
 

  

Title Page 

Adipose Stromal Cell-Based Elastogenesis Therapy 
for Adult and Pediatric Aortic Defects 

 
 
 
 
 
 
 
 

by 
 

Aneesh Krishna Ramaswamy 
 

Bachelor of Science in Biomedical Engineering, Purdue University, 2011 
 

Master of Science in Biomedical Engineering, Purdue University, 2013 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 
 

The Swanson School of Engineering in partial fulfillment 
  

of the requirements for the degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2019



 ii 

Committee Membership Page 

UNIVERSITY OF PITTSBURGH 
 

SWANSON SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 
 
 

This dissertation was presented 
 

by 
 
 

Aneesh Krishna Ramaswamy 
 
 

It was defended on 
 

March 25, 2019 
 

and approved by 
 

Marie Billaud, Ph.D., Research Assistant Professor, Departments of Cardiothoracic Surgery and 
Bioengineering 

 
Thomas G. Gleason, M.D., Professor, Departments of Cardiothoracic Surgery and 

Bioengineering 
 

Zsolt Urban, Ph.D., Associate Professor, Department of Human Genetics 
 

Jonathan P. Vande Geest, Ph.D., Professor, Department of Bioengineering 
 

Dissertation Co-Director: David A. Vorp, Ph.D., Professor, Departments of Bioengineering, 
Surgery, Cardiothoracic Surgery, and Chemical and Petroleum Engineering 

 
Dissertation Co-Director: Justin S. Weinbaum, Ph.D., Research Assistant Professor, Departments 

of Bioengineering and Pathology 
 

  



 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Aneesh Krishna Ramaswamy 
 

2019 
 
 
 

 



 iv 

Abstract 

Adipose Stromal Cell-Based Elastogenesis Therapy 
for Adult and Pediatric Aortic Defects 

 
Aneesh K. Ramaswamy, Ph.D. 

 
University of Pittsburgh, 2019 

 

 

Aortic aneurysm (AA) is a balloon-like enlargement of the aorta exceeding 1.5-times 

original diameter and possessing a life-threatening risk of rupture if left untreated, representing 

the 15th leading cause of death in the United States. Currently, surgical intervention is governed 

by aortic diameter measurements, recommended after adult AA enlarge beyond a “critical 

diameter” of 5.5cm and pediatric AA exceed a 0.5cm/year growth rate. AA diameter growth is 

mediated by inflammatory damage to extracellular matrix protein elastin, responsible for aortic 

recoil during pulsatile blood flow. Therapeutic options for sub-critical AA are limited to 

“watchful waiting” imaging every 6-to-12 months to monitor diameter growth, or broad-targeted 

therapeutics (beta blockers, ACE inhibitors) that do not work to rebuild the aortic wall. 

Recent work by our lab has shown that delivery of adipose-derived stromal cells (ASCs) 

can slow AA dilation and preserve elastic fibers, by either suppressing inflammatory elastin 

breakdown or stimulating new elastin deposition. This dissertation work utilized a versatile, 

fibrin-based 3D SMC aortic culture platform to test whether paracrine signaling using ASC 

secreted factors (ASC-SF) could induce new human elastin deposition by three different classes 

of aortic smooth muscle cells (SMCs): healthy adult SMCs, aneurysmal adult SMCs, and 

aneurysmal pediatric SMCs. 

Elastin deposition was evaluated at four different points of interest on the elastogenesis 

cascade: elastin organizational protein transcription (generating tropoelastin, fibulin-4, and 
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fibulin-5 coacervates/globules) [1-3], elastic fiber organization (through LTBP-4, fibulin-4, and 

fibulin-5 mediated deposition onto fibrillin-1 microfibrils), cross-linked elastin chemical 

maturity (mediated by lysyl oxidase or LOX, and lysyl oxidase-like 1 or LOXL-1), and 

mechanical functionality of the deposited extracellular matrix. Additionally, two methods were 

explored to maximize clinical translation of ASC-SF therapeutic delivery: potency of ASC-SF-

derived exosomes, and a magnetic-guided periadventitial in vivo delivery system.  
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(A)TAA & ATAA (ascending) thoracic aortic aneurysm 

MFS Marfan syndrome 

BAV Bicuspid Aortic Valve Disease 

TGF-β transforming growth factor β 

LTBP latent TGF-β binding protein 

LOX lysyl oxidase 

LOXL-1 LOX like 1 

ASC adipose-derived stromal cell 

ASC-CM ASC conditioned media 

ASC-SF ASC secreted factor therapy 

ASC-EV ASC secreted extracellular vesicles 
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1.0 Introduction 

1.1 Aorta and Aortic Aneurysm 

1.1.1  Aorta Anatomy 

The aorta is the large blood vessel that carries oxygenated blood from the left heart 

throughout the body. The aortic root, the closest section of the aorta to the heart, is part of the left 

ventricular outflow tract and supports the leaflets of the tricuspid aortic valve [4]. The ascending 

thoracic aorta follows, typically under 2.1cm/m2 in diameter for healthy adults [5]. The 

subsequent aortic arch includes the branching brachiocephalic trunk, the left common carotid 

artery, and the left subclavian artery. Distal to the left subclavian artery is the descending 

thoracic aorta, diameter typically under 1.6cm/m2 in healthy adults, continuing until the 

diaphragm. The abdominal aorta, typically 3cm in diameter for healthy adults, extends from the 

diaphragm to the iliac bifurcation [5]. 

The aorta wall is comprised of three distinct layers, each providing functionality towards 

the overall stability of the dynamic blood vessel. The outer layer, or the tunica adventitia, is rich 

in fibroblasts and consists of basement membrane extracellular matrix (ECM) proteins collagen 

(types I and III), fibronectin, and laminin to maintain vascular strength and structure [6]. The 

aorta’s central layer, the tunica media, is the thickest and consists of alternating layers of smooth 

muscle cells (SMCs) and lamellar sheets of ECM rich in elastin. Elastic lamellar sheets in the 

medial layer are typically solid and uninterrupted layers, clearly visible as dark purple or black 

on Verhoeff-Van Gieson staining of histological tissue as elastin binds with the iron-hematoxylin 
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complex in the staining reagent. Additionally, the tunica media consists of collagen I and III, 

fibronectin, proteoglycans, and glycosaminoglycans that fortify aortic stiffness and integrity, 

while elastic layers provide vascular elastic recoil properties necessary to pump oxygen-rich 

blood to branching arteries during systole and diastole (known as the Windkessel effect) [7]. The 

media is flanked on both its inner and outer sides by elastic layers, the external elastic lamina 

separating the media and adventitia and the internal elastic lamina separating the media and the 

aorta’s inner-most intima layer. The intima consists of a single uninterrupted layer of endothelial 

cells (ECs) designed as a hemocompatible anti-inflammatory surface for blood flow, and a 

subendothelial layer consisting of SMC-like pericytes (thickness of the subendothelial layer is 

age-dependent) [8] and basement membrane ECM deposited primarily by ECs. EC-secreted 

basement membrane is rich in collagens I, III, and IV alongside fibronectin, laminin, 

thrombospondin, and proteoglycans heparan sulfate, dermatan sulfate, and chondroitin sulfate to 

prevent cellular or particulate infiltration within the aortic wall [9]. 

1.1.2  Aortic Aneurysms and Their Incidence 

Aortic aneurysm (AA) is a balloon-like enlargement of the aorta defined as aortic dilation 

to 1.5-times its original diameter, possessing a life-threatening risk of rupture. AA are most 

prominent in both aging populations (primarily smokers) and pediatric or young adult patients 

with connective tissue genetic disorders [10]. 

AA is typically characterized by a breakdown in elastin within the tunica media layer of 

the aortic wall. Elastin fragmentation within the ascending thoracic aorta (ascending thoracic 

aortic aneurysm, ATAA) or complete elastic fiber destruction within the infrarenal abdominal 

aorta (abdominal aortic aneurysm, AAA) leads to a decrease in aneurysmal wall compliance, 
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resulting in wall shape irregularities, turbulent blood flow, and irregularities in ECM 

regeneration causing concentrated regions of stiff tissue prone to rupture [11]. 

Approximately 5 million Americans over the age of 50 are living with AAA or ATAA 

[12, 13], with over 200,000 new AAs diagnosed annually [14]. Actively dilating AAs, if left 

untreated, can weaken and ultimately rupture or dissect, with over 15,000 annual AA 

ruptures/dissections [15, 16] and an 80-90% AA mortality rate contributing to AAs being the 15th 

leading cause of death in the United States in 2018 [17-19]. 

1.1.3  Genetic Disorders that Lead to Aortic Elastin Disruption and Aortic Aneurysm 

Marfan Syndrome (MFS) is the result of mutations within the gene coding for the ECM 

protein fibrillin-1 (FBN1), which serves as the main template for proper elastin formation and 

cross-linking. To date, over 1,000 different FBN1 mutations have been identified in MFS 

patients [20]. The Ghent nosology, a set of defined clinical criteria to identify MFS, is reliant on 

presence of aortic dilation (particularly within the aortic root section) as a result of systemic 

elastin disruption. The Ghent nosology also includes on family history, aortic root dilation, 

fibrillin-1 mutation, ectopia lentis (or a dislocation of the eye’s lens), and a number of visible 

systemic features (such as chest asymmetry, hindfoot deformity, and joint extension) for accurate 

detection and diagnosis of MFS [21]. Early diagnosis and aortic treatment, both surgical and 

non-surgical, has been critical to increasing life expectancy of MFS patients (mean death age 

32±16 years in 1972, 45±17 years in 1998) [22, 23]. MFS diagnosis incidence reports range 

between 6.5 [24] to 10.2 [25] out of 100,000 individuals, with a mean diagnosis age of 19 years 

old. 
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Loeys-Dietz syndrome (LDS) is an autosomal dominant genetic disorder with mutations 

linked to transforming growth factor beta (TGF-β) receptor disruptions; features of the disease 

include increasing aortic tortuosity and, like MFS, severe aortic dilation and aneurysm formation 

[26]. LDS is difficult to diagnose, and often presents with the most aggressive and rapid 

cardiovascular complication rates in patients as young as 6 months old [27, 28]. Aortic dilation is 

present among 80% of children diagnosed with MFS [29], and the mean age of death for LDS 

patients is 26.1 years old (with sudden aortic rupture as the primary cause of death [26]).  

Bicuspid Aortic Valve (BAV) Disease is among the most commonly diagnosed 

congenital cardiovascular disorders, with studies placing prevalence anywhere from 0.6% to 

1.5% of the general population [30-32]. A healthy aortic valve, located at the proximal end of the 

aortic root, has three leaflets that open and close to allow only forward blood flow from the left 

ventricle through the aorta. BAV patients typically have only two separate leaflets, unequal in 

size, formed during valvulogenesis within the first eight weeks of fetal development [33]. BAV 

is commonly diagnosed among patients over 40 years old, with only ~2% diagnosed during 

childhood [34]. While survival rate among BAV patients is statistically similar to the general 

population, incidence of adverse cardiovascular events were increased, such as aortic root 

dilation and ATAA [35], ascending thoracic aorta dissection [36], calcification-related 

complications leading to leaflet or aortic stenosis [31], aortic incompetence due to myoxid 

degeneration of the valves [37], and coarctation of the aorta.  

Williams Syndrome (WS) is a genetic disorder diagnosed in ~10 per 100,000 individuals 

[38], involving the mutation or heterozygous deletion of the elastin-encoding ELN gene on 

chromosome 7 [39]. Cardiovascular implications of WS include supravalvular aortic stenosis and 

narrowing of the ascending aorta [40]. 
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Non-surgical treatments are limited for pediatric patients with these genetic diseases, and 

typically require actively disrupting normal growth of the aorta during adolescence. A 

therapeutic approach that targets disrupted elastic fibers, particularly within pediatric and young 

adult populations vulnerable to aortic aneurysm, has the end goal of fortifying aortic vasculature 

and reducing repeated surgeries following aortic dilation. 

1.2 Elastin 

1.2.1  Elastogenesis and Elastin Chaperone Matricellular Proteins 

Mature aortic elastin is formed during early childhood stages of human development, and 

while multiple matricellular chaperone proteins are essential to the formation of mature elastic 

fibers, the process must begin by expression of the 64 kilodalton protein tropoelastin [41]. A 

single tropoelastin-promoting gene, ELN, is present in the mammalian genome, and mutation or 

heterozygosity of the gene is linked to several human diseases including WS [42], cutis laxa 

[43], and supravalvular aortic stenosis [44]. Tropoelastin’s amino acid sequence has alternating 

hydrophobic (primarily glycine, valine, and proline) and hydrophilic (primarily lysine, alanine, 

and proline) domains. Elasticity is driven by the shape and entropic spring-like properties of 

conjoined tropoelastin monomers, forming a “condensed coil” responsible for elasticity. The C-

terminal region, exposed after proper coiling, is responsible for cell binding [45]. 

Tropoelastin can be upregulated by TGF-β signaling, occurring post-transcriptionally 

through stabilization of the messenger RNA [46]. One component of the elastic fiber, the 

matricellular protein microfibril-associated glycoprotein-1 (MAGP-1), activates latent TGF-β 
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signaling directly [47], potentially presenting an opportunity for molecular engineers looking to 

encourage elastogenesis. MAGP-1, a matricellular protein that helps modulate SMC homeostasis 

during spreading [48], inhibits binding of latent TGF-β binding protein (LTBP)-1 to fibrillin-1, 

and could fine tune concentration and deposition of the large latent TGF-β complex (LLC) [49]. 

An additional potential regulator of TGF-β activity upstream of elastin transcription is the 

matricellular protein emilin-1, which associates with elastic fiber components and inhibits all 

three pro-TGF-β molecules [50] as a regulatory mechanism for blood pressure [51]. 

After transcription and translation, elastin is trafficked to the surface of the cell, where it 

is chaperoned to fibrillin microfibrils and assembled (Figure 1). Tropoelastin and chaperone 

proteins assemble outside of the cell, creating elastin “coacervates” or “globules” with two major 

classes of interactions [1-3]. One is mediated by fibulin-4, which binds to tropoelastin and 

facilitates cross-linking by lysyl oxidase (LOX). The other is mediated by fibulin-5, which binds 

tropoelastin together with lysyl oxidase-like 1 (LOXL-1). Tropoelastin coacervates are deposited 

along the fibrillin-1 microfibril complex, with initial interaction mediated by LTBP-4 [52-55]. 

Subsequent tropoelastin cross-linking involves the chemical modification of lysine residues, 

followed by condensation reactions to form desmosine and isodesmosine cross-links. Note that 

many important steps of microfibril assembly prior to elastin deposition, including the 

involvement of fibronectin and other members of the LTBP family, are excluded here for clarity. 

Deposited tropoelastin coacervates are integrated within the fibrillin-1 microfibril 

complex, creating the structure for mature functional elastic fibers. Intra and inter-molecular 

crosslinking of deposited tropoelastin coacervates is performed by LOX and LOXL-1 within 

lysine-rich hydrophilic tropoelastin domains [56, 57], opening the coacervate structure and to 

form a mature, mechanically-active resilient elastic macrostructure. 
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Figure 1: SMC elastogenesis cascade. 

(1) Transcription of tropoelastin and its chaperone organizational matricellular proteins. (2) Tropoelastin and 

chaperone proteins assemble outside of the cell, with two major classes of interactions. One is mediated by fibulin-4, 

which binds to tropoelastin and facilitates cross-linking by lysyl oxidase (LOX). The other is mediated by fibulin-5, 

which binds tropoelastin together with lysyl oxidase-like 1 (LOXL-1). (3) Tropoelastin coacervates, or globules of 

tropoelastin and chaperone proteins, are formed. (4) Tropoelastin coacervates are deposited along the fibrillin-1 

microfibril complex, with initial interaction mediated by LTBP-4. Note that many important steps of microfibril 

assembly prior to elastin deposition, including the involvement of fibronectin, are excluded here for clarity. (5) 

Deposited tropoelastin coacervates integrate within the fibrillin-1/LTBP-1/LTBP-2/fibronectin microfibril complex. 

(6) Cross-linking, via LOX and LOXL-1, occurs between deposited tropoelastin coacervates within the microfibril 

complex, opening the coacervate structure and forming mature, mechanically-active elastic fibers. Original 

illustration, made in coordination with Rick Henkel at Light House Artwork (rick@lighthouseartwork.com). 

(Published in Publication #3 from Section 7.2)  
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1.2.2  Elastin Chaperone Matricellular Proteins in Regenerative Medicine 

Aforementioned elastin organizational matricellular proteins (members of the fibrillin, 

fibulin, LOX, and LTBP families) are downregulated during adulthood within healthy aortic 

walls [58, 59]. The interplay of elastin chaperone proteins is crucial for mature, functional elastin 

deposition. Current regenerative analysis methods often limit their scope to molecular analysis of 

tropoelastin, omitting the milieu of chaperone proteins involved within aortic elastogenesis.  

Fibrillin-1 and fibrillin-2 are both important for elastic fiber development and 

maintenance of a healthy vasculature. Fibrillin-2 displays preferential accumulation in elastin 

rich areas [60] while fibrillin-1 is more widely expressed, making it unsurprising that MFS 

patients have a wide spectrum of pathologies [61]. Fibrillin-1 [62] and fibrillin-2 [63] deficient 

mice both die soon after birth due to aortic rupture, although qualitative differences were 

observed in the medial wall between the two forms of fibrillin deficiency. One theory for the 

different modes of action of the fibrillin isoforms is that initial fibrillin-2 involvement aids aortic 

matrix stability, but continued fibrillin-1 expression is essential for maturation and post-neonatal 

vascular function [63]. 

Fibulin-2, a protein that binds extracellular ligands, is thought to provide redundancy 

with fibulin-1 (which interacts with elastin precursor tropoelastin), since fibulin-1 knockout mice 

produce vessels with viable elastic fibers [64]. Fibulin-2 interacts with virtually all elastin 

precursors (though it is not associated with tropoelastin deposition by fibroblasts [65]) and 

expressed in basement membrane of heart, with an enhanced role during development [66]. 

Fibulin-2 has the highest binding affinity to elastin of the fibulins, and interacts with fibulin-5 to 

form the elastic lamina by directing elastic fiber microassembly during development and after 
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injury [67]. Fibulin-5 is itself an elastin binding protein involved in primary organization and 

assembly of elastic fibers [68].  

Dr. Hiromi Yanagisawa’s group has shown that fibulin-5 is essential for mature elastin 

deposition both in vivo and in vitro [69]. Though groups have identified basic fibulin-5 

biochemical interactions, particularly its proteolytic cleavage in diseased tissue and impact on 

desmosine formation [70], few have targeted fibulin-5 as a cardiovascular regenerative medicine 

tool to help organize newly deposited aortic tropoelastin. In a mouse fibrosis model, loss of 

fibulin-5 resulted in a reduction in aortic stiffness, possibly halting the stiffness-induced local 

inflammatory response and deposition of ECM [71]. Mutation to fibulin-5 alone causes a cutis 

laxa phenotype highly susceptible to arterial tortuosity, but without presenting with aneurysm 

[72]. Other members of the fibulin family have key role in the elastogenesis and ECM deposition 

cascade as well. As reviewed in [73], mutations in the matricellular protein fibulin-4 have been 

linked to cutis laxa, causing both high arterial tortuosity and ATAA formation [74].  

1.2.3  Elastin and Matricellular Proteins in Aortic Disease 

Elastin degradation is the most common feature within AA walls, with other features 

including mechanical wall stress [75-77], inflammatory response and proteolytic degradation 

[78-80], and exogenous circulating growth factors (primarily activating the TGF-β pathway) [81] 

disrupting local AA SMCs and elastic fibers [82], leading to increased risk of rupture.  

MFS is a systemic mutation of the microfibrillar protein fibrillin-1, impacting the elastin 

coacervate deposition stage of the elastogenesis cascade and resulting in a lack of mature 

insoluble elastin [83]. Deficiency of fibrillin-1 commonly results in a dilation of the aorta for 

MFS patients, though fibrillin-1 may be more vital to aortic tissue homeostasis rather than elastic 
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fiber assembly [62] pointing to the inability of MFS aortic walls to adapt to high hemodynamic 

stress as the primary driver of dilation and aneurysm. 

LDS is caused by a mutation in TGF-β1 or TGF-β2 receptor genes (TGFBR1 and 

TGFBR2) [73, 84], leading to the overproduction of collagen I/III and disorganization of elastic 

fibers with loss of mature insoluble elastin protein within aortic walls [85]. Additional LDS-

related mutations have been found in TGF-β2 [86] and Smad3 [87], a downstream signaling 

molecule within the TGF-β pathway. 

ATAA in BAV patients is often attributed to adverse hemodynamic flow conditions, 

smooth muscle cell death and subsequent synthetic phenotypic changes, and an imbalance of 

collagen I/III to elastin production within the affected aortic region [77]. Elastin destruction is 

more localized within the concave region of BAV-ATAA [88], with an accompanied production 

of tenascin and fibronectin observed at these sites of severe elastic fiber fragmentation. Similar 

to MFS, a subset of BAV patients exhibit mutations in the fibrillin-1 gene [89], as well as 

abnormalities in the NOTCH1 [90] and actin alpha 2 smooth muscle aorta (ACTA2) [91] genes 

seen in BAV-ATAA patients highly prone to aneurysm and dissection. 

1.2.4  Elastin in Regenerative Medicine and Vascular Tissue Engineering 

Pro-elastogenic regeneration strategies typically focus on one of three major mechanisms 

of elastin breakdown within diseased aortic tissue: (1) suppression of inflammatory degradation 

of elastin (elastolysis), (2) SMC dysfunction and modulation of SMC phenotype to regulate 

elastolysis, and (3) induction of new mature elastin deposition.  
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Strategies to inhibit elastolysis include clinical evaluations of matrix metalloproteinase 

(MMP)-inhibitors to halt AA dilation and broad-targeted antihypertensives to reduce vascular 

wall stresses and slow pediatric AA growth, further discussed in Section 1.4.2 .  

Regeneration strategies working to both regulate SMC phenotype and induce new elastin 

deposition include exogenous stimulation using soluble factors. A combination of TGF-β and 

oligomers of the glycosaminoglycan hyaluronan induced elastin deposition in vitro on murine 

SMCs isolated from early- and late-stage AAA [92]. 

Additionally, bioreactor cultures within SMC-seeded vascular grafts have been used to 

leverage induction of elastin deposition into a functional vascular scaffold. Human SMCs have 

been seeded within an electrospun poly(ethylene glycol) dimethacrylate/poly(L-lacticide) (or, 

PEGdma/PLA) scaffold, with a laminar shear stress bioreactor inducing elastin protein 

transcription and elastin chaperone protein upregulation (fibrillin-1, fibrillin-2, fibulin-4, fibulin-

5, and LOX) [1]. Similarly, induced pluripotent stem cell-derived SMCs seeded within 

PEGdma/PLA scaffolds showed the same pattern of elastin and elastin chaperone protein 

deposition [93]. Elastin deposition was also induced by adult baboon SMCs seeded within a 

poly(glycerol sebacate) scaffold using unsupplemented culture media within a pulsatile flow 

bioreactor [94], with smaller pore sizes as a mechanism to increase SMC seeding density and 

ECM deposition density. Acellular fibrin gel pulmonary artery grafts, seeded with ovine dermal 

fibroblasts, were repopulated by SMCs and saw significant elastin and collagen deposition after 

42 weeks of implantation within a growing lamb model [95]. 

Elastin has also been used as an essential biomaterial integrated within tissue engineered 

vascular grafts and other related aortic biomaterials. Incorporation of insoluble elastin within an 

electrochemically-aligned collagen fiber graft mimicked the mechanical properties of native 
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vasculature and increased SMC recruitment and phenotype modulation within the graft [96]. A 

stabilized elastin tubular scaffold was created by decellularizing and digesting collagen from 

porcine carotid arteries via alkaline extraction, and treating the remaining ECM with penta-

galloyl glucose [97]. However, proteomic analysis comparing three different human adipose 

extracellular matrix decellularization techniques (enzymatic, detergent, and solvent-based 

methods) showed minimal evidence of elastin preservation alongside significant maintenance of 

collagen, fibrillin, laminin, and vimentin, signaling even the most sophisticated decellularization 

techniques require a stabilizing agent to preserve elastic fibers [98]. An elastin-based polymer 

was synthesized using the main polypeptide elastin sequence glycine-valine-glycine-valine-

proline (GVGVP), as a potential alternative solution for elastin within tissue engineered vascular 

biomaterials [99]. 

1.3 Aortic SMCs 

1.3.1  SMC Differentiation in Diseased Aortic Tissue 

SMC response to the local microenvironment (via ECM stiffness, exogenous factor 

signaling, or other external stimuli) plays a significant role in aortic wall maintenance, regulating 

ECM secretion, MMP activity, inflammatory response, and atherosclerosis. SMCs are 

responsible for the synthesis, alignment, and maintenance of elastin during development to 

provide effective passive recoil in response to hemodynamics and local tissue deformation. Pro-

inflammatory cytokines play a key role in SMC regulation within the aortic wall, with monocyte 

chemoattractant protein 1 (MCP-1), involved in the recruitment of monocytes and accelerate 
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macrophage differentiation [100], induced following leukocyte adhesion to EC-expressed 

adhesion proteins VCAM-1 and E/P-selectin [101]. Differentiated macrophages internalize 

lipoproteins and form foam cells [102], which also work to modulate local aortic SMC 

microenvironment regulation. 

Medial SMCs undergo phenotypic switching along a “spectrum” of differentiation status 

[103], moving from a contractile or quiescent phenotype towards a hyper-proliferative synthetic 

(or hyperplastic) phenotype [104, 105]. Foam cell-induced phenotype modulation is induced 

through inflammatory cytokine and circulating factor signaling [106], including platelet-derived 

growth factor and the TGF-β family, foam cell lipid byproducts [107], or paracrine signaling by 

neighboring cells [105]. Mechanical stimulation has also been shown to modulate SMC 

phenotype, both in vitro and in vivo [108, 109]. 

Atherogenesis, or the formation of atherosclerotic plaques, starts as synthetic SMCs 

absorb surrounding foam cell-secreted lipid byproducts to form a thick collagen-rich fibrous cap 

below the intimal aortic EC monolayer [110, 111]. The underlying SMC and ECM layers 

undergo necrosis as macrophages secrete MMPs, with MMP-2 and MMP-9 acting as primary 

drivers for ECM degradation below the plaque surface [102]. Local secretion of tumor necrosis 

factor alpha (TNF-α) and interleukin-1 by macrophages and SMCs help drive SMCs further 

towards a synthetic phenotype [112]. Interferon gamma (IFN-γ), Interleukin-1 beta (IL-1β), and 

TNF-α all have the ability to induce the local expression of nitric oxide synthase (NOS) [113], 

resulting in an upregulation of EC and SMC apoptosis [114]. Macrophage-derived serine and 

cysteine proteases also modulate degradation of collagen and elastin within the fibroatheroma 

plaque, causing platelet aggregation and increased risk of downstream deep vein thrombosis. 
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Angiotensin II (AngII) helps to promote atherosclerosis by inducing the adhesion and migration 

of SMCs, and is mediated by osteopontin [115]. 

Similar SMC phenotype modulation can change local protease activity and pro-

inflammatory cytokine production, increasing extracellular matrix breakdown within AA. MMP-

2 activity and MMP-9 expression correlates strongly with human AAA elastolysis in explanted 

tissue [116], with effects augmented by macrophage infiltration [117] Upregulation of local 

MMP-2 and MMP-9 in a murine AAA by SMCs with decreased expression of α-smooth muscle 

actin and SM22α occurs early in AA progression, resulting in detectible fragmented elastin even 

before ‘aneurysmal’ dilation threshold of 150% is crossed [118]. AAA has a similarly high level 

of MCP-1-mediated macrophage infiltration to atherosclerotic models, with additional 

upregulation in oxidative stress markers mitochondrial superoxide dismutase and peroxiredoxin-

1, potentially driving AAA elastin fragmentation [119]. Recruitment and phenotypic modulation 

of T cells [120] and inhibition of key pro-inflammatory cytokines (IL-1β inhibition, for example) 

has been targeted as key targets for small abdominal AA therapeutics [121]. Though significantly 

less characterized than atherosclerosis, SMC phenotypic modulation has shown to be a key target 

for small aneurysm therapies, serving as a key mediator to potentially reduce MMP expression, 

slow ECM breakdown, and stabilize AA. 

1.3.2  Local Matricellular Proteins and Microenvironment Can Act To Regulate Aortic 

SMCs 

Aortic SMCs are essential for maintenance of structure and integrity of vascular walls 

and are highly influenced by locally-deposited extracellular matrix and matricellular proteins, 

making aortic SMCs key targets for aneurysmal therapeutics. 
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SMCs also can potentially synthesize new elastin in response to damage; however, 

current strategies have been limited in their ability to generate mature elastin deposition from 

adult SMCs at the transcriptional level. Instead, SMC adhesion and migration have been vascular 

engineering targets, and elastogenesis stimulation can be targeted by a combination of SMC 

recruitment and phenotype regulation to produce organizational elastin chaperone proteins.  

Fibulin-5, in addition to its well-documented role on elastogenesis, is the primary 

mediator of urokinase-type plasminogen activator (uPA)-driven migration of SMCs [122]. The 

mechanism for this appears to be that fibulin-5 binding facilitates activation of uPA, which then 

activates plasmin to cleave the portion of fibulin-5 that binds β1 integrin, driving cell migration. 

This action increases SMC remodeling and vascularization after injury and antagonizes 

angiogenesis by inducing thrombospondin-1 (TSP-1) and antagonizing FN receptors [122, 123]. 

Galectin-1, a glycan-binding protein primarily involved within anti-inflammatory cardiac tissue 

response to acute myocardial infarction, has shown to restrict SMC motility and modulates focal 

adhesion turnover on fibronectin, via in vitro assays using galectin-1 knockout mouse SMCs 

[124]. 

Vitronectin, an adhesive matricellular protein active within tissue remodeling conditions, 

significantly mediates differentiation of Flk-1+ cardiac progenitor cells seeded within a 

vitronectin-coated electrospun polycaprolactone/gelatin scaffold [125]. The scaffold guided 

pluripotent embryonic stem cells into cardiomyocytes, SMCs, and ECs and promoted cell 

spreading and high proliferation rates among the differentiated cells [126]. A novel αv integrin 

antagonist was developed to prevent vitronectin-tenascin integrin interactions locally and 

suppresses angiogenesis in both cardiac and tumor models [127]. Taken together, vitronectin 
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presents with an advantageous coating substrate for 3D vascular scaffolds [128], and inhibition 

of vitronectin binding is a novel target for anti-angiogenic tumor therapeutics. 

In post-injury vasculature, galectin-1 is upregulated within proliferating SMCs, and 

reciprocally an engineered galectin-1 fusion protein is able to drive SMC proliferation [129]. 

Galectin-1 was upregulated in both murine experimental acute myocardial infarction cardiac 

tissue and by human cardiac fibroblasts from end-stage heart failure patients [130]. Galectin-1-

deficient mice displaying increased cardiac macrophages and killer T cells and impaired cardiac 

function 7 days after infarction induction, which was reversed by treatment with recombinant 

galectin-1. Taken with its effects on increasing SMC proliferation and restricting SMC motility, 

galectin-1 presents as a potential supplement for cardiac therapeutics post-myocardial infarction 

and a serum biomarker for cardiac stress [131] with a well-characterized mouse model for in vivo 

evaluations. 

The CCN family of matricellular proteins have significant, yet indirect, effects aiding 

vascularization and angiogenesis that might be considered in engineering microenvironment 

applications. Full length CCN2 (or CTGF, connective tissue growth factor) utilizes integrin α6β1 

to promote adhesion and spreading of SMCs [132]. CCN5 (or WISP2, WNT1-inducible 

signaling pathway protein-2) also inhibits SMC proliferation and motility without affecting 

apoptosis and adhesion [133, 134], and has potential to be used as a delivered therapeutic CCN2 

antagonist to control SMC migration, adhesion, and phenotype [135]. CCN5’s effects are 

modulated in a dose-dependent fashion by platelet derived growth factor (PDGF) and TGF-β, 

with some possible quiescence-related SMC properties [133]. A reduction in CCN2 expression 

was observed in Notch1 haploinsufficiency murine abdominal aortic aneurysm models, leading 
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to a maintenance of contractile SMC phenotype and a reduction in aortic dilation [136]. CCN2 

presents with a key target for SMC phenotype maintenance in vasculopathy.  

CCN4 (or WISP1, WNT1-inducible signaling pathway protein-1), is upregulated in 

migrating SMC in a Wnt2-dependent manner; loss of CCN4 leads to inhibited SMC integrin 

mediated migration [137]. Wnt5a, which induces b-catenin signaling in mouse via SMCs, saw 

CCN4 rescue SMCs from H2O2 induced apoptosis within atherosclerotic plaque [138, 139]. 

CCN4 was expressed within advanced human coronary artery lesions [137] but absent in Wnt5a 

positive intimal SMCs, indicating that CCN4 deficiency may provoke SMC apoptosis in 

coronary plaques, ultimately resulting in instability. Loss of CCN4 leads to reduced intimal 

thickening, related to CCN4’s aforementioned positive effect on SMC migration [137]. 

SMC also cooperate with EC to regulate vascular tone. EC receive signals from the 

circulation that stimulate production of the second messenger nitric oxide (NO), inducing SMC 

relaxation and vessel dilation. In contrast, agents such as angiotensin II act directly on SMC, 

causing the cell to contract and the vessel to constrict. 

