
A PROCRUSTEAN APPROACH TO STREAM

PROCESSING

by

Nikolaos Romanos Katsipoulakis

Bachelor of Science, National Kapodistrian University of Athens,

2011

Submitted to the Graduate Faculty of

the School of Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2018



UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Nikolaos Romanos Katsipoulakis

It was defended on

December 18th 2018

and approved by

Dr. Alexandros Labrinidis, Department of Computer Science, University of Pittsburgh

Dr. Panos K. Chrysanthis, Department of Computer Science, University of Pittsburgh

Dr. John Lange, Department of Computer Science, University of Pittsburgh

Dr. Andrew Pavlo, Department of Computer Science, Carnegie Mellon University

Dissertation Advisors: Dr. Alexandros Labrinidis, Department of Computer Science,

University of Pittsburgh,

Dr. Panos K. Chrysanthis, Department of Computer Science, University of Pittsburgh

ii



Copyright © by Nikolaos Romanos Katsipoulakis

2018

iii



A PROCRUSTEAN APPROACH TO STREAM PROCESSING

Nikolaos Romanos Katsipoulakis, PhD

University of Pittsburgh, 2018

The increasing demand for real-time data processing and the constantly growing data volume

have contributed to the rapid evolution of Stream Processing Engines (SPEs), which are

designed to continuously process data as it arrives. Low operational cost and timely delivery

of results are both objectives of paramount importance for SPEs. Given the volatile and

uncharted nature of data streams, achieving the aforementioned goals under fixed resources

is a challenge. This calls for adaptable SPEs, which can react to fluctuations in processing

demands.

In the past, three techniques have been developed for improving an SPE’s ability to

adapt. Those techniques are classified based on applications’ requirements on exact or ap-

proximate results: stream partitioning, and re-partitioning target exact, and load shedding

targets approximate processing. Stream partitioning strives to balance load among proces-

sors, and previous techniques neglected hidden costs of distributed execution. Load Shedding

lowers the accuracy of results by dropping part of the input, and previous techniques did not

cope with evolving streams. Stream re-partitioning is used to reconfigure execution while

processing takes place, and previous techniques did not fully utilize window semantics.

In this dissertation, we put stream processing in a procrustean bed, in terms of the man-

ner and the degree that processing takes place. To this end, we present new approaches,

for window-based aggregate operators, which are applicable to both exact and approxi-

mate stream processing in modern SPEs. Our stream partitioning, re-partitioning, and load

shedding solutions offer improvements in performance and accuracy on real-world data by

exploiting the semantics of both data and operations. In addition, we present SPEAr, the

iv



design of an SPE that accelerates processing by delivering approximate results with accu-

racy guarantees and avoiding unnecessary load. Finally, we contribute a hybrid technique,

ShedPart, which can further improve load balance and performance of an SPE.
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1.0 INTRODUCTION

Modern data-intensive applications are prevalent in a plethora of social and economic sec-

tors, which require real-time processing of voluminous and velocious data streams. Those

carry rapidly fluctuating data in content, and (sometimes) structure. Examples of such

applications include high-frequency trading [120], social network analysis [40], targeted

advertising [14], click-stream analysis [54], urban analytics [19], real-time data visualiza-

tion [104, 26, 130], to name a few. The goal of those applications is to capture trends

by identifying patterns in the data streams, and use the extracted knowledge for online,

time-critical, decision support.

Traditional Database Management Systems (DBMSs) have been optimized either for On-

line Transaction Processing (OLTP) workloads, which aim at persisting ad-hoc concurrent

transactions that read and write shared data, or for Online Analytical Processing (OLAP)

workloads, which aim at answering complex queries fast [62, 117]. Both models are not fit

for the aforementioned applications as they follow a “pull-based” processing model, which

requires queries to pull data from persistent storage [8, 37]. OLTP and OLAP systems fol-

low a Human-Active-DBMS-Passive approach (HADP) since all operations in the DBMS are

triggered by user actions [33]. Stream processing has been deemed as a more appropri-

ate processing model, since it follows a “push-based” approach for processing (i.e., DBMS-

Active-Human-Passive model–DAHP). As a model, stream processing involves a static set

of continuously-running queries, which are often called Continuous Queries (CQs), applied

on evolving data streams of unbounded size (i.e., dynamically arriving and cannot be fully

predicted). Those streams can carry updates of any form, based on the general turnstile

model of execution [57].

Stream Processing Engines (SPEs) have been developed to cover the needs for this type
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Step 1: 
Balance Load 

(partition)
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constrained
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Reduce Load 
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lightweight

resource 
constrained

data 
dependent
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exact results

Step 3: 
Alter execution plan 

(re-partition)

data 
independent

resource 
unconstrained

heavyweight

Figure 1: The actions taken by an SPE administrator.

of processing [25, 37, 8, 1, 7, 17, 138, 14, 97, 15, 36, 30, 131, 83]. Their design differs from

DBMSs in that SPEs are optimized for continuous and timely execution of registered CQs,

which are known prior to the beginning of execution. To cope with the input load and

produce results fast, SPEs have their processing load constrained in size (i.e., RAM), and

any type of secondary storage is excluded from the main processing pipeline. As a result,

the notion of “windowing” is adopted by SPEs, which dictates that continuous execution

produces a stateful operation’s result on a window (i.e., snapshot) of the data [22, 18].

1.1 CHALLENGES

Even though the set of CQs is known, a major challenge for SPEs is their ability to provide

the expected level of service during the whole lifetime of a CQ. This can be difficult because

the exact resources needed for a given CQ at any point in time of its execution are not known

at query submission time, which is when resources are provisioned. A CQ’s resource needs

are estimated based on historical information, without precise forecasting of future data

characteristics (i.e., input rate, volume etc.). As a result, SPE administrators end up over-

provisioning resources, which leads to high operational costs. Matters get exacerbated when
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resources are not ample to cover the processing needs of a CQ. Under such circumstances,

either data can get lost or results can be delayed. Ultimately, static resource allocation is

precarious and can result in severe costs emanating from either loss of data or increased

operational expenses.

In the past, three techniques have been developed to address the challenge of resource

provisioning in SPEs. Those are stream partitioning, load shedding, and stream re-partitioning

(or scaling-out/-in). The first aims at distributing load among processors as evenly as

possible, the second selectively drops load during congestion periods, and the third involves

reconfiguration of a CQ’s execution plan in an online fashion1. These techniques can be

classified based on their usage for exact and approximate processing scenarios: the former

entails the production of an exact result, whereas the latter entails the production of an

estimation of a result. Stream partitioning and re-partitioning are targeted for exact, whereas

load shedding is aimed for approximate processing. Each one of these techniques comes

with its individual merits and drawbacks. Hence, each one is better suited for different

applications and for particular congestion circumstances. Figure 1 illustrates the sequence

of steps followed by an SPE administrator, in terms of applying each technique (based on

our empirical evidence), along with each technique’s pros and cons. Stream partitioning and

load shedding can be adapted without disrupting execution (hence “lightweight” in terms

of impact in performance), but both are constrained by the available resources and their

effectiveness depends on the underlying data. Therefore, both of them are applied first when

the execution pipeline gets congested. Load shedding has the additional limitation that it

might not be applicable to some use-cases that require exact results. The final step is stream

re-partitioning that is able to overcome any type of congestion, but it requires temporarily

suspending execution (hence “heavyweight” in terms of impact in performance).

1.1.1 Partitioning

Stream partitioning was introduced for SPEs that support distributed execution [37, 111].

With the appearance of multiple parallel processes (and multi-core CPUs) the need to bal-

1We use the term stream re-partitioning to describe changes in the execution plan for both static and
dynamic resource allocation strategies.
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ance load had arisen. In the beginning, stream partitioning algorithms distributed tuples in

a load-agnostic fashion, which was borrowed from parallel DBMSs. Subsequently, more so-

phisticated techniques involved monitoring incoming streams and making informed decisions

for balancing load [58, 98, 99, 108].

Adaptive stream partitioning is a lightweight process, since it does not dictate costly

re-organization of a CQ’s execution plan. Also, it can alleviate performance degradation

emanating from skewed input [75]. However, stream partitioning solutions are limited by

the underlying resources and the shape of input data. Existing stream partitioning solutions

fail to incorporate costs imposed by distributed execution in their decision process, which

harms their ability to balance load. As shown in Figure 1, stream partitioning is the first

step for adapting an SPE’s performance. Stream partitioning is capable of improving the

performance on skewed input, but it is resource constrained, and its efficacy depends on the

underlying data.

1.1.2 Load Shedding

Load shedding was proposed to reduce the volume of data being processed, and is applied

when input temporarily increases [124, 45, 24, 119, 125, 123, 96]. In practice, an SPE monitors

the processing time, and if a users’ Service Level Objectives (SLOs) are violated, it drops

input tuples based on a calculated shed rate. By dropping tuples while the delay target is

met, the accuracy of the result decreases and the main challenge for load shedding is to strike

a balance between performance and accuracy.

This technique is best fitted for short-term input spikes and for CQs that can sustain

accuracy drop in the results (i.e., approximate processing). As a result, load shedding is

inapplicable to workloads that require exact processing, and is to no avail when data are

not fit for approximation. To make matters worse, existing load shedding techniques make

impractical assumptions about stream processing (e.g., stationary data, or known tuples’

utilities), which constitute load shedding futile for current use-cases. Figure 1 indicates that

load shedding is applied after the efforts for addressing load with stream partitioning have

been tried. Load shedding is a lightweight process, since it does not require suspending a
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CQ’s execution. However, it suffers from similar shortcomings with partitioning. On top

of that, load shedding might be deemed inapplicable to use-cases where exact processing is

required.

1.1.3 Re-partitioning (Scale-out)

With the evolution of Cloud Computing and the ability to provision additional resources on-

demand, stream re-partitioning has been employed as a better alternative to load shedding

for handling long-lasting input spikes [111, 141, 110, 34, 63]. The main idea of re-partitioning

is to (i) add additional processing units, without severely disrupting on-going execution, and

(ii) release them when they are no longer needed. Furthermore, re-partitioning has been

used for re-organizing a CQ’s execution plan on static resource allocations, to alleviate the

performance impacts of executing multiple processes on the same machine.

Stream re-partitioning involves state migration, stream re-direction, and maintaining

data consistency, which make it useful for long-lasting increases in input load. In addition,

existing techniques require suspending execution temporarily [111, 34]. Thus, stream re-

partitioning is a costly process, and existing techniques are not designed to leverage stream

processing semantics effectively. Consequently, an SPE’s performance deteriorates momen-

tarily during re-configuration. Figure 1 depicts that re-partitioning is the ultimate step of

action in order to improve an SPE’s performance. Despite re-partitioning ’s ability to improve

performance, it remains a heavyweight operation.

1.2 OUR APPROACH

Each technique cannot individually cover the adaptability needs of a SPE by itself, as they

all fall short under specific conditions. For instance, stream partitioning is able to only

handle workloads that can be accommodated by existing infrastructure; load shedding is

applicable for short-term spikes on workloads that allow approximate processing; stream

re-partitioning involves heavy re-organizations of executing components. Total adaptability
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requires the competence to identify situations under which each technique can be applied.

On top of that, combining two (or more) techniques is imperative to compensate for the

weaknesses associated with each one and can further improve the performance of an SPE.

Therefore, we state that stream processing needs to be approached in a procrustean fashion2,

in terms of the manner and the volume that data are processed.

In this dissertation, we study existing SPEs and modern stream workloads imposed on

them, with a focus on stateful operations3. Our investigation reveals that existing solutions

fall short, and do not fit well with current operational circumstances. To this end, we develop

adaptive algorithms and protocols that can be applied in both exact and approximate stream

processing situations. Our contributions leverage the design of modern SPEs to improve

performance and maintain high results’ accuracy at a low cost.

1.2.1 Exact Stream Processing

In the context of exact processing, we developed a novel holistic model for stream partition-

ing, which incorporates the associated costs of distributed execution in the decision process.

Based on this model, we invented a family of stream partitioning algorithms, which materi-

alize it in a heuristic fashion. Our experimental evaluation shows that our algorithms lead

to increased throughput and reduced processing time in real workloads. Turning to stream

re-partitioning, we invented a novel CQ migration protocol that does not cause any tem-

poral performance degradation, and can migrate CQs with complex and/or nested window

semantics. Previous work on migration protocols did not leverage the fact that in stream

state appears in the form of windows, which expire as execution progresses. Our protocol

is taking advantage of this peculiarity of stream processing, and is able to migrate a CQ

without having to migrate any state.

2Procrustes was a notorious bandit in Ancient Greece, who would adapt his sinister plans based on his
victims’ dimensions [128].

3Stateless operations can be trivially handled, since they do not involve any state. Therefore, we do not
focus on them in this dissertation
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1.2.2 Approximate Stream Processing

Previous load shedding techniques made impractical assumptions that would either assume

that prior knowledge for prioritizing data for shedding exists, or that historical information

of input streams is stationary and can be used during shedding to maintain high accuracy.

We identified the importance of a window’s concept and introduce an algorithm that treats

concept-drift as an inherent characteristic of data streams. This algorithm exploits modern

SPEs execution model, and improves results’ accuracy at no additional cost. Furthermore,

we brought Approximate Query Processing (AQP) in SPEs, by providing approximate results

with bounded error. The motivation for this work is to accelerate processing time without

compromising the quality of results. In detail, we developed SPEAr, which a prototype

SPE able to detect opportunities for accelerating processing with a bounded degradation in

accuracy.

1.2.3 Combination of methods

Our research on all three adaptation techniques revealed that no single technique can solve

all possible overload situations. Adaptive stream partitioning is unable to handle extremely

skewed workloads, without having to migrate state (i.e., costly operation). Similarly, load

shedding can not operate if either the application or the data do not allow for approximate

stream processing. Finally, stream re-partitioning comes with a high cost and can cause

missing delay targets (i.e., violation of SLOs). To this end, we explored the combination of

load shedding and stream partitioning, which further improves load allocation and reduces

processing time.

1.3 RESEARCH CONTRIBUTIONS

1. A family of stream partitioning algorithms that aim to balance load among multiple

workers. We present a novel model for estimating the cost of a stateful operation, by

including the aggregation overhead. This work has been published as [75] and we present
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it in Chapter 3.

2. The design of Synefo, an SPE built on top of Apache Storm with the ability to alter

the resources of an active CQ. This work has been published as [78]. In addition, we

contribute the design of UniMiCo, which is a state migration protocol with zero state

transfer overhead. This work has been published as [107]. Both Synefo and UniMiCo are

presented in Chapter 4.

3. The design and implementation of a novel load shedding method, which prioritizes tuples

for shedding based on a window’s concept. This work has been published as [76] and we

present it in Chapter 5.

4. The design of SPEAr, which is a prototype SPE built on top of Apache Storm. Given

a user’s accuracy specification (in the form of error and confidence), SPEAr is able to

identify opportunities for accelerating processing, by producing an approximate result of

bounded error. This work is presented in Chapter 6.

5. The design of ShedPart, which is a complementary module for stream partitioning, that

trades accuracy for load balance. ShedPart selectively drops parts of the input in order

to achieve an even allocation of work, while the result appears with a bounded error.

This work is presented in Chapter 7.

1.4 ROAD MAP

To set the stage for this dissertation, in Chapter 2 we present the background and the

prerequisite information for our work. In Chapter 3 we present our contributions in stream

partitioning for exact processing. Next, in Chapter 4 we present our work on stream re-

partitioning, followed by Chapter 5 with our work on load shedding, which aims approximate

processing. In Chapter 6 we present our work on approximate processing with bounded

accuracy, which consists of the design of our prototype SPE SPEAr. Then, in Chapter 7

we present our work on the combination of stream partitioning and load shedding, which

targets approximate processing with bounded accuracy. Finally, we conclude this dissertation

in Chapter 8 with our concluding remarks and future research directions.

8



2.0 BACKGROUND

In this chapter, we establish the theoretical foundations, important details, and background

information of this dissertation. First, we present the SPE system model (Section 2.1),

the query along with the data model (Section 2.2), and the execution pipeline of SPEs

(Section 2.3). Then, we provide background information on internal mechanisms of modern

SPEs for stateful window processing (Section 2.4), which is our focus on this dissertation

since it poses a plethora of challenges for SPEs. Next, we offer background information and

prerequisites for approximate processing (Section 2.5). Finally, we conclude this chapter with

general information on the real workloads we employ in our experiments (Section 2.6.1), and

background information on Apache Storm, which we use as the “fabric” for building many of

our prototypes (Section 2.6.2). Table 1 summarizes the symbols that are introduced in this

chapter.

2.1 SYSTEM MODEL

Despite the fact that the need for CQs and differential execution first appeared in the

1990s [126, 87, 88], the first system that covered stream processing partially appeared much

later, in the early 2000s [41]. At the time of writing of this dissertation, SPEs’ design has

gone through three generations each one introducing pivotal changes in design.

In the beginning, SPEs appeared as single-node systems with serial execution runtimes.

The most popular prototypes were STREAM [25], Aurora [8], NiagaraCQ [41], PSoup [38],

and AQSIOS [1]. Those featured a monolithic design, akin to a DBMS, and carried a query

parser, a memory manager, and Input/Output modules for network/storage. First genera-
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Table 1: Model Symbol Overview

V number of workers

Si input streams 1 ≤ i ≤ N

Xi = (τ, k, p) schema of Si

eXi
tuple of Si

Wr,s : Si → {S1
i , . . . , S

w
i } window definition function for Si with range r and slide s

P : Swi → {LvSw
i
, for 1 ≤ v ≤ V} partition function for window Swi

ε : Rw, R̂w →
[
0, 100

]
error function between Rw and approximation R̂w

α confidence level

tion SPEs featured a serial execution engine, which required the existence of a centralized

scheduler [23], and multiple CQs shared the same CPU [20]. Some SPEs carried a workload

manager and supported execution of operations with different priorities [106]. A unique char-

acteristic of the first generation of SPEs was operator sharing, which allowed multiple queries

to share a common operation on the same stream(s) [112]. SPEs featured an optimization

process, whose goal was to create groups of CQs with matching semantics [41].

The second generation of SPEs focused on distributing processing to (mainly) overcome

the limitations of a single-node environment (i.e., main memory, processing speeds). A CQ

would be broken down to a series of operators, which would be spread out in a cluster of

servers, in order to scale processing. Borealis [7] was the distributed version of Aurora and

allowed a user to scale-out queries by spreading their operators to multiple machines. In a

similar fashion, TelegraphCQ [37] allowed parallel and distributed execution of continuous

queries. IBM’s System S [17] and StreamCloud [63] expanded the processing and memory

capacity of a SPE and were able to scale processing further, by adding more operators in

specific stages of the execution plan [100, 101].

The current generation of SPEs features distributed execution with a less monolithic

design, in order to achieve higher scales. In essence, SPEs of this generation resemble systems
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like MapReduce [47], with a focus on low-latency processing and data that can fit in main-

memory. The SPE offers a small set of utilities, like the transfer layer and the execution

layer, and leaves the memory management and the processing logic to the user. Storm [131]

(along with its evolution Heron [83]) offers the transfer layer and the processing fabric, and

the application logic is responsible for the rest. Spark Streaming [138] simulates stream

processing through micro batches and offers strict delivery semantics. A number of other

systems have became popular, such as Samza [4], Kafka Streams [6], Trill [36]. Two other

systems, Flink [30] and Apex [3], focus on providing a unified environment for both stream

and batch processing. Those SPEs are designed to operate on (public) clusters and on

commodity hardware (i.e., scale-out architectures). Recently, SPEs that operate as a Service

have appeared from Cloud Service Vendors [2, 5, 15].

In this work, we focus on the current third generation of SPEs due to their ability to

scale. Their modular design allows for scalability and fits well with Cloud Infrastructures.

However, all of our work can be applied on any type of distributed SPE.

2.2 QUERY MODEL

A CQ, represented asQ, is submitted to an SPE in either declarative (i.e., SQL-like syntax) or

imperative/functional form, consists of data source definitions and operators, which operate

serially to produce the expected result.

A CQ’s data sources can be input streams, or static relations [18]. Q’s input streams

are represented by Si, where 1 ≤ i ≤ N (N is the number of input streams). Each Si is a

sequence of tuples eXi
(e stands for event), with a predefined schema Xi. Often, the schema

presents normalized fields, but in some use-cases input tuples can hold nested fields (i.e.,

records from JSON files [85]). From this point on, we will continue our model’s presentation

based on a single input stream Si. However, without any loss of generality our model can

accommodate multiple streams as well.

Q represents a series of transformations, which are represented by operators. Operators

are characterized based on their need to maintain state in order to apply their transformation.

11



Select route, AVG(fare)
From Rides

[Range 15 Minutes,
Slide 5 Minutes]

With Time time
Group By route
Order By AVG(fare)
Limit 10;

a: CQL

query = rides
.time(x -> x.time)
.windowSize(15, MINUTES)
.windowSlide(5, MINUTES)
.mean(x -> x.fare)
.group(x -> x.route)
.order()
.limit(10);

b: Functional

Figure 2: Example Query

Stateless operators carry logic that does not require state and act based on a eXi
’s attribute

values. For instance, stateless operators are filter (relational select σ), and map operations

(e.g., relational rename ρ, project π), which operate based on the information of a single

input tuple. Stateful operators require state to apply their transformation, and act based

on a subset of eXi
from Si. Examples of stateful operators are aggregate operations (e.g.,

sum, mean), relational joins (i.e., ./), cartesian products (×), set operations (i.e., relational

union, intersection, and difference), or user-defined aggregate operations (UDAs). In the

past, stateful operations have appeared as iterative processes [97], which require to maintain

state among different invocations. In this dissertation, our focus is going to be on stateful

operators as they produce a plethora of challenges for existing SPEs. Due to the unbounded

size of an input stream, a stateful operator’s state is constrained to a subset of past tuples,

which is called a window.

Often, Q will have one or more window definitions. The notion of a window definition

Wr,s is to support stateful operators, which are applied to a group of tuples when Wr,s’s

conditions have been met (i.e., a stateful operator’s process is triggered). A logical window

definition can be represented as a function Wr,s : Si → {S1
i , . . . , S

w
i }, where w → ∞. Each

Swi represents the tuples of Si that belong to window w according toW (i.e., Swi is the window

w). In Wr,s, r is the range of the window, which indicates the size of a window, either in

12



terms of tuple count, or time duration. Early SPEs, like STREAM [25] and Aurora [8],

introduced two types of window trigger conditions: count- (or tuple-) and time-based. The

former produces a result when the desired number of tuples are available in the input buffer.

In this case, W ’s r denotes a number of tuples, and when r tuples have accumulated, the

stateful operation associated withW is evaluated. The latter, produces a result when a user-

defined time condition has been met. In this case,W ’s r denotes a time unit, which indicates

that if a window of r duration has been established, the stateful operation associated with

W is evaluated. For time-based windows, the notion of time to establish a window can be

based either by the SPE (called “processing time” [14]), or by a specific attribute value of eXi

(called “event time” [14]).

The window definition Wr,s features a slide s, which indicates the progression step of

a window. When the slide s = r, two consecutive windows do not overlap. Windows with

this characteristic are called tumbling windows, and each tuple of Si is assigned to a single

window, When the slide s < r, two consecutive windows overlap with each other, and each

tuple of Si contributes to d rse consecutive windows. This type of windows are called sliding.

Recently, a third type of windows named session-based have appeared [32], which carry more

complex window completion requirements that can not be expressed just by time or number

of tuples.

Figure 2 presents an example query in both declarative (Figure 2a) and functional no-

tation (Figure 2b). The example query calculates the arithmetic mean of fares per route on

a sliding window of r = 15 minutes, with a slide of s = 5 five minutes (i.e., W15,5). This

CQ has access to a single source stream named “rides” (i.e., N = 1 and S1 = rides). The

query demonstrated in Figure 2a is in CQL–like [18] notation 1, and the query of Figure 2b

is phrased using a functional notation (similar to one used in Spark Streaming, Flink, and

Heron). Each tuple of the rides stream has the following schema: Xrides =(time, route, fare).

For each window, the query produces the ten routes with the highest arithmetic mean of

fares. The main difference between CQL and the query syntax of Figure 2a is the additional

specification of the time field. Most of the CQs that we will present in this dissertation

feature event time processing. In the example query of Figure 2, the field time is used to

1CQL did not support explicit usage of event-time processing as appears in Figure 2a
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Source 
[rides]

Assign 
Time 
[time]

Window 
[15, 5]

Group 
Mean 
[route]

Order 
[mean]

Limit 
[10]

Figure 3: Logical Plan for CQ of Figure 2.

assign tuples to windows.

2.3 EXECUTION PLAN GENERATION

A CQ is submitted to an SPE in the forms that are presented in Figure 2. In the event

that a CQ is phrased using a CQL-like notation (e.g., Figure 2a), an SPE’s toolset is able to

transform it to an execution topology (e.g., Flink, Heron, and Spark Streaming support this

functionality). Next, an SPE will perform the following steps: (a) logical plan creation, and

(b) physical plan formation.

2.3.1 Logical Plan

The logical plan of a CQ is a Directed Acyclic Graph (DAG), similar to an evaluation tree

of a DBMS. The main difference lies in that a CQ’s logical plan does not need to have

a single output. Figure 3 presents a possible evaluation plan created by an SPE for the

CQ presented in Figure 2. The logical plan presented in Figure 3 is a single branch tree

because all nodes receive a single input. Each vertice (node) of the logical plan denotes an

operator of a CQ, and each edge a data transfer. In case there are operators with more

than one inputs, such as relational joins, then the logical plan looks like a tree (e.g., the

query plan depicted in Figure 4). The left-most node of the execution plan represents a data

source (e.g., an input stream). The right-most node represents the last operator that will

be performed and it is often followed by a consumer node, which can either be an external
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R⋈S

R

S

window
[10,5]

Figure 4: Example query plan for a CQ with a join.

storage system, or an ingress operator by another processing pipeline. Intermediate nodes

represent operators imposed on flowing tuples and can be either stateless or stateful. As we

have mentioned previously, our focal point is limited on issues related to stateful processing.

In the plan depicted in Figure 3 the “Assign Time” operator is a stateless operator, since it

acts as a map operation where each input tuple is augmented with a time field. However,

the “Window” and the “Group Mean” operators are stateful, since they require the window

semantics to be triggered in order to process tuples.

2.3.2 Physical Execution Plan

As mentioned in Section 2.1, the target system of this dissertation is a distributed SPE, which

scales processing by utilizing multiple CPUs on different servers (or multiple cores on a single

server with multiple CPUs). To this end, the SPE will turn the logical plan (i.e., Figure 3)

to a physical execution plan. This process entails instantiating execution workers for each

operator (i.e., threads, processes etc.), creating the physical communication channels among

different stages of execution (i.e., I/O buffers, network sockets, etc.), initiating monitoring

and reliability mechanisms, and commencing the synchronization components. Depending

on the available resources forQ, the SPE will produce a different physical execution plan. For

instance, the parallelism of a stateful operator relies on the number (V) of workers assigned

to it. Each worker can be a machine, a process, a thread, or an actor, depending on the
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PIPELINEPARTITIONSHUFFLE
Source 
[rides]

Assign 
Time 
[time]

Window 
[15, 5]

Group 
Mean 
[route]

Order 
[mean]

Limit 
[10]

Source 
[rides]

Assign 
Time 
[time]

Window 
[15, 5]

Window 
[15, 5]

Group 
Mean 
[route]

Order 
[mean]

Limit 
[10]

Group 
Mean 
[route]

Order 
[mean]

Limit 
[10]

Figure 5: Physical Execution Plan for CQ of Figure 2.

parallelization granularity allowed by an SPE.

Figure 5 shows a possible execution plan when 10 workers are available. To this end, the

SPE assigns two workers for ingress operations (i.e., source), two for timestamp assignment,

three for windowing, and three for the rest of the operators. In most SPEs (e.g., Storm, Heron,

Spark, and Flink), the user decides on the number of workers assigned to each operation. In

Figure 5 three different distribution policies are depicted, which are offered by most SPEs.

The Shuffle operation is performed when input tuples are sent to downstream operators in

a balanced fashion (i.e., round-robin). The Partition operation is when the data need to be

either collocated or distributed in a particular fashion. Finally, Pipeline (or operator fusion)

is performed when consecutive operators can be performed on the same thread, to avoid

unnecessary network hops and serialization.

Partition can be modeled as a function that takes a subsequence Swi and produces another

sequence of equal length that indicates the worker to which each ewXi
is going to be sent (ewXi

indicates a tuple eXi
belonging to window Swi ). In other words, Partition is a function

P : Swi → {LvSw
i
, for 1 ≤ v ≤ V}. Each LvSw

i
denotes a sub-sequence of Swi and is the part

sent to worker v for processing. V represents an SPE’s parallelism degree for a particular

operator and is materialized by V workers, which are responsible for processing the (partial)
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result of a window w. In the example query of Figure 2, a partition step is required before

the “Window” operations, if tuples of the same routes are (preferably) collocated. In this

case, the partition function is hashing tuples based on the value of the route attribute.

An eXi
can be represented as a triplet (τXi

, kXi
, pXi

), where τXi
is the attribute responsible

for ordering tuples in Si and is used to assign each eXi
to a logical window (either time- or

count-based), kXi
⊂ {Xi − τXi

} are the attributes, which identify a tuple and are utilized

in the partition process, and pXi
⊂ {Xi − (τXi

+ kXi
)} are the remaining attributes, which

comprise eXi
’s payload. Often, those appear in predicates, projection lists, or are used by

aggregate functions. In the example query of Figure 2, τXrides
= (time), kXrides

= (route), and

pXrides
= (fare). After the physical execution plan is established by an SPE, the execution

plan is materialized by the SPE’s scheduler, and processing initiates.

2.4 STATEFUL EXECUTION IN A SPE

Stateful operators are defined over a window, and SPEs are designed with internal mech-

anisms to identify when a window (i.e., a subset of tuples) is ready for processing. Those

internal mechanisms consist of an eviction and a trigger module. The former is responsible

for identifying tuples that are fully processed and can be safely discarded; the latter is re-

sponsible for identifying the conditions indicating that a window is complete and ready to

be processed.

In detail, we present the actions taken for stateful processing of time-based windows,

which are similar for both count and session based windows. A stateful operator needs to

know when a window is complete, and it is time to commence processing. To this end, stateful

processing in current SPEs makes use of Watermark tuples. These indicate when a window

is complete and it is safe to stage its tuples for processing [14, 15, 30, 36]. Watermarks are

tuples having only a timestamp (τW ), and indicate that all tuples with τ ≤ τW have been

observed by an SPE. Concretely, a watermark acts as a “contract” that a stateful operator

will have access to all tuples up to a particular point in time, and that no late tuples will be
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Multiple buffers

Single buffer

newly arrived tuple:

ts: 47ts: 51ts: 53ts: 55ts: 62ts: 71ts: 72

ts: 70

ts: 70

(45, 60)

(50, 65)

(55, 70)

(60, 75)
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ts: 47

ts: 51 ts: 53 ts: 55 ts: 62

ts: 55 ts: 62 ts: 70

ts: 62 ts: 71 ts: 72

ts: 70

ts: 51 ts: 53 ts: 55

ts: 70

Figure 6: Tuple arrival: Single and Multiple Buffer(s) design operations.

encountered 2. In addition, the watermark mechanism is used as a checkpointing mechanism

to guarantee exactly-once processing semantics [31]. Watermarks are produced by data

source operators periodically.

A stateful operator’s behavior can be described in two phases: (a) tuple arrival, and (b)

watermark arrival. At tuple arrival, a stateful operator needs to store the tuple until the

time arrives when a window is complete. At watermark arrival, a stateful operator needs

to prepare the window for processing, and apply the operator’s logic on the tuples that

correspond to the window.

2.4.1 Tuple Arrival

When a tuple arrives at a stateful operator, it is stored in the operator’s internal buffer(s).

