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ABSTRACT 

Frailty and slowed gait become more prevalent with advanced age and predict major 

health outcomes. These complex phenotypes are influenced by multiple aspects of aging and 

multimorbidity, and may be manifestations of dysregulation in physiologic systems. 

Metabolomics, the large-scale study of small molecules that are intermediates or end-products of 

metabolism, can help us better understand aging-related metabolic changes that contribute to 

frailty and walking ability by capturing global metabolic profiles occurring most closely to the 

phenotypes. Here, I aimed to 1) identify metabolites and pathways associated with high versus 

low walking ability using a nested case-control study of 120 older adults matched on age, 

gender, race, and fasting time, 2) determine metabolites and pathways associated with frailty to 

vigor among 287 older black men, and 3) develop and validate a metabolite composite score to 

determine whether it explains the frailty-associated higher mortality. Regarding aim 1, I found 

96 metabolites, mostly lipids/lipid-like molecules, especially triacylglycerols, associated with 

walking ability. Body composition partly explained associations between select metabolites and 

walking ability, though many remained independently associated. Triaclyglycerols containing 

mostly polyunsaturated fatty acids were higher, whereas triaclyglycerols containing mostly 

saturated or monounsaturated fatty acids were lower among those with high walking ability. 

Arginine and proline metabolism was a top pathway associated with walking ability. In aims 2 
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and 3, I found 37 metabolites associated with frailty to vigor and used those metabolites to 

develop a novel composite score. The metabolite composite score significantly predicted 

mortality and explained 56% of the higher mortality associated with frailty, where organic 

acids/derivatives (mostly amino acids) and lipids/lipid-like molecules accounted for almost all of 

the attenuation. The metabolite composite score also predicted mortality in a validation cohort. 

Differences in patterns of plasma lipids and amino acids were common classes of metabolites 

associated with these aging-related phenotypes. Knowledge on differences in these metabolites 

and metabolic pathways associated with frailty to vigor and walking ability is of public health 

interest because it provides a better characterization of these complex aging-related phenotypes 

that can inform points in their pathophysiology to intervene on to promote healthy aging and 

preserve independence throughout late-life. 
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1.0  INTRODUCTION 

In the United States, the number of older adults (aged ≥65) is expected to more than double by 

the year 2060 (1), an estimated 52 million more individuals. Such an increase will result in a 

financial and societal challenge if the distribution of health among the older adult population is 

not improved. Currently, only 14% of U.S. older adults are living free of chronic conditions. 

Whereas, over 60% are living with multimorbidity (2). In other words, 28 million U.S. older 

adults have two or more chronic conditions, which will increase to 60 million by the year 2060 if 

the prevalence remains the same. Unhealthy aging negatively impacts quality of life (3) and is 

extremely costly to both the individual and to society. For example, the majority (71%) of 

healthcare costs and almost all (90%) Medicare fee-for-service costs are spent caring for 

individuals with multimorbidity (4-6). In addition, over 60% of deaths among older adults are 

caused by chronic conditions (7). Thus, there is a need to further our understanding of the 

biology and physiology of aging to help guide effective interventions focused on improving the 

health of the older adult population. 

1.1 BIOLOGY OF AGING 

Aging has been defined as a universal, irreversible, and deleterious biological process, 

characterized by progressive loss to physiological integrity that manifests as decline in function 
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and increased vulnerability to disease and death (8, 9). Aging is heterogeneous and influenced by 

genetics and lifetime behavioral and environmental exposures, such that no individuals age the 

same exact way across all physiological systems. Even within an individual, aging is 

heterogeneous, where each physiological system has a different peak in health and capacity, as 

well as a different rate of decline. The complex, multifactorial nature of aging makes studying its 

biology difficult. Many researchers instead focus on a single organ system. However, alterations 

in one physiological system that occur to compensate in the presence of a challenge likely cause 

changes in other physiological systems, though the relationship between physiological systems 

and how diminished reserve in one influences the rest is not fully understood (10). To ameliorate 

negative consequences of aging there is a need for research to be shifted from organ specific to 

aging as a whole.  

1.1.1 Aging versus disease 

A misconception is that aging is the same as disease (8). However, an individual can age in the 

absence of disease. Similarly, disease can be prevented by targeting modifiable risk factors; 

though, aging is inevitable (8). Aging is also universal, whereas diseases are not. The same 

disease is not experienced by all individuals, nor do they have similar patterns of multiple 

diseases (8). In fact, two individuals of the same chronological age can have vastly different 

biological ages caused by differences in genetics, behavioral, and environmental exposures. The 

misconception of aging versus disease arises to the fact that biological changes occurring as a 

result of aging can cause both physiological decline and age-related disease (10). The connection 

between aging and disease may indicate the same biologic pathways are actually influencing 

both (10). 
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1.1.2 Aging phenotypes 

To study the biology and physiology of aging, a quantifiable phenotype illustrating the full 

distribution of aging from the healthy to the unhealthy extreme is needed. Often phenotypes that 

measure health only differentiate between different levels of unhealthy aging or are often 

focused on a single physiologic system. However, there is almost unanimous agreement that 

aging is not a result of a single mechanism (11). Cohen (2016) described aging as the 

physiologic dysregulation that causes a gradual breakdown in the complex dynamics of 

regulatory systems that maintain homeostasis, where physiologic dysregulation can begin or 

accelerate across multiple systems as a result of a single perturbation (11). Thus, in theory an 

optimal aging phenotype would encompass the integrity of multiple physiologic systems and the 

interactions across systems. It would also be capable of differentiating between different levels 

of health by measuring both the healthy in addition to the unhealthy extreme, and lastly it would 

predict multiple major health outcomes. 

Similar to definitions of aging, a decline in walking ability and frailty have been 

described as influenced by the health of multiple physiologic systems, genetics, and life-long 

impact of risk factors such as severity and duration of diseases and interaction of multiple 

chronic conditions. Age-related decline in walking ability or the onset of frailty in late-life can be 

thought of as manifestations of perturbations in the complex regulatory systems maintaining 

homeostasis, where examining the biology and pathophysiology of both frailty and walking 

ability decline may indicate pathways involved in healthy and/or unhealthy aging processes. 
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1.2 AGE-RELATED DECLINE IN WALKING ABILITY  

Five vital signs are used to assess the basic functioning of an individual’s body. They include 

temperature, pulse rate, blood pressure, respiration rate, and weight. Gait speed has been 

described as the sixth vital sign (12) because of its ability to capture functional capacity, overall 

health, and predict multiple major adverse health outcomes (13). A healthy gait requires 

coordination, strength, and sensation. Since the entire body moves while walking, an impairment 

at any point can result in gait abnormalities and reduced speed (14). Gait speed can be influenced 

by various measures such as overall health, motor control, musculoskeletal conditions, cognition, 

physical activity level, sensory and perception, and the environment (12). Maintaining walking 

ability throughout late life is critical to maintaining health, independence, and quality of life, as 

well as important financially considering the growing older adult population (15). 

1.2.1 Pathophysiology of decline in walking ability 

A declining gait speed among older adults may be a manifestation of accumulating age-related 

changes and chronic conditions. In fact, assessing an individual’s gait speed is often the best 

measure of their overall health, illustrating the severity, duration, and extent of disease, as well 

as the interaction of multiple chronic conditions (16). Thus, an individual’s walking ability, or 

gait speed, can be thought of as a multimorbidity aging phenotype, where vast age-related 

molecular changes likely exist when examining individuals of the same age, but with high versus 

low walking ability. 

Age-related changes in gait have similarities to healthy individuals walking on ice, 

characterized by a widened stance, longer duration with both feet on the floor, shorter step 
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length, not lifting the feet as high off the ground, and a hunched posture (17). Lower limb pain, 

neuromuscular and myopathic conditions, and structural abnormalities of bone, joints, or soft 

tissue can cause changes in gait (18). Abnormalities such as these are broadly classified as 

neurological, musculoskeletal, or cardiorespiratory etiology (17, 18) and can be thought of as 

proximal risk factors of age-related decline in gait speed. Figure 1 displays examples of more 

distal risk factors (obesity, physical inactivity, smoking, and more) of age-related decline in gait 

speed, which do not have a direct impact on gait speed, but instead have an impact by causing 

structural, neurologic, and/or cardiorespiratory changes.  

 

 

Figure 1. Proximal and distal risk factors of age-related decline in gait speed 

 

The most common musculoskeletal gait abnormality, as well as one of the most common 

causes of disability among older adults is osteoarthritis (19, 20). The prevalence of osteoarthritis 

is higher with advanced age and among women (21). Osteoarthritis is characterized as 

deterioration of articular cartilage, the smooth, lubricated, and highly specialized connective 

tissue that covers ends of bones to form joints and lacks blood vessels or nerves (22). Once 

articular cartilage deteriorates to a certain degree, joint tissues with pain fibers become exposed 
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resulting in osteoarthritic pain, an antalgic gait (limping to avoid placing weight on the painful 

side), and a reduced gait speed (18). An average gait also requires a healthy brain. Cortical areas 

of the brain are needed to start walking and to multitask during walking, subcortical areas are 

needed for spatial navigation, adapting to the surroundings, and for sensory input, and the spinal 

cord is needed to set the rhythmic pace of walking (23). Lastly, the cardiorespiratory system 

consists of the heart and lungs working together to deliver oxygenated blood to the muscles and 

organs throughout the body, where dysregulations in this system can impact walking ability due 

to diminished aerobic capacity. 

1.2.2 Descriptive epidemiology of walking ability 

In the United States, one in four adults ages 65 and older have an ambulatory disability defined 

as serious difficulty walking or climbing stairs (24), where the prevalence is higher with older 

age. Over half of adults ages 85 and older self-report an ambulatory disability. A significant 

decline in walking ability begins around the sixth decade of life, where a 10% decrease in gait 

speed occurs, on average, per each additional decade lived (25, 26). The National Health and 

Nutrition Examination Survey (NHANES) examined gait speed among 1,923 adults ages ≥50 

(27) and found the average (±standard deviation) gait speed of participants ages 50-59 was 

1.1±0.2 meters/second (i.e., roughly 24 minutes per mile). Whereas, the average gait speed for 

participants 70-79 was 0.95±0.2 meters/second and continued to be less among older ages to 

about 0.80±0.2 meters/second among participants ages 80 and older (i.e., about 33 minutes per 

mile). 

A gait speed of less than 1.0 meter/second has been shown to be a clinically relevant 

threshold to identify older adults at a higher risk for major health outcomes (28). Among 3,075 
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older adults from the Health, Aging, and Body Composition (Health ABC) study (mean age: 

74±3, 52% women, 42% black), average gait speed at baseline was 1.2±0.2 meters/second, 

where  26% of the cohort had a gait speed <1.0 meter/second (29). It should be noted that the 

eligibility criteria for the Health ABC study included self-reporting no difficulty walking ¼ mile, 

climbing ten steps, or with basic activities of daily living, meaning the Health ABC participants 

were a relatively healthy older adult cohort. On the other hand, when examining 6,534 initially 

non-disabled participants from the Established Populations for the Epidemiologic Study of the 

Elderly (EPESE) aged ≥65, almost all of the men and women (91% and 95%, respectively) had a 

4-meter gait speed <1.0 meter/second. In fact, 42% of men and 55% of women from the EPESE 

had a gait speed <0.6 meters/second, where the prevalence of a worse gait speed was higher 

among older ages (30). A similar prevalence was observed in the Third National Health and 

Nutrition Examination Survey (NHANES III), where 92% of older adults had a gait speed <1.0 

meters/second (31). Thus, the prevalence of a slow gait speed (<1.0 meters/second) among U.S. 

older adults is likely around 92%. 

1.2.3 Analytic epidemiology of walking ability 

1.2.3.1 Walking ability and major health outcomes 

Gait speed has been shown to independently predict multiple major health outcomes 

among older adults, such as incident mobility limitation (32), mobility disability (32-34), 

activities of daily living disability (34, 35), future falls (36, 37), hospitalization (28, 38), 

institutionalization (37), incident cardiovascular disease (32), decline in cognitive performance 

(37, 39), and all-cause mortality (31, 32, 35, 37, 40, 41). Specifically, taking one minute longer 

to walk 400 meters was associated with a 52% higher risk of incident mobility disability (95% 
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CI: 1.41, 1.63) among participants from the Health ABC study, while adjusting for multiple 

confounding variables. In addition, Health ABC participants who attempted the 400 meter walk, 

but could not complete it, had a 95% higher risk of incident mobility disability (1.56, 2.44) than 

participants who finished the test (32). When pooling results from nine different cohorts of 

community-dwelling older adults (31), a 0.10 meter/second faster gait speed was associated with 

a 12% lower mortality risk (0.87, 0.90). A pooled analysis of incident disability by gender found 

a 0.10 meter/second faster gait speed was associated with 32% (95% CI: 0.57, 0.81) and 25% 

(0.68, 0.82) lower risks of bathing or dressing dependence  and mobility difficulty, respectively, 

among men, and was associated with 26% (0.66, 0.82) and 27% (0.67, 0.80) lower risks, 

respectively, among women (34).  

When examining distance walked in 6 minutes among participants from the 

Cardiovascular Health Study, those in the worst two quintiles walked between 290-338 meters 

(i.e., 0.81 to 0.94 meters/second) or <290 meters (i.e., <0.81 meters/seconds) in 6 minutes, as 

well as had a 1.7 (95% CI: 1.2, 2.5) and 2.1 (1.4, 3.0) times the risk of all-cause mortality, 

respectively, when compared to those in the best quintile (>414 meters in 6 minutes; i.e., >1.1 

meters/second), while adjusting for multiple confounders (40). Using this information and 

Levin’s attributable risk equation (42), I can estimate that approximately 30% of deaths among 

the Cardiovascular Health Study cohort were attributable to low walking speed (≤338 meters in 6 

minutes or ≤0.94 meters/second), where reducing the prevalence of low walking speed by half 

would have prevented 15% of deaths in this cohort (using the equation for preventable fraction 

from (43)).  

Change in gait speed over time also significantly predicts mortality, where a fast decline 

(i.e., decrease of 0.03 meters/second each year) over 8 years of follow-up was associated with at 
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least a 70% higher mortality risk when compared to a slow decline (i.e., decrease of 0.02 

meters/second each year) among community-dwelling older adults stratified by baseline gait 

speed (44). Information from these prospective cohorts of older adults indicate that measuring an 

older adult’s gait speed and their change in gait speed over time are important markers 

describing their risk for major health outcomes. Thus, interventions aimed at improving walking 

ability and then sustaining that improvement would likely result in reductions in morbidity and 

mortality, and increase independence among the older adult population. 

1.2.3.2 Cross-sectional associations with walking ability 

At the time gait speed is assessed, those who have slower measurements tend to be older, 

more often women, and more often of black race (32, 45). A slower gait speed has also been 

associated with less than a high school degree (39, 45), current smoking status (32), a more 

sedentary lifestyle (32), higher body mass index (32, 45), and worse self-reported health (45). 

Older adults with slower gait speed or who were not able to participate or complete 

walking tests had a greater likelihood of presenting with chronic conditions, such as 

cardiovascular diseases, stroke, diabetes, arthritis (32, 45), peripheral arterial disease, 

hypertension, pulmonary disease, and depression (32). In addition, a faster gait speed was 

associated with less subclinical disease, characterized by lower blood pressure, less depressive 

symptoms (32, 45), better pulmonary functioning, and better cognitive performance (45). Muscle 

weakness in the leg and arm measured by the isokinetic leg extension and grip strength was also 

significantly associated with slower gait speed (46).  

Gait speed has also been associated with multi-system disease burden (47), measured 

using the physiologic index of comorbidity. The physiologic index of comorbidity ranges from 0 

(healthy) to 10 (unhealthy) and can capture the full range of health from no disease to subclinical 
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disease to clinically apparent disease across the following five physiologic systems: vasculature, 

lungs, kidneys, brain, and glucose metabolism (48). Participants from the Cardiovascular Health 

Study with the worst scores of 7 to 10 on the physiologic index of comorbidity had the slowest 

average gait speed at baseline of 0.8 meters/second, whereas, participants with the best scores of 

0 to 2 had an average baseline gait speed of 1.0 meter/second, where not a single component was 

driving the association (47). 

When examining blood-based markers, higher fasting glucose levels (32), higher levels 

of interleukin-6 (49), C-reactive protein (45, 49), fibrinogen (45), white blood cell count (45), 

and cystatin C (50, 51) have been associated with slower gait speed among community-dwelling 

older adults. In addition, rodent blood exchange models have shown that blood of old mice had a 

negative effect on physical performance (measured using a four-limb hanging test) when pumped 

into the circulation of young mice, whereas blood of young mice had a positive effect on muscle 

regeneration when pumped into the circulation of old mice (52). Taken together, these cross-

sectional studies show that gait speed is associated with a plethora of commonly measured 

variables, such as age, gender, race,  lower socioeconomic status, poor health behaviors, chronic 

conditions, worse markers of disease, and multisystem disease burden, and is thus, likely an 

important modifiable target to improve health in the older adult population. 

1.2.3.3 Risk factors for change in walking ability 

Change in gait speed over eight years of follow-up was examined among community-

dwelling older adults from the Health, Aging, and Body Composition study (N=2364, mean age: 

74±3, 52% women, 37% black) (44). There were three distinct subgroups in the cohort, where 

each group was characterized by a different pattern of gait speed over time. The most optimal 

subgroup (27% of the cohort) had a slow decline in gait speed characterized by average baseline 
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speed of 1.4±0.13 meters/second and average annual decline of 0.02 meters/second. The second 

subgroup (51% of the cohort) was classified as having a moderate decline in gait speed 

characterized by a lower average baseline speed of 1.1±0.1 meters/second, but a similar average 

annual decline of 0.02 meters/second. The worst subgroup (22% of the cohort) had a fast decline 

in gait speed characterized by an average baseline speed of 0.9±0.2 meters/second and an 

average annual decline of 0.03 meters/second. The slow, moderate, and fast decline subgroups 

had a change in gait speed relative to their baseline speed of 11%, 14%, and 22%, respectively. 