Tenascin-C (TNC) overexpression can result in pulmonary hypertension, and is 

expressed in adventitia and media of saphenous vein grafts under above average arterial stress 

pressure [140]. TNC within the context of atherosclerotic plaques promotes SMC proliferation 

and migration via PDGF signaling [141]. Areas of human AAA with high TNC expression by 

medial SMCs correlate strongly with inflammation and tissue ECM destruction [142] and acts as 

a murine hemodynamic stress dampening mechanism to preserve aortic integrity [143]. Taken 

together, TNC presents with a SMC-linked biomarker target to assess atherosclerosis or 

aneurysm pathological state. 
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Substrate stiffness has also shown an effect to modulate both SMC and EC phenotype, 

and as a mechanosensor that governs secretion of cytokines and deposition of matricellular 

proteins. While effects of exogenous delivery of TGF-β-family molecules in vivo has produced 

both a pro-remodeling cardioprotective response and induced aberrant ECM deposition by 

hyperplastic cells, TGF- β1 has been consistently upregulated in SMCs and ECs seeded onto stiff 

substrates, acting as a possible chemokine mechanosensor of the local ECM microenvironment 

[144].  

In vitro influence of substrate stiffness is also clear, favoring further vascular SMC and 

EC studies within 3D constructs and seeded on a substrate with adventitial stiffness. ECM 

protein fibronectin, for example, is essential for SMC durotaxis migration across substrates of 

varying stiffness [145], and mediates EC shear stress-induced responses via fiber alignment and 

availability of heparin-binding regions [146]. Fibronectin to modulate substrate stiffness is also 

essential for EC internalization of vascular endothelial growth factor (VEGF), through EC 

surface receptor CD29 interactions with fibronectin in the 3D construct. DNA methyltransferase 

1, an enzyme that catalyzes methyl-group transfer to DNA, directly alters SMC phenotype in 

response to in vitro matrix stiffness of embedding construct substrates, and acts in vivo to 

negatively regulate arterial stiffening by maintaining SMC contractile phenotype [147].  

1.3.3  Aortic SMC ECM Secretion and Neointimal Hyperplasia 

Neointimal hyperplasia, a thickening of the aortic intimal layer due to overproliferation 

of SMCs and deposition of proteoglycan-rich ECM, is a common complication of vascular 

disease intervention [148]. The main target for anti-neointimal formation is SMC phenotype, 

given the predisposition of unregulated hyperplastic SMC proliferation to accelerate neointimal 
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formation. Many matricellular proteins have shown efficacy in controlling SMC phenotype and 

adhesion, and therapeutics often target at upregulation of these factors. TSP-1 targets NO-

mediated SMC relaxation to increase tissue survival and facilitate tissue perfusion to preserve 

tissues under ischemic stress [149]. SMC are also induced to proliferate by TSP-1 [150]. 

Fibromodulin adenovirus-mediated gene transfer inhibits restenosis in an organ culture 

saphenous vein graft disease model of neointimal hyperplasia, at a much greater level than 

decorin or beta-galactosidase gene transfer [151]. Fibromodulin could be a key member of the 

small leucine-rich proteoglycan family for study within ECM-based vein grafts. 

Another ECM-related inducer of neointimal formation is fibulin-1, where expression is 

closely overlapped with fibrinogen. Fibulin-1 and fibrinogen bind tightly within atherosclerotic 

lesions, but this does not hold true in ECM associated with SMC surrounding the identified 

lesion. Fibulin-1 is associated with atherogenesis in diabetic patients, and at high levels fibulin-1 

becomes an accurate indicator of cardiovascular risk in patients prior to acute cardiovascular 

events, obesity, or diabetes risk markers [152]. SMCs display increased SMC contractile 

differentiation markers with fibulin-5 overexpression [68], and SMC phenotype has also been 

regulated through fibulin-4 expression in murine models [153]. Overexpression of fibulin-5 has 

been shown post-injury to increase SMC motility in a step to aid in vascular remodeling [122]. 

CCN3 (or NOV, nephroblastoma overexpressed) exhibited a protective role within the 

progression of murine abdominal aortic aneurysm model [154], and inhibited neointimal 

hyperplasia by inhibiting SMC migration and proliferation [155]. Novel CCN3-based peptides 

have recently been developed, aiding in the modulation of pro-fibrotic factors CCN-2, 

plasminogen activator inhibitor (PAI)-1, and post-translational fibrotic collagen modification 

[156].  
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Osteopontin (OPN, also known as bone sialoprotein I or BSP-1), a matricellular protein 

first identified within osteoblasts, is expressed by SMC derived foam cells after immune 

response, and plays a large role in the calcification of atherosclerotic lesions [157]. Increased 

OPN expression during neointimal hyperplasia formation was seen as a major microenvironment 

component of human atherosclerotic plaque progression. OPN downregulates SMC 

differentiation markers α-smooth muscle actin and calponin, transitioning from quiescent status 

into an unregulated proliferative phenotype [158]. Galectin-1 binds to lipoprotein(a) (LPA), 

which binds tightly to low density lipoprotein (LDL) and are both co-implicated in 

atherogenesis. LPA binds poorly to tissue with galectin-1 inhibition, suggesting that LPA 

accumulation changes have an effect on atherogenesis, possibly mediated through t-antigens on 

LPA and LDL [159]. A novel engineering approach modulating OPN protein expression or 

galectin-1 binding within atherogenic arterial walls could present as a key mediating factor for 

downstream neointimal hyperplasia. 

1.3.4  In Vitro SMC Cultures 

Coculturing of aortic SMCs with ECs or stem cells in 2D or 3D cultures, or mimicking 

cellular communication via exogenous factors, have been the primary in vitro methods to mimic 

aortic wall biology. Vascularization as a function of oxygen diffusion [160], angiogenic 

microRNA expression of cocultures under shear stress conditions [161], and VEGF-induced 

manipulation of SMC proliferation and EC quiescence [162] have all been key evaluation targets 

for in vitro SMC-EC coculture studies. Proliferator-Activated Receptor α, induced by shear 

stress on ECs, is a key factor driving SMCs towards quiescence in coculture platforms [163]. 

Shear stress induced miRNAs within EC-SMC cocultures contain atheroprotective signals, with 
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delivery possibly mediated by secreted extracellular vesicles [164]. Substrate stiffness, even 

within SMC cocultures [165] and SMC-EC 3D constructs [166], has shown a significant impact 

on cellular drug uptake and effectiveness in SMC phenotype modulation and ECM secretion. 

Aortic SMC/EC coculture with mesenchymal stem cells has a synergistic modulating 

effect, with MSCs guided towards cardiomyocyte or SMC differentiation when cocultured with 

SMCs [167] or ECs [168], and MSC mRNA guiding SMC actin filament organization [169]. 

Tunneling nanotubes have shown to be one mechanism for SMC-MSC communication, with 

mitochondrial exchange guiding both SMC phenotype and MSC differentiation [170]. 

Intercellular communication extends to matrix components, as EC-deposited ECM help guide 

MSC vascular differentiation independent from cell-cell contact [171]. EC and embryonic stem 

cell pericyte coculture can be engineered to form microchannel-sized vascular tubes, an essential 

tool for high-throughput studies of vascular abnormalities and cardiovascular intercellular 

interactions within organ-on-a-chip cultures [172]. Direct coculture of adipose-derived stem cells 

with a murine AAA wall as the culture substrate induced a phenotype change within the AAA 

wall SMCs, reducing overall MMP-2 and MMP-9 expression and inducing fresh deposition of 

elastin [173] and highlighting another mechanism for quasi-representative in vitro culture 

conditions to evaluate cardiovascular therapeutics.  
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1.4 Treatment for Aortic Aneurysm 

1.4.1  Surgical Diameter Criterion for Aortic Aneurysm 

Adults are diagnosed with AA once the aortic diameter exceeds ~1.5-times its normal 

value [174], and surgical intervention of repair is generally recommended after the AA exceeds a 

“critical diameter” of ~5.5cm and 1cm/year growth rate [17, 175]. For young adult patients, this 

dilation threshold is typically closer to 4.5cm [176, 177]; for pediatric patients, the critical 

threshold is a constant growth rate of 1cm/year [26]. Currently, endovascular aortic repair 

(EVAR) is the standard intervention for abdominal AA, with aortic diameter measurements 

determining the threshold for surgical intervention. Standard non-surgical options for patients 

with small AA (classified as an AA with a diameter above the aneurysmal classification 

threshold but below the “critical” threshold) are limited to semi-annual ultrasound or CT imaging 

surveillance, with current pharmacological agents providing minimal evidence of AA-targeted 

effects [178, 179]. 

Around 20% of WS patients will need surgical intervention before 15 years of age, 

primarily consisting of a Y-shaped Brom patch [180]. Though repeated WS interventions are 

rare, the underlying deficiency in functional vascular elastin remains [39]. Endovascular 

aneurysm repair is the primary surgical interventional method for most MFS and LDS aneurysm 

patients at high risk of aneurysm rupture [181], delivering a synthetic graft via catheterization. 

While early screening has reduced rupture rates over the last two decades [182], there is no 

standard intervention for patients with aortic diameter below the aforementioned critical 

threshold of 5.5cm in adults and 4-5cm in pediatric patients to prevent further, possibly lethal, 

ECM degradation without surgical intervention. Studies have shown that graft placement 
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performed on sub-critical dilated aneurysms provide no further benefit to long-term survival, 

highlighting the need for a non-surgical treatment [174].  

Non-surgical aortic treatment alternatives for MFS, LDS, and WS patients under 20 years 

old would delay surgical intervention. MFS patients undergoing elective care (surgical or 

otherwise) after 25 years old have lower morbidity & mortality rates than patients without 

intervention, but mortality rates dramatically increase in cases where insufficient (or nonexistent) 

sub-critical diameter treatment has led to emergency aortic replacement [183]. Recurring 

aneurysm in LDS patients, in particular, is another major area of need for studies to maximize 

time between repeated surgical interventions [26], as 33% of patients require additional 

surgeries. 

MFS and WS are genetic diseases that manifest with severe aortic complications 

(primarily within the thoracic aorta and aortic arch). Surgical outcomes for sub-4.5cm aortic 

dilations often improve as patients age, underscoring the need for a non-surgical intervention to 

enhance the underlying disrupted elastin deposition. 

1.4.2  Treatment for Sub-Critical Aortic Aneurysm 

The primary treatment for adult small AAA is prescription of a standard monitoring and 

surveillance regime, or “watchful waiting”, which involves a CT scan or MRI every 6, 12, or 24 

months as tailored to each patient. The balance for both patients and clinicians as the small 

aneurysm continues to grow is weighing risk of rupture versus risk of repair. Mortality rates for 

the roughly 27,000 annual surgical repairs, both open and EVAR, are ~2%. However, 23.4% of 

sub-critical adult AAs ranging between 4.1 and 5.5cm rupture [184], and the cost of passive 
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surveillance ($40,592 on average, per patient for four years of standard surveillance) is 

significantly higher than the potential cost of early endovascular repair ($15,197 on average, per 

patient for four years post-surgery) [185]. The current small aneurysm standard-of-care of 

passive monitoring must be improved, as it both leaves the patient at a high risk for sub-critical 

rupture and incurs a high cost for both patient and payer.  

A targeted, non-surgical therapeutic option for dilating AAs is needed as a supplement to 

imaging and monitoring regimens. Broad-targeted therapies, such as beta blockers or 

angiotensin-converting-enzyme (ACE) inhibitors are prescribed to slow aneurysmal growth 

[179, 186-188], particularly within pediatric patients. Pre-clinical aneurysmal therapies, 

including MMP inhibitors doxycycline [189, 190] and several modified tetracyclines [191], are 

currently being evaluated as non-surgical options to prevent elastin degradation. 

Low elastin content in ascending thoracic aortic aneurysms and lowered elastin 

concentration in infrarenal abdominal aortic aneurysms [80] have pointed to the secretion, 

coacervation and cross-linking of elastin as a worthwhile aneurysmal therapeutic target. A 

targeted regenerative treatment, wherein functional elastic fibers are restored, could offer a non-

surgical therapeutic option for adults with small AA, and an AA maintenance therapy for 

children with connective tissue disorders. 

1.5 Previous Work in the Advisor’s Laboratory: Stem Cell-Based Therapies for AA 

It is hypothesized that ASCs help maintain existing elastic fibers by modulating SMC 

phenotype to repress immune inflammatory response in local AA tissue [192], suppress elastin 

breakdown [193], or stimulate new elastin deposition [194]. Other groups have shown that 
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human ASCs suppress inflammatory response within elastase-induced murine abdominal AA, 

with paracrine signaling decreasing T cells (CD8+ and CD4+), neutrophils, and activated 

monocytes, while increasing Tregs and CD206+ M2 macrophages [195]. Subdermal 

implantation of ASC-seeded scaffolds within diabetic rat models helped suppress inflammatory 

cell recruitment (CD8+ T-cells and CD68+ pan-macrophages) when compared to cell-free 

scaffolds, suggesting that immunomodulatory effects of autologous adipose-derived stem cells 

still plays a significant role [196]. Previous work by the Vascular Bioengineering Laboratory 

(VBL, Director: Dr. David Vorp, Associate Director: Dr. Justin Weinbaum) at the University of 

Pittsburgh has shown that seeding tissue engineered murine AAA grafts with adipose stromal 

cells isolated from both elderly and diabetic patients resulted in a loss of this inflammatory 

response suppression and decreased fibrinolysis, highlighting the need for healthy adipose 

stromal cell therapeutic signaling within aneurysmal walls [197]. 

The VBL has also induced elastin regeneration via delivery of non-diabetic non-smoking 

adipose-derived stromal cells (ASCs) within the AA context. Periadventitial ASC delivery to a 

growing elastase-induced mouse abdominal AA halts aneurysmal growth, prevents further 

elastin degradation, and possibly stimulates new elastin synthesis, as evidenced by maintenance 

of elastic lamellae [198]. The VBL has produced a small-diameter tissue engineered vascular 

graft, our group has demonstrated that ASCs and pericytes are required for patency and ECM 

remodeling of an elastomeric tubular scaffold within interpositional abdominal aortic implants 

[199, 200]. These studies also show evidence of extracellular matrix deposition (elastin and 

collagen) eight weeks post-implantation within a murine model [201, 202]. 
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1.6 Hypothesis and Specific Aims 

The work of this dissertation at the VBL and Vascular Extracellular Dynamics 

Laboratory (VEDL, Director: Dr. Justin Weinbaum) addresses the need for a non-surgical 

therapy for sub-critical aortic aneurysm in both adult and pediatric populations. Each chapter 

emphasizes different stages of clinical translation for this therapeutic approach, including ASC-

SF effects on healthy adult aortic SMCs, diseased SMCs provided through our collaborators at 

UPMC Presbyterian Hospital and the UPMC Children’s Hospital of Pittsburgh, and 

commercialization avenues for scaling ASC-based therapies including a magnetic-guided fibrin 

gel ASC delivery mechanism and the effects of only ASC-SF extracellular vesicles on SMC 

elastogenesis. 

 

Specific Aim 1: Development of In Vitro 3D Fibrin Construct Platform & Elastogenesis 

Impact of Adipose-Derived Stromal Cell Secreted Factors on Healthy Adult Smooth Muscle 

Cells.  

Induction of elastin deposition by adult aortic SMCs is central to the development of a 

non-surgical therapeutic strategy for small aortic aneurysm. Here, we hypothesize that the 

elastin-preservative effect summarized in Section 1.4.2 and Section 1.5 can be replicated using 

only paracrine signaling factors secreted by ASCs, using an ASC conditioned media-based 

exogenous culture media. To analyze the elastogenic effects of the ASC secreted factors (ASC-

SF), we created a three-dimensional fibrin gel in vitro culture platform, and utilized a multi-level 

analysis of mature elastin deposition that quantifies four levels of the elastogenesis cascade: 

transcription of tropoelastin and elastin chaperone proteins necessary for mature elastin 
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deposition, elastic fiber network formation, insoluble elastin protein deposition, and mechanical 

characterization of deposited ECM (Chapter 2.0).  

We hypothesized that ASC-SF would increase SMC elastin chaperone protein 

transcription and increase insoluble elastin deposition when compared to both standard SMC 

culture media and non-conditioned ASC culture media, providing an initial proof-of-concept for 

ASC-SF as an elastin-targeted small aortic aneurysm therapeutic. 

 

Specific Aim 2: Elastogenesis Impact Analysis of Adipose-Derived Stromal Cell Secreted 

Factors on Patient-Derived Aortic Aneurysmal Cells.  

Integration of aneurysmal SMCs into the established in vitro fibrin gel culture system and 

elastogenesis analysis structure outlined in Specific Aim 1 provided a closer representation of the 

effects of ASC-SF on at-risk patients. We hypothesized that cells isolated from explanted 

aneurysmal aortic medial layers would increase elastin chaperone protein transcription and 

insoluble elastin deposition when stimulated with ASC-SF.  

Chapter 3.0 outlines a collaboration with the Thoracic Aortic Disease Research group, 

under the direction of Thomas Gleason, MD, to integrate SMCs explanted from adult aortic 

tissue samples within our elastogenesis cascade analysis system. Chapter 4.0 outlines a 

collaboration with the Division of Pediatric Cardiothoracic Surgery at the UPMC Children’s 

Hospital of Pittsburgh, under the direction of Victor Morell, MD. Here, we outline a mechanism 

to explant, culture, and store cells from explanted pediatric aortic samples, and integrate medial 

layer cells into our elastogenesis cascade analysis system.  
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Specific Aim 3: Development of Clinical Translation Approaches for ASC Therapeutic 

Delivery. 

Ultimately, translation of ASC and ASC-SF as therapeutics for small aneurysm elastin 

regeneration has two major initial hurdles. First, localization to the aneurysmal site without 

destabilizing the weakened aortic tissue is vital, with previous work by the VBL targeting a 

periadventitial delivery modality. Chapter 5.0 outlines the development of a magnetic-based 

periadventitial ASC localization system, and a Tri-Syringe device designed to form injectable 

ASC-rich fibrin gel constructs at the aneurysmal site. We hypothesized that this delivery 

mechanism would enable formation of an in vivo solid fibrin gel within a mouse abdomen, and 

would combine with an external magnetic field to localize iron nanoparticle-loaded ASCs to the 

periadventitial surface of an elastase-induced abdominal aortic aneurysm.  

The second clinical translational hurdle is the infeasibility of whole-cell ASC therapy as 

an off-the-shelf solution to regenerate elastic fibers within small aneurysmal walls. Chapter 6.0 

outlines the isolation of ASC-secreted extracellular vesicles (ASC-EVs), and their ability to 

induce the elastogenesis cascade within the same healthy adult aortic SMC in vitro model 

established in Chapter 2.0. We hypothesized that ASC-EVs would increase elastin chaperone 

transcription and insoluble elastin deposition by healthy adult aortic SMCs, after 30 days of 

culture within our fibrin gel construct system. 
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2.0 Specific Aim 1: Development of In Vitro 3D Fibrin Construct Platform & Elastogenesis 

Impact of Adipose-Derived Stromal Cell Secreted Factors on Healthy Adult 

Smooth Muscle Cells 

Prior studies within the Vascular Bioengineering Laboratory at the University of 

Pittsburgh have established adipose-derived stromal cells (ASCs) as a mechanism to preserve 

elastic fibers within murine elastase-induced abdominal aortic aneurysms [198]. Here, we 

attempt to determine whether that pro-elastogenic effect can be replicated by using only ASC 

secreted factors (ASC-SF), with the goal of producing a cell-free and elastin-targeted therapeutic 

option for small aortic aneurysm. An in vitro three-dimensional fibrin culture system was 

established for healthy adult aortic smooth muscle cells (SMCs), with a series of elastogenesis 

cascade analysis tools used to provide a multi-level evaluation of ASC-SF induced elastin 

deposition. We hypothesized that ASC-SF would increase SMC transcription of elastin 

chaperone proteins, increase elastic fiber networking, increase insoluble elastin fraction within 

SMC-seeded fibrin gel constructs, and would produce a mechanically-active extracellular matrix 

(ECM) microenvironment. 

2.1 Introduction 

Aortic aneurysms (AA) are balloon-like enlargements of the aorta that possesses a life-

threatening risk of rupture. AA are most prominent in both aging populations (primarily 

smokers) and pediatric or young adult patients with connective tissue genetic disorders [10]. 
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Approximately 5 million Americans over the age of 50 are living with abdominal or thoracic AA 

[12, 13], with over 200,000 new AAs diagnosed annually [14]. Actively dilating AAs, if left 

untreated, can weaken and ultimately rupture or dissect, with over 15,000 annual AA 

ruptures/dissections [15, 16] and an 80-90% AA mortality rate representing the 15th leading 

cause of death in the United States [17-19]. 

One feature of AA dilation is the degradation of elastin, the extracellular matrix (ECM) 

protein within the aortic wall responsible for recoil forces during diastole. SMCs form mature 

elastin during late fetal and early postnatal stages of human development, and the expression of 

tropoelastin (elastin core protein) and elastin organizational matricellular proteins (such as 

specific members of the fibrillin, fibulin, lysyl oxidase, and latent transforming growth factor β 

binding protein, or LTBP, families) are then downregulated during adulthood [58, 59]. 

Mechanical wall stress [75-77], inflammatory response and proteolytic degradation [78-80], and 

exogenous circulating growth factors (primarily activating the TGF-β pathway) [81] have been 

shown to disrupt local AA SMCs and elastic fibers [82], leading to increased risk of rupture. 

Currently, endovascular aortic repair is the standard intervention for abdominal AA, with 

aortic diameter measurements determining the threshold for surgical intervention. Adults are 

diagnosed with AA once the aortic diameter exceeds ~1.5-times its normal value, and surgical 

intervention of repair is generally recommended after the AA exceeds a “critical diameter” of 

~5.5cm and 1cm/year growth rate [17, 175]. Standard non-surgical options for patients with 

small AA (classified as an AA with a diameter above the aneurysmal classification threshold but 

below the “critical” threshold) are limited to semi-annual ultrasound or CT imaging surveillance, 

with current pharmacological agents providing minimal evidence of AA-targeted effects [178, 

179]. 
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However, 23.4% of sub-critical adult AAs ranging between 4.1 and 5.5cm rupture [184], 

underscoring the need for a targeted, non-surgical therapeutic option for dilating AAs. A targeted 

regenerative treatment, wherein functional elastic fibers are restored, could offer a non-surgical 

therapeutic option for adults with small AA, and an AA maintenance therapy for children with 

connective tissue disorders. Pediatric patients with “rapid aortic expansion” of AA (exceeding 

0.5cm/year rate) typically undergo surgical intervention, often with several repeated surgeries 

and broad-targeted therapies (beta blockers, ACE inhibitors) prescribed [179, 186-188]. No 

elastin-targeted therapeutic is available for patients with small sub-critical AA, regardless of age. 

Previous work by our lab has shown that periadventitial adipose-derived stromal cell 

(ASC) delivery to a growing elastase-induced mouse abdominal AA halts aneurysmal growth, 

prevents further elastin degradation, and possibly stimulates new elastin synthesis, as evidenced 

by maintenance of elastic lamellae [198]. It is hypothesized that ASCs help maintain existing 

elastic fibers by modulating SMC phenotype to repress immune inflammatory response in local 

AA tissue [192], suppress elastin breakdown [193], or stimulate new elastin deposition [194]. 

While it was initially theorized that these ASC subpopulations differentiate into functional 

vascular cells [203], subsequent studies have suggested that ASC secreted factors (ASC-SF) act 

in a paracrine manner on neighboring vascular host SMCs and ECs and possess a more potent 

immunomodulatory capacity than bone marrow-derived stromal cells [204], specifically pointing 

to the importance of urokinase-type plasminogen activator [205] and monocyte chemoattractant 

protein-1 [206] in remodeling. ASC-SF are rich in pro-angiogenic [207] and pro-inflammatory 

growth factors [208] (vascular endothelial growth factor, hepatocyte growth factor, interleukin-

1β, interleukin-6, interleukin-8, tumor necrosis factor-α), which play important roles in SMC 

ECM deposition [193, 209]. 



 32 

While multiple mechanisms can potentially explain the ASC effect, we hypothesize that 

paracrine signaling, through ASC-SF, could induce deposition of mature insoluble elastin by 

healthy adult aortic SMCs after 30 days of three-dimensional (3D) in vitro culture, resulting in 

improved viscoelastic aortic response via SMC-secreted matricellular ECM proteins in vivo 

[210]. The elastogenesis cascade requires a cadre of ECM accessory proteins for proper elastin 

processing and assembly (Figure 1), and these proteins must be monitored in a context that 

combines cellular biology with regenerative tissue engineering. 

Our study utilized a versatile, fibrin-based 3D SMC aortic medial layer-mimicking 

culture platform (Figure 2) [211] and multi-level elastin analysis assays, initially established 

using a pro-elastogenic cell line (RFL-6, rat fetal lung fibroblasts) and simple exogenous 

stimulation factors (TGF-β1) as a proof-of-concept for continued SMC studies. We analyzed 

ASC-SF induced SMC elastin deposition at four different points of interest on the elastogenesis 

cascade: elastin organizational mRNA levels (generating tropoelastin, fibulin-4, and fibulin-5 

coacervates/globules) [1-3], elastic fiber organization (through LTBP-4, fibulin-4, and fibulin-5 

mediated deposition onto fibrillin-1 microfibrils) [52-55], cross-linked elastin chemical maturity 

(mediated by lysyl oxidase or LOX, and lysyl oxidase-like 1 or LOXL-1) [56, 57], and 

mechanical functionality. In addition, post-translational modification and mechanical function of 

the counterpart vascular ECM protein collagen were also studied. 
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2.2 Methods 

2.2.1  RFL-6 Cell Culture Conditions 

Rat fetal lung fibroblasts, RFL-6 cells, were purchased from ATCC (Manassas, VA) and 

plated between passage 6 and 12. RFL-6 cells were grown in standard Dulbecco’s modified 

Eagle’s medium/F12 medium, with 100U/mL penicillin, 100U/mL streptomycin (Invitrogen, 

Carlsbad, CA), and 20% fetal bovine serum (ThermoFisher Scientific, Waltham, MA) added. 

Supplements to culture media included ε-aminocaproic acid (ACA) (Sigma, St. Louis, MO) and 

recombinant human TGF-β1 (R&D Systems, Minneapolis, MN). All media changes occurred 

every 36-48 hours. 

2.2.2  SMC Cell Culture Conditions 

Human aortic SMCs (ATCC #PCS-100-012, Manassas, Virginia) were cultured at 37˚C 

and 5% CO2, with growth media (#311K-500, Cell Applications Inc, San Diego, CA) changes 

every 48-72 hours. Cells used in experimental cultures were between passages 4 and 12. 

 

2.2.3  3D Fibrin Gel SMC Constructs on Stiff and Soft Substrates 

SMC-seeded fibrin gel constructs [212, 213] were formed using 3.7mg/mL bovine 

fibrinogen type I (Sigma-Aldrich #8630), 0.21U/mL bovine thrombin (Sigma-Aldrich #T7513), 

and 5x105 SMCs/mL. ‘Stiff substrate’ 200µL fibrin gel constructs (Figure 2A) were seeded 
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within heat-stamped circular molds made using 7.94mm (5/16”) diameter cork borers onto 

tissue-culture treated plastic. “Soft substrate” 600µL fibrin gel constructs (Figure 2B) were 

formed between nylon anchors of FlexCell Linear TissueTrain untreated plates (FlexCell Int’l 

Corp #T-5001U), with “constrained” constructs cultured without external mechanical stimuli. 

“Dynamic” soft substrate fibrin gel constructs were subjected to a 10% stretch at 1 Hertz cyclic 

uniaxial mechanical loading using a FlexCell FX-4000 strain unit, to mimic standard aortic 

cardiovascular conditions [214]. Aminocaproic acid (ACA) (Sigma-Aldrich #07260), a lysine-

mimicking fibrinolysis inhibitor, was added at 12mM to inhibit cell-driven degradation of the 

fibrin gel constructs. Treatment changes (see: “Media treatment conditions”) were made every 

48-72 hours, beginning 24 hours after initial gel polymerization and continuing through harvest 

at 20- or 30-days post-fabrication.  
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Figure 2: Three-dimensional fibrin gel culture constructs and ASC-SF collection. 

(A) “Stiff substrate” fibrin gel SMC constructs (200µL), plated on 24-well tissue culture plates within 7.94mm 

diameter heat-stamped templates. (B) “Soft substrate” fibrin gel SMC constructs (600µL), plated between nylon tabs 

of FlexCell Linear TissueTrain untreated plates. 
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2.2.4  ASC Culture Conditions and Conditioned Media Collection 

ASCs were obtained from deidentified waste human adipose tissue collected during body 

sculpting surgeries of non-smoking, non-diabetic patients under 45 years old at UPMC 

Presbyterian Hospital, with ASC-SF collected from multiple donors meeting this selection 

criteria. 100ml of human adipose tissue was mechanically minced and digested in collagenase 

(1mg/mL) and bovine serum albumin (35 mg/mL) (protease free heat shock, Equitech-Bio Inc 

#BAH65), followed by filtration and incubation for one hour in a 37˚C shaker bath [201, 202]. 

After secondary filtration (0.5mm gauze, ThermoFisher Scientific #22-415-469) to remove large 

particles, samples were centrifuged at 1000rpm and 4°C for 10 minutes, with pellets resuspended 

in 10mL of ACK Lysing Buffer (ThermoFisher Scientific #A10492-01). The suspension was 

passed through a sieve (500µm, pluriSelect #43-50500-01) and centrifuged again under the same 

conditions. This ASC pellet was resuspended in “ASC culture media”, consisting of 33% 

Dulbecco’s Modified Eagle’s Medium (High Glucose, Gibco #12100046), 33% DMEM/F12 

Medium (HEPES, Gibco #12400024), 7.5% fetal bovine serum (FBS, Premium Select Atlanta 

Biologics #S11550), 0.75% fungizone (Lonza BioWhittaker Antibiotics #BW17836E), 0.75% 

penicillin streptomycin (10,000 U/mL, ThermoFisher Scientific #15140122), 0.075 μM 

Dexamethasone (Sigma-Aldrich #D4902), and 25% Preadipocyte Growth Medium (PromoCell 

#C-39425). ASC conditioned media was collected every 24-72 hours between passage 0 and 1 

while cells progressed from 40 to 70% confluence, and immediately frozen at -80˚C. 



 37 

2.2.5  Exogenous Media Treatment Conditions 

No Treatment (NT) was standard SMC growth media, used to initially culture SMCs. 

TGF-β1 (R&D Systems, #240-B-002) dosing concentrations (0.1ng/mL and 1ng/mL) were 

diluted in each cell type’s standard culture media. Non-conditioned media (NCM) was made 

using a 1:1 ratio of the ‘ASC culture media’ and SMC growth media. ASC secreted factors 

(ASC-SF) were prepared by mixing freshly-thawed ASC conditioned media at a 1:1 ratio with 

SMC growth media. All fibrin gel culture and treatment conditions were supplemented with 

12mM ACA for fibrinolysis inhibition to preserve the 3D SMC constructs. 

2.2.6  SMC scratch assay to analyze migration 

SMCs were seeded within a 24 well tissue culture treated plate, at 5.5x104 cells per well, 

and cultured for 24-36 hours in standard culture media before being used in the scratch assay. 

Prior to scratch, culture media was removed, and cells were washed once in 0.5mL sterile 

1xHBSS. CellTracker Red CMTPX Dye (#C34552, Invitrogen) was diluted to 10mM in DMSO, 

diluted further to 20μM in unsupplemented SMC basal media (#311K-500, Cell Applications 

Inc), and added to each well after wash (150μL per well) for a 20-minute incubation at 37°C and 

5% CO2. 

Following incubation, 350μL per well of SMC growth supplemented media was added 

slowly down the walls of each well, without removing CellTracker and disturbing the bed of 

SMCs. A scratch was created by moving a sterile 1mL plastic pipette tip from the top to the 

bottom of each 24 well plate, without allowing the pipette tip to skip or scratch the tissue culture 

plate surface. CellTracker-rich media is then slowly removed via manual pipetting at the 
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endpoint site of the scratch. Each well then received 250μL of unsupplemented SMC basal 

media, orthogonal to each scratch and slowly down the side of each well’s wall. 250μL of each 

treatment group was then added, as summarized below. 

Treatment groups included: (1) a No Treatment (NT) positive control of SMC growth 

supplemented media; (2) ASC-SF, by adding 250μL of freshly-thawed ASC conditioned media; 

(3) NCM; and (4) Unsupplemented SMC basal media. 

The lid was placed onto the 24 well plate and taken to the Thoracic Aortic Disease 

Research Lab (McGowan Institute for Regenerative Medicine, Pittsburgh PA 15219) for imaging 

on a Nikon TE2000-E Inverted Fluorescence Eclipse Microscope with Intensilight System E, 

within a Tokai Hit Microscope Stage Top Incubator for Live Cell Imaging (37°C and 5% CO2). 

Images were taken every 2 hours for a 36-hour incubation period, with scratch area evaluated 

using image processing package Fiji (ImageJ, open source). Wound closure percentage was 

defined as [(initial scratch area – timepoint scratch area) / initial scratch area]. 

