluster

4 has the highest proportions. With our clinician colleagues, we examined patient charac-

teristics of the resulting clusters. We observed that sepsis patients in Cluster 1 had fewer

other health issues; patients in Cluster 2 were those who were older, had multi morbidities,

and renal dysfunctions; patients in Cluster 3 were those who had more inflammations and

pulmonary dysfunctions; and patients in Cluster 4 were whose who had more acidosis, liver,

and cardiovascular dysfunctions.
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Figure 6: Clinical endpoints across 4 clusters identified by different methods

For comparison, we applied PAM with Gower distance, K-prototypes, and FMM to

obtain cluster memberships assuming 4 clusters. The results are summarized in Figure 6.

For PAM with Gower distance, we took a random sample of the whole SENECA data with

size 5, 000 because the computation time of this algorithm was very long. After further

exploration we found that gender dominated the clustering result as the proportion of male

is 0.0% in Cluster 1, 2.7% in Cluster 4, 99.4% in Cluster 2, and 99.8% in Cluster 3. Note that

gender was not relevant based on our proposed HyDaP algorithm. For the K-prototypes,

we found that the 4 clusters obtained were not that distinct from each other in terms of the

distribution of clinical endpoints. The 4 clusters obtained from the FMM appeared to be

distinct from each other and similar to what we observed in HyDaP algorithm. However,

Cluster 1 has larger proportion of patients admitted to ICU, use of mechanical ventilation

and vasopressor compared to Cluster 2, but it has lower mortality rate.
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Figure 7: Clinical endpoints across clusters with the optimal number of clusters

Next, we re-applied the existing methods by first selecting the method-specific optimal

number of clusters. The number of clusters versus the total WCSS or BIC values are shown

in left column of Figure 7. We found that the optimal number of clusters was 2 for PAM

with Gower distance and for K-prototypes, and 3 for FMM. We once again observed that

the clustering results were dominated by gender when using PAM with Gower distance. The

proportion of men was 1.2% in Cluster 1 and 98.8% in Cluster 2. The two clusters were quite

similar in terms of clinical endpoints. Similarly, the 2 clusters identified by K-prototypes

were not quite distinct in terms of clinical endpoints as well. The FMM identified 3 clusters

with quite different distribution of clinical endpoints, but the HyDaP algorithm was able to

identify one more cluster with distinct clinical features.
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2.6 DISCUSSION

We proposed a hybrid density- and partition-based clustering (HyDaP) algorithm to conduct

variable selection and identify clusters in data consisting of mixed types of variables. Our

algorithm involves a pre-processing step to identify the data structure formed by continuous

variables and to select important variables, and a clustering step to determine the cluster

membership. In the clustering step, we proposed a dissimilarity measure that balances the

contributions between continuous and categorical variables, which the existing clustering

methods do not offer. Through simulation studies, we showed that the proposed HyDaP

algorithm is robust to different data structures and outperforms or at par commonly used

methods. We also defined 3 different data structures to help understand data and better

interpret clustering results. Our method successfully identified four clinically meaningful

sepsis phenotypes for data extracted from EHR of multiple health care systems. The resulting

phenotypes are highly associated with several clinical endpoints.

Our HyDaP algorithm inherits the limitations of sparse K-means. For data under the

natural cluster structure, if the continuous variables contain many outliers or excessive zeros

(a.k.a. zero-inflated), the sparse K-means procedure cannot correctly identify variables with

high contributions. Another situation that could affect the later steps in our method and lead

to unsatisfactory results is that when data contains continuous variables of the same value

for the majority of subjects while other few have different values. We also suggest checking

variables that have similar clinical meanings or highly clinically related before clustering and

only keep one of them to avoid existence of within-cluster correlations.

Clustering has emerged as one of the essential and popular techniques for discovering

patterns in data or disease phenotypes. Although clustering methods keep evolving to cope

with increasing complexity in data, certain features in data sets could limit the utilization

of the existing approaches. Unlike genetics or genomics data, data collected from clinical

settings often include various types. Our proposed algorithm overcomes the drawbacks of

the commonly used clustering algorithms therefore the results from using our method may

be more helpful to clinicians in making good medical decisions.
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3.0 BAYESIAN FINITE MIXTURE MODEL WITH VARIABLE

SELECTION

3.1 INTRODUCTION

The finite mixture model (FMM) (McCutcheon, 1987; Moustaki, 1996; Nylund et al., 2007)

has been used to uncover the latent mixture probability distributions in a combined statistical

distribution of a population (Deb et al., 2008) when the population is heterogeneous in

characteristics and consisting with a combination of several more homogeneous subgroups.

This method has a natural interpretation of heterogeneity through the mixture of finite

components with a distributional assumption conditioning on components for each variable.

Unlike the commonly used nonparametric clustering algorithms (e.g., distance-based,

density-based), the FMM technique is a model-based method that can easily handle variables

with mixed variable types and can do variable selection while performing clustering. This is

especially important when the number of variables involved is large.

The current method of FMM has to deal with several challenges. The first challenge

is related to the use of the EM algorithm (Dempster et al., 1977), which is the mostly

commonly used estimation procedure for the FMMs. In the EM algorithm the convergence

rate could be very slow and the solution could be highly dependent on the choices of initial

values, especially in the multivariate settings (Biernacki et al., 2003; Karlis and Xekalaki,

2003; McLachlan and Krishnan, 2007).

The second challenge of using FMM is how to handle censored probability distributions.

Oftentimes, covariates collected from medical setting include biomarker data of patients.

Biomarkers are characteristics that can be accurately and reproducibly measured and ac-

cessed as an indicator of various biological processes (Group et al., 2001; Strimbu and Tavel,
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2010). Different biomarkers serve for different purposes. For example, temperature can be

seen as a biomarker for fever; C-reactive protein (CRP) and Interleukin 6 (IL-6) are com-

monly used as biomarkers for sepsis (Pierrakos and Vincent, 2010). Therefore, biomarkers

usually contain important diagnosis information about subjects. However, many biomarkers

are subject to a limit of detection (LOD). LOD could be lower detection limit (i.e., values

below this limit could not be measured), higher detection limit (i.e., values above this limit

could not be measured), or both. When biomarkers are outcome variables in data analysis,

biomarker values more extreme than the detection limit are usually represented by the de-

tection limit value and an additional binary variable is included to indicating whether the

corresponding value is actually undetected or measured. A semiparametric censored regres-

sion model can then be used (Tobin, 1958; Powell, 1984; Honoré, 1992). When biomarkers

are predictors in analysis, multiple imputations are often used (Lubin et al., 2004; Lee et al.,

2012; Bernhardt et al., 2015). If the objective of the analysis is to cluster the feature space

when data containing censored biomarkers, the two aforementioned approaches cannot be

applied. Therefore, conducting clustering for data with LODs is still not well-addressed.