Older age, female gender, black race, less than a high school education, larger number of 

comorbidities, body mass index ≥30 kg/m2, knee pain, low knee extensor strength, and low 

levels of physical activity were all significantly associated with a fast or moderate decline in gait 

speed when compared to a slow decline. For example, women had 5.7 (95% CI: 4.0, 8.2) times 

the odds and black participants had 10.0 (6.7, 15.1) times the odds of a fast versus slow decline 

when compared to men and white participants, respectively.  

The physiologic index of comorbidity (48), an index of multi-system disease burden, has 

also significantly predicted change in gait speed over six years of follow-up in the 

Cardiovascular Health Study (47). Participants with worse baseline scores (i.e., 7-10) on the 

physiologic index of comorbidity had an average annual decline in gait speed of 0.03 

meters/second, whereas participants with the best scores (i.e., 0-2) had an average annual decline 

of 0.01 meters/second, while adjusting for baseline confounders. The association remained after 

additionally adjusting for time-varying covariates. Other studies focused on a single organ 

system have found similar results. For example, worse baseline measurements of cystatin C, 

creatinine, and glomerular filtration rate were associated with a greater decline in gait speed over 

7 years of follow-up among participants from the Framingham Offspring Study (51). In addition, 
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changes in adiponectin, interleukin-6, and especially cystatin C have been shown to mirror 

decline in physical functioning with age (10).  

Body composition measures such as thigh intermuscular fat have also been associated 

with change in gait speed. Among 2306 Health, Aging, and Body Composition participants, 

higher intermuscular fat was associated with an annual decline in gait speed of 0.01 and 0.02 

meters/second among men and women, respectively (53). In addition, an increase in thigh 

intermuscular fat during follow-up was also associated with greater decline in gait speed, 

suggesting more fat entering the muscle may contribute negatively toward mobility in late-life. 

Thus, similar to cross-sectional studies, older age, being a woman, black race, lower 

socioeconomic status, chronic conditions, markers of disease, and multisystem disease burden 

were all associated with decline in gait speed among cohorts of community-dwelling older 

adults. A slower gait speed and a decline in gait speed places individuals at a higher risk for 

major health outcomes, such as disability and mortality. Secondary and tertiary interventions 

targeted at improving gait speed will likely reduce or soften the negative impact that chronic 

conditions and multisystem disease burden have on an older adult, as well as preserve their 

independence through later ages and reduce their mortality risk. 

1.3 FRAILTY IN LATE-LIFE 

Frailty is most often defined as the structural and functional decline across multiple physiologic 

systems causing a decreased reserve and resilience to stressors that ultimately lead to increased 

vulnerability to major health outcomes (54). There exists many different ways to measure frailty 

(55), the most popular being the Fried Frailty Phenotype (56) and the frailty index (57, 58).  
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The Fried Frailty Phenotype was developed and validated in 2001 and was found to be distinct 

from both disability and comorbidity (56). It was calculated using information from the 

Cardiovascular Health Study and consists of the following five components: unintentional 

weight loss in the past year, weakness, poor endurance and energy, slowness, and low levels of 

physical activity. Using these five components, an individual is classified as positive for frailty if 

they have at least three components, pre-frail if they have one or two components, and robust if 

they have none. The Fried Frailty Phenotype was later modified in 2011 by removing the ceiling 

effect and allowing for measuring the healthy extreme of the frailty-to-vigor spectrum, in 

addition to the unhealthy extreme (59). This modified Fried Frailty Phenotype is called the Scale 

of Aging Vigor in Epidemiology (SAVE) (60) and uses the same five components, where each 

measure is split into tertiles and given a score of 0 for the best tertile, 1 for the mid-tertile, and 2 

for the worst tertile. SAVE scores are then calculated as the sum of the five tertile scores, 

ranging from 0 (least frail) to 10 (most frail). In the applied portion of this dissertation, I use the 

SAVE to quantify vigor to frailty among older black men from the Health ABC study (Sections 

3.0 and 4.0 ). 

The frailty index, on the other hand, is based on an accumulation of deficits (57, 58) by 

counting signs and symptoms, chronic conditions, and disabilities. For a deficit to be included in 

the frailty index it must satisfy the following five criteria: 1) associated with health status; 2) 

prevalence is higher with older age; 3) onset must not occur too early in life; 4) all deficits must 

cover a range of symptoms; and 5) if longitudinal measurements will be used then the same 

deficits must be measured at all time points assessed. Once the deficits are decided, they are re-

coded to range from 0 (the deficit is not present) to 1 (the deficit is present), where subclinical 

disease can get a score somewhere in between. The frailty index is then calculated as the 
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proportion of deficits. A frailty index calculated using the following deficits has been validated 

against all-cause mortality: vision loss, hearing loss, impaired mobility, vascular problems, gait 

abnormality, impaired vibration sense, difficulty toileting, cooking, bathing, going out, 

grooming, and dressing, skin problems, resting tremor, changes in sleep, urinary complaints, 

gastro-intestinal problems, diabetes, hypertension, and limb tone abnormality (57). 

1.3.1 Issues with current frailty measurements 

Even though frailty indices have been validated against major health outcomes, there still lacks a 

consensus on a gold standard for assessing frailty. This is because the biology and 

pathophysiology of frailty is not well understood. However, examining current measures of 

frailty, despite their imperfections, can still help to better characterize frailty, and potentially lead 

to a more objective method of diagnosing frailty. 

1.3.2 Pathophysiology of frailty 

Structural and functional decline across multiple physiologic systems is thought to play a major 

role in the development of frailty. Supporting this definition, it has been hypothesized that 

dysregulated immune, endocrine, stress, and energy responses are involved in the 

pathophysiology of frailty (55). In addition, aging, genetics, and diseases are thought to cause the 

molecular changes that lead to alterations in pathways that ultimately cause frailty (55).  

Fried and colleagues developed a conceptual model illustrating frailty as a vicious cycle 

(54, 61). The cycle involves a lower total energy expenditure causing chronic undernutrition, 

chronic undernutrition causing sarcopenia and weight loss, sarcopenia and weight loss causing a 
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lower resting metabolic rate, a lower resting metabolic rate causing a lower total energy 

expenditure, and the cycle continues. It is thought that the frailty cycle can be initiated at any 

point, though a reduction in total energy expenditure caused by a decrease in physical activity, 

strength, and/or walking speed is most likely the culprit. Other points of the frailty cycle (e.g., 

chronic undernutrition or sarcopenia and weight loss) may be initiated or exacerbated by disease, 

environment, medications, or age-related changes. The presence of sarcopenia and weight loss 

can further influence reductions in strength, insulin sensitivity, bone density, and VO2 max, as 

well as exhaustion. A reduction in strength can lead to impaired balance, falls and injuries, and 

immobilization, which further leads to a decrease in strength, as well as disability and then 

eventually dependency in the absence of intervention. Both reduced strength and VO2 max can 

negatively influence walking speed, which can result in disability and dependency, as well as 

lower levels of physical activity and total energy expenditure and thus, further exacerbating the 

frailty cycle. All points in the frailty cycle are likely influenced by dysregulated energetics (61). 

Thus, alterations in energy pathways are hypothesized to play a key role in the biology and 

pathophysiology of frailty in late-life.  

1.3.3 Frailty interventions 

Most interventions to prevent frailty or reduce frailty severity have not been successful due to 

focusing on improving only one of the multiple dysregulated physiological systems (61). To 

date, the most promising frailty intervention has been thought to be one involving physical 

activity. Fried (2016) proposed the following three mechanisms on why physical activity 

interventions for frailty should be explored further: 1) lack of physical activity initiates the frailty 

cycle, where intervening at this point likely slows or halts the deleterious process, 2) physical 
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activity can maintain or even improve functioning of multiple physiological systems that are 

thought to be involved in the pathophysiology of frailty, and 3) physical activity may improve 

aging-related decline in the functioning of mitochondria, causing an increase in adenosine 

triphosphate (ATP) production (61).  

To date, there exist few physical activity interventions to reduce frailty severity. As a post 

hoc analysis, a randomized controlled trial of older adults (n=424, mean± standard deviation: 

77±4) examined the difference in frailty prevalence 12 months post randomization among 

participants in a physical activity arm versus a successful aging health education arm (62). 

Adjusting for gender, baseline frailty, and diabetes, there was a decrease in the prevalence of 

frailty by 14% in the physical activity arm versus only 5% in the educational arm (p=0.01). 

However, when examining the individual components of the Fried Frailty Phenotype, there was 

only a significant decrease in the sedentary behavior component by treatment arms. Thus, a more 

multi-domain intervention, that still includes physical activity, may be more promising in 

reducing all of the frailty components.  

1.3.4 Descriptive epidemiology of frailty 

Using various definitions of physical frailty, a systematic review found the weighted average 

prevalence of frailty and pre-frailty to be 10% and 44%, respectively, among multiple 

community-dwelling older adult cohorts (63). When examining the Cardiovascular Health Study 

(CHS) the overall prevalence of frailty using the Fried Frailty Phenotype was 7%, but was higher 

with older age (n=5317, age range: 65-101, 58% women, 15% non-white race). When examining 

CHS participants aged ≥85, the prevalence was 25%, as well as the prevalence was twice as high 

among women and among black participants (54). The Incidence of frailty over four years of 
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follow-up in the CHS was 7% (54). Pre-frailty was much more prevalent, with almost half (47%) 

of the CHS cohort having one or two of the Fried Frailty components. Those in the pre-frail state 

had 2.6 times the risk of developing frailty within the next three years when compared to robust 

participants (95% confidence interval: 1.9, 3.6) (54). A report of participants ages ≥50 from 

NHANES examined a version of the Fried frailty phenotype that did not include gait speed and 

found the prevalence of frailty and pre-frailty to be 4% and 27%, respectively (64). From this we 

can estimate the prevalence of pre-frailty and frailty in the U.S. older adult population to be at 

least 31%, but is likely higher since healthier individuals are more likely to participate in 

research studies. 

A prospective longitudinal cohort (n=754, mean age: 78±5, 65% women, 91% white) 

examined how older adults transitioned to and from a robust, pre-frail, or frail state during 

follow-up (65). At baseline, 23%, 51%, and 26% of the cohort was robust, pre-frail, and frail, 

respectively. After 18 months of follow-up, half of the cohort did not transition from their 

baseline state. Among those who were robust at baseline, 52% remained robust, 40% transitioned 

to pre-frail, 4% transitioned to frail, and 4% died. Among those who were pre-frail at baseline, 

58% remained pre-frail, 25% transitioned to frail, 5% died, and 12% actually transitioned to a 

robust state. Lastly, among those who were frail at baseline, 64% remained frail, 13% died, 23% 

had a healthy transition to a pre-frail state, but none transitioned to robust. Thus, among older 

adults classified as frail, most will remain frail (61, 66). 
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1.3.5 Analytic epidemiology of frailty 

1.3.5.1 Frailty and major health outcomes 

Frailty is associated with multiple major health outcomes, making frailty prevention or 

reducing frailty severity in the population a public health concern. Among community-dwelling 

older adults, frailty and pre-frailty was associated with higher risks of incident falls, mobility 

decline, worsening disability, first hospitalization, and all-cause mortality when compared to 

robust individuals (54), even after adjusting for demographics, behavioral factors, markers of 

health status, chronic conditions, and cognitive function. Specifically, frail older adults (using the 

Fried Frailty Phenotype) had a 98% (95% confidence interval: 1.5, 2.6) higher risk of worsening 

disability and 2.2 (1.5, 3.3) times the risk of dying when compared to robust individuals, after the 

same adjustments. Similarly, pre-frail older adults had a 67% (1.4, 2.0) higher risk of worsening 

disability and a 50% higher risk of dying (1.1, 2.0) when compared to robust older adults. Using 

this information and Levin’s attributable risk equation (42), I can estimate that approximately 

30% of worsening disability and  27% of deaths can be attributed to frailty or pre-frailty among 

this cohort of community dwelling older adults (54). In addition, if the prevalence of frailty and 

pre-frailty were reduced by half (to 3.5% and 23.5%, respectively), approximately 15% of 

worsening disability and 13% of deaths among community-dwelling older adults could be 

prevented (using the equation for preventable fraction from (43)). In addition, vigor to frailty 

scores measured using the Scale of Aging Vigor in Epidemiology (SAVE) were shown to be 

heritable among a two-generation cohort of families with a clustering of longevity (h2=0.23, 

p=1.7x10-13) (60). 
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1.3.5.2 Cross-sectional associations with frailty 

Cross-sectional studies have shown that frailty (defined using the Fried Frailty 

Phenotype) is more prevalent among older ages, women, and non-white races, and associated 

with lower levels of income and education. Frail individuals are also more likely to present with 

chronic conditions, such as hypertension, diabetes, cardiovascular diseases, chronic obstructive 

pulmonary disease, arthritis, peripheral vascular disease, and osteoporosis. Frailty is also 

associated with self-reported disability, lower cognitive performance, higher levels of depressive 

symptoms (54, 55, 67), and oxidative stress (68).  

As discussed in Section 1.3.2, a hypothesis of frailty progression involves dysregulated 

immune, endocrine, and stress responses (55). Evidence for this has come from studies reporting 

cross-sectional associations between frailty and higher levels of pro-inflammatory cytokines: C-

reactive protein and interleukin-6 (69-71), higher levels of circulating clotting markers: factor 

VII, fibrinogen, and D dimer (70), lower levels insulin-like growth factor-1 and 

dehydroepiandrosterone (71), higher levels of cortisol with a reduction in the diurnal variation 

(72), and lower levels of 25-hydroxy vitamin D (69). A pro-inflammatory state may initiate the 

frailty cycle by promoting skeletal muscle loss (73) and suppressing appetite (55), it also may be 

causing the elevated circulating clotting markers that are associated with frailty (74). Insulin-like 

growth factor-1 signals growth and differentiation, specifically it stimulates bone formation, 

protein synthesis, glucose uptake in muscle, neuronal survival, and myelin synthesis (75), where 

a decrease likely contributes to frailty progression through sarcopenia and weight loss as well as 

dysregulated energetics. Dehydroepiandrosterone is thought to influence frailty since it may be 

directly involved in maintaining muscle mass (76), where lower levels lead to less ability to 

adequately maintain muscle. Cortisol, a steroid hormone released in response to stress, may be 
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associated with frailty progression by negatively impacting skeletal muscle and disrupting 

components of the immune system (55). Lastly, vitamin D is needed to absorb calcium and 

maintain skeletal strength, where lower levels of 25-hydroxy vitamin D, a product of vitamin D, 

may indicate less ability to maintain skeletal strength leading to sarcopenia and further 

exacerbation in the frailty cycle. 

1.3.5.3 Risk factors for frailty 

In at least two longitudinal studies examining risk factors for frailty (defined using the 

Fried Frailty Phenotype), older age (77-80), lower education (78-80) prevalent diabetes (67, 77) 

and arthritis (77, 80), larger total number of chronic conditions (77, 79), past or current smoking 

(77, 80), self-reported disability (67, 80), and worst cognitive performance (67, 77) significantly 

predicted incident frailty or worsening frailty severity. Other prospective studies have 

additionally found being a woman (78), under or overweight (80), prevalent cardiovascular 

diseases (80), hypertension (80), and chronic obstructive pulmonary disease (80), history of a hip 

fracture (80) and falls (80), negative affect (77), higher levels of depressive symptoms (80), 

allostatic load (81), C-reactive protein (82), and insulin resistance (82) significantly associated 

with incident frailty or increases in severity, whereas higher income (80), living alone (80), 

higher self-reported health (80), and better leg power at baseline appear to be protective.  

1.4 INTEGRATED MEASURES OF AGING 

Both frailty severity and gait speed have been described as complex phenotypes influenced by 

multiple aspects of aging, as well as multimorbidity. These aging phenotypes can be thought of 
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as manifestations of the dysregulation across and within multiple physiologic systems that occur 

from age-related molecular changes, genetics, and disease. It is likely that older adults with a fast 

gait speed or older adults who have low levels of frailty severity will have significantly different 

profiles of circulating markers than their counterparts. Though, a limitation of the currently 

known and commonly measured biomarkers associated with these aging phenotypes is that they 

are also associated with numerous other conditions and health outcomes (83) and thus, do not act 

as a precise markers of age-related decline.  

Metabolomics has the potential to better characterize frailty and walking ability in late-

life by simultaneously measuring hundreds of metabolites that can illustrate profiles of metabolic 

processes specific to both or either frailty and walking ability. Understanding the associated 

metabolic processes of these aging-related phenotypes can lead to a better understanding of their 

biology and pathophysiology, which will help inform better interventions to reduce frailty 

severity and decline in walking ability, and ultimately, preserve physical functioning and 

independence throughout old age. 

1.5 METABOLOMICS 

Metabolomics is the large-scale study of endogenous and exogenous metabolites present in an 

organism (84, 85). Metabolites are small molecules (1500 Da) in cells, tissues, and bodily fluids 

that help in or are intermediates or end products of cellular metabolism, some examples being 

sugars, lipids, and amino acids. Even though ‘metabolomics’ is a relatively recent term, the 

concept of measuring small molecules in bodily fluids to detect disease has been around since 

ancient times. Around 500-600 AD, the ancient Indians tested for diabetes, then referred to as the 
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“sweet urine disease,” by examining whether ants were attracted to patients’ urine due to 

excessive levels of the metabolite, sugar (86). 