Figure 6 illustrates the two widely used designs among existing SPEs: (a) Single Buffer

dictates that all tuples are stored in a single buffer based on their order of appearance. This

design is adopted by Storm and Heron and its advantage is that each tuple is stored only

once. (b) Multiple Buffer design dictates that a copy of the input tuple is stored to a buffer

for each of the windows that it participates in. Flink uses the Multiple Buffers design and

2Out-of-order processing is an orthogonal topic to this dissertation.
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Single buffer

watermark:

process:

evict:
oldnew

Triggers processing of window (50, 65):

ts: 51ts: 53ts: 55ts: 62

ts: 47

ts: 69

Multiple buffers

(45, 60)

(50, 65)

(55, 70)

(60, 75)

ts: 47

ts: 51 ts: 53 ts: 55 ts: 62

ts: 55 ts: 62 ts: 70

ts: 62 ts: 71 ts: 72

ts: 51 ts: 53 ts: 55

ts: 70

process:

evicted

Figure 7: Watermark arrival: Single and Multiple Buffer(s) design operations.

its merit is that when the time comes, the window is ready to be handed for processing.

In the example of Figure 6, a tuple with timestamp 70 arrives and participates in windows:

(55, 70), (60, 75), (65, 80), and (70, 85). With the Single Buffer design, the tuple is appended

to the buffer and the operator waits until the next one arrives. In contrast, with the Multiple

Buffers design, the tuple’s timestamp is extracted, and the windows that it belongs to are

determined. Given a tuple’s timestamp τ and a window specification Wr,s, the starting

timestamp of the latest window that τ participates in (τ lstart) is calculated by:

τ lstart = τ − (τ + s) mod s (2.1)

In Equation 2.1, s is the window slide taken from Wr,s. Then, the rest of the windows are

found iteratively. A copy of the tuple is stored in each window’s buffer.

2.4.2 Watermark Arrival

Every time a stateful operator receives a watermark, it triggers the processing of all affected

windows. At the arrival of the watermark, the window operator has to prepare all non-

processed windows ending on (or before) τW . The operator extracts the tuples for each

window, and stages them for processing. With the Single Buffer design, the operator scans
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query = rides
.time(x -> x.time)
.windowSize(15, MINUTES)
.windowSlide(5, MINUTES)
.mean(x -> x.fare)
.group(x -> x.route)
.error(10) // percentage
.confidence(95); // percentage

Figure 8: Query with an accuracy specification.

the buffer and gathers all the tuples belonging to a particular window. At the same time, it

evicts expired tuples (those that they carry a timestamp earlier than the start of the current

window). Optionally, a stateful operator might perform an additional scan on the window to

separate tuples processed for the first time. This scan is done by SPEs that offer incremental

processing (e.g., Storm, Heron) [20, 84, 32]. Turning to the Multiple Buffers design, the

operator picks the appropriate window, and passes it to the processing logic. Figure 7

presents the window preparation process when the watermark with timestamp 69 arrives.

With the Single Buffer design, the operator scans its buffer, collects the tuples of window

(50, 65), and marks tuple 47 for eviction. Finally, the operator sends tuples for processing.

Conversely, with the Multiple Buffers design, the operator simply picks the buffer for the

corresponding window and sends the tuples for processing.

2.5 RESULT APPROXIMATION IN STREAM PROCESSING

Some real-time applications do not require an exact result and can sustain a drop in accu-

racy by approximating an exact answer. Often, such applications have strict response time

requirements to offer an interactive experience [89, 44]. Examples of such applications can

be found in real-time visualizations [139, 104], online decision making [109], etc. In these

circumstances, accuracy of the result can be sacrificed for performance, as long as there is

an implicit level of accuracy to bound the error.
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This accuracy can be controlled by the user when they submit a Q with an accuracy

specification. Often, the specification consists of an accuracy measure ε and a confidence

level α (i.e., the probability that the error will be less or equal to ε). For instance, the CQ

of Figure 2 can carry an approximation specification like the one illustrated in Figure 8.

In this dissertation, we will use “bounded error” and “accuracy requirement” (or “accuracy

guarantee”) to define the specification that quantifies the amount by which a result differs

from an actual value.

The query of Figure 8 features two additional clauses compared to the CQ of Figure 2b.

This query model is similar to the one used in Approximate Query Processing (AQP) systems

such as Aqua [12], Strat [39], BlinkDB [13], Quickr [73], Idea [55], and VerdictDB [105]. It

comes with an error and confidence specification. Specifically, ε is defined with the .error()

command, and the probability that ε ≤ 10% with the .confidence() (i.e., Pr(ε ≤ .1) ≈ .95)

[42, 69]. In this particular example, the error can be a relative or an absolute error. However,

depending on Q, the error specification varies [45, 119]. In general, for stateful operators, we

will represent the actual window result as Rw, and the approximate window result as R̂w.

2.5.1 Error Metrics

An approximate window result R̂w entails that only a subset of the data is going to be used

for its estimation. Thus, to measure the difference between Rw and R̂w, the user provides

a metric ε : Rw, R̂w → e, which is a function to calculate the accuracy (or the error in an

equivalent fashion). Depending on the stateful operation, different functions are used for

calculating ε. In this section, we present some of the functions that we used in this work to

calculate ε.

Our focus is mainly on stateful operators that carry aggregate operations (e.g., mean,

sum), which are widely used in SPEs. Those transform a window of input tuples to either a

scalar value or a vector of values (in case there is a group by argument). First, an aggregate

operation extracts a number of attributes from eXi
and feeds them to a transformation

function to produce Rw. In case there is a group statement in a CQ, a result is produced for

each distinct group.
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Aggregate operations are categorized based on their ability to be distributed [65, 135].

Distributive aggregate operations include functions whose computation can be “distributed”

or partially calculated and combined. For example, sum and count are two paradigms of

distributive aggregate examples. Algebraic aggregate operations are functions which can be

calculated by combining distributive aggregation results. For example, the average (i.e.,

mean) is an algebraic aggregate operation since it entails the calculation of both sum and

count. Finally, holistic aggregate operations are functions whose computation requires pro-

cessing all data at once. A widely used holistic aggregate operation is the median, since it

requires all tuples of a window in sorted order. Below, we present the most widely used error

metrics for the different types of aggregate operations.

2.5.1.1 Algebraic and Distributive: Often, for aggregate operations and UDAs the

most popular ε metric is the relative error (Equation 2.2):

εw =
|Rw − R̂w|

max(Rw, R̂w)
(2.2)

and rarely the absolute error (Equation 2.3):

εw = |Rw − R̂w| (2.3)

Sometimes, an aggregate operation of a UDA requires a result for each group (distinct

key) in Swi (i.e., it carries a group by clause). Often, the attributes that form a group

for are the partitioning key k (see Section 2.3.2). The number of distinct groups (or keys)

in Swi will be presented as ‖Swi ‖ throughout this dissertation. The error between Rw and

R̂w is calculated by combining all groups errors. First, the error for each group g ∈ ‖Swi ‖

is calculated (i.e., egw). Then, the error among all groups is aggregated using one of the

following functions [11]:

εw∞ = max
1≤g≤‖Sw

i ‖
εgw (2.4)

εwL1 =
1

‖Swi ‖

‖Sw
i ‖∑

g=1

εgw (2.5)

εwL2 =

√√√√ 1

‖Swi ‖

‖Sw
i ‖∑

g=1

(εgw)2 (2.6)

22



Equation 2.4 assigns ε the maximum error among groups. Equation 2.5 returns the mean

error among εgw, and Equation 2.6 returns the square root of the mean of squares.

2.5.1.2 Holistic: As far as holistic aggregate operations and UDAs are concerned, dif-

ferent error metrics have been previously used. Quantile statistics are very popular and use

a different metric for measuring error. Specifically, a φ-quantile, for φ ∈ [0, 1], is defined to

be the element in position dφ|Swi |e in the sorted sequence of Swi . For φ = 0.5 the quantile is

equivalent to the median. An element is said to be an ε-approximate φ-quantile if its rank

is between d(φ− ε)|Swi |e and d(φ+ ε)|Swi |e [91].

2.6 EXPERIMENTAL INFRASTRUCTURE

In this dissertation, in order to evaluate our developed algorithms, methods, and protocols,

we conducted experiments with synthetic and real-world datasets. Below, we present general

details of the real workloads that we employ in our evaluations. Those details can be used by

the reader as a reference for additional information on the workloads. In addition to home

grown simulations, we employed Apache Storm, which is a widely used open-source SPE, to

test our contributions in most of our experiments.

2.6.1 Real-world datasets

Below, we present general details of the real-world datasets and workloads that we use in

our experimental evaluation. We offer additional details for each dataset in the experimental

evaluation in which each one is used.

TPC-H (TPCH): Despite the fact that TPCH is a benchmark targeted for measuring

the performance of OLAP DBMSs, it has been extensively used for throughput-oriented

streaming scenarios [50, 102, 36, 30, 40]. This benchmark comes with a data generation

tool (we used v2.17) and a list of 22 queries designed to measure the performance of a

DBMS. TPCH is ideal for measuring throughput of complex CQs on very large windows. We
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generated TPCH data using the dbgen tool that comes with it using a scale factor of 10 (for

a total of 10GB of raw data).

ACM DEBS 2015 Grand Challenge (DEBS): This workload features rides’ data

accumulated from a New York Taxi Company. DEBS totals 32GB in raw size, and comes

with two sliding window queries [71]: the Top-10 most frequent routes query (Query 1), and

(ii) the Top-10 most profitable areas of NY (Query 2). DEBS is ideal for measuring window

processing time of an SPE, and its two queries offer group numbers that can potentially

range from 62.5 thousand to 8.1 million. The average window size is ≈ 10 thousand tuples.

Google Cluster Monitoring (GCM): This data set contains execution traces from

one of Google’s cluster management software systems [61]. This dataset is about 40GB in

size, but we have used only data from the Task Events table. In the past, this dataset has

been used for sliding window CQs [82].

DEC Network Monitoring Dataset (DEC): This dataset is the smallest real dataset

in raw size that we use (175MB). Previously, it has been used in stream processing scenar-

ios [24] and consists of network packets monitored over an hour in the DEC Corporation.

We used only a single CQ for this dataset, which calculates the average network packet size

on a sliding window of 45 seconds, with a slide of 15 seconds. DEC is an ideal dataset for

measuring window processing time on scalar aggregate operations.

2.6.2 Storm Runtime

In this section, we present a brief overview of Storm’s runtime [131], which is an open-source

SPE widely used in both academia and enterprise. Our focus is on the core components

of Storm’s engine, required by the reader to better comprehend the technical details of our

work. In order to demonstrate CQ formation for Storm (up to version 1.2) we illustrate the

user code (in Java) in Listing 2.1, which illustrates a subset of the transformations presented

in the CQ of Figure 2 (i.e., without the order and the limit statements).

Storm uses a Spout to define a data stream source, and a Bolt to define a transformation

operation. In the code of Listing 2.1, a RideSpout object is instantiated to be the entry point

of ride tuples in the topology (Line 3) and operates as a data source. The RideSpout object

24



Listing 2.1: Part of the query of Figure 2 for Storm.

1 long size = TimeUnit.MINUTES.toMillis (15);

2 long slide = TimeUnit.MINUTES.toMillis (5);

3 RideSpout spout = new RideSpout ();

4 AverageFare avg = new AverageFare ();

5 TopologyBuilder builder = new TopologyBuilder ();

6 builder.setSpout("rides", spout , 1);

7 builder.setBolt("avg -fare", avg

8 .withTimestampExtractor(x -> x.getLong (0))

9 .withWindow(Duration.of(size), Duration.of(slide)),

10 3)

11 .fieldGrouping("rides", new Fields("route"));

12 return builder.createTopology ();

is registered to the topology by passing its reference to the TopologyBuilder object, along

with a unique identifier “rides”, and a parallelism hint number (Line 6). The parallelism hint

dictates the number of worker threads that will be instantiated in the execution topology

(i.e., physical execution plan) for the Spout (i.e., copies of the object) (Section 2.3.2). In

the example code, the Spout’s parallelism is set to one, which will create a single instance

of the RideSpout object. Next, an AverageFare Bolt object is instantiated, which is the

object that will produce the mean fare per distinct route for each window (Line 4). The

AverageFare object is registered to the topology (Line 7), its windowing properties are

set (Lines 8 - 9), and its number of instances are set to three (Line 10). At this point,

the topology has not a communication channel between the Spout instance, and the three

downstream Bolt instances. In Storm, this is defined by setting the “grouping” of tuples to

downstream operators, and in the sample code this is done at Line 11. In this example, each

tuple will be distributed (or grouped) based on the route value.

Storm supports a single master-multiple workers distributed runtime, that executes on a
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shared-nothing set of servers. A Nimbus process (i.e., the master) is responsible for schedul-

ing, managing, and overlooking the execution of active CQs (i.e., topologies) in a distributed

network of Supervisor processes (i.e., workers). More recent versions of Storm support mul-

tiple Nimbus instances for fault-tolerance and high availability. An Apache ZooKeeper cluster

aids in coordinating the distributed network of Supervisors [53]. Storm’s Nimbus, network

of Supervisors, and the Apache ZooKeeper cluster is considered the required “fabric” in this

dissertation. Each of the Supervisor instances is periodically checked for liveness. Often, a

single Supervisor instance executes per server. A Supervisor is a single Java process and

consists of local I/O modules (input and output buffers), memory management (i.e., JVM’s

garbage collector), and has a predetermined number of execution slots. It is common prac-

tice to configure the number of execution slots (i.e., threads) in a Supervisor to be equal to

the number of available cores of a server’s CPU.

When a CQ is submitted to Storm for execution, Nimbus schedules the operations of the

physical plan (see Section 2.3) to available Supervisor slots, which are called Executioner

threads. In addition, Nimbus informs Supervisor processes about the data dissemination

policy between Executioner threads. This is the type of grouping used to push data from

one layer of the CQ (topology) to the next. In the example query depicted in Listing 2.1,

the grouping is defined between the single RideSpout thread and the three instances of

AverageFare bolts.

A grouping can be any of the following: (i) Shuffle, (ii) Field/Hash, (iii) Direct, and

(iv) Broadcast3. We provide additional details on the grouping (i.e., partitioning) types in

Chapter 3. Direct grouping is used for controlled uni-casting of tuples to specific threads,

and Broadcast grouping is used for multi-casting tuples to all downstream threads. When a

Supervisor receives a scheduling command from the Nimbus, it allocates as many Executioner

threads as the number of tasks in the schedule command, and it establishes the IO modules

(e.g., input and output buffers). By the time all the Spouts and Bolts, with their corre-

sponding parallelism, and communication channels are established, Nimbus commences the

execution of the topology.

3Newer versions of Storm include additional groupings, but we omit them because they are irrelevant to
our study.
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3.0 STREAM PARTITIONING

Stream Partitioning is the first technique that we address as part of exact processing in this

dissertation. In this Chapter, we provide essential details for stateful processing and the

way it is materialized for distributed execution in SPEs. As mentioned in Section 2.3.2, an

operator is executed in parallel by multiple workers and in Section 3.1 we present a generic

formulation for this process. Often, a stateful operator consists of the distribution (partition)

of Swi and the materialization of processing.

We dive into the details of our work on load-aware stream partition algorithms. In detail,

we present our formulation for stateful operators (Section 3.1). Next, we describe our novel

cost model (Section 3.2), followed by our proposed stream partition algorithm taxonomy

(Section 3.3). In Section 3.4, we present the required framework for our algorithms, which

are discussed in Section 3.5. Finally, our experimental evaluation is presented in Sections 3.6

and 3.7, followed by a discussion of our findings (Section 3.8).

3.1 A NEW FORMULATION FOR PARALLEL STATEFUL OPERATIONS

By the time a stateful operation is scheduled to execute in parallel, it gets transformed into

a three-stage process for each window Swi . Its input consists of Sw1 , . . . , SwN and the three

stages are in order: (i) partition, (ii) partial evaluation, and (iii) aggregation. Figure 9 depicts

the windowed group-by average on the stream rides of the example query (Figure 2) as the

three stage process.

Partition can be modeled as a function that takes a subsequence Swi and produces another

sequence of equal length that indicates for each tuple the worker to which it will be sent.
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Γ({f(L1), …, f(LV)})

partition partial evaluation aggregation
...

Figure 9: The windowed grouped average of the sample query (Figure 2) as a three stage

process.

In other words, partition is a function P : Swi → {v1, . . . , v|Sw
i |}, where 1 ≤ vl ≤ V 1.

The resulting sequence consists of elements vl, where 1 ≤ l ≤ |Swi |, each one mapping

eXi
indexed by l to a number in [1,V ]. V represents the SPE’s parallelism degree for a

particular stateful operation and is materialized by V workers, which are responsible for

processing the partial result in window w (a worker can either be a thread or a process).

LvSw
i

= {e ∈ eXw
i
|Pw(Swi )[e] = v} denotes the sequence of tuples from Swi that will be

sent to worker v, by the partition process. Partial evaluation is executed by V workers in

parallel. Each worker receives its corresponding LvSw
i
sequence and applies the user-defined

transformation f . f produces a set of key-value pairs: f : LvSw
i
→ {(k1, v1), . . . , (km, vm)}

of arbitrary size m. m is naturally bounded by the cardinality of Swi , which is defined

as the number of distinct values kXi
in Swi . For the rest of this work, the cardinality of

a stream/sequence x will be represented by ‖x‖, which is used to refer to the number of

distinct keys (groups) held by a worker. Finally, aggregation combines all the key value pairs

1|x| represents the length of a sequence x
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f(LvSw
i

) produced by each worker v, ∀v ∈ [1,V ], into a final result, using an aggregation

function Γ({f(L1
Sw
i

), . . . , f(LVSw
i

)}).

Going back to the query shown in Figure 9, partition would be a function P ({ridesw})

that partitions each windowed stream based on route. Partial evaluation would be the

partial count and sum of the group-by operator and the result of each worker would produce

a sequence of key value pairs, in which the keys would consist of distinct route values and

values would be the sum and the count of fares for each corresponding route. Finally,

the aggregation stage would combine partial results by adding partial counts and sums for

every matching route key. In essence, if two workers are used with #1 producing {(x, 12, 2),

(y, 123, 3)} and #2 producing {(x, 43, 1), (y, 1, 1), (z, 4, 2)}, then aggregation (Γ) produces:

(x, 18.333), (y, 31), and (z, 2), similar to the processing model of [113].

3.2 PROPOSED PARTITIONING COST MODEL

Partition aims to: (i) divide Swi as evenly as possible among V workers, while (ii) the

aggregation load (Γ) remains low. This way, execution can benefit from employing multiple

workers: the more maxV(LVSw
i

) gets reduced, the faster the partial evaluation step is going

to progress. In this dissertation, we adopt the assumption that there exists a monotonic

relation between the number of tuples and load increase (similar to previous work on stream

partitioning [98]). The previous entails that when a tuple is assigned to a worker, the latter’s

load will either increase or stay the same.

[98] introduced tuple imbalance as a metric for quantifying a partition algorithm’s effi-

ciency in terms of balancing load among workers. However, [98] expressed imbalance on the

entire stream (i.e., counting from the beginning of time), which we believe is limited, given

the dynamic nature and characteristics of data streams. In this work, we extend imbalance

to cover the window aspect of a streaming query:

I(P (Swi )) = |max
j

(LjSw
i

)− avg
j

(LjSw
i

)|, j = 1, . . . ,V (3.1)
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Equation 3.1 defines tuple imbalance as the difference of the maximum maxj(L
j
Sw
i

) minus

the average avg
j

(LjSw
i

), as partitioned by a partition algorithm P . The less the imbalance

achieved, the less the maximum runtime of each worker will be.

We propose a new model for measuring the effectiveness of a partition algorithm by

incorporating aggregation cost, which has been ignored in the past. As we discussed in

Section 3.1, the aggregation stage will have to ingest all f(LVSw
i

) and combine every pair of

(k, v) tuples with a matching key k. Hence, the number of operations for processing partial

results is proportional to the sum of the sizes of all partial aggregations |f(LVSw
i

)|:

Γ(Swi ) = O(
V∑
o=1

|f(LoSw
i

)|) (3.2)

Equation 3.2 captures both the processing and the memory cost of the aggregation, since

partial results need to be stored until they are processed. In fact, the larger Γ(Swi ) is,

the more memory is required to accommodate partial results. Therefore, we model stream

partitioning as the following minimization problem:

minimize I(P (Swi ))

while Γ(Swi ) ≤ max
1≤j≤V

(LjSw
i

)
(3.3)

The reason Γ(Swi ) should be less or equal than the maximum LVSw
i

is so that execution

benefits from parallelizing the workload and not having aggregation become more than the

maximum partial processing. Finally, in scale-out architectures, workers’ load might diverge

due to external factors (i.e., communication, multi-tenancy etc.). Our model (Equation 3.1)

focuses on identifying load generated by the stateful operation and act accordingly to balance

it. To the extent of our knowledge, broader load monitoring in a SPE involves architectural

interventions, such as monitoring modules and feedback loops [66, 141, 50, 67, 78, 108]. If a

SPE features the aforementioned components to detect load divergence caused by external

factors, our cost model (Equation 3.3) can be extended to incorporate that information in

its decision process as well 2.

2By changing Equation 3.1 to multiply Lj
Sw
i

with load-divergence coefficients, produced periodically by
monitoring components.
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Figure 10: Expected performance of stream partitioning algorithms.

3.3 THE PITFALL OF IGNORING AGGREGATION COSTS

To better understand inherent trade-offs among existing partition algorithms, we present

Figure 10, which illustrates the two dimensions with which each algorithm is measured. The

horizontal axis represents the ability of an algorithm to balance the load among workers

(i.e., keep the imbalance low), and the vertical axis represents an algorithm’s ability to

maintain the aggregation cost low, based on our model (Equation 3.3). In Figure 10 we have

placed previously proposed partition algorithms based on their expected behavior in terms

of imbalance and aggregation cost.

As indicated by Equation 3.3, partitioning becomes a trade-off between tuple imbalance

and aggregation cost: the more tuples are spread, the more aggregation time increases. Con-

sider Si to be an input stream with schema Xi = (t, a, b), where τXi
= {t}, kXi

= {a} and

pXi
= {b}. In a stateful operation, a partitioning algorithm has to make a choice of where all

tuples with a particular key will be sent. Partitioning algorithms can be categorized based on

how many worker options are presented for a given kXi
. We review the different alternatives

next.
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3.3.1 Partition Algorithm Taxonomy

A 1-choice partition algorithm offers no mechanisms to balance the skewness of the input

data. As a result, the workers that happen to be assigned the part of the data that appear

the most (i.e., most frequent) will always have more work compared to others. That leads to

higher imbalance (Equation 3.1). In addition, when a single option for each kXi
is presented,

aggregation cost (Equation 3.2) is minimal, because each worker will produce a subset of the

full result.

On the other hand, an M-choice partition algorithm (M ≤ V) considers M candidate

workers for each kXi
. Thus, load for kXi

is divided into M equal parts and handled by

M workers. As a result, imbalance (Equation 3.1) is reduced, and the SPE takes better

advantage of parallelism. Unfortunately, partial results produced by theM workers handling

a particular kXi
have to be gathered and combined. That entails an inflated aggregation cost,

which is expected to increase by a factor ofM . For example, in a single window Swi , if tuples

with kXi
= ax are assigned to 4 workers, then the aggregation stage will process 4 partial

results (i.e., one from each worker). As a result, the aggregation process affects the time it

takes to produce a window result Rw.

3.3.2 Mapping existing Partition Algorithms to each Category

At this point, we are going to categorize existing partition algorithms in the two aforemen-

tioned categories (i.e., single and multiple choice partition algorithms). Even though there

exists a plethora of complex partition algorithms in existing bibliography, we will focus on

two of the most popular 3 and the state of the art.

3.3.2.1 Shuffle (SH) blindly sends tuples to workers, without making any attempt to

balance load and collocate keys (Figure 11a). Therefore, SH is categorized as a M-choice

partition algorithm because an aggregation stage is required to produce the final result.

SH manages to minimize tuple imbalance (Equation 3.1) since each worker receives the

same number of tuples in a given window Swi : if V workers exist, each one will receive

3Popularity is considered by the fact that those are implemented in most SPEs.
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Figure 11: Existing stream partitioning algorithms lack a unified model that limits imbalance

while keeping aggregation cost low.

|Sw
i |
V tuples. Turning to aggregation cost Γ(Swi ) (Equation 3.2), when SH is used it becomes

computationally expensive, because tuples are partitioned without an attempt to collocate

keys. Therefore, in a worst case scenario, each worker will produce a partial result (f(LVSw
i

))

with all the keys that exist in Swi (illustrated in Figure 11a). In that case, Γ(Swi ) will become

equal to M times ‖Swi ‖. As far as our cost model is concerned (Equation 3.3), SH minimizes

imbalance, but does not act to limit the aggregation cost.

3.3.2.2 Hash (or Field) (FLD) follows a different approach than SH, by collocating

tuples with the same kXi
on the same worker (Figure 11b). FLD feeds kXi

to a hash function

and selects a worker based on the result. It guarantees that keys from the same group will be

collocated, resulting in minimal aggregation cost (Equation 3.2). Hence, FLD is characterized

as a 1-choice partition algorithm. Nevertheless, FLD fails to balance the load effectively when

input is skewed and some keys appear more often than others. (i.e., there is tuple imbalance

- Equation 3.1). Matters can get exacerbated if initial expectations (or assumptions) on

input load do not hold true overtime. Under such circumstances, “struggling” workers with

excess load will hinder the progress of a query and even compromise the correctness of the

result. In conclusion, FLD imposes minimal aggregation cost but does not act on limiting

tuple imbalance (based on the cost model - Equation 3.3).
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3.3.2.3 Partial-Key (PK), is the current state of the art algorithm [98]. It adopted

the idea of key splitting [21] to alleviate the load of processing keys that are part of the

skew. PK was first to incorporate load in terms of the number of tuples assigned to each

worker (i.e., LVSw
i
). Key splitting is materialized by using a pair of independent hash functions

(i.e., H1,H2) and feed kXi
to both. Also, PK maintains an array of size V with the total

tuple count sent to each worker. Every time a tuple arrives, its kXi
is fed to H1 and H2

to identify two candidate workers. The partition algorithm will forward the tuple to the

candidate that has received the least number of tuples up to that point. PK was extended to

more than two candidates [99], when two are not sufficient to handle skew. Even though PK

succeeded in improving imbalance (Equation 3.1) compared to FLD, it did so by adding an

essential aggregation step (Equation 3.2). Therefore, PK is expected to incur aggregation cost

proportional to the number of candidates. Turning to our cost model (Equation 3.3), PK

can potentially violate the aggregation cost constraint, when Γ(Swi ) exceeds the maximum

workload experienced by each worker.

Summary: Our goal is to propose partitioning algorithms that belong to the best part of

the chart (Figure 10), where there is both low imbalance and low aggregation overhead. As a

guide, we will use our cost model (Equation 3.3). We present our proposed approach next.

3.4 MINIMIZING IMBALANCE WITH LOW AGGREGATION COST

Designing a partitioning algorithm that achieves low aggregation cost entails keeping track

of the number of keys produced by each worker on every window Swi (i.e., f(LjSw
i

), for

1 ≤ j ≤ V). Equation 3.2 indicates that if the sum of f(LjSw
i

) is reduced, then the aggregation

cost gets reduced as well. However, the boundaries of the aggregation cost need to be

identified first.

Proposition 1. For a given stream Swi , a stateful operation f , and V number of workers,

Γ(Swi ) is bounded by: ‖Swi ‖ ≤ Γ(Swi ) ≤ V‖Swi ‖.

Proof. Γ(Swi ) will always be greater or equal to ‖Swi ‖ and that happens when the partitioning
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algorithm sends each key to a single worker only. In this case, LiSw
i
∩LjSw

i
= ∅, ∀ 1 ≤ i 6= j ≤ V .

Hence, ‖L1
Sw
i
‖+ . . .+ ‖LVSw

i
‖ = ‖Swi ‖. Similarly, if the partition algorithm sends at least one

tuple for each key to every worker (i.e., k ∈ ‖LjSw
i
‖, ∀k ∈ Swi and 1 ≤ j ≤ V), then

‖L1
Sw
i
‖+ . . .+ ‖LVSw

i
‖ = ‖Swi ‖+ . . .+ ‖Swi ‖︸ ︷︷ ︸

V

= V‖Swi ‖

A mechanism to control Γ(Swi )’s value has to be established. Equation 3.2 can be ex-

panded to the sum of its operands as:

Γ(Swi ) = |f(L1
Sw
i

)|+ . . .+ |f(LVSw
i

)| (3.4)

Hence, in order to monitor aggregation cost, the partition algorithm has to keep track of the

number of distinct keys sent to each worker, for each Swi .

3.4.1 Incorporating Cardinality in Partitioning

Assuming a mechanism for keeping track of workers’ cardinalities has been established, the

cost model (Equation 3.3) can be extended to incorporate the knowledge of the number

of distinct keys sent to each worker. As indicated by Equation 3.3, the information about

workers’ cardinalities can be used in two places: (a) imbalance (Equation 3.1), and (b)

aggregation cost (Equation 3.2).

3.4.1.1 Incorporating Cardinality in measuring Imbalance The load of each worker

has been modeled in terms of number of tuples (Equation 3.1). In the same manner, a

worker’s load can be expressed in terms of cardinality using the following formula:

CLjSw
i

= ‖LjSw
i
‖, 1 ≤ j ≤ V (3.5)

Equation 3.5 depicts the load of a worker in terms of the number of distinct keys sent to it.

Therefore, cardinality imbalance can be expressed as the difference between the maximum

and the mean cardinality of all workers for a given window Swi , as a result of a partitioning

algorithm P :

CI(P (Swi )) = max
j

(CLjSw
i

)− avg
j

(CLjSw
i

), 1 ≤ j ≤ V (3.6)
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At this point, imbalance is determined by tuple count and cardinality. However, different

stateful operations are affected by each metric differently. Hence, there might be a need for a

more diverse load estimation formula, which combines tuple count and cardinality. In order

to avoid one metric dominating the other, the initial values should be scaled accordingly:

LjSw
i

′
=

LjSw
i
−min1≤k≤V(LkSw

i
)

max1≤k≤V(LkSw
i

)−min1≤k≤V(LkSw
i

)
(3.7)

CLjSw
i

′
=

CLjSw
i
−min1≤k≤V(CLkSw

i
)

max1≤k≤V(CLkSw
i

)−min1≤k≤V(CLkSw
i

)
(3.8)

Hj
Sw
i

= pLjSw
i

′
+ (1− p)CLjSw

i

′
, where 1 ≤ j ≤ V (3.9)

Equation 3.9 combines the normalized loads both in terms of tuples (Equation 3.7) and

distinct keys (Equation 3.8) in a unified score. That score is adjustable based on a user’s (or

query optimizer’s) parameter p, which controls the bias for each score accordingly:

• the smaller the p, the less the load in terms of tuples affects Equation 3.9

• whereas the higher the p, the less the load in terms of distinct keys affects Equation 3.9

Finally, imbalance can be expanded to a hybrid form that incorporates load in terms of both

tuple count and cardinality as follows:

HI(P (Swi )) = max
j

(Hj
Sw
i

)− avg
j

(Hj
Sw
i

), 1 ≤ j ≤ V (3.10)

3.4.1.2 Incorporating Cardinality in Measuring Aggregation Cost Aggregation

cost is determined by Γ(Swi ) (Equation 3.2) and reducing it can be achieved by reducing

the count of distinct keys sent to each worker. Its minimum value can be ‖Swi ‖ when each

key is sent to only a single worker. This behavior resembles FLD and it might result in

imbalance on workers. To avoid this, we employ key splitting for keys that have not been

sent to a worker before in a particular window Swi . By sending each newly encountered key

to the worker with either the least keys or the least number of tuples up to that point, the

aggregation cost remains low. Also, imbalance is expected to be lower compared to the one

achieved from FLD.
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3.4.2 Cardinality Estimation data structures

The partition algorithm needs to keep track of each worker’s cardinality. Hence, it has to

maintain an array of V cardinality estimation structures (C), which will offer two methods:

(i) update(kXi
): for updating the count of distinct keys; and (ii) estimate(): for returning

the count of distinct keys.

3.4.2.1 Naive The naive approach for estimating a worker’s cardinality involves keeping

track of the exact number of distinct keys. Therefore, a partition algorithm responsible for

V downstream workers, requires V unordered set structures. This way, the update and the

estimate methods will offer constant execution time (O(1)).