The objective of this study is to develop a new clustering algorithm under the FMM

framework to handle censored biomarker variables. Our method also incorporates a variable

selection procedure to determine the importance of variables on clustering

The basic concepts of our development is to overcome the estimation limitation of the

EM algorithm from a Bayesian perspective. We first adopt Gibbs sampling, which has been

shown to be a valid and practical way in estimation of the FMMs (Geman and Geman,

1984), (Diebolt and Robert, 1994). Second, we propose the use of a spike-and-slab type

prior for categorical variables for the purpose of variable selection. Together with the tradi-

tional spike-and-slab prior for continuous variables, we incorporate variable selection into our

Bayesian framework to provide quantitative information about variable importance. Third,

we introduce an additional sampling step into our framework so that it is able to handle

censored biomarker variables that are often encountered in clinical data.

Section 3.2 contains our review of currently used variable selection methods for the finite

mixture models. We describe our proposed method in detail in Section 3.3. Section 3.4

includes simulation studies that are used to assess the performance of our methods and
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compare the performance to existing methods. In Section 3.5, our proposed method is applied

to identify sepsis phenotypes using demographic, clinical, and biomarker data collected from

electronic health records. Our conclusions and the summary of this study are in Section 3.6.

3.2 EXISTING METHODS REVIEW

Overall, there are two categories of variable selection methods for supervised or unsupervised

machine learning: filter methods and wrapper methods (Blum and Langley, 1997; Guyon

and Elisseeff, 2003; Fop et al., 2018). Filter methods refer to those whose feature selection

procedures are conducted separately with clustering procedures. On the contrary, wrapper

methods refer to those whose feature selection is conducted simultaneously with clustering

procedures, like “wrapped” around clustering procedures. For example, the step 1 of our

proposed HyDaP algorithm can be viewed as a filter method as it is conducted separately

with the actual clustering algorithm. Wrapper methods are relatively more popular since

it is naturally incorporated in clustering algorithms. In this section we focus on wrapper

methods for finite mixture models.

Liu et al. proposed to conduct principle component analysis (PCA) before fitting Gaus-

sian finite mixture models (Liu et al., 2003). This method assumes that only the first K

factors are relevant to clustering, where K is a random variable that has a prior distribu-

tion. However, factors having larger eigen values in PCA do not necessarily contain more

important information for clustering (Chang, 1983).

Law et al. defined a binary indicator called feature saliency for each variable to reflect

whether this variable is relevant to clustering or not. EM algorithm was used for estimation

(Law et al., 2004). Let φm denote saliency for variable m. If φm = 1 then variable m is

relevant, otherwise variable m is not, namely its distribution is independent of cluster labels.

Let X denote a data matrix with n subjects and M variables. Let xim denote variable m of

subject i. Let G denote number of clusters. Let Z denote cluster indicator matrix; zig denote

indicator variable of subject i belonging to cluster g. Let β denote distributional parameters,

βmg denote parameters of variable m in cluster g, βm denote marginal parameter of variable
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m. Then Lm, the likelihood due to variable m, is defined as:Lm|X,Z, G,β =
∏n

i=1

∏G
g=1[f(xim|βmg)]zig if variable m is relevant

Lm|X,β =
∏n

i=1 f(xim|βm) if variable m is irrelevant

Tadesse et al. and Li et al. used similar definitions of likelihood function and feature

saliency. (Tadesse et al., 2005; Li et al., 2009). Different with the one proposed by Law et al.,

the method proposed by Tadesse et al. detects discriminating variables through reversible-

jump MCMC instead of EM algorithm for high-dimensional Gaussian finite mixture models.

Later, White et al. applied this idea on latent class analysis (White et al., 2016) for Bayesian

variable selection. While the method proposed by Li et al. adopted Variational Learning of

Bayesian approximation (VB) for inference. They claimed that although using EM algorithm

and VB usually lead to identical results, VB could avoid the situation of getting infinite

likelihood when there is singular cluster, which may encounter using EM. Later Sun et.al.

used the same framework and extended Gaussian mixture model to Student’s t mixture

model to better handle outliers (Sun et al., 2018).

Another category of methods is penalization approach (Fop et al., 2018). The general

idea is to maximize a penalized log-likelihood which is defined as:

l =
n∑
i=1

log{
G∑
g=1

τgf(xi|βg)} −Qλ(β)

where xi is vector (xi1, xi2, . . . , xiM)T ; β is vector (β1,β2, . . . ,βG)T and each βg represents

distributional parameters for cluster g; Q is a function of distributional parameters; λ is

penalty parameter. Different penalty functions were proposed including L1 penalty (Pan

and Shen, 2007), sample size weighted L1 penalty (Bhattacharya and McNicholas, 2014),

L∞ penalty (Wang and Zhu, 2008) and other variations to achieve the goal of variable

selection. These methods all assume that the differences of mixture components lie in mean

parameters, which assumes similar variance within all clusters. This assumption was later

relaxed by Xie et al. by adding two penalty terms so that the variance covariance structure is

cluster-specific diagonal matrices (Xie et al., 2008). Later this method was further extended

to unconstrained variance covariance matrices (Zhou et al., 2009).
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Figure 8: Demonstration of a spike and slab prior

Another category of methods that is commonly applied is spike and slab prior (Mitchell

and Beauchamp, 1988; Madigan and Raftery, 1994; George and McCulloch, 1997; Ishwaran

et al., 2005). It is demonstrated in Figure 8. Spike and slab prior is originally proposed for

variable selection in linear regressions, but it can be naturally applied on Gaussian mixture

models for unsupervised clustering. This method first chooses one cluster as reference,

and obtain mean difference between other clusters with this reference cluster. Similar to

feature saliency, a binary indicator representing variable importance is also defined. For

other methods defined feature saliency, each variable has only one feature saliency indicating

whether it is relevant to clustering or not. While under spike and slab prior, each variable

first has a cluster-specific importance, for cluster 2, 3, . . . , G and then we aggregate these

cluster-specific importance values into one overall importance or weight value. Let ∆mg

denote importance of variable m within cluster g, µmg the mean difference between cluster

g and cluster 1 of variable m, where g = 2, 3, . . . , G. ∆mg = 0 indicates that for variable

m, cluster g is not different with reference cluster, namely variable m within cluster g is

not important. Then in next iteration, we assign µmg a “spike” prior (the grey density in

Figure 8): a Gaussian prior centered at 0 with very small variance. In this way, a value
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close to 0 is very likely to be sampled as the updated value of µmg. Otherwise if ∆mg = 1,

it indicates that for variable m, cluster g is different with reference cluster, namely variable

m within cluster g is important. Then we assign µmg a “slab” prior (the red density in

Figure 8): a Gaussian prior centered at 0 with very large variance. Therefore, any value is

possible to be sampled as the updated value of µmg. Let ∆m denote final weight of variable

m. Within each iteration, as long as ∆mg = 1 for at least one cluster, we assign 1 to ∆m for

that iteration to represent that variable m is important. After all iterations, we calculate

p(∆m = 1) to be the weight of variable m.