2.2.7  qRT-PCR analysis of tropoelastin and elastin chaperone proteins 

Following sonication of frozen fibrin gel constructs, RNA collection (illustra RNAspin 

Mini Kit, GE Healthcare Life Sciences #25050070) and RNA concentration quantification 

(BioTek Take3) was performed. After pre-heating template (65°C, 5 minutes), synthesis of first-

strand cDNA used SuperScript IV First-Strand Synthesis System (Invitrogen #18091050) 

(23°C/10 minutes, 55°C/10 minutes, 80°C/10 minutes). RT-qPCR was performed using 

KicqStart SYBR Green ReadyMix with ROX (Sigma-Aldrich # KCQS02), and forward/reverse 

primers listed in Table 2. Post-amplification melt curves validated proper amplification. 
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Table 2: RT-qPCR Primers 

Gene Forward Primer Reverse Primer 

Tropoelastin CCAAGGTGGCTGCCAAAG GACGCCGACACCAACTCC 

Fibrillin-1 AGCGGAGCCGAGCAGTGG GCTGCTCCCACTTCAGGC 

LTBP-4 AGCGTTGCTGTTTGTCGCTG TTGAGGGACACCTGTCTCTTC 

Fibulin-4 GCTTCTCCTGCAGTGATATTGAT CTGACGTTGTTGATTTGCCTAA 

Fibulin-5 TTCCTCTGCCAACATGAGTG TGGTTCCTGTGCTCACATTC 

LOX CATAGACTGCCAGTGGATTGA ATGTCACAGCGCACAACATT 

LOXL-1 AGCGCTATGCATGCACCTCTCATA TGCAGAAACGTAGCGACCTGTGTA 

GAPDH CCACCCAGAAGACTGTGGAT TTCAGCTCAGGGATGACCTT 
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2.2.8  Elastic fiber imaging via immunostaining and multiphoton microscopy, and elastic 

fiber quantification 

An immunofluorescence assay was conducted at time points between 3 and 15 days post-

cellular confluence to detect whether elastin was found within each cell type. All fibrin gels were 

fixed using a 4% paraformaldehyde incubation for 30 minutes, then washed and stored in 1x 

PBS. RFL-6 cells were stained for elastin using rabbit conjugated anti-mouse recombinant 

tropoelastin (α-MRT) (1:1000, a generous donation from Dr. Robert Mecham’s lab at 

Washington University in St Louis), goat anti-rabbit polyclonal AlexaFluor 488 (1:500), and a 

nuclear Hoechst stain (1:50). Images were obtained using an Olympus FluoView FV1000 

confocal microscope, using a UPLSAPO super aprochromat Olympus 20x oil objective 

(NA=0.85). Laser excitation was set to 473nm, with a sampling speed of 4μs/pixel. 

SMC constructs were successfully fixed using either ice cold methanol or 2% 

paraformaldehyde. Immunostaining for elastin (primary: rabbit polyclonal anti-human aortic 

elastin, Elastin Products Company #PR533, 1:1000 dilution; secondary: goat anti-rabbit IgG 

fluorescein conjugated, Rockland Immunochemicals #611-1202, 1:750 dilution) and DAPI 

(ThermoFisher Scientific #D1306) to identify cell nuclei was conducted using confocal 

microscopy (Olympus Fluoview FV1000 with XLPlan N25X water objective, NA = 1.05) and 

reconstructed using brightest-pixel z-stack composite (FIJI, public domain). Elastic fiber network 

formation was analyzed using a modified, previously published MATLAB script [215] to 

quantify elastic fiber length and intersection density. Image background filtration and gain 

adjustments were held constant as images were collected, and no further contrast enhancement 

was performed prior to MATLAB quantification. MATLAB code did not include any contrast 

adjustment step during fiber skeletonization and segmentation. 



 41 

Multiphoton images in Figure 12 were collected on an Olympus FV10 multiphoton 

microscope, using an XLPlan N25x (NA = 1.05) water immersion objective with a 0.17 

correction for the glass cover slip. 400μL static and dynamic fibrin gels were fixed using 4% 

paraformaldehyde for 30 minutes, then washed and stored in 1x PBS. Elastin fibers’ intrinsic 

fluorescence was visualized using the RXD2 channel (525 ± 25nm), using a laser wavelength of 

830nm and a sampling speed of 8μs/pixel. 

Multiphoton images in Figure 18, Figure 19, and Figure 20 were performed using the 

Advanced Intravital Microscope at the Soft Tissue Biomechanics Laboratory, under the direction 

of Dr. Jonathan Vande Geest. A Zeiss Plan-Apochromat 20x objective (NA = 0.8, WD = 

0.55mm) was used with a glass concave microscope slide (ThermoFisher Scientific, #1519006) 

with samples submerged in PBS. Samples were excited at a wavelength of 780nm, with a 

constant laser power of 1.35milliwatts and a depth step-size of 2μm. 

2.2.9  Ninhydrin (Insoluble Elastin) and Hydroxyproline (Collagen) Assay 

Fibrin gel constructs, frozen at -80°C following culture without fixation, were thawed 

immediately before base hydrolysis (0.5mL 0.1M NaOH, 1 hour, 98°C) for fibrin gel digestion 

and solubilization of non-elastin proteins, which was separated using subsequent centrifugation 

to separate insoluble elastin protein from solubilized non-elastin protein [216]. Acid hydrolysis 

(0.5mL 6N HCl, 24 hours, 110°C) solubilized all proteins, and assay quantification on both 

soluble and insoluble fractions (ninhydrin-based for elastin, hydroxyproline-based for collagen) 

allow for protein deposition quantification within each 3D construct. Ninhydrin content was 

detectable using an absorbance reading (at 570nm) after 1-hour incubation with a stannous 

chloride-based solution within a 56°C water bath. Hydroxyproline content was detectable using 
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an absorbance reading (570nm) after 15 minute room temperature incubation in a Chloramine-T 

solution and 30 minute 37˚C incubation in a dimethylaminobenzaldehyde solution. 

2.2.10  Tensile Testing of Soft Substrate Fibrin Gel Constructs 

Constructs were harvested, without fixation, by cutting the pair of nylon tabs within the 

Linear TissueTrain plates to keep each gel intact. Fibrin constructs were gently peeled away 

from the top half of the nylon tabs, leaving a section of nylon exposed to grip within pneumatic 

clamps discussed subsequently (Figure 3). Tensile testing was performed on all samples as all 

sample width-to-length ratios were less than 0.25:1 (Mean = 0.17±0.05, Range: 0.12-0.23) [217]. 

A uniaxial tensile testing device (Instron, #5543A, Norwood, MA) was used to assess the 

tensile mechanical properties of the SMC fibrin gel constructs (Figure 3, Figure 25). The dried 

nylon tabs of each sample were secured in compression-based pneumatic clamps lined with 

sandpaper to improve grip fidelity [218, 219]. Exposed nylon tabs were dried to improve grip 

within sandpaper-lined pneumatic clamps. The thickness (average: 2.17±0.32mm NT vs 

2.06±0.41mm ASC-SF), width (average: 2.55±0.47mm NT vs 2.53±0.54mm ASC-SF), and 

gauge length (average: 15.47±1.05mm NT vs 13.99±1.81mm ASC-SF) of the samples were 

measured using photos obtained after 0.01N pre-loading to eliminate sample slack (Figure 25A) 

(FIJI, public domain), as no significant construct deformation was detected before this point. 

Construct dimensions were not significantly different between treatment groups. 

A constant 0.1 mm/second crosshead speed extension was used until failure to 

characterize the mechanical behavior of the samples under quasi-static loading [220]. Force and 

displacement values were recorded throughout the test and converted to stress-stretch ratio plots 

as described in [221], where – Stretch ratio: λ=L/Lo; Stress σ=F/Ao. These measurements were 
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calculated from the sample gauge length in the loaded (L) and unloaded configuration (Lo). 

Force (F) and original cross-sectional area (Ao) were recorded during each mechanical test [221]. 

Low and high modulus are defined as the slope of the linear portion of the mechanical 

response curve in the ‘low’ and ‘high’ stretch regions respectively, defined as follows. The ‘low’ 

vs ‘high’ stretch transition point is the point of the stress–stretch ratio curve with the maximum 

normal distance from the global secant (the line between the curve’s initial and final points) 

[222, 223]. This translated to dividing the curves into three equal parts and treating the initial and 

final thirds of the curve as the low and high stretch regions respectively. The low stretch region 

ranged from 1 to 1.13±0.02 for both the ASC-SF the NT groups, and 1 to 1.16±0.04 for the blank 

gels. The high stretch region ranged from 1.26±0.04 to 1.39±0.06 for the ASC-SF group, 

1.26±0.04 to 1.4±0.06 for the NT group and 1.32±0.07 to 1.49±0.11 for the blank gels. 

2.2.11  Statistical Analysis 

Means comparisons were conducted using individual t-tests or one-way ANOVA with 

Tukey post-hoc tests, as appropriate. Significance threshold of α = 0.05 was set for all presented 

data, with experimental sample size of tested constructs listed on each figure. IBM SPSS was 

used for all statistical analysis. All displayed data values written after “±” are standard deviation 

values. 
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Figure 3: Soft substrate fibrin gel preparation for tensile testing. 

A) Soft substrate fibrin gel construct on FlexCell TissueTrain plates, immediately after gel formation. 

B) Steps taken to peel away fibrin construct from top half of nylon tabs of TissueTrain plates, resulting in an 

exposed tab that can be dried and clamped by sandpaper-aided pneumatic clamps. 

C) Entire harvested soft substrate fibrin gel construct, with both nylon tabs exposed for clamping during tensile 

testing. 
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2.3 Results 

2.3.1  2D culture elastin deposition by RFL-6 cells with no exogenous stimulation and 

adaptation of fiber analysis code 

Elastic fiber staining revealed rat fetal lung fibroblast cell line RFL-6 seeded directly 

onto glass coverslips deposited an expanding elastic fiber matrix within the span of 15 days 

without any exogenous stimulation, outside of standard growth media (plus 20% serum) 

conditions. A qualitative elastin network was formed as early as 6 days in culture (Figure 4). 

Comparatively, human fetal lung fibroblast cell line WI-38 revealed no visible elastin deposited 

after 6 or 15 days in culture and no exogenous stimulation outside standard culture media. A 

MATLAB network quantification code, previously developed in the VBL for analyzing 

multiphoton images of ECM [215], was adapted to analyze both 2D single frames and 3D 

brightest-pixel projections of elastin networks. Figure 5 shows RFL-6 fiber skeleton 

identification after 8 culture days. 
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Figure 4: Immunostaining for RFL-6 and WI-38 elastin on 2D cultures (glass coverslips). 

Immunostaining for elastin (green) without exogenous stimulation, using a known elastogenic cell line RFL-6 and a 

control cell line WI-38 that does not produce elastin without exogenous stimulation. Cultures were allowed to 

continue for 6 days (left) and 15 days (right), with media changes every 48-72 hours.  
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Figure 5: MATLAB elastin network identification on 2D RFL-6 immunostained elastin images. 

Adapted MATLAB fiber analysis code run on 2D 8 day RFL-6 elastin (red) networks (left), with the identified fiber 

skeleton (blue) shown overlayed (right). 
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2.3.2  Fibrinolysis inhibitor aminocaproic acid is required for fibrin construct maintenance 

and modulates RFL-6 elastin deposition 

Integration of RFL-6 cells within 3.7mg/mL fibrin gels produced domed “constructs” 

within 24-well tissue culture plates. After 24 hours in standard culture media, RFL-6 cells have 

induced a fibrinolytic cascade and digested the gels, settling on the bottom surface of the tissue 

culture plate (Figure 6A). Integration of a fibrinolysis inhibitor, ACA, at above 8mM produced 

constructs that lasted over one week (Figure 6A). Maximum fibrinolysis occurs within the first 

48 hours of culture, with constructs stabilizing if they remain after that period. Similarly, SMC 

construct fibrinolysis is stabilized between 8mM and 12mM of ACA present (Figure 7). 

Insoluble elastin deposition by elastogenic RFL-6 cells increased as concentration of 

ACA increased, in a dose-dependent manner (Figure 6B). While constructs were stable and 

deposited insoluble elastin in 8mM ACA (9.43±3.56% elastin of total protein), elastin increased 

by 119% when ACA concentration increased to 12mM (20.6±6.86%), and 175% when increased 

to 15mM (25.9±6.26%).  

As a positive control to indicate that our insoluble elastin assay was functional, elastin 

percentage of total protein within an explanted rat abdominal aortic explanted section (stored at -

80C) was detected at 17.2±2.04%. This value cannot be directly compared to the RFL-6 seeded 

constructs, as Total Protein levels are significantly higher in the explanted aortic section when 

compared to the in vitro seeded constructs. 
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Figure 6: RFL-6 elastogenesis is dependent on fibrinolysis inhibitor concentration. 

A) RFL-6 loaded fibrin gel construct images (7.94mm diameter) through 7 days of culture in three different 

concentrations of fibrinolysis inhibitor ACA (1mM, 8mM, 15mM). Media changes were made every 48-72 hours. 

B) Insoluble elastin percentage of total protein deposited by RFL-6 cells in fibrin gel constructs after 7 days in 

culture, within three different concentrations of ACA (8mM, 12mM, 15mM). Positive control used was an explanted 

and frozen section (1.5mm) of explanted non-aneurysmal rat aorta (Aorta). 
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Figure 7: SMC fibrin gel construct stability under a concentration panel of fibrinolysis inhibitor ACA. 

SMC loaded fibrin gel construct images (7.94mm diameter) through 7 days of culture in six different concentrations 

of fibrinolysis inhibitor ACA (1mM, 2mM, 4mM, 8mM, 12mM, 15mM), diluted in SMC growth supplemented 

media. Media changes were made every 48-72 hours. 
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2.3.3  TGF-β1 stimulation induces insoluble elastin deposition in 3D fibrin gel constructs 

15mM ACA produced stable, non-degraded RFL-6 embedded fibrin gel constructs after 7 

days within all stimulation conditions (standard culture media, low TGF-β1, high TGF-β1) 

(Figure 8A). Immunostaining and confocal microscopy revealed a qualitative increase in elastin 

network formation over time within all treatment conditions (Figure 8B), with mature networks 

seen after 10 days in culture across all conditions. Quantitative analysis was necessary to 

determine Day 7 and Day 10 differences between network formation. 

Without exogenous stimulation, RFL-6 cells within fibrin gel constructs deposited 

statistically similar amounts of insoluble elastin (Figure 8C) after 3 days (0.32±0.45%) and 7 

days (0.12±0.029%) in culture, with statistically increased amounts after 10 culture days 

(4.33±0.78%). Low TGF-β1 stimulation (0.1ng/mL) produced statistically similar levels of 

insoluble elastin after 7 days in culture (1.40±0.22%), but dramatically increased insoluble 

elastin after 10 days (14.3±1.18%). High TGF-β1 stimulation (1ng/mL) induced significantly 

increased insoluble elastin deposition after both 7 days (5.7±1.1%) and 10 days (14.4±1.38%) in 

culture. 
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Figure 8: TGF-β1 stimulation induces RFL-6 insoluble elastin deposition within fibrin gel constructs. 

A) Images of RFL-6 loaded fibrin gel constructs (7.94mm diameter), stimulated with three different concentrations 

of TGF-β1 (0ng/mL negative control, 0.1ng/mL “Low” concentration, and 1ng/mL “High” concentration) after 7 

and 10 days in culture. Treatments were diluted in standard F12 growth supplemented media, with TGF-β1 addition 

beginning after 3 days in culture and media changes containing refreshed treatment groups every 48-72 hours.  

B) Immunostaining for elastin (red) and DAPI nuclei staining (blue) following cold methanol fixation under each 

corresponding TGF-β1 treatment condition from Figure 8A. 

C) Insoluble elastin percentage of total protein, under each corresponding TGF-β1 treatment condition from Figure 

8A. α = 0.05, n = 5 for all. 
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2.3.4  RFL-6 elastic fiber networking quantification following TGF-β1 stimulation using 

modified fiber analysis code 

Staining of RFL-6 deposited elastic fibers within 3D fibrin gel constructs after 7 or 10 

days of 1ng/mL TGF-β1 stimulation revealed clear, uninterrupted elastic fiber networks via 

immunostaining and confocal imaging with brightest-pixel reconstruction (Figure 9A). Modified 

MATLAB analysis revealed the elastic fiber normalized parameters able to be analyzed: average 

segment length, mean fiber diameter, fiber concentration, fiber tortuosity, and fiber intersection 

diameter. 

Elastic fiber segment length (Figure 9B), normalized to the earliest NT timepoint, 

significantly decreased after both 7 days (0.823±0.048) and 10 days (0.826±0.061) of TGF-β1 

stimulation when compared to Day 3 No Treatment control (1±0.0624). Additionally, mean fiber 

diameter (Figure 9C) decreased after 7 days of TGF-β1 stimulation (0.898±0.050 vs 1±0.0591 

NT control). 

Normalized fiber concentration (Figure 9D), however, increased after both 7 days 

(1.774±0.360) and 10 days (2.058±0.299) of TGF-β1 stimulation when compared to Day 3 NT 

control (1±0.2864). Tortuosity (Figure 9E), a measurement of single fiber curvature, increased 

after only 10 days of TGF-β1 stimulation (1.034±0.015) when compared to 10 days of NT 

control (0.991±0.012). Fiber intersection density (Figure 9F) increased after both 7 days 

(1.394±0.0577) and 10 days (1.790±0.0401) of TGF-β1 stimulation when compared to Day 3 NT 

control (1±0.0520). 
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Figure 9: RFL-6 elastic fiber network quanfitication within 3D fibrin gel constructs after TGF-β1 stimulation 

(1ng/mL). 

A) Immunostaining and confocal imaging for elastin (red) and RFL-6 nuclei (blue) within 3D fibrin gel constructs 

under “No Treatment” negative control standard F12 culture media (NT) and TGF-β1 stimulation (1ng/mL), after 3, 

7, and 10 days of stimulation.  

B-E) MATLAB quantification of normalized B) elastic fiber segment length, C) elastic fiber diameter, D) elastic 

fiber concentration, E) elastic fiber tortuosity, and F) elastic fiber intersection density. α = 0.05, n = 5 for all.  
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2.3.5  RFL-6 insoluble elastin fraction is increased after TGF-β1 stimulation and decreased 

after ASC-SF stimulation within fibrin gel constructs 

After 7 days of TGF-β1 stimulation (1ng/mL), a Fastin assay revealed a 27.4% increase 

in total elastin (soluble tropoelastins, lathyrogenic elastins, and insoluble elastin) as normalized 

to 10mg of wet fibrin gel construct (2.13±0.19µg elastin with TGF-β1, vs 1.67±0.074µg elastin 

in standard F12 media) (Figure 10A). Total elastin after 14 days was statistically similar both 

with and without TGF-β1 stimulation, but both were significantly increased compared to Day 7 

0ng/mL control (2.81±0.29µg elastin Day 14 standard media, 2.59±0.24µg elastin Day 14 with 

TGF-β1). Insoluble elastin fraction was not recorded for these TGF-β1 stimulated constructs. 

ASC-SF stimulation resulted an RFL-6 insoluble elastin fraction decrease, as measured 

by ninhydrin assay, after both 10 days (0.30±0.0042% F12 control, 0.0095±0.0026% ASC-SF) 

and 20 days (0.21±0.0.045% F12 control, 0.11±0.0036% ASC-SF) in culture (Figure 10B). 

Notably, ASC-SF stimulated constructs saw a time-dependent significant increase in elastin 

between 10 days and 20 days of stimulation.  



 56 

 

Figure 10: RFL-6 total elastin increase after TGF-β1 stimulation and insoluble elastin fraction decrease after 

ASC-SF stimulation. 

A) Fastin assay for total elastin (soluble tropoelastins, lathyrogenic elastins, and insoluble elastin) of RFL-6 seeded 

fibrin gels cultured in standard F12 culture media (0ng/mL TGF-β1) or 1 ng/mL TGF-β1, after either 7 days or 14 

days in culture. Fresh exogenous treatment media added every 48-72 hours. α = 0.05, n = 4. 

B) Ninhydrin assay for insoluble elastin fraction of RFL-6 seeded fibrin gel constructs, after either 10 days or 20 

days of ASC-SF stimulation. Treatments changed every 48-72 hours. α = 0.05, n = 3. 
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2.3.6  RFL-6 deposition of fibulin-5 and elastic fiber networking analysis following ASC-SF 

stimulation  

Immunostaining of RFL-6 seeded fibrin gel constructs revealed a colocalization of 

deposited elastin and fibulin-5 after 20 days of ASC-SF stimulation, while both standard F12 

culture media and TGF-β1 stimulation (1ng/mL) did not induce a elastin/fibulin-5 localization 

pattern (Figure 11A).  

MATLAB analysis of deposited elastic fibers showed a significant decrease in 

normalized fiber concentration after 10 days of ASC-SF stimulation (0.65±0.16 ASC-SF vs 

1.0±0.090 F12 control) (Figure 11B) and an increase in normalized average segment length after 

10 days TGF-β1 stimulation (1.1±0.079 TGF-β1 vs 1.0±0.048 F12) (Figure 11D), but 

statistically similar normalized fiber diameters (Figure 11C) and fiber intersections (Figure 

11E). 20 days of stimulation resulted in ASC-SF induced increases in fiber length (1.2±0.044 

ASC-SF vs 1.0±0.0085 F12) (Figure 11D), as well as time-dependent increases in TGF-β1 

induced fiber concentration (0.83±0.11 Day 10 vs 0.97±0.017 Day 20) (Figure 11B) and fiber 

intersection density (1.1±0.14 Day 10 vs 1.4±0.080 Day 20) (Figure 11E). 
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Figure 11: RFL-6 elastic fiber network quanfitication within 3D fibrin gel constructs after TGF-β1 

stimulation (1ng/mL). 

A) Immunostaining and confocal imaging for elastin (green) and elastin chaperone protein fibulin-5 (red) within 3D 

RFL-6 seeded fibrin gel constructs under negative control standard culture media (F12), TGF-β1 stimulation 

(1ng/mL), and ASC-SF after 10 and 20 days of stimulation. 

B-E) MATLAB quantification of normalized: B) elastic fiber concentration, C) elastic fiber diameter, D) elastic 

fiber segment length, and E) elastic fiber intersection density. α = 0.05, n = 5 for all. 
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2.3.7  Cyclic uniaxial loading of soft substrate constructs induces RFL-6 total elastin 

deposition and multiphoton imaging of deposited elastin 

RFL-6 seeded fibrin gels were plated on soft substrate FlexCell TissueTrain plates and 

were cultured for 7 days while subjected to either no external mechanical loading (“Constrained” 

between the loading posts) or a 1Hz 10% displacement cyclic uniaxial loading condition 

(“Dynamic”). Multiphoton microscopic images captured RFL-6 deposited elastin 

autofluorescence in both Constrained and Dynamic constructs after culture in standard culture 

media (Figure 12A). An endpoint digestive elastin assay (Fastin assay) showed a 32.7% increase 

in total elastin deposition (soluble tropoelastins, lathyrogenic elastins, and insoluble elastin) 

when unstimulated RFL-6 constructs were subjected to Dynamic loading (2.22±0.084µg elastin 

per 10mg wet Dynamic construct, vs 1.67±0.074µg elastin per 10mg wet Constrained construct) 

(Figure 12B). 
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Figure 12: RFL-6 deposited elastin multiphoton imaging and total elastin content increases after ASC-SF 

stimulation. 

A) Multiphoton images of RFL-6 deposited elastin within fibrin gel constructs, after 7 days of culture on soft 

substrate culture plates. Constrained constructs were not subjected to any external mechanical load, while Dynamic 

constructs were subjected to a 1Hz, 10% displacement cyclic uniaxial loading condition. 

B) Fastin assay for total elastin (soluble tropoelastins, lathyrogenic elastins, and insoluble elastin) on RFL-6 seeded 

fibrin gel constructs on soft substrates, cultured for 7 days under either Constrained or Dynamic conditions. 

α = 0.05, n = 3. 

  



 61 

2.3.8  ACA to prevent SMC construct fibrinolysis, and TGF-β1 stimulation of SMCs 

induces no significant insoluble elastin deposition on soft substrates 

An ACA concentration panel was performed to gauge the acceptable fibrin construct 

resiliency following SMC integration and 7 days of culture (Figure 13). ACA was diluted in 

SMC growth supplemented media at concentrations of 1mM, 2mM, 4mM, 8mM, 12mM, and 

15mM. SMC constructs cultured within 1mM, 2mM, and 4mM ACA were either entirely 

digested or reduced by >70% of original thickness, while 8mM, 12mM, and 15mM ACA 

constructs remained intact. ACA concentrations of 12-15mM were used in all subsequent SMC 

construct experiments. 

After 20 days of culture on soft substrates, SMC fibrin gel constructs did not deposit a 

significant difference in insoluble elastin when stimulated with 1ng/mL TGF-β1 when compared 

to NT control (standard SMC culture media, plus 12mM ACA) in either Constrained 

(0.14±0.014% NT vs 0.16±0.11% TGF-β1) or Dynamic (0.23±0.098% NT vs 0.22±0.14% TGF-

β1) constructs.  

After 30 days, however, a mechanical loading-induced significant difference in insoluble 

elastin deposition is seen in both NT (0.098±0.018% Constrained vs 0.294±0.030% Dynamic) 

and TGF-β1 (0.084±0.045% Constrained vs 0.25±0.070% Dynamic) constructs (Figure 14). No 

significant TGF-β1 induced difference in insoluble elastin deposition was seen within 

Constrained or Dynamic constructs. 
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Figure 13: ACA concentration panel of SMC seeded fibrin gel constructs. 

Constructs (7.94mm diameter) were seeded with 1x105 SMCs per fibrin gel, seeded within 7.94mm heat-stamped 

templates in tissue-culture treated 24 well plates. ACA concentrations (1mM, 2mM, 4mM, 8mM, 12mM, 15mM) 

were diluted in SMC growth media and cultured for 7 days, with media changes every 36-48 hours.  
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Figure 14: SMC insoluble elastin deposition within soft substrate fibrin constructs, when stimulated with 

1ug/mL TGF-β1 for 20 or 30 days and subjected to Constrained or Dynamic loading. 

Constructs were cultured within 12mM ACA fibrinolysis inhibitor and either No Treatment (SMC culture media) or 

1ng/mL TGF-β1 for 20 or 30 days, with media changes every 48-72 hours. 1Hz, 10% displacement conditions were 

used for Dynamic cyclic uniaxial loading. α = 0.05, n = 6. 
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2.3.9  ASC-SF and NCM increase early migration of SMCs on 2D substrates 

After 12 hours of 2D culture, SMC wound closure significantly increased with ASC-SF 

(38±4.4%) and NCM (38±6.4%) when compared to both NT (24±5.6%) and Unsupplemented 

media negative control (23±6.9%) (Figure 15). That trend holds after 18 hours (58±13% ASC-

SF and 50±4.7% NCM, vs 35±5.7% NT and 29±6.8% Unsupplemented). 

After 24 hours, wound closure for NT (57±11%) is not significantly different from ASC-

SF (73±8.5%) or NCM (74±9.0%), but is significantly higher than Unsupplemented media 

(29±11%). NT closure peaked at 36 hours (80±8.8%), while ASC-SF (80±8.7%) and NCM 

(77±11%) remained statistically similar to 24-hour levels of wound closure. Unsupplemented 

media remained at significantly lower levels (35±12%) after 36 hours. ASC-SF does not induce 

any effect on SMC migration significantly different from NCM. 
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Figure 15: 2D SMC migration is enhanced when treated with ASC-SF and NCM. 

SMC migration to close a scratch wound, after plating on a 2D tissue culture-treated 24 well plate at 

5.5x104cells/well. Media treatments of NT (No Treatment, SMC growth supplemented media as a positive control), 

ASC-SF, NCM (Non-Conditioned Media), and Unsupp (Unsupplemented SMC basal media as a negative control) 

and with CellTracker dye were added after 36 hours, and scratch wounds were imaged every two hours for a 36-

hour window. Wound closure percentage was defined as [(initial scratch area – timepoint scratch area) / initial 

scratch area]. α = 0.05, n = 6. 
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2.3.10  ASC-SF increases SMC myosin heavy chain expression 

qPCR analysis (Figure 16) revealed a transcriptional increase in SMC differentiation 

marker myosin heavy chain (MYH11) after ASC-SF stimulation (3.916±1.952) when compared 

to both NT control (1±0.0003) and NCM (0.8443±0.6187). 

No difference was seen in transcription of α smooth muscle actin (ACTA2) after ASC-SF 

stimulation (0.5731±0.2137) when compared to both NT control (1±0.1319) and NCM 

(0.4924±0.2644). No difference was seen in transcription of calponin (CAL) after ASC-SF 

stimulation (1.303±0.4857) when compared to both NT control (1±0.2543) and NCM 

(0.9533±0.2896).  
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Figure 16: SMC phenotype marker transcription in resonse to 30 days of ASC-SF stimulation. 

RT-qPCR revealed in increase in myosin heavy chain (MYH11) after ASC-SF stimulation, while both α smooth 

muscle actin (ACTA2) and calponin (CAL) were unchanged. n = 3.  
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2.3.11  ASC-SF induce SMC transcription of tropoelastin and elastin chaperone proteins 

fibrillin-1, fibulin-5, LOX, and LOXL-1 

After 30 days in 3D stiff substrate constructs, qPCR revealed that both ASC-SF 

(4.94±0.71-fold increase vs NT control, p < 0.0001) and NCM (3.09±0.29-fold increase, p = 

0.001) induced a significant increase in SMC tropoelastin (Figure 17). ASC-SF also increased 

SMC transcription of microfibril protein fibrillin-1 (4.22±1.10-fold increase, p = 0.00014), 

elastin organizational protein fibulin-5 (5.42±0.53-fold increase, p < 0.0001), and cross-linking 

proteins LOX (2.31±0.44-fold increase, p = 0.00046) and LOXL-1 (2.22±0.53-fold increase, p = 

0.0052). Expression of LTBP-4, responsible for elastin coacervate globule deposition onto 

fibrillin-1 microfibrils, was significantly downregulated with both ASC-SF stimulation 

(0.98±0.02-fold decrease versus NT control, p < 0.0001) and NCM (0.99±0.02-fold decrease, p < 

0.0001). Expression of elastin organizational matricellular protein fibulin-4 was unchanged with 

ASC-SF stimulation. NCM did not induce a significant difference in deposition of fibrillin-1, 

fibulin-4, fibulin-5, LOX, or LOXL-1, when compared to NT control. 
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Figure 17: Transcriptional changes in tropoelastin and elastin chaperone matricellular proteins after 30 days 

of ASC-SF stimulation of SMCs. 

RT-qPCR revealed increases in SMC production of tropoelastin induced by both ASC-SF and NCM, as well as 

ASC-SF induced increases in microfibril protein fibrillin-1, organizational matricellular protein fibulin-5, and cross-

linking proteins lyxyl oxidase (LOX) and lysyl oxidase-like 1 (LOXL-1). Fibulin-4 production was unchanged with 

both ASC-SF stimulation and NCM9 when compared to NT, and LTBP-4 production was significantly reduced with 

both ASC-SF stimulation and NCM. 
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2.3.12  Elastic fiber networking quantifiably increases with ASC-SF treatment under all 

stiffness and loading conditions.  

Elastic fibers were clearly distinguishable in ASC-SF stimulated SMC constructs, 

regardless of substrate stiffness, after both 20 days and 30 days (Figure 21A). Quantification of 

elastin immunostaining images revealed an ASC-SF induced increase in elastic fiber length 

(+36.2±7.55%, p = .0064) within 20-day stiff substrate SMC constructs (Figure 21B). ASC-SF 

stimulated elastic fiber length decreased after 30 days in stiff substrate constructs, with levels 

statistically similar to both control groups. Fiber intersection density within stiff substrate 

constructs increased after both 20 days (+43.6±8.69%, p = .0028) and 30 days (+80.8±25.1%, p 

= 0.018) (Figure 21C). 

Soft substrate SMC gel constructs saw a decrease in average segment length after 20 days 

in both constrained (-33.5±8.37%, p = 0.0499) and dynamic (-21.7±2.63%, p = 0.0496) construct 

conditions, holding constant through 30 days (Figure 22A). Fiber intersection density on ASC-

SF stimulated soft substrate constrained constructs saw an increase after 20 days (+79.7±33.4%, 

p = 0.0096), holding constant relative to NT control after 30 days in culture. Dynamic ASC-SF 

stimulated constructs saw increases in fiber intersection density after both 20 days 

(+28.5±14.0%, p = 0.16) and 30 days (+48.2±9.28%, p = 0.0068) in culture (Figure 22B). 

Additionally, multiphoton microscopy qualitatively confirmed the presence of wavy, 

continuous elastic fibers after ASC-SF stimulation (Figure 19, Figure 20) when compared to a 

lack of visible fibers in NT control constructs (Figure 18).  
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Figure 18: Multiphoton composite image (1x5) of control NT-stimulated SMC autofluorescence signal. 

Performed on the Advanced Intravital Microscope at the Soft Tissue Biomechanics Laboratory, as described in 

Section 2.2.8 . 
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Figure 19: Multiphoton composite image (2x5) of ASC-SF stimulated SMC elastic fiber deposition. 

Performed on the Advanced Intravital Microscope at the Soft Tissue Biomechanics Laboratory, as described in 

Section 2.2.8 . 
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Figure 20: Multiphoton composite image (3x5) of ASC-SF stimulated SMC elastic fiber deposition. 

Performed on the Advanced Intravital Microscope at the Soft Tissue Biomechanics Laboratory, as described in 

Section 2.2.8 . 
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Figure 21: Elastic fiber imaging and fiber network quantification on stiff substrates. 

(A) SMC elastic fibers (green) were revealed after ASC-SF stimulation, when compared to both No Treatment (NT) 

and Non-Conditioned Media (NCM) negative controls, in sample images of z-stacked confocal images of the 30-day 

stiff substrate fibrin gel constructs. Inset for the ASC-SF image shows an example of the MATLAB image 

quantification code identifying fibers (blue lines) and fiber intersections (red circles). (B-C) Stiff substrate fibrin gel 

constructs revealed (B) increased elastic fiber length and (C) intersections after 20 days in culture. After 30 days, 

length decreases while intersection density increases. α = 0.05, n = 5.  
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Figure 22: Elastic fiber imaging and fiber network quantification on soft substrates, with constrained and 

dynamic culture conditions. 

Soft substrate ASC-SF stimulated fibrin gel constructs revealed (A) decreased elastin segment length and (B) 

increased fibril intersection density compared to NT control after 20 culture days in both constrained (solid bars) and 

dynamic (checked bars) loading conditions, with additionally increased intersection density after 30 days of dynamic 

culture. α = 0.05, n = 5. 
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2.3.13  Insoluble elastin increases with ASC-SF treatment after 20 and 30 constrained 

culture days regardless of substrate stiffness, and after 30 days under soft 

substrate cyclic loading.  