One caveat of using an unordered set structure for each worker is the memory overhead.

Depending on the algorithm used, a key can end up in multiple workers (e.g., SH). This

way, the memory required for maintaining the number of keys on each worker can become

O(V‖Swi ‖), since all unordered sets can end up having each key. The memory cost of a

naive cardinality estimation structure is related to the cardinality of Swi and the choice of

the partitioning policy: If ‖Swi ‖ remains low and the partition algorithm does not send the

same keys to multiple workers, the memory requirements for C will remain low. However, if

‖Swi ‖ is high and the partition algorithm tends to send tuples with the same key to multiple

workers, then memory load can hinder the partition process.

3.4.2.2 Hyperloglog HyperLogLog (HLL) introduced by Flajolet et al. [52] is an ap-

proximation data structure for estimating the number of distinct elements in databases with

a bounded error. It requires O(log2 log2N) memory for a relation expected to have N dis-

tinct elements. Every time a new tuple arrives, its kXi
is extracted and fed through a hash

function. HLL extracts the m most significant bits of the hash result, and uses them to

identify which register (out of 2m) to update. Each register is log2 log2N bits long, and

its value is updated depending on the left-most zero of the m most significant bits of the

hashed value. HLL has been shown to present an accuracy of 1.04√
m
. Recent work from Heule

et al. [70] presented a number of improvements that need to take place so that cardinalities
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Algorithm 1 Partition.
1: procedure Partition(eXi

, tw, C, L)

2: k ← GetKey(eXi
)

3: τ ← GetT ime(eXi
)

4: if τ ≥ tw then

5: reset(C)

6: reset(L)

7: c1 ← H1(k)

8: c2 ← H2(k)

9: return decide(C,L, k, c1, c2)

in the orders of billions can be estimated efficiently. For cardinality estimation, a partition

algorithm is required to use V HLL’s to measure the number of distinct keys sent to each of

the V workers.

3.5 PROPOSED CARDINALITY-AWARE PARTITIONING ALGORITHMS

PK [98, 99] motivated the merits of key splitting [21] for reducing imbalance among workers;

in a nutshell, the dynamicity and variability of input data streams pretty much guarantee

the need for it. All the variations of our proposed algorithms leverage key splitting. This

entails the use of multiple hash functions for identifying candidate workers. For simplicity,

our algorithms are presented with only two candidates, but they can be easily extended to

accommodate more.

The basis of our algorithms is presented in Algorithm 1 and is invoked by the SPE’s

partitioning algorithm when a new tuple arrives. The partitioning algorithm maintains two

arrays of size V : one with cardinality estimation structures (C), and one with tuple counters

(L). L is identical to the one used by PK and gets updated the same way in all our proposed

algorithms. eXi
’s key is extracted and fed to the two hash functions: H1 and H2. If the

partitioning algorithm uses more than two candidates (i.e., M > 2), then an equal number
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Algorithm 2 Cardinality Imbalance Minimization (CM)
1: procedure CM(C,L, k, c1, c2)

2: l1 ← C[c1].estimate()

3: l2 ← C[c2].estimate()

4: if l1 ≤ l2 then

5: C[c1].update(k)

6: L[c1]+ = 1

7: return c1

8: else

9: C[c2].update(k)

10: L[c2]+ = 1

11: return c2

of hash functions are used in the decision process. The resulting choices (c1 and c2) along

with the arrays C and L are passed to decide().

During query execution, an SPE might have multiple instances of partition algorithms

running on different machines (especially in a scale-out setting, where thousands of threads

are involved in a query). The advantage of using hash functions is that no exchange of

information is required among different instances of partitioning algorithms. On top of that,

C and L have their counts monotonically increasing on each window. Therefore, if each of

the partitioning algorithms tries to reduce imbalance and/or aggregation cost, then (through

the additive property) the overall imbalance and/or aggregation cost are reduced. Finally,

C and L need to be reset when a window expires (Algorithm 1 line 4). This guarantees

that decisions consider the temporal nature of stream processing. Algorithm 1 receives tw

as an argument, which is the expiration timestamp of the current window. In the following

sections we go over our variations for decide():

1. Cardinality imbalance Minimization (CM)

2. Group Affinity with imbalance Minimization (AM & cAM)

3. (iii) Hybrid imbalance Minimization (LM)
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3.5.1 Cardinality Imbalance Minimization (CM)

The first partitioning algorithm aims at limiting cardinality imbalance (Equation 3.6) and

the decision is made based on the cardinality estimate retrieved by the C array structure

(Equation 3.5). The newly arrived tuple eXi
is sent to the candidate worker that has the

least cardinality. Algorithm 2 illustrates the cardinality imbalance minimization algorithm

(CM) and works as a counterpart to PK. CM can utilize either the Naive (Section 3.4.2.1)

or the HLL (Section 3.4.2.2) as its cardinality estimation structure.

This algorithm is expected to be used in operations in which processing cost is dominated

by the amount of distinct keys. This way, imbalance in terms of cardinality will be minimal.

However, imbalance in terms of tuple counts will be increased, since CM is tuple-count

agnostic and does not make any efforts to limit the aggregation cost.

3.5.2 Group Affinity and Imbalance Minimization (AM & cAM)

Group Affinity algorithms try to impose no additional aggregation cost, while balancing load

with the use of key splitting. The name affinity comes from keeping track of whether a key

has been encountered before in Swi , and if it did, then it is forwarded to the worker that

received it previously.

The first variation of affinity-based algorithms, is AM and focuses on cardinality imbal-

ance (Algorithm 3). AM tries to minimize aggregation cost by not splitting keys among

workers. First, it checks if one of the candidate workers has encountered key k previously.

If one of them did, then the tuple is forwarded to that worker; otherwise, it is sent to the

worker with the least cardinality up to that point.

A different variation of AM, named cAM (Algorithm 4) behaves similarly, but it forwards

the tuple to the worker with the least tuple count up to that point. This way, both aggregation

cost and imbalance are considered during partitioning. Despite the fact that AM and cAM

resemble FLD, they are expected to perform better because of the multiple number of choices

that are presented to them.

Both AM and cAM require cardinality estimation structures to keep track of each key’s

location. As discussed earlier, HLL can be used to limit the memory used by the cardinality
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Algorithm 3 Group affinity combined with cardinality imbalance minimization (AM)
1: procedure AM(C,L, k, c1, c2)

2: if C[c1].contains(k) then

3: L[c1]+ = 1

4: return c1

5: else if C[c2].contains(k) then

6: L[c2]+ = 1

7: return c2

8: else

9: l1 ← C[c1].estimate()

10: l2 ← C[c2].estimate()

11: if l1 ≤ l2 then

12: C[c1].update(k)

13: L[c1]+ = 1

14: return c1

15: else

16: C[c2].update(k)

17: L[c2]+ = 1

18: return c2
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Algorithm 4 Group affinity with imbalance minimization (cAM)
1: procedure AM(C,L, k, c1, c2)

2: if C[c1].contains(k) then

3: L[c1]+ = 1

4: return c1

5: else if C[c2].contains(k) then

6: L[c2]+ = 1

7: return c2

8: else

9: l1 ← L[c1].estimate()

10: l2 ← L[c2].estimate()

11: if l1 ≤ l2 then

12: C[c1].update(k)

13: L[c1]+ = 1

14: return c1

15: else

16: C[c2].update(k)

17: L[c2]+ = 1

18: return c2

42



estimation structures. However, HLL uses an irreversible operation to update its internal

buckets when a new element is encountered. That makes it unable to check whether a key has

been previously sent to a worker. We address this shortcoming by introducing an optimistic

mechanism for checking if a key has been seen before: upon the arrival of a key that hashes to

workers i and j, their cardinality estimates, ci and cj, are retrieved. A trial update of those

is performed and the new cardinality estimates are retrieved: c′i and c′j. If either workers’

cardinality difference ∆(|cx− c′x|) is 0, then AM and cAM optimistically assume that the key

has already been sent to that worker (they forward the tuple to it). Otherwise, AM’s and

cAM’s behavior is similar to CM’s or PK’s. HLL is expected to make wrong decisions at the

benefit of a constant memory cost.

3.5.3 Hybrid Imbalance Minimization (LM)

Algorithm 5 Hyblid imbalance minimization (LM)
1: procedure CM(C,L, k, c1, c2)

2: l1 ← pLc1Sw
i

+ (1− p)CLc1Sw
i

3: l2 ← pLc2Sw
i

+ (1− p)CLc2Sw
i

4: if l1 ≤ l2 then

5: C[c1].update(k)

6: L[c1]+ = 1

7: return c1

8: else

9: C[c2].update(k)

10: L[c2]+ = 1

11: return c2

For stateful operations equally affected by tuple count and cardinality, we propose the

hybrid load imbalance minimization algorithm (LM). It combines a worker’s tuple count with

cardinality and calculates hybrid load as indicated in Equation 3.9. A tuple is forwarded

to the worker with the least load and LM’s main goal is to minimize hybrid load imbalance

(Equation 3.10). LM is depicted on Algorithm 5.
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Table 2: Stream partitioning algorithms

Symbol Algorithm Choices Cardinality Estima-

tion Structure used

SH-w shuffle w None

FLD-1 field 1 None

PK-2 partial-key [98] 2 None

PK-5 partial-key [99] 5 None

CM-2 Alg. 2 2 Naive, Sec. 3.4.2.1

AM-2 Alg. 3 2 Naive, Sec. 3.4.2.1

AM-5 Alg. 3 5 Naive, Sec. 3.4.2.1

cAM-2 Alg. 4 2 Naive, Sec. 3.4.2.1

cAM-5 Alg. 4 5 Naive, Sec. 3.4.2.1

LM-2 Alg. 5 2 Naive, Sec. 3.4.2.1

CM-2-H Alg. 2 2 HLL, Sec. 3.4.2.2

AM-2-H Alg. 3 2 HLL, Sec. 3.4.2.2

LM-2-H Alg. 5 2 HLL, Sec. 3.4.2.2

3.6 EXPERIMENTAL SETUP

This section details our setup in terms of the infrastructure, algorithms, datasets, and work-

loads used in our experimental evaluation.

Our experiments were conducted on an AWS c4.8xlarge instance, running Ubuntu v14.04.

For all experiments, we used our own multi-threaded stream partitioning library, developed in

C++11 and compiled with GCC v4.8.2. Our performance analysis involved varying numbers

of workers (8 up to 32), and partitions (from 8 to 256). The reason we did not experiment

with more workers was because we did not want to pollute results with context-switching

overheads. All reported runtimes are the averages of seven runs, after removing minimum
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and maximum reported times, to compensate for anomalies related to running concurrent

processes in a real system.

3.6.1 Stream Partitioning Algorithms

For our experimental evaluation, we used algorithms shuffle (SH), field (FLD), and partial key

(PK) [98] (with 2 and 5 candidate workers), as baselines and compared them with different

variations of our proposed algorithms:

• Cardinality Imbalance Minimization (CM)

• Group Affinity with Cardinality Imbalance Minimization (AM)

• Group Affinity with Imbalance Minimization (cAM)

• Hybrid Imbalance Minimization (LM)

For all variations of LM we set p to 0.5 to achieve unbiased load estimation.

As a reference implementation for SH, FLD and PK we used the ones found in Apache

Storm. In addition, we used the open source implementation of Murmur-Hash v3. All

our proposed algorithms appear in two versions: one with naive and one with HLL as the

cardinality estimation structure. For the former, we used C++ STL’s implementation of

unordered set, and for HLL, we implemented our version with 4096(= 212) registers and a

register size of 5 bits. The choice of the number and size of registers was made to accom-

modate up to 107 distinct keys of 32 bits, with an accuracy lower than 2%, as instructed

in [52]. Table 2 explains the algorithm acronyms we use in our graphs, in which w indicates

the number of candidate workers.

3.6.2 Data sets and Workloads

Section 2.6.1 presents general information about the datasets we use in our experimental

evaluation. In this section we present specific details for this chapter’s experiments. Table 3

summarizes the characteristics of each data set or benchmark used in our experiments.

Below, we go over each data set and the queries we apply on it.

TPC-H (TPCH): Out of 22 TPCH queries, 16 of them feature a grouping statement:

half of the queries maintain a constant number of groups, whereas the other half features
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Table 3: Summary of data characteristics.

Dataset Size Groups Window Metric

TPC-H 10GB 4 up to ∼100k N/A throughput

DEBS 32GB 62.5K up to 8.1M sliding latency

GCM 16GB 4 to ∼670K sliding latency

a scaling number that increases when the scale factor grows. Due to the fact that our

work addresses stateful operations, we focused on grouping TPCH queries and picked Query

1 (as a constant grouping query) and Query 3 (as a scaling grouping query). Those two

differ significantly in the number of resulting groups, and this enabled us to document the

performance of different partition algorithms, when the aggregation cost varies in terms of

size. As indicated in Table 3, Query 1 presents four and Query 3 presents up to 110,000

resulting groups. We used TPCH to measure window throughput using different partitioning

algorithms.

ACM DEBS 2015 Grand Challenge (DEBS): We conduct experiments using both

of DEBS’s queries, and we measure partitioning algorithms’ impact in performance. In detail,

for DEBS we measure window latency, which is the time it takes to process a window’s tuples.

Google Cluster Monitoring (GCM): For GCM we use two sliding window queries,

which, like DEBS, are aimed for measuring window latency. GCM Query 1 was taken

from [82], and scans the task_event table to calculate every 60 seconds (with a slide of

1 second) the total CPU cores requested by each scheduling class. In addition, we intro-

duced GCM Query 2 that calculates every 45 minutes (with a slide of 1 second) the average

CPU cores requested by each job ID. There are more than 600 thousand job IDs in the whole

data set.
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3.7 EXPERIMENTAL RESULTS
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Figure 12: TPCH Query 1 performance.

Our experiments evaluate the impact of a partition algorithm on performance (Sec-

tion 3.7.1), in terms of throughput (using the TPCH data set) and window latency (using

the DEBS data set). Moreover, we evaluate the scalability (Section 3.7.2) of our algorithms

compared to the state of the art (using the GCM data set). For all experiments, data were

loaded in main memory before execution, to better emulate a real SPE and to minimize any

side-effects from hard disk latencies. The time to load data and write output to storage was

not included in the reported times. Finally, for the experiments of Section 3.7.1 and 3.7.2,

the time it takes to partition tuples is not included, because it is analyzed in Section 3.7.3

in terms of both processing and memory costs.

3.7.1 Performance

In this set of experiments, we used the TPCH and DEBS benchmarks to evaluate performance.
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3.7.1.1 TPCH Query 1 (Figure 12) Figure 12 shows the results of emulating the

performance of all partitioning algorithms for TPCH query 1. For this experiment, SH-

w performs the best. This behavior is expected since there are only 4 groups for Query

1. Therefore, the aggregation cost is negligible and performance is affected only by tuple

imbalance. SH-w is expected to offer optimal tuple imbalance (≤ 1), which is reflected on

the results shown in Figure 12. Those agree with our model (Equation 3.3), which identifies

that SH-w offers minimal imbalance with constant aggregation runtime of O(4V), where V is

the number of workers. In addition, PK-5 offers the next best throughput, since it reduces

tuple imbalance, compared to all other algorithms with 2 and 5 alternative choices per

group. CM and LM do not scale well with two choices, since they are affected by cardinality

imbalance. LM is expected to perform similarly to PK, if p takes a value of 1 (as indicated

in Equation 3.9). Turning to 1-choice partition algorithms (i.e., FLD-1, AM and cAM), they

present constant performance and do not scale when the number of workers increases. This

happens because each group, is presented to a single candidate worker.

Take-away: If the number of groups is constant and much smaller than the size of the

aggregation, SH performs the best.

3.7.1.2 TPCH Query 3 (Figure. 13 - 14) The query plan of TPCH Query 3 consists

of a parallel hash join for the customer and orders tables, followed by a broadcast join with

the lineitem table. Then, a parallel computation of the group by follows, and execution

concludes with a final aggregation step to materialize the result.

Figure 13 illustrates the performance of 1-choice partition algorithms (i.e., FLD-1, AM,

and cAM), SH-w, PK-2, and PK-5. M-choice partition algorithms performed worse, from 2.5x

up to an order of magnitude worse (LM and CM offered similar performance to PK-2). As

shown on Table 3, TPCH Query 3 involves 110 thousand groups (before applying the limit

statement), and aggregation can take up to 60% of the total execution time for M-choice

partitioning algorithms. As a result, M-choice partitioning algorithms (i.e., SH, PK, CM, and

LM) experience a substantial performance overhead on the final aggregation step.

Figure 14 illustrates the tuple imbalance relative to FLD-1 achieved by different variations

of AM and cAM. Even though, AM-2-H achieves better tuple imbalance compared to FLD-1,
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Figure 13: TPCH Query 3 performance.

it fails to perform in the same level as AM-2. Tuple imbalance results justify the throughput

shown on Figure 13, in which (apart from AM-2-H) all variations of our proposed algorithms

perform significantly better than FLD-1. By adopting key splitting, throughput increases

with the use of multiple candidate workers. AM-5 and cAM-5 offer improved throughput up

to 47% compared to FLD-1.

Take-away: For throughput-oriented queries, with a large number of groups, cAM and AM

perform the best. They achieve up to an order of magnitude better throughput compared

to PK, and outperform FLD by up to 47%.

3.7.1.3 DEBS Query 1 (Figure. 15a - 15c) Turning to DEBS, both queries involve

window semantics and the performance is measured in terms of window latency. Figure 15

shows the mean and 99-percentile window latency achieved by each partitioning algorithm.

It is clear that in all worker settings, FLD-1, AM-2, cAM-2, AM-2-H, AM-5, and cAM-5 perform

the best. This emanates from a lack of aggregation overhead, which makes those algorithms
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Figure 14: TPCH Query 3 relative imbalance to FLD.

scalable when the number of workers increases. In fact, the aggregation cost amounts to

more than 70%, 84%, and 88% of total runtime for SH-w, PK-2, PK-5, CM-2, and LM-2.

Finally, AM-2-H achieves identical performance with AM-2, which leads us to believe that

our optimistic mechanism for cardinality estimation maintains a low error.

Take-away: For latency-oriented stateful queries, AM, and cAM perform from 4.5x up to

11.6x better compared to PK.

3.7.1.4 DEBS Query 2 (Figure. 16a - 16c) The execution plan starts by partitioning

incoming tuples based on the medallion of each ride and each worker has to create two local

indices: one for accumulating fares for each pickup cell, and one for keeping track of the

latest drop-off cell. Then, an aggregation step follows, which gathers each pickup cell’s fares

and determines the latest cell for each medallion. The two resulting streams are partitioned

based on pickup and drop-off cell IDs. Next, a gather step is executed, in which the median

fare and the number of vacant taxis are processed to calculate the profit of each cell. Finally,

partial results are merged and ordered to produce the Top-10 most profitable cells. This

query represents a problematic case for our model (Equation 3.3), because partitioning does

not necessarily affect the workload imposed on each worker (i.e., the partitioning key is the
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Figure 15: DEBS Query 1 performance.

medallion but each worker’s state is affected by the number of distinct cells).

Figure 16 depicts window latency achieved by each algorithm, and it is apparent that

FLD-1, AM-2, AM-5, cAM-2, cAM-5, and AM-2-H offer the best performance. AM and cAM in

all their variations outperform FLD in both mean (from 1.2x up to 1.5x) and 99-percentile

(from 1.3x to 1.9x) latency. This is justified by AM’s and cAM’s ability to partition data

more evenly compared to FLD. M-choice partition algorithms underperform because they

do not act on limiting the aggregation overhead. In comparison with PK (in both PK-2

and PK-5), AM and cAM perform up to 5.7x faster. In order to examine AM’s and cAM’s

scalability, we also ran DEBS Query 2 with 64 and 128 workers. They performed up to 6.2x

better than PK and up to 2.3x better than FLD.

Take-away: For latency-oriented queries, with multiple stateful operations, AM and cAM

have window latency between 1.2x and 1.9x lower than FLD, and up to 5.7x lower than PK.

3.7.2 Scalability

In this set of experiments, we used the GCM dataset to measure the scalability of our 1-

choice partitioners (i.e., AM and cAM) compared to SH and PK. The reason for picking

GCM for scalability experiments is because it presents a conventional monitoring scenario,
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Figure 16: DEBS Query 2 performance.

in which the groups are not significantly more than the number of tuples in a window (like in

TPCH and DEBS), and the queries consist of a single stateful operation. This way, M-choice

partitioners would not be impeded by the aggregation cost.

3.7.2.1 GCM Query 1 (Figs. 17 & 18) GCM Query 1 features up to 4 groups. Its main

difference compared to TPCH’s Query 1 because the number of tuples in every window is

comparable to the number of groups (the average window size is 42 groups). For this query,

we measured SH’s, AM’s and cAM’s scalability compared to PK-2, which is the current

state of the art and is expected to be scalable due to the small number of groups (as in

Section 3.7.1.1).

Figure 17 presents the percentage improvement in window latency of SH, AM, and cAM

compared to PK-2. SH-w has its latency improvement decrease, because aggregation cost

increases when more workers are employed. In contrast, AM and cAM have their latency

decrease when the number of workers increases and they exhibit lower latency than PK-2.

As Figure 18 indicates, AM’s and cAM’s scalability result from their constant aggregation

cost while the partial evaluation latency decreases. The former is not the case with SH-w

and PK-2, which have the aggregation cost percentage increase with the number of workers.

Take-away: AM and cAM are scalable, maintain a constant aggregation cost, and outperform
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Figure 17: Latency Improvement (%) over PK for GCM Query 1.

PK-2 by up to 1.3x.

3.7.2.2 GCM Query 2 (Fig. 19) Figure 19 illustrates the percentage improvement in

window latency of SH-w, AM, and cAM over PK-2. Even though this query contains a large

number of groups (Table 3), its average window size is only 181 tuples and group repetition

is scarce. Therefore, M-choice partitioners will not have their performance deteriorate due to

an overwhelming aggregation cost (the case in TPCH Query 3-Section 3.7.1.2). However, SH-

w is not scalable because when additional workers are employed its aggregation cost becomes

higher. Turning to PK-2, it manages to be scalable, but it underperforms compared to AM

and cAM in all worker settings.

Take-away: AM and cAM are scalable and present more than 1.4x better latency compared

to PK.

3.7.3 Partition algorithm cost

In this set of experiments, we measure overhead imposed by each algorithm in terms of

processing and memory cost. To that end, we picked DEBS Q1, because it features the longest

group identifier (15 bytes), and the number of groups averages to millions per window.
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Figure 18: Aggregation runtime (%) for GCM Query 1.

3.7.3.1 Partition latency (Figure. 20a - 20c) To measure processing time, we mar-

shaled DEBS data to each algorithm and measured partition latency on each window. As

described in Section 3.4.2, the cardinality estimation structure size relies on the number of

workers. Therefore, we measured partition latency for 8, 16, and 32 workers. Figure 20 illus-

trates the total time spent on each window with each partitioning algorithm. We included

90 and 99-percentile window latency. Most of the algorithms present constant values for 8,

16, and 32 workers. However, noticeable difference can be seen with 32 workers (Figure 20c)

for the 99-percentile window latency of CM-2, CM-2-H, LM-2, and LM-2-H. The increase is a

result of additional processing required for those algorithms.

Take-away: Using our proposed algorithms does not incur any noticeable overhead in la-

tency.

3.7.3.2 Partition Memory (Table 4) Our proposed algorithms make use of cardinal-

ity estimation structures. Hence, we ran a micro-benchmark, in which we produced each

possible key for DEBS Query 1 and replicated it to both available candidate workers. This

experiment aims at examining an extreme scenario, in which all of the 8.1M groups appear

in a single window. We measured memory consumed in MBs (Table 4). The naive cardi-
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Figure 19: Latency Improvement (%) over PK for GCM Query 2.

nality estimation structure size quickly increases with the number of keys. Since each key is

sent to both of the two candidates, the naive cardinality estimation structure’s size increases

further. Conversely, when HLL is used, memory consumption increases when the number of

workers increases and its size does not get affected by neither the number of keys, nor the

number of candidates. However, if the expected cardinality of the input stream is more than

10 million, then each HLL structure needs to double its number of buckets.

Take-away: Memory requirements of the cardinality estimation structure can be signifi-

cantly limited with the use of HLL.

3.8 DISCUSSION

An SPE’s performance can be affected by both imbalance and aggregation cost. According

to our experimental results, the state of the art solution (i.e., PK) fails to perform well, when

a large number of groups appears, and 1-choice partitioners like FLD can make use of key

splitting [21] to achieve better performance.
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Figure 20: Per window Partition latency for DEBS Query 1 (i.e., processing cost of parti-

tioning algorithm).

Maintaining low imbalance does not necessarily lead to limiting aggregation

cost. Even if an “improved” and diverse load metric is used (i.e., CM with Equation 3.6 and

LM with Equation 3.10), performance will degrade when the number of groups increases. In

fact, M-choice partitioners underperform when a large number of keys appears, because they

focus solely on minimizing imbalance. After conducting a sensitivity analysis on M-choice

partitioners and their inaction for limiting aggregation cost, we found that they achieve

minimal aggregation cost (i.e., Γ(Swi ) = O(‖Swi ‖)) only under specific circumstances. One

such scenario is when tuples appear in an order that prohibits key sharing among workers.

For example, Swi contains tuples with keys x and y, which map to 2 available workers w1 and

w2. If all tuples with key x appear in even positions, and all tuples with key y appear in odd

positions, then Γ(Swi ) = O(2). Another scenario in which LM achieves minimal aggregation

cost is when keys are uniformly distributed and each one appears at most once. None of the

data sets we used in our experiments demonstrated any of these scenarios and we could not

find real-world data sets that behaved as such.

Addressing the important question of when to use each partition algorithm.

As indicated by our experiments, SH is the best option for stateful operations, in which

the expected number of groups is constant and far less than the window size divided by
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Table 4: Memory requirements in MBs

DEBS Query 1

no. of workers 8 16 32

CM-2 243 243 243

AM-2 122 122 122

LM-2 243 243 243

CM-2-H 0.02 0.04 0.08

AM-2-H 0.02 0.04 0.08

LM-2-H 0.02 0.04 0.08

the number of workers. Our results on TPCH Query 1 (Figure 12) agree with the previous

statement, since SH performed the best and was the only scalable algorithm. Conversely,

when a stateful operation involves a large number of groups, that constitute a significant

percentage of total tuples on each window, AM and cAM have to be used. They offer minimal

aggregation cost (like FLD), while leveraging the merits of key splitting to decrease imbalance.

We codify our results into the following:

Stream partitioner selection Rule: If the number of groups in a stateful operation is

expected to be constant and significantly less than the average number of tuples assigned to a

worker on each window, then SH must be used. Otherwise, AM and cAM will offer the best

trade-off between imbalance and aggregation cost.

In Chapter 7 we address the problem of one partition algorithm for every scenario, by

presenting a novel partition technique that combines load shedding with stream partition-

ing.
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3.9 RELATED WORK

Load Balancing: Seminal work on stream re-partitioning is presented in Flux [111], in

which the Flux operator is presented for monitoring load on each operator. Compared to

our work, Flux employs FLD to distribute tuples and is orthogonal to ours because we do not

consider solutions that employ state migration and re-partitioning in the event of imbalance.

Furthermore, Flux’s model does not consider the aggregation cost of stateful operations.

Closer to our work is PK, presented by Nasir et al. [98], which combines key splitting when

tuple imbalance appears. Our proposed algorithms rely on a more complete model that

considers both tuple imbalance and aggregation cost. Thus, as shown in Section 3.7.1, our

proposed AM and cAM algorithms achieve better performance. Recent work on partitioning

by Rivetti et al. [108] has presented a solution for online adjustment of SH. Their goal

is to decrease processing latency by making better decisions of tuple counts. Our work

differs from theirs in the sense that we aim to improve stream partitioning in terms of both

imbalance and aggregation cost. The model presented in [108] does not consider aggregation

cost, and it only focuses on SH, which is expected to underperform in stateful operations that

involve multiple groups. In addition, THEMIS [72] presented a federated way of controlling

load shedding to preserve balanced execution in a SPE. Our work is orthogonal to THEMIS

because our goal is to improve tuple imbalance by altering the partitioning algorithm and

not by shedding tuples.

Elasticity - Query Migration: Previous work that involves query (or state) migra-

tion [111, 137, 141, 63, 34] is orthogonal to this work. Our focus is on the performance of

the partition algorithm and its performance in the event that migration is not an option.

Nevertheless, our partition algorithms can be integrated as part of an SPE that allows for

state migration, but is beyond the focus of our work. Work by Gedik [58] performs an ex-

tended study on partition algorithms for SPEs by improving state migration and adaptability

by measuring skewness. That work is similar to ours in terms of monitoring input stream

cardinalities, but, our model differs because it incorporates the aggregation cost in the de-

cision process. Finally, a lot of work focuses on online elasticity of an SPE and adaptive

behavior based on the input. Recent works [50, 86] aim to combine efficient stream parti-
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tioning and load migration for distributed stream joins. Additional work has been done on

scaling-out [136, 67, 68, 78], where SPEs are presented with the ability to detect struggling

operators, decide on migration policies, and perform online reconfiguration of the execution

plan. Online reconfiguration and state migration are outside the scope of this work.

3.10 SUMMARY

In summary, we presented a novel model for stream partitioning which considers tuple im-

balance and aggregation cost for stateful operations. Inspired by it, we introduced novel

partition algorithms, which adopt our model by keeping track of the cardinalities of each

worker. Our experiments indicated that when the number of groups is large, our algorithms

are significantly faster compared to both the state of the art (PK) and previously proposed

solutions. We conclude that selecting a partitioning algorithm for a stateful operation has

to be made after considering the expected number of distinct groups, and when that number

is large, our proposed algorithms offer the best performance.
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4.0 STREAM RE-PARTITIONING

In this dissertation, we use stream re-partitioning to describe all the operations that need to

take place when an SPE detects that its allocated resources are not enough to process input

in a timely manner. In this scenario, an SPE needs to (i) provision additional resources,

(ii) update dataflow traffic, (iii) re-organize state of the participating workers, and (iv)

resume normal operation. The aforementioned steps need to be completed without imposing

significant performance degradation by pausing execution.

In this Chapter, we present our contributions to stream re-partitioning, which are two-

fold. First, the design of an SPE enhancement, built to work with a widely used SPE, Apache

Storm. This enhancement offers the ability to reconfigure the execution plan of an active CQ.

This prototype delivers all the required functionality (i.e., the steps presented in the previous

paragraph) and does not require changes in an existing Apache Storm setup. Second, a state

re-configuration protocol for efficiently bringing up-to-date workers’ states, during a stream

re-partition operation (i.e., step (iii)). The SPE enhancement is named Synefo, and we

present its details in Section 4.1; the state migration protocol, named UniMiCo, is presented

in Section 4.2.

4.1 SYNEFO: ELASTICITY IN STORM

At the time of this work, a complete mechanism for stream re-partitioning of an operational

CQ was not offered by any of the most popular open-source SPEs (i.e., Storm, Spark Stream-

ing, Samza, Flink). To this end, we developed Synefo, which is a Storm [131] component1

1Synefo’s Storm components could be loaded as a jar library for a CQ.
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Figure 21: Synefo’s system stack.

able to handle stream re-partition actions in a non-disruptive manner. In this dissertation, we

will also call the stream re-partition action a scale-out/scale-in task of an SPE. Synefo’s goal

is to offer scale-out/scale-in capabilities without having to make major changes to Storm’s

execution engine.