Although researchers have explored a lot of variable selection methods for finite mixture

models, all above methods only focus on single type of variables. Not many methods in-

corporate both types of variables. The method proposed by Raftery and Dean is able to

handle various types of variables through stepwise regression like procedures (Raftery and

Dean, 2006). They used approximate Bayes factor as variable selection criteria and obtained

final optimal variable sets through a greedy search algorithm. This method naturally takes

advantage of the parametric form of finite mixture models, but it could be extremely slow

if a data set contains a large number of variables. Besides, this method only identifies that

whether a variable is important or not instead of providing quantitative values for impor-

tance. Later it was extended through combining LASSO-like procedures and model selection

procedures (Celeux et al., 2018) to be more efficient. But similarly, this method does not

provide real-valued variable weights.
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3.3 BAYESIAN FINITE MIXTURE MODEL WITH VARIABLE

SELECTION

3.3.1 Notation and proposed model

We will first define some notations that will be used to define our proposed Bayesian finite

mixture model.

Let X, xi = (xi1, xi2, . . . , xiM)T denote the vector of covariates for subject i and X =

(x1,x2, . . . ,xn)T be an n×M data matrix, where n is the number of subjects and M is the

number of variables. Let zi = (zi1, zi2, . . . , ziG)T denote the vector of cluster-membership

indicators for subject i, where zig = 1 if the subject i belongs to cluster g and 0 otherwise.∑G
g=1 zig = 1, where G is the number of clusters. Without loss of generality, we let the first

q variables to be continuous normally distributed and the rest q+ 1th to M th variables to be

categorical.

LetA1 = (A11, A12, . . . , A1q)
T denote the vector of mean values of all continuous variables

in cluster 1, where A1m is the mean of variable m in cluster 1, m = 1, 2, . . . , q. We also define

σ2 = (σ2
1, σ

2
2, . . . , σ

2
q )
T as the vector of variances for all continuous variables, where σ2

m is the

variance of variable m, m = 1, 2, . . . , q.

We further define µ as a q×G matrix with its (m, g) element µmg representing the mean

difference of variable m between cluster g and cluster 1, where m = 1, 2, . . . , q. Note that

cluster 1 is the reference cluster. Then, vector µg = (µ1g, µ2g, . . . , µqg)
T represents the mean

difference between cluster g and cluster 1 of all normally distributed variables and vector

µm = (µm1, µm2, . . . , µmG)T represents the mean differences of variable m for all G clusters.

For identifiability, µ1 is set to be a vector with all elements being 1.

For categorical variables, let θ be a (M − q) × G matrix with its (m, g) element θmg

representing the distributional parameters of variable m within cluster g, where m = q +

1, q + 2, . . . ,M . Vector θg = (θ(q+1)g,θ(q+2)g, . . . ,θMg)
T represents the parameters of all

categorical variables within cluster g and vector θm = (θm1,θm2, . . . ,θmG)T represents the

parameters of variable m for m = q + 1, q + 2, . . . ,M .

We define density function of the finite mixture model (FMM) with G clusters as
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f(xi|τ ,θ,A1,µ,σ
2) =

G∑
g=1

τgf(xi|θg,A1,µg,σ
2),

where
∑G

g=1 τg = 1 and τg is the probability that a subject belongs to cluster g. We let

τ = (τ1, τ2, . . . , τG)T be the vector of cluster mixture probabilities.

For subject i, the corresponding density function for data (xi given its cluster membership

zi) could be written as:

f(xi|zi,θ,A1,µ,σ
2) =

G∏
g=1

[f(xi|θg,A1,µg,σ
2)]zig ,

where f(xi|θg,A1,µg,σ
2) =

∏M
m=1 f(xim|θmg, A1m, µmg, σ

2
m) based on conditional indepen-

dence, which assumes variables are independent with each other conditional on the cluster

labels.

3.3.2 Priors

We define conjugate priors for all parameters specified in the above-defined FMM. Details

of the prior distribution for each parameter is specified below.

For the cluster indicator matrix Z, we specify a multinomial prior distribution with the

form: zi ∼Multinomial (G, τ1, τ2, . . . τG). We also let the probability of cluster membership

τ follow a Dirichlet distribution

τ ∼ Dir (δ1, δ2, . . . δG) ,

where δ1, δ2, . . . δG are the hyper-parameters of τ .

Let parameter A1m follows N (µA, σ
2
A), where µA and σ2

A are both hyper-parameters.

Let ∆ be a G ×M matrix representing the collection of importance indicator for each

variable, where ∆mg is the importance indicator of variable m within cluster g. Vector ∆g is

(∆1g,∆2g, . . . ,∆Mg)
T representing the importance indicator of all variables within cluster g;

and vector ∆m is (∆m1,∆m2, . . . ,∆mG)T representing the importance indicator of variable
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m. For the purpose of variable selection, we apply a spike-and-slab priors for parameter µmg

with the form µmg ∼ N
(
0, σ2

∆0

)
if ∆mg = 0

µmg ∼ N
(
0, σ2

∆1

)
if ∆mg = 1,

where σ2
∆0

and σ2
∆1

are both hyper-parameters. For identifiability, we define µmg = 0 when

g = 1. When ∆mg = 1, namely cluster g is different from cluster 1, µmg should be away from

0. Therefore, σ2
∆1

should be a very large number, for increasing the variability of cluster

mean difference, so that it is likely to be different with 0. When ∆mg = 0, which occurs if

cluster g is not different from cluster 1, µmg should be close to 0. Therefore, σ2
∆0

should be

a very small number so that the mean differences among cluster means would be close to

zero. We used an Inverse-Gamma prior for parameter σ2
∆0

:

σ2
∆0
∼ InvΓ (a∆0 , b∆0) ,

where a∆0 and b∆0 are both hyper-parameters.

The precision parameter γm = σ−2
m is assigned a prior following a Gamma distribution,

γm ∼ Γ
(
ã, b̃
)
,

where ã and b̃ are both hyper-parameters.

Inspired by the usual spike-and-slab priors for continuous variables, we propose similar

priors for categorical variables. The challenge of building a spike-and-slab prior for a cat-

egorical variable include (1) we do not have an appropriate distribution for the probability

difference; (2) a categorical variable may contain multiple levels so it is hard to compare

all levels altogether between two clusters. Therefore, for a categorical variable, instead of

comparing to a reference clustering group, we compare the distribution of the levels within

each of the G clusters to the overall marginal distribution of this categorical variable. If

∆mg = 0, this indicates that the distribution of the categories within cluster g is identical

to the marginal distribution. If ∆mg = 1, it implies that the distribution within cluster g is

different from the marginal distribution.
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We define a Dirichlet distribution for categorical variable parameter θmg:

θmg ∼ Dir (αm∆0) if ∆mg = 0

θmg ∼ Dir (α∆1) if ∆mg = 1

where αm∆0 and α∆1 are hyper-parameters. Vector αm∆0 = (αm∆01, αm∆02, . . . , αm∆0Lm)T

is proportional to θmg to make the corresponding prior center at marginal parameters of

variable m, where Lm is the number of categories of variable m; its elements are relatively

larger numbers so that the prior is “spike” at marginal parameters of variable m when

∆mg = 0. Elements of vector α∆1 are all 1 thus the pdf of this Dirichlet distribution is a

constant. Therefore, this prior becomes a “slab” one when ∆mg = 1.