ASC-SF stiff substrate SMC stimulation induced a 136% increase versus NT control in 

insoluble elastin percentage of total protein after 20 days (0.15±0.023% NT control and 

0.15±0.03% NCM control, vs 0.37±0.13% ASC-SF, p = 0.045), and a 94% increase after 30 days 

(0.12±0.04% NT control & 0.098±0.038% NCM control, vs 0.25±0.07% ASC-SF, p = 0.050) 

(Figure 23A). 

Insoluble elastin deposition on soft substrate constrained constructs saw a similar 154% 

increase after 20 days (0.14±0.015% NT control vs 0.36±0.12% ASC-SF, p = 0.013) and 124% 

increase after 30 days (0.13±0.08% NT control vs 0.30±0.076% ASC-SF, p = 0.0031) (Figure 

24A). Dynamic SMC constructs, subjected to cyclic uniaxial strain to mimic standard aortic 

stretching intensity and frequency, produced statistically similar levels of insoluble elastin 

percentage after 20 days in culture regardless of ASC-SF. After 30 days, however, a 148% 

increase in elastin percentage was observed (0.29±0.030% NT control vs 0.50±0.069% ASC-SF, 

p = 0.016) (Figure 24A). 

2.3.14  Collagen fraction increases with ASC-SF treatment after 30 days cultured on stiff 

substrate constructs, and after both 20 and 30 days on constrained and 

dynamic soft substrate constructs.  

After 20 days of fibrin gel culture on stiff substrates, ASC-SF stimulation resulted in a 

statistically similar level of collagen (relative to total protein) when compared to both NT and 
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NCM controls. Extending stiff substrate constructs to 30 days, however, resulted in a 233% 

collagen increase with ASC-SF stimulation (0.045%±0.028% NT vs 0.15±0.063% ASC-SF, p = 

0.023). NCM did not result in any detectable collagen after 30 days in culture, despite cellular 

viability and elastin detection on the same 3D construct set (Figure 23B). 

Constrained soft substrate SMC constructs saw ASC-SF induced collagen increases after 

both 20 days (0.0055±0.0033% NT control vs 0.047±0.0060% ASC-SF, p = 0.00047) and 30 

days (0.013±0.0032% NT control vs 0.11±0.023% ASC-SF, p = 0.0026). Additionally, dynamic 

soft substrate SMC constructs saw collagen increases after both 20 days (below the detectable 

threshold for the NT control, vs 0.10±0.026% ASC-SF) and 30 days (NT control below 

detectable threshold vs 0.19±0.0079% ASC-SF, p < 0.0001) (Figure 24B). 
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Figure 23: Insoluble elastin and collagen are enhanced by ASC-SF stimulation of SMC constructs plated on 

stiff substrates. 

Stiff substrate fibrin gel SMC construct analysis of (A) insoluble elastin percentage and (B) collagen percentage of 

total protein, comparing control NT and NCM treatments with ASC-SF stimulation. Day 30 collagen percentage for 

NCM-treated constructs was consistantly below detection threshold. 
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Figure 24: Insoluble elastin and collagen are enhanced by ASC-SF stimulation of soft substrate SMC 

constructs, under Constrained and Dynamic loading conditions. 

Soft substrate analysis of (A) insoluble elastin percentage and (B) collagen percentage of total protein, comparing 

NT control treatment to ASC-SF stimulation under constrained (solid bars) and dynamic (checkered bars) loading 

conditions. 
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2.3.15  High modulus is increased in ASC-SF stimulated soft substrate SMC constrained 

constructs after 30 days. 

Blank gels displayed an almost linear response to extension (Figure 25). The NT gels 

displayed a more non-linear response and the ASC-SF gels display a j-curve type response to 

extension that is typically exhibited by soft connective tissue, owing to the presence of 

mechanically functional elastin and collagen. High and low modulus, defined as the slope of the 

given sample’s mechanical response curve within the high stretch range (final third of the curve) 

and low stretch range (first third of the curve), were then quantified. After 30 days, ASC-SF 

induced a 151% increase in high elastic modulus (49.93±8.829 kPA NT control vs 125.2±54.24 

kPA ASC-SF, p = 0.00040), while low elastic modulus remained statistically unchanged 

(12.87±7.950 kPA NT control vs 12.90±4.048 kPA ASC-SF) (Figure 25C). Blank gels 

displayed a significantly reduced low modulus (5.600±1.335 kPA) and high modulus 

(8.011±3.634 kPA). Ninhydrin assays on these tested samples detected a significant increase in 

insoluble elastin percentage of total protein (0.088±0.028% NT control vs 1.8±.0.65% ASC-SF, 

p = 0.00074) when stimulated by ASC-SF. Hydroxyproline assays detected a statistically 

significant increase in collagen percentage of total protein (0.13±0.077% NT control vs 0.30 

±0.076% ASC-SF, p = 0.0031) when stimulated by ASC-SF. 
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Figure 25: Mechanical properties of constrained, soft substrate ASC-SF stimulated SMC constructs. 

(A) Image of tensile testing configuration (Instron #5543A, with sandpaper-lined pneumatic clamps) used to test 30-

day NT and ASC-SF treated constrained fibrin gels, with ruler for scale. Full details of soft substrate construct 

harvesting and preparation is available in Figure 3. (B) Low and high modulus, defined as the slope of the 

mechanical response curve at low and high stretch, were analyzed on soft substrate-plated fibrin No Treatment (NT) 

and ASC-SF stimulated SMC constructs, alongside cell-free fibrin gel control constructs. Black dots indicate the fit 

lines (within the low and high stretch regions) used to calculate low and high elastic modulus. Envelopes around the 

fit lines indicate the most extreme testing curves, indicating a spread of the data between those bounds. (C) 

Comparison of elastic modulus at low stretch and high stretch regions for both 30-day NT and ASC-SF stimulated 

fibrin gel constructs, alongside cell-free fibrin gel constructs. 
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2.4 Discussion 

The results of this study indicate that ASC-SF treatment induces SMC elastin stimulation 

within 3D fibrin gel constructs at each level of the elastogenesis cascade: tropoelastin and elastin 

organizational protein transcription (Figure 17), organized elastin fibril formation and 

networking (Figure 21, Figure 22), insoluble elastin protein deposition (Figure 23, Figure 24), 

and a mechanically-active extracellular matrix structure incorporating the deposition of collagen 

within 3D fibrin gel constructs (Figure 25). Both NCM and ASC-SF accelerates SMC migration 

and wound healing (Figure 15) as evidenced by the wound closure gap after 12 and 18 hours in 

culture when compared to standard culture media, with potential cell recruitment effects of either 

treatment effect (though no pro-migratory effect was uniquely a result of ASC-SF). 

Tropoelastin, the core protein of elastic fibers, sees a nearly 5-fold transcription increase 

when adult SMCs are stimulated by either ASC-SF or NCM. However, production of 

tropoelastin without sufficient support from essential elastin chaperone matricellular proteins 

results in immature elastic fiber deposition (Figure 1). In AA, insufficient deposition of elastin 

chaperone proteins alongside tropoelastin and cross-linked collagen increases aortic stiffness and 

decreases compliance (caused by insufficient mature elastin), producing aortic conditions 

susceptible to rupture [77, 224]. In this study, ASC-SF stimulation has shown bioactivity that 

could address this issue, with significant transcriptional increases in fibulin-5 (which bundles 

tropoelastin coacervates), LOX (which cross-links tropoelastin via fibulin-4), and LOXL-1 

(which cross-links tropoelastin via fibulin-5) (Figure 17). Microfibril protein fibrillin-1 is also 

increased with ASC-SF stimulation, potentially producing more deposition sites for elastin 

coacervates. 
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Elastic fiber analysis revealed that overall elastic fiber networking increases with ASC-

SF stimulation, resulting from a combination of increasing intersection density and decreasing 

average fiber length (Figure 21, Figure 22). For example, in stiff substrate constructs, fiber 

intersection density increases significantly at both timepoints with the addition of ASC-SF, while 

fiber length initially spikes after 20 days and significantly decreases after 30 days in culture. This 

pattern suggests an initial formation of elastin coacervates and deposition onto microfibrils after 

20 days, with inter-globule crosslinking only occurring after 30 days of constant ASC-SF 

stimulation. While stiff substrate insoluble elastin fraction was increased at both timepoints, 

collagen fraction only increased after 30 days, indicating the potential influence of substrate 

stiffness when evaluating SMCs even within 3D culture hydrogels.  

Soft substrate constructs displayed key elastin deposition differences between constrained 

and dynamic cultures. Constrained soft substrate constructs saw increased insoluble elastin 

fraction and network formation after 20 days, while dynamic soft substrate constructs saw the 

same response only after 30 days. 

These results suggest that dynamically-active constructs plated on flexible soft substrates, 

which are more accurate mimics of in vivo aortic conditions, may require an extended ASC-SF 

therapeutic window to produce chemically mature and mechanically active elastic fibers in 

patients with AA. This “delayed” elastogenic effect is of particular interest to bioengineers 

developing non-surgical therapeutic options tailored for small AA, with 30 days of the current 

ASC-SF delivery concentration every 48-72 hours as the baseline for generating mature elastin 

from SMCs. 

ASC-SF treatment increases the high modulus, but not low modulus, of soft gels after 30 

days of culture compared to the NT and fibrin-only controls (Figure 25). Elastin, a linearly 
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elastic material, is expected to influence the low modulus of the gels, as it provides elasticity in 

the low stretch region of the mechanical response curve to decrease the low modulus of native 

vessels [225-227]. Mechanical characterization in this study does not reveal a significant 

difference between the low modulus of the ASC-SF treated gels relative to the NT group, 

therefore suggesting that the elastin present in both sets of gels is statistically similar in 

mechanical function despite the former displaying relatively increased deposition and 

organization. Figure 25 characterizes the elastic (non-time dependent) mechanical response of 

the gels; however, elastin also plays an important role in the viscous (time dependent) 

mechanical response [210]. It is therefore possible that despite displaying statistically similar low 

modulus, the ASC-SF treated group could display more physiologically relevant viscous 

mechanical properties (such as increased creep resistance) relative to NT controls. Future 

elastogenesis studies should therefore characterize viscous mechanical properties to further 

characterize the mechanical functionality of ASC-SF mediated elastin formation relative to NT 

control. Particular attention should be afforded to creep resistance, which would aid in resisting 

aneurysm growth over time. 

Collagen deposition, mediated by ASC-SF (Figure 23, Figure 24), appears to 

significantly increase the high modulus of the gels (Figure 25). ASC-SF treatment also causes 

the gels to display a stretch-stiffening response that is characteristic of native arterial tissue and 

attributed to the de-crimping and elongation of collagen fibers [223, 226]. Collagen deposition is 

often defective in AA whereby fibers are not correctly oriented or crimped [228]. The collagen 

deposited in this study displays evidence of crimping as the mechanical response curves show a 

clear toe region and stretch-stiffening response. ASC-SF treatment therefore demonstrates the 

potential to not only trigger the deposition of mechanically active elastin, but also crimped 
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collagen fibers, both of which would contribute to halting AA growth, reducing rupture risk, and 

restoring homeostasis. 

2.5 Conclusion 

By coupling elastin matricellular protein transcription with algorithm-based 

characterization of fiber network morphology, ECM protein quantification, and mechanical 

testing, the elastogenesis cascade analysis method outlined in this study illustrates the multiple 

levels of elastin production by SMCs after ASC-SF therapy. Future work would look to tailor 

this 3D construct platform to more accurately mimic aneurysmal aorta by seeding SMCs 

explanted from aneurysmal aortas, altering the stiffness of fibrin constructs, or modulating soft 

substrate stretch within the dynamic culture system.  

Importantly, this study is a first step towards understanding the therapeutic effect of 

ASC-SF on aortic SMC elastogenesis. It also provides a baseline for ASC-SF delivery 

concentration, with extended release of ASC-SF as a goal for any future elastin-targeted 

therapeutic approach that utilizes ASC paracrine signaling pathways to smooth muscle cells. 

2.6 Future Work 

One major question unanswered by this study is the complete elastogenesis impact on 

soft substrate-plated, dynamically-loaded SMC constructs, as qPCR and elastin chaperone 

protein transcriptional analysis was not included in the initial experimental design. As a 
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significant elastin networking and insoluble elastin increases occurring between days 20 and 30 

of dynamic culture, the leading hypothesis is the ‘delayed’ elastogenic effect is a result of 

cellular adaptation to a mechanically stimulated 3D microenvironment. Full analysis of elastin 

chaperone protein transcriptional changes between these points is needed to verify this 

hypothesis. 

One limitation of elastic fiber analysis is reliance on a 2D projection of confocal fiber 

analysis in three dimensions, with each identified fiber “node” defined as the intersection of two 

identified fibers. However, these fibers could merely be crossing in different z-planes, 

necessitating a modification to the fiber analysis code that reconstructs a 3D elastic fiber 

microenvironment and analysis networking parameters in that context. 

Additionally, dynamic culture conditions induced through the FlexCell system could be 

modulated to more accurately mimic diseased, rather than standard, aortic conditions. Here, we 

used a 1Hz frequency (simulating 60 beats per minute) and 10% displacement, both values based 

on a healthy vasculature. Reducing displacement, increasing frequency, and increasing the 

stiffness of the fibrin gel constructs through an increase in fibrinogen concentration could 

provide an in vitro method to mimic diseased aortic conditions. This modality might be a better 

in vitro model for cardiac fibrosis than aneurysm formation, and further study is warranted to 

establish a standard culture system to evaluate pro-elastogenic therapeutics. 

This study also focused on initial proof-of-concept pro-elastogenic rat fetal lung 

fibroblasts, to establish fibrin gel constructs and elastogenesis cascade analysis tools, and on 

commercially-available healthy adult SMCs as an initial elastogenesis target for ASC-SF. The 

target SMCs will assuredly present with a significantly different phenotype within the medial 

layer of dilated, and altered elastogenesis effects in response to ASC-SF are to be expected. The 
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next step in the evaluation of ASC-SF as a pro-elastogenic therapy for small aneurysm is to 

integrate medial layer cells isolated from aortic layers in various states of dilation and disease, 

with initial studies available in Chapter 3.0 and Chapter 4.0 of this dissertation. 

Analysis of other matricellular proteins, and their impact on both mature elastin 

formation and ECM mechanical response profile, can begin with the fibulin family. Fibulin-1 

alongside aggrecan content within the aortic wall have recently shown key roles in age-related 

aortic stiffening [229], with significant deposits of aggrecan and versican accumulation found 

during proteomic analysis of human thoracic aortic aneurysm and dissection samples [230] due 

either increased synthesis or decreased proteolytic turnover. Given high stiffening conditions and 

predisposition towards dissection and aneurysm, fibulin-1, aggrecan, and versican present as a 

potential biomarker combination for aneurysmal risk evaluation. Based on the importance of the 

fibulins, a calcium-dependent elastin binding protein structure domain mimicking aspects of the 

fibulin family could be replicated to develop a therapeutic to aid in elastin assembly [69] or 

interrupt the pro-fibrotic feedback loop. Additionally, further multiphoton analysis on both 

elastic and collagen fiber deposition would provide an additional level of ECM analysis after 

ASC-SF stimulation within these fibrin constructs. 

Our treatment regimen (30 days of ASC-SF delivered every 48-72 hours) must be 

optimized as clinical translation of this ASC-SF therapy progresses. A feasible delivery system 

would expand the potential target patient population for this elastin-targeted AA therapeutic. 

Extracellular vesicles packaging these secreted growth factors could modulate the SMC response 

[231] across a lengthened window, presenting with a mechanism to deliver either ASC-SF or a 

cocktail of potent pro-ECM factors. TGF-β [13], HGF, VEGF, IGF, PDGF, and pro-

inflammatory factors within the interleukin family [232] all present with delivery opportunities 
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within the context of small AA [233]. Initial work to evaluate the pro-elastogenic effects of 

ASC-secreted exosomes and extracellular vesicles can be found in Chapter 6.0. 
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3.0 Specific Aim 2, Part 1: Elastogenesis Impact of Adipose-Derived Stromal Cell Secreted 

Factors on Adult Aneurysmal Smooth Muscle Cells 

As shown in Chapter 2.0, adipose-derived stromal cell (ASC) secreted factors (ASC-SF) 

can upregulate four different points of the elastogenesis cascade in healthy adult aortic smooth 

muscle cells (SMCs): elastin chaperone matricellular protein transcription, elastin network 

formation, insoluble elastin (and total collagen) protein deposition, and a mechanically-active 

extracellular matrix (ECM) network within three-dimensional fibrin gel constructs. SMC 

phenotype in aneurysmal aortas, however, will be significantly different than the commercially-

available SMCs studied in Chapter 2.0. 

This chapter will focus on SMCs isolated from the medial layer of adult thoracic aortic 

aneurysm (TAA), generously provided by the Thoracic Aortic Disease Research laboratory at 

the University of Pittsburgh under the direction of Thomas Gleason, MD. The hypothesis of this 

chapter is that ASC-SF will increase specific steps of the elastogenesis cascade (chaperone 

protein transcription and insoluble elastin deposition) using TAA SMCs from patients with 

bicuspid aortic valve disease and Marfan syndrome. 

3.1 Introduction 

Marfan Syndrome (MFS), a disease impacting between 6.5 [24] to 10.2 [25] out of 

100,000 individuals, results from a mutation in the gene coding for extracellular matrix (ECM) 

microfibril protein fibrillin-1 (FBN1), which serves as the main template for proper elastin 
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formation and cross-linking. The Ghent nosology, a set of defined clinical criteria to identify 

MFS, is reliant on presence of aortic dilation (particularly within the aortic root section) as a 

result of systemic elastin disruption. Early diagnosis and aortic treatment, both surgical and non-

surgical, has been critical to increasing life expectancy of MFS patients, as mean death age has 

increased from 32 (±16) in 1972 to 45 (±17) in 1998 [22, 23] with a mean diagnosis age of 19 

years old. 

Bicuspid Aortic Valve (BAV) Disease is a commonly diagnosed cardiovascular disorder, 

with studies placing prevalence anywhere from 0.6% to 1.5% of the general population [30-32]. 

It involves the malformation of the tri-leaflet aortic valve, which regulates blood flow from the 

left ventricle through the aorta, and an often-accompanying dilation of the aortic root. BAV 

patients typically have only two separate leaflets, unequal in size, formed during valvulogenesis 

within the first eight weeks of fetal development [33]. BAV is commonly diagnosed among 

patients over 40 years old, with only ~2% diagnosed during childhood [34]. Incidence of adverse 

cardiovascular events among this population increased, such as calcification-related 

complications leading to leaflet or aortic stenosis [31], aortic incompetence due to myoxid 

degeneration of the valves [37], coarctation of the aorta aortic root dilation and ascending 

thoracic aortic aneurysm [35] or ascending thoracic aorta dissection [36]. 

TAA are present within MFS and BAV patients, as summarized in Section 1.1.3 . TAAs 

necessitate surgical intervention once dilation has exceeded larger than 5.5cm in most adult 

patients [174]; for teenage MFS patients, this dilation threshold is typically 5cm [176, 177] and 

can be as low as 4cm (or growth rate-dependent) in younger pediatric patients [26]. 

Fragmentation of elastin, the ECM protein responsible for vascular recoil during blood flow, 
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often leads to a decrease in aneurysmal vasculature wall compliance resulting in concentrated 

sections of tissue particularly prone to rupture or dissection.  

With aortic aneurysm rupture and dissection as the USA’s 15th leading cause of death, 

with post-rupture mortality rates upwards of 80% [11], surgical repair and pre-emptive targeted 

therapies have been our primary research focus, as discussed in Chapters 1.0 & 2.0. Surgical 

repair is the primary interventional method for adult TAA at high risk of aneurysm rupture [181]. 

While early aortic aneurysm screening has reduced rupture rates over the last two decades [182], 

there is no standard intervention (beyond a “watchful waiting” imaging regimen every 6-to-12 

months [234]) for patients with either TAA or AAA diameter below the aforementioned 

threshold for surgical intervention. Studies have shown that graft placement performed on sub-

5cm dilated aneurysms provide no further benefit to long-term survival, necessitating the need 

for a non-surgical treatment for these patients with small aneurysm [174].  

As discussed in prior chapters within this dissertation, the target of these small aortic 

aneurysm therapies should be effective mature elastin deposition, which consists of a multi-step 

elastogenesis cascade involving several families of matricellular proteins (Figure 1). A non-

surgical therapeutic option must target dysregulated ECM. The development of an ASC-SF 

derived therapeutic for this function is a crucial part of that next step of treatment for small aortic 

aneurysm. 

Previous studies have shown ASC delivery halts aneurysm progression, and Chapter 2.0 

of this work shows that ASC-SF induces increased insoluble elastin and related chaperone 

protein deposition in healthy adult SMCs. With signaling changes impacting ECM formation 

within MFS cells, the necessity is there to test the efficacy of exogenous TGF-β1 and ASC-SF on 

SMCs sourced directly from diseased aortic tissue. Here, we work to test ASC-SF within our 3D 
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fibrin construct in vitro culture system using SMCs sourced from aortic walls of healthy patients, 

MFS patients, and BAV patients both with and without aortic aneurysm. Evaluation will be 

conducted using two components of the elastogenesis cascade described in Section 2.1 (and 

Figure 1): (1) transcriptional analysis of elastin core protein tropoelastin, microfibril fibrillin-1, 

organizational proteins fibulin-4 and fibulin-5, crosslinking proteins LOX and LOXL-1, and 

elastin coacervate deposition protein LTBP-4; and (2) protein analysis of insoluble elastin and 

total protein deposition induced by exogenous factors. 

3.2 Methods 

3.2.1  Adult SMC cell culture conditions and patient information 

SMCs isolated from explanted adult aortic medial layers were generously provided by the 

Thoracic Aortic Disease Research Lab (McGowan Institute for Regenerative Medicine, 

Pittsburgh PA 15219). All adult SMCs were cultured at 37˚C and 5% CO2, with growth media 

(#311K-500, Cell Applications Inc, San Diego, CA) changes every 48-72 hours. Cells used in 

experimental cultures were between passages 4 and 12. 

Control cells were from patient 01-25 (CTRL 01-25), a 44-year-old Caucasian female 

heart transplant recipient, with collection performed on 6/25/2010. SMCs were isolated from the 

medial layer of the ascending aorta, had a “normal” diameter below 3.9cm. 

MFS cells were from two different patients. MFS 05-07 was from a 39-year-old 

Caucasian male, with tissue collected on 5/19/2011. SMCs were isolated from the medial layer 

of the ascending aorta, measuring 5.7cm in diameter. MFS 05-04 was from a 22-year-old 
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Caucasian male, with tissue collected 1/5/2009. SMCs were isolated from the medial layer of the 

ascending aorta, measuring 4.5cm in diameter. 

Bicuspid aortic valve (BAV) cells from a non-aneurysmal (NA) patient (BAV-NA), 

reference number 02-152, was obtained from a 61-year-old Caucasian male, with tissue collected 

on 10/31/2013. SMCs were isolated from the medial layer of the ascending aorta, measuring 

3.5cm in diameter. BAV cells from an ascending thoracic aortic aneurysm (TAA) patient (BAV-

TAA), reference number 03-2-77, were obtained from a 53-year-old male of Middle Eastern 

descent, with tissue collected on 12/3/2012. SMCs were isolated from the medial layer of 

ascending aorta, with maximum diameter at time of surgery measuring 5.0cm. 

Tricuspid aortic valve (TAV) cells from a non-aneurysmal (NA) patient (TAV-NA), 

reference number 01-47, were collected from a 60-year-old Caucasian male on 11/9/2012 during 

a heart transplant. TAV-NA cells were banked as “control” cells by the Thoracic Aortic Disease 

Research Laboratory. SMCs were isolated from the ascending aorta medial layer, with maximum 

diameter below 4.2cm. TAV cells from an ascending thoracic aortic aneurysm (TAA) patient 

(TAV-TAA), reference 03-172, were isolated from a 68-year-old Caucasian female on 

8/16/2017. SMCs were collected from the ascending aorta medial layer, with maximum diameter 

measuring 4.4cm. 

3.2.2  Fibrin gel construct formation and exogenous stimulation conditions  

Adult explanted aortic SMCs from all cells outlined in Section 3.2.1 were seeded within 

fibrin gels, made by combining 4:1:1 ratios of fibrinogen, thrombin, and cells. Final 

concentrations for each fibrin gel construct used were 3.7mg/mL fibrinogen, 0.21U/mL 

thrombin, and 5x105 cells/mL, with fibrin gels formed within 7.94mm diameter circular 
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templates on 24-well tissue culture plastic plates. Constructs were cultured within 37˚C, 5% CO2 

culture conditions. 

Negative control exogenous stimulation group included No Treatment (NT) control, 

which consisted of SMC growth supplemented media with 10mM aminocaproic acid (ACA) to 

prevent cell-driven fibrinolytic degradation of fibrin gel constructs. Exogenous stimulation 

treatment groups included: (1) adipose-derived stromal cell secreted factors (ASC-SF), a 1:1 

ratio mix of SMC growth supplemented media and ASC conditioned media collected every 24-

72 hours; and (2) non-conditioned media (NCM), a 1:1 ratio mix of SMC growth supplemented 

media and fresh ASC culture media. 

ASCs were collected from deidentified waste human adipose tissue collected during body 

sculpting surgeries of non-smoking, non-diabetic patients under 45 years old at UPMC 

Presbyterian Hospital, as described in Section 2.2.4 . Standard ASC culture media consisted of 

33% Dulbecco’s Modified Eagles Medium (High Glucose, Gibco #12100046), 33% DMEM/F12 

Medium (HEPES, Gibco #12400024), 7.5% fetal bovine serum (FBS, Premium Select Atlanta 

Biologics #S11550), 0.75% fungizone (Lonza BioWhittaker Antibiotics #BW17836E), 0.75% 

penicillin streptomycin (10,000 U/mL, ThermoFisher Scientific #15140122), 0.075 μM 

Dexamethasone (Sigma-Aldrich #D4902), and 25% Preadipocyte Growth Medium (PromoCell 

#C-39425). ASC conditioned media was collected from 40 to 70% confluence, and immediately 

frozen at -80˚C. 
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3.2.3  qPCR transcription analysis of SMC-deposited tropoelastin and elastin chaperone 

proteins 

Fibrin gel constructs were peeled from the tissue culture plastic plate and frozen in 

RNAse-free tubes at -80˚C. Frozen gel constructs were pulverized using a probe sonicator, with 

RNA collection (illustra RNAspin Mini Kit, GE Healthcare Life Sciences #25050070) and RNA 

concentration quantification (BioTek Take3) performed subsequently. After pre-heating template 

(65°C, 5 minutes), SuperScript IV First-Strand Synthesis System (Invitrogen #18091050) kit was 

used to synthesize first-strand cDNA (23°C/10 minutes, 55°C/10 minutes, 80°C/10 minutes). 

RT-qPCR was performed using KiCqStart SYBR Green ReadyMix with ROX (Sigma-Aldrich # 

KCQS02), and forward/reverse primers listed in Table 2. Post-amplification melt curves 

validated proper amplification. 

3.2.4  Ninhydrin protein assay for insoluble elastin and hydroxyproline protein assay for 

total collagen 

Frozen fibrin gel constructs were thawed immediately before base hydrolysis (0.1M 

NaOH, 1 hour, 98°C) for fibrin gel digestion and solubilization of non-elastin protein. 

Centrifugation (1500RPM, 5 minutes) was used to separate insoluble elastin protein from soluble 

non-elastin protein [216], with two subsequent wash and centrifugation steps to ensure full non-

elastin protein separation. Acid hydrolysis (6N HCl, 24 hours, 110°C) solubilized all proteins, 

and assay quantification performed on soluble and insoluble fractions quantified insoluble elastin 

(via ninhydrin reaction) and collagen (via hydroxyproline) protein deposition within each fibrin 

gel construct, normalized to total deposited protein. Ninhydrin content was detectable using an 
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absorbance reading (at 570nm) after 1-hour incubation with a stannous chloride-based solution 

within a 56°C water bath. Hydroxyproline content used chloramine-T and 

dimethylaminobenzaldehyde-based reactions within a 37°C oven, and absorbance reading for 

quantification (570nm). 

3.2.5  Statistical Analysis 

Means comparisons were conducted using individual t-tests or one-way ANOVA with 

Tukey post-hoc tests, as appropriate. Significance threshold of α = 0.05 was set for all presented 

data, with experimental sample size of tested constructs listed on each figure. IBM SPSS was 

used for all statistical analysis. All displayed data values written after “±” are Standard Deviation 

values. 

3.3 Results 

3.3.1  Elastogenesis is muted in MFS 05-07 SMCs after 30 days of TGF-β1 stimulation, 

while collagen deposition is slightly increased. 

After stimulation of seeded fibrin gels with 1ng/mL TGF-β1, elastin deposition is 

statistically similar for CTRL 01-25 constructs (Figure 26A) after both 20 days (0.155±0.0949% 

NT n=9 vs 0.137±0.0769% TGF-β1 n=6) and 30 days (0.829±0.188% NT n=6 vs 

0.137±0.0769% TGF-β1 n=6) in culture; however, a time-dependent increase in elastin 

deposition is seen across both treatment groups. 
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TGF-β1 stimulation of MFS 05-07 constructs resulted in a statistically similar amount of 

insoluble elastin deposition after 20 days (0.137±0.194% NT n=3 vs 0.117±0.194% TGF-β1 

n=3), but a significant muting effect after 30 days (0.554±0.280% NT n=3 vs 0.0123±0.0171% 

TGF-β1 n=4) (Figure 26A). TGF-β1 stimulation of MFS 05-04 constructs resulted in a 

statistically similar amount of insoluble elastin deposition after both 20 days (0.201±0.0790% 

NT n=7 vs 0.338±0.102% TGF-β1 n=3) and 30 days (0.541±0.137% NT n=7 vs 0.363±0.230% 

TGF-β1 n=3) (Figure 27A, TGF-β1 in red bars). 

Collagen deposition following TGF-β1 stimulation was statistically similar for CTRL 01-

25 constructs (Figure 26B) after both 20 days (0.122±0.0387% NT n=9 vs 0.145±0.0266% 

TGF-β1 n=6) and 30 days (0.145±0.0385% NT n=14 vs 0.165±0.0242% TGF-β1 n=6) in 

culture. MFS 05-07 constructs collagen deposition statistically increased after 30 days in culture 

(0.0971±0.00481% NT n=3 vs 0.134±0.0286% TGF-β1 n=3) and saw a time-dependent 

decrease between 20 days (0.180±0.0249% NT n=3 vs 0.216±0.0620% TGF-β1 n=3) and 30 

days of TGF-β1 stimulation. 

The TGF-β1 induced increase in collagen deposition after 30 days in culture repeated 

with MFS 05-04 SMC constructs (0.231±0.0878% NT n=11 vs 0.699±0.0878% TGF-β1 n=4) 

(Figure 27B, TGF-β1 in red bars). MFS 05-04 collagen deposition after 20 days of TGF-β1 

stimulation remained statistically similar (0.157±0.0707% NT n=7 vs 0.206±0.0261% TGF-β1 

n=3).  
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Figure 26: Insoluble elastin and total collagen deposition of TGF-β1 stimulated CTRL 01-25 and MFS 05-07 

constructs, after 20 and 30 days. 

A) Insoluble elastin fraction of total protein after 20 days (green) and 30 days (purple) of NT control and TGF-β1 

stimulation, as determined by ninhydrin assay.  

B) Total collagen fraction of total protein after 20 days (green) and 30 days (purple) of NT control and TGF-β1 

stimulation, as determined by hydroxyproline assay. α = 0.05.  
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3.3.2  MFS 05-04 SMC elastogenesis is muted after 20 days of ASC-SF stimulation but 

statistically increased after 30 days of NCM stimulation, while collagen 

deposition is statistically unchanged with ASC-SF and NCM stimulation. 

Insoluble elastin deposition is statistically increased in ASC-SF stimulated CTRL 01-25 

constructs (Figure 27A, dark grey bars) after 30 days in culture (0.829±0.188% NT n=6 vs 

1.61±0.112% ASC-SF n=6). 20-day CTRL 01-25 ASC-SF stimulated elastin deposition was 

unchanged (0.155±0.0949% NT n=9 vs 0.148±0.0885% ASC-SF n=4). NCM stimulation, 

however, resulted in statistically increased insoluble elastin deposition after 30 days 

(1.31±0.174% NCM n=4) (Figure 27A, blue bars). 

MFS 05-04 SMC insoluble elastin deposition was muted after ASC-SF stimulation for 20 

days (0.201±0.0790% NT n=7 vs 0.0093±0.0095% ASC-SF n=4), and statistically decreased 

after 30 days (0.541±0.137% NT n=7 vs 0.317±0.0436% ASC-SF n=4) (Figure 27A, dark grey 

bars). NCM stimulation for 30 days, however, resulted in a statistically increased level of 

insoluble elastin deposition (0.958±0.0255% NCM n=4) (Figure 27A, blue bars). 

Total collagen deposition was statistically increased in CTRL 01-25 constructs stimulated 

for 30 days in ASC-SF (0.426±0.227% n=8) (Figure 27B, dark grey bars) and NCM 

(0.274±0.0421% NCM n=8) (Figure 27B, blue bars) when compared to NT control 

(0.145±0.0385% NT n=14). Statistically similar collagen was deposited by 20-day ASC-SF 

stimulation (0.122±0.0387% NT n=9, vs 0.142±0.0702% ASC-SF n=4). 