Metabolites can be influenced by both genetics and the environment and are thought to 

best reflect the molecular phenotype of an individual because they illustrate the underlying 

biochemical activity and the state of cells and tissues through what is left behind from cellular 

processes (87). Measuring metabolites has the potential to capture how metabolic pathways are 

functioning within an organism. Metabolic pathways consist of reactions that can be either 

anabolic or catabolic. Anabolic reactions require energy to build more complex molecules from 

simpler ones, whereas catabolic reactions release energy by breaking down molecules into 

simpler ones (87). Thus, differences in metabolite values by the phenotype of interest may 

indicate certain pathways are altered to undergo catabolism versus anabolism. 

Metabolomics is the closest –omics approach to the phenotype of interest and thus, is 

particularly promising since it may provide information that is more biologically coupled to the 

phenotype of interest. Information on altered amounts of metabolites and altered metabolic 

pathways among those with a disease or condition versus their healthy counterparts can be used 

to better characterize the disease or condition that can be used to identify new biomarkers to 

detect and intervene at earlier points in its pathogenesis, as well as inform therapeutic targets 

(88), with the potential for more personalized drugs and improved treatment strategies.  

1.5.1 Targeted versus untargeted metabolomics 

There are two main approaches to metabolomics: untargeted and targeted. Targeted involves 

measuring specific metabolites or specific groups of metabolites, whereas untargeted is a global 

approach to measure as many metabolites present in a sample as possible (87, 89) including 
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metabolites that may not yet be fully characterized. Untargeted metabolomics can be viewed as a 

hypothesis generating or exploratory approach using inductive reasoning, where the goal is to 

detect patterns in the observed metabolites to develop a conceptual model. Targeted, on the other 

hand, can be viewed as hypothesis testing using deductive reasoning, where an established 

conceptual model determined what metabolites to examine. Ultimately, results using an 

untargeted approach can inform the hypothesis for a more targeted approach (89). There are 

multiple steps involved in measuring metabolites. The first is designing a study, followed by 

preparing samples, extraction, mass spectrometry, and last acquiring, processing, analyzing, and 

interpreting the data (87). 

1.5.2 Methods 

1.5.2.1 Sample preparation 

An important step is deciding what type of biological sample will be collected, e.g., 

plasma, serum, tissue, urine, or saliva, as well as the time of day samples will be collected, what 

supplies will be used (e.g., glass versus plastic vessel), and how long participants should fast 

prior to collection (90). It is important to keep collection times similar across participants since 

metabolic reactions have circadian variation. Other potential confounding factors are likely the 

participants’ activity level, diet, and hydration level. If samples are not analyzed right away then 

they should be stored at -80°C, preferably in 1 mL aliquots. 

1.5.2.2 Extraction 

Extraction is the process of separating metabolites based on physical and chemical 

properties. Metabolites are both physically and chemically diverse (91) and continuously being 
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absorbed, synthesized, and degraded, and interacting with other molecules within and between 

metabolic pathways (87). Due to the dynamic nature and chemical/physical diversity, metabolite 

extraction is difficult (91). The most common metabolite extraction methods are liquid-liquid 

extraction, solid-liquid extraction, and solid-phase extraction (91). Liquid-liquid extraction is a 

method of adding two immiscible liquids (usually water and a non-polar organic solvent) to the 

samples, which causes compounds, or metabolites, to separate based on solubility. An example 

of an immiscible non-polar organic solvent is chloroform. Chloroform is denser than water, non-

reactive, volatile, and when paired with water results in the separation of polar and non-polar 

metabolites (92), where the polar metabolites dissolve in the water (e.g., glucose, amino acids, 

ketone bodies, creatinine) and the non-polar metabolites dissolve in the chloroform (cholesterol, 

fatty acids, phospholipids, triglycerides) (90). Similarly, solid-liquid extraction is a method of 

extracting compounds from a solid by adding a liquid. The compounds are extracted from the 

solid and dissolved into the liquid, the liquid extract can then be separated from the solid using a 

filter (93). An example of solid-liquid extraction is the process of brewing coffee: coffee flavor 

compounds are extracted by adding water to coffee grounds and then filtering out the coffee 

grounds (93). Last, solid-phase extraction, also known as liquid-solid phase extraction, is a 

method that uses solid particles to separate metabolites dissolved or suspended in a liquid.  

1.5.2.3 Liquid chromatography-mass spectrometry 

There are multiple analytical technologies used to acquire data on metabolites, such as 

liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, nuclear 

magnetic resonance, differential mobility, and imaging mass spectrometry. Each method has 

their advantages and disadvantages. Here, we will focus on liquid chromatography-mass 
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spectrometry, which is the method used in the applied portion of this dissertation (see Sections 

2.3.4 and 3.3.2). 

Liquid chromatography is a method of separating metabolites in a liquid based on 

chemical and physical properties. High-performance liquid chromatography uses pressurized 

pumps to pass liquid samples through a column containing small particles (94). Metabolites are 

separated because their physical and chemical diversity causes them to pass through the column 

at different speeds. The time it took for a component to pass through the column is referred to as 

the retention time. 

Mass spectrometry is a technique that essentially measures the mass of chemical 

substances within a sample. Mass spectrometry ionizes a chemical substance, which causes 

molecules to break into charged fragments. The resulting ions are then sorted based on their 

mass-to-charge ratio. Based on their mass-to-charge ratio, metabolites are detected, identified, 

and quantitated. Mass spectrometry coupled with liquid chromatography reduces the complexity 

of a sample by first separating the compounds based on physical and chemical properties before 

ionization (89). The column used in liquid chromatography allows for specific metabolites to be 

measured. For example, using polar columns in hydrophilic interaction liquid chromatography 

separates out polar metabolites, such as sugars, amino acids, carboxylic acids, and nucleotides 

(89). Whereas, using C18 columns along with liquid chromatography coupled to electrospray-

ionization mass spectrometry separates semi-polar metabolites, such as glycosylated steroids, 

phenolic acids, and alkaloids (89). A main advantage of liquid chromatography-mass 

spectrometry, over both gas chromatography-mass spectrometry and nuclear magnetic 

resonance, is that is can analyze almost all compounds with high sensitivity and selectivity (89).  
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1.5.2.4 Data processing 

The result of liquid chromatography-mass spectrometry will be an output of data 

including peaks with retention time and mass-to-charge ratio (95). Databases are available that 

can be used to match mass-to-charge ratio (96). Typically an internal reference library is also 

available in the lab where results were obtained. The reference library includes information on 

both retention time and mass-to-charge ratio for hundreds of known metabolites, allowing the 

detected metabolites to be identified by matching them up to the known standards. Restricting 

analyses to metabolites identified from reference libraries has been referred to as semi-targeted 

metabolomics (96), where as many metabolites are being measured as possible still, but only the 

known metabolites available in reference libraries are being identified and analyzed. Once 

metabolites are identified, the peak areas of each can be used for statistical analysis. In the 

following sections, metabolomics of aging-related phenotypes and disease will be discussed to 

get a sense of metabolites that may be involved in aging. 

1.5.3 Physical performance measures and incident mobility disability 

Variability in physical functioning increases with chronological age, where differences may be a 

result of chronic exposure to an abundance of metabolites or to low levels of metabolites. For 

example, a chronic abundance of circulating fatty acids may contribute to poor physical 

functioning because of excess fat entering muscle. Greater intermuscular fat has shown to predict 

a faster decline in gait speed among older adults (53). Another example would be that chronic 

low levels of amino acids may cause a decrease in muscle synthesis, leading to sarcopenia over 

time which is associated with poorer physical functional status (97). To date, four studies have 

examined the relationship between metabolites and physical performance measures. Metabolites 
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associated with gait speed and incident disability were examined in 319 black men from the 

Health, Aging, and Body Composition study (median age: 73) (98). Among the 350 plasma 

metabolites examined, seven metabolites were correlated with gait speed (Table 1) at a 0.01 

significance level, while adjusting for weight change from the prior year, age, study site, and 

smoking status. After adjusting for multiple comparisons using a 30% false discovery rate (99), 

only the following two metabolites remained significantly associated with gait speed: 2-

hydroxyglutarate (correlation=-0.17) and salicylurate (correlation=-0.19). The former metabolite 

has been linked to cancer, and thus classified as an oncometabolite, whereas salicylurate 

eliminates salicylates (e.g., aspirin) from the body. These two metabolites may reflect more 

chronic disease and medication use among those with a slower gait speed (98). The authors 

found 23 metabolites significantly associated with incident mobility disability (Table 1), the 

majority being markers of kidney function (creatinine, N-carbamoyl beta-alanine, SDMA, 

quinolinate, inositol, inosine, hypoxanthine, indoxyl sulfate), suggesting a potential causal 

relationship between kidney health and mobility. The associated metabolites may also indicate 

pathways of amino acid metabolism and degradation, as well as oxidative stress involved in the 

pathophysiology of mobility disability. A targeted set of 148 metabolites (amino acids, biogenic 

amines, and lipids) was examined in 504 adults ages ≥50 from the Baltimore Longitudinal Study 

of Aging (100). The authors found eight metabolites, all of which were lipids, associated with 

gait speed after adjusting for age and gender (Table 1). The authors also examined which 

metabolites were associated with change in gait speed and found lower levels of the lipid, C18:2 

LPC, was associated with faster decline in gait speed over a median of 4 years of follow-up, 

independent of age, gender, and chronic conditions.  
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Lustgarten et al. (2014) examined 177 metabolites (amino acids, fatty acids, and acyl 

carnitines) and two physical performance measures among 73 sedentary older adults (mean (SD) 

age = 77.7 (3.9), 41% men) from a randomized controlled trial of whey protein supplementation 

in addition to supervised resistance exercise training (101). When examining baseline 

metabolites (i.e., prior to the intervention), higher levels of two amino acid principal components 

were significantly associated with worse scores on the Short Physical Performance Battery 

(p≤0.009) and five amino acid factors and one acyl carnitine species factor were associated with 

gait speed (p≤0.005), suggesting metabolites related to gut bacterial metabolism, peroxisome 

proliferator-activated receptor-alpha activation, and insulin sensitivity may influence physical 

performance among sedentary older adults. Similarly, a small cohort of older men from the U.S. 

Veterans LIFE Study applied a principal components analysis to 45 plasma acyl carnitines to get 

a single factor score, where higher levels of the acyl carnitine score was significantly associated 

with worse scores on the Short Physical Performance Battery, gait speed, and the chair stand test 

(102). Taken together, these studies of metabolites associated with physical performance suggest 

certain lipids, amino acids, and acyl carnitines, in particular, may be markers to explore further 

to better understand molecular changes that may contribute to differences in physical functioning 

among those of the same chronological age. 

1.5.4 Frailty  

Few studies have examined the metabolomics of frailty. Fazelzadeh et al. (2016) examined 

differences in muscle metabolites among 43 frail or pre-frail older adults versus 66 healthy older 

adults. The authors found 26 muscle metabolites differed by frailty status (p<0.05), where the 

majority were amino acids (Table 1). The differences in metabolites among frail versus healthy 
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older adults reflect mitochondrial functioning, tissue turnover, and fiber-type composition (103). 

Another study examined the association between plasma metabolites measured in 2530 samples 

from the TwinsUK BioResource (all volunteers were women; mean age: 60.5, range 17-93) and 

frailty defined using the Rockwood index (104). The authors found 20 metabolites associated 

with frailty at a 0.001 significance level, of which most were amino acids and lipids. 

Serum metabolites associated with being fit, unfit, or frail among older adults with breast 

cancer has also been examined (105). Using information from a targeted metabolomics study of 

45 amino acids, 40 acylcarnitines, and 150 phsophlipids, the authors found a set of amino acids 

and acyl carnitines that best differentiated the frail from the non-frail cancer patients. However, 

after adjusting for differences in age only one amino acid remained significantly associated with 

frailty status, and no acyl carnitines remained significant. Other metabolites significantly 

associated with frailty status among the cancer patients after adjusting for age were sphingolipids 

and glicerophospholipids (Table 1); suggesting perturbations in lipid metabolism may 

characterize frailty development among breast cancer patients. Perturbations in lipid metabolism 

were also observed among a lipidomic study of frail versus non-frail HIV+ patients (106). Thus, 

these few studies of frailty-associated metabolites similarly indicate that alterations in levels of 

certain lipids and amino acids may play a role in frailty. 

1.5.5 Healthy aging index 

We previously examined metabolites associated with the healthy aging index among 319 black 

men from the Health, Aging, and Body Composition study (median age: 73) (107).  The Healthy 

Aging Index is a measure similar to the Physiologic Index of Comorbidities that captures multi-

system disease burden (108). Among 341 metabolites, 19 (listed in Table 1) were associated with 
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the unhealthy versus healthy extremes of the healthy aging index (scores 8- 10 versus 0-3, 

respectively), while accounting for multiple comparisons using a Benjamini-Hochberg 5% false 

discovery rate (99). Two of the 19 metabolites associated with the healthy aging index also 

significantly predicted cardiovascular mortality. One standard deviation higher expression of 

glucuronate and symmetric dimethylarginine was associated with a 29% (95% CI: 1.05, 1.57) 

and 54% (1.09, 2.19) higher risk of cardiovascular disease mortality, respectively, while 

adjusting for age, body mass index, prevalent cardiovascular disease, creatinine, and the healthy 

aging index, as well as deaths from other causes as competing risks and multiple comparisons. 

The results suggest pathways of oxidative stress, nitric oxide formation, gut microbial activity, 

and the citrate cycle involved in aging. 

1.5.6 Metabolism 

Aging and aging-related disease are likely influenced by common metabolic pathways. It has 

previously been observed that cohorts of long-lived individuals tend to have healthier metabolic 

characteristics and a delayed onset of aging-related disease when compared to controls (109, 

110). In addition, among families with a clustering of longevity, those who also have a clustering 

of healthy metabolism may have an even more extreme longevity phenotype (111). Proposed 

metabolic strategies promoting healthy aging and longevity have involved caloric restriction, 

lower signaling of the insulin/insulin-like growth factor-1 pathway, and lower signaling of the 

mammalian target of rapamycin (mTOR) pathway (112). The following sections discuss studies 

that have examined metabolomics of aging-related metabolic diseases, specifically obesity, 

diabetes, and cardiovascular disease, to provide further insight into potential metabolomic 

signatures of healthy versus unhealthy aging. 
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1.5.6.1 Body composition 

Metabolites correlated with lean mass and adiposity was examined among the same 

cohort of black men from the Health, Aging, and Body Composition study, as in sections 1.5.5 

and 1.5.3 (113). Using a strict multiple comparisons Bonferroni adjustment, 92, 48, 96, and 53 

metabolites were associated with body mass index, percent fat, percent trunk fat, and 

appendicular lean mass, respectively, controlling for age, site, and smoking status (Table 1). The 

majority of associated metabolites were lipids. In addition, branched-chain amino acids and 

carnitine metabolites were correlated with each of the four body composition measures. 

Branched-chain amino acids (leucine, valine, and isoleucine) are essential in regulating protein 

structure and benefit muscle composition, whereas carnitine metabolites are markers of energy 

production and lipid catabolism (113), suggesting disruptions in lipid homeostasis may be 

involved in obesity and muscle metabolism.  

1.5.6.2 Obesity 

Newgard et al. (2009) performed a Principal Components Analysis (PCA) to reduce the 

number of metabolites compared among obese versus lean participants (114). Among 18 PCA 

factors, a branched-chain amino acid-related metabolic signature (Table 1) was the most 

significantly associated with obese versus lean participants (p<0.0001), while adjusting for age, 

race and gender. The same factor was also positively correlated with homeostatic model 

assessment for insulin resistance (correlation=0.58, p<0.0001). Briefly, the authors furthered 

their understanding by feeding rats either a high-fat diet, high-fat with branched-chain amino 

acid (BCAA) supplementation, or a standard diet and found mice on the BCAA supplemented 

high-fat diet were just as insulin resistant as the rats on the high-fat diet, even though they had a 

reduced food intake and similar weight gain to the rats on a standard diet. Thus, the authors 
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concluded that branched-chain amino acids may contribute to insulin resistance when in the 

presence of a poor diet that is high in fat (114).  

1.5.6.3 Diabetes 

Branched-chain amino acids (leucine, isoleucine, valine) were also significantly 

associated with incident diabetes among a nested case-control study of 189 participants who 

developed incident diabetes versus 189 propensity-matched controls sampled from the 

Framingham Heart Study cohort (115). Phenylalanine and tyrosine (aromatic amino acids), in 

addition to the branched-chain amino acids, were also significantly associated with incident 

diabetes. One standard deviation higher log-transformed score on any of the five metabolites was 

associated with a 1.57 (1.17, 2.09) to 2.02 (1.40, 2.92) times the odds of incident diabetes, while 

adjusting for age, gender, body mass index, and fasting glucose. Similar associations were found 

when further adjusting for family history of diabetes, triglycerides, and dietary intake of protein, 

amino acids, and total calories. All five metabolites remained significantly associated, with a 

similar magnitude, with incident diabetes when replicated in an independent cohort. Similarly to 

Newgard et al. (2009), the authors concluded that circulating amino acids may directly promote 

insulin resistance  and cause disruptions in insulin signaling within skeletal muscle by activating 

the following signaling pathways: mammalian target of rapamycin (mTOR), JUN, and insulin 

receptor substrate 1 (115). Another hypothesis was that more circulating amino acids may 

promote diabetes by also causing hyperinsulinemia and pancreatic cell exhaustion. 

1.5.6.4 Cardiovascular disease  

Branched-chain amino acids have also been positively correlated with cardiovascular 

disease, suggesting common underlying pathways of cardiovascular disease, obesity, and 
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diabetes. After prolonged exercise, such as marathon running, metabolite changes occur, where a 

significant decline in concentrations of most circulating amino acids was observed, as well as 

increases in lipolysis and products of ketogeneisis (116, 117). Thus, suggesting a pathway at 

which exercise can improve aging-related molecular changes.  