We used Bernoulli distribution for the importance indicator variable ∆mg:

∆mg ∼ Bern (p1m) if m ∈ {1, 2, . . . , q}

∆mg ∼ Bern (p2m) if m ∈ {q + 1, q + 2, . . . ,M}

where p1m and p2m are hyper-parameters of ∆mg.

Beta distribution for p1m and p2m:

p1m ∼ Beta(ap1 , bp1)

p2m ∼ Beta(ap2 , bp2)

where ap1 , bp1 , ap2 , bp2 are hyper-parameters.

A graphical depiction of our model is shown in Figure 9.
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Figure 9: Graphical representation of the Bayesian framework of our proposed finite mixture

model
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3.3.3 Posteriors

With specified prior distributions of all parameters, the corresponding posterior distribution

then can be obtained with the form:

f(Parameters|X) ∝
n∏
i=1

[

q∏
m=1

f(xim|zim, A1m,µm, γm)
M∏

m=q+1

f(xim|zim,θm)]

×
n∏
i=1

f(zi|τ )f(τ )

q∏
m=1

N(A1m;µA, σ
2
A)

q∏
m=1

Γ(γm; ã, b̃)

×
q∏

m=1

G∏
g=2

[N(µmg; 0, σ2
∆1

)∆mg +N(µmg; 0, σ2
∆0

)(1−∆mg)]

× InvΓ(σ2
∆0

; a∆0 , b∆0)

q∏
m=1

G∏
g=2

Bern(∆mg; p1m)

q∏
m=1

Beta(p1m; ap1 , bp1)

×
M∏

m=q+1

G∏
g=1

[Dir(θmg;α∆1)∆mg +Dir(θmg;αm∆0)(1−∆mg)]

×
M∏

m=q+1

G∏
g=1

Bern(∆mg; p2m)
M∏

m=q+1

Beta(p2m; ap2 , bp2)

We can derive posterior distribution for each parameter as below:
For cluster indicator matrix Z:

zi|xi, τ ,A1,µ,γ,θ ∼Multinomial

(
τ1f(xi|A1,µ1,γ1,θ1)∑G
g=1 τgf(xi|A1,µg,γg,θg)

, . . . ,
τGf(xi|A1,µG,γG,θG)∑G
g=1 τgf(xi|A1,µg,γg,θg)

)
.

For cluster mixture proportion τ :

τ |Z, δ1, . . . , δG ∼ Dir

(
δ1 +

n∑
i=1

zi1, . . . , δG +
n∑
i=1

ziG

)
.

For A1m in non-censored normal distributed variable m within cluster g, where m =
1, 2, . . . , q:

A1m|X,Z,µm, γm, µA, σ
2
A ∼ N

(
σ2
A(
∑n

i=1 xim −
∑n

i=1

∑G
g=1 zigµmg) + (µA/γm)

nσ2
A + (1/γm)

,
σ2
A/γm

nσ2
A + (1/γm)

)
.
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For mean difference µmg, where m = 1, 2, . . . , q:

when ∆mg = 1,

µmg|X,Z, A1m, γm, σ
2
∆1
∼ N

(
σ2

∆1
(
∑n

i=1 zigxim −
∑n

i=1 zigA1m)

σ2
∆1

∑n
i=1 zig + (1/γm)

,
σ2

∆1
/γm

σ2
∆1

∑n
i=1 zig + (1/γm)

)
,

when ∆mg = 0,

µmg|X,Z, A1m, γm, σ
2
∆0
∼ N

(
σ2

∆0
(
∑n

i=1 zigxim −
∑n

i=1 zigA1m)

σ2
∆0

∑n
i=1 zig + (1/γm)

,
σ2

∆0
/γm

σ2
∆0

∑n
i=1 zig + (1/γm)

)
.

For precision parameter γm, where m = 1, 2, . . . , q:

γm|X,Z, A1m,µm, ã, b̃ ∼ Γ

(
ã+

1

2
n, b̃+

1

2

n∑
i=1

G∑
g=1

zig(xim − A1m − µmg)2

)
.

For hyper-parameter σ2
∆0

of µmg:

σ2
∆0
|∆,µ, a∆0 , b∆0 ∼ InvΓ

(
a∆0 +

1

2

q∑
m=1

G∑
g=2

(1−∆mg), b∆0 +
1

2

q∑
m=1

G∑
g=2

(1−∆mg)µ
2
mg

)
.

For parameter θmg, where m = q + 1, q + 2, . . . ,M :

When ∆mg = 1,

θmg|X,Z,α∆1 ∼ Dir

(
α∆11 +

n∑
i=1

xim1zig, . . . , α∆1Lm +
n∑
i=1

ximLmzig

)

When ∆mg = 0,

θmg|X,Z,αm∆0 ∼ Dir

(
αm∆01 +

n∑
i=1

xim1zig, . . . , αm∆0Lm +
n∑
i=1

ximLmzig

)
.

For importance indicator variable ∆:

When m ∈ 1, 2, . . . , q:

∆mg|µmg, p1m, σ
2
∆0
, σ2

∆1
∼ Bernoulli

(
p1mN(µmg; 0, σ2

∆1
)

p1mN(µmg; 0, σ2
∆1

) + (1− p1m)N(µmg; 0, σ2
∆0

)

)
When m ∈ q + 1, q + 2, . . . ,M :

∆mg|µmg, p2m,αm∆0 ,α∆1 ∼ Bernoulli

(
p2mDir(θmg;α∆1)

p2mDir(θmg;α∆1) + (1− p2m)Dir(θmg;αm∆0)

)
.
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For p1m for continuous variables, where m = 1, 2, . . . , q:

p1m|∆m, ap1 , bp1 ∼ Beta

(
ap1 +

G∑
g=2

∆mg, bp1 +
G∑
g=2

(1−∆mg)

)
.

For p2m for categorical variables, where m = q + 1, q + 2, . . . ,M :

p2m|∆m, ap2 , bp2 ∼ Beta

(
ap2 +

G∑
g=1

∆mg, bp2 +
G∑
g=1

(1−∆mg)

)
.

We set different hyper-parameters for p1m and p2m to make variable selection more flexible.

In this way, we can control the extent of shrinkage for continuous and categorical variables

separately. In the next section, we will introduce how different choices of hyper-parameters

could affect variable selection with more details.

For continuous variables with detection limit, we add one more sampling step: sample

values below the lower detection limit and above the upper detection limit from the remainder

of truncated normal distributions, respectively.

f(xi′m|A1m, µmg, γm) =

( √
γmh(xi′m)

Φ[
√
γm(CLm − µmg − A1m)]

)zig

f(xi∗m|A1m, µmg, γm) =

( √
γmh(xi∗m)

1− Φ[
√
γm(CUm − µmg − A1m)]

)zig
,

where CUm is the upper limit and CLm is the lower limit for variable m; i′ represents subjects

whose real values of variable m are lower than CLm; i∗ represents subjects whose real values

of variable m are higher than CUm; h is standard normal distribution; Φ is CDF of standard

normal distribution.
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3.3.4 Hyper-parameters

From the Bayesian framework of our proposed model, we will need to specify the values of

the following hyper-parameters before starting the sampling procedures: δ for τ ; µA and σ2
A

for A1; a∆0 and b∆0 for σ2
∆0

; σ2
∆1

for µ; ã and b̃ for γ; α∆1 and αm∆0 for θ; ap1 and bp1 for

p1m; and ap2 and bp2 for p2m.