ASC-SF stimulation left MFS 05-04 collagen deposition unchanged after stimulation for 

both 20 days (0.157±0.0707% NT n=7 vs 0.211±0.137% ASC-SF n=4) and 30 days 

0.231±0.0878% NT n=11 vs 0.103±0.0511% ASC-SF n=8). 30 days of NCM stimulation also 

produced statistically similar collagen levels (0.199±0.0176% NCM n=8).  
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Figure 27: Insoluble elastin and total collagen deposition of CTRL 01-25 and MFS 05-07 constructs, after 20 

and 30 days of TGF-β1 or ASC-SF exogenous stimulation. 

A) Insoluble elastin fraction of total protein after 20 days (green) and 30 days (purple) of NT control, TGF-β1, ASC-

SF, and NCM control stimulation, as determined by ninhydrin assay.  

B) Total collagen fraction of total protein after 20 days (green) and 30 days (purple) of NT control, TGF-β1, ASC-

SF, and NCM control stimulation, as determined by hydroxyproline assay. NCM was not run for 20 days. α = 0.05.  
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3.3.3  TAV-TAA SMC elastogenesis is increased after TGF- β1 stimulation, but collagen is 

reduced. 

Insoluble elastin deposition by TAV-NA SMCs is muted after 30 days of TGF- β1 

stimulation (0.285±0.275% NT vs TGF- β1 below detectable threshold for all samples). TAV-

TAA SMCs saw a 466% increase in insoluble elastin deposition when stimulated for 30 days 

with TGF- β1 (0.0211±0.0365% NT, vs 0.119±0.0389% TGF- β1) (Figure 28A). 

Total collagen deposition, however, is reduced by 30 days of TGF- β1 in both TAV-NA 

SMC constructs (0.141±0.0204% NT, vs 0.0703±0.0320% TGF- β1) and TAV-TAA SMC 

constructs (0.0597±0.0264% NT, vs 0.0142±0.0116% TGF- β1) (Figure 28B). Corresponding 

TAV-TAA SMCs produce significantly less total collagen than their TAV-NA SMC 

counterparts. TAV cells were not evaluated with ASC-SF for this study, as TAV-NA was 

determined to be phenotypically similar to the CTRL line. 
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Figure 28: Tricuspid aortic valve (TAV) non-aneurysmal (NA) and ascending thoracic aortic aneurysmal 

(TAA) SMC insoluble elastin and total collagen deposition after 30 days of TGF- β1 stimulation. 

A) Insoluble elastin fraction of total protein after 30 days of NT control and TGF- β1 stimulation (1ng/mL) of TAV-

NA and TAV-TAA fibrin gel constructs, as determined by ninhydrin assay. TAV-NA TGF- β1 was below 

detectable threshold for all samples. n=3, α = 0.05. 

B) Total collagen fraction of total protein after 30 days of NT control or TGF- β1 stimulation (1ng/mL) of TAV-NA 

and TAV-TAA fibrin gel constructs, as determined by hydroxyproline assay. n=3, α = 0.05.  
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3.3.4  BAV-NA fibrillin-1 transcription is significantly increased after 30 days of ASC-SF 

stimulation, while both LOX and LTBP-4 are muted with ASC-SF. 

Initial qPCR analysis on a limited selection of elastin chaperone proteins revealed 

changes in BAV-NA protein transcription (Figure 29). Microfibril fibrillin-1 was significantly 

increased after 30 days of ASC-SF treatment (4.943±2.157 fold change) when compared to NT 

control (1±0.0303), while NCM muted fibrillin-1 transcription (0.0020±0.0008). 

Tropoelastin was not significantly changed with ASC-SF stimulation (0.5527±0.3225) 

when compared to NT control (1±0.1732), but is significantly increased with NCM 

(2.756±0.3276). 

Cross-linking LOX is not significantly different with ASC-SF stimulation 

(0.5166±0.2424) when compared to NT control (1±0.0394), while NCM mutes LOX deposition 

entirely (three samples all below detection threshold). Deposition protein LTBP-4 is significantly 

reduced with ASC-SF (0.0989±0.0328) and muted after NCM (three samples all below detection 

threshold) stimulation, when compared to NT control (1±0.3576). 
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Figure 29: Preliminary data on BAV-NA transcriptional changes in tropoelastin and elastin chaperone 

matricellular proteins after 30 days of ASC-SF stimulation. 

RT-qPCR revealed an ASC-SF mediated increase in BAV-NA transcription of microfibril fibrillin-1, with no 

significant difference seen in tropoelastin or cross-linking protein LOX, while deposition protein LTBP-4 was 

significantly reduced with ASC-SF. NCM induced a significant increase in tropoelastin deposition, but muted 

fibrillin-1, LOX, and LTBP-4.  

n = 3, α = 0.5. 
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3.3.5  BAV-TAA transcription of fibrillin-1 is increased after 30 days of ASC-SF, while 

NCM increases LTBP-4 deposition. 

 Initial qPCR analysis on a limited selection of elastin chaperone proteins revealed 

changes in BAV-TAA protein transcription (Figure 30). ASC-SF stimulation increases 

deposition of microfibril fibrillin-1 (1.753±0.0367) when compared to NT control (1±0.0031), 

with no effect seen with NCM (1.152±0.0023).  

Tropoelastin deposition is increased after either ASC-SF (1.803±0.4508) or NCM 

stimulation (7.398±0.9742) when compared to NT control (1±0.1750). A similar dramatic 

increase is seen in LTBP-4 transcription after NCM stimulation (5.778±2.675) when compared 

to NT control (1±0.0143), with no effect seen ASC-SF stimulation (1.046±0.2623). 

Elastin organizational protein fibulin-5 transcription is decreased after either ASC-SF 

(0.2408±0.0662) or NCM (0.3405±0.1793) stimulation, when compared to NT control 

(1±0.0359). 
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Figure 30: Preliminary data on BAV-TAA transcriptional changes in tropoelastin and elastin chaperone 

matricellular proteins after 30 days of ASC-SF stimulation. 

RT-qPCR revealed tropoelastin deposition increases after either ASC-SF or NCM stimulation, while both ASC-SF 

and NCM significantly reduced fibulin-5 deposition. ASC-SF significantly increased fibrillin-1 transcription with no 

NCM effect seen. while NCM significnatly increased LTBP-4 transcription with no ASC-SF effect seen. 

n = 3, α = 0.5. 
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3.3.6  BAV SMCs from both non-aneurysmal (NA) and aneurysmal (TAA) aortas produce 

increased insoluble elastin when stimulated with ASC-SF and NCM, but only 

non-aneurysmal SMC collagen fraction is increased. 

After 30 days of stimulation within fibrin gel constructs, BAV-NA insoluble elastin 

deposition was increased by 102% with ASC-SF stimulation (0.158±0.0564% insoluble elastin 

of total protein) and 175% with NCM stimulation (0.216±0.00280%) when compared to NT 

control (0.0784±0.0129%) (Figure 31A). BAV-TAA insoluble elastin is also increased after 30 

days of stimulation, 183% increase with ASC-SF (0.164±0.0429%) and 195% with NCM 

(0.171±0.0685%) when compared to NT control (0.0579±0.0100%) (Figure 31A). 

Total collagen deposition (Figure 31B) in 30-day BAV-NA fibrin gel constructs was 

increased 154% after ASC-SF stimulation (0.601±0.228% total collagen of total protein) and 

100% after NCM stimulation (0.473±0.0356%) when compared to NT control (0.236±0.0953%). 

BAV-TAA collagen deposition was unchanged with 30 days of NT (0.552±0.0196%), ASC-SF 

(0.449±0.0811%), or NCM stimulation (0.576±0.130%). 
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Figure 31: Bicuspid aortic valve (BAV) non-aneurysmal (NA) and ascending thoracic aortic aneurysmal 

(TAA) SMC insoluble elastin and total collagen deposition after 30 days of ASC-SF and NCM stimulation 

A) Insoluble elastin fraction of total protein after 30 days of NT control, ASC-SF, and NCM stimulation of BAV-

NA and BAV-TAA fibrin gel constructs, as determined by ninhydrin assay. n=4, α = 0.05. 

B) Total collagen fraction of total protein after 30 days of NT control, ASC-SF, and NCM stimulation of BAV-NA 

and BAV-TAA fibrin gel constructs, as determined by hydroxyproline assay. n=4, α = 0.05. 
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3.4 Discussion 

ASC-SF is a potent inducer of both insoluble elastin and collagen deposition within the 

CTRL01-25 line, sourced from the medial layer of a non-aneurysmal adult ascending aorta. This 

induction of both insoluble elastin and total collagen deposition after 30 days in culture (Figure 

27) mirrors what was seen using ATCC-purchased adult aortic SMCs stimulated with ASC-SF 

(Figure 23), an indication that ASC-SF ECM effects are similar across multiple “healthy” SMC 

lines (including both CTRL and TAV-NA cells) and served as a patient-derived repeated study 

for our ASC-SF studies.  

We also observed that TGF-β1 stimulation had no effect on the CTRL01-25 line (Figure 

27) which matches the results seen with ATCC-purchased SMCs (Figure 14), and saw TGF-β1 

muting of elastogenesis and total collagen deposition in the TAV-NA line (Figure 28). TGF-β1 

only induced an increase within late-culture MFS 05-04 total collagen (Figure 27B) and 30-day 

elastogenesis within TAV-TAA constructs (Figure 28A). The TAV-TAA results came alongside 

a muting of total collagen, however, resulting in a less-mature overall ECM profile. Any ECM 

targeted therapeutic must include multiple factors, or a single factor with a much more targeted 

signaling pathway effect than the broad Smad-pathway implications of TGF-β1 stimulation. 

In early cultures, the MFS 05-04 line had an elastogenesis muting effect when stimulated 

with ASC-SF for 20 days (Figure 27A), which reverts to baseline control levels after 30 days in 

culture. NCM, however, shows a more consistent increase in MFS 05-04 insoluble elastin 

deposition after 30 days. Though NCM-induced elastogenesis effects are not observed within 

ATCC-purchased “healthy” SMCs, the nutrient-rich culture media might serve as a useful and 

less resource-intensive alternative for ECM deposition when working with MFS-derived SMCs 

or working to develop a successful ECM therapeutic for MFS ATAA. NCM also increases both 
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insoluble elastin and total collagen deposition within CTRL 01-25 SMCs after 30 days in culture 

(Figure 27) and within both BAV-NA and BAV-TAA constructs (Figure 31), underscoring the 

potential of NCM as a media alternative for fibrin-based ECM-targeted bioreactors. 

The inability for ASC-SF to induce elastogenesis by MFS 05-04 SMCs requires further 

study, with TGF-β signaling pathway dysregulation as a key starting point for any subsequent 

studies [235]. Fibrillin-1 mutations alter ECM signaling, and induce a cellular feedback response 

that increase the amount of extracellular TGF-β available [236]. LTBP complexes form to 

regulate the availability of this latent TGF-β (forming “large latent complexes” of stored TGF-β), 

which is released as ECM remodeling is needed. In MFS, however, the large latent complex is 

unable to sequester to microfibrils (as a result of fibrillin-1 malformation), resulting in elevated 

free TGF-β and a significant upregulation in Smad pathway phosphorylation [83]. ECM effects 

of this upregulation are not limited to the generation of collagen and elastin, however; matrix 

metalloproteases (MMPs) that degrade collagen, elastin, and chaperone proteins (including 

LTBPs that sequester TGF-β) are produced and cause malformation in the deposited local ECM 

complex [237]. LTBP degradation also disrupts the cellular mechanosensory feedback cycle 

responsible for fine-tuning local matrix stiffness and elasticity, leading to potential downstream 

muting of ECM matricellular protein production [238]. Thus, ASC-SF activation of downstream 

TGF-β pathway factors could be implicated within this disrupted feedback cycle, resulting in 

either increased matrix-degrading MMP deposition or decreased ECM protein deposition. While 

ASC-SF works as an ECM regenerative treatment for both healthy purchased SMCs and healthy 

primary isolated SMCs, it might not be an advisable broad-streamed strategy when dealing with 

disease states that involve abnormal signaling pathways, such as MFS and TGF-β. 
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A similar muting effect is seen within TGF-β1 treatment of TAV-NA and TAV-TAA 

SMCs (Figure 28), reducing both elastin and collagen deposition with TAV-NA and muting 

TAV-TAA collagen after 30 days of stimulation. 

While these adult BAV-NA and BAV-TAA produce more insoluble elastin with NCM 

treatment similarly to adult MFS SMCs, BAV-NA and BAV-TAA elastogenesis is also 

enhanced with 30-days of ASC-SF stimulation. While total collagen content is upregulated in 

BAV-NA SMCs with both ASC-SF and NCM, only baseline levels are seen within BAV-TAA 

constructs (Figure 31). The ASC-SF induced upregulation in insoluble elastin mimics the effects 

seen within both CTRL 01-25 and ATCC-purchased SMCs, but further study is needed to 

elucidate the reasoning for NCM possessing as similar upregulation effect. 

As we are aiming to restore the elastin-to-collagen balance within these tissues, 

increasing insoluble elastin while maintaining collagen levels in BAV-TAA constructs is our 

desired result. Neither ASC-SF nor NCM treatment results in the aforementioned collagen 

muting seen within TGF-β1 treated constructs, leaving ASC-SF as a viable therapy for aortic 

dilation within BAV patients. 

3.5 Conclusion 

This study found that exogenous factors can be used to regulate elastin and collagen 

deposition by medial aortic cells, but great care must be taken to balance the deposited elastin-to-

collagen ratio (to minimize fibrosis) and the downstream signaling effects within each patient’s 

disease condition. Factors contained within both ASC-SF and NCM can independently activate 
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deposition of one ECM component while silencing another, which means applications for 

diseased cells needs to be much more regulated than studies with CTRL and healthy lines. 

BAV more closely mimics healthy SMC reactions to ASC-SF, when compared to MFS 

SMCs. This could be due to a more normalized ECM deposition signaling pathway, a further 

indication that ASC-SF might not be ideal as a readily available therapy for signaling pathway 

impacting disorders.  

Improving BAV elastin-to-collagen ratio could extend to related fibrosis effects, with 

ASC-SF showing potential with this BAV-TAA cell line as well as “healthy” SMCs from both 

purchased and explanted non-aneurysmal aortas. NCM also has this potential, leading to its 

possible application as a culture medium for tissue engineered vascular constructs for BAV and 

TAV patients with thoracic aneurysm. 

3.6 Future Work 

As summarized, further studies need to be made to assess protein transcription within 

stimulated MFS constructs, to see impact of TGF-β/ASC-SF/NCM on elastin chaperone proteins. 

Disruptions in the TGF-β feedback cycle, and thus the ECM deposition loop to fine-tune local 

matrix stiffness, could be exacerbated by ASC-SF, with a concentration of factors reduced (or 

not present) within NCM to induce the muting effect seen here. A comparison could also be 

made between standard culture media and NCM when culturing MFS cells within a fibrin-based 

bioreactor to assess ECM deposition, making NCM a viable (and relatively inexpensive) 

alternative when compared to single-factor stimulation treatments to induce remodeling. 

Bioreactor studies would have to extend to a similar timeline as these stiff substrate experiments, 
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with 20-day treatment cycles (and media changes, at minimum, twice a week) to induce proper 

ECM deposition and accurately model in vivo MFS tissue. qPCR and Western Blot analysis 

could also be conducted on TGF-β, ASC-SF, and NCM MFS SMCs to assess phenotype changes 

induced by the exogenous treatments, which might play a role in the muting elastogenesis 

cascade effects induced by the factors within ASC-SF. 

This work also points to NCM as a low-cost alternative to induce ECM deposition within 

BAV cells, particularly within the context of non-surgical therapies and integration within fibrin-

based tissue engineered vascular grafts. Future work should examine the effects of NCM on 

existing cells seeded within bioreactor culturing methods, and compare it to single-factor 

stimulation. Additional supplements to NCM can be made to enhance SMC phenotype 

modulation and recruitment, anti-thrombolytic activity, and induction of mature ECM 

deposition. Examples include factors such as CCL2-supplemented NCM as non-surgical 

aneurysmal therapeutics, as media used to culture fibrin-based vascular grafts for TAA, and as 

integrated components within delivered grafts for these patients. Additionally, further analysis on 

additional elastin chaperone protein transcription by BAV-NA and BAV-TAA cells is needed to 

get a complete understanding of BAV response to exogenous therapeutic conditions. 
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4.0 Specific Aim 2, Part 2: Elastogenesis Impact of Adipose-Derived Stromal Cell Secreted 

Factors on Pediatric Aneurysmal Smooth Muscle Cells 

Aortic aneurysms are dilations of the aorta, the large blood vessel responsible for 

transporting oxygenated blood from the heart to the extremities, usually caused by a disruption in 

vascular wall protein elastin. Surgical aortic intervention is often determined by aortic diameter 

(expansion from the healthy 2cm to over 5.5 in adults, and over 4cm for teens) or growth rate 

(over 0.5cm/year for pediatric patients). Non-surgical options available for pediatric aneurysms 

below these thresholds are limited to beta-blockers and angiotensin-converting enzyme 

inhibitors, both of which have unintended systemic effects. There is no standard, targeted 

intervention for pediatric patients with small, potentially lethal aortic aneurysms. 

This chapter aims toward the development of a non-surgical treatment for aortic 

aneurysm in these young patients, by assessing the viability of adipose stromal cell secreted 

factors (ASC-SF) to target elastin deposition and the elastogenesis cascade from smooth muscle 

cells explanted from dilated pediatric aortas following surgery. This chapter also outlines the 

beginning of a pediatric aortic cell bank, in collaboration with Dr. Victor Morell and the 

Department of Cardiothoracic Surgery at the UPMC Children’s Hospital of Pittsburgh. Smooth 

muscle cells and fibroblasts were isolated from discarded aortic tissue following graft 

replacement surgery, and placed in long-term storage available for collaborative projects 

designed to study these pediatric populations. 
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4.1 Introduction 

Pediatric patients suffering from aortic aneurysms with origins both genetic (Marfan 

syndrome, MFS, and Loeys-Dietz syndrome, LDS, combined incidence of ~10 out of every 

100,000 individuals) and non-genetic (bicuspid aortic valve, BAV, and tetralogy of Fallot, 

combined incidence of ~1 out of every 100 individuals) require multiple surgical interventions 

before adulthood. Aortic dilation, bordering on aneurysmal, is present among 80% of children 

diagnosed with MFS [29], and aneurysms were presented in 40% of Ehlers Danlos syndrome 

patients (EDS, another inherited connective tissue disorder, with patients often presenting 

multiple aneurysms) [239]. Most critically, the mean age of death for LDS patients is 26.1 years 

old, with sudden aortic complications as the primary cause of death [26]. 

Endovascular aneurysm repair is the primary surgical interventional method for both 

adult and pediatric aortic aneurysm patients at high risk of aneurysm rupture [181], repair 

consists of catheterization to place an endovascular graft. EDS patients post-endovascular 

surgery had a mortality rate of 24% [239]. While early aortic aneurysm screening has reduced 

rupture rates over the last two decades [182], there is no standard intervention for pediatric 

patients with aortic diameter below the aforementioned dilation threshold. Studies have shown 

that graft placement performed on sub-5cm dilated aneurysms provide no further benefit to long-

term survival, necessitating the need for a non-surgical treatment [174]. 

This is particularly true for pediatric MFS, EDS, or LDS patients, as most clinicians favor 

non-surgical aneurysm treatments for patients under 21 years old, delaying the necessity for 

pediatric aneurysm surgical intervention as long as possible [183]. Recurring aneurysmal 

complications in LDS patients, in particular, is another major area of need for studies to 
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maximize time between repeated surgical interventions [26] as 33% of patients require additional 

surgeries. 

Currently, non-surgical therapeutic options for small pediatric aneurysm are limited to 

beta-blockers and angiotensin converting enzyme inhibitors to slow aortic growth, both of which 

are non-specific and have unintended systemic effects. There is no standard, targeted 

intervention for pediatric patients with small, potentially lethal aortic aneurysms, and a 

combination therapy directed at improved elastin formation has not been explored. Low elastin 

content in ascending thoracic aortic aneurysms and lowered elastin concentration in infrarenal 

abdominal aortic aneurysms [80] have pointed to the secretion, coacervation and cross-linking of 

elastin as a worthwhile aneurysmal therapeutic target. This chapter focuses on the need for an 

elastin-targeted therapeutic option targeted for pediatric aortic aneurysms.  

Previous work by our lab has shown that adipose-derived stromal cell (ASC) delivery to 

a growing elastase-induced mouse abdominal aortic aneurysm halts aneurysmal growth, prevents 

further elastin degradation, and possibly stimulates new elastin synthesis, as evidenced by in vivo 

maintenance of elastic lamellae [198]. In other work related to producing a small-diameter tissue 

engineered vascular graft, our group has also demonstrated that MSCs allow patency and ECM 

remodeling of an elastomeric tubular scaffold within interpositional abdominal aortic implants 

[199, 200].  

In vitro work summarized in Chapters 2.0 & 3.0 of this dissertation has shown that ASC 

secreted factors (ASC-SF) enhance elastic fiber production by smooth muscle cells (SMCs) 

from healthy, adult aortas. ASC-SF therapy for healthy aortic SMCs is designed to be the 

foundation of a non-surgical therapy designed to reorganize and fortify elastic fibers within 

pediatric dilated aortic walls, by packaging and delivering growth factors secreted by ASCs 
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directly to the aneurysm. However, assembly of elastic fibers involves a cadre of ECM accessory 

proteins that are needed for proper elastin processing and assembly, and these proteins have not 

been monitored in the regenerative context. 

This work, extending on the tissue transfer infrastructure established with Dr. Victor 

Morell’s Department of Cardiothoracic Surgery and the Division of Pediatric Pathology at the 

Children’s Hospital of Pittsburgh at UPMC, utilized a fibrin-based three-dimensional in vitro 

culture system for explanted diseased pediatric SMCs, and will analyze two steps of the 

elastogenesis cascade by ASC-SF stimulated pediatric SMCs: (1) transcriptional analysis of 

elastin core protein tropoelastin, microfibril fibrillin-1, organizational proteins fibulin-4 and 

fibulin-5, crosslinking proteins LOX and LOXL-1, and elastin coacervate deposition protein 

LTBP-4; and (2) protein analysis of insoluble elastin and total protein deposition induced by 

exogenous factors. 

The central hypothesis is that packaging growth factors secreted by mesenchymal stem 

cells and delivering these factors directly to pediatric aortic aneurysms will reorganize and 

fortify previously damaged elastic fibers within aortic aneurysm walls, establishing a viable non-

surgical therapeutic option to delay the need for pediatric aorta surgery. 
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4.2 Methods 

4.2.1  Inclusion criteria for explanted pediatric dilated aortic tissue 

The current inclusion criteria were established under the guidance of the Vascular 

Bioengineering Laboratory, Vascular ECM Dynamics Laboratory, and Dr. Victor Morell and the 

Department of Cardiothoracic Surgery at the UPMC Children’s Hospital of Pittsburgh. 

Discarded aortic tissue is collected from the Children’s Hospital Division of Pediatric Pathology, 

from pediatric patients (under 21 years old) scheduled for aortic surgery with dilation of the 

abdominal or thoracic aorta, dilation of the aortic root, aortic insufficiency, or a family history 

(or verified case) of connective tissue disorders (MFS, Williams syndrome, LDS, cardiac-

valvular EDS, Cutis Laxa, bicuspid aortic valve). After deidentification by the Division of 

Pediatric Pathology, discarded waste aortic tissue is stored in RPMI 1640 medium 

(ThermoFisher Scientific, # 11875093) and transported on ice to the Vascular Bioengineering 

Laboratory. 

Cells collected and patient information for all collection attempts are listed in Table 3. 

Labeling convention includes prefix MOR (for Morell), followed by a 1 for medial layer or 2 for 

adventitial layer, followed by the patient number in chronological collection order. 

Three cell lines were chosen for in vitro fibrin gel construct elastogenesis evaluation, 

following exogenous ASC-SF and NCM stimulation. MOR 1-01 were SMCs from the medial 

layer of a 2-year-old dilated aortic root explanted following a Ross Procedure, with patient co-

morbidities including aortic valve stenosis and insufficiency. MOR 1-04 were SMCs from the 

aortic medial layer of an 11-year-old patient with ascending thoracic aortic aneurysm (ATAA), 

with co-morbidities of pulmonary arteriovenous malformation, aortic root dilation, and a 
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maternal history of ATAA and aortic root dilation. MOR 1-07 were SMCs from the aortic root 

medial layer of a 15-year-old patient following a valve-sparing root replacement and root 

dilation, with co-morbidities autosomal dominant polycystic kidney disease and hypertension.  
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Table 3: Database of the newly established pediatric aortic cell bank stored at the Vascular Bioengineering 

Laboratory/Vascular ECM Dynamics Laboratory, sourced from UPMC Children’s Hospital of Pittsburgh 

Cell line 
label 

Date 
collected 

Tissue Layer Patient Information # of cell 
aliquots 

MOR 00 

3/9/2017 Entire sample 
(very small) 

3 years old; 
Tricuspid atresia, truncus 
arteriosus, severe aortic 
insufficiency, DiGeorge Syndrome, 
no connective tissue disorder 

None viable, 
sample too 
small 

MOR 1-01 

4/17/2017 Medial 2 years old;  
Aortic valve stenosis, aortic valve 
insufficiency, aortic root dilation, 
Ross procedure 

21x aliquots, 
1M cells each 

MOR 1-02 4/7/2017 Medial 32 years old; 
Bicuspid aortic valve, Ross 
procedure 

7x aliquots, 1M 
cells each 

MOR 2-02 4/7/2017 Adventitial 2x aliquots, 1M 
cells each 

MOR 1-03 

5/8/2017; Subaortic 
membrane 

18 years old; 
 trisomy 21, s/p repair of 
atrioventricular septal defect and 
previous resection of subaortic 
membrane 

5x aliquots, 1M 
cells each 

MOR 1-04 

8/29/2017 Medial 11 years old; 
Valve-sparing aortic root 
replacement; aortic root 
dilation, ascending aorta aneurysm, 
pulmonary arteriovenous 
malformation, suspected 
connective tissue disorder, as many 
maternal family members with 
aortic root dilation/aneurysm 

6x aliquots, 
1.5M cells each 

MOR 2-04 

8/29/2017 Adventitial 6x aliquots, 
1.5M cells each 

MOR 1-05 
8/31/2017 Entire sample 

(very small) 
7 months old; 
Aortic valvotomy and resection of 
supravalvar aortic stenosis. 

3x aliquots, 
1.5M cells each 

MOR 1-06 

9/1/2017 Medial 15 years old; 
Valve-sparing aortic root 
replacement; repaired atrial septal 
defect, ventricular septal defect, 
and coarctation of aorta. Now 
aortic root dilation, misdiagnosed 
bicuspid aortic valve without 
stenosis or insufficiency, no known 
connective tissue disease. 

6x aliquots, 
1.5M cells each 

MOR 2-06 

9/1/2017 Adventitial 6x aliquots, 
1.5M cells each 
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Table 3 (continued) 

MOR 1-07 
1/22/2018 Medial 15 years old; 

Valve-sparing aortic root 
replacement; aortic root dilation of 
unknown etiology, autosomal 
dominant polycystic kidney 
disease, hypertension 

10x aliquots, 
1.5M cells each 

MOR 2-07 
1/22/2018 Adventitial 9x aliquots, 

1.5M cells each 

MOR 1-08 
4/2/2018 Medial 21 years old; 

Marfan syndrome diagnosed at age 
9, valve sparing aortic root 
replacement. Completed NIH 
randomized trial of Losartan and 
Atenolol. 

5x aliquots, 
1.5M cells each, 
cells not viable 

MOR 2-08 
4/2/2018 Adventitial 5x aliquots, 

1.5M cells each 

MOR 1-09 

9/7/2018 Medial 17 years old; 
Bicuspid aortic valve, aortic 
stenosis, ventricular septal defect, 
coarctation of the aorta, moderate 
aortic insufficiency. Modified Ross 
procedure. At 4 months of age had 
surgical aortic valvuloplasty, 
closure of ventricular septal defect, 
subclavian flap repair of 
coarctation of the aorta 

None viable 

MOR 2-09 

9/7/2018 Adventitial None viable 

MOR 1-10 
2/8/2019 Medial 27 years old; 

Valve-sparing aortic root 
replacement, after progressive 
aortic root dilation. 
History of coarctation of the aorta, 
repaired at 11 years of age. 

7x aliquots, 
1M cells each 

MOR 2-10 
2/8/2019 Adventitial 5x aliquots, 

1M cells each 
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4.2.2  Isolation, culture, and storage of medial SMCs and adventitial fibroblasts from 

explanted pediatric aortic tissue 

The intimal layer of tissue is scraped (to avoid endothelial cell contamination), with 

medial and adventitial layers peeled apart (Figure 32). Each tissue section is dissected into 

1mm2 sections and digested using 0.1% (w/v%) collagenase type IV and 0.05% (w/v%) elastase 

(Worthington Biochemical Corp, # LS004189 & # LS002294) in Dulbecco’s Modified Eagle’s 

Medium (DMEM, ThermoFisher Scientific, #11965). Medial layer cells were cultured using 

Smooth Muscle Growth Supplement (Cell Applications, # 311K-500), and adventitial cells were 

cultured using DMEM. All cultures are performed at 37°C and 5% CO2. Cells are frozen using 

90% fetal bovine serum and 10% dimethyl sulfoxide (Sigma Aldrich, # D2650).  
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Figure 32: Cellular isolation technique from medial and adventitial layers of explanted pediatric aneurysmal 

tissue. 

Explanted pediatric aortic sections as provided by Dr. Victor Morell’s Cardiothoracic Surgery group and the 

Division of Pediatric Pathology at the UPMC Children’s Hospital of Pittsburgh. Intimal layer is scraped off, and the 

remining layers are peeled apart, with adventitial layer and medial layer placed into separate dishes. Each layer is 

diced into ~1cm2 sections and digested in 0.1% collagenase type IV and 0.05% elastase, with cellular outgrowth 

cultured in standard conditions following tissue digestion.  
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4.2.3  Fibrin gel construct formation and exogenous stimulation conditions  

Pediatric SMCs were seeded within fibrin gels (3.7mg/mL fibrinogen, 0.21U/mL 

thrombin, and 5x105 cells/mL), with fibrin gels formed within 8mm diameter circular templates 

on 24-well tissue culture plastic plates, as previously summarized in Sections 2.2.3 & 3.2.2 . 

Each treatment will continue for 30 days of culture. Culture media was changed every 48-72 

hours, with the following exogenous treatment conditions: No Treatment (NT) consisting of 

standard SMC culture media with 10mM fibrinolysis-inhibiting aminocaproic acid (ACA); ASC-

SF, containing a 1:1 ratio of ASC conditioned media (as summarized in Section 2.2.4 ) and 

standard SMC culture media with 10mM ACA; and Non-Conditioned Media (NCM), consisting 

of a 1:1 ratio of fresh ASC culture media and standard SMC culture media with 10mM ACA. 

4.2.4  qPCR analysis of elastin chaperone protein transcription 

Following sonication of frozen fibrin gel constructs, RNA collection (illustra RNAspin 

Mini Kit, GE Healthcare Life Sciences #25050070) and RNA concentration quantification 

(BioTek Take3) was performed. After pre-heating template (65°C, 5 minutes), synthesis of first-

strand cDNA used SuperScript IV First-Strand Synthesis System (Invitrogen #18091050) 

(23°C/10 minutes, 55°C/10 minutes, 80°C/10 minutes). RT-qPCR was performed using 

KiCqStart SYBR Green ReadyMix with ROX (Sigma-Aldrich # KCQS02), and forward/reverse 

primers listed in Table 2. Post-amplification melt curves validated proper amplification. 
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4.2.5  Ninhydrin and hydroxyproline protein analysis of insoluble protein and total 

collagen 

Fibrin gel constructs, frozen at -80°C following culture without fixation, were thawed 

immediately before base hydrolysis (0.1M NaOH, 1 hour, 98°C) for fibrin gel digestion and 

solubilization of non-elastin protein, which was separated using subsequent centrifugation to 

separate insoluble elastin protein from soluble non-elastin protein [216]. Acid hydrolysis (6N 

HCl, 24 hours, 110°C) solubilized all proteins, and assay quantification on both soluble and 

insoluble fractions (ninhydrin-based for elastin, hydroxyproline-based for collagen) allow for 

protein deposition quantification within each 3D construct. Ninhydrin content was detectable 

using an absorbance reading (at 570nm) after 1-hour incubation with a stannous chloride-based 

solution within a 56°C water bath. 

4.2.6  Statistical Analysis 

Means comparisons were conducted using individual t-tests or one-way ANOVA with 

Tukey post-hoc tests, as appropriate. Significance threshold of α = 0.05 was set for all presented 

data, with experimental sample size of tested constructs listed on each figure. IBM SPSS was 

used for all statistical analysis. All displayed data values written after “±” are Standard Deviation 

values. 
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4.3 Results 

4.3.1  MOR 1-01 SMCs treated with ASC-SF increased transcription of tropoelastin, 

fibrillin-1, and LOX, and decreased transcription of fibulin-5, LOXL-1, and 

LTBP-4. 

qPCR analysis of ASC-SF and NCM stimulated fibrin gel constructs seeded with MOR1-

01 SMCs, from the medial layer of a 2-year-old dilated aortic root explanted following a Ross 

Procedure, revealed a transcriptional change in elastin chaperone protein patterns (Figure 33).  

Constructs simulated for 30 days with ASC-SF saw significant increases in core elastin 

protein tropoelastin (4.485±1.159 ASC-SF fold increase, vs 1±0.1368 NT and 0.5500±0.2031 

NCM) and microfibril protein fibrillin-1 (20.46±2.785 ASC-SF fold increase, vs 1±0.0515 NT 

and 0.5461±0.0558 NCM). Both ASC-SF and NCM increased crosslinking protein LOX 

transcription (2.018±0.4014 ASC-SF and 1.936±0.3678 NCM fold increase, vs 1±0.1281 NT). 