In addition to branched-chain amino acids, higher phenylalanine, monounsaturated fatty 

acids, unsaturated lipids, and lower levels of omega-6 fatty acids and docosahexaenoic have also 

been associated with cardiovascular disease (116). The association of higher levels of 

trimethylamine-N-oxide and cardiovascular disease has been validated in multiple cohorts. 

Trimethylamine-N-oxide is a metabolite present in higher quantities among those with a meat-

based diet since the metabolite is produced by gut bacteria that feed on dietary 

phosphatidylcholine and carnitine (compounds from dietary meat). Supporting this, 

trimethylamine-N-oxide supplementation in animal models has shown to promote atherosclerosis 

(116). 

From these studies, it appears that lipids and amino acids are classes of metabolites that 

were commonly associated with physical performance, frailty, healthy aging, body composition, 

diabetes, and cardiovascular disease among community-dwelling older adult cohorts. Thus, I 

hypothesize that in the applied portion of this dissertation, lipids (e.g., sphingomyelins, and 

triacylglycerol) and amino acids (e.g., leucine, isoleucine, valine, and tyrosine) will be among 

the metabolite classes that are most significantly associated with walking ability and frailty.  
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1.6 SPECIFIC AIMS AND CONCEPTUAL MODEL 

As discussed in the previous section, most studies of metabolomics focus on a single organ 

system or disease. However, common pathways of aging and aging-related disease may exist that 

lead to physiologic dysregulation across multiple organ systems, where metabolomics of 

integrated measures of aging, rather than a single disease, are needed to identify them. Few 

studies have examined metabolomics of more integrated measures of aging, such as frailty and 

physical functioning. Limitations of the existing studies include: conducted in specialized 

populations (e.g., cancer patients, HIV+ patients), only examined older adults in the unhealthy 

extreme of aging (e.g., sedentary older adults with low physical functioning), and/or using 

performance measures that may not well-differentiate between older adults with adequate to 

healthy aging (e.g., 20m walk alone). Examining both extremes of the aging distribution among a 

more generalized population of community-dwelling older adults has a greater potential to 

identify underlying mechanisms of healthy aging since there will be a greater amount of 

variability to provide more contrast between healthy versus unhealthy aging. The overall aim of 

my dissertation was to identify metabolites indicating shared mechanisms of aging across 

multiple physiologic systems using measures of frailty to vigor and walking ability that can 

capture both extremes of the aging distribution. The specific aims of this project were as follows: 

Aim 1: To examine plasma metabolites and metabolic pathways associated with high 

walking ability (n=60) versus low walking ability (n=60) among participants from the 

Cardiovascular Health Study (CHS) All Stars study using a nested case-control study design, 

matched one-to-one on age, gender, race, and fasting time. Walking ability was defined using 

objectively measured gait speed and self-reported ability to walk both ½ mile and 1 mile (see 

Section 2.3.5).  
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Aim 2: To examine plasma metabolites and metabolic pathways associated with 

frailty to vigor scores among 287 black men from the Health, Aging, and Body Composition 

(Health ABC) study, while adjusting for age and study site. Frailty to vigor scores were 

measured using the Scale of Aging Vigor in Epidemiology (SAVE; see Section 3.3.3). 

 Aim 3: To develop and validate a novel metabolite composite score using metabolites 

associated with frailty to vigor scores among 287 black men from the Health ABC study, and 

to determine whether the metabolite composite score explains the higher mortality risk 

associated with frailty. The metabolite composite score will be validated against all-cause 

mortality in an independent cohort of 120 community-dwelling older adults from the CHS 

All Stars study. The metabolite composite score was a tertile-ranked sum of the 37 

metabolites associated with frailty to vigor scores (see Section 4.3.4).  

My overall hypothesis was that older adults in different extremes of aging phenotypes 

(i.e., high walking ability or low levels of frailty) would have specific metabolomic signatures 

reflective of healthy versus unhealthy aging. Figure 2 illustrates that stressful stimuli may be 

causing metabolic pathways to become altered to maintain homeostasis in the presence of a 

stressful event, which then contributes to an increase in physiologic dysregulation contributing to 

poor aging-related phenotypes, such as a decline in walking ability and higher frailty severity, 

which then leads to an increased vulnerability to major health outcomes. A limitation of this 

study is the cross-sectional nature, which will only allow me to speculate causal relationships, 

but will not provide evidence toward temporality. However, information gained from this 

dissertation will set the foundation needed to inform future studies on metabolic processes to 

investigate further as potentially involved in the pathophysiology of aging-related phenotypes, 

frailty and poor walking ability. Metabolomic signatures specific to older adults characterized as 
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healthy agers may provide points of intervention to improve and preserve physical function in 

the older adult population. 

 

 

Figure 2. Proposed causal diagram of altered metabolic pathways and aging phenotypes 
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1.7 TABLES 

Table 1. Metabolites associated with aging-related phenotypes 

Phenotype  
(reference) Cohort Adjustments 

Targeted or 
untargeted 

metabolomics 

Number of associated  
metabolites Metabolites associated with phenotype 

Healthy aging 
index (107) 

Health ABC 
study: subset of 
319 black men 
(mean age: 74) 

------ Untargeted: 350 
plasma metabolites 19 metabolites 

Kyuneric acid, C5:1 carnitine, 
Hydroxyphenylacetate, C5:DC carnitine, 
Trimethylamine N-oxide, Glucuronate, C7 
carnitine, C58:8 carnitine, 5-aminolevulinic acid, 
Alpha-glycerophoshate, N-carbamoyl beta 
alanine, Symmetric dimethylarginine, Uracil, 
Creatinine, Citrulline, Isocitrate, Aconitate, 
Fructose, Urate 

Physical performance and disability: 

Gait speed  
(over  6m) (100)  

504 adults ages 
≥50 from 
Baltimore 
Longitudinal 
Study of Aging 
(mean age: 
71±10; 49% 
women) 

Age, gender 

Targeted; 148 
plasma metabolites: 
25 amino acids, 11 
biogenic amines, 1 
hexoses, 10 
sphingolipids, 7 
acylcarnitines, 94 
glycerophospholipids 

8 metabolites(FDR<0.05) 
Hexoses, C16:1 SM, C18:0 SM, C18:1 SM, 
C32:3 PC aa, C17:0 LPC, C18:1 LPC, C18:2 
LPC 

Change in gait    
speed over median   
of 4.2 years (100) 

504 adults ages 
≥50 from 
Baltimore 
Longitudinal 
Study of Aging 
(mean age: 
71±10; 49% 
women) 

Age, gender, 
and chronic 

diseases 
(hypertension, 

coronary 
artery disease, 

congestive 
heart failure, 

peripheral 
arterial 
disease, 
stroke, 

diabetes, 
chronic 

obstructive 
pulmonary 

disease, 
Parkinson’s 

disease, lower 
extremity 

joint disease, 
chronic 
kidney 

disease) 

Targeted; 148 
plasma metabolites: 
25 amino acids, 11 
biogenic amines, 1 
hexoses, 10 
sphingolipids, 7 
acylcarnitines, 94 
glycerophospholipids 

4 metabolites after 
adjusting for age and 
gender, but only 1 
metabolite after further 
adjusting for chronic 
diseases 

C18:2 LPC (remained significant after further 
adjusting for chronic diseases), C32:3 PC aa, 
C38:3 PC ae, creatinine 

Gait speed  
(over 20m) (98) 

Health ABC 
study: subset of 
319 black men 
(mean age: 
74±3) 

Age, site, 
smoking, and 
weight change 
from the prior 

year 

Untargeted: 350 
plasma metabolites 

7 metabolites (p<0.01), 
but only 2 metabolites 
remained significant after 
multiple comparisons 
adjustment (q<0.30) 

Salicylurate and 2-hydroxyglutarate (remained 
significant after multiple comparisons), 
Glucuronate, C54:10 TAG, Asparagine, 
Tryptophan, C24:1 Ceramide D18:1 
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Phenotype  
(reference) Cohort Adjustments 

Targeted or 
untargeted 

metabolomics 

Number of associated  
metabolites Metabolites associated with phenotype 

Gait speed  
(over 400m) (101) 

Sedentary 73 
older adults 
(mean age: 
78±4; 59% 
women) 

Age, gender 

Targeted; 177 serum 
metabolites: 98 
amino acids, 59 fatty 
acids, and 20 
acylcarnitines 

Five amino acid principal 
component factors 
One acylcarnitines 
principal component 
factor 

Amino acid factors:  
N-acetylglycine 
Branched-chain amino acid degradation products, 
indolelactate 
Phenol sulfate 
Branched-chain amino acids 
Trans-urocanate 
Acylcarnitines factor: 
Isobutyrylcarnitine 

Short physical  
performance  
battery (101) 

Sedentary 73 
older adults 
(mean age: 
78±4; 59% 
women) 

No additional 
adjustments 
because age, 
gender, and 

BMI were not 
significant in 
multivariable 

model  

Targeted; 177 serum 
metabolites: 98 
amino acids, 59 fatty 
acids, and 20 
acylcarnitines 

Two principal component 
factors 

Amino acid factor with Hydrocinnamate, 
Cinnamoylglycine 
Amino acid factor with N-methylproline, N,N-
dimethylproline 

Short physical  
performance  
battery and its  
components:  
gait speed and  
chair stands (102) 

77 men ages 
≥70 from the 
US Veterans 
LIFE study 
(mean age: 
79±5) 

Age, body 
mass index, 

health 
conditions 
(arthritis, 
diabetes, 

problems with 
circulation in 

peripheral 
limbs) 

Targeted; 45 plasma 
acylcarnitines 

One principal component 
factor 

Factor score consisting of 45 acylcarnitines: C10-
OH/C8-DC, C12:1, C14:1-OH/C12:1-DC, C12-
OH/C10-DC, C14:1, C12, C14, C14:2, C16:1, 
C16:2, C8:1-DC, C18:1, C10:1, C2, C18:1-
OH/C16:1-DC, C14-OH/C12-DC, C16:1-
OH/C14:1-DC, C16, C18:2, C6-DC, C6:1-
DC/C8:1-OH, C8:1, C10:2, C4-OH, C10, C10:3, 
Ci4-DC/C4-DC, 
C20:1-OH/C18:1-DC, C6, C20, C18, C16-
OH/C14-DC, C8, C5-OH/C3-DC, C5-DC, C20-
OH/C18-DC, C18:2-OH, C18-OH/C16-DC, C3, 
C5’s, C4/Ci4, C7-DC, C22, C20:4, C5:1 

Incident mobility  
disability (98) 

Health ABC 
study: 
subset of 319 
black men 
(mean age: 
74±3) 

Age, site, 
smoking, and 
weight change 
from the prior 

year 

Untargeted: 350 
plasma metabolites 

23 metabolites: 
Lipid and lipid-like 
metabolites (n=11) 
Organix acids and 
derivatives (n=5) 
Organoheterocyclic (n=3) 
Organonitrogen 
compound (n=1) 
Organooxygen (n=1) 
Nucleoside, nucleotide, 
analogues (n=1) 
Unclassified (n=1) 

C36:1 PS plasmalogen, C36:4 PC plasmalogen, 
C36:4 PC A, C36:4 PE, C38:2 PE,  
C38:4 PE, C18:2 CE, C5 DC carnitine, C4 
carnitine, C3 carnitine, Acetylcholine, 
Indoxyl sulfate, C4-OH carnitine, N-Carbamoyl 
beta-alanine, 5-Aminolevulinic acid, 
Butyrobetaine, Creatinine, Hydroxyproline, 
Hypoxanthine, Inosine, Inositol, Quinolinate, 
SDMA 

Frailty: 

Frailty, defined  
using the Fried  
Frailty Phenotype  
(103) 

43 frail or pre-
frail older adults 
(mean age: 
78±8; 42% 
women; mean 
BMI: 27.5±4) 
versus 66 
healthy older 
adults (mean 
age: 72±5; 29% 
women; mean 
BMI: 25.5±3) 

Gender and 
frailty by 
gender 

interaction 

Targeted; 96 muscle 
metabolites: amine, 
acylcarnitines, 
organic 
acids, oxylipins, and 
nucleotides 

26 muscle metabolites: 
TCA cycle metabolites 
(n=1) 
Acylcarnitines (n=4) 
Intracellular buffering 
(n=1) 
Oxylipins (n=3) 
Polyamine metabolism 
(n=2) 
Other amino acids (n=14) 
Aminobutyric acids (n=1) 
 

TCA cycle: citric acid 
Acylcarnitines: isovalerylcarnitine (C5), 
octenoylcarnitine (C8), malonylcarnitine(C3- 
DC), carnitine (C0) 
Intracellular buffering: carnosine 
Oxylipins: LA (CYP450) 12,13DiHOME, DGLA 
(LOX) 8HETrE, 15SHETrE 
Polyamine Metabolism: spermidine, spermine 
Other Amino Acids: histidine, asparagine, 
taurine, serine, glycine, oacetylserine, 
homoserine, tyrosine, tryptophan, methionine, 
glutamine, pyroglutamic acid, glutamic acid, 
glycylglycine 

Table 1 Continued 
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Phenotype  
(reference) Cohort Adjustments 

Targeted or 
untargeted 

metabolomics 

Number of associated  
metabolites Metabolites associated with phenotype 

Frailty, defined  
using the 
comprehensive  
geriatric 
assessment (105) 

99 older adults 
with breast 
cancer (aged 70-
97, median=77) 
defined as fit 
(n=49), unfit 
(n=23), and 
frailty (n=17) 

Age 

Targeted; 235 serum 
metabolites: 45 
amino acids, 40 
acylcarnitines, and 
150 phospholipids 
 

20 metabolites: 
Amino acids (n=1) 
Hydroxysphingomyelins 
(n=3) 
Phoshphatidylcholine 
(n=14) 
LysoPhoshphatidylcholine 
(n=2) 

Amino acids: 3-Methylhistidine 
Sphingolipides: SM (OH) C16:1. C22:1, C24:1 
Phoshphatidylcholine: PC aa C32:2, C36:3, 
C36:4, C38:5, PC ae C32:2, C34:0, C34:2, C34:3, 
C36:2, C36:3, C36:4, C36:5, C38:4, C42:2 
LysoPhoshphatidylcholine: lysoPC a C18:1, 
C20:4 

Frailty, defined 
using the 
Rockwood frailty 
index as a 
proportion of 33 
possible deficits 
(104) 

2530 women 
volunteers from 
the NIHR BRC 
TwinsUK 
BioResource 
(mean age: 
60.5±14; age 
range: 17-93) 

Age Untargeted: 305 
plasma metabolites 

20 metabolites (p<0.001) 
 

Glutamate, urate, N-acetyl glycine, C-glycosyl 
tryptophan, pseudouridine, docosahexaenoate, 
mannose, HWESASXX, uridine, epiandrosterone 
sulphate, proline, indolepropionate,  
1-docosahexaenoyl-glycerophosphocholine,  
gamma-glutamylvaline,  
gamma-glutamylleucine,  
gamma-glutamylphenylalanine,  
N-acetylalanine, butyrylcarnitine, glycerol, 2-
linoleoylglycero-phosphocholine 

Body composition: 

Percent fat (113) 

Health ABC 
study: 
subset of 319 
black men 
(mean age: 
74±3) 

Age, site, 
smoking 

Untargeted: 350 
plasma metabolites 

48 metabolites 
(p<0.00014): 
Lipids (n=38) 
Organic acids, including 
one branched-chain amino 
acids (n=6) 
Organoheterocyclic (n=1) 
Unclassified (n=3) 

Acetylglycine, C52:3 TAG, C56:8 TAG, C54:6 
TAG, C54:7 TAG, C40:6 PC, C52:6 TAG, C56:7 
TAG, C38:3 PC, C56:9 TAG, C52:5 TAG, C56:6 
TAG, C50:4 TAG, C34:3 DAG, C50:5 TAG, 
C54:8 TAG, C52:2 TAG, C52:1 TAG, C5 
carnitine, C20:3 CE, C58:10 TAG, Valine, C22:6 
CE, C18:1 LPC, C40:9 PC, Kynurenic acid, 
C46:4 TAG, C52:7 TAG, C58:7 TAG, C36:1 
DAG, C38:5 DAG, Beta alanine, Betaine, C36:4 
DAG, C50:3 TAG, Glycine, C52:4 TAG, C34:1 
PC plasmalogen A, C56:5 TAG, C36:3 PC 
plasmalogen, C48:4 TAG, C20:4 CE, Tyrosine, 
C34:2 DAG, C36:3 DAG, C46:3 TAG, C38:6 
PC, C20:5 CE 

Percent truck fat  
(113) 

Health ABC 
study: 
subset of 319 
black men 
(mean age: 
74±3) 

Age, site, 
smoking 

Untargeted: 350 
plasma metabolites 

96 metabolites 
(p<0.00014): 
Lipids (n=75) 
Organic acids, including 
branched-chain amino 
acids (n=11) 
Alkaloids (n=1) 
Organoheterocyclics 
(n=3) 
Unclassified (n=5) 
 
 