Figure 10: Beta priors

We can control the extent of shrinkage through controlling hyper-parameters ap1 and

bp1 for continuous variables, and ap2 and bp2 for categorical variables. We can start with

ap1 = bp1 = ap2 = bp2 = 1, namely Beta(1, 1) to be the prior distribution of p1m and p2m. If

we prefer more shrinkage, then we could increase bp1 and bp2 ; otherwise we could decrease

bp1 and bp2 . In Figure 10 we show probability density functions of Beta(1, 1), Beta(1, 3)

and Beta(3, 1) as an example. We can find that Beta(1, 1) (the grey line in Figure 10) is

the same as Unif(0, 1), namely it is a non-informative flat prior. Under prior Beta(1, 3)

(the red curve in Figure 10), it is more likely to sample smaller numbers for corresponding

∆mg so that we can achieve more shrinkage. While under prior Beta(3, 1) (the blue curve in

Figure 10), it is more likely to sample larger numbers for the corresponding ∆mg so that we
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put less shrinkage. Assigning different hyper-parameters to p1m and p2m makes the shrinkage

more flexible since we can control continuous and categorical variable separately. If we prefer

the same shrinkage for all variables, we can simply set ap1 = ap2 and bp1 = bp2 .

3.3.5 Estimation procedure

Since all parameters in the model have conjugate priors, we can apply Gibbs sampling to

estimate unknown parameters and the procedure is summarized as follows.

Step 1: Set initial values for all parameters.

Step 2: For each variable in the dataset (e.g., age), update its distributional parameters

(e.g., mean and standard deviation), namely A1, µ, and γ for a continuous variable or

θ for a categorical variable by sampling from the corresponding posterior distributions of

parameters. If censored biomarker variables are encountered, update the censored variables

before updating the distributional parameters.

Step 3: For each variable, update ∆ given the values of all other parameters.

Step 4: For each variable, update p1m or p2m given the values of all other parameters.

Step 5: Update σ2
∆0

, Z, and τ given the values of all other parameters.

Step 6: Repeat Steps 2 to 5 for many iterations.

Step 7: Estimate each parameter using the mean value of its posterior distribution. Also,

calculate the posterior probabilities of cluster membership for each subject and assign the

cluster with the highest probability to that subject.

3.3.6 Label switching in Gibbs sampling

Label switching is a common problem in Gibbs sampling. It has been extensively studied and

discussed in the literatures (Diebolt and Robert, 1994; Stephens, 2000; Frühwirth-Schnatter,

2001; Marin et al., 2005; Papastamoulis and Iliopoulos, 2010). Scrambling the cluster labels

will not affect the likelihood function, the priors, and the posterior distributions. In Gibbs

sampling of the cluster-specific parameters, there is a possibility of assigning wrong cluster

labels to these parameters. This is called the label switching issue, which could cause biased
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estimation of the cluster-specific parameters. We adopt Stephen’s method (Stephens, 2000;

Papastamoulis, 2015) to resolve this issue.

Let P (t) be a n × G matrix with element p
(t)
ig representing posterior probabilities of a

subject i belonging to cluster g at MCMC iteration t; t = 1, 2, . . . , T , where n is total number

of subjects, T is the total MCMC iteration times and G is the total number of clusters. The

basic idea of Stephen’s method is trying to permute the estimates from the MCMC iterations

if needed so that those posterior probability matrix P (t) agree each other for t = 1, 2, . . . , T .

Specifically, Stephen’s Method minimizes the Kullback-Leibler divergence (also called rela-

tive entropy) between 1
T

∑T
t=1P

(t) and P (t) for each t.

The relabeling algorithm is summarized as follows:

1. Assign an initial cluster labeling for all the MCMC iterations. We let U be a T ×G

matrix whose tth row represents the cluster labels for the tth iteration. For example, if

t = 1 and G = 3, the cluster labels for the first MCMC iteration could be (1, 2, 3), (1, 3, 2),

(2, 1, 3), (2, 3, 1), (3, 1, 2) or (3, 2, 1). To assign an initial clustering labeling is equivalent to

assigning an initial values of the matrix U .

2. Based on the current cluster labels, we calculate the mean posterior probability of

cluster membership for all subjects across all iterations by averaging P (1),P (2), . . . ,P (T ).

That is, the mean posterior probability of the gth cluster membership for subject i has the

form:

p̄ig =
1

T

T∑
t=1

p
(t)
ig ,

for i = 1, 2, ..., n and g = 1, 2, ..., G, where p
(t)
ig is the (i, g)th element of the matrix P (t).

3. Update each row of the matrix U , the cluster labels of an iteration, by minimizing

n∑
i=1

G∑
g=1

p
(t)
ig log(

p
(t)
ig

p̄ig
),

for t = 1, 2, . . . , T .

4. Repeat Steps 2 and 3 until matrix U is unchanged. Let Ψ be the T × G matrix of

a parameter that needs to be estimated, where T is the total number of MCMC iterations

and G is the total number of clusters. We will obtain the final parameter estimates for each
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iteration (each row of Ψ) by permuting the cluster labels based on the values in  matrix U .

3.4 SIMULATION STUDIES

We examined the properties of our proposed method under simulation 1(a), 1(b), 2(a) and 3

from the first part of dissertation. Simulation 2(b) (continuous variables follow arbitrary dis-

tribution) was not examined since it violates the distributional assumptions. For simulation

1(b), we removed 4 variables that are not distinguishable across clusters for simplicity. To

evaluate clustering performance of different methods in the presence of censored biomarker,

we selected simulation 1(a) where most methods performed well under without censored

variables. We examined combination of varying censoring proportions and varying number of

censored variables.

For each setting, 500 datasets were generated. Our hyper-parameters used in simulations

are as follows: (0.33, 0.33, 0.33)T was used for δ assuming we do not have much informative on 

τ ; 0 and 100 were used for µA and σ2
A assuming we do not have much informative on A1m; 2

and 0.0001 were used for a∆0 and b∆0 as we believe σ2
∆0 

should be a small number so that the 

corresponding prior for µmg is a “spike” one; 1000 was used for σ2
∆1 

as we believe σ2
∆1 

should be a 

large number so that the corresponding prior for µmg is a “slab” one; 2 and 1 were used for ã

and b̃ assuming we do not have much informative on γm; 1 for α∆1 so that the corresponding 

prior for θmg is a “slab” one. We used (10, 10, 10)T for αm∆0 , where m = 1, 2, . . . , M , since 

every categorical variable has 3 categories with true marginal probabilities (0.33, 0.33, 0.33)T . 

We used 1 and 2 for ap1 and bp1 , 1 and 2 for ap2 and bp2 as we would like some extent of shrinkage 

on both continuous and categorical variables.