4.1.1 Architecture Overview

Synefo was developed as part of CE-Storm, which is a system that provides Confidential

and Elastic processing on top of Storm (hence the initials CE). CE-Storm’s full stack is

depicted in Figure 21. At the bottom, Storm’s [131] engine and an Apache ZooKeeper

cluster provide the essential fabric that CE-Storm relies on. We preferred Storm’s runtime

over other SPEs (e.g., Spark Streaming [138]) because of its per-tuple processing model. On

top of Storm, Synefo operates as an add-on library, and offers the elasticity properties for

stateful processing, by managing tuple flow among the available Executioner threads. On

top of Synefo, CryptStream [129] is the application layer, and is responsible for ensuring

confidentiality and access control of streaming data, according to user policies. Both Synefo

and CryptStream are designed independently and each one can operate by itself.
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Synefo offers an elastic execution environment, which is able change the number of active

processing components in an online fashion. This functionality requires the four essential

operations:

1. Provision (or decommission) resources.

2. Update tuple routing information.

3. Update state of participating Executioner threads.

4. Resume normal operation.

These operations are serviced by Synefo by leveraging the underlying fabric: Storm run-

time, and Apache ZooKeeper (Figure 21). Synefo uses the ZooKeeper cluster for (i) thread

synchronization, and (ii) state checkpointing. In addition, Synefo utilizes Storm runtime’s

communication channels (i.e., groupings) for direct messaging among workers to control tuple

routing and communication among threads. Also, to provision additional resources, Synefo

makes use of “stand-by” Executioner threads, which are provisioned during CQ submission,

but are not processing any data until needed. If needed, “stand-by” Executioner threads can

be included in the processing pipeline. This approach is similar to the technique presented

in [95] for scaling-out a VoltDB database. Listing 4.1 presents CQ registration for Synefo of

the query depicted in Listing 2.1.

The Java code shown in Listing 4.1 illustrates CQ registration for Synefo, which is similar

to Storm. The main difference is that with Synefo, from the three AverageFare instances,

only one is going to be receiving tuples until input traffic gets high enough to require more

instances to be enabled. As a result the other two instances will remain dormant until

needed. In detail, in the code depicted in Listing 4.1 the Spout and the Bolt instances are

wrapped by a SynefoSpout (Line 4), and a SynefoBolt (Line 5). Another difference is that

each SynefoBolt instance gets two direct streams from the upstream SynefoSpout: one for

data (Line 9) and one for control-flow messages (Line 10).

Executioner threads in Synefo are divided into active and inactive. An active thread

is participating in processing, since Synefo is allowing tuples to be sent to it. On the other

hand, an inactive thread is provisioned as part of a CQ’s topology, but does not participate

in processing, since Synefo is not allowing tuples to be sent to it. In essence, Synefo’s role
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Listing 4.1: Part of the query of Figure 2 for Synefo.

1 SynefoSpout rideSpout = new SynefoSpout(new RideSpout ());

2 SynefoBolt avgBolt = new SynefoBolt(new AverageFare ());

3 TopologyBuilder builder = new TopologyBuilder ();

4 builder.setSpout("rides", rideSpout , 1);

5 builder.setBolt("avg -fare", avg

6 .withTimestampExtractor(x -> x.getLong (0))

7 .withWindow(Duration.of(size), Duration.of(slide)),

8 3)

9 .directGrouping("rides", DEFAULT)

10 .directGrouping("rides", CONTROL);

11 return builder.createTopology ();

reduces to managing the activity status of available threads and controlling the tuple flow in

a CQ’s topology. Every time a CQ is submitted to Synefo, the CQ’s topology is broken into

two parts: the physical topology, which consists of both the active and inactive threads; and

the active topology, which consists of only the active threads (i.e., the ones participating in

processing). In essence, every scale-out (or scale-in) command adds (or removes) threads

to (from) the active topology. Synefo controls the participation of Executioner threads

in processing by leveraging Storm’s DirectGrouping. This way, Synefo is able to control

the flow of tuples among threads (essentially, inactive threads do not receive any tuples).

Figure 22 illustrates the physical and active topology for the CQ of Listing 4.1, right after

topology submission to the available cluster. The physical topology (Figure 22a) carries a

single Spout instance and three Bolt instances. In addition, all the communication channels

between them are established. Conversely, the active topology at the beginning of execution

(Figure 22b) illustrates the active components, which include a single Spout and a single

Bolt instance. As a result, only one communication channel is operational and tuples pass

through it.
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Figure 22: Synefo physical and active topology for the query defined with the code of

Listing 4.1.

Synefo consists of a runtime API, which includes the Synefo Bolt and Spout interfaces,

and a Synefo Server, which is a coordinating process for orchestrating the scale actions for

an operational elastic topology (Figure 21). The Server maintains a directory of the active

workers (i.e., threads), topology information, and the completion status of scale actions. It

communicates with threads using the underlying Apache ZooKeeper framework. Our design

choice to have active and inactive operational components emanates from Storm’s design

limitations and our initial goal to have Synefo work with existing Storm clusters. As can

be seen in Figure 21, a user has to option to not make use of Synefo’s elastic capabilities,

and schedule a topology with static resources, which makes use of Storm’s default fabric

(i.e., Storm Nimbus, Storm Runtime, and Apache ZooKeeper). Next, we present in detail

Synefo’s main components: (i) Synefo Server, (ii) Synefo Spout, and (iii) Synefo Bolt.

4.1.1.1 Synefo Server The Synefo Server monitors resource utilization levels in an op-

erational Synefo topology, and maintains an active role during the initiation of a CQ. In

detail, it awaits for every thread in a topology to be provisioned by Storm’s fabric (both

active and inactive) and register to the Server. Synefo Server maintains a directory with all

the SynefoSpout and the SynefoBolt instances. By the time all threads have connected and
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Figure 23: Scale-out operation in Synefo.

registered to the Server, topology information is gathered and execution initiates.

During execution, the Synefo Server periodically gathers performance information of each

thread. When the need for a re-configuration in the Active topology arises, the Synefo Server

drives the operation by sending out the appropriate commands to participating threads.

Given a thread that is is going to have its status changed, Synefo Server identifies its up-

stream threads (i.e., threads that send tuples to it), and its sibling threads (i.e., threads that

are on the same level in the topology). Then, it identifies the candidate thread(s) which will

exchange state with the aforementioned thread, and then the Server notifies all threads ac-

cordingly. After this point, the Synefo Server does not take any further actions, and updates

its directory when the scale action concludes.

4.1.1.2 Synefo Spout The runtime component responsible for disseminating data into

the topology is a Synefo Spout. It has been designed as a sub-class of Storm’s BaseRichSpout,

which has been extended to: (i) initiate operation by registering to the Synefo Server, and

(ii) perform scale-out/scale-in operations. In addition, during execution the Synefo Spout

reports its telemetry information to the Synefo Server periodically, and is able to execute

scale commands ordered by the Synefo Server. A downstream thread of a Synefo Spout

is assumed to always be a Synefo Bolt, because a Spout represents a stream of incoming
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Figure 24: Scale-in operation in Synefo.

data in Storm. Every time a Synefo Spout receives a scale command, it updates its routing

information accordingly. For instance, if a Synefo Spout is directed to scale-out by adding a

Bolt in its active downstream threads list, the following steps take place:

1. Suspend: Stop dissemination of input tuples in the topology.

2. Notify: Inform all downstream bolts about the scale-out operation by providing the

newly-activated threads id and location information.

3. Update Routing Information: Update routing table information, to include the newly

added bolt in the active downstream threads list.

4. Resume: Await for a confirmation of participating threads that state has been shipped

completely.

By the time a scale operation concludes, a Synefo Spout reports about the completion back

to Synefo Server.

4.1.1.3 Synefo Bolt The Synefo Bolt is the last component of Synefo’s runtime and is

similar to a Synefo Spout. Their main difference is that a Bolt is able to handle incoming

command tuples for scale operations and exchange state with other Synefo Bolts.

Bolts are expected to maintain operator state, which is required by the stateful transfor-
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mation dictated in a CQ. When a Synefo Bolt receives a scale command, its state will need

to be shared. In a scale-out command state is split, whereas in a scale-in command state is

merged. For instance, if a Bolt becomes inactive, its state needs to be shipped to the Bolt(s)

that will take over its workload and those will have to merge the transferred state to their

current state; whereas if a Bolt becomes active, it has to receive state from another Bolt,

which has its state split. Synefo Bolts transfer state transparently from the operation which

is currently executed in a component. It is the operator’s implementation responsibility to

utilize the received state accordingly.

Figure 23 illustrate the steps performed for a scale-out operation in Synefo. The circles

represent active threads (i.e., receiving and processing tuples) and their color indicates their

load: the more red, the more loaded; the more green, the less loaded. Threads op1 and op2 are

sending their output tuples to op3, which has exceeded its operational capacity (Figure 23a).

At this point, Synefo Server sends a scale-out command indicating that op3 should be scaled-

out and op4 will be activated. Threads op1 and op2 are notified that op4 is going to be included

to their active downstream threads list. At this point, transfer of tuples from op1 and op2

suspends (Figure 23a), and op3 transfers part of its state to op4 (Figure 23b). In essence,

op3’s state is split in two parts, and one of them is sent to op4 (i.e., op4 will assume the

responsibility for a subset of op3’s workload). After the state migration concludes, op1 and

op2 are notified accordingly and they resume transfer of new tuples to both op3 and op4

(Figure 23c). At this point, the processing load is split between threads op3 and op4. During

the scale process, incoming tuples to op1 and op2 need to be buffered and maintained until

execution in their downstream layer (i.e., op3 and op4) resumes.

In the event that op3 and op4 are under-utilized, Synefo will issue a scale-in command

(Figure 24). Synefo commences a scale-in operation that de-activates thread op4, in order

to avoid wasting operational resources. In a similar fashion to the scale-out operation, the

first step is to suspend execution by stopping the transfer of tuples from threads op1 and

op2 (Figure 24a). Then, the state of op4 is shipped to op3 and merged (Figure 24b). By the

time the state is transferred completely, threads op1 and op2 are directed to exclude op4 from

their active threads list, and they resume tuple production by forwarding those only to op3

(Figure 24c).
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4.1.2 Synefo Summary

Synefo offers complete stream re-partitioning functionality to Storm, without requiring any

changes in the former’s runtime. Our prototype supports provision of additional resources by

introducing the separation between physical and active topologies. In addition, it controls the

state of a thread by utilizing Storm’s direct-grouping mechanism, and utilizes to disseminate

control-flow information among threads. Furthermore, it uses the existing ZooKeeper cluster

as a state back-end and communication among threads.

Synefo supports scale operations by momentarily suspending execution. This approach

to state migration is often called checkpoint-based [66, 34, 86, 136] or suspend-resume [49,

46, 79]. As has been previously documented in [34, 63], protocols for state migration that

require temporary suspension of execution cause performance degradation (both in terms of

processing latency [34] and throughput [63]). In addition, the effect in performance is directly

affected by the size of the transferred state: the more the state, the higher the performance

degradation [34]. Our initial experimentation with Synefo verified previous findings in terms

of the high overhead of stream re-partitioning when the transferred state increases. As a

result, we were motivated to investigate novel techniques for state migration, that do not

require prolonged pauses in execution and are capable of accommodating complex window

semantics.

4.2 UNIMICO

As discussed earlier, state migration is a crucial (and heavy) operation during a scale action

for the stream re-partition process: it can affect the completion time of the scale operation

and might lead to a prolonged delay in processing latency. The former occurs because the

state migration time is analogous to the size of the state being transferred. In essence, the

more the state, the more it takes to complete its transfer.

The key goal of the Uninterruptible Migration of Continuous Queries (UniMiCo) proto-

col is to avoid transferring state during the migration of the state associated with a CQ con-

68



Figure 25: UniMiCo’s migration strategy

taining stateful operators. To achieve this, UniMiCo migrates a CQ at the window boundary,

meaning that the sender worker/thread (we will refer to it as the originating node) continues

processing until it completes the last in-progress window, while the receiver worker/thread

(we will refer to it as the target node) starts processing from the first tuple of the next

window2. Given that two consecutive sliding windows overlap, the tuples belonging to the

overlap of the two windows are processed by both the originating and the target nodes. This

way, the state of the operator is reconstructed at the target node so there is no need to

migrate it.

We illustrate this strategy in Figure 25. In this example, the sliding window of a stateful

operator (e.g., aggregate) has a size of four seconds and a slide of two seconds, with input

rate 1 tuple/second. The number in each stream tuple is its timestamp, which is assumed

to monotonically increase over time (i.e. in-order processing of tuples). By the time the

migration process starts, the most recent window produced is w1, whose start timestamp is

1. In addition, the first tuple received by the target node after it connects to the stream has

a timestamp of 4. UniMiCo determines that (1) the originating node will continue processing

until w2 expires, which happens to be the last window with start timestamp less than 4,

and (2) the corresponding CQ at the target node will start processing tuples with timestamp

2For UniMiCo, we will use the term “node” instead of worker/thread because of our goal to expedite state
transfer among workers that are not part of the same server node in a cluster.
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Figure 26: Calculating migration timestamp with two consecutive windows

greater or equal to 5 (w3).

4.2.1 Migration timestamp

The migration timestamp marks a CQ hand-off from the originating to the target node. That

timestamp is used to synchronize the stop of the last window at the originating node and

the start of the next window at the target node.

Definition 1. The migration timestamp is the start timestamp of the last window to be

processed at the originating node.

In the example of Figure 25, the start timestamp of w2, which is 3, is the migration

timestamp.

Calculating the migration timestamp The exact calculation of the migration times-

tamp depends on the implementation details of the window operation. Below, we present

the way to calculate the migration timestamp on both time-based and tuple-based cases. In

all the equations below, s denotes the slide of the window.

Time-based, single-input window: Assuming a time-based window of length l and slide

s, let tsstart denote the timestamp of the first input tuple the stream source at target node

was able to read after connecting to the stream. Furthermore, tslast_w is the timestamp of

the most recent window processed. The migration timestamp, denoted tsmi is calculated as
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follows (note that now s is in number of tuples):

tsmi =

 tslast_w if tsstart ≤ tslast_w

tsstart − δ otherwise

where δ =

 s if (tsstart − tslast_w)%s = 0

(tsstart − tslast_w)%s otherwise

(4.1)

Tuple-based, single-input window: For tuple-based windows, the calculation is the same

in the case when tsstart ≤ tslast_w. When tsstart > tslast_w, UniMiCo needs to wait until a

tuple t comes to the window operator, whose timestamp is equal to or greater than tsstart.

This way, UniMiCo is aware of the number of tuples with timestamps between tslast_w and

tsstart (let that number be N). The migration timestamp can be calculated by the following

equation:

tsmi = timestamp(δth tuple preceding t)

where δ =

 s if (N + 1)%s = 0

(N + 1)%s otherwise

(4.2)

Multiple-input window: The most common example of window-based operator with mul-

tiple inputs is a binary join. For time-based windows, Equation 4.1 can be used, with

tsstart = max(tsstarti), where tsstarti is the timestamp of the first input tuple the stream

source i at target node was able to read. For tuple-based window, the number of tuples Ni

coming between tsstarti and tslast_w is calculated separately for each input i. Afterwards,

Equation 4.2 is applied with N = max(Ni).

Multiple window operators: A CQ can have multiple window-based operators with dif-

ferent window specifications (i.e., range and slide), such as a query with an aggregation on

top of a join. For these cases, we introduce the concept of the controlling window operator .

Definition 2. The controlling window operator is the closest window operator to the out-

put of the CQ. The controlling window operator handles the calculation of the migration

timestamp, as well as controlling the start and stop of the migrated query at the target and

originating nodes.
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For simplicity, we assume that the timestamp of an output tuple of a window-based oper-

ator is the earliest timestamp of input tuples involved in the calculation of that output tuple

(we discuss later how this assumption can be relaxed). When the aforementioned condition

holds, we know that all the original input tuples, contributing to the result produced by the

farthest window of start timestamp ts, have timestamps greater/less than or equal to ts.

Therefore, only the farthest window operator (i.e., the controlling window operator) in the

CQ needs to be involved, and the calculation is the same as in the case of single window.

Note that the previous assumption is not required for the controlling window operator .

Figure 26 shows an example of a CQ consisting of two window-based operators: a binary

join, whose window has length of four seconds and slide two seconds, followed by an aggre-

gation, whose window has length of three tuples and size of two tuples. For each tuple its

timestamp is shown on the upper and its join key on the bottom part. For the controlling

window, the most recent window being produced is w21, whose start timestamp is 1 (i.e.,

tslast_w = 1). In addition, assume that out of the two first tuples read from S and T by

the target node, the latest timestamp tsstart equals 5. In this case, the migration timestamp

is calculated as if there is only the controlling window operator (i.e, the aggregation) with

two inputs S and T. Because the controlling window operator is tuple-based, UniMiCo has to

wait until tuple t of timestamp 7 arrives to know that there are 3 tuples whose timestamps

are between 1 and 5, i.e., N = 3. Applying the calculation from Equation 4.2 for the case

of tuple-based window, UniMiCo decides that the migration timestamp is that of the tuple

preceding t, which is 4. In other words, the last window produced at target is w21.

When the previous condition on output tuples’ timestamps of preceding window oper-

ators does not hold, tsstart is measured as the timestamp of the first tuple arriving at the

controlling window operator on the target node. Recall that when this condition holds, tsstart

is the timestamp of the first tuple coming to the source operator, i.e., it can be captured

earlier. With the new tsstart, all of the above calculations of the migration timestamp are

still applicable. Note that in this case if tsstart is smaller than tslast_w, there will be some

wasted processing at the target to process tuples from source up to the controlling window

between tsstart and tslast_w. Because migration happens when the target is lightly loaded, it

is expected that processing at the target node will be at least as fast as that at the originating
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Algorithm 6 UniMiCo protocol at originating node
1: procedure UNIMICO_at_ORIGIN(TARGET,Q)

2: send(TARGET,MIGRATE,Q)

3: receive(TARGET, tsstart)

4: tsmi = calculate_migration_timestamp()

5: send(TARGET, tsmi)

6: finish_process(Q, tsmi)

node, hence the wasted processing, if any, would be small.

4.2.2 Stoping and resuming continuous queries

An important operation for stream re-partition is the suspend and resume of the nodes

participating in the re-partition process. As was the case in Synefo, when the state has

successfully been transferred, one worker thread will have to either start execution (scale-

out) or stop (scale-in). The same is required for UniMiCo.

4.2.2.1 Stopping the query at the originating node Once the migration timestamp

is determined, stopping the query at the originating node is relatively straightforward: all

operators in the CQ continue to process normally until they receive the signal from the

controlling window operator to deactivate themselves, unless they are shared with other CQs.

This happens when the controlling window operator has consumed its last window, i.e., the

window started with the migration timestamp. Shared operators are never deactivated and

continue to process normally after migration. Upon stopping, an operator cleans up all its

queues. Algorithm 6 presents an overview of the procedure that takes place in the originating

node.

When the controlling window operator is associated with a join, a minor adjustment

is needed in order to avoid duplicate outputs between the originating and target nodes.

Normally, when there is a match between a tuple t of one input and t′ of the other, the

join tuple tt′ is produced only once, even if both t and t′ fall in the overlap of two (or more)
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Algorithm 7 UniMiCo protocol at target node
1: procedure Unimico_AT_target(ORIGIN,Q)

2: receive(ORIGIN,MIGRATE,Q)

3: for all s ∈ Q.streams() do

4: connect(s)

5: tssstart = read(s)

6: send(ORIGIN, tsstart)

7: receive(ORIGIN, tsmi)

8: resume(Q, tsmi)

consecutive windows. If we start migrating from one of the windows, the join tuple tt′ will be

produced once at the originating node, and again at the target node. In the latter case, the

production of a duplicate tuple is avoided by suppressing the production of the join result

at the originating node. Note that when two matching tuples have their timestamps in the

window overlap, the previous adjustment is needed only if the join is the last window-based

operator in the query. In the event that a join is followed by another window operator, the

duplicated intermediate output tt′ is needed, as it is an input for the subsequent window at

the target node.

4.2.2.2 Starting the query at target node The operators of a migrated CQ can be

activated at the target node, as soon as the migration is initialized. However, full activation

is attained by controlling the flow of tuples based on the migration timestamp. That process

is different for time- and tuple-based windows, as we describe below. Algorithm 7 illustrates

the steps taken at the target node when a CQ migration is initiated.

Time-based controlling window operator : If the CQ has a time-based controlling win-

dow operator , the stream source operator(s) calculate(s) the activation timestamp as migra-

tion timestamp increased with the slide of the window. Then, the stream source operator

discards any input tuples, which carry timestamps less than the activation timestamp. In

addition, it starts producing tuples with timestamp equal to or greater than the activa-

tion timestamp. With tuples being outputted from the stream source(s), the query is fully
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activated.

Tuple-based controlling window operator : In this case, the stream source operator(s)

start(s) producing results from tuples with timestamps greater than the migration times-

tamp. But, the controlling window operator will discard all first (s − δ) tuples, where s is

the slide of the window and δ is calculated from Equation 4.2 by the originating node.

For both window types, if the output timestamp of the preceding stateful operator is not

the window’s start timestamp, the controlling window operator has the single authority that

decides when to output tuples. Thus, the source operator cannot do any early filtering.

4.2.3 Experimental Evaluation

While UniMiCo enhances WRP’s functionality, at the same time it inherits from WRP both its

performance advantages and its limitations. For example, both protocols are equally effective

in migrating operators with small range windows and less so with large ones [63]. In light

of this, our experimental evaluation focused on UniMiCo’s correctness as well as to show

that UniMiCo migrates CQs correctly with single and multiple stateful operators without

significantly impacting in their response time for small range windows where UniMiCo is

applicable.

4.2.3.1 Experimental Setup We implemented and evaluated UniMiCo in a distributed

setup of AQSIOS. As discussed in [1], the window operator in AQSIOS is a separate operator,

which receives stream tuples as input, and injects minus tuples to the stream to mark the

boundary of a window. Windows can have either time-based or tuple-based length, but

the window slide is always one tuple. Therefore, window-based operators, such as join or

aggregation, will rely on those minus tuples to perform their window-based processing. With

the separation of the window operator, each input to a join operator can have a window of

different length and type. In the scope of this dissertation, we assume that join inputs have

windows of the same length and the same type, however, our design can be extended to

heterogeneous window environments.

We ran two types of experiments, one with simple CQs consisting of a single window
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Select *
From S

[Range 10 seconds],
T
[Range 10 seconds]

Where S.l = T.l;

a: Query 1

Select SUM(m)
From S [Rows 5];

b: Query 2

Select SUM(S.m)
From ISTREAM

(Select *
From S

[Range 10 Seconds],
T
[Range 10 Seconds]

Where S.l = T.l)
[Rows 5];

c: Query 3

Figure 27: Queries used in our experimental evaluation.

operator and another with a complex CQ consisting of two window operators. We ran each

CQ twice, under the same settings, and changed only whether a migration took place. Then,

we compared CQs’ outputs and response times around the migration point. All settings were

the same between the two runs.

4.2.3.2 Simple CQ migration (Figures 28, 29, 30, & 31) We used UniMiCo to

migrate a CQ with a join operator (Q1), and another one with an aggregate operator (Q2).

These two queries are presented in CQL [18] are depicted in Figures 27a and 27b. S and T are

input streams. Q1 is associated with time-based windows with size 10 seconds (i.e., [Range

10 seconds]) whereas Q2 is associated with a tuple-based window of size 5 (i.e., [ROWS 5]).

Figures 28 and 30 show the results of Queries 1 and 2 around the migration point,

respectively. Figure 28a illustrates is the result under migration, in which the rows above

the dash line are the last output tuples at the originating node, and those below the dash

line are the first output tuples at the target node. Figure 28b shows the result without

migration, which is exactly the same as the concatenation of the two parts of the top plot.

Similar observations can be made in Figure 30 for Query 2. As one can see, the correctness

of the output is maintained by using UniMiCo, and its protocol succeeds in performing the

hand-off without losing any data.
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a: With Migration. b: Without Migration.

Figure 28: Results of Query 1 around the migration point (i.e., 10 second mark).

The plots of Figures 29 and 31 show the response time of queries 1 and 2 two seconds

before and after the migration point of about the 10th second. As can be seen in both

figures, there are no noticeable hiccups in the response time of the queries throughout the

migration. For Query 1, the average and standard deviation of the response time in this

period without migration is 3.751 and 3.99 milliseconds, respectively, while under migration

they are 3.750 and 3.97 milliseconds. For Query 2, the corresponding numbers are 3.155 and

3.923 milliseconds without migration, and 3.101 and 3.836 milliseconds with migration. In

both cases, the difference is negligible.

4.2.3.3 Complex CQ migration (Figure 32) In this experiment we migrated a more

complex query Q3, consisting of a join and an aggregate operator, each using a different

window definition as shown in Figure 27c. In this case, the last window, which is the tuple-

based window of size 5 (i.e., [ROWS 5]) associated with the aggregation, plays the role of the

controlling window. Figure 32 shows the output tuples and the response time of the query

Q3 around the migration point, compared with the run when there is no migration. Similar

to the cases of the simple queries, the query output is preserved and the cost of migration is

not noticeable. The average and standard deviation of the response time without migration

are 6.568ms and 6.133ms respectively, while those with migration are 6.658ms and 6.217ms.

Take-away: With UniMiCo the migration of a CQ has effectively no impact in processing

77



 0

 5

 10

 15

 20

 8  8.5  9  9.5  10  10.5  11  11.5  12

re
s
p
o
n
s
e
 t
im

e
 (

m
s
)

time(s)

With migration Without migration

Figure 29: The response time lines corresponding to “with migration” and “without migra-

tion” are indistinguishable as the migration does not add any noticeable delay.

times. Figure 33 presents the average response times for all the queries we used in our

experimental evaluation.

4.2.4 UniMiCo Related Work

Workload Migration has been previously proposed in many different contexts as a way for

alleviating the load of single machines, and moving it to different sites. Examples of migration

can be seen in Virtual Machines VMs, SPEs, and distributed storage systems. Due to the

lack of space, we are going to focus of previous migration approaches in SPEs.

Migration of queries and operators in SPEs before and has been coined as the default

mechanism for load balancing. Flux [111] was one of the early attempts to introduce a

monitoring/detection opetator in a query network, and also provided a state migration pro-

tocol, to move CQs on different machines. In additon, Fernandez et al. [34] has presented a

solution in which, backup (VMs) are used in a distributed network of VMs running a SPE

are used to periodically store state. In the event of load imbalance, CQs are migrated by

receiving the state from those, and they resume execution by the time the full state has

been transferred, along with incremental changes. Streamcloud [63] is a full-fledged SPE

prototype that supports two types of migration: no-state and state migration. The latter

is similar to the technique used previously, where state needs to be transferred from the
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a: With Migration. b: Without Migration.

Figure 30: Results of Query 2 around the migration point (i.e., 10 second mark).

source to the destination. The former, is similar to UniMiCo in the foundation that no state

is transferred. However, UniMiCo presents a more general model that supports both tuple-

based and time-based windows, does not limit the migrated subquery to only one stateful

operator, and does not need the use of an upstream module (i.e, the load balancer in [63]) to

synchronize the start and stop of the migration. Finally, the work of Lin et al. [86] discusses

distributed theta joins in SPEs and they briefly discuss a migration mechanism between op-

erators. Again, their approach follows the state migration paradigm and significantly differs

from the no-state transfer approach of UniMiCo.

4.2.5 UniMiCo Summary

In this Chapter, we presented UniMiCo, a general migration protocol for CQs, used in dis-

tributed SPEs that support elasticity. Compared to previous work, UniMiCo is more general

because it is applicable to CQs with different window semantics, and can be used for migrating

a plethora of stateful operations, without any constraints. Migration is performed without

the need to transfer state or stop processing input tuples during CQ hand-off. Finally, our

preliminary experimental evaluation demonstrates UniMiCo’s feasibility, by implementing it
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Figure 31: The response time lines corresponding to “with migration” and “without mi-

gration” are indistinguishable as the migration does not add any noticeable delay (similar

behavior with Query 1)

in a full-fledged prototype SPE (AQSIOS). On top of that, our experiments show that the

migration of a CQ does not incur any noticeable disturbances in performance, while main-

taining the correctness of output results. In addition, we presented the design of Synefo,

which is a prototype system operating on top of Storm, and supports stream re-partitioning.
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a: With Migration. b: Without Migration.

Figure 32: Results and response time of the complex query Q3 around the migration point

of 10 second mark. The response time lines corresponding to “with migration” and “without

migration” are indistinguishable as the migration does not add any noticeable delay
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Figure 33: Summary of mean response times for all Queries when no migration takes place

and when UniMiCo is used to migrate state.
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5.0 APPROXIMATE STREAM PROCESSING (WITHOUT

GUARANTEES)

In Chapters 3 and 4 we presented our work on stream partitioning and re-partitioning. Both

of those techniques are targeted for maintaining the performance of an SPE at acceptable

levels (as specified by the user) and produce exact results. In this Chapter, we present

our work on load shedding, which is a technique aimed for situations when an approximate

result is acceptable by the user. Hence, load shedding is applicable when the need of exact

processing is not paramount and performance-oriented SLOs take priority.

In Sections 5.1 and 5.2 we discuss the need for load shedding, along with the limitations of

existing techniques. Next, in Section 5.3 we propose our model for concept and we formalize

the model for load shedding in Section 5.4. Then, in Section 5.5 we illustrate existing

load shedding algorithms, and in Section 5.6 we present the details of our algorithm. In

Section 5.7 we discuss our experimental evaluation, followed by related work (Section 5.8)

and this Chapter’s summary (Section 5.9).

5.1 CONTINUOUS QUERIES WITH SERVICE LEVEL OBJECTIVES

As mentioned earlier, SPEs [41, 25, 8, 37, 17, 7, 63, 16, 138, 97, 131, 83, 36, 136, 30, 82, 31,

2, 5, 15] have been developed to accommodate real-time processing for continuous queries

(CQs). Then, an SPE’s responsibility is to produce results that match the CQ until they

are requested to stop. A typical use-case for SPEs is when users require real-time insights

for online decision making. For instance, an analyst in a ride-sharing company might be

interested in the latest trending routes in a city. Trends will help the analyst adjust her
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decisions in order to decrease operational costs and increase revenue. Thus, she could submit

the CQ shown in Figure 2.

Considering the volatile nature of the input, the workload imposed to the SPE might

become exorbitant and lead to violation of a CQ’s Service Level Objectives (SLOs). Those

SLO’s might come in the form of latency requirements (i.e., deadlines), or in the accuracy of

the result. In our example, a temporal event might increase the Volume and the Velocity of

the rides stream, and in turn delay the production of results. To address this problem, a lot

of work has been done to enhance SPE’s adaptability. The most popular solution, involves

elastically adding more resources to accommodate processing demands [110, 63, 34, 78, 107].

This solution has been shown to achieve the expected results in the long run, but causes

significant performance overhead when used for short-lived input spikes.

5.2 THE NEED FOR LOAD SHEDDING

A more suitable technique for short-term bursts is load shedding, which dictates dropping

input tuples to produce results in a timely fashion at the expense of the results’ accuracy [124,

24, 59, 125, 132, 123, 119]. This accuracy drop is in agreement with data analysts’ needs,

which often focus on the qualitative relationships among groups rather on the exact numerical

result [104]. This entails that in the example query of Figure 2 the analyst is mostly interested

in the order of the top routes, rather than the average fare per route. The main challenge

of load shedding is to downsample input without deteriorating the accuracy of a result.

5.2.1 Shortcomings of existing techniques

Existing load shedding techniques require either (a) user input regarding individual tuples’

utilities [124] or (b) historical data accumulated over time [24, 45, 119]. The first requirement

is impractical for CQs that require extracting patterns in real time. For instance, in the

example query of Figure 2 expecting the user to provide a tuple’s utility based on the

route is equivalent to requesting the top routes of each window. The second requirement is

83



DEBS0.0

0.5

1.0

C
on

ce
pt

D
is
ta
nc
e

a: Distance

DEBS0

50

100

C
on

ce
pt

O
ve
rl
ap

(%
)

b: Overlap

Figure 34: Real-world datasets feature varying concept drift characteristics, in terms of both

inter-window concept distance and overlap.

impractical due to the fact that real-world streams evolve over time and relying on historical

data accumulated over time will minimize or even ignore concept drift, which we explain in

the next section.

5.2.2 Concept Drift Evidence

A data stream’s evolution over time is called concept drift and is a frequent phenomenon

in the real world. As evidence, we produced the results of the example query presented

in Figure 2 on a real-world dataset. This dataset consists of taxi data from a New York

City Taxi Company, which along with the CQ of Figure 2 were part of the ACM DEBS

2015 Challenge [71]. We ran this query on the whole dataset and produced the result

for each window. Figure 34 illustrates the mean set difference (i.e., “concept distance”)

and mean set intersection (i.e., “concept overlap”) among consecutive window results. It is

apparent that the top routes (i.e., “concept”) change among consecutive windows by up to

50%. This indicates that load shedding techniques, which rely on historical information to

prioritize shedding, are destined to deteriorate. As a result, uniform load shedding is the
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only applicable technique in current SPEs, which is also stated in the work of Fu et al. [54].