C52:3 TAG, C56:7 TAG, C54:6 TAG, C56:6 
TAG, C52:1 TAG, Acetylglycine, C52:2 TAG, 
C56:8 TAG, C36:1 DAG, C34:3 DAG, C50:4 
TAG, C52:6 TAG, C58:7 TAG, C38:5 , DAG, C5 
carnitine, C56:9 TAG, C50:5 TAG, C40:6 PC, 
C58:6 TAG, C54:7 TAG, Valine, C56:5 TAG, 
C50:1 TAG, C38:3 PC, C46:4 TAG, C36:3 PC 
plasmalogen, C50:3 TAG, C58:10 TAG, C36:2 
PC plasmalogen, C50:2 TAG, C34:2 DAG, C54:8 
TAG, C52:5 TAG, C34:1 PC plasmalogen A, 
C46:3 TAG, C32:1 DAG, C52:7 TAG, C48:3 
TAG, C48:4 TAG, C50:0 TAG, C18:1 LPC, 
C36:2 DAG, C54:2 TAG, Kynurenic acid, C34:1 
DAG, Betaine, C54:1 TAG, C36:3 DAG, C58:9 
TAG, C38:4 DAG, C18:2 LPC, C48:2 TAG, 
C32:2 DAG, C52:4 TAG, C48:1 TAG, C58:8 
TAG, C34:4 PC, Glutamate, C40:9 PC, C3 
carnitine, Xanthurenate, C48:5 TAG, C36:4 
DAG, Tyrosine, C40:6 PE, C58:11 TAG, C56:2 
TAG, Isoleucine, C50:6 TAG, C52:0 TAG, C20:5 
LPC, C34:2 PC plasmalogen, 3 
hydroxyanthranilic acid, C5:1 carnitine, C20:3 
CE, C46:2 TAG, Beta alanine, C32:0 DAG, 
C56:4 TAG, C30:0 DAG, C20:5 CE, C34:0 
DAG, C44:2 TAG, C56:1 TAG, C38:6 PC, C38:4 
PC, Quinolate, C20:4 CE, Phenylalanine, C18:2 
LPE, Serine, C54:9 TAG, Urate, Leucine C36:1 
PC plasmalogen, Glycine 

Table 1 Continued 



 40 

Phenotype  
(reference) Cohort Adjustments 

Targeted or 
untargeted 

metabolomics 

Number of associated  
metabolites Metabolites associated with phenotype 

Appendicular lean  
mass (113) 

Health ABC 
study: 
subset of 319 
black men 
(mean age: 
74±3) 

Age, site, 
smoking 

Untargeted: 350 
plasma metabolites 

53 metabolites 
(p<0.00014): 
Lipids (n=39) 
Organic acids (n=10) 
Alkaloids (n=1) 
Intermediates in 
tryptophan metabolism 
(n=2) 
Unclassified (n=1) 

Valine, Leucine, Isoleucine, C5 carnitine, 
Phenylalanine, C56:8 TAG, C56:7 TAG, 2-
aminoadipate, C52:3 TAG, C34:0 DAG, 
Tyrosine, C56:9 TAG, C54:6 TAG, Lysine, 
C58:10 TAG, C3 carnitine, C36:0 DAG, C34:3 
DAG, C18:0 MAG, C40:6 PC, C30:0 DAG, 
C38:3 PC, C32:0 DAG, C20:5 CE, C54:8 TAG, 
C58:9 TAG, C54:7 TAG, C52:1 TAG, 4-
hydroxymandelate, Methionine, C52:6 TAG, 
C34:1 PC plasmalogen A, C58:7 TAG, 
Tryptophan, C52:5 TAG, C52:2 TAG, C52:4 
TAG, C34:2 DAG, C38:7 PE plasmalogen, C50:4 
TAG, C58:11 TAG, Acetylglycine, Cotinine, 
C36:2 PC plasmalogen, C20:3 CE, C32:1 DAG, 
C56:6 TAG, C36:1 PS plasmalogen, C14:1 
MAG, C40:9 PC, C50:1 TAG, C50:3 TAG, 
Xanthurenate 

Body mass index  
(113) 

Health ABC 
study: 
subset of 319 
black men 
(mean age: 
74±3) 

Age, site, 
smoking 

Untargeted: 350 
plasma metabolites 

92 metabolites 
(p<0.00014): 
Lipids (n=72) 
Organic acids, including 
branched-chain amino 
acids (n=11) 
Alkaloids (n=2) 
Intermediates in 
tryptophan metabolism 
(n=3) 
Organooxygen metabolite 
(n=1) 
Unclassified (n=3) 

Valine, C5 carnitine, C52:3 TAG, C56:7 TAG, 
C56:8 TAG, C54:6 TAG, C56:9 TAG, 
Acetylglycine, C52:6 TAG, C54:7 TAG, C34:3 
DAG, Isoleucine, C54:8 TAG, C40:6 PC, C58:10 
TAG, C38:3 PC, C50:4 TAG, Leucine, C52:5 
TAG, C56:6 TAG, Phenylalanine, C52:2 TAG, 
C52:1 TAG, C50:5 TAG, C58:7 TAG, C52:7 
TAG,  C38:5 DAG, C58:9 TAG, C52:4 TAG, 
C18:1 LPC,  C3 carnitine, C50:3 TAG, Tyrosine, 
C36:2 PC plasmalogen, C34:0 DAG, C34:2 
DAG, C34:1 PC plasmalogen A, C36:1 DAG, 
Betaine, C20:5 CE, C58:11 TAG, C32:1 DAG, 
C50:1 TAG, C36:4 DAG, C40:9 PC, C50:2 TAG, 
C30:0 DAG, C20:3 CE, C32:0 DAG, C50:0 
TAG, C36:3 DAG, Kynurenic acid, C48:3 TAG, 
C58:6 TAG, 2-aminoadipate, C48:4 TAG, C46:3 
TAG, C34:1 DAG, C36:3 PC plasmalogen, C32:2 
DAG, C56:5 TAG, C46:4 TAG, Xanthurenate, 
C54:9 TAG, Hexose, C38:7 PE plasmalogen, 
C56:10 TAG, Cotinine, C22:6 CE, C58:8 TAG, 
C48:2 TAG, C54:2 TAG, C48:1 TAG, 
Glutamate, C36:1 PC plasmalogen, C38:4,  DAG, 
C36:2 DAG, C38:6 PC, C50:6 TAG, C40:6 PE, 
C54:1 TAG, Urate, Beta alanine, 3-
hydroxyanthranilic acid, C34:4 PC, C52:0 TAG, 
C36:0 DAG, C46:2 TAG, Glycine, C18:0 LPE, 
C18:2 LPC, C18:1 LPE 

Obesity (114) 

N=140 
participants: 
Median age: 52;  
57% women,  
45% black 
n=73 obese: 
median age and 
BMI: 52 years 
and 37 kg/m2 
n=67 lean: 
median age and 
BMI: 50 years 
and 23.2 kg/m2 

Age, race, 
gender,  

Targeted: 98 
metabolites: serum 
acylcarnitines, amino 
acids, and free fatty 
acids, plasma total 
fatty acids, and 
urinary organic acids 
 

One principal component 

Branched-chain amino acid-related metabolic 
signature consisting of:  
branched-chain amino acids (leucine, isoleucine, 
valine), methionine, glutamate/glutamine, 
aromatic amino acids phenlalanine and tyrosine 
and C3 and C5 acylcarnitines 

      

Table 1 Continued 
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Phenotype  
(reference) Cohort Adjustments 

Targeted or 
untargeted 

metabolomics 

Number of associated  
metabolites Metabolites associated with phenotype 

Diabetes: 

Incident diabetes 
(115) 

Framingham 
Heart Study: 
nested case-
control study of 
189 incident 
diabetes cases 
(mean age: 56, 
42% women, 
mean BMI: 30.5 
kg/m2) vs. 189 
propensity-
matched 
controls 

Matching 
variables: 

Age, gender, 
body mass 

index, fasting 
glucose 

Targeted: >60 
plasma metabolites: 
amino acids, 
biogenic amines, and 
other polar plasma 
metabolites 
 

5 metabolites (p<0.001): 
Branched-chain amino 
acids (n=3) 
Aromatic amino acids 
(n=2) 

Leucine, isoleucine, valine, phenylalanine, 
tyrosine 

Cardiovascular disease: 

Cardiovascular  
diseases, blood  
pressure,  
hypertension (116) 

A review on 
metabolites 
associated with 
cardiovascular 
disease 

Traditional 
risk factors of 
cardiovascular 

disease 

------- ------- 

- Unsaturated lipids associated with 
cardiovascular disease: lysophosphatidylcholine 
18:1, lysophosphatidylcholine 18:2, 
monoglyceride 
18:2, and sphingomyelin 28:1 
- Trimethylamini-N-oxide associated with 
coronary artery disease 
- Metabolites correlated with blood pressure and 
hypertension: alanine, hyppuric acid derivatives 
of gut microbial activity, hexadecanedioate 
(dicarboxylic acid) 
- Branched-chain amino acids associated with 
cardiovascular disease, insulin resistance, and 
type 2 diabetes 

SM = sphingomyelin 
PC = phosphatidylcholine 
PE= phosphatidylethanolamine 
LPC = lipophosphatidylcholine  
LPE= lysophosphatidylethanolamine 
TAG= triacylglycerol 
DAG = diacylglycerol 

Table 1 Continued 
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2.0  METABOLITES ASSOCIATED WITH HIGH VERSUS LOW WALKING 

ABILITY AMONG THE OLDEST OLD FROM THE CHS ALL STARS STUDY 

2.1 ABSTRACT 

Slow gait speed becomes more prevalent in late-life and is potentially a manifestation of 

accumulating chronic conditions and age-related molecular changes. Using metabolomics to 

characterize metabolic differences in older adults of the same age with different walking abilities 

may provide insight into altered metabolic processes occurring with aging that contribute to 

decline in physical functioning. In this section, I sought to identify metabolites associated with 

high versus low walking ability using a nested case-control study of 120 community-dwelling 

adults ages 79-95 from the CHS All Stars study, matching on age, gender, race, and fasting time. 

Using liquid chromatography-mass spectrometry, 569 metabolites were measured in overnight-

fasting plasma. High versus low walking ability was defined as gait speed and Walking Ability 

Index scores in the best versus worst tertiles (≥0.9 versus <0.7 meters/second and 7-9 versus 0-1, 

respectively). Using a paired t-test, 96 metabolites were associated with walking ability extremes 

(p<0.05, false discover rate<0.30), where 24% were triacylglycerols. Triacylglycerols containing 

mostly polyunsaturated fatty acids were higher among those with high walking ability, whereas 

triacylglycerols containing mostly saturated or monounsaturated fatty acids were lower among 

those with high walking ability. Arginine and proline metabolism was a top pathway associated 
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with walking ability extremes. Using conditional logistic regression, body mass index or waist 

circumference partly explained the association between a subset of metabolites and walking 

ability extremes. The reproducibility and generalizability of these results need to be determined 

to understand whether differences in these metabolites truly characterize differences in walking 

ability among the older adult population. A better characterization of age-related differences in 

walking ability may provide insight into altered biologic mechanisms that can be targeted to 

promote healthy aging. 

2.2 INTRODUCTION 

As discussed in Section 1.2, gait speed is a marker of overall health and wellbeing (16), 

influenced by musculoskeletal conditions, cognitive status, physical activity, sensory, and 

perception, as well as the environment (12). A decline in gait speed is thought of as a 

manifestation of accumulating chronic conditions and age-related changes, such as damage and 

repair in cells and cellular senescence. Given this information, the ability to walk can be viewed 

as a multimorbidity aging phenotype, where vast aging-related molecular differences likely exist 

among those of the same chronological age, but with exceptional versus poor walking ability.  

 In the United States, approximately 92% of older adults have a gait speed <1.0 

meters/second (31), which has been shown to be a clinically relevant threshold for detecting 

individuals at higher risk for multiple adverse health outcomes (28). Using metabolomics can 

further the understanding of the age-related molecular changes that contribute to low walking 

ability and ultimately inform interventions aimed at preserving physical function and 

independence throughout life. In this section, I sought to identify metabolites and metabolic 
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pathways associated with high versus low walking ability using a nested case-control study 

design of 120 older adults matched one-to-one on age, gender, race, and fasting time from the 

Cardiovascular Health Study (CHS) All Stars study.  

2.3 METHODS 

2.3.1 Cardiovascular Health Study (CHS) 

The Cardiovascular Health Study (CHS) was a population-based prospective longitudinal cohort 

of 5888 men and women ages 65 and older during study recruitment (118). During 1988 to 1989, 

5201 participants were recruited, of which most (95%) were white. During years 1992 to 1993, 

an additional 687 non-white participants (99% black) were recruited. The study was designed to 

determine risk factors, consequences, and the natural history of cardiovascular disease among 

older adults. Participants were recruited from a random sample of older adults ages ≥65 from a 

Medicare-eligible list. All age-eligible household members of the randomly sampled participants 

were also recruited. Participants were recruited from four counties across the United States: 

Forsyth County, North Carolina; Sacramento County, California; Washington County, Maryland; 

and Allegheny County, Pennsylvania. Eligible participants were at least 65 years old during 

recruitment. Ineligibility included wheelchair bound, unable to participate in a clinic 

examination, undergoing active cancer treatment, or planning to move out of the study area 

during the next three years. Participants returned annually until 1999 for a clinic examination and 

were contacted semi-annually for a telephone interview until 2016. 
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2.3.2 CHS All Stars study 

The CHS All Stars study was an ancillary, prospective, longitudinal study of 1862 men and 

women alive at year 18 (2005 to 2006) of the CHS (119). All participants from the CHS who 

were still alive and willing to participate were eligible. The study was designed to examine 

healthy aging and longevity. An in-person examination was performed for 1135 participants in 

the clinic or in the participant’s home. A fasting blood sample was taken and stored for future 

use. There were 727 participants who enrolled in the CHS All Stars study, but only had a 

telephone interview. The CHS and the CHS All Stars study were both approved by the Human 

Research Protection Office at each participating university and all participants provided 

informed consent. 

2.3.3 Nested case-control design 

A nested case-control study design was used to identify metabolites associated with high versus 

low walking ability among older adults. Metabolites were measured in a subset of 120 

participants from the CHS All Stars study who had available fasting plasma samples from the 

year 18 visit (2005-2006) and had either high walking ability (n=60) or low walking ability 

(n=60), which is defined in Section 2.3.5. 

 A total of 1135 participants enrolled in the CHS All Stars study and had an in-person 

visit. Figure 3 illustrates the breakdown of CHS All Stars who were eligible for our nested case-

control study design. Among the 1135 participants, 1045 (92%) had a stored plasma sample. 

Among the 1045 participants with available plasma, 287 (27%) were excluded because they 

fasted for less than eight hours prior to phlebotomy and 5 (0.5%) were excluded because they 
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were missing information on fasting time. Among the remaining 753 participants, 648 (86%) had 

a gait speed measurement and a score on the walking ability index from the same visit that 

phlebotomy was performed. Since race was a matching variable in our study design, we excluded 

three participants who had a race/ethnicity that was rare in our study (e.g., American 

Indian/Alaskan native and Asian/Pacific Islander). Among the remaining 645 participants, there 

were 81 (13%) with low walking ability and 154 (24%) with high walking ability (see Section 

2.3.5 for walking ability definition).  

Next, we randomly sampled 60 participants with low walking ability and matched them 

to a randomly selected participant with high walking ability, resulting in a final sample size of 

120 participants. Participants with low versus high walking ability were matched one-to-one on: 

age (±1 year), gender, race, and number of hours fasted (±1 hour). All plasma samples had never 

been thawed and there were no significant differences in the time of day phlebotomy was 

performed or in the number of days between sample storage and use among the matched pairs. 

Our sample size of 120 participants (60 pairs) was a realistic and feasible (based on available 

funds) sample size for exploratory untargeted metabolomics. A nested-case control study design 

was chosen to increase power, with limited funds, by randomly selecting individuals from both 

extremes of the walking ability distribution while matching on important confounders: age, 

gender, race, and fasting time. 

2.3.4 Metabolites 

Metabolites were measured in EDTA plasma extracts collected from the 120 CHS All Stars after 

an overnight fast of at least eight hours (mean fasting time: 14 hours, range: 11, 20). Plasma 

samples had never been thawed and were stored at -80ºC from the time of collection (2005-2006) 
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until 2018 when metabolites were measured. Plasma extracts were placed on platforms in a 

random, specified order with a sample from a participant with high walking ability and their 

matched participant with low walking ability in every other position to limit confounding by 

batch effects. Metabolites were measured using four complimentary liquid chromatography-mass 

spectrometry (LC-MS) methods. Metabolite profiling platforms measured: 1) amines and polar 

metabolites (e.g., amino acids, dipeptides), 2) central metabolites and polar metabolites (e.g., 

sugars, organic acids, purine and pyrimidines), 3) lipids (e.g., triglycerides), and 4) metabolites 

of intermediate polarity (e.g., fatty acids). Metabolite values used for this report are LC-MS peak 

areas, analyzed using TraceFinder (ThermoFisher Scientific, US) and Progenesis QI (Nonlinear 

Dynamics, UK). Peaks were confirmed manually using known standards. Metabolites below the 

limit of quantitation (signal/noise<10) were classified as unquantifiable (120). 

Positive ion mode detection used a 4000 QTRAP triple quadrupole mass spectrometer 

(SCIEX) coupled to an 1100 Series pump (Agilent) and an HTS PAL autosampler (Leap 

Technologies) with a 4.5kV ion spray voltage and at 450ºC source temperature. Using protein 

precipitation, plasma samples (10µL) were prepared with the addition of nine volumes of 

74.9:24.9:0.2 (v/v/v) acetonitrile/methanol/formic acid containing stable isotope-labeled internal 

standards (0.2ng/μL valine-d8, Isotec; and 0.2ng/μL phenylalanine-d8; Cambridge Isotope 

Laboratories). Samples were centrifuged for 10 minutes (9,000g, 4°C). Resulting supernatants 

were injected onto a 150×2mm Atlantis HILIC column that was eluted at a 250µL/min flow rate. 

Initial conditions were set at 5% mobile phase A (10mM ammonium formate and 0.1% formic 

acid in water) for one minute and then altered linearly over ten minutes to 40% mobile phase B 

(acetonitrile with 0.1% formic acid) (120, 121). 