3.4.1 Without existence of censored biomarker variables

Clustering performances in terms of ARI are shown in Table 6. The first row, Bayesian FMM,

is our proposed Bayesian FMM with variable selection. All other rows are the same
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with Table 3 we presented in the first part of this dissertation. In addition, the median and

2.5th to 97.5th percentile interval of variable weights obtained from our proposed Bayesian

FMM with variable selection across all simulated datasets are shown in Table 7.

In simulation 1(a), we simulated a total of 5 variables: 4 continuous and 1 categorical. All

except one continuous variable truly contribute to clustering. The sole categorical variable

also contributes to clustering. Our Bayesian FMM with variable selection performed the best

(ARI 1.00 [0.98, 1.00]) compared with other methods. Table 7 shows that the median weights

of variables x1, x2, x3 and x5 are 1.00 with 2.5th and 97.5th percentile interval (1.00, 1.00),

indicating that these variables were found to be important for clustering. Meanwhile, variable

x4 had low weights (0.01 [0.01, 0.06]).

In simulation 1(b), we simulated a total of 10 variables: 7 continuous and 3 categorical.

Six out of seven continuous variables truly contribute to clustering; two out of three categor-

ical variables contribute to clustering. Our Bayesian FMM with variable selection performed

the best (ARI 0.99 [0.96, 1.00]) compared with other methods. In Table 7, variables x1, x4

and x7 had weights 0.05 (0.04, 0.07), 0.04 (0.03, 0.04), 0.05 (0.04, 0.07) indicating none of

them has contribution to clustering; variables x3, x5, x6 and x8 had weights 0.10 (0.05, 0.19),

0.12 (0.06, 0.16), 0.11 (0.06, 0.17) and 0.12 (0.08, 0.22) respectively indicating that they have

small contributions to clustering; variable x2 had weight 0.30 (0.11, 0.41) indicating that it

had slightly larger importance than x3, x5, x6 and x8. Variables x9 and x10 had weights

1.00 (1.00, 1.00) indicating they’re dominant variables that are highly relevant to clustering.

These weights correctly reflect the true setting.

Table 6: Performance comparison in different simulation settings

Clustering Method ARI, median (2.5th percentile, 97.5th percentile)

Sim 1(a) Sim 1(b) Sim 2(a) Sim 3

Bayesian FMM 1.00 (0.98, 1.00) 0.99 (0.96, 1.00) 1.00 (0.98, 1.00) 0.74 (0.65, 0.83)

HyDaP 0.97 (0.92, 1.00) 0.95 (0.87, 1.00) 0.98 (0.94, 1.00) 0.75 (0.63, 0.85)

PAM + Gower distance 0.70 (0.58, 0.80) 0.87 (0.76, 0.96) 0.01 (-0.01, 0.04) 0.71 (0.31, 0.84)

K-prototypes 1.00 (0.96, 1.00) 0.93 (0.79, 1.00) 0.98 (0.92, 1.00) 0.17 (-0.01, 0.26)

Finite mixture model 1.00 (0.98, 1.00) 0.98 (0.44, 1.00) 1.00 (0.56, 1.00) 0.72 (0.56, 0.85)

PAM + FAMD distance 0.78 (0.66, 0.89) 0.93 (0.84, 0.98) 0.09 (-0.01, 0.44) 0.73 (0.22, 0.84)
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In simulation 2(a), we simulated a total of 5 variables: 4 continuous and 1 categorical.

This setting is the same as setting 1(a) except that the sole categorical variable does not

contribute to clustering. Our Bayesian FMM with variable selection performed the best

(ARI 1.00 [0.98, 1.00]) compared with other methods. Variables x1 to x4 exhibited similar

weights as those in simulation 1(a), but variable x5 now had a low weight (0.12 [0.08, 0.23]),

reflecting the underlying setting.

In simulation 3, we simulated a total of 7 variables: 4 continuous and 3 categorical.

None of the continuous variables truly contribute to clustering. Two out of three categorical

variables contribute to clustering. Our Bayesian FMM with variable selection performed

similarly (ARI 0.74 [0.65, 0.83]) with the best performer: HyDaP algorithm (ARI 0.75 [0.63,

0.85]). Table 7 shows that variables x1 to x4 all had weights close to 0 as in the true setting

none of them are distinguishable across clusters. While categorical variable x5 had very low

weight as it has very small differences across clusters in true setting. Meanwhile, variables

x6 and x7 which truly are associated with clustering had high weights (1.00 [1.00, 1.00]).

Table 7: Obtained variable weights in different simulation settings

Variable Weight, median (2.5th percentile, 97.5th percentile)

Sim 1(a) Sim 1(b) Sim 2(a) Sim 3

x1 1.00 (1.00, 1.00) 0.05 (0.04, 0.08) 1.00 (0.95, 1.00) 0.00 (0.00, 0.02)

x2 1.00 (1.00, 1.00) 0.30 (0.11, 0.43) 1.00 (1.00, 1.00) 0.00 (0.00, 0.03)

x3 1.00 (1.00, 1.00) 0.10 (0.05, 0.18) 1.00 (1.00, 1.00) 0.01 (0.00, 0.08)

x4 0.01 (0.01, 0.06) 0.04 (0.03, 0.04) 0.01 (0.01, 0.06) 0.00 (0.00, 0.03)

x5 1.00 (1.00, 1.00) 0.12 (0.06, 0.15) 0.12 (0.08, 0.24) 1.00 (1.00, 1.00)

x6 0.11 (0.06, 0.16) 0.12 (0.09, 0.21)

x7 0.05 (0.04, 0.07) 1.00 (1.00, 1.00)

x8 0.12 (0.08, 0.22)

x9 1.00 (1.00, 1.00)

x10 1.00 (1.00, 1.00)

In summary, the clustering performance of our Bayesian FMM is always the top performer

across all simulation scenarios. In addition, our Bayesian FMM with variable selection is able

to provide quantitative variable importance which is more informative than the dichotomous

information we obtained using the HyDaP algorithm, especially for simulation 1(b).
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Table 8: Clustering performance with existence of censored biomarker variables

Clustering Method ARI, median (2.5th percentile, 97.5th percentile)

Censored variables: x3, x4 Censored variables: x1 - x4

20%a 50%a 20%a 50%a

Bayesian FMM 1.00 (0.98, 1.00) 0.99 (0.96, 1.00) 1.00 (0.97, 1.00) 0.92 (0.42, 0.98)

Naive Bayesian FMM 1.00 (0.98, 1.00) 0.99 (0.44, 1.00) 0.99 (0.65, 1.00) 0.63 (0.46, 0.68)

HyDaP 0.96 (0.92, 0.99) 0.93 (0.89, 0.98) 0.90 (0.84, 0.96) 0.85 (0.75, 0.94)

PAM + Gower distance 0.62 (0.53, 0.71) 0.69 (0.59, 0.78) 0.72 (0.57, 0.80) 0.74 (0.65, 0.82)

K-prototypes 0.99 (0.96, 1.00) 0.98 (0.93, 1.00) 0.90 (0.63, 0.97) 0.60 (0.54, 0.66)

acensoring proportion of each censored variable

3.4.2 With existence of censored biomarker variables

We evaluated the clustering performance of our proposed Bayesian FMM with variable selec-

tion under simulation setting 1(a), where existing methods performed well. We also evaluated

performances of (1) our Bayesian FMM together with the naive method which uses half of

lower detection limit to fill in undetected biomarker values; (2) the HyDaP algorithm to-

gether with the naive method; (3) PAM with Gower distance together with the naive method;

and (4) K-prototypes together with the naive method. We designed 4 scenarios: (1) only

variable x3 and x4 are censored and both with 20% censoring; (2) only variable x3 and x4 are

censored and both with 50% censoring; (1) all continuous variables are censored and each

with 20% censoring; (2) all continuous variables are censored and each with 50% censor-

ing. Clustering results are shown in Table 8 and obtained variable weights using proposed

Bayesian FMM with variable selection are shown in Table 9.