5.3 CONCEPT DRIFT DEFINITION

In the past, various definitions have been given to the concept of a stream. The most

prevalent defines concept either as the underlying mechanism generating stream data, or the

concept that is learned by applying Q to an input stream [134]. Naturally, concept drift

describes the phenomenon when data are produced by non-stationary distributions [80] and

evolve over time. Previous work on identifying concept drift in continuous streams, per-

ceives the stream Si as a continuous signal of information, without leveraging the windowing

properties of Q [134, 56]. This constitutes the concept drift identification process difficult,

because it requires the segmentation of Si to “drift periods”, which is a computationally

heavy process.

We follow a more practical approach to concept drift , which leverages the windowing

semantics of Q, whose goal is to transform the input stream to the desired output. Therefore,

an input stream Si can be broken down to its window segments Swi and concept drift can

be monitored on the window boundary. Thus, given a Q and its window definition WQ, we

define the concept of a window w as Cw (i.e., leverage the window boundary). Concretely,

each window Swi will have its own concept Cw. In the example query shown in Figure. 2,

its concept drifts on average by 30% on every window as shown in Figure 34. Concept drift

can be quantified using two dimensions. First, concept overlap is the fraction of common

elements among Cw and Cw+1. Second, concept distance is the similarity of Cw and Cw+1 in

terms of higher-level characteristics other than concept overlap.

Our query-driven definition of concept indicates that among different stateful operations,

the notion of concept is different. Table 5 provides an overview of three of the most popular

stateful operations in SPEs1, our definition of concept Cw, and the utility of the former in

load shedding.

Starting from a mean-like scalar aggregation (e.g., mean, count, variance etc.), Cw is

1Those operations are the stateful operations offered by Storm, Heron, Flink, and Spark Streaming.
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Table 5: Examples of concept per query type

Operation Concept Utility for Load Shed

Aggregation (µ, σ2) Sampling Rate (b)

Group Aggr. Group Frequencies Group Sampling Rate (bg)

Equi-Join Group Frequencies Group Sampling Rate per stream

determined by the measures of central tendency of the distribution followed by the partici-

pating attributes in the computation. Babcock et al. [24] has shown that when Q is a scalar

aggregation, measuring the mean value (µ) and the variance (σ2) of the distribution can

provide useful insights for approximating its value: identify the proper sampling rate b for

window Swi .

Turning to grouped aggregations, like the one appearing in the example query of Figure 2,

Cw is the frequency of appearance of each group. This provides information about the

distribution of groups in Swi and can be used to create a stratified sample for Swi when tuples

need to be shed. This technique has been previously used in Approximate Query Processing

for Data Warehouses [13, 105] so that an approximate value appears of each group. In order

to build a representative stratified sample, the concept determines the sampling rate bg for

every group g in a window Swi .

When a stateful operation is an equality join, the group frequency on each of the input

streams can indicate the size of the result and the number of tuples per matched key [12].

Similar to a grouped aggregation, the concept is the frequency of each group appearing on

each stream. This can be used during load shedding to identify the sampling rate of each

group on each stream.
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5.4 LOAD SHEDDING

In this section, we will present load shedding and formalize it as a minimization problem.

An SPE enhanced with a load shedding mechanism comes with a load detection component.

When the former detects that load exceeds the available processing capacity, it commences

shedding tuples [8, 124, 24, 106]. An end-to-end load shedding solution has to decide (a)

when, (b) where, (c) how much, and (d) what to shed [124].

The decision for the when question locates the point(s) in time most beneficial to com-

mence load shedding, or can be a manual command given by the user. More often than not,

this decision is independent with the rest of the operations and has to do with the monetary

budget or available resources. The decision for the where question finds the position in the

execution DAG of Q to place shed operations. In previous work, load shedding took place in

the source operators only [54]. This approach benefits from the fact that results produced

are easier to justify, especially when they are enhanced with information from other sources.

However, their accuracy is difficult to justify when sliding windows are used. For instance,

in the query of Figure 2 dropping a tuple might cause different windows to be produced. In

turn, this will lead to missed window results. On the other hand, if load shedding takes place

in a stateful operator of Q, then results are produced based on the window boundaries of the

CQ [125]. In our work, we follow this approach because we target applications that require

production of results on every window. Finally, the decision for the how much question

relates to the available processing capacity, the runtime complexity of Q, and the input rate

of source streams. In this work, we consider that to be an expert’s decision, and assume that

the shedding rate is given to the SPE by the user. Currently, we are investigating dynamic

methods for determining the shed rate in an online fashion.

Previously-proposed load shedding techniques aimed at maintaining results accuracy

and focused on what to shed. For example, semantic load shedding prioritizes tuples for

shedding [124]. Similarly, the system presented in [106] chooses a different shedding rate

for classes of CQs with varying SLOs. When tuples are shed, the accuracy of the result is

affected and there are various metrics for measuring error. For a given Q and a Swi , we will

represent the result after processing all tuples as Rw. With load shedding in place, which we
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Algorithm 8 Uniform Shedding
1: procedure UniformShed(Swi , b)

2: T ′w ← Sample(Swi , b)

3: return T ′w

will represent as S, a subset of tuples is processed. In that case, an approximate answer for

Swi is produced, which we will illustrate it as R̂w. Depending on the stateful operation of Q,

there are various metrics of quantifying R̂w’s error with respect to Q. In our formulation,

we will represent the error metric as εQ : Rw, R̂w → [0, 1]. In essence, the lower the error,

the more effective S is.

5.4.1 Focal point of this work: what to shed

In this work, we focus on providing an answer to the question of what to shed. Our goal is

to improve the accuracy of load shedding by prioritizing shedding of tuples based on their

contents. In order to improve accuracy, an SPE needs to be aware of each window’s concept

Cw. Concretely, this is equivalent to knowing the utility QoS graph required by Semantic load

shedding [124]. This way, load shedding would be prioritized based on tuples’ importance

according to Cw. We codify the problem of what to shed as the following minimization

problem:

minimize
Cw

εQ(Rw, R̂w)

where Rw = Q(Sw1 , . . . , S
w
l ),

R̂w = Q(S(Sw1 , . . . , S
w
l , Cw))

(5.1)

In Equation 5.1, εQ is the error metric for the result of Q, Rw represents the result for

Swi without shedding any tuples, and R̂w represents the result for Swi when tuples are shed.

S is the load shedding operation and Cw is the window’s concept . In essence, Equation 5.1

states that “what to shed” is the search for Cw on every window, which can be a hard

problem due to the uncharted future inputs and the existence of concept drift (Figure 34).
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5.5 EXISTING SHEDDING ALGORITHMS

Current SPEs offer strict delivery semantics, which usually lead to applying the processing

logic into ordered windows [138, 83, 36, 15, 30]. As mentioned in Section 2.2, tuples are

assigned to windows according toWr,s, and the processing logic of Q is applied to a complete

window. For simplicity, we present load shedding algorithms on complete windows (similar

to the approach of [125]) instead of single tuples at a time (in Section 2.4 we presented the

internal operations of forming a window in an SPE).

5.5.1 Normal Execution (Baseline)

In order to approach the minimization problem of Equation 5.1, we establish normal execu-

tion as our Baseline. This would represent normal execution on Swi without shedding any

tuples (i.e., S : Swi → Swi in Equation 5.1). The Baseline features zero shedding runtime

overhead since the whole window is processed, and maximum accuracy (i.e., εQ = 0). With

Baseline there is no need to estimate Cw and its drawback is that the data volume sent for

processing will be the whole window.

5.5.2 Uniform Shedding (State of the Art)

As discussed in Sections 5.1 and 5.4, when Cw is unavailable and the input streams(s)

experience concept drift , only Uniform load shedding can be applied. Recent work presented

in [54] explains that Uniform load shedding is in fact used in industrial setups. Therefore,

in this work we consider Uniform load shedding as the state of the art.

Uniform load shedding materializes by extracting a uniform sample from Swi and sending

it for processing. Algorithm 8 presents an outline of Uniform load shedding which receives

two arguments: Swi and a shed parameter b. The latter can either represent a shed bias (i.e.,

probability) or a percentage of Swi that will be processed. In Algorithm 8, a call to method

Sample (line 2) creates a uniform sample (e.g., binomial, reservoir etc.).

Uniform load shedding makes no effort in estimating Cw. As a result, the error εQ

is sensitive to the sampling rate b. Uniform’s runtime cost is O(c|Swi |), where c is the
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Algorithm 9 Concept-driven load shedding
1: procedure CoDShed(Swi , b, Q)

2: Tw ← Sample(Swi , b)

3: Cw ← Q(Tw)

4: T ′w ← ∅

5: for all t ∈ Swi do

6: if ¬Shed(t, Cw) then

7: T ′w ← T ′w + t

8: return T ′w

cost of the random process. Finally, the data volume sent for processing is proportional

to the bias parameter b: the higher the bias, the higher the processing cost. Uniform load

shedding presents an error-agnostic approach and focuses solely on reducing the processing

load imposed to the SPE. As a result, the choice of the bias parameter is extremely important

because it directly impacts both the performance and the result accuracy.

5.6 CONCEPT-DRIVEN LOAD SHEDDING ALGORITHM

In order to improve accuracy, an SPE needs to be able to estimate Cw on every window w.

Our proposed load shedding technique is named Concept-Driven (CoD) and estimates Cw by

applying Q on a uniform sample of Swi . Concretely, CoD decouples sampling from shedding

to get insights for improving accuracy. CoD is motivated by work done on approximate query

processing, such as Aqua [9] and BlinkDB [13]. Those run queries on samples extracted from

the dataset and provide approximate answers. In contrast, CoD uses a sample to estimate

Cw, which in turn is utilized for shedding tuples.

Algorithm 9 outlines CoD, whose input consists of a window Swi , a load shedding percent-

age b, and a stateful operation represented by Q. b controls the size of uniform sample Tw, to

which Q will be executed for retrieving Cw. Algorithm 9’s output consists of T ′w ⊂ Swi , which

is forwarded for processing to next operation in a CQ’s DAG. In Algorithm 9, Q is required
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so that an estimation of the window’s concept is extracted (see Section 5.3): Depending on

the query type, Table 5 presents the information extracted to improve result’s accuracy. For

example, in the query of Figure 2, Cw will be the frequency of each group route appearing in

Swi . Then, depending on b, each route would be assigned a portion of b (i.e., br). In essence,

Cw = {b1, . . . , br} is the sampling rate for each route. By the time Cw is established, the

tuples of Swi are scanned once more, and each tuple t is passed to a Shed method along with

Cw (line 6). Shed is responsible for deciding whether to shed a tuple, by examining whether

tuple t’s extracted attributes are part of Cw, i.e., the concept for window w. If yes, the tuple

is included in Tw; the tuple is shed otherwise.

CoD requires two passes over Swi and has a runtime complexity of O(c|Swi |+b|Swi |+c|Swi |).

The first operand denotes the cost of creating the sample, the second operand is the cost of

executing Q on a sample of size b|Swi |, and the third operand is the cost of applying load

shedding to Swi . In essence, CoD’s runtime cost is two times the runtime cost of Uniform

(since the dominant factor is the scan of the window and not applying Q on the sample). If

implemented naively, this can be a very high cost. In the next section we present an efficient

design that turns CoD’s runtime cost equal to that of Uniform’s.

5.6.1 Designing CoD to eliminate overhead

The design of modern SPEs provides an opportunity to avoid incurring additional overhead

when CoD is applied. In this section, we present the details of event time window process-

ing in modern SPEs, CoD’s implementation, and CoD’s implementation details for stateful

queries.

In both designs, tuple storage is decoupled from window processing. With watermark-

based execution, processing is postponed until the watermark has been received (see Sec-

tion 2.4). This way, CoD can be designed to avoid additional scans and maintain a runtime

cost similar to that of Uniform.

In order for CoD to avoid the additional scan of a window, uniform sampling is performed

incrementally. When a tuple arrives, the operator determines the windows that the tuple

belongs to. Also, for each window, CoD maintains a uniform sample of size b. The incoming
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Figure 35: CoD tuple arrival: the tuple is optionally added to the windows it belongs to,

and also stored in the buffer space.

tuple is added on each window’s sample based on a random process (i.e., coin flip). Figure 35

illustrates the steps that are followed by CoD when a new tuple arrives which are as follows:

Step 1: the tuple’s timestamp is extracted and it is used to identify the windows that

the tuple participates.

Step 2: for each of those windows, a random process (e.g., a coin-flip) determines

whether the tuple will be included in the sample. In our implementation, each sample is

a reservoir sample, in order to maintain samples of size b for each window.

Step 3: the tuple is stored to the operator’s storage space.

At a watermark arrival, CoD uses the uniform samples to extract window’s concept Cw,

as follows:

Step 1: Extract watermark’s timestamp and identify window to be processed.

Step 2: CoD extracts Cw from the corresponding sample.
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Figure 36: CoD watermark arrival: the concept is extracted from the sample and then tuples

are shed based on it.

Step 3: in a single scan of the tuple buffer CoD locates the tuples for the window, uses

Cw to prioritize tuples for shedding, and evicts expired ones.

Step 4: surviving tuples are sent for processing and the sample for the window is

discarded.

As we presented in Sec. 5.5.2, Uniform’s runtime cost requires one scan over Swi . This action

can be performed when the window is scanned to extract the window’s tuples. CoD’s design

results in a similar runtime cost, with a time complexity of O(c|Swi |) (since the dominant

factor is the scan of the window). This cost is equivalent to Uniform load shedding runtime

cost.

5.6.2 Implementation for different query types

As has been illustrated in Table 5, different stateful operations have a different concept . In

this section we provide details of CoD’s sampling process for different query types.
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5.6.2.1 Scalar User-Defined Aggregations When Q is a scalar User-Defined Aggre-

gation (UDA) then CoD will maintain a uniform sample for each window. For instance, if Q

is the arithmetic mean of tuples’ payloads (p), then during tuple arrival, based on a random

process a tuple’s p will be included in the sample. When a watermark arrives, CoD will

extract the mean value µ and the variance σ2 from the window sample (see Table 5). With

this information, it can decide the sampling rate required to provide an answer based on a

user’s accuracy requirements [24].

5.6.2.2 User-Defined Aggregations When Q is a grouped UDA, then during tuple

arrival CoD maintains the frequency of appearance of each group. Given a shed bias b and

a window’s size, CoD can create a stratified sample with a proportional representation of

each group. Concretely, for each group g, CoD has to determine its sampling rate bg. As

indicated in [9, 13, 105], this technique will ensure that every group g will appear in the

result. When a watermark arrives, CoD extracts each tuple’s k attribute(s), and based on

the tuple’s group, it maintains a sample of size bg|Swi |. In comparison with Uniform, this

stratified sampling approach is expected to lead to more accurate results and zero missing

groups.

5.6.2.3 Two-way Equality Joins If Q is an equality join between two streams, then

CoD needs to maintain a histogram of groups for each of the two streams [12]. This way,

CoD will be able to know which groups have a higher likelihood of forming a result. When

a watermark arrives, CoD identifies the intersection of the two histograms: for each group

g that appears in both histograms, a sample rate b{1,2}g is determined based on the overall

shed bias b, for each stream. Similar to grouped UDAs, when the window is scanned, a

stratified sample for each stream and each group on each stream is maintained and pushed

for processing.
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Table 6: Dataset Characteristics

Dataset Size Queries Mean Window Size

(tuples)

DEBS 32 GB Group Aggr. ≈ 10K

GCM 16 GB Group Aggr. 320K

DEC 175 MB Aggr. 46K

5.7 EXPERIMENTAL EVALUATION

In our experimental evaluation, our goal is to measure performance, error, and the ability

to decrease data volume in real world conditions. We implemented Uniform and CoD al-

gorithms on Apache Storm v1.2, by extending the WindowManager class. For Uniform, our

ShedWindowManager class requires the shed percentage parameter b. When a watermark ar-

rives, a binomial process (p = b) determines whether the tuple is shed or not. Even if a tuple

is shed, it is maintained in order to acknowledge its acceptance to the upstream operator.

For CoD, our ConceptShedWindowManager receives the shed percentage parameter b, which

controls the size of the sample for each window. Every time a tuple arrives, CoD augments

the corresponding window samples by using a similar binomial process as in Uniform. At

watermark arrival, the concept is extracted from the corresponding sample, and tuples are

shed accordingly.

5.7.1 Experimental Setup

We conducted our experiments on a cluster consisting of 5 AWS r4.xlarge nodes. Each node

ran on Ubuntu Linux 16.04 and OpenJDK v1.8. Each node had access to 4 virtual CPUs

of an Intel Xeon E5-2686 v4 and 32GBs of RAM. One node was set up as the master. It

had a long-running single-instance ZooKeeper server (v3.4.10) and an Apache Storm Nimbus

process. The rest of the nodes ran a single Storm Supervisor process and were configured
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Figure 37: Scalability of normal execution compared to Uniform load shedding and CoD,

with the shedding ratio set to 98%.

with up to 3 execution threads (one was reserved for Storm’s acknowledgment service). In all

our experiments, we enabled Storm’s acknowledgment mechanism to guarantee processing

of all tuples. All our experiments were repeated five times and the numbers reported are the

averages of all runs.

5.7.2 Datasets

Section 2.6.1 presents general information for the real datasets in our study. In this section,

we present specific information for the datasets we use in this chapter’s experimental evalua-

tion. In detail, we use three real-world datasets, with varying sizes, data characteristics, and

window queries. Two of the datasets feature grouped aggregations and one scalar aggrega-

tion. Table 6 presents for each dataset its total size, the aggregation type, and the average

window size in tuples. We provide additional details for each dataset below:

ACM DEBS Challenge Dataset (DEBS): For this experimental evaluation, we use

DEBS’s first query (see Section 2.6.1), and implemented it using a single source operator,

a varying number of window aggregation operators, and a single collector bolt that sorts
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Figure 38: Overall average and 95 percentile window latency with four worker nodes.

routes based on the aggregation result.

Google Cluster Monitoring Dataset (GCM): From this dataset, we use part of the

task-events table and run a sliding window grouped aggregation, taken from [82]. This

query calculates the average CPU time requested by each scheduling class, on a 60 minute

window with a 30 minute slide. Compared to DEBS, this dataset features fewer groups and

smaller window sizes.

DEC Network Monitoring Dataset (DEC): For this dataset, we use the query docu-

mented in Section 2.6.1. This CQ calculates the average packet size on a sliding window of

45 seconds with a slide of 15 seconds.

5.7.3 Experimental Results

Below, we present our experimental results on scalability (Section 5.7.3.1), performance

(Section 5.7.3.2), accuracy (Section 5.7.3.3), and data volume reduction (Section 5.7.3.4).

To this end, we compared normal execution to the current state of the art in load shedding

(i.e., Uniform) and to CoD. For measuring error, we used the relative error metric for scalar

aggregate operations (Equation 2.2), and the mean relative error for grouped aggregate

operations (Equation 2.5) defined in Section 2.5.
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5.7.3.1 Scalability (Figure 37) First, we examined the scalability of each approach by

measuring the average and 95-percentile window processing latency on the DEC dataset. The

reason we picked DEC for this experiment is because it is a processing-heavy aggregation,

without any need for memory. Therefore, this dataset poses a favorable use-case for normal

execution, since the workload is not memory-heavy. Also, we set the shedding rate (b) to

98% for both Uniform and CoD, since our analysis has shown that it leaves enough data to

produce results with less than 10% error (see Section 5.7.3.3). In addition, we used the whole

dataset and we doubled the number of server nodes (i.e., worker nodes) that participate in

the process. Figure 37 presents the average and 95-percentile latency for normal (labeled

as “Storm”), Uniform load shedding (labeled as “uni”), and CoD load shedding (labeled as

“CoD”).

As can be seen, Storm has the highest average and 95-percentile latency. The reason for

this is due to the fact that processing takes place in the whole window and all tuples are

scanned. Uniform’s performance is faster due to the fact that a fraction of the window is

processed. The same is the case with CoD. Both settings with shedding achieve significantly

better average processing latency compared to normal and more than four times better

95-percentile latency. Another important observation is that with load shedding, better

processing latency is achieved with a fraction of the resources: CoD and Uniform running

with one node achieve better latency compared to normal execution running on four nodes.

Take-away: With CoD, processing takes place on a fraction of the window, and one requires

much less resources to achieve better processing latency compared to Storm without any load

shedding.

5.7.3.2 Performance (Figure 38) Next, we measured overall mean and 95-percentile

latency for all three datasets. Compared to the scalability experiment (Section 5.7.3.2) we

measure end-to-end latency on the stateful operator, from the watermark arrival until the

time the window result is pushed to the next operator. For this experiment, we set the

number of worker nodes to four (i.e., utilize all our resources), and the shed-bias to 97%

(i.e., less than three percent of the window gets processed). For all datasets, we used a single

source operator, and a sink operator.
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Figure 39: Average and 95 percentile relative error.

Figure 38a presents the overall latency for the DEC dataset. As can be seen, the overall

latency is lower for Uniform and CoD. For DEC, most of the time is spent on window

preparation (i.e., window scan). Therefore, the performance gap between normal and the

load shedding methods is small. However, this is not the case in GCM and DEBS. Figure 38b

illustrates that CoD and Uniform present better performance compared to normal execution.

The reason is that GCM requires a grouped aggregation, which can introduce additional load

to each worker. Figure 38c presents a similar picture. CoD manages to produce a result faster

than normal Storm, and up to 2.25 times faster for the 95-percentile case. In our prototype

implementation we measured that Uniform was slower compared to CoD due to the frequency

of the binomial process (i.e., on every tuple of the window). This is not the case with CoD,

since tuples of infrequent groups are simply added to the window.

Take-away: CoD improves overall latency and it can produce a result up to 2.25 times

faster compared to normal Storm.

5.7.3.3 Accuracy (Figure 39) For the two load shedding techniques, we measured the

average error and the 95-percentile error among all windows on all datasets. For the error

metric we used the relative error for the aggregation result of DEC, and for DEBS and GCM
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we used the average error among all groups for a given window. In addition, for each dataset

we picked a different shed bias (b) which was 99%, 98%, and 98% for DEC, GCM, and DEBS.

In the case of CoD, b works as the size of the sample created to identify Cw.

Figure 39a shows that both Uniform and CoD produce comparable results for DEC. This

happens because DEC features a scalar aggregation query. Therefore, CoD creates a uniform

sample, which is equivalent to Uniform and the resulting accuracy is the same for both

techniques. Figure 39b illustrates the error for GCM, and the difference between the two

becomes significant. In this case, Uniform sheds infrequent groups from the result, which in

turn make the average error more than 40%. This is not the case with CoD, which employs

stratified sampling for each group, by measuring their frequency. Then, CoD determines a

shed bias for each group, and when it scans the window it creates a sample for each group.

As a result, no groups are left behind from the final result and the error remains below 10%.

A similar behavior can be seen with DEBS, whose results are shown in Figure 39c. Due to

the fact that DEBS features more groups, Uniform’s error is more than 80%. This is not

the case with CoD which manages to maintain both average and 95-percentile error close to

10%.

Take-away: CoD is able to identify the concept of each window and maintain accuracy more

than 90%. Compared to Uniform, CoD can achieve more than an order of magnitude better

accuracy.

5.7.3.4 Data Volume Reduction (Figure 40) In the last experiment we wanted to

analyze the drop of value in error while the data volume processed increases. To this end, we

utilized all the workers in our infrastructure and executed the DEBS workload with varying b

(shed bias) values: 98%, 90%, 75%, and 50%. On each run, we measured the average relative

error achieved by each load shedding technique: Uniform and CoD.

Figure 40 illustrates the average relative error when a different percentage of the window

is processed. As far as Uniform is concerned, when the data percentage processed increases,

the average relative error drops (almost) linearly. After examining the quality of the results,

Uniform exhibits big values for errors for two reasons. First, groups that do not appear

often in the window are completely dropped, which leads to 100% error for them. Second,
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Figure 40: CoD achieves much better error with a fraction of the data required by Uniform.

groups that appear frequently have some of their values dropped, which leads to high error

values for those as well. On the other hand, CoD identifies the right amount of sampling

needed per group by employing stratified sampling. Therefore, each group is represented

proportionally in the final result, and the average relative error remains significantly low.

In fact, for a data percentage value 25 times smaller, CoD achieves much higher accuracy

compared to Uniform.

Take-away: CoD makes it feasible to process significantly less data while achieving more

than an order of magnitude less relative error compared to Uniform.

5.8 RELATED WORK

Throughout this paper we presented previous work done in load shedding [124, 45, 74, 119,

125, 24]. In addition, Uniform load shedding has appeared in a distributed version [123]. A

control-based approach to load shedding is presented in [132] and the work of Gedik et al. [59]

focuses on load shedding for join operations. Unfortunately, none of those feature a general

mechanism for estimating Cw, and in turn they are not robust against concept drift . The

101



work presented in [45] presents two heuristics for estimating the concept for equality joins.

However, those algorithms are targeted for joins and rely on frequency-based estimation,

which might not efficiently estimate the concept on all CQ types (i.e., grouped median).

In addition, those heuristics do not present a systematic approach for detecting concept

drift . Furthermore, prior work focused on optimization of continuous queries under resource

constraints [74, 119, 59]. [74] presented an optimization framework based on the resource

constraints of window joins on unbounded streams. Moreover, work on load shedding has

looked at other dimensions beyond correctness. The work of Kalyvianaki et al. [72] presents

an algorithm that focuses on fair load shedding among federated SPEs. The work of Pham et

al. [106] presents load shedding in agreement with QoS of CQs with different priority classes.

Finally, a lot of work has been done on approximation data structures for stream pro-

cessing [52, 70, 28, 92, 116]. However, those approaches aim at particular classes of CQs

and cannot be used for multiple types of operators. Finally, sampling-based approximation

processing has been previously proposed for relational databases [13, 9]. In the case of data

streams, data arrive continuously and the data’s characteristics are unavailable for the SPE

to analyze and pick an optimal sampling strategy.

5.9 SUMMARY

In this chapter we presented our work on load shedding for current SPEs. Our investigation

on load shedding has revealed two shortcomings of previously proposed techniques. First

that, previously proposed techniques are brittle against the inherent concept drift of data

streams; second, they rely on knowing tuples’ importance at query submission. Those short-

comings constitute Uniform load shedding the only applicable solution for modern SPEs.

To improve the accuracy of the current state of the art (i.e., Uniform), we proposed CoD,

a novel technique for load shedding, which relies on estimating a window’s concept before

shedding tuples thus making it more generally applicable. Even though CoD requires two

scans of a window, we described a design that incurs zero overhead for modern SPEs. We

implemented CoD for Apache Storm and examined its performance, accuracy, and data vol-
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ume reduction capabilities compared to normal execution and to Uniform load shedding.

Our experiments with real workloads show that CoD manages to (a) reduce processing cost

by up to 2.25x compared to normal execution, (b) achieve more than an order of magnitude

better accuracy compared to the state of the art in load shedding, and (c) reduce the data

volume significantly.
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6.0 APPROXIMATE STREAM PROCESSING (WITH GUARANTEES)

In previous chapters, we presented our solutions for stream partitioning (Chapter 3), stream

re-partitioning (Chapter 4), and load shedding (Chapter 5). All those adaptation techniques

are aimed for situations when an SPE’s performance is compromised due to increased work-

load. However, stateful processing by itself poses significant overhead(s), both in terms of

storage and processing. Those materialize by the need to support elaborate window opera-

tions, such as handling out-of-order arrival of tuples, cost-effective data management (i.e.,

garbage collection), the ability to recover from failures etc. Driven by the complexity associ-

ated with the aforementioned operations, we identify the need for accelerating processing by

approximating results, whenever possible. This becomes feasible by detecting opportunities

for approximating results given an accuracy specification provided with a CQ. To this end,

we developed a prototype SPE, which is able to deliver this functionality for a plethorea of

stateful aggregate operations.

Section 6.1 motivates this line of work, followed by Section 6.2, which provides back-

ground information on approximate query processing. Next, Section 6.4 discusses the sys-

tem model of our prototype, followed by a detailed explanation of our prototype’s sampling

techniques presented in Section 6.5. Section 6.6 outlines the details of the acceleration op-

portunity detection mechanism, followed by Section 6.7, which presents the experimental

evaluation. Finally, Section 6.9 provides information on related work, and Section 6.10

concludes with a summary of our findings.
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Table 7: Properties of design space

Load Shed Sketch Incremental Elastic SPEAr

Accuracy Guarantees (R1) X N/A N/A X

Window preserving (R2) X X X X X

General Aggregates (R3) X X X

React to changes in data (R4) N/A N/A X

Process fraction of tuples (R5) X X

6.1 THE NEED TO ACCELERATE PROCESSING

The conservative estimation of a CQ’s resource needs drives users to proactively provision

more resources than truly needed, to accommodate occassionally high processing demands.

This behavior leads to high operational costs, and gives rise to the need to accelerate stateful

processing in an opportunistic manner; when possible, an SPE should examine if it can process

only part of a window. This feature is justified by past reports that windows increase with a

rate of hundreds of thousands to millions of events per second [131, 40]. This need is similar to

the one that motivated the development of Approximate Query Processing (AQP) in DBMSs,

which produce a result by processing only a fraction of the data [69, 9, 39, 13, 73, 55, 105]

but that result deviates from the exact answer by a bounded amount. AQP systems calculate

a result from a sample, which has been created by monitoring previous query patterns and

data characteristics. AQP has been applicable in Data Warehouses because the correct size

and the contents of a sample can be identified offline based on a user’s accuracy and resource

requirements. Unfortunately, an SPE is not aware of data characteristics at query submission

and AQP becomes very challenging in a streaming context.

In order to make it possible for an SPE to opportunistically accelerate processing, an

authoritative mechanism is required to uphold the following standards

R1 Each result has to abide to a predetermined level of accuracy, which can be described
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as Quality-of-Service. This will guarantee that results are acceptable by the end-user

(i.e., application). For the rest of this dissertation, we will refer to requirement R1 as

accuracy requirements, accuracy guarantees, or error bounds. For example, in the CQ of

Figure 8 a result cannot deviate more than 10% from the actual result in 95% of the

windows.

R2 Results have to be produced for each window of the input stream(s). This requirement

materializes only for stream processing and guarantees that window results are pre-

served, which is crucial for event-time processing (windows are determined by the input

timestamps and overlooking a timestamp will lead to different windows). Therefore, the

timestamps need to be preserved in order to have a reproducible result.

R3 Acceleration needs to be feasible for a plethora of different aggregate operations (or

stateful operations in this manner).

R4 The system needs to be able to react to input data and effectively detect windows that

qualify for accelerated processing; at the same time, the system needs to be able to

identify windows that do not allow for safe acceleration (i.e., the accuracy guarantees are

likely to be undermined).

R5 Acceleration needs to materialize as processing a fraction of the window, because its size

is expected to be the dominating factor in terms of runtime cost. Also, by processing

only a fraction of a large window, an SPE’s performance will not deteriorate when data

are accessed from a secondary storage device.

Unfortunately, none of the existing techniques for improving the performance of an SPE

is able to deliver all the requirements above. As we presented in Chapter 5, load shedding

enables an SPE to drop tuples when the input load exceeds its processing capacity [124, 24,

45, 96, 106]. Despite the fact that load shedding can be effective in terms of reducing load, it

fails to deliver accuracy guarantees (i.e., fails requirement (R1)). In addition, load shedding

can be applied in a manner to preserve windows at a minimal processing cost [125, 76],

and is applicable to many types of aggregate operations (i.e., satisfies (R2) and (R3)).

Furthermore, apart from CoD, previously proposed load shedding techniques, fail to react to

changes in the content of data and rely on user intervention (i.e., fail (R4)). For example,

semantic shedding [124] is not applicable to queries that aim at exploring patterns in streams,
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because it assumes prior knowledge of the full domain. Finally, load shedding operates by

processing a fraction of data (i.e., satisfies (R5)).