 48 

Negative ion mode detection used a 5500 QTRAP triple quadrupole mass spectrometer 

(SCIEX) coupled to an ACQUITY UPLC (Waters) with a modified hydrophilic interaction 

chromatography method and −4.5kV ion spray voltage and at 500ºC source temperature. Using 

protein precipitation, plasma samples (30µL) were prepared with the addition of 120μL of 80% 

methanol containing 0.05 ng/μL inosine-15N4, 0.05 ng/μL thymine-d4, and 0.1ng/μL 

glycocholate-d4 as internal standards. Samples were centrifuged (10 min, 9,000×g, 4°C) and 

10µL of supernatants were injected onto a 150×2.0mm Luna NH2 column (Phenomenex) that 

underwent elution at a 400µL/min flow rate. Initial conditions were set at 10% mobile phase A 

(20 mM ammonium acetate and 20 mM ammonium hydroxide; Sigma-Aldrich) in water (VMR) 

along with 90% mobile phase B (10 mM ammonium hydroxide in 75:25 v/v 

acetonitrile/methanol (VWR)) and then altered linearly over ten minutes to 100% mobile phase 

A (120, 121). 

Lipids were detected using an Exactive Plus orbitrap mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA) coupled to a Nexera X2 UHPLC (Shimadzu, Marlborough, MA) with 

electrospray ionization and positive ion mode Q1 scans. The ion spray voltage was 5.0 kV with 

400ºC source temperature. Plasma samples (10µL) were extracted using 190μL of isopropanol 

containing 0.25ng/μL 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphocholine (Avanti Polar 

Lipids). Samples were centrifuged and 10µL of supernatants were injected onto a 150×3.0 mm 

Prosphere HP C4 column (Grace). The column was eluted with initial conditions set at 80% 

mobile phase A (95:5:0.1 vol/vol/vol 10mM ammonium acetate/methanol/acetic acid), then after 

two minutes, changed linearly over one minute to 80% mobile phase B (99.9:0.1 vol/vol 

methanol/acetic acid), followed by a linear change over 12 minutes to 100% mobile phase B. 

Conditions remained at 100% mobile phase B for 10 minutes (120, 121). 
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Metabolites of intermediate polarity were detected using a Shimadzu Nexera X2 U-

HPLC system coupled to a Q Exactive hybrid quadrupole orbitrap mass spectrometer (Thermo 

Fisher Scientific). Plasma samples (30µL) were extracted using 90µL of methanol containing 

PGE2-d4 (Cayman Chemical Co). Samples were centrifuged, injected onto 150x2.0 mm 

ACQUITY T3 column (Waters; Milford, MA), and then eluted with 400µL/minute flow rate. 

Initial conditions were set at 60% mobile phase A (0.1% formic acid in water) for four minutes, 

then changed linearly over 8 minutes to 100% mobile phase B (acetonitrile with 0.1% formic 

acid) (121). 

2.3.5 Walking ability 

Our walking ability phenotype was defined using both gait speed and the Walking Ability Index. 

The Walking Ability Index was developed in the Health, Aging, and Body Composition (Health 

ABC) study (122) using self-report information on the level of difficulty or ease walking ¼ mile 

and walking 1 mile (Figure 4). Participants in the CHS All Stars study were asked similar 

questions, except difficulty or ease walking ½ mile was determined instead of ¼ mile, as well as 

the answer ‘a little difficulty’ walking ½ mile was not included. The answers for the level of 

difficulty or ease walking ½ mile and walking 1 mile were scored according to Table 2 and the 

Walking Ability Index was calculated as the sum of the two sub scores. The Walking Ability 

Index ranges from 0 to 9, where 0 indicates a participant self-reported they were unable to walk 

½ mile and 9 indicates a participant self-reported it was very easy to walk 1 mile. Scores on the 

Walking Ability Index were split into tertiles based on information from all CHS All Stars who 

had a score from the in-person visit (n=1077). The worst, middle, and best tertile for the Walking 

Ability Index ranged from 0-1; 2-6; and 7-9, respectively. 
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Gait speed (meters/second) was calculated from the time it took to walk 15 feet. Gait 

speed scores were split into tertiles using information from all available participants in the CHS 

All Stars study (n=981). The slowest, middle, and fastest gait speed tertiles were <0.7; ≥0.7 to 

<0.9; and ≥0.90 meters/second, respectively. It should be noted that a gait speed of 0.9 

meters/second is not a fast gait speed; however, this was the threshold for the fastest gait speed 

tertile among the CHS All Stars who were 85 years old, on average. 

2.3.5.1 Defining high versus low walking ability 

High walking ability was defined as participants who were in the fastest gait speed tertile 

(≥0.9 meters/second) and scored in the best tertile of the Walking Ability Index (scores 7-9; 

Figure 3). Low walking ability was defined as participants who were in the slowest gait speed 

tertile (<0.7 meters/second) and scored in the worst tertile of the Walking Ability Index (scores 

0-1). Both gait speed and the Walking Ability Index were chosen to develop the extremes of the 

walking ability phenotype because gait speed provided us with an objective measure of walking 

ability across 15 feet and the Walking Ability Index provided us with further information on 

more strenuous activities: walking ½ mile and walking 1 mile. Tertiles of gait speed were used 

instead of established thresholds because the majority (64%) of participants in the CHS All Stars 

study (ages 77-102) had a gait speed <0.8 meters/second (average gait speed=0.75 

meters/second). Thus, in order to have enough participants in our low and high walking ability 

groups we used sample-specific tertiles. 

2.3.5.2 CHS All Stars with information on metabolites 

There were 605 known metabolites observed in our nested case-control study of 120 CHS 

All Stars. Among those 605 metabolites, 497 (82%) were measured in all 120 participants. There 
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were 72 (12%) metabolites measured in ≥80% of the participants, of which missing values were 

assumed to be due to the true values being below the detectable limit and were replaced with half 

the minimum recorded value for that respective metabolite (123). Thirty-six (6%) metabolites 

were excluded from the current analysis because they were measured in less than 80% of 

participants (124). Thus, we examined differences in 569 metabolites among 120 CHS All Stars 

with high versus low walking ability. 

2.3.6 Examination 

At the CHS All Stars baseline visit (year 18 of CHS; 2005-2006), participants provided an 

update on their age, medical history, medications, education, current health, smoking status, 

alcohol consumption, and difficulty with activities of daily living by self-report questionnaires. 

Participants had previously self-reported their gender and race. History or presence of heart 

disease, stroke, cancer, arthritis, asthma, chronic bronchitis, emphysema, and osteoporosis was 

determined by a self-report of a physician diagnosis. Heart disease included myocardial 

infarction or congestive heart failure, stroke included transient ischemic attacks, and arthritis 

included that of the back, hip, or knee. Hypertension was defined as either a systolic blood 

pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, or taking anti-hypertensive 

medication. Diabetes was defined as either a self-report of a physician’s diagnosis confirmed by 

medication use or as a fasting glucose ≥126 mg/dL. Cancer included all types except for non-

melanoma skin cancer. Depression symptoms were measured using the Center for Epidemiologic 

Studies Depression Scale (125). All medications used in the past two weeks were assessed in 

their original containers for a medication inventory. 
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Systolic and diastolic blood pressure was an average of two seated measurements. Height 

was measured with no shoes using a calibrated stadiometer (118). Weight was measured with no 

shoes and light clothing using a calibrated scale. Body mass index (kilograms/meters2) was 

weight divided by height2. Waist circumference was measured at the umbilicus with an 

anthropometric tape while the participant was standing. Participants fasted for at least eight hours 

prior to the CHS All Stars visit and self-reported the number of hours since they last ate. 

Phlebotomy was performed and total, high-density, and low-density cholesterol, and 

triglycerides were measured in fasting EDTA plasma samples and glucose, interlukin-6, C-

reactive protein, cystatin C, and creatinine were measured in fasting serum samples at the CHS 

central laboratory using standard methods (126). 

Overall cognitive performance was assessed using the mini-mental state examination 

(127). Physical performance was assessed using the short physical performance battery, which is 

a composite based on gait speed, three balance tests, and ability to stand from a chair five times 

without the help of your arms (128). Isometric grip strength was measured three times in the 

dominant hand (Jamar, Sammons Preston Rolyan, Bolingbrook, IL) and averaged. 

At year 8 of the CHS (1995-1996), dietary intake was assessed using an interviewer-

administered food frequency questionnaire developed by the Willet Group at the Harvard School 

of Medicine and converted to nutrient information (using Harvard.sffq.062795 database). Total 

calories, calories from fat, daily protein, and daily caffeine intake were examined. 

2.3.7 Potential confounders of metabolites and walking ability extremes 

A variable is a confounder if it is causally associated with the outcome and associated with the 

exposure (in either direction), but is not on the causal pathway between the exposure and the 
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outcome. Potential confounders of metabolites and walking ability included: medication use, 

dietary history, smoking status, prevalent chronic conditions, and obesity. Depending on the 

metabolite, these more commonly measured variables may instead be involved in the causal 

pathway by either 1) the more commonly measured variable causes certain metabolite values 

which then contribute to high or low walking ability or 2) the metabolites lead to certain values 

of the more commonly measured variable which then leads to high/low walking ability; the 

former being more likely.  

2.3.8 Statistical analysis 

Mean (standard deviation) or frequency (percent) described differences by walking ability 

extremes and were tested using a paired t-test for continuous measures and a McNemar’s test for 

categorical measures. Metabolites were log-transformed and standardized. A paired t-test 

adjusting for the matched aspect of the study design was used to determine metabolites 

associated with high versus low walking ability. To account for multiple comparisons, a 

Benjamini-Hochberg correction was used to obtain a false discovery rate for each metabolite 

(99). Since this was a hypothesis-generating report, we used an a priori determined 30% false 

discovery rate (124).  

Metabolites that were significantly associated with high versus low walking ability 

(p<0.05, false discovery rate<0.30) were further examined in a pathway analysis using 

MetaboAnalyst (129), which compared the set of metabolites associated with walking ability 

extremes against established sets of metabolites involved in metabolic pathways. A Fisher’s 

exact test determined whether the number of metabolites that were associated with walking 

ability extremes and involved in a biologic pathway was more than expected by chance. Impact 



 54 

scores indicated how centrally located the metabolites that were associated with walking ability 

extremes were on a particular pathway.  

Illustrated in Figure 5, I hypothesized that more commonly measured risk factors, such as 

body mass index would be an upstream factor causing differences in metabolite values which 

then contribute to walking ability differences with aging. Specifically, these more commonly 

measured risk factors would have both a direct and indirect effect on walking ability, where the 

indirect effect of body mass index and walking ability would be mediated by certain metabolites. 

It should be noted that Figure 5 is a simplified causal diagram, which does not depict the likely 

feedback loops or the relationships between more commonly measured risk factors. It should 

also be noted that our data is from a cross-sectional study, so I cannot formally assess mediation 

or temporality. Thus, I informally examined whether the association between body mass index 

and walking ability extremes was mediated by metabolites using the following three steps: 1) I 

determined whether body mass index was associated with walking ability extremes at a p<0.05 

using conditional logistic regression of high versus low walking ability on body mass index, 

adjusting for matched pairs; 2) among the metabolites associated with walking ability, I 

determined which were also associated with body mass index at a p<0.05 using a random 

intercept model of metabolite values on body mass index, adjusting for matched pairs; and 3) I 

determined the percent attenuation in the association between body mass index and walking 

ability extremes after adjusting for a metabolite using conditional logistic regression of walking 

ability extremes on body mass index and a metabolite, adjusting for matched pairs. In step three, 

we also examined the extent to which body mass index attenuated the association between a 

metabolite and walking ability extremes. Using information from step 3, which included both 

body mass index and a metabolite as the independent variables, I plotted the percent attenuation 
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in the association between a metabolite and walking ability after adjusting for body mass index 

versus the percent attenuation in the association between body mass index and walking ability 

after adjusting for the respective metabolite, to get an idea of which variables were becoming 

most attenuated. Percent attenuation was calculated as: 100*(beta coefficient from unadjusted 

model – beta coefficient from adjusted model)/beta coefficient from unadjusted model. We 

repeated those same steps for other more commonly measured variables associated with walking 

ability: waist circumference, arthritis, total number of prescription medications, and interleukin-

6. 

2.4 RESULTS 

2.4.1 Characteristics by walking ability extremes among 120 CHS All Stars 

Characteristics between the 120 CHS All Stars with high versus low walking ability are 

displayed in Table 3. Participants were 85 years old, on average, 40% were men, 10% were 

black, and it had been about 14 hours, on average, since participants last ate. Consistent with the 

matched study design, we found no differences in age, gender, race, or fasting time between 

those with high versus low walking ability. 

Participants in the high walking ability group were more likely to be recruited from the 

site at Wake Forest University School of Medicine and less likely to be recruited from the site at 

University of California, Davis and Johns Hopkins University. Those with high walking ability 

were also more likely to have more than a high school degree and consumed about an average of 

one additional alcohol beverage per week, and had a higher proportion with an excellent or very 
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good self-reported health than the low walking ability group. The average body mass index and 

waist circumference among the high versus low walking ability group was 3 kg/m2 and 11 cm 

lower, respectively. There were significantly lower proportions of participants who have had a 

stroke and who had asthma, arthritis, and difficulty with at least one activity of daily living 

among those with high versus low walking ability. The high walking ability group performed 

better cognitively and had fewer depression symptoms.  

When examining physical performance, the high versus low walking ability group scored 

an average of 4 kg and 4 points higher for grip strength and the short physical performance 

battery, respectively. Consistent with the definition of our walking ability phenotype, those with 

high walking ability had a significantly faster gait speed than those with low walking ability. 

When examining blood-based markers, we found that individuals in the high versus low 

walking ability group had significantly lower fasting glucose, interleukin-6, and C-reactive 

protein. Dietary information was assessed 10 years prior to the CHS All Stars exam. Those with 

high versus low walking ability consumed somewhat less caffeine (p=0.09) and slightly fewer 

total calories (p=0.15) and calories from fat (p=0.15) at year 8 of the CHS, though differences 

were not significant at a 0.05 level. 

2.4.2 Metabolites associated with high versus low walking ability 

Among the 569 metabolites examined, 96 were associated with walking ability extremes 

(p<0.05, false discovery rate<0.30; Table 4). The paired difference between the 96 metabolites 

among those with high versus low walking ability is listed in Table 4. Lower values for 45 

metabolites and higher values for 51 metabolites were associated with high versus low walking 

ability, with absolute mean standardized paired differences ranging from 0.32 to 0.69. 
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Table 5 includes the taxonomy classes of the 96 metabolites associated with walking 

ability extremes. Slightly more than half of the metabolites associated with walking ability 

extremes were lipids and lipid-like molecules (m=54), such as glycerolipids, 

glycerophospholipids, sphingoplipids, and more. The remaining 44% of metabolites associated 

with walking ability extremes were organic acids and derivatives (m=16; mostly amino acids, 

peprides, and anologues), organoheterocyclic compounds (m=14), nucleosides, nucleotides, and 

analogues (m=3), organic oxygen compounds (m=3), benzenoids (m=2), phenylpropanoids and 

polyketides (m=1), alkaloids and derivatives (m=1), and unclassified metabolites (m=2).  

2.4.3 Pathway analysis 

Among the 96 metabolites associated with walking ability extremes, 89 had an identification 

number in the Human Metabolome Database Version 4.0 (84) and were included in a pathway 

analysis. Table 6 includes the top ten pathways among 28 that involved at least one of the 

metabolites associated with walking ability extremes. The most significant pathways with the 

largest impact scores were caffeine metabolism and arginine and proline metabolism. The match 

status for caffeine metabolism was 4/21, indicating 21 known metabolites are involved in 

caffeine metabolism, of which four were among the 96 metabolites associated with walking 

ability extremes (caffeine, 3-methylxanthine, 7-methylxanthine, and theophylline). The match 

status was 6/77 for arginine and proline metabolism (ornithine, L-arginine, L-proline, N-

acetylputrescine, 4-acetamidobutanoic acid, and sarcosine). 
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2.4.4 Attenuation 

When examining characteristics of participants with high versus low walking ability in Table 3, 

we observed a highly significant difference in body mass index (p<0.0001), waist circumference 

(p<0.0001), arthritis (p=0.0005), and interleukin-6 (p=0.0003) between walking ability extremes 

that may be contributing to metabolite differences. Though, total number of prescription 

medications was not as significantly different between the walking ability extremes (p=0.01) 

when compared to body mass index, waist circumference, arthritis, and interleukin-6, we still 

hypothesized that this would be an important variable that may be contributing to differences in 

metabolite values between the two groups.  

Next, we examined which metabolites were correlated with these five variables. Among 

the 96 metabolites associated with walking ability extremes, 62 were associated with either body 

mass index, waist circumference, arthritis, number of prescription medications, and/or 

interleukin-6 (p<0.05; Table 7). Specifically, 32, 40, 14, 9, and 32 metabolites were associated 

with body mass index, waist circumference, arthritis, number of prescription medications, and 

interleukin-6, respectively. Among the five variables considered, body mass index and waist 

circumference had the most overlap in correlated metabolites, which was not surprising since 

body mass index and waist circumference are highly related (correlation coefficient = 0.88, 

p<0.0001). Almost all (91%) of the metabolites associated with body mass index were also 

associated with waist circumference, but less metabolites that were associated with waist 

circumference were also associated with body mass index (73%).  

Body mass index: The 32 metabolites associated with body mass index at a 0.05 

significance level are listed in Table 8 by taxonomy super class. One standard deviation (=4.8 

kg/m2) higher body mass index was associated with a 65% lower odds of being in the high 



 59 

walking ability group (95% confidence interval: 0.19, 0.67). When adjusting for one of the 32 

metabolites, the associations between body mass index and walking ability extremes were 

attenuated by ≤24%. We also examined the percent attenuation in the association between a 

metabolite and walking ability after adjusting for body mass index (Table 8), and found 

attenuations of more than 40% for 18 of the 32 metabolites. In previous reports, an attenuation of 

at least 10% has been suggested as a relevant threshold (130). 