In Table 8 we can observe that except the last column, our Bayesian FMM with variable

selection performed the best. When all the continuous variables have very high censoring

proportions, our method performs typically well but with higher variability from simulation

to simulation (ARI 0.92 [0.42, 0.98]). Using Bayesian FMM with naive method to fill in

censored values instead of using our embedded sampling approach, the performance is worse.

Meanwhile, performance of the HyDaP algorithm was consistently good, though not the best,
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across all scenarios. When all the continuous variables have large censoring proportions, it

can still yield high ARI with narrower percentile interval (ARI 0.85 [0.75, 0.94]). PAM

with Gower distance performed poorly in all scenarios. Performance of K-prototypes is

satisfactory when only a few continuous variables are censored, but becomes worse when

all continuous variables are censored. In terms of variable weights, Table 9 indicates that

our Bayesian FMM with embedded sampling approach yields weights that reflect the true

setting for all scenarios.

Table 9: Obtained variable weights with existence of censored biomarker variables

Weight ARI, median (2.5th percentile, 97.5th percentile)

Censored variables: x3, x4 Censored variables: x1 - x4

20%a 50%a 20%a 50%a

x1 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)

x2 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)

x3 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)

x4 0.03 (0.02, 0.14) 0.01 (0.01, 0.05) 0.02 (0.01, 0.10) 0.01 (0.01, 0.04)

x5 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)

acensoring proportion of each censored variable

In summary, when most continuous variables are censored with high probability, we

suggest using the HyDaP algorithm since it would provide robust performance under this

scenario. In all other scenarios, our proposed Bayesian FMM with variable selection is

preferred as it would yield the best results.
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3.5 APPLICATION

We reanalyzed the SENECA data that was used in Chapter 2 of this dissertation and assumed

that the data contains three latent clusters, which was obtained from the optimal number

of clusters under the FMM framework.

The simulations in Chapter 2 of this dissertation showed that when data contains high

conditional correlations the clustering performance of the FMM could be affected because

that the method assumes conditional independency among variables. For the subsequent

analysis, we dropped variables heart rate, blood sodium level (Na), aspartate aminotrans-

ferase (AST), and blood urea nitrogen (BUN) because of their high correlations to other

variables in the dataset. The goals of our analysis are to obtain quantitative weights for all

variables in the analytic dataset and to assess whether the identified clusters are related to

those identified by the HyDaP algorithm.

Our hyper-parameters used in the analysis are as follows: δ = (0.33, 0.33, 0.33)T was

used assuming that we do not have much information on τ . We set µA = 0 and σ2
A = 1, 000

assuming that we do not have much information on A1m. To set a∆0 = 2 and b∆0 = 0.005

as we believe that σ2
∆0

should be a small number so that the corresponding prior for µmg is

a spike one. We set σ2
∆1

= 100 as we believe that σ2
∆1

should be a large number so that the

corresponding prior for µmg is a slab one. We also let ã = 2 and b̃ = 1 assuming that we do

not have much information on γm. α∆1 = 1 so that the corresponding prior for θmg is a slab

one. We set α∆0 = (10.2, 10)T for gender and α∆0 = (15.5, 2.4, 2.1)T for race based on their

marginal distributions. We would like some shrinkage on both continuous and categorical

variables, so we set ap1 = 1, bp1 = 2, ap2 = 1, and bp2 = 2.

Table 10: A comparison between clusters identified by the Bayesian finite mixture model

and the HyDaP algorithm

HyDaP

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Bayesian FMM

Cluster 1 5083 (50.9%) 2614 (26.2%) 1729 (17.3%) 557 (5.6%)

Cluster 2 1241 (16.7%) 2411 (32.4%) 3073 (41.3%) 722 (9.7%)

Cluster 3 156 (5.7%) 238 (8.6%) 730 (26.5%) 1635 (59.3%)
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By applying our proposed Bayesian FMM, we obtained 3 clusters with sample sizes

9, 983, 7, 447, and 2, 759, respectively. Table 10 shows these results cross tabulating with

the 4 clusters that were identified using the HyDaP algorithm. Cluster 1 and Cluster 3

identified by the Bayesian FMM are similar to Cluster 1 and Cluster 4 identified by the

HyDaP algorithm, respectively. Cluster 2 of the Bayesian FMM is similar to Clusters 2

and 3 altogether from the HyDaP algorithm. The results show that the 3 clusters identified

by using the proposed Bayesian FMM are consistent with those identified from the HyDaP

algorithm.

Table 11 summarizes the clustering weight of each variable obtained from a Bayesian

FMM. None of the variables had driving influences on the final clustering results as their

weights were low. This finding is consistent with what we found using the HyDaP algorithm.

An advantage of using our proposed Bayesian FMM in ranking variable importance is its

ability to provide a real-valued weight for each variable, not just dichotomizing certain vari-

ables as important or not. In SENECA, we found that ESR, troponin, lactate, sex, albumin,

bicarbonate, GCS, and INR had relatively high weights, which mean that these variables

contributed more in forming the 3 clusters than other variables did. Such information pro-

vides more details than the general importance obtained from the HyDaP algorithm. This

is especially useful for data under the partitioned cluster structure.
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Table 11: Clustering weights of the SENECA variables using a Bayesian finite mixture model

Variable Weight Variable Weight Variable Weight

Age 0.05 GCS 0.12 CRP 0.10

Temperature 0.05 Elixhauser score 0.04 INR 0.12

Systolic blood pressure 0.11 White blood cell 0.06 Glucose 0.05

Respiration rate 0.08 Bands 0.08 Platelets 0.05

Albumin 0.13 Creatinine 0.05 SaO2 0.05

Cl 0.07 Bilirubin 0.09 PaO2 0.08

ESR 0.30 Troponin 0.27 Gender 0.20

Hemoglobin 0.06 Lactate 0.22 Race 0.06

Bicarbonate 0.12 ALT 0.11

Abbreviation: ESR: Erythrocyte sedimentation rate; GCS: Glasgow coma scale;

ALT: Alanine aminotransferase; CRP: C-reactive protein; INR: International normalized ratio;