Sketches and approximation algorithms [29, 51, 91, 92, 48, 116, 93, 43, 52, 70, 28,

115, 130, 140] decrease the memory footprint of a stateful operation with specific accuracy

guarantees. Sketches are able to deliver accuracy guarantees for pre-determined data (i.e.,

satisfy (R1)), but they need fine tuning to adapt to the uncharted nature of incoming streams

and react accordingly (i.e., fail (R4)). They can be used only in specific problems (i.e., fail

(R3)), and have to process all tuples of a window (the bigger the window, the longer the

processing time) (i.e., fail (R5)). Variations of time-evolving sketches [115] have not been

shown to offer tight accuracy on sliding windows.

Incremental processing (or resource sharing) has been introduced in SPEs as a tech-

nique to avoid processing tuples more than once [87, 20, 84, 122, 102, 32, 113, 135, 121, 114].

It can be applied when multiple CQs apply the same aggregation on the same stream(s) with

varying window semantics1. Incremental processing solutions provide exact answers, hence

they do not need to offer accuracy guarantees and they preserve windows (i.e., satisfy (R1)

and (R2)). Even though it has been shown that incremental processing can limit the update

cost of a window’s result to a constant amount, it can be applied only in associative aggre-

gate operations (i.e., fail (R3)). For instance, holistic aggregations are not supported and

quantile processing, which happens to be one of the most popular aggregations [91, 92, 116],

cannot be processed in an incremental fashion. Finally, incremental processing solutions do

not need to react to changes in data, because they produce exact results, which requires to

process the whole window (i.e., fail (R5)).

As discussed in Chapters 1 and 4, elastic SPEs are able to alter resources without

disrupting execution [77]. However, stream re-partitioning aims at processing all tuples, is

a time-consuming operation, and requires additional resources (i.e., fail (R5)). Therefore,

elastic SPEs are slow to react to changes in input data and maintain operational costs low

(i.e., fail (R4)). Table 7 provides a summary of the shortcomings of current approaches.

Inspired by the performance benefits of AQP and the differential execution of Incremen-

tal Processing in SPEs, we designed SPEAr (SPE Accelerator) that detects opportunities

1As long as a CQ carries a sliding window definition.
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for accelerating execution. In its current version, SPEAr produces approximate results with

accuracy guarantees for sliding window aggregate operations, by incurring minimal overhead

and avoiding unnecessary actions during processing. SPEAr employs conservative confidence

interval estimation on approximate results produced from incremental samples for each win-

dow: if the worst-case accuracy estimation is within the user’s accuracy requirements, then

SPEAr accelerates processing by producing an approximate result; otherwise, it falls back to

normal execution by processing the whole window.

To the extent of our knowledge, SPEAr is the first SPE, which can detect acceleration

opportunities automatically, does not require offline sample creation, makes no assumptions

on the periodicity of data, and delivers approximate results with accuracy guarantees. Our

experimental results prove that SPEAr is capable of improving performance, use only a

fraction of the resources needed for exact processing, while delivering a result within the

accuracy specification.

6.2 SHORT PRIMER ON APPROXIMATE QUERY PROCESSING (AQP)

In this section, we present important information for AQP, as it has been applied in the

past. AQP has appeared as a method for accelerating processing in OLAP DBMSs (i.e., Data

Warehouses) [69, 11, 13, 73, 55, 105]. AQP’s goal is to provide approximate results with

bounded accuracy, by processing only a fraction of the data. This fraction is often termed

as the processing budget, in terms of either secondary storage access (i.e., I/O operations) or

response time (i.e., milliseconds). In the past, proposed AQP systems have appeared with

differences in their query model, sampling operations, and prior information reuse. Figure 41

captures the main difference between an AQP system compared to a traditional OLAP DBMS:

An OLAP DBMS receives a query and forms the result by accessing all the data in secondary

storage (Figure 41a). On the other hand, an AQP DBMS produces a result by applying the

query on a sample created from the data (Figure 41b). As a result, an AQP DBMS takes less

time to produce a result, but the produced result is an approximate one. AQP functionality

is offered by a number of proprietary DBMSs, such as Oracle 12c [103] and SQL Server [94].
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Figure 41: Workflow between a traditional and an AQP data warehouse.

There are variations among previously proposed AQP systems, with regards to the query

model offered. The major difference materializes on whether the approximation error is

defined by the user, or appears as an additional column in the result. In otherwords, this

variation comes from a user’s requirement on whether she wants to control the accuracy of the

result, or she wants to receive an estimation of the error that comes with an approximate

result (without imposing a requirement for it). Online Aggregation [69] and Aqua [11]

present the error as part of the result. For example, if a user has access to a relation named

Rides(time, route, fare) and they are interested in the average fare, they would submit the

SQL query depicted in Figure 42. In this case, the AQP DBMS will produce a result with

the column for the average fare f̄ value, and a confidence interval ±c, where c indicates that

the true result is within (f̄ − c, f̄ + c). Other systems like BlinkDB [13] and VerdictDB [105]

require an accuracy specification as part of the query, as illustrated in Figure 43. The result

of those systems omits a confidence interval column, and features only the approximate

answer (i.e., f̄).

Another variation appears on AQP DBMSs’ sampling process. Online Aggregation [69],

and Quickr [73] perform online sampling and leverage metadata for formulating the query
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SELECT AVG(fare)

FROM Rides;

Figure 42: Sample Query.

SELECT AVG(fare)

FROM Rides

ERROR 1%

CONFIDENCE 95%;

Figure 43: Sample Query with accurary.

evaluation plan. On the other hand, Aqua, BlinkDB, and VerdictDB require offline sample

creation before processing begins. In addition, some AQP DBMSs make use of prior results

or query patterns to improve performance and accuracy [13, 55, 73]. Due to the existence

of data (and metadata) maintained in a data warehouse, an AQP DBMS is able to deliver

approximate results fast with accuracy guarantees.

6.3 APPROXIMATE STREAM PROCESSING

Unfortunately, the availability of data (or metadata) prior to processing, which is what

traditional AQP DBMS techniques usually require, is not possible for stream processing.

This is part of the stream processing model, which dictates that CQs are static and data

flow through the system. Only the CQ is known prior to window completion and data are

processed as soon as they arrive. Therefore, online sampling is the only option for AQP in a

stream processing model.

As discussed in Section 6.2, AQP DBMSs allow the user to either submit their accuracy

requirements with the query, or present an approximate result with its confidence interval.
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Furthermore, all AQP DBMSs make use of the notion of a budget in one form or another.

For systems like BlinkDB, VerdictDB, and Aqua, the user controls the budget (either in

I/O operations or runtime estimation), which is used to determine the samples’ sizes. For

online sampling-based AQP systems, the budget increases as long as the query is allowed to

execute for a longer time. For instance, in the Online Aggregation system [69, 64], a user

submits a query without an accuracy specification, and while the query executes, it presents

an approximate answer with its confidence interval, which improve the longer a query is

allowed to execute.

6.3.1 Continuous Query Model Design Options

In order to define an AQP model for stream processing, one needs to establish the appropriate

continuous query model and its parameters. Our investigation has led us to the following

parameters: (a) accuracy, and (b) budget. The first parameter comes naturally with AQP

and directly controls the quality of the produced result. The second parameter is the budget,

which controls both the potential performance gains and the accuracy. As a result, the

design space for the query model of an AQP system for stream processing is defined by the

four resulting combinations of allowing the user to bound (or not bound) each of the two

aforementioned parameters. The query model can vary based on whether the budget, and

the accuracy are bound with the query and we discuss each combination below.

6.3.1.1 Unbound Budget–Unbound Accuracy: This approach does not allow the

user to establish a level of service in terms either of accuracy or the processing speed. Thus,

we chose not to investigate this combination further.

6.3.1.2 Bound Budget–Unbound Accuracy: In this approach, the SPE receives a

budget specification by the user. This specification can be similar to the definition of budget

of BlinkDB/Aqua and can translate to sample size or process time. On every window, the

SPE creates a sample equal to the budget and produces an approximate window result, which

is annotated with an accuracy estimation. This query model allows for a straightforward
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tracking of the validity of its results, and can be used in real-time applications which allow

the user to access previous data and re-process a window in case the accuracy estimation

is very wide. Unfortunately, the number of real-time applications which allow “time travel”

are fairly limited, especially when the storage pipeline is separated from the SPE [35]. For

instance, if the window result produced comes with wide confidence intervals, then it might

not be of any use to the end user. In this scenario, the only option for a user will be to pull

old data from secondary storage for processing. This might take too long and exceed the

allowed decision-making time window. Ultimately, requirement R2 of Table 7 is undermined

for the windows with wide confidence intervals. For example, if the query of Figure 2 is used,

and the average fare f̄ of different rides overlaps, then the final ranking would be of no use

to the end user.

6.3.1.3 Unbound Budget–Bound Accuracy: On every window, the SPE processes

tuples until the estimated accuracy is equal to (or lower than) the user-defined accuracy

requirement. In this case, the query model is similar to the one from Online Aggregation and

the main difference is that the user does not have to explicitly stop the window processing.

The SPE can incrementally track the accuracy estimation, and when it reaches the acceptable

level, it stops processing and produces the approximate result up to that point. Even though

this model is dynamic enough to use exactly as many resources as it requires, it is not able to

efficiently process data for a variety of aggregate operations (i.e., violates requirement R3 of

Table 7). For example, if a CQ requires the estimation of a quantile, then every time a tuple

is included in the “about-to-be-processed” dataset, the whole part of the window needs to be

sorted from scratch. This entails a polylogarithmic amortized cost for a complete sorting,

which is equivalent to processing the whole window.

6.3.1.4 Bound Budget–Bound Accuracy: On every window, the SPE produces an

approximate result based on a bounded budget and accuracy requirement. In particular,

the SPE processes a number of tuples equal to the budget and estimates the accuracy of

the approximate result; if the accuracy is lower than the user-defined accuracy requirement,

then the SPE uses the approximate result; otherwise, it processes the whole window. This
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query model is more versatile because:

• It delivers approximate results within the accuracy requirements (requirement R1 of

Table 7).

• It produces a useful approximate result on every window (requirement R2 of Table 7).

• It supports a plethora of aggregate operations (requirement R3 of Table 7).

• It is able to react in case the budget is not ample (requirement R4 of Table 7).

A possible downside of this approach is its lack of control in its ability to process just

a fraction of tuples on every window (requirement R5 of Table 7). However, this is a

pathology of stream processing, which materializes when window data are highly variable

and an acceptable approximation is not feasible.

Due to the versatility of the Bound Budget–Bound Accuracy model, we selected it

as the most appropriate model for SPEAr. In detail, the user needs to define the accuracy

requirement (like the query depicted in Figure 8) along with a budget specification. Then,

SPEAr is able to detect opportunities for accelerating the processing on every window. We

present an overview of the SPEAr system in the next Section.

6.4 SPEAR SYSTEM OVERVIEW

In this section we present the architecture and design details of SPEAr. In Section 6.4.1

we briefly introduce the distributed architecture of SPEAr and its main components. In

Section 6.4.2 we list the CQ operations supported by SPEAr, and in Section 6.4.3 we provide

an overview of SPEAr’s operation.

6.4.1 Architecture

SPEAr is built on top of Apache Storm v1.2 and it has been designed to extend Storm’s

storm-client API. As explained in Section 2.6.2, Storm is a distributed SPE that follows a

tuple-at-a-time processing model and has been widely used by both academia and enterprise.

Heron [83] is the evolution of Storm, and their main differences lie in the core infrastructure
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(described in more detail in [83]). A Storm cluster consists of a single Nimbus instance, which

is the master coordinator for active topologies. A number of Supervisor instances act as

the worker processes, and exchange data with each other during processing. The Nimbus

process is responsible for monitoring and managing active topologies and is not part of the

processing pipeline. Supervisors are responsible for materializing the execution of a CQ.

SPEAr follows the same execution model as Storm, in terms of the communication and

physical execution layer. In essence, SPEAr is extending Storm’s API, to allow for approx-

imate execution of stateful aggregations. Storm v1.2 supports windows through the use

of the BaseWindowedBolt base class. The user needs to define the window logic by imple-

menting the former’s execute() method. Also, Storm supports both tumbling and sliding

windows, whose semantics are defined during topology creation. In addition, Storm supports

out-of-order (or late) tuples and supports storing state in a secondary storage devices for

recovery.

SPEAr supports the aforementioned functionality by defining its own ApproxWindowedBolt

and ApproxScalarWindowedBolt classes. The first is used for stateful aggregate operations

that group tuples based on a subset of their attribute values; the latter is for scalar stateful

aggregate operations. At query submission, a user needs to extend those classes, and create

their topology using SPEAr’s custom made TopologyBuilder class.

6.4.2 Supported Queries

As we mentioned earlier, we designed SPEAr to offer the Bound Budget–Bound Accuracy

query model. A user provides an accuracy requirement, in the form of an upper-bound error

ε, and a confidence level α at CQ submission: parameter ε represents the percentage relative

error in the approximate result; α indicates the probability that the approximate result will

deviate less than or equal to ε from the exact result (see Section 2.5). In addition, the user

needs to define a sampling budget b, which indicates the maximum size of a sample per

window. Essentially, b represents the additional memory that a user is willing to sacrifice for

building a sample and it is similar to VerdictDB’s I/O budget [105]. In the current version

of SPEAr, b is statically assigned by the user. However, future versions of SPEAr will be able
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q = rides

.time(x -> x.time)

.windowSize(15, TimeUnit::MINUTES)

.windowSlide(5, TimeUnit::MINUTES)

.mean(x -> x.fare)

.error(10%)

.confidence(95%)

.budget(1000)

.parallelism(4);

Figure 44: Example Scalar query for SPEAr.

to accommodate dynamic methods for online budget estimation.

Currently, SPEAr supports mean-like stateful aggregations, including common aggregate

functions (e.g., count, sum, avg, quantile, variance, stddev). In addition, those functions are

supported both in scalar or grouped format. SPEAr does not support approximate extreme

statistics (i.e., min and max ), which can be estimated by techniques presented in [118]. To

the extent of our knowledge, statistics of this type are the most popular in real-time data

analysis [104]. Approximation takes place on every Executioner thread (Section 2.6.2) that

performs a stateful aggregate operation, and each thread performs the acceleration decision

by itself. For instance, let us consider the following query expressed in a functional notation

in Figure 44. This CQ indicates that for the ride stream, the mean fare will be processed

for windows of r = 15 minutes, and slide s = 5 minutes. In addition, this stateful aggregate

operation will be executed in parallel by four workers. Each worker will have a budget of

1000 tuples per window, and the accuracy requirement is a relative error of 10% with a

confidence of 95%. During execution, each worker will allocate memory equal to 1000 tuples

for each window, and calculate the average fare value from it. If the confidence intervals of

the approximate value are estimated to be within ±10% of the exact answer, then a worker

will produce the approximate result. Otherwise, a worker will process the whole window.
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6.4.3 Workflow

In Section 2.4 we presented the details of stateful execution in modern SPEs. SPEAr relies on

this workflow model to achieve performance improvement and maintain the estimation error

within a user’s accuracy requirements. As a result, SPEAr performs different operations at

tuple and at watermark arrival.

6.4.3.1 Tuple Arrival At tuple arrival, SPEAr utilizes its budget allowance to maintain

information incrementally, which will be used at watermark arrival for decision making.

Depending on the stateful aggregate operation, the budget is utilized in a different manner.

When a tuple t arrives, its timestamp (or other window-determining attribute is extracted)

and the windows it contributes to are established using Equation 2.1. For each window that

the tuple is part of, a binomial process determines whether this tuple will be included in

that window’s budget space. This process is similar to the one used by CoD (Section 5)

and by incremental processing solutions, which augment the partial result of a window

fragment [20, 84, 122, 113, 121, 114].

For scalar aggregations, like the one demonstrated in the CQ of Figure 44, the budget

is used to maintain a uniform sample of the attributes that are required for the aggregate

operation. In particular, a uniform sample of fare values for each window will be used. A

sample of size equal to the budget b is allocated for each window separately.

For grouped aggregate operations (e.g., the query of Figure 2), a stratified sample needs

to be built for each distinct group appearing in a window. This is required so that each group

is proportionally represented in the output [12, 11, 10] (i.e., there needs to be an output tuple

for each distinct group). Therefore, the budget b is used for keeping track of the frequency of

each distinct group in a window, since this meta-information is not known before the window

is complete (i.e., its watermark is not received). This operation is a fundamental difference

between SPEAr and AQP DBMSs, which rely on either offline sample creation or metadata

information. The latter, have the fundamental information prior to query arrival and this

allows them to built samples incrementally. In contrast, SPEAr (or any SPE for that matter)

does not have this information and has to built the samples after a window is complete (i.e.,
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at watermark arrival).

6.4.3.2 Watermark Arrival At watermark arrival, SPEAr needs to produce an accu-

racy estimate for the approximate result and decide whether it is within the user’s confidence

intervals. If it is, then the approximate result is produced as the window result; otherwise,

SPEAr processes the whole window and produces the exact result.

For scalar aggregate operations, the result can be incrementally processed when tuples

arrive. Especially for associative and (non-) invertible operations, SPEAr’s budget can ac-

commodate both the result and the current aggregate operation result, using techniques

used in incremental processing [20, 84, 113, 114]. As a result, SPEAr requires a constant

processing time to retrieve an approximate result at watermark arrival. At the same time,

the confidence interval is estimated and a decision is made on whether to use the approx-

imate result. As far as holistic aggregate functions are concerned, those can be processed

incrementally, using Manku et al’s one pass algorithm [91].

For grouped aggregations, when the watermark arrives, the stratified sample sizes need

to be determined. This is done by deciding the sampling rate for each group, based on

groups’ frequencies and the available budget. Then, the window is scanned once to create

the stratified sample and at the same time produce the approximate result for each group.

This scan does not impose any additional overhead since it is already done by Storm to

identify expired tuples (Section 2.4) (i.e., garbage collection).

6.5 SAMPLING

In this section, we present background information on sampling techniques that have been

used in AQP. Furthermore, we present information about the sampling techniques that are

employed by SPEAr.
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6.5.1 Background: Sampling for AQP

In the past, AQP systems have relied on sampling-based approximations [69, 9, 12, 11, 10,

39, 13, 55, 105]. In essence, if there exists an underlying relation T , then a simple random

sample Ts ⊆ T is a subset of tuples extracted from the underlying relation. Depending on a

user’s query Q, which is applied on the sample Ts to produce an approximate result, different

types of sampling have been proposed.

6.5.1.1 Uniform Sampling Uniform sampling has been mainly used for scalar aggre-

gate operations. In this case, the challenge is to come up with a set of size n, and have a

simple random sample (or i.i.d. sample). The previous requirement is important to avoid

low quality results due to temporal locality of data in the underlying storage.

In essence, if T consists of tuples {t1, . . . , tN}, the uniform sampling procedure is an

assignment to each ti of a probability pi, which indicates the probability that ti will appear

in Ts. If the goal is to have |Ts| = n (i.e., the size of the sample to be n), we need that∑N
i=1 pi = n. In uniform sampling, every tuple ti has the same probability of appearing in Ts

(i.e., pi = n
N
,∀i). A challenge arises if Q comes with a predicate P on some of the columns of

T , due to the fact that this creates an implicit bias on the uniformity of the result. However,

in this work we consider approximation at the operator level of an SPE. As a result, any

filter operations appearing in a CQ do not affect the uniformity of the sampling process. We

refer the reader to [12] for a more detailed analysis on the matter.

6.5.1.2 Stratified Sampling Stratified sampling has been used when Q addresses a

portion of T ’s tuples with a specific characteristic. In stateful aggregate operations, this

happens when there is a group-by clause in the operator. In this case, the sample Ts needs

to maintain a proportional representation of every group. In particular, if the tuples of T can

be grouped in G groups, each group g appears ng times. In essence, N =
∑g

i=1 ni. Ideally,

for a sample Ts of size n, every group should appear nng

N
times in Ts.

Essentially, the algorithm for creating a stratified sample requires two passes over T .

First, for each group g we need to get its count ng. Then, based on the sample size n, create
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a uniform sample for each group which is going to be of size min(bnng

N
c, ng) [12, 13]. This

way, each group will be proportionally represented in the final result.

6.5.2 Online sampling creation for SPEAr

SPEAr uses different sampling methods depending on the stateful aggregate operation. Uni-

form and stratified sampling are used for scalar and grouped aggregations, respectively [42].

To avoid the sampling overhead, SPEAr conducts sampling upon tuple arrival by identifying

the windows in which a tuple participates (akin to the Multiple Buffers design presented

in Section 2.4)2. The tuple is offered to the sample of each window. When the window

preparation phase is triggered, the sample is ready for estimating the stateful operation’s

result and perform the accuracy check.

6.5.2.1 Uniform Sampling for Scalar Aggregations For scalar aggregations, SPEAr

maintains a uniform sample of size b for each window. The main challenge is to maintain the

size of each sample ≤ b, while creating a simple random sample. The more straightforward

way to maintain an simple random sample would be to follow a binomial process for each

input tuple. However, this would potentially lead to samples with sizes greater than b.

To this end, SPEAr employs Reservoir Sampling which guarantees the creation of a simple

random sample of bounded size [81].

At the same time, SPEAr performs incremental processing of the aggregate operation.

Specifically, every time a tuple t appears, the samples of the windows it participates in

are retrieved. For each of the samples, a reservoir process determines if the tuple will be

added to the sample. If the tuple is added, then the incremental value of the aggregate is

augmented. In case a tuple is removed from a reservoir sample, the aggregate value needs to

be augmented. For instance, for the query depicted in Figure 44 if a tuple with timestamp

00:07:00 arrives, the windows that it participates in are extracted: w1 = (11 : 55 : 00, 00 :

10 : 00), w2 = (00 : 00 : 00, 00 : 15 : 00), w3 = (00 : 05 : 00, 00 : 20 : 00) (by applying

Equation 2.1). Then, if any of the samples of w1, w2, or w3 are not of size b, the tuple

2SPEs spend a significat amount of time in network I/O and for putting the window operator’s thread in
and out of sleep.
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t’s fare value is added to the corresponding sample. Otherwise, a value might have to be

removed (according to the reservoir sampling process), and be substituted by t’s fare value.

If the substitution takes place, the corresponding sum value for each sample is augmented

by removing the previous value and adding the new fare value (a counter for the total size

of window tuples is maintained as well).

6.5.2.2 Stratified Sampling for Grouped Aggregations For grouped aggregations,

previous work on AQP suggests the usage of stratified sampling [42]. The problem of missing

groups from the result is eliminated, which appears when skewed datasets are uniformly

sampled and small groups have a high probability to not appear in the sample [11, 13,

73]. The Basic Congress sampling method [11] guarantees that for a sample of size b,

each group will have a number of tuples proportional to its frequency of appearance in the

dataset. As mentioned earlier, the frequency of appearance of each group is known in OLAP

DBMSs, which is not the case in stream processing. To overcome this problem, SPEAr builds

congressional samples incrementally.

At tuple arrival, SPEAr extracts the group fields of a tuple and identifies the windows

that this tuple participates in. In lieu of a sample, a histogram is maintained for each

window that holds the frequencies of each group in each window. When the watermark for a

window is received, and the window preparation phase is triggered, the window’s histogram

is scanned to establish each group’s sample size based on its frequency ng and b. Then,

the window’s tuples are scanned, the appropriate samples are created, the aggregation for

each group is processed, and the result is pushed for the accuracy check. This scan does not

present an added cost for SPEAr because it is required for identifying expired tuples (as part

of Storm’s guaranteed delivery mechanism and garbage collection process).

Even though the congressional sample process is an elaborate process, it requires a single

scan on the window’s tuples. This scan is faster or on par with the number of scans required

by normal processing in SPEs (Section 2.4). Additionally, SPEAr uses a number of optimiza-

tions for limiting the sampling cost. For instance, when the number of groups is known or

defined by the user, then SPEAr equally divides b among the different groups. This way,

sampling is piggybacked on tuple arrival and a window scan is unnecessary.
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6.5.2.3 Quantile Sampling Quantiles present an exceptional case for SPEAr since they

are approximated by utilizing the approximation algorithm of Manku et al [91]. This algo-

rithm manages to approximate the φ-quantile, with φ ∈ [0, 1] with a well defined error ε.

Given a set ofN numbers and a parameter φ, their algorithm is able to find the ε-approximate

φ quantile. A φ quantile is the element that resides in position dφNe in the sorted sequence

of the N numbers (see Section 2.5.1.2). An ε-approximate φ quantile is when the φ quantile

is between the positions d(φ− ε)Ne and d(φ+ ε)Ne of the arrays elements in sorted order.

Manku et al’s algorithm works by having two parameters: B and k. The product Bk

indicates the total amount of memory used, where k indicates a number of buffers of size B.

This algorithm builds a compact representation of the sorted array of elements, and when

all N elements have been scanned, it is able to provide any φ quantile statistic. The most

popular statistic is the median, which is equivalent to φ = 0.5. In their work, the authors

present a sampling based algorithm for providing an ε-approximate φ quantile tied with a

confidence parameter δ.

SPEAr utilizes this algorithm to approximate quantile queries under constrained memory

using a single pass over the data. For every window, memory of size b is allocated for the

estimation of the window’s quantile. In essence, SPEAr constraints the algorithm to have

Bk ≤ b. At watermark arrival, if b is enough to provide the ε-approximate quantile after

the window is complete, then SPEAr presents the approximate value as the window’s result.

Otherwise, it has to calculate the actual quantile by scanning the whole window. In the case

of grouped quantiles, SPEAr maintains each group frequency for the tuples of a window. At

watermark arrival, SPEAr will calculate the total needs for the quantile of every group, and

if the total is greater than b, it will go ahead and process the whole window. Otherwise, it

will accelerate by using the appropriate amount for each group.

6.6 ACCURACY CHECK

In this section, we present the details for estimating the accuracy of an estimated result.

As mentioned earlier, SPEAr performs a confidence check when the watermark for a window
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arrives, and when the approximate answer has been established. Prior to that, SPEAr

features some additional mechanisms to fast-track the check process, and avoid any penalties

(in the form of unneccessary execution).

6.6.1 Scalar Confidence Check

Accuracy or Error estimation has been extensively studied for AQP in the past. A relation

T = {x1, . . . , xN} of size N is sampled to create a sample Ts = {X1, . . . , Xn} of size n < N .

Given an aggregate operation g(), ĝ(Ts) applied is an estimator of g(T ). The goal is to

measure the quality (i.e., expected error) of the estimate ĝ(X1, . . . , Xn).

SPEAr approximates the confidence interval for a scalar aggregation by assuming that the

estimates are normally distributed about the corresponding population values. For example,

given a budget b = n, where n is the sample size accumulated using reservoir sampling,

and the mean estimate is Ȳ = 1
n

∑n
i=1 vi, where vi are the values that contributed to the

estimation of the average. The actual answer for the window’s mean value is µ = 1
N

∑N
i=1 vi.

If n is large enough (usually n ≥ 30 for symmetric distributions), then one can come up with

the confidence intervals, using the sample’s variance s. In detail, the confidence intervals are

calculated as in [42], as follows:

Ȳlow = ȳ − ts√
n

√
1− n

N
, Ȳhigh = ȳ +

ts√
n

√
1− n

N

For estimating the sum (or total) of the window’s values, then the confidence intervals are

the following:

Ŷlow = Nȳ − tNs√
n

√
1− n

N
, Ŷhigh = Nȳ +

tNs√
n

√
1− n

N

In the above Equations, ȳ is the sample mean, t is the value of the normal deviate corre-

sponding to the desired confidence probability (e.g., 1.96 for 95% and 2.58 for 99%), n is the

sample size, and s is the sample standard deviation.

As a result, SPEAr calculates the confidence intervals for g() and estimates it as a relative

distance from the estimated value. If the distance is less than or equal to the error specified

by the user, then SPEAr returns this value as output. Otherwise, it calculates the aggregation

for the whole window.
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Finally, we have to mention that for SPEAr’s mechanism to succeed, the budget (or the

sample size n) can not be arbitrarily small. This is due to the fact that we employ normal

approximation for the confidence intervals (as a direct implication from the Central Limit

Theorem). Therefore, in the event of a very small sample on a skewed distribution, the

confidence interval will not be precise.

6.6.2 Grouped Confidence Check

For grouped aggregations, SPEAr calculates the relative distance from the actual answer for

every group and aggregates them using one of the Equations 2.4, 2.5, and 2.6. Each Equation

serves different purposes and is applicable to different types of applications. If the resulting

error is less than or equal to the user error, then the approximate result is used. Otherwise,

SPEAr processes the full result.

Grouped Aggregate Operations present some additional challenges, which can either lead

to overcoming the budget b, or pay additional processing costs. The former, can take place

when the number of groups exceeds the available budget b. This is common in windows

which are very uniform and each group appears sparsily. The latter case happens when the

values of each group have a high variance, which can lead to a wide confidence interval. In

this case, SPEAr would waste time in processing the approximate confidence interval and

then find out that it needs to process the whole window.

To protect performance from those two cases, SPEAr is enhanced with two “early-fail”

mechanisms, which are used to quickly detect windows that are not able to be accelerated:

1. Number of distinct groups is greater than the budget: In this case, SPEAr will

immediately proceed to processing the whole window. This, optimization is also used to

alleviate the memory usage when a window is not concluded. If SPEAr detects that the

frequency of groups is higher than the budget, then it will release the memory and mark

the window as not fit for acceleration.

2. Variance of group values: SPEAr monitors the estimated variance of groups in a

window. If the average variance leads to a wide confidence interval, then SPEAr detects

that it should not spend time to calculate an approximate value for the window.
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Table 8: Datasets and Queries Used

Total Tuples Win. Size Win. Slide Avg. Win. Size

DEBS 56M 30 min. 15 min. ≈10K

GCM 24M 60 min. 30 min. 320K

DEC 4M 45 sec. 15 sec 47K

6.6.3 Quantile Confidence Check

Confidence Check for quantile operations is performed using the expected memory require-

ments to satisfy an ε-approximate φ-quantile, by comparing the allocated budget with the

expected budget documented in [91]. If the allocated budget b is lower than the one required

for the approximate quantile algorithm to provide an answer within the user’s accuracy, then

SPEAr processes the whole window.

6.7 EXPERIMENTAL EVALUATION

In this section we present the details of our experimental evaluation on SPEAr. Our goal

is to investigate SPEAr’s ability to improve performance, reduce use of resources, detect

opportunities for acceleration, and decrease the amount of data processed. In Section 6.7.1

we provide SPEAr’s implementation details, experimental infrastructure, and the datasets

used in the experiments. Next, in Section 6.8 we present our experimental results.

6.7.1 SPEAr Implementation Details

SPEAr is built as an extension to Apache Storm’s (v1.2.1) storm-client module. A user

enables approximate processing by submitting their topology with SPEAr’s topology builder

class named ShedTopologyBuilder, which requires the definition of an error, a confidence
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level, a memory budget, and the aggregate operation. As shown in the example CQ depicted

in Figure 44, a user has to provide a method for extracting the timestamp field that assign

tuples to windows, the sliding window specification (i.e., window size and slide), and the

aggregate operation in the form of a lambda expression (i.e., anonymous function). Also,

they provide the error ε, the confidence (α), the budget (b), and the number of workers that

SPEAr will use for the aggregate operation.

6.7.2 Experimental Setup Details

Our experiments were conducted on Amazon EC2, with a cluster consisting of 9 r4.xlarge

nodes. Each node ran Ubuntu Linux 16.04, OpenJDK Java v1.8, and python v2.7 and has

access to 4 virtual CPUs of an Intel Xeon E5-2686 v4 and 32GBs of RAM. One node was set

up as the master, having a single-instance Zookeeper v3.4.10 server and a Nimbus process.

Each of the remaining nodes ran a single Storm supervisor process, which is configured to

accommodate up to 4 executor threads.

In all experiments, we enabled Storm’s acknowledgment mechanism to guarantee pro-

cessing of all tuples. We need to state that the acknowledgment mechanism hinders SPEAr’s

acceleration mechanism and significantly reduces its performance benefit over Storm. Also,

we enabled the Storm’s back-pressure mechanism to guarantee in-order delivery of tuples and

avoid polluting measured times. We note that all experiments, whose results are presented

in this work, did not have any late (or out-of-order) tuples.