Waist circumference: The 40 metabolites associated with waist circumference are listed 

in Table 9. One standard deviation (=14.3 cm) higher waist circumference was associated with a 

66% lower odds of being in the high walking ability extreme (95% confidence interval: 0.18, 

0.64). When adjusting for one of the 40 metabolites, the associations between waist 

circumference and walking ability extremes were attenuated by ≤26%, whereas the attenuations 

in the association between a metabolite and walking ability after adjusting for waist 

circumference were more than 40% for 17 of the 40 metabolites (Table 9).  

Arthritis: Table 10 includes the 14 metabolites associated with prevalent arthritis. 

Participants with arthritis had a 77% lower odds of being in the high walking ability extreme 

(95% confidence interval: 0.10, 0.53). When adjusting for one of the 14 metabolites, the 

associations between arthritis and walking ability extremes were attenuated by ≤13%, whereas 

the attenuation in the association between a metabolite and walking ability after adjusting for 

arthritis was more than 25% for 7 of the metabolites (Table 10).  

Total number of prescription medications: Table 11 includes information on the nine 

metabolites associated with total number of prescription medications. One standard deviation 

higher (=4.6) total number of prescription medications was associated with a 37% lower odds of 

being in the high walking ability extreme (95% confidence interval: 0.42, 0.93). Adjusting for 
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one of the 9 metabolites, resulted in attenuations in the association between total number of 

medications and walking ability extremes ranging from 10% to 21%, with one metabolite 

(glycerate) resulting in a reverse attenuation of 66%, meaning adjusting for glycerate made the 

association between total number of medications and walking ability extremes stronger. 

Adjusting for total number of medications also resulted in a similar amount of attenuation in the 

associations between a metabolite and walking ability extreme, with attenuations ranging from 

13% to 29%, with reverse attenuation of 75% for glycerate.  

Interleukin-6: The 32 metabolites associated with interleukin-6 are listed in Table 12. 

One standard deviation (=0.58) higher log-transformed interleukin-6 was associated with a 57% 

lower odds of being in the high walking ability extreme (95% confidence interval: 0.24, 0.75). 

Adjusting for one of the 32 metabolites attenuated the association between interleukin-6 and 

walking ability extremes by ≤26%, whereas adjusting for interleukin-6 attenuated the association 

between a metabolite and walking ability extremes by more than 30% for 13 of the 32 

metabolites. 

The first subplot in Figure 6 illustrates the percent attenuation in the association between 

metabolites and walking ability extremes after adjusting for body mass index (on the y-axis) 

versus the percent attenuation in the association between body mass index and walking ability 

extremes after adjusting for a single metabolite (on the x-axis). Each data point represents a 

single metabolite, which is color-coded according to its taxonomy super class, and corresponds 

to information in Table 8. The same figure was also produced for waist circumference, arthritis, 

total number of prescription medications, and interleukin-6 (subplots of Figure 6). There appears 

to be more attenuation in the associations between a metabolite and walking ability extremes 

after adjusting for either body mass index or waist circumference, when compared to the 
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attenuation in the association between either body mass index or waist circumference after 

adjusting for a single metabolite. This is illustrated in Figure 6 by more data points being spread 

further up the y-axis, but not very far across the x-axis. This relationship is also apparent when 

examining the subplots for interleukin-6 and arthritis (Figure 6). Whereas, adjusting for total 

number of prescription medications appeared to result in the lowest amount of attenuation in the 

association between select metabolites and walking ability extremes. 

2.5 DISCUSSION 

Differences in patterns of plasma metabolites were observed by walking ability extremes among 

a subset of older adults ages 79-95 from the CHS All Stars study. Specifically, I identified 96 

metabolites associated with high versus low walking ability using a nested case-control study 

design matching one-to-one on age, gender, race, and fasting time. Arginine and proline 

metabolism were among the top pathways involving more of the 96 metabolites associated with 

walking ability extremes than expected by chance. We found body mass index, waist 

circumference, arthritis, or interleukin-6 partly explained the association between a subset of 

metabolites and walking ability. 

There was little overlap in the metabolites found to be associated with walking ability in 

this report when compared to previous publications examining metabolites associated with gait 

speed. Among adults ages 50 and older from the Baltimore Longitudinal Study of Aging, only 

eight, out of 148 metabolites examined, were significantly associated with gait speed, while 

controlling for age and gender (100). The eight metabolites were all lipids and lipid-like 

molecules, mostly sphingolipids and glycerophospholipids. Among those eight metabolites 
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associated with gait speed in the Baltimore Longitudinal Study of Aging, three sphingolipids 

(C18:0-1 and C16:0) were also associated with walking ability extremes in our study of CHS All 

Stars. Among a subset of older black men from the Health, Aging, and Body Composition Study, 

seven metabolites out of 350 (salicylurate, 2-hydroxyglutarae, asparagine, tryptophan, C24:1 

ceramide d18:1, glucoronate, and C54:10 TAG) were associated with gait speed at a 0.01 

significance level (98), of which none were found to be associated with walking ability extremes 

among the CHS All Stars. Last, a principal component factor score of multiple acylcarnitines 

was found to be associated with gait speed among a cohort of 77 men ages 70 and older from the 

U.S. Veterans LIFE study (102). In the CHS All Stars, we found higher levels of C5:1 carnitine 

associated with high walking ability.  

The minimal overlap in metabolites found to be associated with walking ability in our 

cohort and gait speed in previous reports could be due to differences in the functional status of 

the older adults in each of the studies. In our subset of 120 participants from the CHS All Stars 

study, the average (standard deviation) gait speed was 0.5 (0.1) meters/second among those 

classified as having low walking ability (range: 0.2 to 0.7 meters/second), whereas, those 

classified as having “high” walking ability had an average gait speed of 1.0 (0.1) meters/second 

(range: 0.9 to 1.1 m/sec). Thus, even our 60 CHS All Stars with “high” walking ability did not 

actually walk that fast when compared to younger populations. The previous reports on 

metabolites associated with gait speed had a cohort of older adult cohorts that were much 

healthier with faster average gait speeds that had less variability across participants (98, 100, 

102). For example, the Health ABC study recruited participants to be non-disabled at year 1, so 

only 26% of the older black men with metabolomics at year 2 had a gait speed <1.0 

meters/second (98). There were also demographic differences between the studies, with the past 
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reports being restricted to either one gender (102) or one gender/race category (98) and being 

younger older adult cohorts (98, 100, 102) when compared to the CHS All Stars. In addition, we 

were more likely to find more associations between metabolites and walking ability since we 

sampled the extremes of walking ability, providing more power to detect differences, whereas 

previous reports looked at continuous gait speed with lower variability (98, 100, 102). 

Among the 96 metabolites associated with high versus low walking ability, half were 

lipids and lipid-like molecules. Specifically, almost a quarter was a type of glycerolipid known 

as triacylglycerols or more commonly known as triglycerides. Higher levels of 12 and lower 

levels of 11 triacylglycerols were associated with high versus low walking ability. 

Triacylglycerols are made up of a glycerol bonded to three fatty acids, which can be a 

combination of monounsaturated, polyunsaturated, and/or saturated fatty acids. Interestingly, all 

12 triacylglycerols that were higher among those with high walking ability in our cohort 

contained mostly polyunsaturated fatty acids (linoleic acid, alpha-linolenic acid, arachidonic 

acid, and/or docosahexaenoic acid), of which four of those triacylglycerols consisted of only 

polyunsaturated fatty acids. Whereas, all 11 triacylglycerols that were lower among those with 

high walking ability contained mostly saturated fatty acids (e.g., palmitic acid) and/or 

monounsaturated fatty acids (e.g., oleic acid). Similarly, triacylglycerols consisting of 

polyunsaturated fatty acids have been previously shown to be inversely correlated with insulin 

resistance, waist circumference (131), and diabetes (132). Many polyunsaturated fatty acids have 

anti-inflammatory effects. Omega-3 fatty acids, specifically, have reduced inflammation in 

animal models causing improvements in insulin sensitivity (133). Consistent with our findings, 

the CHS All Stars with high walking ability also had higher levels of docosahexaenoate, an 

omega-3 fatty acid found most often in fish oil. Differences in triacylglycerols associated with 
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walking ability extremes likely reflect differences in diet between the two groups, and potentially 

reflect differences in energy expenditure. Triacylglycerols composed primarily of 

polyunsaturated fatty acids may be a protective set of lipids against aging-related dysregulation. 

Among the 23 triacylglycerols associated with walking ability extremes, seven were also 

significantly associated with body mass index or waist circumference in our cohort, of which all 

but one was also associated with body mass index in the Health ABC study as well (113). Higher 

levels of all seven triacylglycerols were associated with a higher odds of being in the low 

walking ability group, where adjusting for body mass index or waist circumference attenuated at 

least 40% of the association between those 7 triacylglycerols and walking ability and 100% of 

their statistical significance. Among the other 29 lipid and lipid-like molecules associated with 

walking ability extremes, 12 were also associated with body composition in our cohort, where 

adjusting for body composition resulted in attenuations ranging from 30-60% in the association 

between those metabolites and walking ability. This suggests the associations between select 

triacylglycerols and other lipids and lipid-like molecules with walking ability were partly 

explained by differences in body composition. However, it should be noted that there remained 

16 triacylglycerols and 19 other lipids and lipid-like molecules that were associated with walking 

ability extremes, but not significantly associated with body mass index or waist circumference, 

suggesting a profile of lipids and lipid-like molecules associated with walking ability 

independent of body composition. 

Triacylglycerols are used mainly to store fats, making them a major energy reservoir in 

the human body (134). Triacylglycerols also prevent fatty-acid induced lipotoxicity by removing 

excess fat from cells. In a healthy individual, dietary triacylglycerols are roughly equal to the 

amount used for energy (135). When the body has more triacylglycerols than needed for energy 
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expenditure, adipose tissue expands to store excess triacylglycerols, contributing to obesity over 

time if the balance of dietary lipids to energy expenditure is not altered (133). This 

triacylglycerol overload can cause adipocytes to secrete monocyte chemotaxis protein-1, which 

attracts macrophages that then promote tumor necrosis factor-alpha, a protein involved in 

systemic inflammation (135). As a result, stored lipids in the adipose tissue begin to break down 

and are released into circulation at an increased rate (133, 135). Chronic high levels of free fatty 

acids in the circulation can cause ectopic accumulation of fatty acids in myocytes causing insulin 

resistance, as well as excess storage in the liver causing fatty liver disease (133, 135). In our 

study, we found seven triacylglycerols associated with low walking ability, which was partly 

explained by a higher body mass index. These specific triacylglycerols may be markers of 

adverse aging-related changes in body composition. 

Obesity likely contributes to decline in walking ability through two main mechanisms: 1) 

through a biomechanical burden of excess weight on lower extremities (136) and 2) through 

biochemical differences in an obese state with adverse effects on metabolism. The latter 

mechanism involving a potential causal pathway of worse body composition causing altered 

metabolite values that then cause lower walking ability with aging. In this dissertation, I 

informally examined whether a metabolite was a mediator of the relationship between body 

composition and walking ability, but found the association between body composition and 

walking ability was minimally attenuated by a metabolite (all attenuations ≤26%). This is likely 

because body mass index and waist circumference are more global measures impacted by 

multiple factors. Since body composition likely impacts values for multiple metabolites 

simultaneously, future studies will need to assess the mediation of multiple metabolites, 

simultaneously, by either having enough power to include all relevant metabolites in the same 
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mediation model or by computing a metabolite composite score to determine the direct and 

indirect effects between body composition and walking ability. In addition, future longitudinal 

studies will be needed to truly test mediation between body composition, metabolites, and 

walking ability. 

Proline was the most strongly associated metabolite with walking ability extremes. One 

standard deviation higher value of proline was associated with 3.5 times the odds of having low 

walking ability in our study. Proline is an amino acid that can be synthesized in the human body 

from glutamate. Higher levels of proline have also been associated with abnormal fasting glucose 

(137) and sarcopenia (138), and modestly associated with Alzheimer’s disease (139). Applying a 

pathway analysis, arginine and proline metabolism was a top pathway associated with walking 

ability extremes. There were six metabolites associated with walking ability extremes and 

involved in arginine and proline metabolism: ornithine, arginine, proline, N-acetylputrescine, 4-

acetamidobutanoic acid, and sarcosine, where all, but one (arginine) were higher in those with 

low walking ability. It has been suggested that conditions that cause high levels of lactate in the 

blood can cause high levels of proline since lactate inhibits the breakdown of proline (140). 

Consistent with this, higher levels of both proline and lactate were associated with low walking 

ability in our study. Proline was also positively associated with body mass, waist circumference, 

and interleukin-6 in our study, though these three risk factors did not explain away the 

association between proline and walking ability. 

 A limitation of our study was the unit-less LC-MS peak areas for metabolite values. If we 

instead had concentrations of metabolites then we could assess whether values for metabolites 

were outside a healthy range, though a healthy range for many metabolites is unknown. Another 

limitation was that we did not have dietary information at the time that metabolites were 
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measured, though we did have dietary information from ten years prior. Last, it should be noted 

that participants included in this study were ages 79 to 95, where those classified as having 

“high” walking ability did not actually have a fast gait speed. The average gait speed for those 

considered in the “high” walking ability group was only 1.0 meters/second, with 65% below 1.0 

meters/second, the clinically relevant threshold for detecting older adults at risk for multiple 

major health outcomes (28). Thus, in this report of community-dwelling older adults (mean age: 

85), we are comparing those who walk slowly versus those who walk extremely slowly. 

Strengths of our study included our well-characterized cohort of older community-dwelling 

adults ages 79 to 95 and the carefully collected and stored EDTA plasma samples that had never 

been thawed prior to metabolomics. Sampling extremes using a nested case-control study design 

was also a strength of this study, which allowed for more variability and power to detect 

differences, while matching on important confounders.  

 Several metabolites, particularly lipids, were associated with high versus low walking 

ability using a nested case-control study design of 120 CHS All Stars matched one-to-one on 

age, gender, race, and fasting time. The association between a subset of lipids found to be 

associated with walking ability extremes appeared to be partly explained by differences in body 

composition. Triacylglycerols with mostly polyunsaturated fatty acids were positively associated 

with walking ability and appeared to be a protective set of lipids, whereas triacylglycerols with 

mostly saturated or monounsaturated fatty acids were inversely associated with walking ability. 

The reproducibility and generalizability of these results need to be determined to understand 

whether differences in these metabolites truly characterize differences in walking ability among 

older adults. Understanding these metabolic differences will provide insight into biologic 

mechanisms that possibly become altered with aging and disease that contribute to a decline in 
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walking ability, where these biologic mechanisms can then be targeted in interventions to 

promote independence throughout life.  
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2.6 TABLES 

Table 2. Scoring for the Walking Ability Index* in older adults 
 

 Score 
Part I: Level of difficulty or ease walking ½ mile:   
   Unable to walk ½ mile 0 
   A lot of difficulty walking ½ mile  1 
   Some difficulty walking ½ mile 2 
   Not that easy walking ½ mile 4 
   Somewhat easy walking ½ mile 5 
   Very easy walking ½ mile 6 
Part II: Level of difficulty or ease walking 1 mile:  
   Difficulty walking 1 mile 0 
   Not that easy walking 1 mile 1 
   Somewhat easy walking 1 mile 2 
   Very easy walking 1 mile 3 

*Walking Ability Index = Part I score + Part II score  
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Table 3. Descriptive statistics of 120 randomly selected CHS All Stars with high versus low walking ability 
matched one-to-one on age, gender, race, and fasting time 

 
Mean (standard deviation) or Frequency (percent) 
n = if reduced sample size 

High walking ability 
n=60 

Low walking ability 
n=60 

Paired test  
p-value 

Matching variables:    
   Age 85 (2.9) Range: 79, 94 85 (2.9) Range: 80, 95 .27 
   Men 24 (40%) 24 (40%) .99 
   Black race 6 (10%) 6 (10%) .99 
   Number of hours since last meal 14 (1.6) Range: 12, 20 14 (1.7) Range: 11, 20 .17 
Personal history:    
   Clinic site:    
      Wake Forest University School of Medicine 19 (32%) 7 (12%) 

.02       University of California, Davis 21 (35%) 30 (50%) 
      Johns Hopkins University 3 (5%) 10 (17%) 
      University of Pittsburgh 17 (28%) 13 (22%) 
   Original cohort (recruited in 1989-1990) 55 (92%) 56 (93%) .57 
   More than a high school education 32 (54%) n=59 17 (28%) .01 
   Smoking status:    
      Never smoked 43 (72%) 34 (57%) 

.10*       Former smoker, quit >1 year ago 17 (28%) 23 (38%) 
      Current smoker 0 3 (5%) 
   Weekly alcohol consumption 1.8 (3.6) 0.7 (2.4) .03 
   Self-reported health:    
      Excellent or very good 38 (63%) 7 (12%) 