SaO2: Oxygen saturation; PaO2: Partial pressure of oxygen
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Figure 11: Distributions of selected clinical endpoints for the three clusters identified by

various Bayesian finite mixture models

Table 12 and Figure 11 show the distributions of clinical endpoints across the 3 clusters

obtained by Bayesian FMM with variable selection. We observe that these are similar to

those identified by the traditional FMM but our method is able to provide weights of all

involved variables so that we have better knowledge about their importance and better

interpretation of clustering results.
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Table 12: Distributions of selected clinical endpoints for the three clusters identified by a

Bayesian finite mixture model

Clinical Endpoints All Clusters Cluster 1 Cluster 2 Cluster 3 p-value

Bayesian FMM with variable selection

Cluster size 20189 9984 (49.4%) 7447 (36.9%) 2759 (13.7%)

Admitted to ICU 9063 (44.9%) 2817 (28.2%) 3809 (51.1%) 2437 (88.3%) <0.001

Mechanical Ventilation 5773 (28.6%) 1694 (17.0%) 2227 (29.9%) 1852 (67.1%) <0.001

Vasopressor 3755 (18.6%) 703 (7.0%) 1568 (21.1%) 1484 (53.8%) <0.001

In-hospital mortality 2081 (10.3%) 267 (2.7%) 889 (11.9%) 926 (33.6%) <0.001

90-day mortalitya

(exclude in hospital mortality)
2758 (14.2%) 1029 (11.0%) 1286 (20.4%) 443 (25.4%) <0.001

365-day mortalityb

(exclude in hospital mortality)
5043 (27.9%) 2096 (21.6%) 2268 (34.6%) 679 (37.0%) <0.001

Traditional FMM

Cluster size 20189 6410 (31.7%) 7581 (37.6%) 6198 (30.7%)

Admitted to ICU 9063 (44.9%) 1455 (22.7%) 2882 (38.0%) 4726 (76.3%) <0.001

Mechanical Ventilation 5773 (28.6%) 933 (14.6%) 1436 (18.9%) 3404 (54.9%) <0.001

Vasopressor 3755 (18.6%) 324 (5.1%) 1016 (13.4%) 2415 (39.0%) <0.001

In-hospital mortality 2081 (10.3%) 109 (1.7%) 486 (6.4%) 1487 (24.0%) <0.001

90-day mortalitya

(exclude in hospital mortality)
2758 (14.2%) 504 (8.3%) 1192 (17.4%) 1061 (23.6%) <0.001

365-day mortalityb

(exclude in hospital mortality)
5043 (27.9%) 1109 (17.6%) 2200 (31.0%) 1734 (36.8%) <0.001

aTotal number is 17,432 after excluding in hospital death and missing.

bTotal number is 18,107 after excluding in hospital death.
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3.6 DISCUSSION

We proposed a Bayesian finite mixture model (FMM) that can simultaneously cluster vari-

ables with mixed types, calculate variable weights, as well as handle censored biomarker

variables. In this method we apply a Bayesian framework in order to bypass the limitations

in the EM algorithm which is the standard estimation method for a FMM. In addition to

identifying clusters, our model can provide real-valued variable weights which are more in-

formative than a dichotomy of a variable being important vs. not in clustering. In addition,

our proposed method is able to handle censored biomarker variables through recovering their

underlying distributions. For a dataset of variables with mixed types but without censoring,

our proposed Bayesian FMM performs better than the HyDaP algorithm and other existing

methods across various simulation settings. If censored variables exist in the data, proposed

Bayesian FMM performs better than other clustering algorithms using ad-hoc imputation

methods. However, when variables have high censoring proportions, the proposed Bayesian

FMM may not consistently outperform other approaches. In this case, the HyDaP algo-

rithm with ad-hoc imputations provides better and robust results. Under all scenarios, our

proposed Bayesian FMM with variable selection is able to provide reasonable weights of all

variables.

Users of the proposed Bayesian FMM model need to be aware of certain limitations.

Same as finite mixture models, the proposed model also has the disadvantage of unverifiable

distributional assumptions. Besides, the model assumes conditional independence (i.e., vari-

ables are independent conditional on cluster membership) so it may not perform well when

variables are subject to within-cluster correlations. In computations, because that we need

to specify the values for all hyper-parameters before running the algorithm, the computation

time for the proposed model is usually longer than that for the EM algorithm.
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4.0 DISCUSSION AND FUTURE WORK

Clustering has received a lot of attention and been applied in various areas these days.

However, clustering methods that can handle mixed types of variables (both continuous

and categorical) are still limited. The goal of this dissertation is to develop methods that

can cluster data with mixed types of variables and perform variable selection in clustering.

The two methods we proposed achieve this goal from different perspectives: (1) the HyDaP

algorithm is a nonparametric approach while the Bayesian FMM with variable selection is a

model-based one; (2) variable selection procedure of the HyDaP algorithm is a filter method

while the Bayesian FMM with variable selection is a wrapper method. Overall, our HyDaP

algorithm and Bayesian FMM with variable selection perform better than other existing

methods under the three data structures we specified in the dissertation. Other existing

methods may fail under at least one type of data structures. Besides, both the HyDaP

algorithm and the Bayesian FMM with variable selection provide the information on variable

importance for clustering which is usually of interest for many researchers, particularly in

interpreting clustering results.

Future work can be done on the top of the development of this dissertation. For the

HyDaP algorithm, choice of the optimal number of clusters can be further explored. We can

also extend the method to account for outliers or zero-inflated data. For the Bayesian FMM

with variable selection, the framework can be extended to account for more distributions.

Approaches of handling censored variables can also be further developed.
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APPENDIX

VARIABLES USED IN SENECA DATA ANALYSIS

Age

Gender: categorical variable; 2 levels (male/female)

Race: categorical variables; 3 levels (white/black/hispanic)

Maximum temperature within 6 hours of ER presentation

Maximum heart rate within 6 hours of ER presentation

Minimum systolic blood pressure within 6 hours of ER presentation

Maximum respiration rate within 6 hours of ER presentation

Maximum albumin within 6 hours of ER presentation

Maximum Cl within 6 hours of ER presentation

Maximum erythrocyte sedimentation rate (ESR) within 6 hours of ER presentation

Maximum hemoglobin within 6 hours of ER presentation

Maximum bicarbonate within 6 hours of ER presentation

Maximum Sodium within 6 hours of ER presentation

Minimum Glasgow Coma Scale (GCS) within 6 hours of ER presentation

Elixhauser Score

Maximum white blood cell within 6 hours of ER presentation

Maximum bands within 6 hours of ER presentation

Maximum creatinine within 6 hours of ER presentation

Maximum bilirubin within 6 hours of ER presentation

Maximum troponin within 6 hours of ER presentation
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Maximum lactate within 6 hours of ER presentation

Maximum alanine aminotransferase (ALT) within 6 hours of ER presentation

Maximum aspartate aminotransferase (AST) within 6 hours of ER presentation

Maximum C-reactive protein within 6 hours of ER presentation

Maximum international normalized ratio (INR) within 6 hours of ER presentation

Maximum glucose within 6 hours of ER presentation

Maximum Platelets within 6 hours of ER presentation

Maximum blood urea nitrogen (BUN) within 6 hours of ER presentation

Oxygen saturation (SaO2)

Minimum partial pressure of oxygen (PaO2) within 6 hours of ER presentation
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