ASC-SF had a muting effect on elastin organizational protein fibulin-5 (0.0821±0.1042 

ASC-SF fold decrease, vs 1±0.7069 NT and 0.9019±0.5121 NCM), and LTBP-4 (ASC-SF 

relative expression was below detectable threshold on all samples, vs 1±0.3122 NT and 

0.4445±0.8397 NCM). Both ASC-SF and NCM stimulation muted crosslinking protein LOXL-1 

(0.1953±0.0645 ASC-SF and 0.2864±0.0645 NCM fold decrease, vs 1±0.2176 NT). There was 

no significant change in elastin organizational protein fibulin-4 transcription with either ASC-SF 

or NCM (0.8122±0.0317 ASC-SF and 0.8586±0.3300 NCM relative expression, vs 1±0.0933 

NT). 
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Figure 33: MOR1-01 SMC transcriptional analysis reveals an ASC-SF induced increase in tropoelastin, 

microfibril protein fibrillin-1, and crosslinking protein LOX, with a decrease in fibulin-5, LOXL-1, and 

LTBP-4. 

n=4, α=0.05 for all.  
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4.3.2  MOR 1-01 SMCs saw increased insoluble elastin and muted collagen deposition after 

ASC-SF stimulation. 

MOR 1-01, pediatric aortic root SMCs from a 2-year-old patient following dilation and a 

Ross Procedure, saw a significant 226% increase in insoluble elastin deposition after 30 days of 

ASC-SF stimulation (0.190±0.0718% elastin of total protein), but no statistically significant 

difference after NCM stimulation due to high deviation (0.132±0.101%) when compared to NT 

control (0.0584±0.0516%) (Figure 34A). 

 MOR 1-01 total collagen deposition, however, was muted after 30 days of ASC-SF 

stimulation (0.0205±0.0101% total collagen of total protein) and statistically similar after NCM 

stimulation (0.206±0.0587%) when compared to NT control (0.317±0.0985%) (Figure 34B).  
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Figure 34: MOR 1-01 SMCs, from the medial layer of a 2-year-old dilated aortic root explanted following a 

Ross Procedure, deposit significantly increased insoluble elastin and decreased total collagen after 30 days of 

ASC-SF stimulation. 

A) Insoluble elastin deposition by fibrin construct-embedded MOR 1-01 cells after 30 days of stimulation with NT 

control, ASC-SF, or NCM. n=4, α = 0.05.  

B) Total collagen deposition by fibrin construct-embedded MOR 1-01 cells after 30 days of stimulation with NT 

control, ASC-SF, or NCM. n=4, α = 0.05.  
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4.3.3  MOR 1-04 qPCR 

qPCR analysis of MOR1-04 SMCs, pediatric aortic medial layer SMCs from an 11-year-

old patient with ascending TAA within fibrin gel constructs, stimulated with ASC-SF and NCM 

also revealed a transcriptional alteration in elastin chaperone protein patterns (Figure 35). 

Both ASC-SF and NCM 30-day stimulation induced significant increases in elastin 

organizational protein fibulin-5 (3.428±0.8009 ASC-SF and 5.046±0.5803 NCM fold increase, 

vs 1±0.1648 NT) and crosslinking protein LOX (2.003±0.2007 ASC-SF and 2.045±0.1241 NCM 

fold increase, vs 1±0.0534 NT). 

Core elastin protein tropoelastin transcription was not significantly changed with ASC-SF 

stimulation, but was significantly increased with NCM (1.344±0.2553 ASC-SF and 

1.584±0.2054 NCM fold change, vs 1±0.0615 NT). NCM also induced a significant 

transcriptional increase in microfibril fibrillin-1 (1.912±0.6308 NCM fold increase, vs 1±0.0532 

NT and 1.236±0.2310 ASC-SF). 

LTBP-4, an elastin coacervate deposition protein, was significantly downregulated by 

both ASC-SF and NCM (0.1657±0.0686 ASC-SF and 0.3733±0.0504 NCM fold decrease, vs 

1±0.0113 NT).  

No significant difference was seen with either ASC-SF o/r NCM in transcription of 

organizational protein fibulin-4 (0.8671±0.2799 ASC-SF and 1.170±0.1227 NCM fold change, 

vs 1±0.1827 NT) or crosslinking protein LOXL-1 (1.000±0.4439 ASC-SF and 1.120±0.1005 

NCM fold change, vs 1±0.2527 NT).  
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Figure 35: MOR1-04 SMC transcriptional analysis reveals ASC-SF and NCM induced increases in 

tropoelastin, elastin organizational protein fibulin-5, and crosslinking protein LOX, with a decrease in LTBP-

4 and an NCM-only increase in microfibril protein fibrillin-1. 

n=4, α=0.05 for all. 
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4.3.4  MOR 1-04 SMCs produce increased insoluble elastin and total collagen percentage 

after 30 days of ASC-SF stimulation, and increased total collagen percentage 

after 30 days of NCM stimulation.  

MOR 1-04, pediatric aortic medial layer SMCs from an 11-year-old patient with 

ascending TAA, saw a 156% significant increase in insoluble elastin deposition after 30 days of 

ASC-SF stimulation (0.661±0.223% elastin of total protein), but no significant difference after 

NCM stimulation for 30 days (0.173±0.0651%) when compared to NT control (0.158±0.147%) 

(Figure 36A). 

 MOR 1-04 total collagen deposition was also significantly increased, over six-fold, after 

30 days of ASC-SF stimulation (0.365±0.0349% total collagen of total protein) and over twelve-

fold after 30 days of NCM stimulation (0.625±0.220%) when compared to NT control 

(0.0474±0.0203%) (Figure 36B). 
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Figure 36: MOR 1-04 SMCs, from the aortic medial layer SMCs from an 11-year-old patient with ascending 

TAA, deposit significantly increased insoluble elastin after 30 days of ASC-SF stimulation, and significantly 

increased total collagen after 30 days of both ASC-SF and NCM stimulation. 

A) Insoluble elastin deposition by fibrin construct-embedded MOR 1-04 cells after 30 days of stimulation with NT 

control, ASC-SF, or NCM. n=4, α = 0.05.  

B) Total collagen deposition by fibrin construct-embedded MOR 1-04 cells after 30 days of stimulation with NT 

control, ASC-SF, or NCM. n=4, α = 0.05.  
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4.3.5  MOR 1-07 deposition of fibulin-5, LOX, and LOXL-1 was significantly increased 

with either ASC-SF or NCM stimulation, with no changes to tropoelastin 

deposition observed. 

qPCR analysis (Figure 37) revealed MOR 1-07 SMC deposition of tropoelastin was 

unchanged after 30 days of ASC-SF (1.178±0.5899 fold change) or NCM stimulation 

(1.221±0.2513) when compared to NT control (1±0.07135).  

ASC-SF and NCM likewise induced no significant change in MOR 1-07 deposition of 

microfibril protein fibrillin-1 (0.5114±0.1507 ASC-SF and 0.6663±0.08434 NCM, vs 1±0.05143 

NT) or elastin organizational protein fibulin-4 (0.8350 ±0.1107 ASC-SF and 0.9494±0.1017 

NCM, vs 1±0.01663 NT). 

Elastin organizational protein fibulin-5, however, was significantly increased with either 

ASC-SF or NCM stimulation (7.469±1.264 ASC-SF and 12.21±1.663 NCM, vs 1±0.01172 NT). 

Similarly, deposition of both elastin crosslinking proteins LOX (2.637±0.3001 ASC-SF 

and 2.065±0.2316 NCM, vs 1±0.05739 NT) and LOXL-1 (2.790±0.4885 ASC-SF and 

2.348±1.009 NCM, vs 1±0.07885 NT) were significantly increased with either ASC-SF or NCM 

stimulation. 

Elastin coacervate deposition protein LTBP-4 was statistically similar after ASC-SF 

stimulation (0.5895±1.007) but was muted after NCM (0.2231±0.1035) when compared to NT 

control (1±0.09876). 
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Figure 37: MOR1-07 SMC transcriptional analysis reveals 30 days of ASC-SF and NCM stimulation induced 

increased in fibulin-5, LOX, and LOXL-1, with NCM inducing a decrease in LTBP-4. 

n=4, α=0.05 for all. 
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4.3.6  MOR 1-07 insoluble elastin deposition is induced after ASC-SF or NCM stimulation 

for 30 days, but total collagen is unchanged. 

MOR 1-07, SMCs from the aortic root medial layer of a 15-year-old patient following a 

valve-sparing root replacement and root dilation, saw a 45.7% significant increase in insoluble 

elastin deposition after 30 days of ASC-SF stimulation (0.372±0.0129% elastin of total protein) 

and a 38.1% increase after NCM stimulation (0.353±0.0675%) when compared to NT control 

(0.255±0.0083%) (Figure 38A). 

 MOR 1-04 total collagen deposition remained statistically unchanged after 30 days of 

either ASC-SF stimulation (0.0972±0.0148% total collagen of total protein) or NCM stimulation 

(0.101±0.0158%) when compared to NT control (0.108±0.0241%) (Figure 38B). 
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Figure 38: MOR 1-07 SMCs, from the aortic root medial layer of a 15-year-old patient following a valve-

sparing root replacement and root dilation, deposit significantly increased insoluble elastin after 30 days of 

ASC-SF and NCM stimulation, but no change in total collagen. 

A) Insoluble elastin deposition by fibrin construct-embedded MOR 1-07 cells after 30 days of stimulation with NT 

control, ASC-SF, or NCM. n=4, α = 0.05.  

B) Total collagen deposition by fibrin construct-embedded MOR 1-07 cells after 30 days of stimulation with NT 

control, ASC-SF, or NCM. n=4, α = 0.05. 
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4.4 Discussion 

Cellular cross-contamination while culturing different layers of tissue is common (medial 

layers typically contain SMCs, adventitial layers contain fibroblasts). Confirmation of each cell 

phenotype, using common SMC surface markers and immunocytochemistry techniques, is a 

clear way to verify cell populations. 

ASC-SF stimulation of MOR1-01 SMCs, from medial layer of 2-year-old dilated aortic 

root tissue, has distinct effects when comparing the two “units” of tropoelastin coacervation 

(Figure 1): (1) tropoelastin, fibulin-4, and LOX; and (2) tropoelastin, fibulin-5, and LOXL-1. 

ASC-SF significantly increased core elastin protein tropoelastin, microfibril protein fibrillin-1, 

and crosslinking protein LOX (Figure 33). Fibulin-4, a LOX-linked elastin organizational 

protein, is not changed with ASC-SF or NCM. Meanwhile, components of the complementary 

elastin coacervate complex, fibulin-5 and LOXL-1, are significantly muted with ASC-SF 

stimulation. A downregulation of both fibulin-5 and LOXL-1 potentially limits ASC-SF 

mediated mature insoluble elastin deposition, distinctly impacting one of the two major elastin 

coacervation mechanisms. 

NCM increased MOR1-01 SMC LOX deposition with no effect on tropoelastin, fibulin-

4, or fibrillin-1, showing that a selection of components within ASC culture media has a 

stimulating effect for this single elastin chaperone protein. NCM also mutes LOXL-1 but has no 

significant effect on fibulin-5 deposition, underscoring that the mechanism for ECM pathway 

activation by these exogenous factors can individually act on each component of elastin 

coacervation complexes outlined above. 

MOR1-01 insoluble elastin is significantly increased with 30 days of ASC-SF therapy 

(Figure 34A), potentially as a result of a combination of increased tropoelastin, fibrillin-1, and 
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LOX. Total collagen, however, is muted with ASC-SF stimulation (Figure 34B), showing that 

ASC-SF individually stimulates ECM pathways in this young pediatric SMC line. 

MOR1-04, medial layer ascending thoracic aortic SMCs from a 11-year-old patient with 

severe ATAA, deposited significantly more tropoelastin, fibulin-5, and LOX when stimulated 

with either ASC-SF or NCM for 30 days. Only NCM increased fibrillin-1 deposition (Figure 

35). With this similar pattern of elastin chaperone protein transcription, one would expect similar 

levels of mature elastin deposition between ASC-SF and NCM. However, only ASC-SF induced 

increased insoluble elastin deposition, with NCM producing a statistically similar level with the 

NT controls (Figure 36A). This disparity could be due to additional elastin chaperone protein 

activity outside our analysis (EMILIN-1, LTBP family members), or a level of activity and 

exposed binding sites of these deposited factors outside of our analysis. Substrate stiffness could 

also play a role in enhancing pro-elastogenesis effects of ASC-SF, with an additional factor 

present (or a degradation factor missing) when compared to the composition of factors within 

NCM. 

Meanwhile, MOR1-04 total collagen production was increased in both ASC-SF and 

NCM stimulated constructs (Figure 36B). LOX works to crosslink and stabilize both collagen 

and elastin, and has shown effects in tendon collagen fibrillogenesis [240] and healing within 

atherosclerotic lesions [241] in addition to its dysfunction being linked within aortic aneurysm 

development [242]. While this is essential for proper collagen function, only ASC-SF combines 

increased organizational protein transcription, insoluble elastin deposition, and total collagen 

deposition, leading it to be the favorable treatment group to pursue for MOR04 and similar 

phenotype patients with ATAA. 
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Investigating MOR1-07, however, shows that total collagen levels remain unchanged and 

insoluble elastin levels are slightly upregulated with either ASC-SF or NCM stimulation (Figure 

38) with increases in fibulin-5, LOX, and LOXL-1 induced in parallel (Figure 37) and 

tropoelastin levels left unchanged. An increase in tropoelastin coacervation (via fibulin-5) and 

crosslinking (via LOX and LOXL-1) could induce this greater level of mature elastin deposited, 

but the unchanged collagen response and overall decrease in both ECM protein fractions stand 

out with this SMC line.  

4.5 Conclusion 

Aortic aneurysm research directions within most cardiovascular research groups, 

including the Vascular Bioengineering Lab and the Vascular ECM Dynamics Lab, focus on 

engineered grafts and therapies for adult populations with aortic aneurysms, adult patients with 

genetic disorders, or adults with high blood pressure, diabetes, or smokers. Pediatric aortic 

disease progression is considerably different than adult aortic disease, and few labs combine 

expertise in ECM analysis and aortic aneurysm treatment with the access to pediatric tissue 

sources. As cell isolation methods become more efficient, reducing the amount of passages 

between tissue digestion and cell storage, research groups with proximity to a pediatric 

cardiothoracic surgery facility can work to improve the literature concerning ex vivo pediatric 

patient-derived cell culture analysis. 

By studying elastogenesis of three different explanted pediatric dilated aortic SMCs, we 

have found that ASC-SF therapy can induce a relative increase of insoluble elastin deposition 

across all age groups (Figure 34, Figure 36, & Figure 38) due to increased tropoelastin and 
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elastin chaperone protein transcription (Figure 33, Figure 35, & Figure 37), but has shown to 

downregulate total collagen in the youngest patient SMC line. 

We also worked to establish a tissue transfer and cell isolation and storage protocol to 

establish a biorepository of explanted aortic SMCs and fibroblasts from dilated pediatric aortas 

by combining the local expertise in pediatric cardiothoracic surgery, vascular engineering, and 

vascular cell biology. Funding to our team from the Pediatric Device Initiative (2016-2017), set 

up the initial infrastructure needed to combine efforts between the research groups at the 

Children’s Hospital at UPMC and the University of Pittsburgh’s Bioengineering Department. 

This included Institutional Review Board (IRB) approval (#PRO16080251), coordination of 

procedures with the Children’s Hospital of UPMC Pathology department, and resources needed 

to expand our cryogenic storage capacity. To date, we have successfully stored SMCs from 10 

patients undergoing surgical repair of the ascending aorta and/or aortic root at the Children’s 

Hospital (Table 3) 

This biorepository is the only local resource for a variety of investigations of benefit to 

this population of pediatric patients suffering from cardiovascular disease and can be applied in 

the future to research groups across campus. 

4.6 Future Work 

Ongoing work is being conducted to evaluate cellular phenotype of the medial layer cells 

used in this aim. Pediatric cells from each evaluated patient line (SMCs or fibroblasts from MOR 

01, MOR 04, and MOR 07) were plated from liquid nitrogen storage into tissue culture treated 

flasks (T75 or T175) and passed once, cultured to ~90% confluency using standard culture 
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media, serum-deprived for 24-48 hours, and collected in RNA-Later for qPCR. SMC phenotype 

targets will include α-smooth muscle actin, calponin, and smooth muscle myosin heavy chain (or 

MYH11), but should be negative for discoidin domain receptor 2 (DDR2) and fibroblast surface 

protein. Fibroblast cell confirmation will include positive quantification for DDR2 and 

fibroblast-specific protein 1 and negative for MYH11. 

Given that the average half-life of human mature elastin is around 74 years in vivo [243], 

the goal for ASC-SF pediatric SMC therapy was to induce long-term elastin deposition. In order 

to test this in vitro, a FlexCell dynamic culture system within 3D fibrin gel constructs must be 

used, and the final elastogenesis cascade output of mechanical activity (particularly creep 

resistance) is necessary for future studies. 

LTBP-4 production is muted by both ASC-SF and NCM in both MOR1-01 (Figure 33) 

and MOR1-04 (Figure 35) SMCs, a trend seen in healthy adult SMCs as well (Figure 17). 

LTBP-4 plays a complementary role in tethering tropoelastin coacervates to fibrillin-1 

microfibril complexes, providing an organized template for inter-coacervate crosslinking and 

functionality. Generating elastin for aortic mechanical functionality, within the context of both 

non-surgical regenerative aneurysmal therapeutics and within tissue engineered vascular graft 

remodeling, must include modification of ASC-SF that counters this LTBP-4 muting effect. 

MOR1-07 and MOR2-07 also both deserve more study, as total ECM protein fraction is 

significantly reduced when compared to MOR1-01 and MOR1-04. This SMC line, MOR1-07, 

was sourced from a slightly older patient (15 years old) with unknown etiology of aortic root 

dilation and co-morbidity of autosomal dominant polycystic kidney disease. ECM deposition 

effects within both a slightly more degraded fibrin construct (by reducing fibrinolysis inhibitor 

ACA concentration) and increased cellular characterization could lead to an identification of the 
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cause of aortic root dilation, and a guide for ASC-SF or NCM based non-surgical therapeutic 

development. 
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5.0 Specific Aim 3, Part 1: Periadventitial Magnetic Localization of Mesenchymal Stem 

Cells to a Murine Abdominal Aortic Aneurysm 

The goal of this chapter was to develop a technique and method for iron nanoparticle-

loaded adipose-derived mesenchymal stem cell (MSC) delivery periadventitially to the aortic 

wall. The combination of a Tri-Syringe device, designed to form a fibrin-based ASC hydrogel, 

and external magnet was formulated through iterative in vitro pilot studies, and ultimately tested 

through an in vivo murine abdominal aortic aneurysm model developed by Dr. John Curci at 

Vanderbilt University. The hypothesis of this study was that the Tri-Syringe injection device 

would allow for simultaneous mixing of hydrogel components and therapeutic cells for 

immediate treatment delivery, and magnetic localization mechanism would target cells to the 

surface of specific tissues or organs through minimally invasive means, as the magnetic field 

draws therapeutic cells to targeted surface where they are fixed in place with a hydrogel. 

5.1 Introduction 

Rupture of an abdominal aortic aneurysm (AAA), a dangerous dilation of the abdominal 

aorta, is the 15th leading cause of death in the United States [17-19]. Diagnosed as a AAA once 

dilation exceeds 1.5x initial diameter (from 2cm to beyond 3cm in adults), patients typically 

undergo endovascular repair once their aneurysm grows beyond 5.5 cm in diameter [175]. 

Surgical repair below this diameter fails to improve survival rates, as risk of surgery outweighs 

risk of rupture [17] (see Section 1.4), and as AAAs below this diameter are only monitored 
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without any targeted treatment option, new non-surgical therapeutic methods to halt AAA 

dilation are necessary to overcome these shortcomings. 

Stem cell-based therapeutic options have been explored within the context of 

cardiovascular repair through paracrine pro-angiogenic secreted factors [244], increased 

immunomodulatory properties [245, 246], and extracellular matrix microvascular patterning 

[247]. However, many of the targeted sites for delivery of cells to treat these diseases are internal 

and therefore difficult to reach. Currently available technologies for therapeutic cell delivery to 

diseased areas include biodegradable scaffolds [202, 248] or matrix-derived scaffolds [196, 249], 

hydrogels [250, 251], and stem-cell patches [252-254]. Direct injection with aid of magnetic 

nanoparticles has also been extensively studied, as reviewed in [255]. Despite studies identifying 

fibrin as a viable cellular delivery mechanism or tissue engineering biomaterial [256-262], none 

of these technologies can combine fibrin gel delivery and magnetic nanoparticle-aided 

localization to accurately deliver cells to internal locations and fix them in place at 

therapeutically-relevant locations. 

Our group has previously demonstrated the effectiveness of periadventitially-delivered 

MSCs in halting aortic expansion within an elastase-induced murine AAA model [198]. 

Localized delivery method, via the surgical implantation of a subcutaneous port leading to a 

sponge sutured to the AAA at the time of elastase perfusion, relied solely on the implanted 

sponge to provide a “localization” effect to the anterior aortic surface. A method to effectively 

pull MSCs to the outer AAA surface has yet to be developed or tested in large animals. 

Therefore, the goal of this chapter was the design, in vitro evaluation, and in vivo delivery 

method to actively localize MSCs to the periadventitial AAA surface. The novel method 
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employed herein can be used to guide stem cell-based treatments for AAA, providing a 

minimally invasive and robust means of localized delivery of therapeutic cells. 

5.2 Methods 

5.2.1  Iron nanoparticle delivery optimization through fibrin gels 

200nm iron nanoparticles (Chemicell, #4114) were passively loaded into aortic smooth 

muscle cells (SMCs) (ATCC #PCS-100-012, Manassas, Virginia, passage 8) by resuspending the 

stock 5.2g/mL nanoparticles to a 81.89mg/mL final concentration within SMC growth 

supplemented media (#311K-500, Cell Applications Inc, San Diego, CA). Iron nanoparticles and 

SMCs (abbv. FeSMCs) were cultured at 37˚C and 5% CO2 for 36 hours before integration 

within fibrin gels. Negative control group included fresh SMCs (passage 8) without iron 

nanoparticle incubation.  

0.4mL fibrin gels were formed within 24 well tissue culture treated wells, consisting of 

three components: fibrinogen, thrombin, and cells. Fibrinogen (3.7mg/mL) (Sigma Aldrich, 

#F8630) stock was suspended in a 20mM Hepes/0.9% saline solution. Thrombin solution was 

made using 0.208 units/mL bovine thrombin (Sigma Aldrich, #T7513) and 3mM calcium 

chloride, suspended in High Glucose DMEM + Glutamax media (Life Technologies, #10564). 

1x105 iron nanoparticle loaded SMCs were integrated within each gel, resuspended in SMC 

growth supplemented media. A 4:1:1 volumetric ratio of fibrinogen:thrombin:cells was 

combined to form the fibrin gels within a 15mL conical tube, and transferred to the 24 well plate. 
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Immediately after fibrin construct seeding, six single neodymium permanent magnets 

(surface field of ~4,100 Gauss) were positioned outside of the plate, tangential to each column 

along the bottom row of the 24 well plate. Fibrin constructs and the magnetic row were allowed 

to culture for 30 minutes at 37˚C and 5% CO2, before SMC growth supplemented media addition 

(1mL per well) and subsequent 4-hour incubation. 

MTT Assay (CellTiter 96 Non-Radioactive Cell Proliferation Assay, Promega #G4000) 

was used to visualize cell locations within each fibrin gel construct, with location comparisons 

made between FeSMC and SMC loaded constructs. 

5.2.2  Tri-Syringe Delivery Device for FeMSC-loaded fibrin gels 

A Tri-Syringe delivery device was designed using computer aided design and 3D printed 

using a stereolithography printer with a sterilizable dental photopolymer resin. The design was 

developed using 3D modeling software SolidWorks (Dassault Systèmes), and exported as a 

sterolithography (STL) file. STL file design is loaded into PreForm (Formlabs) for preparation 

and optimization before printing. Dental photopolymer resin cartridges (Formlabs, white 

#FLFLGR02, grey #FLGPGR03) was loaded into the Formlabs 2 SLA printer, and the Tri-

Syringe device was printed on printed struts for support. The struts were removed after 

completion using wire cutters, and the Tri-Syringe was immersed in 99% isopropyl alcohol for 

15 minutes to remove uncured resin. Finally, the printed Tri-Syringe was cured under a 

ultraviolet lamp for 1 hour before use. 

The Tri-Syringe system combines three 1mL syringe chambers that combine when 

pushed together: (1) fibrinogen (3.7mg/mL in 20mM Hepes/0.9% saline); (2) thrombin 

(0.208units/mL with 3mM calcium chloride in High Glucose DMEM/Glutamax media); and (3) 
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cell solution. Previously isolated patient-derived adipose MSCs from non-diabetic, non-smoking 

patients under 45 years old were passively loaded with iron nanoparticles (abbv. FeMSCs) as 

described in Section 5.2.1 using MSC culture media, consisting of “ASC culture media”, 

consisting of 33% Dulbecco’s Modified Eagles Medium (High Glucose, Gibco #12100046), 

33% DMEM/F12 Medium (HEPES, Gibco #12400024), 7.5% fetal bovine serum (FBS, 

Premium Select Atlanta Biologics #S11550), 0.75% fungizone (Lonza BioWhittaker Antibiotics 

#BW17836E), 0.75% penicillin streptomycin (10,000 U/mL, ThermoFisher Scientific 

#15140122), 0.075 μM Dexamethasone (Sigma-Aldrich #D4902), and 25% Preadipocyte 

Growth Medium (PromoCell #C-39425). 

The Tri-Syringe can be used in combination with a magnetic field to deliver iron 

nanoparticle-loaded cells to in vitro and in vivo locations, combining equal volumes for fibrin gel 

constructs over 0.5mL. Combined constructs can be successfully delivered through a needle as 

small as a 30-gauge sterile needle, without shearing the fibrin or the encased cells. Tri-Syringe 

was designed to inject through the predesigned port/catheter/sponge in vivo delivery port by the 

lab of Dr. John Curci at Vanderbilt University. 

5.2.3  Iron nanoparticle-loaded MSC localization optimization following fibrin gel delivery 

to rat peritoneal cavity 

FeMSC fibrin gel constructs were delivered via Tri-Syringe to the rat peritoneal cavity, to 

mimic distance and tissue interruption of the magnetic field in subsequent in vivo mouse 

aneurysm delivery and localization studies. 6mL fibrin constructs were made using 2mL 

fibrinogen (3.7mg/mL), 2mL thrombin (0.208 units/mL) with 3mM calcium chloride, and 2mL 

FeMSCs (5x105 per gel, resuspended in sterile HBSS). FeMSC fibrin gel constructs were 
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injected onto the anterior abdominal aorta section of a sacrificed rat (n = 6). The experimental 

group (n = 3) had a magnet placed underneath the rat for 30 minutes while the control group (n = 

3) did not have a magnet. Constructs were allowed to solidify for 30 minutes at 37˚C under 

magnetic experimental conditions, and for 2 hours at 37˚C after the magnet was removed. 

Abdominal aortic sections were harvested and fixed using 4% PFA (fixed overnight), 

with light microscopy and staining for DAPI and human nuclear antigen was used to determine 

cell location within the peritoneal cavity. Gel quantification (ImageJ) of inverse intensity values 

of the rectangular region of interest.  

5.2.4  Optimization of Tri-Syringe fibrin gel delivery and iron nanoparticle-loaded MSC 

localization using explanted chicken wing radial artery 

An explanted chicken wing brachial artery partially embedded in agar was used as a 

tissue mimetic to evaluate the impact of magnetic forces over an interrupted distance, as 

preparation for in vivo mouse aneurysm delivery and localization studies.  

Fibrin gels were made by combining equal parts (0.2mL each) fibrinogen, thrombin, and 

cell solutions within the Tri-Syringe delivery device. Fibrinogen solution was made using 3.7 

mg/mL bovine fibrinogen suspended in a 20mM Hepes/0.9% saline solution, thrombin solution 

was made using 0.208 units/mL bovine thrombin and 3mM calcium chloride in High Glucose 

DMEM + Glutamax media, and cell solution was made using 5x105 FeMSCs and 10mM 

aminocaproic acid suspended in Mouse MSC Growth Media. 

Explanted chicken radial artery sections (approximately 6cm in length) was placed on top 

of agarose gel (n = 6) in a 10cm petri dish. 5% agarose gels were made using 3.75g agarose 

(Sigma, #A9539) and 75mL of sterile water, and poured within 10cm petri dishes at 
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approximately 5mm thickness per plate. Chicken wing radial artery sections were placed on 

warm agarose gels immediately after pouring, with over half of the artery exposed to simulate 

the exposed anterior peritoneal section of mouse aorta. Sponge/catheter ports, provided by the 

Curci group at Vanderbilt University, was sutured into place after over 6 hours of agarose gel 

curing. 

The control group consisted of FeMSC fibrin gel constructs without a magnet (Figure 

45A), while the experimental group consists of the FeMSC fibrin gel constructs with a magnet 

placed underneath the agarose gel for 30 minutes (Figure 45B). Cross-sections of each 

sponge/construct/artery/agar experimental plate and light microscopy was used to determine 

cellular location are relative to the radial artery and agarose gel, and whether FeMSCs can be 

drawn through the sponge towards the artery. 

5.2.5  Tri-Syringe periadventitial delivery and magnet-guided localization of iron 

nanoparticle-loaded MSCs in an elastase-induced AAA mouse model 

C57BL/6 Mouse Mesenchymal Stem Cells (MSCs) (Cyagen, #MUBMX-01001) were 

cultured using OreCellTM Mouse MSC Growth Medium (Cyagen, #MUXMX-90011) within a 

37˚C, 5% CO2 sterile culture incubator. Mouse MSCs were passively loaded with 200nm iron 

nanoparticles (Chemicell, #4114) at a 0.4 mg/mL concentration in Mouse MSC Growth Medium 

for 12 hours. Cells were also passively loaded with CellTracker Red CMTPX Dye (Invitrogen, 

#C34552), at 23µM within Mouse MSC Growth Media, for 1 hour before fibrin gel delivery. 

Our established murine model of elastase-induced AAA was chosen to perform in vivo 

testing of the magnetic delivery methodology. All murine subjects were housed in at Vanderbilt 

University, under the supervision of Dr. John Curci and Jamie Adcock. AAA was induced within 
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adult male C57BL/6 mice via elastase submersion, as described previously [198] (n=12). Briefly, 

a midline laparotomy was made to expose the peritoneum after sedation and sterile preparation. 

A subcutaneous microport (Instech) was connected to polyurethane catheter tubing (Braintree 

Scientific), sutured in the retroperitoneal space. The isolated infrarenal aorta was submerged for 

five minutes in a solution containing type I porcine pancreatic elastase (PPE, 0.16 U/mL; Sigma-

Aldrich). Elastase submersion was used in lieu of elastase perfusion due to pressure-induced 

aortic diameter variability. A pressure-controlled elastase perfusion rig is currently in 

development to address this issue (Dr. Timothy Chung at the VBL). Following elastase 

submersion, an Invalon sponge (5mm x 8mm) was connected to the end of the catheter tubing, 

and sutured over the infrarenal aorta. Mice were allowed to completely recover before returning 

to standard housing, and maintained with standard food and water for 5 days.  

Fibrin gels were made by combining equal parts (0.2mL each) fibrinogen, thrombin, and 

cell solutions within a custom-made syringe delivery device. Fibrinogen solution was made 

using 3.7 mg/mL bovine fibrinogen (Sigma Aldrich, #F8630) suspended in a 20mM Hepes/0.9% 

saline solution. Thrombin solution was made using 0.208 units/mL bovine thrombin (Sigma 

Aldrich, #T7513) and 3mM calcium chloride, suspended in High Glucose DMEM + Glutamax 

media (Life Technologies, #10564). Cell solution was made using 5x105 Mouse MSCs and 

10mM aminocaproic acid, suspended in Mouse MSC Growth Media. 

AAA was induced by elastase delivery to the abdominal aorta on day 0, a port system 

was implanted above the aorta, and the animal was closed and allowed to recover. At day 5, mice 

were anesthetized and placed on a custom designed surgical stage (Figure 39), with a magnet 

directed immediately below AAA site for experimental groups and without magnet as controls. 

MSCs (both iron-loaded and fluorescently tagged with a red marker) were injected into the port 
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using the fibrin gel mixing chamber (Figure 40C & Figure 42, displayed in vitro) so that the 

MSCs would become encapsulated around the nascent AAA.  

Fibrin gel deliveries were made 5 days after AAA induction, using the custom tri-syringe 

device and a 18G laboratory needle to inject at the retroperitoneal microport. Gels were allowed 

to solidify for 30 minutes, as the mice were sedated on the surgical stage. Magnet placement was 

made for 6 mice, with the remaining 6 mice receiving fibrin gel delivery without magnet 

placement. A total of 12 mice were injected in this manner – 6 had a posterior magnet during 

delivery (experimental) while 6 did not (control). Two mice were harvested form each group at 

one of three timepoints: 1 hour, 3 days, and 7 days post-delivery. All experiments were 

performed at Vanderbilt University, in the laboratory of Dr. John Curci and Jamie Adcock.  
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Figure 39: Surgical stage for FeMSC periadventitial delivery and localization during mouse surgeries, 

designed and printed for surgeries performed by Dr. John Curci’s group at Vanderbilt University. 

A) Control stage, with no magnet present underneath the mouse during FeMSC fibrin gel delivery. 

B) Experimental stage, with a single neodymium permanent magnet (surface field of ~4,100 Gauss) sitting 

immediately below the elastase-induced murine AAA, positioned at the black intersecting marks on the stage 

surface during FeMSC fibrin gel delivery. 
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5.3 Results 

Design and printing of the Tri-Syringe device was performed in collaboration with Dr. 