As far as the CQ execution plan is concerned, we set a single source operator (i.e., Storm’s

Spout) that reads data sequentially from a memory-mapped file, and pushes them to the

downstream workers. In turn, each worker executes SPEAr’s detection mechanism and the

aggregate operation whenever a window is complete. A worker forwards its windows’ results

to a single worker that collects partial results. All of the results that we present are the

arithmetic mean of seven runs, without the maximum and the minimum reported values.

In order to measure processing times with high precision, we used Storm’s metrics API,

which provides periodic reporting of runtime telemetry for each worker. In addition, for

the experiments that we compare SPEAr to sketching techniques, we make use of CountMin
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sketch [43], as it is considered the state of the art sketch technique for frequency counting.

In this experimental evaluation, we used the popular CountMin sketch implementation of

stream-lib v2.9.5 3.

6.7.2.1 Datasets In our experimental evaluation we used three real-world streaming

datasets, which are documented in Section 2.6.1. For each one of the datasets, we conducted

an aggregate operation on a predefined time-based sliding window, on event time. Table 8

summarizes specific information for the datasets. Two of the datasets feature group aggregate

operations (DEBS and GCM) and one features two scalar aggregate operations (DEC). For

all queries we set the relative error to 10% and the confidence to 95% unless we specify

otherwise.

• ACM DEBS 2015 Challenge dataset (DEBS): For this dataset we used one of the

challenge’s aggregate operations, which features a 30 minute sliding window, with a 15

minute slide, for calculating the average fare amount for each route. Routes are divided

into a 300 by 300 cell grid that covers the entire New York City.

• Google Cluster Monitoring dataset (GCM): For this dataset we used part of the

task-events table and performed Query 1 from [82], which requires the average CPU time

requested by different scheduling classes. In order to examine SPEAr’s performance on

larger windows, we set the sliding window size to 60 minutes and the slide to 30 minutes.

Nevertheless, we investigated the sensitivity of SPEAr’s performance improvements with

smaller windows of sizes of 30 and 15 minutes, with slides of 15 and 7.5 minutes.

• DEC Network Monitoring (DEC): For this dataset we used time-based sliding win-

dows of 45 seconds with a slide of 15 seconds (as the ones used in [24]). For DEC, we

used two different scalar aggregate operations (i.e., without a group-by statement): (i)

the average, and (ii) the median TCP packet size. For the median, we set the relative

error to 10%, with a confidence of 99%, since the approximation algorithm presented

in [91] presents budget values for a confidence value ≥ 99%.

3https://github.com/addthis/stream-lib
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6.8 EXPERIMENTAL RESULTS

Our aim is to experimentally evaluate the merits of using SPEAr, by measuring perfor-

mance improvement in terms of processing time, approximate results’ accuracy, the success

of SPEAr’s accuracy estimation mechanism, and the total percentage of data processed.

Unless specified otherwise, we set SPEAr’s budget b to a value that would cause it to

accelerate processing in the majority of windows. In order to identify the proper b value for

each dataset, we analyze their data characteristics offline, and then hard-code those values

in the CQs submitted to SPEAr. For DEC, GCM, and DEBS, we set b to 1,000 for the average

aggregate operation (150 for median), 4,000, and 2,000 tuples, respectively. Those b values

amount to 2.1% (and 0.3% for the median), 5%, and 20% of the average window size for

DEC, GCM, and DEBS (as shown in Table 8). We have to mention that the reason we set

b to be a large percentage of the window size for DEBS is because this dataset is sparse

and most distinct routes appear once or twice per window. Our analysis indicates that for

an average window size of 9893 tuples, 4938 distinct routes appear on average. As a result,

SPEAr needs to be able to accommodate at least a tuple from each group to build a stratified

sample, and we discovered that setting b = 2000 tuples per worker allowed the acceleration

of most windows in the dataset (at least 98.2% of the windows are accelerated).

6.8.1 Scalability (Figures 45-46)

The first batch of experiments aims at identifying SPEAr’s scalability in terms of window

processing time and the amount of memory used by each worker for processing. To this

end, we measured Storm’s and SPEAr’s processing time and mean memory consumption per

worker on five different levels of parallelism for both aggregate operations on the DEC work-

load (i.e., the average and the median TCP packet size). We chose DEC for our scalability

experiment for two reasons: (a) scalar aggregate operations do not require additional mem-

ory, since they produce a single result for the whole window (i.e., processing time reflects

the time it takes to process a set of tuples only); (b) DEC is the only dataset that could be

executed on a single node in a reasonable amount of time.
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Figure 45: Processing time of Storm and SPEAr on the DEC dataset.

Figure 45 shows the window processing time (both mean and 95-percentile) when one,

two, four, six, and eight worker nodes are used (the average processing time among all workers

is presented). Starting from the query for the average TCP packet size (Figure 45a), SPEAr

is up to 293 times faster compared to Storm in terms of the average window processing time.

Similarly, SPEAr is up to 166 times faster compared to Storm in terms of the 95 percentile

window processing time. This happens because SPEAr has to process up to a 1,000 tuples

per window (which is the budget size we set for this query) and achieves an error ≤ 10% for

at least 95% of the windows. On the other hand, Storm has to process many more tuples per

window, and the average window size for DEC is 47,000 tuples). This drop in the processed

tuples is the reason that processing times are much lower for SPEAr. We documented a

similar outcome for the median TCP packet size aggregate operation (Figure 45b). SPEAr is

up to 82 times faster compared to Storm in terms of the average window processing time; and

up to 41 times faster compared to Storm in terms of the the 95 percentile window processing

time. Despite the fact that SPEAr uses a budget of b = 150 tuples for the median, the

improvement in window processing time is not as big as the one measured for the average

processing time is because the approximation algorithm that SPEAr uses requires sorting the
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Figure 46: Average window worker memory of Storm and SPEAr on the DEC dataset.

values maintained in the budget space.

In addition, we measured the average size of memory used for producing the result by

each worker. Figure 46 illustrates the memory used by Storm and SPEAr on both the average

and the median TCP packet size for each setting. As can be seen in Figures 46a and 46b,

SPEAr uses a constant amount of memory for both aggregate operations, which is equal to

the budget set (in this experiment we set the budget b to allow for acceleration of every

window in this dataset). As a result, SPEAr uses from 5.97 to 47 times less memory per

worker on average for the mean TCP packet size aggregate operation compared to Storm

(Figure 46a). Similarly, SPEAr uses from 38.77 to 310 times less memory per worker on

average for the median TCP packet size aggregate operation (Figure 46b).

Take-away: SPEAr achieves significantly lower processing time compared to Storm with

only a fraction of the cluster nodes. Also, SPEAr requires much less memory per worker to

produce a result within the specified accuracy. As a result, SPEAr will avoid spilling data

on secondary storage in the event that the about-to-be-processed set of tuples can not fit in

main memory.
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Figure 47: Average and 95-percentile processing time.

6.8.2 Performance (Figure 47 and Table 9)

For our second batch of experiments, we set our cluster to use up to four executor threads,

each one running on a single node in isolation. We measure the average and 95-percentile

window processing time for all datasets. On top of that, for GCM and DEBS we executed

the grouped aggregate operations with the use of a CountMin sketch to measure the window

processing time achieved with a state-of-the-art sketch. We allocate enough space for the

CountMin sketch to achieve a confidence of 95% and an error of up to 10%. Figure 47

illustrates the mean and the 95-percentile window processing times of Storm and SPEAr.

Starting from the DEC workload (Figures 47a and 47b), SPEAr reduces the window

processing time for the mean TCP packet size aggregate operation by up to 39.85 and 23.94

times compared to Storm on the mean and the 95-percentile case respectively. For the

median TCP packet size aggregate operation, SPEAr reduces window processing time by up

to 17.38 and 7.47 times for the mean and 95-percentile case respectively. For this set of

experiments, SPEAr’s budget for the mean query was set to 1,000 and for the median query

to 150 tuples accordingly. Next, on GCM, SPEAr reduces window processing time by more

than 120 times compared to Storm for both the mean and the 95-percentile case respectively

(Figure 47c). This is due to the fact that GCM presents a small number of distinct groups,

whose results can be approximated with only a small portion of the window’s tuples. For
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Table 9: Processing time (msec) of SPEAr and Count-Min sketch.

Mean 95-%ile

SPEAr CountMin SPEAr CountMin

GCM .12 40.26 .04 107.6

DEBS .09 3.7 .098 5.5

GCM we set SPEAr’s budget to 4,000 tuples per worker, which as we explained earlier, we

found to be enough for accelerating each one of the windows and offering an average error

among groups less than 10% (95% of the time).

Finally, Figure 47d illustrates the processing time of Storm and SPEAr on the DEBS

dataset. For this experiment, we set SPEAr’s budget b to 2,000 tuples, which amounts for

20% of the average window size. As mentioned earlier, DEBS is a sparse dataset since a large

portion of distinct groups appear on a window less than three times. As a result, b needs to

be set at a high enough value to accommodate a stratified sample representing all distinct

groups. Our offline analysis of DEBS concluded that a 2,000 tuple budget allows SPEAr to

reduce window processing time by 7.77 and 13 times for the mean and the 95-percentile case.

With this budget setting, SPEAr is able to accelerate at least 98% of the windows on each

worker, and avoid processing at least 25% of the total number of tuples across all windows.

As far as the CountMin sketch is concerned, we compared SPEAr against a CQ that uses

CountMin to produce the results of the grouped aggregate operations of GCM and DEBS.

To this end, we used a CountMin sketch for counting the sum of values and the frequency

of appearance of each distinct group for the group aggregate mean operation of GCM and

DEBS. Table 9 presents the average and 95-percentile window processing times of SPEAr

and Storm with a CountMin sketch. It is apparent that SPEAr is able to offer much lower

processing time compared to the CountMin sketch setting on both datasets. In fact, the

usage of a sketch causes performance to degrade compared to normal execution, which is

justified by the application of the computation-heavy hash functions required by the sketch.
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Figure 48: Processing Time on GCM with different window sizes.

With SPEAr processing time is reduced by at least 9.89 times for both the mean and for the

95-percentile case. In essence, the usage of a CountMin sketch increases the processing cost

significantly, due to the additional processing required by this sketch technique (compared

to normal execution it uses less memory).

Take-away: SPEAr outperforms both Storm and Strom with a CountMin sketch by more

than 7 times in both the mean and the 95-percentile window processing time. This is an

outcome of SPEAr’s ability to approximate windows’ results by processing less elements,

without introducing additional overhead. Our experimental results on all three datasets

indicate that the performance benefit is significant compared to both normal and sketch-

based execution.

6.8.3 Window Size Sensitivity Analysis (Figure 48)

The third batch of experiments aimed at measuring the effect of window size (in terms

of time) on the performance improvement offered by SPEAr. For this set of experiments,

we picked GCM and measured the average and 95-percentile window processing time with

different window definitions. To this end, we set SPEAr’s budget to 4,000 tuples, and execute

132



the GCM aggregate operation on three window size settings: 900, 1,800, and 3,600 seconds

(with a slide of 450, 900, and 1,800 seconds). Those translate to an average window size of

84,000, 164,588, and 320,000 tuples respectively. The reason we picked GCM for measuring

SPEAr’s sensitivity analysis is because it features a grouped aggregate operation, and tuples

for each distinct group appear multiple number of times per window.

Figure 48 depicts the average and 95-percentile processing time achieved by Storm and

SPEAr. When the window size is set to 900 seconds, SPEAr is able to achieve at least 2 times

better processing time compared to Storm. However, the budget of 4,000 tuples is not enough

to accelerate all of the windows (i.e., approximate). In fact, SPEAr accelerates only 68% of

the total windows, and this is a result of SPEAr’s accuracy estimation mechanism, which

for the remaining windows identifies that the approximate result is likely to have an average

relative error ≥ 10%. As a result, the average and the 95-percentile window processing

time reported contains the processing times of windows that are fully processed. When, the

window size is set to 1,800 seconds, SPEAr is able to accelerate 88% of the total number of

windows. Consequently, the improvement in processing time compared to Storm increases

further. Finally, when the window size is set to 3,600 seconds, SPEAr is able to accelerate

all windows and achieve more than two orders of magnitude lower window processing time

compared to Storm, with an average window relative error of less than 10%.

Take-away: SPEAr is able to identify windows that are not safe to be “accelerated”. In those

cases, SPEAr improves performance up to 2 times compared to Storm. On larger windows,

SPEAr is able to improve performance further.

6.8.4 SPEAr compared to Incremental Processing (Figure 49)

Next, our goal was to compare SPEAr against incremental processing techniques. Storm

v1.2 supports incremental processing by separating a window’s tuples in new (i.e., tuples

that are pushed for processing for the first time), and expired (i.e., tuples that belong to

a window that has been processed). However, this functionality is not equivalent with the

incremental techniques that have been previously presented and offer a constant update cost

at watermark arrival. To this end, we modified Storm’s WindowManager class to offer incre-
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Figure 49: Processing time (nsec) on DEC between Storm, Storm with incremental process-

ing, and SPEAr (without the incremental optimization).

mental processing, by updating each window’s result at tuple arrival; and when a watermark

arrives, Storm produces the result. This functionality is feasible only for associative and

distributive/algebraic aggregate operations.

We conducted the comparison experiment on the DEC dataset and compared the window

processing time between Storm, incremental processing with Storm (tagged as “Storm-Inc”),

and SPEAr. Figure 49 presents the box plot for the window processing times of each technique

in a logarithmic scale. Storm maintains the slowest processing time, and at least one order of

magnitude slower compared to SPEAr and Storm-Inc. SPEAr is slower compared to Storm-

Inc, because we did not enable SPEAr’s optimization for associative operations (i.e., sum

and count), and it still iterates over the tuples of the sample. As a result, SPEAr presents

a higher runtime compared to incremental processing (i.e., Storm-Inc). However, when we

enable SPEAr’s optimization for associative aggregate operations, its runtime is identical to

Storm-Inc’s, and constant across windows.

One problem with incremental processing is that is not applicable to holistic aggregate

operations. To this end we highlight SPEAr’s performance benefits in a holistic aggregate

operation, such as the median. To this end, we measured the performance experiment on
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Figure 50: Relative error per window on DEC. The red (flat) line indicates the user-defined

acceptable error (i.e., 10% at 95% confidence). The blue line indicates the error achieved by

SPEAr.

a topology that produces the median of TCP packet sizes for the DEC dataset. To the

extent of our knowledge, there exists no incremental technique for calculating the median

of non-distinct values with a linear cost. As a result, we omitted Storm-Inc setup from this

experiment. For SPEAr, we calculated the median with ε = 10% and 99% confidence.

Figure 49b illustrates the window processing time for each window. It is clear that

SPEAr achieves almost an order of magnitude better performance compared to Storm. This

is because for DEC the average window size is about fifty thousand tuples. For SPEAr’s

quantile estimation algorithm, the median is approximated with a uniform sample of 150

tuples per window. As a result, the processing time is much lower.

Take-away: SPEAr presents identical processing time compared to incremental processing

techniques. At the same time, SPEAr is able to accelerate a broader variety of aggregate

operations, and achieves up to an order of magnitude better performance compared to Storm

on quantile approximation.
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6.8.5 Error (Figure 50)

Our next batch of experiments focused on SPEAr’s ability to identify acceleration opportu-

nities, and the success rate of its error estimation technique. We set the budget b to three

different values: 250, 500, and 1000 tuples. The rationale for selecting those values, is a

setting that is too low that will make SPEAr avoid acceleration (250), a setting that is rela-

tively low and will cause SPEAr to produce error estimations (500), and a setting which will

cause acceleration and acceptable accuracy on all windows (1000). The expected behavior

of SPEAr is to simulate the aforementioned behavior and avoid accelerating execution, at

the expense of quality. We came up with those values after we executed SPEAr on the DEC

dataset and identified situations where the error would exceed the user defined error.

Figure 50 presents the error of SPEAr when compared with the actual result on the DEC

dataset. When b = 250, SPEAr does not accelerate processing often (an error of 0 indicates

that SPEAr performs normal processing). This happens because SPEAr’s confidence interval

estimation mechanism indicates that the interval is wider than 10% of the estimated value.

As a result, SPEAr chooses to process the whole window. In fact, only 15% of windows

are accelerated, and four out of 37 produce a result which diverges more than 10% from

the actual answer. When b = 500, SPEAr accelerates 98% of the windows, and its result

diverges from the actual answer by more than 10% in six windows (which accounts for 2.5%

of windows-satisfies the 95% confidence property). Finally, when b = 1000 SPEAr accelerates

all windows, and no windows have an error more than 10%. In this case, SPEAr identifies

that the budget b is enough to safely accelerate a window.

Take-away: SPEAr’s accuracy estimation mechanism makes correct decisions and acceler-

ates processing, for appropriate budget values.

6.8.6 Data Volume Reduction (Figure 51)

Finally, we measured the total data volume processed by SPEAr when all windows are ac-

celerated. This is an important metric because through it we can examine how SPEAr

maintains the processing pipeline of an SPE less busy with processing and less crowded in

terms of memory used. As a result, the effective throughput of the overall system increases.
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Figure 51: Percentage of total tuples processed by SPEAr.

To this end, we set the budget to 1,000, 150, 4,000, and 2,000 tuples per worker for DEC

(mean query), DEC (median query), GCM, and DEBS. Figure 51 indicates that SPEAr pro-

cesses less than 10% of the total data, including overlapping fragments among consecutive

sliding windows for the DEC and GCM datasets. This means that from the total volume

of tuples that need to be processed, SPEAr identifies that overall less than 10% of it needs

to be processed, in order to produce results acceptable by the user. Turning to the DEBS

dataset, it has to process about 74% of the total data due to the fact that DEBS features

sparse data. However, even in this unfortunate scenario, SPEAr is able to avoid processing

one fourth of the total data.

Take-away: By accelerating execution, only a small fraction of the whole data is processed,

as low as 1.3% in our experiments with real datasets.

6.9 RELATED WORK

In this section, we cover work done in related fields for SPEs and stream processing. SPEAr

represents a novel prototype, and the first of its kind to identify opportunities for accelera-

tion. As a result, some of the related work discussed in this section might not be a direct
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comparison to SPEAr, but rather a review of the design space for expedited stream process-

ing. In Table 7, we have presented some of the features that we believe are important for

improving the performance of SPEs.

6.9.1 Incremental Processing

To the extent of our knowledge, the first work introducing differential (or incremental) evalu-

ation of CQs is the work by Liu et al [87]. In this work, a differential evaluation framework for

select, project, and join queries is presented. In addition, they employ associative aggregate

operations (e.g., SUM) for monitoring the satisfaction of conditions for triggering differential

evaluation. However, their work fails to provide support for holistic aggregate operations.

Next, the work of Arasu et al [20] presents efficient ways of accommodating multiple CQs in

the same SPE. The different CQs that they consider have to be on the same input stream(s),

and share the same windowing conditions. Their goal is to avoid using additional memory for

each CQ, and at the same time save on computation. The framework they present covers a

wide spectrum of window types and aggregations, along with quantile holistic aggregations.

However, their algorithm for quantiles bears a logarithmic update time, and a costly (in

terms of complexity) lookup time. SPEAr features a constant update time, a constrained

memory update (b), and a constant lookup time. Similar work presented in [84] presents a

framework for saving both in memory and computation when multiple queries of distributive

and algebraic aggregate operations are used, which is an impact similar to the work presented

in [122, 121, 113, 114]. All these improve on the amortized cost of updates and lookups for

associative and (some) invertible operations. However, they do not address holistic aggre-

gate operations. Finally, the work of Wesley et al [135] presents a solution for incremental

processing of distinct value quantiles. The algorithm used by SPEAr is not restricted in the

frequency of appearances of each value, i.e., would work even not for distinct value quantiles.

6.9.2 Load Shedding

Even though load shedding does not aim at providing tight accuracy guarantees, previous

work strived to minimize error [124, 24, 96, 106]. The work of Babcock et al. [24] focused on
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identifying shedding rates that maintain a low error. However, there are no guarantees that

this error will be sustained when the input rate increases. Semantic shedding [124] limits

the error when the user provides a utility graph. But, this approach is not feasible in queries

that mine patterns (e.g., top-K). Finally, [96] presents an optimal shedding algorithm, but

without tight accuracy guarantees.

6.9.3 Sketches

A lot of work has been done on sketch-based techniques. Hyperloglog [52] and CountMin

sketch [43] are two of the most widely used sketches for keeping information about a stream.

Despite the fact that those can provide tight error guarantees, they do not react to data

changes and cannot be used in windows efficiently (a sketch is not aware of the window

boundary). Recently, Ada-Sketches [115] showed that they can enhance the count using

a novel method for adopting counters as time progresses. However, those cannot provide

information on elements at the window boundary, and it is not clear how they would operate

on a sliding window paradigm, when the window slides and some values no longer exist. In

addition, when the groups are unknown, the memory benefit of the aforementioned structures

is diminished, and (as shown in Section 6.8) all of the tuples need to be processed.

6.9.4 Elastic SPEs

Finally, a lot of SPEs with the ability to add additional workers have been presented [66, 141,

67, 68, 34, 86, 110, 107, 136]. All of those are able to maintain the performance of an SPE in

acceptable levels, without adding a significant overhead to the execution. We consider this

line of work orthogonal to SPEAr’s goals, since SPEAr can be extended to support online

reconfiguration of its resources.
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6.10 SUMMARY

In this chapter we presented SPEAr, a prototype SPE built by combining principles from AQP

and differential processing for SPEs. SPEAr’s goal is to detect opportunities for accelerating

stateful processing with accuracy guarantees. To the extent of our knowledge, SPEAr is the

first system of its kind that automatically detects opportunities to accelerate processing, by

applying AQP principles in streaming. Our experiments highlight the practical significance

of SPEAr, with impacts on performance (Section 6.8.2), resource savings (Section 6.8.1),

accuracy (Section 6.8.5), and effective data volume reduction (Section 6.8.6).

140



7.0 SHED-PARTITION: THE POWER OF TWO TECHNIQUES IN ONE

In the previous chapters we presented our own techniques for stream partitioning, load shed-

ding, stream re-partitioning. In the last chapter, we presented SPEAr as a novel system model

for automatically accelerating processing. An important part of SPEAr is its mechanism to

detect opportunities for approximating a window’s result at the worker level: each worker

thread examines the possibility of processing a subset of its windows’ tuples to expedite the

production of a result, given specific accuracy requirements.

As discussed in Sections 1 and 3.8, there are circumstances when a single technique

is not adequate to overcome an overloaded situation. In this chapter, we present a novel

hybrid technique that can further improve load allocation among multiple workers of an SPE,

and in turn improve performance. This technique operates similarly to SPEAr, and detects

approximation opportunities at a distinct group level granularity.

Section 7.1 introduces the need for combining adaptation methods, and is followed by

Section 7.2, which formalizes the stream partitioning problem. Next, Section 7.3 presents the

hybrid model that combines partitioning with load shedding. Section 7.4 presents the details

of our ShedPart operator, and is followed by our experimental evaluation (Section 7.5).

7.1 THE NEED FOR TIGHTER INTEGRATION OF ADAPTATION

TECHNIQUES

Each one of the three adaptation techniques (stream partitioning, load shedding, and stream

re-partitioning) is targeted to be used under specific circumstances. In our experience with

stream processing, the expected sequence of actions performed by a user, who submits a CQ
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and monitors its execution, to maintain an SPE’s performance are the following:

Step 1 (Adaptive Stream-Partition): If the performance of an SPE drops due to

imbalanced load allocation, change the stream partitioning. Apply this approach as long

as each worker does not exceed its processing capacity. This technique is applicable

when accuracy cannot be compromised. However, as we have shown in Chapter 3 there

is no single stream partitioning algorithm that offers the best outcome in terms of both

imbalance and aggregation cost. Also, input load can become exorbitant for existing

resources. Therefore, the need for further action arises.

Step 2 (Load Shed): If the total input load exceeds available resources’ capacity, and

the increase in load is expected to last temporarily, then the user initiates load shedding.

This technique is applicable when a CQ allows for approximate execution, and the load

is expected to regress to normal levels shortly. Techniques to maintain results’ accuracy,

like SPEAr, can be applied proactively as well. However, both load shedding and SPEAr-

like solutions can fail if the data are not fit for approximation (e.g., wide confidence

intervals), long-lasting load increase, or data volume is enormous for available resources.

Under such circumstances, additional infrastructure needs to be added.

Step 3 (Stream Re-Partition): If the input spike persists, and/or the accuracy of the

results is violating a CQ’s accuracy requirements, then additional resources need to be

added. Stream re-partitioning has to occur, which entails provisioning more resources,

re-partitioning state, and suspending operation momentarily. Re-partitioning can be a

“pharmakon” (i.e., both a poison and a cure) due to its short-term disadvantages for long-

term performance benefits [34, 63]. Even if no-state protocols, like UniMiCo are used,

performance degradation will last until all active windows have been processed [107].

Also, scaling-out stateful aggregate operations can result in additional hops (i.e., edges)

in the physical execution plan (e.g., an aggregation step needs to be added for combining

partial results).

The aforementioned steps have been a road-map on when to use each technique, and

it is apparent that there is no silver bullet for achieving fully adaptive stream processing.

To compensate for the shortcomings of each adaptation technique, the combination of two
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or more has been used in the past to alleviate the side-effects of each one. Two techniques

have been applied in tandem to remedy situations when a single approach can not solve the

performance issue [111, 86, 50]. In particular, stream partitioning algorithms and stream

re-partitioning techniques have been combined to handle skewed data. In the event that a

partitioning algorithm is not able to overcome long-term skewed load allocations, additional

resources are added in an online fashion. In the case of Flux [111], an upstream partition

operator would monitor each worker’s load, and if the load distribution is skewed, Flux in-

troduces additional workers, and re-distributes load. A similar approach for scalable stream

join operators was presented in [86, 50] which was shown to maintain acceptable perfor-

mance in highly skewed environments. Nevertheless, both solutions were not demonstrated

in scenarios which required a global window result (i.e., a final aggregation step). Therefore,

it is not clear if either would be suitable for CQs that feature grouped or scalar aggregate

operations.

This motivated us to investigate the combination of stream partitioning and load shed-

ding, to overcome the limitations of previous techniques that combined stream partitioning

and re-partitioning. Our goal is to avoid having to “split” highly frequent groups, which

introduces an aggregation step. In contrast, we propose to “trim” the excess tuples when the

exact processing is not required by the application. Another observation that motivated our

investigation is the pathology of 1-choice partition algorithms in terms of imbalance mini-

mization (Section 3.3). As far as 1-choice partition algorithms are concerned, they sacrifice

imbalance in order to avoid an aggregation step.

In this chapter, we introduce a solution that (i) improves an SPE’s performance by re-

ducing imbalance among workers, and (ii) does not carry the costly overhead of stream

re-partitioning. ShedPart is our lightweight operator, which works alongside a stream par-

titioning algorithm, and “trims” excess tuples from individual groups. ShedPart’s operation

relies on incremental statistics, and at window completion (i.e., watermark arrival) it iden-

tifies the appropriate number of tuples that need to be processed for the most frequently

appearing groups. Its operation is similar to SPEAr’s, but it operates at a finer granularity

to achieve higher accuracy while reducing imbalance. In essence, ShedPart’s error estimation

takes place on a distinct group rather than a worker level. This way, ShedPart can maintain
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full accuracy on some groups and sacrifice the accuracy of specific groups only.

7.2 PROBLEM STATEMENT

In the work presented in Chapter 3, a window Swi is partitioned among V workers based on a

stream partitioning algorithm P , and our exploration for stream partitioning algorithms was

limited to exact processing solutions. In other words, we investigated partitioning algorithms

when the exact result needs to be produced. The success of P is measured using the imbalance

metric, which in its simplest form is measured by Equation 3.1. This entails that if in Swi
exist G distinct groups (i.e., ‖Swi ‖ = G), then the tuples of Swi can be partitioned in G

sub-groups based on their k attribute values. In essence, if Ng is the set of tuples of Swi
that belong to distinct value g, then N1 ∧ . . . ∧ NG = Swi . Turning to imbalance, its first

operand is the total number of tuples of the most loaded worker w. Essentially, the most

loaded worker’s total load is equal to LwSw
i

=
∑

j |Nj|, where {j|t ∈ Swi ∧ kt = {j}} and

P (Nj)→ {w, . . . , w}.

Essentially, to limit the imbalance in this setting, w’s load need to be reduced, which is

proved by the following lemma:

Lemma 1. For a given window Swi , V number of workers, and a partition algorithm P ,

imbalance I(P (Swi )) is reduced if and only if the load of the most loaded worker w is reduced.

Proof. The average load among all V workers is l̄ = 1
|V|
∑V

j=1 L
j
Sw
i
. This can be broken

down to l̄ =
Lw
Sw
i

V + 1
|V|
∑

j=1,...,V∧j 6=w L
j
Sw
i
. From Equation 3.1, the imbalance for window

Swi is I(P (Swi )) = LwSw
i
− l̄ ⇒ I(P (Swi )) = LwSw

i
− (

Lw
Sw
i

V + 1
|V|
∑

j=1,...,V∧j 6=w L
j
Sw
i

). This can

be written as: I(P (Swi )) = LwSw
i

(1 − 1
V ) − 1

|V|
∑

j=1,...,V∧j 6=w L
j
Sw
i
. The terms (1 − 1

V ) and
1
|V|
∑

i=j,...,V∧j 6=w L
j
Sw
i
are constant given the partition algorithm P . Also, the term (1− 1

V ) > 1

(imbalance has no value when defined for a single worker). Then, I(P (Swi )) is directly

proportional to LwSw
i
, which entails that if the latter is reduced, I(PSw

i
) is reduced as well.

Lemma 1 indicates that the goal to reducing imbalance, and in turn the time it takes
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to perform the parallel step of a stateful operation (see Section 3.1), can only be reduced

if the load of w is reduced. Therefore, the focal point of any technique aiming to reduce

imbalance is to reduce the maximum load. w’s load is the sum of the disjoint sets of tuples

that belong to the groups assigned to this worker. Thus, to reduce LwSw
i
one needs to reduce

the individual disjoint sets. This can be achieved by shedding tuples for each individual

group.

Dropping tuples will result in approximate results and deviate from previously proposed

techniques of exact stream partitioning. Consequently, there is a need of a query model

that includes an accuracy requirement, similar to the one used by SPEAr (Section 6.4).

Hence, a CQ will be submitted with an error ε and a confidence α definition, as presented

in Section 2.5. Given a stateful operation, the approximate window result R̂w should not

deviate by more than ε compared to the exact result Rw.

7.3 PARTITION MODEL

As discussed above, in order to reduce imbalance we need to reduce the load of the most

loaded worker w by maintaining the accuracy of the result within the accuracy requirement.

In essence, given a stateful aggregation f , the partition model should iterate over w’s assigned

groups, and examine if any of them can have its aggregate result Rw be approximated. This

entails that for every group g assigned to w, for which Ng ⊆ Swi , we need to identify a simple

random sample ng ⊂ Ng so that:

1. |ng| < |Ng|

2. if Rw = f(Ng) and R̂w = f(ng), then Pr(e(Rw, R̂w) ≤ ε) = α (e can be any of the error

metrics presented in Section 2.5.1)

For example, for the query of Figure 8, if w is assigned a route group with 1000 tuples

and an average fare value of $10, the goal is to find simple random sample of size < 1000

that will result in an average fare value of $10± 1. This process needs to take place until a

group g is found that reduces w’s load and keep repeating this process as long as imbalance
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reduces.

7.3.1 Sample Size Estimation

The sample size ng is a well-studied problem in statistics literature and can be estimated by

tracking the attribute values that participate in f . In the example of Figure 8, this means

that for a route group, the distribution of fare values needs to be tracked. Similar to SPEAr,

our sample size estimation model employs normal approximation to estimate the expected

error of an approximate result (Section 6.6).