Timothy Chung and Yogev Baruch in the Vascular Bioengineering Laboratory, and all murine 

studies were performed at Vanderbilt University in collaboration with Dr. John Curci’s group. 

5.3.1  Fabrication of “Tri-Syringe” mixing chamber to deliver cell-seeded fibrin gel 

constructs 

The Tri-Syringe delivery device went through several iterations, starting with an in-line 

design (Figure 40A) which combined equal volumes of the fibrinogen, thrombin, and FeMSC 

solutions into a mixing chamber, with delivery through a Luer-Lok needle. Despite the middle 

lane of the mixing chamber being shorter than either end lanes, the volumes were calibrated to 

mix equally and evenly. This in-line design was unwieldy during use, needed two hands to push 

the plunger evenly (otherwise the solutions would combine unequally), and syringe changes 

were difficult to easily and quickly perform. 

The next design iteration adopted a triangular shape for the syringes and the plunger 

(Figure 40B), enabling easier use with one-hand which was essential for future in vivo 

applications. The mixing chamber was redesigned with three equal volume, equal length 

chambers leading to a Luer-Lok needle for delivery that minimized lost volume of combined 

fibrin gels. The final design (Figure 40C) added three guiding pins to the plunger and a tapered 

insertion design for the guiding pins on the syringe holder, ensuring that all three syringes are 

deployed with equal pressure regardless of where force is applied on the plunger.   
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Figure 40: “Tri-Syringe” mixing device iterations to form and deliver cell-rich fibrin gel constructs. 

A) Initial in-line design, consisting of three 1mL syringes containing fibrinogen (clear solution top), 

thrombin/calcium chloride (pink solution, middle), and cell solutions (synthetically colored blue, bottom), a syringe 

holder to hold all three syringes in place, a plunger to simultaneously push each syringe, and a mixing chamber 

where the solutions combine and push into a Leur-Lok exit.  

B) Second triangular design of the Tri-Syringe, enabling easier single-hand use and syringe replacement, with a 

redesigned mixing chamber to reduce fibrin gel losses.  

C) Final Tri-Syringe design, with the addition of guide pins that ensured equal injection along all three syringes.  
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Figure 41: Additional views of the Tri-Syringe fibrin gel injection delivery device. 
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Figure 42: Tri-Syringe fibrin gel injection device in use during in vitro FeMSC localization studies, with 

syringes for fibrinogen (clear solution, right), FeMSCs (brown solution, middle), and thrombin (pink solution, 

left) being combined and injected through an 18-gauge needle into the port/catheter/sponge device designed 

by Dr. John Curci’s group at Vanderbilt University. 
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5.3.2  In vitro magnet-guided migration of iron nanoparticle-loaded MSCs within fibrin 

gels. 

After applying the MTT assay, it was evident that loaded cells localized towards the 

magnet (Figure 43). Furthermore, in vitro experiments applying MSCs and fibrin gel to the 

anterior of a rat aorta (with and without a dorsal magnet) tested whether the cells were being 

localized to the region of interest while allowing for the fibrin gel to polymerize above the cells. 

When a magnetic field was present, the nanoparticle loaded MSCs were drawn to the surface of 

the well closest to the magnet as the fibrin gel polymerized surrounding the cells (Figure 43A). 

At short distances, the experimental group (FeMSCs, fibrin, and magnet) demonstrated 

that the cells were localized onto the anterior surface of the aorta while being encapsulated by 

fibrin gel (Figure 43A). The control group (unmodified MSCs, fibrin, and magnet) revealed a 

homogeneous distribution of cells within the fibrin gel (Figure 43C). Extending the distance to 

the next row of wells, however, negated the effects of the magnet on both Experimental (Figure 

43B) and Control (Figure 43D) groups. 

Analysis was performed using the “Intensity Map” function on ImageJ (open source), 

drawing a rectangle down the middle of each well, resulting in a corresponding localization map 

of darker pixels (Figure 43, right panel). 
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Figure 43: Quantitative analysis of cell location via MTT assay, with and without the presence of a magnetic 

field and at different distances. 

A) Left panel: Fibrin-embedded FeMSCs in the first row of a 24 well plate, with a magnet placed on the plate’s 

outer edge. Right panel: Corresponding intensity map of cell distribution. 

B) Left panel: Fibrin-embedded FeMSCs in the second row, as magnet placement remained constant. Right panel: 

Corresponding intensity map of cell distribution. 

C) Left panel: Fibrin-embedded unmodified MSCs (without iron nanoparticles) in the first row of a 24 well plate, 

with a magnet placed on the plate’s outer edge. Right panel: Corresponding intensity map of cell distribution. 

D) Left panel: Fibrin-embedded unmodified MSCs (without iron nanoparticles) in the second row, as magnet 

placement remained constant. Right panel: Corresponding intensity map of cell distribution. 
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5.3.3  FeMSCs localize to the aortic surface when delivered via Tri-Syringe to a rat 

peritoneal cavity within a fibrin gel in the presence of an external magnet 

FeMSC delivery to the open peritoneal cavity of a rat, with a dorsally-present permanent 

magnet, leads to an even distribution of FeMSCs localized to the exposed aortic surface (Figure 

44A & Figure 44C). FeMSCs are only present along the exposed ventral half of the abdominal 

aorta, and the fibrin gel (with 3mM calcium chloride concentration to increase speed of gelation) 

maintains the monolayer of localized FeMSCs at the aortic surface. 

Quantification of FeMSC location, using a monochrome rendering and a manual 

selection of the solid fibrin gel cross-section (Figure 44C & Figure 44D) indicated that 

experimental group exhibited a higher peak response near the aortic surface (Figure 44E), while 

control is more evenly distributed (Figure 44F).  

Sections of the aorta and surrounding tissue were also imaged after being stained with 

DAPI and HNA. It was seen (both qualitatively and quantitatively) that the FeMSCs are on top 

of the anterior portion of the aorta with encased in fibrin gel while the fibrin gel in the control 

group has homogenously distributed cells. 
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Figure 44: Magnet-driven localization and quantification of FeMSC-rich fibrin gel constructs within a rat 

peritoneal cavity. 

(A)-(C) & (B)-(D) Light microscope images and their counterpart black-and-white renderings of FeMSCs delivered 

within a fibrin gel construct via Tri-Syringe, wtihin the peritoneal space of a rat. Dark band of FeMSCs underneath 

fibrin gel in the presence of a magnetic field (A, C) and without a magnetic field (B,D), under 3x magnification. 

(E) & (F) Distribution profiles, as determined via ImageJ, of delivered FeMSCs as determined within the yellow 

selection box present in (C) and (D).  
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5.3.4  Agar-embedded chicken brachial artery in vitro model of catheter-delivered Fe-MSC 

fibrin gel constructs to a surgical sponge shows distance bounds of magnet-

guided migration. 

A simplified FeMSC in vitro localization experimental setup was designed, using a 5% 

agarose gel with an explanted chicken wing brachial artery partially exposed to an open surface, 

and Dr. John Curci’s sponge/catheter/port delivery device sutured in place (Figure 45). A 

customized stage to hold the magnet flush underneath the petri dish, directly below the 

embedded artery, was used to simulate experimental groups with the magnet present during 

delivery. 

Light microscopy of explanted agarose/artery cross-sections (Figure 46) show that 

FeMSCs are evenly distributed and contained throughout the sponge without the presence of a 

permanent magnet (Figure 46A). Delivery in the presence of a magnet, however, pulls the 

FeMSCs to the exposed brachial arterial surface (Figure 46B), mirroring the effect seen without 

the sponge after direct injection into an open rat peritoneal cavity (without localized catheter-

guided delivery) (Figure 44A). Interestingly, while fibrin gel-embedded FeMSCs are contained 

in the sponge without a magnet, the presence of a magnet pulls the FeMSCs out and results in a 

complete coating at the open surface closest to the magnet.  
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Figure 45: Agarose-embedded chicken wing brachial artery in vitro model for FeMSC delivery through 

port/catheter/sponge device, within a 10cm petri dish. 

Left panel: Control group, delivery of fibrin-embedded FeMSCs to explanted chicken wing artery and agarose gel to 

a sutured sponge with no magnet underneath. Bottom image shows agarose gel and artery removed from petri dish. 

Right: Experimental group, with artery and agarose setup and a single neodymium permanent magnets (surface field 

of ~4,100 Gauss) sitting immediately below the sponge and artery site within a 3D-printed magnet holder (white) to 

hold the magnet flush to the bottom surface of the petri dish. Bottom image shows a cross-section of agarose gel and 

embedded artery, sutured sponge, and delivered FeMSC/fibrin gel for FeMSC location analysis. 
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Figure 46: Light microscopy of delivered FeMSCs within agarose and artery setup. 

A) Control group, distribution of FeMSCs (dark brown) in the sponge, without a magnet present. Sponge is outlined, 

and chicken wing brachial artery is embedded directly below sponge, within a 5% agarose gel.  

B) Experimental group, FeMSCs distributed in a sponge with a single neodymium permanent magnets (surface field 

of ~4,100 Gauss) sitting immediately below the sponge and artery site at the time of FeMSC delivery. Chicken wing 

brachial artery embedded directly below sponge, within a 5% agarose gel. 
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5.3.5  Delivery of Fe-MSC seeded fibrin gels to growing elastase-induced mouse aneurysm 

shows external magnet guidance and cell retention both 1 hour and 3 days 

after delivery. 

After port/catheter/sponge delivery through the Tri-Syringe device to the site of a murine 

elastase-induced AAA, preliminary results suggest that the cells in the control group remained in 

the sponge and were not drawn towards the magnet that was placed posteriorly 1 hour after 

delivery (Figure 47, top panel, left image), as indicated by the presence of CellTracker-dyed 

FeMSCs throughout the sponge. The experimental group with the magnetic field showed slight 

quantitative evidence of FeMSCs localized closer to the surface of the aorta both 1 hour and 3 

days after delivery (Figure 47: , bottom panel). FeMSC CellTracker signal was strong 

surrounding the aorta 3 days after delivery in the experimental group, while after 3 days in the 

control group it seemed like a small fraction of cells migrated to surround the aorta from the 

sponge (Figure 47, top panel, right image). Validation of these results will require more 

experimental trials. 
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Figure 47: Periadventitial delivery and magnet-driven localization of FeMSCs (red) to an elastase-induced 

murine abdominal aortic aneurysm (autofluorescence in green). 

Top panel: Control section of mouse, AAA, and sponge saturated with fibrin-embedded FeMSCs delivered without 

any magnet presence, after 1 hour (left) or 3 days (right) of before sacrifice. 

Bottom panel: Experimental mouse, AAA, and sponge with Tri-Syringe delivered fibrin-embedded FeMSCs with a 

single neodymium permanent magnets (surface field of ~4,100 Gauss) sitting posterior to the delivery site for 30 

minutes, after 1 hour (left) or 3 days (right) of before sacrifice. 
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5.4 Discussion 

Our fibrin gel FeMSC delivery device, the Tri-Syringe, consists of three individually 

fabricated solutions (fibrinogen, thrombin, and a therapeutic cell of interest) delivered through a 

Luer-Lok needle to result in a deliverable cell-embedded fibrin hydrogel for in vivo studies. The 

revised Tri-Syringe design (Figure 40C) enables for even distribution of fibrin gel components, 

minimized volumetric loss (around 0.1mL total), ability to be used with one hand while securing 

the subject (in this case, the dorsally-available port in Dr. Curci’s mouse surgical model), and the 

updated formula for the fibrin gel that varies from the rest of this dissertation is tailored for quick 

gelation while still allowing for magnetic-guided localization to the aortic surface (Figure 47). 

The designed stage (Figure 39) provides a mechanism to hold a permanent magnet in 

place as the iron nanoparticle-loaded delivery cargo of choice (in our case, MSCs) were injected 

using the Tri-Syringe device. The stage design included a slit to allow for easy injection once the 

AAA was positioned immediately above the magnet, and was raised enough to allow for a 

degrees of freedom for the Tri-Syringe to inject at all angles. 

The combination of FeMSCs and fibrin hydrogel injection mechanism allowed for a 

permanent magnet to localize the cargo to our specific area of interest, both in vitro (Figure 43, 

Figure 45, Figure 46) and in vivo (Figure 44, Figure 47). The fibrin gel sets to fix cargo in 

place, maximizing therapeutic function to a localized area of interest (in our case, potentially 

maximizing therapeutic effect of MSCs to the periadventitial surface of a AAA). These in vitro 

preliminary studies were also constructed to determine whether FeMSCs were able to overcome 

gravity by placing a magnetic field on the side of a well plate (Figure 43), showing that the 

magnetic strength was strong enough to localize against gravity. The agarose/chicken brachial 

artery in vitro setup (Figure 45) was intended to test the ability of the Tri-Syringe to push a 
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solidifying fibrin gel construct through the catheter and to the aneurysmal site, and to show that 

FeMSCs could be successfully localized through a surgical sponge before subsequent murine 

studies. 

Preliminary murine model outlined in this chapter show this approach as a viable in vivo 

method to study periadventitially-delivered AAA therapeutics, ensuring that the cargo (whether 

whole-cell or cell-free) magnetically localizes to the aorta, held in place within a biocompatible 

fibrin hydrogel. The Tri-Syringe enabled mechanism of in vivo FeMSC delivery produced a 

similar effect to previous studies where gels were mixed outside of the animal, but was 

substantially easier to perform on the surgical tabletop. Dr. Curci’s surgical model using a 

dorsally available port, silicone catheter, and sponge sutured to AAA site also enables 

aneurysmal studies on a growing AAA, without necessitating multiple surgeries. This presents 

with a distinct advantage over therapeutic evaluations immediately after elastase induction of 

AAA, or of the complication rate resulting from multiple surgeries. 

5.5 Conclusion 

Delivery of therapeutic cargo, a whole-cell therapeutic approach in the case of this 

chapter, to the adventitial surface of a growing AAA presents with a distinct advantage over 

many small aneurysm therapeutic approaches being currently pursued. Luminal delivery is 

impeded by the frequent presence of an intralumenal thrombus, impedes vasa vasorum function, 

and risks destabilizing the thinning aortic wall, making periadventitial therapeutic delivery 

preferable. Localization by an external magnet presents with no danger to the subject, and 

combining this magnetic localization technique with a fibrin hydrogel to fix therapeutic cells in 



 169 

place maximizes potential therapeutic effects of the delivered cargo. Additionally, development 

of the Tri-Syringe device provides a level of control for fibrin gel formation previously 

unavailable. 

5.6 Future Work 

Additional in vivo localization studies using live murine animals are necessary to assess 

cargo retention and migration, with mouse studies available through further collaboration with 

Dr. Curci’s group at Vanderbilt or with rat studies available through the Vascular Bioengineering 

Laboratory at the University of Pittsburgh. The only aspect studied here was the delivery and 

localization of FeMSCs to the aortic surface; further studies should include the therapeutic 

effects of FeMSC delivery, both with and without the presence of a localizing magnet. This 

includes AAA rupture and thrombosis rates (if present), AAA diameter at varying timepoints 

within two weeks of FeMSC injection, and ex vivo staining to assess elastic fiber integrity 

(Verhoeff-van Gieson), collagen fiber integrity (picrosirius red), and the presence of extracellular 

matrix protein within explanted AAA sections (ninhydrin and hydroxyproline assays). 

Additionally, MSC effect on vaso vasorum functionality could be studied following 

periadventitial MSC (or cell-free cargo) delivery. 

A syringe pump is currently in development by Dr. Timothy Chung at the Vascular 

Bioengineering Lab, designed to control pressure induced by perfusion of elastase to generate 

mouse AAA models. Inconsistency of aortic diameter following standard elastase perfusion or 

submersion is commonly observed during murine studies, and future experiments using this 

syringe pump could remove that variation. 
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Cell-free delivery cargo, including iron nanoparticle-loaded microparticles containing 

proteins, exosomes, and free growth factors or peptides could be delivered through the Tri-

Syringe device, with the end goal of achieving a therapeutic effect on AAA (ideally, an elastin-

targeted therapeutic effect) without the need for live cell injections. As a follow-up for this 

dissertation work, periadventitial delivery and magnetic localization of ASC-SF loaded 

microparticles (or ASC secreted extracellular vesicles) would be a natural next step. 
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6.0 Specific Aim 3, Part 2: Elastogenesis Impact of Adipose-Derived Stromal Cell Secreted 

Extracellular Vesicles on Healthy Adult Smooth Muscle Cells 

Clinical translation strategies of adipose derived stromal cell (ASC) secreted factor 

(ASC-SF) paracrine therapy for small aortic aneurysm will consist of two primary steps: 1) 

concentrating potent factors within a smaller volume to enable delivery within multiple 

applications; and 2) ensuring shelf-life of secreted factor components to maximize pro-

elastogenic effects induced after delivery. Isolation and elastogenesis evaluation of ASC-secreted 

extracellular vesicles and exosomes is a key step for both translational outcomes, and would 

produce a versatile pro-elastogenic therapy for future use by the Vascular Bioengineering 

Laboratory and Vascular Extracellular Matrix (ECM) Dynamics Laboratory for both 

regenerative medicine and tissue engineered vascular graft applications. 

6.1 Introduction 

Adipose-derived stromal cells (ASCs) used as an extracellular matrix (ECM)-targeting 

therapeutic for small aortic aneurysm has been studied and summarized previously within this 

dissertation (see Section 1.4.2 , Section 1.5, Section 2.1, and Section 5.1), with ASC-seeding 

providing a intercellular signal or depositing a matrix scaffold for vascular applications. While it 

was initially theorized that ASC subpopulations delivered within these engineering solutions 

differentiated into functional vascular cells [203], subsequent studies have suggested that ASC 

secreted factors (ASC-SF) act in a paracrine manner on neighboring vascular host smooth 
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muscle cells (SMCs) and endothelial cells, specifically pointing to the importance of urokinase-

type plasminogen activator [205] and monocyte chemoattractant protein-1 [206] in inflammatory 

remodeling. ASC-SF are rich in pro-angiogenic [207] and pro-inflammatory growth factors [208] 

vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), IL-1β, IL-6, IL-8, 

and TNF-α, which all play important roles in aneurysmal SMC ECM deposition [193, 209]. 

Within a murine MFS model, IL-6 induced MMP-9 activity and resultant elastin and collagen 

degradation, acting as a key regulatory mechanism for aortic dilation [263]. IL-8 has shown high 

colocalization with lymphocyte infiltration within abdominal AA wall [264], and TNF-α 

association with fibronectin helps to reverse lymphocyte chemotaxis [265]. 

Paracrine signaling has been hypothesized as the primary mechanism of action for 

stromal cell-induced vascular remodeling, as cell seeded vascular grafts retain the donor cells for 

less than seven days, but remain functional by stimulating immune recruitment and remodeling 

[206]. Maintaining this paracrine response in a clinically-translatable manner is essential to 

developing an off-the-shelf non-surgical small AA therapeutic treatment, and this can be 

achieved through utilization of exosomes and extracellular vesicle (EV)-mediated transfer of 

ASC secreted factor components.  

ASC-derived EVs are secreted in large quantities compared to other cell types [266], 

providing protection to its cargo of factors from enzymatic degradation [267], and aiding in 

cellular endocytosis through favorable surface marker interactions to uptake of encapsulated 

factors [268]. Additionally, EVs aid in the transport of mRNA and miRNA [269, 270], another 

potent signaling mechanism to regulate cell phenotype, angiogenesis, mature ECM deposition, 

and immunomodulatory response [270, 271].  
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Evaluation of ASC-EVs to induce ECM deposition and AA-relevant remodeling would 

aid in the clinical translation capabilities of ASC secreted factor therapy, and provide potentially 

increased potency and tailored cargo for customized non-surgical elastin-targeted therapeutics. 

This study built on the elastogenesis cascade analysis tools established in Chapter 2.0, and 

works to evaluate the elastogenic effects of three additional exogenous treatment groups on 

healthy adult commercially-purchased ATCC SMCs: a standard EV concentration seen within 

established ASC-SF therapy (abbreviated 1x EV), three-fold EV treatment concentration seen 

within ASC-SF (3x EV), and EV-depleted ASC-SF as a treatment group examining debris-free 

free secreted factors (dEV). 

6.2 Methods 

6.2.1  ASC isolation and culture 

ASCs were obtained from deidentified waste human adipose tissue collected during body 

sculpting surgeries of non-smoking, non-diabetic patients under 45 years old at UPMC 

Presbyterian Hospital (Figure 2C). 100ml of human adipose tissue was mechanically minced 

and digested in collagenase (1mg/mL) and bovine serum albumin (35 mg/mL) (protease free heat 

shock, Equitech-Bio Inc #BAH65), followed by filtration and heating (one hour in a 37˚C shaker 

bath) [201, 202]. After secondary filtration (0.5mm gauze, ThermoFisher Scientific #22-415-

469) to remove large particles, samples were centrifuged at 1000rpm and 4°C for 10 minutes, 

with pellets resuspended in 10mL of ACK Lysing Buffer (ThermoFisher Scientific #A10492-

01). The suspension was passed through a sieve (500µm, pluriSelect #43-50500-01) and 
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centrifuged again under the same conditions. This ASC pellet was resuspended in “ASC culture 

media”, consisting of 33% Dulbecco’s Modified Eagles Medium (High Glucose, Gibco 

#12100046), 33% DMEM/F12 Medium (HEPES, Gibco #12400024), 7.5% fetal bovine serum 

(FBS, Premium Select Atlanta Biologics #S11550), 0.75% fungizone (Lonza BioWhittaker 

Antibiotics #BW17836E), 0.75% penicillin streptomycin (10,000 U/mL, ThermoFisher 

Scientific #15140122), 0.075μM Dexamethasone (Sigma-Aldrich #D4902), and 25% 

Preadipocyte Growth Medium (PromoCell #C-39425). ASC conditioned media (ASC-CM) was 

collected every 24-72 hours between passage 0 and 1 while cells progressed from 40 to 70% 

confluence, and immediately frozen at -80˚C. 

 

6.2.2  Isolation of ASC secreted exosomes 

Collected ASC-CM was initially centrifuged (250xg, 20 minutes at 4˚C) to remove any 

suspended cells, and the supernatant was spun again (2,500xg, 20 minutes at 4˚C) to remove any 

remaining cell debris. Supernatant was filtered through a 0.22μm filter (Millipore 

#SLGPM33RS) to remove any remaining aggregates. Filtrate was divided into six 35mL samples 

and transferred into six thin-walled ultracentrifuge tubes (Beckman #326823) and weighed to 

ensure each tube did not deviate by more than 0.1 grams. Subsequent weight adjustments were 

made using PBS to ensure ultracentrifuge balance. 

Sterilized ultracentrifuge tube cases housed each thin-walled tube, and were placed 

within an SW-28 ultracentrifuge rotor. The rotor was secured within a Beckman L8-70M 

Ultracentrifuge, and spun at 100,000xg for 70 minutes at 4˚C under a sealed vacuum. 
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Supernatant is removed and stored for exogenous SMC elastogenesis treatment study, labelled 

EV-depleted conditioned media (dCM). 

Thin-walled tubes were inverted on a sterile mat for 3 minutes, with residual liquid 

aspirated, and 100μL of cold PBS was added to the pellet and remaining volume (approximately 

500μL) and incubated at room temperature for 30 minutes. This resuspended EV isolate, 600μL 

in total of crude EVs suspended in PBS, was stored in a sterile Eppendorf tube at 4˚C until use 

and was always used within 5 days of storage. 

6.2.3  Transmission electron microscopy to visualize ASC secreted exosome morphology 

 TEM was performed using a JEM-1011 TEM (JOEL, MA, USA). Briefly, 5μL of fresh 

EV isolate was applied to a 3 mm carbon coated grid and excess liquid was wicked away using 

filter paper. A 1% uranyl acetate (UA) solution (5μL) was applied to the grid to stain lipids and 

therefore increase contrast of the EV membrane relative to the grid. The UA solution was wicked 

away using filter paper. The stained EVs on the carbon grids were imaged using the TEM at 

between 60 and 200x magnification. 

6.2.4  Dynamic light scattering of ASC secreted exosomes 

Dynamic light scattering (DLS) was performed using a Nano-ZS90 Zetasizer (Malvern 

Panalytical, UK). Briefly, 80μL of Fresh EV isolate was added to an ultra-micro 8.5mm cuvette 

(Brandtech Scientific, CT, USA). The cuvette was inserted into the zetasizer and allowed to 

equilibrate to 25°C for 60 seconds prior to particle measurement at an automatically determined 
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attenuation and duration. EVs were presumed to have the same refractive index and absorption 

as protein suspended in water. Data was processed using a protein analysis model. 

6.2.5  Determination of total protein concentration contained within ASC secreted 

exosomes 

 Total protein content of the fresh EV isolate prior to and followed lysis was quantified using a 

micro bicinchoninic acid (BCA) protein assay (#23225, Thermo Scientific, USA). Briefly, 50μL 

of fresh EV isolate was diluted to 500μL in either PBS or sodium dodecyl sulfate (SDS, final 

concentration 2%). Samples were then vortexed for 30 seconds. SDS and vortexing was 

employed to lyse intact EVs and encourage them to release their encapsulated protein cargo. 

150μL of EVs, suspended in either PBS or SDS, were added to the wells of a 96 well plate in 

triplicate. 150μL of working solution was then added to each well in order to initiate the 

colormetric reaction. Two standard curves were also plated in triplicate for bovine serum 

albumin (BSA) suspended in either PBS or SDS at concentrations ranging from 0 to 200μg/ml). 

The plate was incubated at 37˚C for 2 hours, cooled to room temperature and protein content was 

quantified using a microplate reader. 

6.2.6  Healthy adult SMC culture 

Human aortic SMCs (ATCC #PCS-100-012, Manassas, Virginia) were cultured at 37˚C 

and 5% CO2, with growth media (#311K-500, Cell Applications Inc, San Diego, CA) changes 

every 48-72 hours. Cells used in experimental cultures were between passages 4 and 12. 
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6.2.7  Fibrin gel construct formation and culture 

SMC-seeded fibrin gel constructs [212, 213] were formed using 3.7mg/mL bovine 

fibrinogen type I (Sigma-Aldrich #8630), 0.21U/mL bovine thrombin (Sigma-Aldrich #T7513), 

and 5x105 SMCs/mL. ‘Stiff substrate’ 200µL fibrin gel constructs (Figure 2A) were seeded 

within heat-stamped circular molds made using 7.94mm (5/16”) diameter cork borers onto 

tissue-culture treated plastic. “Soft substrate” 600µL fibrin gel constructs (Figure 2B) were 

formed between nylon anchors of FlexCell Linear TissueTrain untreated plates (FlexCell Int’l 

Corp #T-5001U), with “constrained” constructs cultured without external mechanical stimuli. 

“Dynamic” soft substrate fibrin gel constructs were subjected to a 10% stretch at 1 Hertz cyclic 

uniaxial mechanical loading using a FlexCell FX-4000 strain unit, to mimic standard aortic 

cardiovascular conditions [214]. Aminocaproic acid (ACA) (Sigma-Aldrich #07260), a lysine-

mimicking fibrinolysis inhibitor, was added at 12mM to inhibit cell-driven degradation of the 

fibrin gel constructs. Treatment changes (see: “Media treatment conditions”) were made every 

48-72 hours, beginning 24 hours after initial gel polymerization and continuing through harvest 

at 20- or 30-days post-fabrication. 

6.2.8  Exogenous stimulation treatment groups 

No Treatment (NT) was standard SMC growth media, used to initially culture SMCs. 

Non-conditioned media (NCM) was made using a 1:1 ratio of the ‘ASC culture media’ and SMC 

growth media. ASC secreted factors (ASC-SF) were prepared by mixing freshly-thawed ASC 

conditioned media at a 1:1 ratio with SMC growth media. All fibrin gel culture and treatment 
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conditions were supplemented with 12mM ACA for fibrinolysis inhibition to preserving the 3D 

SMC constructs. 

6.2.9  SMC proliferation analysis 

An Alamar blue assay was used to quantify the effect of EVs on SMC proliferation. 

Briefly, 15k ATCC SMC suspended in 500μL of supplemented basal media were plated in each 

well of a 48 well plate. After 18 hours, the media on the cells was removed and a mixture of 

300μL unsupplemented basal media and 30μL alamar blue reagent was added to each well. After 

4 hours of incubation at 37˚C, the mixture was removed and a baseline value for cell 

proliferation was measured using a plate reader. Treatments were added to each well of the plate 

(150μL treatment + 150μL unsupplemented basal media). The plate was incubated for 24 hours 

at 37˚C after each treatment was removed and a mixture of 300μL unsupplemented basal media 

and 30μL alamar blue reagent was added to each well. After 4 hours of incubation at 37˚C, the 

mixture was removed and a final value for cell proliferation was measured using a plate reader. 

SMC proliferation is presented as the absorbance of the final reading relative to the absorbance 

of the baseline reading.  

6.2.10  SMC scratch assay migration analysis 

SMCs were seeded within a 24 well tissue culture treated plate, at 5.5x104 cells per well, 

and cultured for 24-36 hours in standard culture media before being used in the scratch assay. 

Prior to scratch, culture media was removed, and cells were washed once in 0.5mL sterile 

1xHBSS. CellTracker Red CMTPX Dye (#C34552, Invitrogen) was diluted to 10mM in DMSO, 



 179 

diluted further to 20μM in unsupplemented SMC basal media (#311K-500, Cell Applications 

Inc), and added to each well after wash (150μL per well) for a 20-minute incubation at 37°C and 

5% CO2. 

Following incubation, 350μL per well of SMC growth supplemented media was added 

slowly down the walls of each well, without removing CellTracker and disturbing the bed of 

SMCs. A scratch is then created by moving a sterile 1mL plastic pipette tip from the top to the 

bottom of each 24 well plate, without allowing the pipette tip to skip or scratch the tissue culture 

plate surface. CellTracker-rich media is then slowly removed via manual pipetting at the 

endpoint site of the scratch. Each well then received 250μL of unsupplemented SMC basal 

media, orthogonal to each scratch and slowly down the side of each well’s wall. 250μL of each 

treatment group was then added, as summarized below. 

Treatment groups included: (1) a No Treatment (NT) positive control of SMC growth 

supplemented media; (2) ASC-SF, by adding 250μL of freshly-thawed ASC conditioned media; 

(3) NCM; and (4) Unsupplemented SMC basal media. 

The lid was placed onto the 24 well plate and taken to the Thoracic Aortic Disease 

Research Lab (McGowan Institute for Regenerative Medicine, Pittsburgh PA 15219) for imaging 

on a Nikon TE2000-E Inverted Fluorescence Eclipse Microscope with Intensilight System E, 

within a Tokai Hit Microscope Stage Top Incubator for Live Cell Imaging (37°C and 5% CO2). 

Images were taken every 2 hours for a 36-hour incubation period, with scratch area evaluated 

using image processing package Fiji (ImageJ, open source). Wound closure percentage was 

defined as [(initial scratch area – timepoint scratch area) / initial scratch area]. 
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6.2.11  qPCR analysis of tropoelastin and elastin chaperone transcription 

Following sonication of frozen fibrin gel constructs, RNA collection (illustra RNAspin 

Mini Kit, GE Healthcare Life Sciences #25050070) and RNA concentration quantification 

(BioTek Take3) was performed. After pre-heating template (65°C, 5 minutes), synthesis of first-

strand cDNA used SuperScript IV First-Strand Synthesis System (Invitrogen #18091050) 

(23°C/10 minutes, 55°C/10 minutes, 80°C/10 minutes). RT-qPCR was performed using 

KiCqStart SYBR Green ReadyMix with ROX (Sigma-Aldrich # KCQS02), and forward/reverse 

primers listed in Table 2. Post-amplification melt curves validated proper amplification. 

6.2.12  Ninhydrin and hydroxyproline protein analysis of insoluble elastin and total 

collagen 

Fibrin gel constructs, frozen at -80°C following culture without fixation, were thawed 

immediately before base hydrolysis (0.1M NaOH, 1 hour, 98°C) for fibrin gel digestion and 

solubilization of non-elastin protein, which was separated using subsequent centrifugation to 

separate insoluble elastin protein from soluble non-elastin protein [216]. Acid hydrolysis (6N 

HCl, 24 hours, 110°C) solubilized all proteins, and assay quantification on both soluble and 

insoluble fractions (ninhydrin-based for elastin, hydroxyproline-based for collagen) allow for 

protein deposition quantification within each 3D construct. Ninhydrin content was detectable 

using an absorbance reading (at 570nm) after 1-hour incubation with a stannous chloride-based 

solution within a 56°C water bath. 
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6.2.13  Mechanical testing of soft substrate SMC fibrin gel constructs 

Tensile testing was performed as previously described in Section 2.2.10 . Constructs 

were harvested, without fixation, by cutting the pair of nylon tabs within the Linear TissueTrain 

plates to keep each gel intact. Tensile testing was performed on all samples, with sample width-

to-length ratios holding a mean of 0.216±0.0741 and a range of 0.0263-0.409. 21 out of the 71 

samples exceeding the recommended 0.25:1 geometrical guideline [217]; these samples were 

excluded for final calculations. 

A uniaxial tensile testing device (Instron, #5543A, Norwood, MA) was used to assess the 

mechanical properties of the SMC fibrin gel constructs (as seen in Figure 25), with sandpaper-

lined pneumatic clamps on the dried nylon tabs to improve grip fidelity [218, 219]. Samples 

were measured using photos obtained after 0.01N preloading to eliminate slack, as follows: 

thickness (1.25±0.38mm NT, 1.13±0.25mm NCM, 1.15±0.20mm dEV, 1.25±0.25mm ASC-SF, 

1.10±0.48mm 1x EV, 1.16±0.18mm 3x EV), width (2.25±0.58mm NT, 2.14±0.31mm NCM, 

1.93±0.46mm dEV, 2.39±0.37mm ASC-SF, 2.00±0.42mm 1x EV, 2.01±0.49mm 3x EV), and 

gauge length (12.89±2.23mm NT, 10.74±2.44mm NCM, 10.31±2.90mm dEV, 11.06±1.97mm 

ASC-SF, 7.86±1.81mm 1x EV, 10.40±2.64mm 3x EV) (as seen in Figure 25A) (FIJI, public 

domain). 

Mechanical characterization under quasi-static loading utilized a constant 0.1 mm/second 

crosshead speed extension until failure of the fibrin constructs [220]. Force and displacement 

values were recorded throughout the test and converted to stress-stretch ratio plots, where – 

Stretch ratio: λ=L/Lo; Stress σ=F/Ao. These measurements were calculated from the sample 

gauge length in the loaded (L) and unloaded configuration (Lo), along with the force (F) and 
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original cross-sectional area (Ao) recorded during each mechanical test, using a previously 

described analysis method [221]. 

Low and high modulus, defined in in Section 2.2.10 , are defined as the slope of the 

linear portion of the mechanical response curve in the low and high stretch regions [222, 223]. 

This translated to dividing the curves into three equal parts and treating the initial and final thirds 

of the curve as the low and high stretch regions respectively. 

6.2.14  Statistical Analysis 

Means comparisons were conducted using individual t-tests or one-way ANOVA with 

Tukey post-hoc tests, as appropriate. Significance threshold of α = 0.05 was set for all presented 

data, with experimental sample size of tested constructs listed on each figure. IBM SPSS was 

used for all statistical analysis. All displayed data values written after “±” are Standard Deviation 

values. 

6.3 Results 

6.3.1  Visual characterization of ASC secreted EVs 

TEM verified the presence of clusters of exosomes within the isolated EV fraction of 

ASC-SF, with the presence of dark shading among most of the sample images regardless of 

magnification (Figure 48). Exosomes resembled deflated spheres, clearly visible from side-

facing (120x) and front-facing (200x) views.  
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Figure 48: TEM images of ASC secreted EVs. 

Visible at 60x, 100x, 120x, 150x, and 200x magnification resolutions, as labelled. Black shadowing is free protein 

present wihtin the EV isolate resuspension. 
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6.3.2  Dynamic light scattering size characterization and BCA protein analysis of ASC-EVs 

DLS analysis reveals the presence of two particle size populations within the EV isolate. 

Figure 49A displays the intensity-diameter distribution of particles measured during analysis as 

a percentage of total measured intensity. The initial peak represents particles with an average 

diameter of approximately 60nm and the second peak represents particles with an average 

diameter of approximately 300nm, indicative of exosomes and microvesicles respectively. 

Figure 49B displays the number-diameter distribution of particles measured during analysis as a 

percentage of the total number of particle measurements. The two peaks are reduced to a single 

peak at 60nm. The single peak in Figure 49B indicates that although the EV isolate contains two 

populations of particle size (exosomes and microvesicles), the exosomes occur far more 

frequently by number. The peak representing a population of microvesicles is visible in Figure 

49A and not in Figure 49B as larger particles generate larger fluctuations in intensity during 

analysis. 

BCA analysis (Figure 49C) reveals that the protein concentration of intact and lysed EV 

isolate is 887.9±2.2 and 926.3±2.85μg/ml respectively. This indicates that there is a release of 

38.41μg/ml or a 4.32% increase in total protein content following lysis of the EV isolate and 

supports the preceding TEM and DLS evidence that EVs are present in the EV isolate and they 

the EVs are encapsulating protein.  
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Figure 49: Dynamic light scattering (DLS) characterization of ASC-EVs, and BCA protein analysis of 

encapsulated protein. 

A) Intensity-size characterization of ASC-secreted EVs shows an initial particle diameter population peak at 

approximately 60nm in diameter (representing exosomes), and a second peak at approximately 300nm 

(microvesicles). 

B) Number of particulate distribution of ASC-EVs shows a single peak at 60nm, indicating a higher frequency of 

exosomes when compared to microvesicles within ASC-EV isolate. 

C) BCA assay showing protein content within intact ASC-EVs and lysed ASC-EVs. 
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6.3.3  1x EV causes an increase in SMC proliferation, but significantly less than 

supplemented ASC culture media, full conditioned media, EV-depleted 

conditioned media, or non-conditioned media 

Treating SMCs with 0.2x standard EV concentration (0.2x EV) induced no change on 

proliferation when compared to unsupplemented basal media (BM) control (0.9064±0.0149 

relative intensity units 0.2x EV, vs 0.8422±0.0317 BM). Treatment with 1x EV concentration 

(1x EV) induced a 14% increase when compared to BM (0.9631±0.0157 1xEV). Both EV-based 

treatments exhibited proliferation levels significantly lower than supplemented ASC basal media 

(SBM) positive control (1.187±0.0161), and all groups were significantly increased when 

compared to PBS-treated negative control (0.7167±0.0497) (Figure 50A). 

Looking at variations on whole conditioned media, however, showed that non-

conditioned media (NCM, 1.293±0.0297), full ASC conditioned media (CM, 1.169±0.0315), and 

EV-depleted conditioned media (dCM, 1.159±0.0467) were all statistically similar to SBM 

positive control, and all significantly increased when compared to BM negative control (Figure 

50B).  
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Figure 50: SMC proliferation, via Alamar Blue assay, when treated with ASC-sereted exosomes or full 

conditioned media. 

A) SMC proliferation after treatment with 0.2x EV or 1x EV concentrations, when compared to unsupplemented 

basal media (BM) and PBS negative control, and supplemented basal media (SBM) positive control. 

B) SMC proliferation after treatment with non-conditioned ASC media (NCM), ASC conditioned media (CM), or 

EV-depleted conditioned media (dCM), compared to BM negative control or SBM positive control. n = 6, α = 0.05  
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6.3.4  While all treatment groups slightly accelerate SMC migration only non-conditioned 

ASC media induces full scratch wound closure 

SMC migration after 0.2x EV (36.95±2.510% wound closure) and 1x EV 

(45.12±3.776%) treatment were significantly increased over both negative control groups BM 

(22.75±1.678) and PBS (25.32±4.555) (Figure 51A). Positive control SBM wound healing 

migration (100±0%) saw full wound closure on all repeated wells was significantly higher than 

both EV treatment groups. 

SMC migration after CM treatment (61.34±5.501%) and dCM treatment (55.62±3.399%) 

were both significantly higher than BM negative control and EV-based treatment groups (Figure 

51B). NCM was the only experimental treatment group that saw full closure (100±0%) on all 

wound groups, statistically higher than all experimental and negative control groups and 

statistically similar to the SBM positive control.  
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Figure 51: SMC migration, via scratch assay, when treated with ASC-sereted exosomes or full conditioned 

media. 

A) SMC migration after treatment with 0.2x EV or 1x EV concentrations, when compared to unsupplemented basal 

media (BM) and PBS negative control, and supplemented basal media (SBM) positive control. 

B) SMC migration after treatment with non-conditioned ASC media (NCM), ASC conditioned media (CM), or EV-

depleted conditioned media (dCM), compared to BM negative control or SBM positive control. n = 6, α = 0.05  
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6.3.5  ASC secreted EVs induce an SMC transcriptional increase in organizational proteins 

fibulin-4 and fibulin-5, and crosslinking protein LOX. 

SMC transcription (Figure 52) of tropoelastin is significantly decreased when stimulated 

with either EV-depleted ASC-SF (dSF, 0.3981±0390 fold change) or ASC-SF (0.4522±0.0625) 

when compared to NT control (1±0.0404), a different effect than seen in Chapter 2.0. No 

significant change in tropoelastin deposition was seen in after 30 days of stimulation with NCM 

(0.8071±0.3740), 1x EV (0.8399±0.4369), or 3x EV (0.9105±0.2985). 

Microfibril protein fibrillin-1 transcription was decreased with either NCM 

(0.8249±0.0371 fold change) or ASC-SF (0.5936±0.1149) treatment when compared to NT 

control (1±0.0367). No significant difference was seen with dSF (1.139±0.1924), 1x EV 

(0.7890±0.1521), or 3x EV (1.151±0.0513). 3x EV treatment, however, did induce significantly 

more fibrillin-1 deposition when compared to both ASC-SF and 1x EV treatment groups. 

Elastin organizational protein fibulin-4 transcription was significantly upregulated after 

dSF (1.607±0.0224), 1x EV (1.371±0.2710), and 3x EV (1.734±0.1987) treatments when 

compared to NT control (1±0.0385). No significant change was seen with NCM (1.209±0.3167) 

or ASC-SF (1.000±0.0930). 3x EV induced significantly more fibulin-4 than ASC-SF. 

Elastin organizational protein fibulin-5 transcription was significantly increased by all 

treatment groups when compared to NT control (1±0.1269): NCM (2.636±0.1599), dSF 

(2.486±0.3724), ASC-SF (1.575±0.1811), 1x EV (2.428±0.2468), and 3x EV (2.447±0.3182). Of 

those, only ASC-SF was statistically different, producing on average 37% less fibulin-5 than the 

other treatment groups. 

Similarly, transcription of elastin crosslinking protein LOX was significantly increased 

by all treatment groups when compared to NT control (1±0.0612): NCM (3.089±0.2826), dSF 
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(2.217±0.2126), ASC-SF (1.351±0.1082), 1x EV (2.325±0.3348), and 3x EV (2.832±1.019). 

ASC-SF induced 48.3% less LOX, on average, than all other treatment groups. 

Elastin crosslinking protein LOXL-1 transcription saw a wide variation after NT 

treatment (1±0.6322), resulting in a lack of statistically significant difference from other 

treatment groups. NCM (0.9458±0.2838) and ASC-SF (0.7828±0.0676) groups induced little 

change in LOXL-1 transcription, while dSF (2.139±0.5221) and 1x EV (1.694±0.1627) groups 

had higher average expression levels but were statistically similar to NT control. 3x EV 

expression levels had high deviation (1.273±0.8702), and were statistically similar to NT control. 

LTBP-4, elastin coacervate localization protein, was significantly decreased with dSF 

(0.0417±0.0097), 1x EV (0.3347±0.3101), and 3x EV (0.3446±0.0579) treatments compared to 

NT control (1±0.0411). Expression levels were statistically similar with NCM (0.5264±0.4453) 

and ASC-SF (0.3739±0.4922) treatment. 
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Figure 52: EV-induced SMC transcription analysis of elastin chaperone proteins reveals in increase in 

organizational proteins fibulin-4 and fibulin-5 and crosslinking protein LOX after treatment with 3x EV 

concentration. 

n = 4, α = 0.05 for all. 
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6.3.6  ASC secreted factors and EVs increase insoluble elastin deposition in stiff substrate 

SMC constructs 

Insoluble elastin percentage within SMC-embedded constructs (Figure 53A) is 

statistically similar when comparing 30 days of treatment with NT control (0.0742±0.0691% 

elastin of total protein), NCM (0.0295±0.0367%), and dSF (0.0440±00372%). Statistically 

significant increases in insoluble elastin deposition are induced after ASC-SF 

(0.2698±0.1182%), 1x EV (0.2521±0.1025%), and 3x EV (0.2205±0.0960%) treatments. No 

statistical differences are seen between ASC-SF or either EV-based treatment group. 

6.3.7  ASC secreted factors and EVs increase collagen protein deposition in stiff substrate 

SMC constructs 

Total collagen deposition within SMC-embedded fibrin gel constructs (Figure 53B) is 

statistically similar when comparing NT control (0.0354±0.0462% total collagen of total protein) 

to NCM (0.1323±0.0631%) and dSF (0.0950±0.0310%) treatments. A significant increase in 

total collagen deposition is induced by ASC-SF (0.1618±0.0283%), 1x EV (0.2303±0.0886%), 

and 3x EV (0.3068±0.0280%) 30-day treatments. Additionally, 3x EV treatment induces 

significantly more total collagen deposition when compared to ASC-SF. 
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Figure 53: SMC insoluble elastin and collagen deposition is increased after both ASC secreted factor and 

ASC secreted EV treatment. 

A) Insoluble elastin deposition by fibrin construct-embedded SMCs after 30 days of stimulation with No Treatment 

(NT) control, non-conditioned media (NCM), EV-depleted secreted factors (dSF), ASC secreted factors (ASC-SF), 

1x extracellular vesicle treatment (1x EV), or 3x EV treatment. n=4, α = 0.05.  

B) Total collagen deposition by fibrin construct-embedded SMCs after 30 days of stimulation with NT, NCM, dSF, 

ASC-SF, 1x EV, or 3x EV. n=4, α = 0.05.   
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6.3.8  Mechanical activity of SMC ECM following ASC secreted exosome stimulation 

High and low modulus, defined as the slope of the given sample’s mechanical response 

curve within the high stretch range (final third of the curve) and low stretch range (first third of 

the curve), were quantified on SMC constructs plated on soft substrate FlexCell Tissue Train 

plates. 

Due to high variation in the 12 samples of each treatment group, no statistically 

significant difference was observed in either low or high elastic modulus (Figure 54) when 

compared to NT control (low modulus: 46.74±26.09 kPa; high modulus: 51.99±32.03 kPa). All 

low modulus values were statistically similar, with no overall trend observed between NCM 

(100.7±75.60 kPa), dSF (87.19±46.43 kPa), ASC-SF (77.10±37.07 kPa), 1x EV (105.9±82.80 

kPa), or 3x EV (103.3±81.04 kPa) treatments. 

High modulus values did not produce statistically significant differences among treatment 

groups NCM (989.69±40.54 kPa), dSF (126.1±74 kPa), ASC-SF (118.6±82.23 kPa), 1x EV 

(152.7±155.1 kPa), or 3x EV (205.2±243.0 kPa). 3x EV treatments displayed a higher mean and 

larger variation than all treatment groups and NT control. 
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Figure 54: Low and high modulus of ASC secreted exosome-treated SMC fibrin gel constructs. 

Comparison of elastic modulus at low stretch and high stretch regions for 30-day soft substrate fibrin gel constructs, 

stimulated with No Treatment (NT), Non-Conditioned Media (NCM), Exosome-Depleted ASC-SF (dSF), ASC-SF, 

standard exosome concentration (1x EV), and three-fold exosome concentration (3x EV). Low Stretch and High 

Stretch modulus was defined as the slope of the mechanical response curve at low and high stretch regions.  

n=12, α = 0.05. 
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6.3.9  ASC-SF and 1x EV treatments induce increased SMC insoluble elastin deposition, 

and increased total collagen is induced after ASC-SF, 1x EV, and 3x EV 

treatment on soft substrate tensile tested fibrin gel constructs 

Ninhydrin assays on these tested samples detected a statistically similar level of insoluble 

elastin (Figure 55A) within both non-EV containing treatments when compared to NT control 

(0.2087±0.1333% elastin of total protein): NCM (0.2025±0.0904%) and dSF (0.2449±0.2322). 

Statistically increased insoluble elastin was induced by both ASC-SF (0.9414±0.6799%, p = 

0.015) and 1x EV (0.8978±0.6217%, p = 0.004). 3x EV produced a statistically similar level of 

insoluble elastin (0.6541±0.3751%, p = 0.137). 

Hydroxyproline assays detected a statistically similar level of total collagen percentage of 

total protein (Figure 55B) within both non-EV containing treatments when compared to NT 

control (0.1014±0.0835% total collagen of total protein): NCM (0.2064±0.0577%) and dSF 

(0.2280±0.1390%). All three EV-containing treatment groups induced a higher level of total 

collagen deposition when compared to NT control: ASC-SF (0.5521±0.1445%), 1x EV 

(0.3549±0.0638%), and 3x EV (0.3791±0.0625%). 
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Figure 55: SMC insoluble elastin and collagen deposition on tensile-tested soft substrates are increased after 

30 days of EV-containing treatment groups. 

A) Insoluble elastin deposition by fibrin construct-embedded SMCs on soft substrates, after 30 days of stimulation 

with No Treatment (NT) control, non-conditioned media (NCM), EV-depleted secreted factors (dSF), ASC secreted 

factors (ASC-SF), 1x extracellular vesicle treatment (1x EV), or 3x EV treatment. n=12, α = 0.05.  

B) Total collagen deposition by fibrin construct-embedded SMCs after 30 days of stimulation with NT, NCM, dSF, 

ASC-SF, 1x EV, or 3x EV. n=12, α = 0.05.  
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6.4 Discussion 

The results of this study indicate that ASC-secreted EVs can be isolated (Figure 48) and 

contain encapsulated protein (Figure 49C), promote SMC migration (Figure 51A), and induce 

the SMC elastogenesis cascade through increased deposition of elastin chaperone proteins 

(Figure 52), and increase SMC insoluble elastin deposition (Figure 53A, Figure 55A) and total 

collagen deposition (Figure 53B, Figure 55B). 

Isolation of EVs can be performed using centrifugation, immune capture methods, 

microfluidic size- or density- gradient manipulation sorting and filtration methods, or through 

precipitation kits that alter EV solubility. Isolation via ultracentrifugation, as done in this study, 

improves overall EV yield in comparison to filtration-based and immune-based methods, but is 

susceptible to protein contamination despite additional density-gradient centrifugation steps 

[272]. Indeed, though ASC-secreted EVs we successfully isolated via ultracentrifugation, the 

dark shadowing seen in Figure 48 TEM images indicates the presence of free protein that 

persisted past each round of high-speed centrifugation. Protein assay levels seen in Figure 49C 

also confirm the presence of free protein, with significant protein content present before EV 

lysing was performed to release EV-encapsulated protein. Addition of sucrose-based density-

gradient substrates still result in this free protein ‘contaminate’, with the possibility of 

substituting iodixanol for sucrose to utilize its isosmotic properties to improve EV yield while 

preserving vesicle size, shape, and functionality [273].  

SMC migration (Figure 51) was reduced with the addition of EVs, as 1x EV and 3x EV 

treatments were formed by adding isolated EVs to the NCM media treatment. While NCM 

maintained full SMC wound healing as seen in basal media, the addition of EVs reduced SMC 

migration to levels seen with free protein-rich CM and dCM conditions. Comparisons between 
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both EV-rich treatments and EV-free NCM extended to elastogenesis effects, with NCM 

mimicking induction of elastin transcriptional proteins induced by EVs (Figure 52). Free protein 

presence, due to ‘contamination’ could cause this reduction in migration, which is present in the 

ultracentrifuge-based EV isolation procedure used in this study. 

ASC-SF in this study produced a significantly different effect on SMC elastin chaperone 

transcription (Figure 52) than seen in Chapter 2.0 of this dissertation (Figure 17). Mechanical 

activity was also reduced using this study’s ASC-SF (Figure 54) when compared to Chapter 2.0 

(Figure 25). Initially thought to be ASC phenotypic variation, as this study limited secreted 

factor collection to one patient while Chapter 2.0 included ASCs from multiple patients, one 

significant difference between the two studies was EV-depletion of fetal bovine serum used 

within the “collection media” described in this study. EV depletion intended to isolate all effects 

seen to ASC-EVs, rather than EVs present within fetal bovine serum used to supplement the 

culture medium. Chapter 2.0 used EV-rich serum to culture and collect, as isolating secreted EV 

effects were not intended as an endpoint of that study. 

By comparing ASC-SF and 3x EV treatments, we were able to isolate the effect of 

increasing EV concentration while limiting free protein levels. 3x EV treatments produced a 

statistically similar level of insoluble elastin (Figure 53A) and a significant increase in total 

collagen (Figure 53B) when compared to ASC-SF, despite increasing transcriptional levels of 

tropoelastin microfibril fibrillin-1, organizational fibulin-4 and fibulin-5, and crosslinking LOX 

(Figure 52). Insoluble elastin levels might have remained constant due to additional free elastin 

chaperone proteins present within ASC-SF that were not studied in this study (such as EMILIN-

1). However, achieving a statistically similar level of ASC-SF induced elastogenesis by 
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combining isolated ASC-EVs shows that ECM deposition can be maintained (and, in the case of 

collagen, enhanced). 

6.5 Conclusion 

The primary goal of this study was to determine whether the pro-elastogenic effects 

induced by ASC-SF could be standardized through the isolation and delivery of only ASC-EVs. 

By successfully isolating patient-derived ASC-EVs, and inducing similar SMC pro-elastogenesis 

cascade effects seen using ASC-SF, we show that treatment standardization through delivery of 

only ASC-EVs remains a viable option for future aortic aneurysm regenerative medicine and 

tissue engineered vascular graft design. Reducing non-surgical small aneurysm treatment to 

delivery of EVs takes another step towards a cell-free therapeutic option. The stability of EV-

encapsulated protein and DNA/miRNAs [274], when compared to free floating counterparts, also 

points towards a viable EV-based off-the-shelf small aneurysm therapeutic and improved 

vascular graft design. 

6.6 Future Work 

Mechanical analysis showed a wide variation of tensile properties in EV-treated 

constructs seeded on soft substrates (Figure 54), which was also seen in insoluble elastin 

analysis of the same constructs (Figure 55A). The higher variability, especially when compared 

to stiff substrate ECM protein analysis in Figure 53, suggest that the forces induced by the 
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varying substrates play an important role in SMC ECM deposition response even within a 3D 

fibrin construct. Additionally, the increased volume of treatment needed for soft substrate 

cultures (1mL for stiff substrates, 4mL for soft substrates) introduces a greater variability of 

delivered factors to each construct. A standardized method to mix treatments, or reconfiguring 

soft substrate cultures to use a treatment volume similar to stiff substrates could control this 

effect for future studies. 

Additionally, the variation of EV content between patient-derived ASCs could induce a 

difference in pro-ECM deposition effects. By analyzing the elastogenic effects of commercially-

purchased ASCs, such as those sold by Rooster Bio Inc (Frederick, MD; product #MSC-023), 

would help standardize EV content and greatly simplify EV generation. Using commercially-

available ASCs for EV collection enables a scale-up option for increased in vivo studies (and 

long-term high-volume production of small aneurysm therapeutics). 

EVs isolated from alternative cell sources could also prove beneficial within regenerative 

approaches to treat small aneurysm. Placental EVs derived from amniotic fluid have shown to 

contain pro-angiogenic regulatory factors [275], endometrial remodeling-inducing matrix 

metalloproteinases (CD147) and cytokines (interleukin family members) [276], and 

immunomodulatory and pro-angiogenic paracrine miRNAs [277]. Collaboration to acquire 

amniotic fluid-derived EVs could present with a potent alternative to adipose tissue. 
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7.0 Project Summary 

Patients with small diameter abdominal aortic aneurysm, a life-threatening dilatation of 

the aorta induced by the degradation of extracellular matrix protein elastin, are left with 

“watchful waiting” (imaging every six-to-twelve months) as the standard-of-care. In this work, 

cellular biology and bioengineering approaches are combined to produce a wide-lens analysis of 

the elastogenesis cascade after adult aortic smooth muscle cells are stimulated by secreted factors 

from adipose-derived stromal cells. Our results potentially uncover an elastin-targeted treatment 

avenue for patients with small aortic aneurysms, acting as a supplement to the currently 

employed passive monitoring strategy. Additionally, the elastogenesis analysis workflow 

explored here could guide future mechanistic studies of elastin formation, which in turn could 

lead to new non-surgical treatment strategies. 

7.1 Summary of Results 

7.1.1  Specific Aim 1 

The overarching goal of Specific Aim 1 was the establishment of a 3D in vitro SMC 

culture platform to enable accurate study of ECM deposition during long-term (20- to 30-day) 

cultures, establishment of a battery of elastogenesis cascade (Figure 1) analysis techniques to 

capture all facets of mature deposition (including elastin chaperone protein transcription, elastin 

network formation, insoluble elastin deposition, and mechanical characterization of the 3D 
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construct), and analysis of a variety of exogenous factors’ ability to induce SMC mature elastin 

deposition. Fibrin gel constructs were successfully used to form two different 3D culture formats 

(Figure 2): (1) circular constrained constructs plated on a stiff substrate and (2) elongated 

constructs plated on flexible soft substrates able to be mechanically stimulated via cyclic uniaxial 

loading. Rat fetal lung fibroblasts were used to establish elastogenesis cascade analysis tools 

(Figure 4, Figure 5, Figure 6, Figure 8), and both TGF-β1 and ASC-SF were used to stimulate 

embedded SMCs to deposit mature elastin (Figure 14). ASC-SF successfully induced deposition 

of tropoelastin and related elastin chaperone proteins (Figure 17), increased network formation 

(Figure 21, Figure 22), increased insoluble elastin and total collagen within the fibrin construct 

(Figure 23, Figure 24), and increased high elastic modulus of the constructs (Figure 25). 

7.1.2  Specific Aim 2 

The goal of Specific Aim 2 was to evaluate the impact of ASC-SF on select aspects of the 

elastogenesis cascade, using patient-derived cells from at-risk aneurysmal aortic medial layers. 

Part 1 focused on adult-derived aneurysmal SMCs provided by the Thoracic Aortic 

Disease Research laboratory under the direction of Thomas Gleason MD, from Marfan syndrome 

thoracic aortic aneurysm, bicuspid aortic valve thoracic aortic aneurysm, and tricuspid aortic 

valve aortic aneurysm (alongside healthy control SMC lines). Two lines of Marfan syndrome 

showed an elastogenesis muting effect after treatment with either TGF-β1 or ASC-SF 

stimulation (Figure 26, Figure 27). TGF-β1 stimulation had a similar muting effect on tricuspid 

aortic valve SMCs (Figure 28). Bicuspid aortic valve aneurysmal SMCs showed increased 

insoluble elastin and total collagen deposition with either ASC-SF or Non-Conditioned Media 



 205 

(NCM) stimulation, with NCM effects also holding for late culture Marfan SMCs (Figure 29, 

Figure 30, Figure 31). 

Part 2 focused on the dilated aortic medial layer cells from pediatric cells, sourced from 

Victor Morell, MD and the Division of Cardiothoracic Surgery at the UPMC Children’s Hospital 

of Pittsburgh. Tissue was successfully transferred from the Children’s Hospital to the Vascular 

Bioengineering Laboratory, with cells successfully isolated from both medial and adventitial 

aortic layers using a modified tissue digestion and culture protocol (Figure 32). Cell lines were 

successfully cultured and stored from explanted dilated aortas from ten patients (Table 3), with 

three medial layer cell lines integrated within the 3D fibrin construct system, treated with ASC-

SF for 30 days, and evaluated for elastogenesis response. While 2-year-old medial layer cells 

increased elastin chaperone protein transcription and insoluble elastin deposition, collagen 

response was muted with ASC-SF treatment (Figure 33, Figure 34). 11-year-old medial layer 

cells stimulated with ASC-SF saw increased elastin chaperone protein transcription and insoluble 

elastin deposition without muting collagen (Figure 35, Figure 36). 15-year-old medial layer 

cells produced less overall ECM and saw slight increases in transcriptional and insoluble elastin 

when stimulated with ASC-SF (Figure 37, Figure 38). 

7.1.3  Specific Aim 3 

The goal of Specific Aim 3 was to begin clinical translation steps for ASC and ASC-SF 

based therapeutic strategies for small aortic aneurysm. 

Part 1 concerned the development of a modified delivery system for fibrin gel constructs 

containing therapeutic cargo of choice, and the evaluation of magnetic localization and 

subsequent securement using the fibrin hydrogel delivery mechanism. A successful Tri-Syringe 
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device (Figure 40, Figure 41) was iterated and used during an in vivo study to localize iron 

nanoparticle-loaded adipose-derived mesenchymal stem cells to the periadventitial surface of an 

elastase-induced murine abdominal aortic aneurysm. Magnetic localization was successful in 

vitro regardless of magnetic direction and with the presence of a surgical sponge for fibrin 

delivery (Figure 43, Figure 44, Figure 46). Initial results suggest magnetic localization plays a 

role in in vivo localization to the murine abdominal aortic aneurysm (Figure 47), but further 

study is needed to determine if treatment efficacy is improved with this improved localization. 

Part 2 concerned the simplification of ASC-SF therapy to exosomes and extracellular 

vesicles secreted by ASCs (ASC-EVs) (Figure 48), and the elastogenic potential of ASC-

secreted exosomes on healthy adult aortic SMCs. ASC-EVs induced an increase in elastin 

chaperone protein transcription (Figure 52) and insoluble elastin fraction (Figure 53, Figure 55) 

on both stiff and soft substrates, but did not have a significant effect on the mechanical response 

of the construct (Figure 54). 

7.2 Summary of Accomplishments 

This dissertation work resulted in production of the following academic manuscripts: 

1. Krawiec JT, Weinbaum JS, Liao HT, Ramaswamy AK, Pezzone DJ, Josowitz 

AD, D'Amore A, Rubin JP, Wagner WR, Vorp DA. In Vivo Functional 

Evaluation of Tissue-Engineered Vascular Grafts Fabricated Using Human 

Adipose-Derived Stem Cells from High Cardiovascular Risk Populations. Tissue 

Engineering Part A. May 2016, 22(9-10): 765-775. 

doi:10.1089/ten.tea.2015.0379. 
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2. Ramaswamy AK, Vorp DA, Weinbaum. Functional Vascular Tissue Engineering 

Inspired by Matricellular Proteins. Frontiers in Cardiovascular Medicine. [in 

revision] 

3. Ramaswamy AK, Sides RE, Cunnane EM, Lorentz KL, Reines LM, Vorp DA, 

Weinbaum JS. Adipose-derived stromal cell secreted factors induce elastogenesis 

within 3D aortic smooth muscle cell constructs. [under review] 

4. Ramaswamy AK & Cunnane EM, et al. Elastogenesis effect of secreted 

exosomes on aortic smooth muscle cells: primary versus commercial adipose 

stromal cells. [in preparation] 

5. Gupta P, Lorentz KL, Haskett DG, Cunnane EM, Ramaswamy AK, Weinbaum 

JS, Vorp DA, Mandal BB. Bioresorbable silk grafts for small diameter vascular 

tissue engineering applications: In vitro and In vivo functional analysis. [in 

preparation] 

6. Ramaswamy AK, et al. Elastogenesis analysis of dilated medial aortic layer cells 

after long-term adipose-derived stromal cell secreted factor stimulation. [in 

preparation] 

7. Cunnane EM, et al. Exosome-functionalized silk scaffolds for tissue engineered 

vascular applications. [in preparation] 

 

The following patent application was filed as a result of the work in Chapter 5.0: 

1. Vorp DA, Ramaswamy AK, Weinbaum JS, Blose KJ, Chung TK, Kickliter T, 

Baruch Y. Magnetic Delivery System and Hydrogel Fixative for Therapeutic 

Cells. US Patent Application No. 62/747,767. Oct 19, 2018. 
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The following research grants and fellowships were earned by the author or by mentored 

students during the completion of this dissertation: 

1. NIH T32 HL094295. “Impact of Adipose-Derived Mesenchymal Stem Cell 

Conditioned Media on Aortic Smooth Muscle Cell Elastin Deposition”, 9/2014 – 

8/2015. [Training fellowship to Aneesh Ramaswamy] 

2. McCune Foundation Pediatric Device Initiative grant. “Improved 

Elastogenesis for Pediatric Patients with Genetic Defects of the Aorta”, 8/2016 – 

6/2017. PIs: Dr. David Vorp & Dr. Victor Morell.  

3. Leonard H. Berenfield Graduate Fellowship in Cardiovascular Engineering. 

“Impact of Mesenchymal Stem Cell Secreted Factors on the Secretion and 

Organization of Elastic Fibers within Pediatric Thoracic Aortic Aneurysms”, 

9/2016 – 8/2017. PIs: Dr. David Vorp & Dr. Justin Weinbaum. [Predoctoral 

fellowship to Aneesh Ramaswamy] 

4. Undergraduate Summer Research Internship Scholarship, Swanson School of 

Engineering, University of Pittsburgh, 6/2017 – 8/2017. [Summer fellowship to 

Rachel Sides (mentored undergraduate student)] 

5. International Studies Fund, University Center for International Studies, 

University of Pittsburgh, 6/2017 – 8/2017. PIs: Dr. David Vorp & Dr. Hiromi 

Yanagisawa (University of Tsukuba). [Summer fellowship to Rachel Sides 

(mentored undergraduate student)]  
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The following awards were earned during the completion of this dissertation: 

1. Outstanding Poster in Tissue Engineering. Smooth Muscle Cell Elastin 

Generation Stimulated by Adipose-Derived Mesenchymal Stem Cells. McGowan 

Institute Scientific Retreat. Mar 9, 2015 (Farmington, PA).  

2. University of Pittsburgh co-representative. American Association for the 

Advancement of Science (AAAS) Catalyzing Advocacy in Science and 

Engineering 2017 Workshop. Apr 2-5, 2017 (Washington DC). 

3. University of Pittsburgh co-representative. American Institute for Medical and 

Biological Engineering (AIMBE) Public Policy Institute for Rising Leaders 2017. 

Oct 30-31, 2017 (Washington, DC). 

4.  Graduate Student Honoree. Understanding Science Funding, Advocacy, & 

Communication. Bioengineering Student Awards Seminar. Dec 7, 2017 

(Pittsburgh, PA). 

5. 2nd Place, American Society for Mechanical Engineering – Bioengineering 

Division PhD Level Student Paper Competition. Improved Adult & Pediatric 

Aortic Elastogenesis Driven by Adipose-Derived Mesenchymal Stem Cell 

Secreted Factors. 8th World Congress of Biomechanics, July 10, 2018 (Dublin, 

Ireland). 

6. 2nd place, 3 Minute Thesis Competition. Elastogenesis for Aortic Aneurysms. 

Swanson School of Engineering, University of Pittsburgh. May 20, 2019 

(Pittsburgh, PA). 
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7.3 Future Work 

Future directions for each project within this dissertation work are summarized at the 

conclusion of each chapter. Future directions for Specific Aim 1 can be found in Section 2.6, for 

Specific Aim 2 Part 1 in Section 3.6, for Specific Aim 2 Part 2 in Section 4.6, for Specific Aim 3 

Part 1 in Section 5.6, and for Specific Aim 2 Part 2 in Section 6.6. 
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