According to [42], there are various approaches to the problem of estimating the proper

sample size, given ε and α. A pivotal step is to estimate the total population’s variance (S2),

and this is achieved by taking the sample in two steps: first by creating a simple random

sample of size n1 from which the value of s2 is gained; then ng is estimated using the s2 as an

estimation for S2. For instance, if f is the arithmetic mean, s21 is the variance estimated from

the initial simple random sample of size n1 and V = ε2

t2
, where t is the inverse cumulative

probability of the standard normal distribution at α. ng is estimated as:

ng =
s21
V

(1 +
2

n1

) (7.1)

The distribution of the attribute values is assumed to be approximately normal, therefore

n1 needs to be fairly large. If the population’s variance S2 is known exactly, the required

sample size is S2

V
.

As a result, any attempt to reduce imbalance given the constraints of ε and α, requires

the knowledge of the variance S2 (or an estimate) of the attribute values being used by f ,

for each group g appearing in Swi .

7.4 SHEDPART

In this section we present our hybrid load Shedding-Partitioning operator named ShedPart,

which targets grouped aggregate operations like SPEAr. ShedPart’s goal is to reduce imbal-

ance among workers, by searching for groups that qualify for approximating their aggregate
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Figure 52: The internal architecture of a worker thread in modern SPEs, with the ShedPart

module.

value given an accuracy requirement (ε, α). ShedPart is different from SPEAr’s model in

the following manner: SPEAr attempts to “trim” complete windows and produce approxi-

mate answers within the specified accuracy at the worker (thread) level; whereas ShedPart

attempts to “trim” distinct groups and selectively produce approximate answers for those

within the specified accuracy. The system model we adopt for this work is the one presented

in Section 2.1, and the types of queries that ShedPart receives are similar to the query types

submitted to SPEAr without a budget specification (Figure 44). In terms of error metrics,

we adopt the formulas presented in Section 2.5. As we discuss below, ShedPart has been

built and tested for Storm, whose architecture and runtime was presented in Section 2.6.2.

7.4.1 ShedPart Architecture

A worker’s threads internal architecture appears in different variations on modern SPEs.

In most SPEs, each worker maintains a module that applies the operator’s logic, which is

part of a broader CQ. In addition, each thread maintains a module that creates different

partitions based on the operator’s logic output exists as well. In Storm, each Executioner

thread maintains an application logic module and a partition module (or Grouper in Storm’s

jargon). Every time the application logic produces a tuple, it is passed to the partition

module, which in turn makes a decision on the destination of this tuple (i.e., receiving

thread). Figure 52 depicts this architecture. The partition module has to maintain some
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additional information in the event it supports load-balancing functionalities. For instance,

if the partition module applies a load-aware stream partition algorithm like AM/cAM, then

the Route Index and the Partition Info will include the number of tuples and the number of

distinct groups sent to each downstream worker.

ShedPart is part of the Executioner thread’s memory space and it lies between the

partition module and the output. Its goal is to keep track of routing information, which

can access through the partition module. At tuple arrival, it monitors the decisions made

by the partition module, and incrementally updates information that it uses in the sample

size estimation for different groups. At watermark arrival, it explores the distinct groups

for opportunities to limit imbalance. By the time it concludes its operation, it allows the

watermark to reach the downstream operators, along with information regarding individual

groups.

As explained in Section 7.3.1, to reduce imbalance there is a need to keep track of each

group’s variance, in addition to each group’s frequency. Also, to calculate imbalance the

load of each worker needs to be available, along with the routing index. Apart from each

group’s attribute values’ variances, the rest of the information are readily available by stream

partition algorithms like AM and cAM.

7.4.2 ShedPart Algorithm

The operations of ShedPart are different during (a) tuple arrival (i.e., tuple partition), and

(b) watermark arrival (i.e., window completion).

7.4.2.1 Tuple Arrival: Every time a tuple is produced by the application logic and is

partitioned by the partition module, ShedPart needs to maintain some additional information.

In detail, for each group g that appears in a window, ShedPart needs to keep track of the

variance of the values that appear in the result used in the CQ. For instance, for the CQ

of Figure 8, a group is defined by a tuple’s k = {route} and the payload p = {fare}. As

a result, ShedPart needs to maintain a variance of fare values for each distinct route in a

window. This information is needed in order to establish the proper sample size to estimate
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Algorithm 10 Shed-Part algorithm
1: procedure ShedPart(L,R,GI)

2: conclude = False, black_list = ∅, trim_info = INIT_MAP(∅)

3: sorted_group_map = SORT_GROUPS(R,GI)

4: repeat

5: conclude = True

6: w= MOST_LOADED_INDEX(L)

7: Gw=sorted_group_map.get(w)

8: if Gw 6= ∅ then

9: for all g ∈ Gw do

10: if g /∈ trim_info ∧ g /∈ black_list then

11: s = SAMPLE_SIZE(GI.freq(g), α, ε, GI.var(g))

12: if s < GI.freq(g) then

13: conclude=False

14: UPDATE_LOAD(w, g, L, s)

15: trim_info.add(g,s)

16: else

17: black_list.add(g)

18: else

19: return trim_info

20: until ¬conclude

21: return trim_info
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a population’s characteristics (as explained in Section 7.3.1).

Variance requires constant memory for evaluating as it can be incrementally calculated

as [81]:

M1 = x1, Mk = Mk+1 + (xk −Mk−1)/k

S1 = 0, Sk = Sk−1 + (xk −Mk−1)× (xk −Mk)
(7.2)

The values xk indicate the values that are of interest,Mk is the mean value after the xk value,

and Sk is the standard deviation after the xk value. The variance is S2
k . In the example

query of Figure 8, xk are the fare attribute values for each route.

In addition, as presented in Section 7.3.1, for the estimation of the variance of attribute

values only a sample is required. This will allow for maintaining the overhead for ShedPart

low as the values of only a subset of values will be considered for variance estimation.

7.4.2.2 Watermark Arrival: When a watermark gets generated by the source of the

input data of the Executioner thread, it marks the completion of a window. At this point,

ShedPart explores Swi ’s groups for possible opportunities in reducing imbalance. The basic

ShedPart algorithm is depicted in Algorithm 10.

ShedPart’s algorithm consists of a main loop (Lines 4- 20), which repeats as long as the

most loaded worker w can not have its load reduced further. This outer loop is justified by

Lemma 1, which indicates that by reducing w’s load with reduce imbalance. The main loop

can conclude when either all of w’s groups do not allow for further reduction (i.e., a resulting

sample size ng ≥ Ng), or because all of w’s groups have already been marked as “trimmed”

(i.e., a sample size has been established). At this point, we have to point out that on every

iteration, the most loaded worker w might change.

Algorithm’s 10 has the following input: L which is an array integers of size V with the

total number of tuples assigned to each one of the V workers. This array is the same array (L)

used by PK (Section 3.3.2.3), AM (Algorithm 3), cAM (Algorithm 4), and LM (Algorithm 5).

The next argument of ShedPart is the route index R : g → {w1, . . . , wm}, which maps each

distinct group g to the destination worker(s) it has been sent to. The destination worker(s)

can be more than one, in case an m-choice partition algorithm is used (e.g., PK and CM).

Most of the times, R can be the hash function(s) used for partitioning each group g. Finally,
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a map GI : g → (Ng, s
2
g) that for each distinct group g returns its frequency (Ng) and the

estimated variance of its attribute values s2g. Essentially, GI is the only additional structure

that ShedPart requires and has an amortized memory overhead of O(G). Fortunately, there

are sketching techniques that can reduce this memory overhead [43, 115], and GI can be built

incrementally using Equations 7.2. The output of Algorithm 10 is a map trim_info : g → sg,

which for a subset of distinct groups g returns a sample size sg (Line 21). This value indicates

that tuples that belong to group g can have their aggregate result be approximated by a

simple random sample of size sg.

In the beginning of the algorithm, an index named sorted_group_map is created, which

maps to each worker a list of of groups in descending order in terms of frequency (Line 3).

The creation of this index allows for faster execution of the main loop its creation carries

a time complexity of O(G log G) in the worst case. Also, one more auxiliary structure is

initialized, named black_list, which is a set structure maintaining the groups that have been

already examined and are not fit for trimming.

At every iteration of the inner loop, the most loaded worker w is located by scanning array

L and identifying the worker with the maximum number of tuples assigned to it (Line 6).

Then, w’s sorted list of assigned groups (in descending frequency order) are retrieved from

the sorted_group_map (Line 7). In the event that the remaining groups Gw are empty,

ShedPart concludes execution (Line 19). Otherwise, each group g of Gw is scanned (Line 9).

If a group g is neither part of trim_info nor black_list, then its sample size s is estimated

(Line 11). If s is smaller than Ng (i.e., the recorded frequency in GI), then w’s load is

updated (Line 14), a record for g is created in trim_info (Line 15), and the outer loop’s

condition is updated (Line 13). On the other hand, if s is greater or equal to Ng, the group

g is added to the black_list structure so that it is not revisited in the future (Line 17).

Overall, the algorithm’s runtime complexity is relevant to the distribution of groups per

worker, and the variance of attribute values that are part of the aggregate operation. The

worst runtime complexity materializes when all distinct group values are visited. In this case

the main loop will have a runtime of O(G). In addition, the memory overhead is in the worst

case O(G), which is when exact data structures are used.
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7.4.3 ShedPart Optimizations

The runtime and the storage complexity of ShedPart can become very high. In fact, both

can end up being O(G). This can result in significant performance degradation in congested

environments. To this end, we implemented two optimizations, which try to alleviate the

complexity of time and storage.

7.4.3.1 Storage Optimization As mentioned earlier, ShedPart maintains a tuple (Ng, s
2
g)

for each group g that appears in a window Swi . As a result, the storage cost becomes pro-

portional to G and will get very big if G → ∞. To this end, we expand ShedPart’s internal

structure to separate group tracking based on each group’s frequency. In essence, ShedPart

receives a parameter Tg, which is a frequency threshold used to separate distinct groups of Swi
into two categories: the heavy hitters (i.e., groups that Ng ≥ Tg), and the cold groups (i.e.,

groups that Ng < Tg). This optimization is similar to the one proposed for ColdFilter [140],

but ShedPart uses this to limit the storage overhead.

Internally, ShedPart maintains an approximate data structure of, constant size, to keep

track of cold groups’ frequencies. Currently, ShedPart uses a CountMin sketch [43], whose

size is controlled by the desired level of accuracy. In addition, ShedPart maintains a hash

table for each group g’s tuple (Ng, s
2
g) H. At tuple arrival, the tuple’s group g is extracted,

and H is checked for a record for group g. If one does not exist, the estimated count for

g is retrieved from the CountMin sketch, N̂g. If N̂g = 0 then g’s record in the CountMin

sketch is incremented. Otherwise, ShedPart checks if N̂g ≥ Tg − 1. If the previous check is

true, g is promoted to the heavy hitters groups, and a record is created in H. Otherwise, the

CountMin sketch increments g estimated frequency.

In our experience, we found that setting Tg ≥ |Sw
i |
G provides the best results. ShedPart

aims to improve imbalance, which appears in skewed datasets. The former is not the case with

uniform datasets, since the stream partitioning algorithm manages to balance the workload

among workers (see Chapter 3). Highly frequent groups are more likely to cause imbalance,

and by setting Tg ≥ |Sw
i |
G ShedPart focuses on those.

Until a group g makes it to H the attribute values needed for s2g will be lost. However,
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this does not impact the sample size estimation since the Equation 7.1 requires the variance

of a subset of the population, which in this case would be all the values of group g for Swi .

Finally, this optimization is used to limit the time complexity of Algorithm 10 as well.

By considering only heavy hitter groups during exploration, only those will be examined

for down-sampling. Hence, the cold groups will not slow-down execution, and potentially

impact the performance benefits of ShedPart.

7.4.3.2 Incremental Variance Monitoring In our experience with real datasets, we

encountered situations where the overall performance improvement by using ShedPart was

minimal or non-existent. Often, this happened because the attribute values’ did not allow

for approximation. The previous occurred when s2 was very wide, Equation 7.1 resulted in a

sample size equal to the actual size of a group. Thus, executing ShedPart’s algorithm would

slow-down an SPE by increasing the total window processing time.

To this end, we enhanced ShedPart’s algorithm to keep track of the tuple savings incre-

mentally. When a heavy hitter group’s variance is updated, its required sampling size n̂g is

updated as well. At watermark arrival, the percentage |D−D̂||Sw
i |

100 is calculated, where D is

the sum of frequencies of all heavy hitter groups1 and D̂ is the sum of the estimated sample

sizes n̂g. If this percentage is lower than T , which is ShedPart’s percentage parameter, then

ShedPart does not execute Algorithm 10. As we will show in our experimental evaluation

(Section 7.5) this optimization protects ShedPart from unnecessary explorations, which would

cause performance degradation.

7.5 SHEDPART EXPERIMENTAL EVALUATION

In this section we present our experimental evaluation of ShedPart. Our aim is to document

the merits of using ShedPart in real-world and synthetic datasets, and specifically identify

under which circumstances ShedPart will offer performance improvements, what is the impact

in imbalance and maximum parallel step reduction, and overall performance improvements

1Each one incremented by Tg.
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in real-world datasets.

7.5.1 Experimental Setup

We have implemented a simulator of ShedPart on Storm v1.2. The reason that we did not

provide a full-fledged implementation of ShedPart is because of Storm’s watermark mech-

anism. Specifically, Storm has each Executioner thread generate its own watermarks, by

spawning a background Java thread. This thread wakes up periodically and produces a

watermark tuple, which is fed to the WindowManager module of the thread. This does not

allow for a centralized control of the watermark generation in the upstream node.

To overcome this limitation, we implemented ShedPart as an intermediate BaseWindowedBolt

that sits between a data generator bolt, and the actual BaseWindowedBolt performing the

stateful aggregate operation. The latter’s watermark generation mechanism is disabled.

When the watermark mechanism is triggered, our ShedPart bolt executes Algorithm 10 (se-

lectively) and generates the sample sizes for each group for the current window. It forwards

this information to the downstream bolt to down-sample for the active window accordingly,

and also produces a watermark to trigger execution.

Our experimental setup is the Amazon EC2 cluster explained in Section 6.7.2. In terms of

datasets, we used two of the datasets described in Section 2.6.1: Namely, the DEBS and the

GCM datasets. For the sensitivity analysis of ShedPart we introduced synthetic datasets, in

order to explore a wider spectrum of distributions that allowed us to map the circumstances

under which ShedPart provides significant performance improvements.

7.5.2 Experimental Results

In Section 7.5.2.1 we investigate under which circumstances ShedPart achieves performance

improvements. Next, in Section 7.5.2.2 we measure the impact of ShedPart in imbalance and

maximum parallel load. Finally, in Section 7.5.2.3 we measure overall processing time when

ShedPart is used.
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7.5.2.1 Sensitivity Analysis In order to establish under which circumstances Shed-

Part allows for performance improvements, we conducted a sensitivity analysis using syn-

thetic data. In our analysis, we allowed the error to get any of the following values ε =

{1, 5, 10, 15}% and the confidence α = {85, 90, 95, 99}%. Those values are often used for

estimating population’s aggregate values. In addition, for each of the distributions that

we present below, we generated 10 million values. The distributions that we have used to

generate data are the following:

1. Normal Distributions N (µ, σ) from the work presented in [26]. The normal distributions

used in this work vary in the mean value µ = (10, 40, 70,−10, 85), and in the standard

deviation value σ = (10, 15). In our analysis we wanted to experiment with normal

distributions with wider tails, so we added the values 20 and 25 for σ.

2. Log-Normal distribution is documented as the most appropriate distribution for charac-

terizing user behavior in social networks [27]. In detail, we produced two distributions:L1(µ1 =

1.789, σ1 = 2.366) and L2(µ2 = 2.245,σ2 = 1.133).

3. Zipf Distributions with an exponent s ranging between 0.5 to 4.

For generating distribution values we used Apache Commons Math Java Library v3.6.1.

In this set of experiments, our goal is to measure the sample size estimated by ShedPart

(using Equation 7.1). This will aid us in understanding the potential benefits of ShedPart

for different value distributions.

As far as N distributions are concerned, our analysis revealed that σ is the parameter

that affects the sample size detected the most. In detail, for all σ < 15, the resulting

sampling rate required ranges from 54% to 0.04%, regardless of µ’s value. Those numbers

translate to 5,400,000 and 400,000 accordingly, and indicate a significant improvement in

data volume. When σ = 15, ε = 1%, and α = 99% the sample needs to be equal to the

window. However, for the rest of the error values, the sample rate required significantly

drops. Figure 53 presents the resulting sampling rate. For confidence values smaller than

99%, the sampling rate starts from 60% and quickly drops down to 0.1%. As a result, when

attribute values follow a Normal distribution, ShedPart will detect opportunities to reduce

the processing load. Turning to the L1 and L2 distributions, ShedPart is not able to reduce
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Figure 53: Sample rate estimated by Equation 7.1 for 99% confidence.

the processing volume of both, unless the confidence α ≤ 50%. This is due to the variance

of both distributions, which is very high due to the long tails of both L1 and L2.

As far as Zipf distributions are concerned, ShedPart is not able to reduce the processing

amount for s < 1.75. When s = 1.75, ShedPart is able to reduce the processing amount for

ε ≥ 10% and α ≤ 90%. In this case, the sample rate starts from 65% and drops. For s = 2,

the sample rate starts from 67.3% when ε ≥ 5% and α ≤ 95% and drops. For s ≥ 3 the

sampling rate drops significantly for any combination of (ε, α) values.

Take-away: Our analysis on ShedPart’s ability to reduce load indicates that the variance of

values is the dominant factor. In detail, the variance of attribute values s2 < Ng, where Ng

is the number of tuples that belong to a group g.

7.5.2.2 Impact on Imbalance Next, we examined ShedPart’s impact on imbalance. As

mentioned earlier in this chapter, the main goal of ShedPart is to achieve a more balanced

allocation among downstream workers. For this set of experiments, we used the DEBS

and GCM datasets. Both of those come with group aggregation queries that feature the

calculation of an arithmetic mean for different groups. Those two datasets present significant

differences in the number of groups per window (up to four for GCM and 10 thousand in

average for DEBS), and in the variance in values. As a result, ShedPart is expected to face
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Figure 54: Imbalance.

different opportunities to balance the load on each dataset. For this set of experiments we

set ε = 10% and α = 95% for both DEBS and GCM. In addition, we set Tg to three, and T

to 15%. For the application logic bolts, we set the number of workers (i.e., parallelism hint)

to 4.

Figure 54 depicts the imbalance achieved when only Storm’s partition algorithm is used,

and when ShedPart is used. For Storm, we used FLD grouping, which proved to be equiva-

lently good for those datasets (as shown also in Section 3.7). As far as DEBS is concerned,

ShedPart fails to improve on imbalance. This happens because the variance of attribute val-

ues for DEBS data (i.e., the fare value) receives a wide range of values. In addition, the

majority of routes appear less than 10 times per window (on average), and very infrequent

route groups cover a significant portion of the window. As a result, ShedPart is not able

to approximate the mean fare value with smaller samples, and the imbalance is similar to

vanilla Storm (as illustrated in Figure 54a). In essence, DEBS is similar to the case of L1,

L2, and Zipf with s ≤ 1 distributions, which feature long tails. However, this is not the case

with GCM.

157



Storm Storm+ShedPart

1000

2000

3000

4000

5000
M
ax

Lo
ad

(t
up

le
s)

a: DEBS

Storm Storm+ShedPart
100

101

102

103

104

105

M
ax

Lo
ad

(t
up

le
s)

b: GCM

Figure 55: Maximum worker load.

The GCM dataset features up to four groups (i.e., scheduling classes) per window, and

the mean CPU request values do not carry a high variance. Therefore, ShedPart is able to

approximate the mean CPU request of each scheduling class by a small set of tuples. This

results in significant improvement in terms of imbalance, as is shown in Figure 54b. GCM

resembles the case of N , and Zipf with s ≥ 3 distributions, which feature low variance in

their values.

Another dimension in which ShedPart can contribute is in terms of the most loaded

worker’s load per window. In essence, this affects the time of the partial-evaluation step of

a stateful aggregate operation (Section 3.1). Figure 55 illustrates the box-plots of the load

of the most loaded worker per window, for DEBS and GCM. As far as DEBS is concerned,

ShedPart is unable to limit the maximum load (Figure 55a). This is expected since ShedPart

was unable to effectively improve performance of imbalance on DEBS.

Turning to GCM, the picture is very different. As can be seen in Figure 55b, ShedPart

is able to improve performance by almost two orders of magnitude. This happens due to

the low variance of data, and the fact in GCM there are not long tails (i.e., many groups of
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Figure 56: Window runtime analysis for ShedPart on DEBS.

infrequent data). As a result, GCM is able to reduce the load by approximating the mean

CPU requested by each scheduling class effectively.

Take-away: ShedPart is able to significantly reduce imbalance and the maximum load on

the parallel step of a stateful operation, when data are fit for approximation. ShedPart can

reduce imbalance and the partial evaluation step by more than an order of magnitude.

7.5.2.3 Overall Performance In this set of experiments, we measure the overall win-

dow processing time for each window of DEBS and GCM. Our goal is to measure ShedPart’s

ability to avoid wasting time in the exploration, and the performance acceleration in terms of

total processing time. Similar to the previous experiments on those datasets we set ε = 10%,

α = 95%, Tg = 3, T = 15%, and the number of workers to 4. The reported times repre-

sent the sum of ShedPart’s execution and the processing time for each window. In addition,

we execute each experiment seven times, and we report average times among all runs after

subtracting the maximum and the minimum.

Starting from DEBS, the main challenge for ShedPart is to avoid wasting time in the

exploration phase. This is crucial because DEBS features tens of thousands of groups per
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window, and the iterations can impact performance. Also, DEBS is not able to be accelerated

because of the values and the frequency of appearance of its groups (as explained in analysis

of Section 7.5.2.2). Figure 56 presents the box plots of the total window runtimes (Figure 56a)

of Storm and Storm with ShedPart, and the break-down of Storm and ShedPart in ShedPart

execution and processing of tuples (Figure 56b).

It can be seen that ShedPart’s optimizations mechanisms are able to protect ShedPart

from unnecessary overhead, when the data are unlikely to be able to be trimmed. For

this experiment, ShedPart’s mechanism is configured to check for at least a 15% reduction

in the processing volume of the window (i.e., T = 15%). During watermark arrival, our

ShedPart implementation identifies that this is not feasible. Thus, it skips the execution

of the ShedPart algorithm and jumps directly to processing. Figure 56a depicts the box

plot of total window runtime for Storm and for Storm with ShedPart. Both box plots are

identical, which is expected since DEBS is not fit for approximating groups based on the

(ε, α) specification (which is also shown in the experiments on imbalance-Section 7.5.2.3). In

addition, ShedPart spends (almost) no time in exploration for approximation opportunities

(as shown in Figure 56b).
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(GCM).

Turning to GCM, ShedPart is more effective and can lead to significant performance

improvements. Figure 57 illustrates the total runtime for Storm and Storm with ShedPart.

As shown in Figure 55b, ShedPart is able to significantly reduce the load on the most loaded

worker of each window. As a result, the total runtime drops significantly. At the same time,

as shown in Figure 57, in the windows between 50 and 65 there is a temporary increase in

the frequency of a particular scheduling class. Storm has to sustain this temporal skew in

input. On the other hand, with ShedPart this temporary imbalance disappears.

Figure 58 presents the breakdown of Storm with ShedPart. GCM features up to four

distinct groups per window, which results in insignificant time spent for ShedPart execution.

As shown in Figure 58, all time is spent in processing the result.

Take-away: ShedPart is able to significantly improve the performance of an SPE, when data

are fit for approximation. In addition, when data are not able to be efficiently approximated,

ShedPart does not introduce additional overhead to the total runtime.
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7.6 SUMMARY

In this chapter we presented ShedPart, which is a hybrid method that combines stream parti-

tioning and load shedding. ShedPart is motivated by the shortcomings of stream partitioning

solutions under certain circumstances to balance load accordingly. Previous solutions of this

dissertation followed holistic approaches to approximation. In detail, SPEAr follows a de-

centralized approach to approximate a window’s result by processing a subset of the tuples

of each distinct group. SPEAr makes a decision based on the local knowledge that it main-

tains and its goal is to provide an average error among distinct groups, without incurring

additional overhead to the workflow triggered by a watermark.

In contrast, ShedPart prioritizes imbalance and addresses approximation in a global level

and at the finest approximation granularity. ShedPart operates at the source level and iterat-

ing over all tuples of the window. In addition, ShedPart approximates a result on the distinct

group level, which is not the case with SPEAr’s approach. As a result, ShedPart approximates

only the groups that appear very frequently, and leaves the infrequent groups intact. This

leads to a lower approximation error for each window. However, ShedPart incurs additional

overhead, which can lead to either excess memory usage or a higher window processing time

compared to normal execution.

Our proposed optimizations work as safeguards against introduction of additional over-

head. Despite the fact that ShedPart relies heavily on the underlying data, our design avoids

processing overheads, which emanate from futile exploration of acceleration opportunities.

Our experimental analysis indicates that ShedPart can reduce both imbalance and the maxi-

mum load of a partial evaluation step in a stateful aggregate operation. In addition, ShedPart

improves performance and alleviates temporal skewness on certain workloads.
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8.0 EPILOGUE

In this chapter, we conclude this dissertation by summarizing our contributions and stating

their broader impact (Section 8.1). Furthermore, we list a number of future research di-

rections, which we identified as important for improving the applicability of our techniques

(Section 8.2). To put our contributions in context, we show in Figure 59 a taxonomy of

existing SPE adaptation techniques. In it, each technique is categorized based on its ex-

pected usage: either for exact or approximate processing. In addition, Figure 59 presents

the separation for approximate processing, which divides adaptation techniques based on

their ability to provide accuracy guarantees.

8.1 SUMMARY OF CONTRIBUTIONS

As far as adaptivity techniques for exact processing are concerned, our work’s contributions

span both stream partitioning and re-partitioning. In detail, two of our proposed stream

partitioning algorithms, namely AM and cAM, achieve up to an order of magnitude better

throughput (Chapter 3). Turning to stream re-partitioning, we have presented the design of

Synefo, which is an SPE that offers re-partitioning capabilities without requiring changes in

the underlying fabric (Chapter 4). In addition, UniMiCo, our proposed state migration pro-

tocol for stream re-partitioning can migrate CQs without causing performance degradation

for a broad range of window semantics (Chapter 4). In Figure 59, stream partitioning and

re-partitioning are part of techniques aimed for applications requiring exact processing. Our

aforementioned contributions (i.e., AM, cAM, Synefo, UniMiCo) fall into this category, and

each of them are illustrated as part of their corresponding technique’s circle. Our partition
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algorithms and state migration protocol are aimed to impact the efficiency of existing SPEs,

in terms of adaptability when input increases. Our algorithms will react to workers’ loads

and consider an active CQ’s semantics. As a result, stream processing will become more

efficient and result in lower operational costs and energy consumption.

Turning to adaptation techniques for approximate processing without guarantees, we

contributed CoD, which is a load shedding technique for data streams with concept drift

(Chapter 5). CoD can achieve more than an order of magnitude higher accuracy compared

to the state of the art, and at the same time not introduce performance overhead for exploring

each window’s concept. In Figure 59, load shedding is part of the techniques for approximate

processing without guarantees. In turn, CoD is part of this set of techniques, since it is not

designed for providing accuracy guarantees. CoD’s impact lies in the fact that load shedding

can be applied in applications that aim at real-time pattern extraction, without deteriorating

a CQ’s accuracy.

Turning to approximate processing with accuracy guarantees, we have shown that it is

feasible in current SPEs and leads to significant gains. Those gains become apparent both in

performance, scalability, and reduction of operational costs. In detail, we presented a novel

system model, which automatically detects opportunities for accelerating execution. SPEAr,
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our proposed SPE, crafts appropriate samples and recognizes whether an approximate result

is within a user-specified accuracy requirement. If the former holds true, SPEAr skips the

processing phase of a window, which leads to orders of magnitude better performance. Our

experimental evaluation indicates that SPEAr is able to cut down operational resources and

reduce total processing time significantly, when compared to exact and approximate process-

ing solutions (Chapter 6). In Figure 59, SPEAr is part of the techniques for approximate

processing with accuracy guarantees. Our work on SPEAr can impact the efficiency of SPEs,

the pricing models that are used for current SPE-as-a-Service offerings, and the way users

perceive stream processing in general (more details in Section 8.2). The most important

aspect of SPEAr’s impact is that is has illustrated that acceptable result quality can come

with frugal resource allocations.

Last but not least, we contributed a hybrid technique, named ShedPart, which comes from

the combination of approximate stream processing with the goal of reducing load imbalance.

ShedPart investigates opportunities to approximate a subset of a window result, in order

to achieve a balanced load allocation among workers (Chapter 7). Compared to SPEAr,

ShedPart follows a global view of load distribution and selectively approximates large groups.

Our experimental evaluation indicates that ShedPart is able to significantly improve both

imbalance and performance. In addition, ShedPart is enhanced to identify situations which

are not likely to reduce imbalance. In Figure 59, ShedPart lies mostly in the set of techniques

for approximate processing with accuracy guarantees. However, parts of it overlap with

stream partitioning and load shedding, since it has been created by combining fundamental

principles of those techniques. ShedPart’s broader impact is similar to SPEAr’s and those two

differ in the granularity level of approximation. The former examines each group individually;

whereas the latter is a solution for approximating the total window. As a result, ShedPart

can lead to insignificant performance gains, and is able to achieve better approximation

accuracy.

165



8.2 FUTURE RESEARCH DIRECTIONS

This dissertation has revealed promising research directions for SPEs. In detail, our very

promising experimental results with SPEAr, and our experience with ShedPart reveal huge

potential in further exploring this line of research and address the following matters:

Combination of Load-shedding and Re-partitioning: ShedPart has revealed that ad-

hoc approximation on a sub-set of input data can lead to significant performance improve-

ments. In Figure 59, there exists no technique that connects stream re-partitioning and load

shedding, while offering accuracy guarantees. A simple application of ShedPart to selectively

send subsets of the migrated state can lead to a reduced state migration time. In turn, such a

thing will limit the impact of checkpoint-based techniques to an SPE’s response time during

re-partitioning.

Combination of all three techniques: To the extent of our knowledge, an SPE enhanced

with a decision framework, which is able to combine all three techniques, does not exist.

In real world scenarios, the decisions on enabling each technique follow a “human-in-the-

loop” approach. Concretely, an administrator monitors an SPE’s performance and makes

appropriate decisions. However, we gradually see the merits of automating the configuration

of DBMSs [133, 90], thus we believe that this is a very promising line of research.

Dynamic Budget Allocation: In the current version of SPEAr, the budget is statically

allocated, and identifying the proper value for a stream is a daunting task. In our view, this

approach is unsuitable for the end user, who would not know the appropriate budget for a

CQ-stream-fabric combination. As a result, tuning SPEAr to achieve reasonable acceleration

from the start can be very hard. This reveals a promising research direction in developing

active budget learning techniques, so that SPEAr is able to detect a suitable budget that will

provide a reasonable trade off between accuracy and processing time.

Approximate Join Support: Joining streams before aggregation is a common use-case for

SPEs (especially equality join operations). Window joins between streams is a challenging

task and it has been widely studied in the past [23, 60, 127, 50, 86, 45, 74, 119]. However,

SPEAr (in its current form) does not support joins and an interesting research direction is

to examine how its model can be expanded for streaming joins with accuracy guarantees.
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New User APIs: We observed that analysts’ ability to identify patterns can be hindered

by “noise”, which often materializes through rare groups appearing in sliding windows. How-

ever, analysts are mostly interested in persisting trends, and are willing to sacrifice up to

a specific percentage of groups that are part of this “noise”. This raises the opportunity

to investigate novel interfaces for approximate stream processing, which can improve both

analysts’ productivity and an SPE’s performance.

Pricing Models: SPEs-as-a-Service are offered by many Cloud Service Providers (CSPs)

(e.g., AWS Kinesis, Azure Streams etc.). These services follow pricing models that are related

to the processing capacity associated with a user’s query. If the option for accelerating

execution is available, then numerous challenges arise in the pricing model offered. For

instance, a user needs to have guaranteed monetary savings from the CSP, if the former opts

in using accelerated processing. Similarly, the CSP has to offer such guarantees, if input

data follow specific properties. Those challenges need to be addressed in order to harness

practical monetary/resource impact for both the CSP and the users.
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