.0003       Good 20 (33%) 22 (37%) 
      Fair or poor 2 (3%) 31 (52%) 
Physical measures:    
   Height (cm) 162 (10) 161 (8.8) n=57 .36 
   Weight (lbs) 145 (27) 164 (37) n=59 .0008 
   Body mass index (kg/m2) 25 (3.2) 28 (5.6) n=57 <.0001 
   Waist circumference (cm) 92 (11) 103 (15) n=59 <.0001 
   Systolic Blood Pressure (mmHg) 134 (21) 135 (21) .77 
   Diastolic Blood Pressure (mmHg) 69 (10) 68 (11) .97 
Chronic conditions:    
   Heart disease 10 (17%) 18 (30%) .08 
   Stroke 5 (8%) 14 (23%) .04 
   Hypertension 48 (80%) 51 (85%) .49 
   Diabetes 5 (8%) 12 (20%) .07 
   Cancer 17 (28%) 16 (27%) .82 
   Asthma 3 (5%) 14 (23%) .01 
   Emphysema or chronic bronchitis 6 (10%) 13 (22%) .10 
   Arthritis 17 (28%) 40 (67%) .0005 
   Osteoporosis 14 (23%) 16 (27%) .62 
   Kidney disease 2 (3%) 5 (8%) .27 
Difficulty with ≥1 Activities of Daily Living 2 (4%) n=56 21 (40%) n=53 .005 
Center for Epidemiologic Studies Depression Scale 4.8 (4.0) 7.8 (5.4) n=59 .005 
Modified mini-mental state examination 93 (6.6) 86 (14) <.0001 
Physical performance:    
   Gait speed (m/sec) 1.0 (0.1) Range: 0.9, 1.1 0.5 (0.1) Range: 0.2, 0.7 <.0001 
   Gait speed <1.0 m/sec 39 (65%) 60 (100%) ----- 
   Short physical performance battery 7.3 (2.0) 3.2 (1.7) <.0001 
   Grip strength (kg) 25 (9.0) n=58 21 (7.5) .002 
Blood-based markers:    
   Total cholesterol (mg/dL) 182 (36) 186 (40) .57 
   High-density lipoprotein cholesterol (mg/dL) 58 (16) 56 (16) .50 
   Low-density lipoprotein cholesterol (mg/dL) 99.9 (30) 103 (31) n=59 .69 
   Triglycerides (mg/dL) 120 (65) 131 (75) .39 
   Fasting glucose (mg/dL) 96 (17) 106 (37) .04 
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Mean (standard deviation) or Frequency (percent) 
n = if reduced sample size 

High walking ability 
n=60 

Low walking ability 
n=60 

Paired test  
p-value 

   Interleukin-6 (pg/mL) 3.2 (2.2) n=54 5.0 (2.9) n=55 .0003 
   C-reactive protein (ug/mL) 2.9 (4.6) 5.5 (5.9) n=59 .01 
   Creatinine (mg/dL) 1.1 (0.4) n=59 1.2 (1.0) .72 
   Cystatin C (mg/L) 1.1 (0.3) n=59 1.3 (0.8) n=52 .11 
Dietary intake at year 8:    
   Calories (kcal) 1909 (604) n=58 2103 (834) n=57 .15 
   Calories from fat (kcal) 1898 (605) n=58 2092 (835) n=57 .15 
   Protein (gm) 80 (28) n=58 83 (30) n=57 .66 
   Caffeine (mg) 140 (159) n=58 214 (225) n=57 .09 
Medications:     
   Total number of prescription medications 7.7 (3.3) 10.1 (5.4) .01 
   Anti-hypertensive medications 44 (73%) 49 (82%) .32 
   Lipid-lowering medications 26 (43%) 25 (42%) .85 
   Medication for diabetes 4 (7%) 11 (18%) .05 
   Any diuretic 25 (42%) 32 (53%) .20 
   Any ACE inhibitor  19 (32%) 15 (25%) .40 
   Any vasodilators 4 (7%) 10 (17%) .12 
   Any Beta blocker 21 (35%) 20 (33%) .82 

*Combined current and former smoker for statistical comparison  

Table 3 Continued 
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Table 4. Mean paired difference of 96 metabolites associated with high versus low walking ability (false discovery rate<0.30) among 
120 CHS All Stars 

 
Log transformed and standardized  
Metabolites 

HMDB 
ID number Taxonomy sub class Difference between matched  

pairs (High – Low) p-value FDR 

Proline 00162 Amino acids, peptides, and analogues -0.67 (1.1) Med=-0.52 <.0001 0.006 
C38:7 PE plasmalogen 11420 Glycerophosphoethanolamines 0.69 (1.2) Med=0.71 <.0001 0.01 
1-methylguanine 03282 Purines and purine derivatives -0.66 (1.2) Med=-0.80 <.0001 0.01 
C58:10 TAG 05476 Triradylcglycerols 0.63 (1.3) Med=0.67 .0003 0.04 
Imidazole propionate 02271 Imidazoles -0.64 (1.3) Med=-0.63 .0004 0.04 
C36:5 PE plasmalogen 11410 Glycerophosphoethanolamines 0.58 (1.2) Med=0.54 .0005 0.04 
C40:7 PE plasmalogen 11394 Glycerophosphoethanolamines 0.58 (1.2) Med=0.89 .0005 0.04 
C60:12 TAG 05478 Triradylcglycerols 0.56 (1.2) Med=0.42 .0008 0.048 
C56:8 TAG 05392 Triradylcglycerols 0.58 (1.3) Med=0.65 .0008 0.048 
C38:7 PC plasmalogen 11229 Glycerophosphocholines 0.59 (1.3) Med=0.76 .0009 0.048 
C58:9 TAG 05463 Triradylcglycerols 0.60 (1.3) Med=0.49 .0009 0.048 
Diacetylspermine 1876 Carboxylic acid derivatives -0.59 (1.3) Med=-0.41 .001 0.05 
C18:1 SM 12101 Phosphosphingolipids -0.52 (1.2) Med=-0.57  .001 0.05 
N2,N2-dimethylguanosine 04824 Not available -0.53 (1.2) Med=-0.57 .001 0.05 
C56:7 TAG 05462 Triradylcglycerols 0.52 (1.2) Med=0.38 .002 0.05 
C58:11 TAG 10531 Triradylcglycerols 0.57 (1.3) Med=0.77 .002 0.05 
C36:3 PS plasmalogen ---- unclassified -0.57 (1.3) Med=-0.46 .002 0.05 
C56:9 TAG 05448 Triradylcglycerols 0.56 (1.3) Med=0.58 .002 0.05 
Hydrocinnamate 00764 Not available 0.56 (1.3) Med=0.45 .002 0.05 
1-methylnicotinamide 00699 Pyridinecarboxylic acids and derivatives 0.57 (1.4) Med=0.58 .002 0.05 
C38:6 PE plasmalogen 11387 Glycerophosphoethanolamines 0.52 (1.3) Med=0.70 .002 0.06 
C18:2 SM ---- Phosphosphingolipids -0.53 (1.3) Med=-0.76 .002 0.06 
Saccharin 29723 Not available 0.55 (1.4) Med=0.63 .003 0.06 
C34:5 PC plasmalogen 11214 Not classified 0.51 (1.3) Med=0.62 .003 0.07 
Lactate 00190 Alpha hydroxy acids and derivatives -0.49 (1.2) Med=-0.39 .003 0.07 
C24:0 LPC 10405 Glycerophosphocholines 0.52 (1.3) Med=0.28 .004 0.08 
3-methylxanthine 01886 Purines and purine derivatives -0.51 (1.4) Med=-0.54 .005 0.10 
3-Carboxy-4-methyl-5-propyl- 
2-furanpropionic acid (CMPF) 61112 Fatty acids and conjugates 0.43 (1.1) Med=0.48 .005 0.11 

C-glycosyltryptophan ---- unclassified -0.47 (1.3) Med=-0.32 .006 0.11 
C56:10 TAG 10513 Triradylcglycerols 0.50 (1.4) Med=0.52 .006 0.11 
p-hydroxyphenylacetate 00020 Phenylacetic acid derivatives -0.48 (1.3) Med=-0.47 .006 0.11 
Serotonin 00259 Tryptamines and derivatives 0.50 (1.5) Med=0.28 .006 0.11 
Dimethylguanidino valeric acid 0240212 Short-chain keto acids and derivatives -0.46 (1.3) Med=-0.53 .007 0.11 
C38:6 PC plasmalogen 11319 Glycerophosphocholines 0.50 (1.4) Med=0.57 .007 0.12 
C50:3 TAG 05433 Triradylcglycerols -0.48 (1.4) Med=-0.25 .009 0.13 
Cinnamoylglycine 11621 Amino acids, peptides, and analogues 0.44 (1.2) Med=0.36 .009 0.13 
C34:3 PC plasmalogen 11211 Glycerophosphocholines 0.42 (1.2) Med=0.49 .009 0.13 
7-methylguanine 00897 Purines and purine derivatives -0.39 (1.1) Med=-0.32 .009 0.14 
3-hydroxydecanoate 02203 Medium-chain hydroxy acids and derivatives 0.41 (1.2) Med=0.51 .011 0.15 
Bilirubin 00054 Bilirubins 0.46 (1.3) Med=0.56 .011 0.15 
C54:9 TAG 10498 Triradylcglycerols 0.47 (1.4) Med=0.55 .011 0.15 
Cystine 00192 Amino acids, peptides, and analogues -0.40 (1.2) Med=-0.35 .013 0.17 
C48:2 TAG 05376 Triradylcglycerols -0.45 (1.5) Med=-0.32 .014 0.18 
Indole-3-propionate 02302 Indolyl carboxylic acids and derivatives 0.45 (1.5) Med=0.22 .014 0.18 
Docosahexaenoate 02183 Fatty acids and conjugates 0.42 (1.3) Med=0.45 .014 0.18 
C38:6 PC 07991 Glycerophosphocholines 0.44 (1.4) Med=0.30 .015 0.18 
C54:7 TAG 05447 Triradylcglycerols 0.43 (1.3) Med=0.39 .015 0.18 
C22:0 LPE 11520 Glycerophosphoethanolamines 0.43 (1.4) Med=0.44 .016 0.18 
C40:9 PC 08731 Glycerophosphocholines 0.44 (1.4) Med=0.30 .017 0.18 
Arginine 00517 Amino acids, peptides, and analogues 0.43 (1.3) Med=0.56 .017 0.18 
Acetyl-galactosamine 00212 Carbohydrates and carbohydrate conjugates -0.44 (1.4) Med=-0.35 .017 0.18 
C36:5 PC plasmalogen-A 11221 Glycerophosphocholines 0.44 (1.5) Med=0.23 .017 0.18 
C54:8 TAG 10518 Triradylcglycerols 0.43 (1.4) Med=0.41 .017 0.18 
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Log transformed and standardized  
Metabolites 

HMDB 
ID number Taxonomy sub class Difference between matched  

pairs (High – Low) p-value FDR 

C50:2 TAG 05377 Triradylcglycerols -0.44 (1.5) Med=-0.17 .017 0.18 
Glycerate 00139 Carbohydrates and carbohydrate conjugates 0.44 (1.4) Med=0.31 .017 0.18 
C34:3 PE plasmalogen 11343 Glycerophosphoethanolamines 0.41 (1.3) Med=0.30 .018 0.19 
1-methyladenosine 03331 Not available -0.37 (1.2) Med=-0.22 .019 0.19 
Homocitrulline 00679 Amino acids, peptides, and analogues -0.38 (1.2) Med=-0.37 .020 0.20 
Pseudouridine 00767 Not available -0.36 (1.2) Med=-0.34 .021 0.20 
Ethyl glucuronide 10325 Carbohydrates and carbohydrate conjugates 0.36 (1.2) Med=0.12 .021 0.20 
C52:1 TAG 05367 Triradylcglycerols -0.42 (1.5) Med=-0.38 .022 0.20 
C50:1 TAG 05360 Triradylcglycerols -0.42 (1.6) Med=-0.18 .022 0.20 
C16:1 SM 29216 Phosphosphingolipids -0.38 (1.3) Med=-0.44 .023 0.21 
C38:5 PE plasmalogen 11386 Glycerophosphoethanolamines 0.37 (1.3) Med=0.41 .023 0.21 
N-acetylputrescine 02064 Carboximidic acids -0.42 (1.5) Med=-0.32 .024 0.21 
Malonate 00691 Dicarboxylic acids and derivatives 0.41 (1.6) Med=0.32 .024 0.21 
C34:2 PE plasmalogen 08952 Glycerophosphoethanolamines 0.38 (1.3) Med=0.52 .025 0.21 
Cys-gly-oxidized ---- unclassified 0.41 (1.4) Med=0.54 .026 0.21 
C38:3 PE plasmalogen 11384 Glycerophosphoethanolamines 0.39 (1.3) Med=0.38 .027 0.21 
C5:1 carnitine 02366 Fatty acid esters 0.37 (1.3) Med=0.44 .027 0.21 
N6-acetyllysine 00206 Amino acids, peptides, and analogues -0.41 (1.4) Med=-0.32 .027 0.21 
C18:0 SM 01348 Phosphosphingolipids -0.40 (1.4) Med=-0.48 .028 0.21 
Dimethylurate 01857 Purines and purine derivatives -0.40 (1.4) Med=-0.39 .028 0.21 
Caffeine 01847 Purines and purine derivatives -0.40 (1.5) Med=-0.45 .028 0.21 
C54:6 TAG 05391 Triradylcglycerols 0.40 (1.4) Med=0.41 .028 0.21 
Caproate 00535 Fatty acids and conjugates 0.40 (1.5) Med=0.22 .031 0.23 
C48:1 TAG 05359 Triradylcglycerols -0.40 (1.5) Med=-0.23 .031 0.23 
4-acetamidobutanoate 03681 Amino acids, peptides, and analogues -0.36 (1.3) Med=-0.30 .032 0.23 
7-methylxanthine 01991 Purines and purine derivatives -0.38 (1.4) Med=-0.35 .032 0.23 
C52:2 TAG 05369 Triradylcglycerols -0.39 (1.4) Med=-0.40 .033 0.23 
Sarcosine 00271 Amino acids, peptides, and analogues -0.37 (1.3) Med=-0.29 .033 0.23 
Mandelate 00703 Not available -0.34 (1.2) Med=-0.29 .034 0.24 
C22:6 LPC 10404 Glycerophosphocholines 0.36 (1.3) Med=0.21 .035 0.24 
C49:2 TAG 11706 Triradylcglycerols -0.39 (1.5) Med=-0.43 .035 0.24 
C51:2 TAG 05362 Triradylcglycerols -0.39 (1.6) Med=-0.45 .036 0.24 
1,7-dimethyluric acid 11103 Purines and purine derivatives -0.38 (1.4) Med=-0.39 .038 0.25 
C46:1 TAG 10412 Triradylcglycerols -0.38 (1.5) Med=-0.34 .039 0.26 
Trigonelline 00875 Not available -0.36 (1.3) Med=-0.25 .041 0.26 
Glycoursodeoxycholate 00708 Bile acids, alcohols and derivatives -0.38 (1.5) Med=-0.49 .041 0.26 
N-mono-methylarginine (NMMA) 29416 Amino acids, peptides, and analogues 0.32 (1.2) Med=0.20 .043 0.27 
C36:5 PC plasmalogen-B 11220 Glycerophosphocholines 0.35 (1.3) Med=0.38 .043 0.27 
C49:3 TAG 42103 Triradylcglycerols -0.37 (1.4) Med=-0.28 .043 0.27 
C34:2 PC-A 07973 Glycerophosphocholines 0.37 (1.4) Med=0.21 .046 0.28 
Heptanoate 00666 Fatty acids and conjugates 0.35 (1.3) Med=0.15 .047 0.28 
Ornithine 00214 Amino acids, peptides, and analogues -0.34 (1.3) Med=-0.37 .048 0.29 
Theophylline 01889 Purines and purine derivatives -0.36 (1.4) Med=-0.17 .0496 0.29 

HMDB= Human Metabolome Database (84) 
FDR= False discovery rate 
LPC= lysophosphatidylcholine 
LPE= lysophosphatidylethanolamine 
PC= phosphatidylcholine 
PE= phosphatidylethanolamine 
PS= phosphatidylserine 
SM= sphingomyelin 
TAG= triacylglycerol 
 

Table 4 Continued 
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Table 5. Taxonomy classification of 96 metabolites associated with walking ability extremes among 120 CHS All Stars 
 

Taxonomy super class* Taxonomy class* Taxonomy sub class* 

Lipids and lipid-like molecules (m=54) 

Fatty Acyls (m=5) Fatty acid esters (m=1) 
Fatty acids and conjugates (m=4) 

Glycerolipids (m=23) Triradylcglycerols (m=23) 

Glycerophospholipids (m=19) Glycerophosphocholines (m=10) 
Glycerophosphoethanolamines (m=9) 

Sphingolipids (m=4) Phosphosphingolipids (m=4) 
Steroids and steroid derivatives (m=1) Bile acids, alcohols and derivatives (m=1) 
Not classified (m=2) Not classified (m=2) 

Organic acids and derivatives (m=16) 

Carboximidic acids and derivatives (m=1) Carboximidic acids (m=1) 

Carboxylic acids and derivatives (m=12) 
Amino acids, peptides, and analogues (m=10) 
Carboxylic acid derivatives (m=1) 
Dicarboxylic acids and derivatives (m=1) 

Hydroxy acids and derivatives (m=2) Alpha hydroxy acids and derivatives (m=1) 
Medium-chain hydroxy acids and derivatives (m=1) 

Keto acids and derivatives (m=1) Short-chain keto acids and derivatives (m=1) 

Organoheterocyclic compounds (m=14) 

Azoles (m=1) Imidazoles (m=1) 
Benzothiazoles (m=1) Not available (m=1) 
Imidazopyrimidines (m=8) Purines and purine derivatives (m=8) 

Indoles and derivatives (m=2) Indolyl carboxylic acids and derivatives (m=1) 
Tryptamines and derivatives (m=1) 

Pyridines and derivatives (m=1) Pyridinecarboxylic acids and derivatives (m=1) 
Tetrapyrroles and derivatives (m=1) Bilirubins (m=1) 

Nucleosides, nucleotides, and analogues  
(m=3) 

Nucleoside and nucleotide analogues (m=1) Not available (m=1) 
Purine nucleosides (m=2) Not available (m=2) 

Organic oxygen compounds (m=3) Organooxygen compounds (m=3) Carbohydrates and carbohydrate conjugates (m=3) 

Benzenoids (m=2) Benzene and substituted derivatives (m=2) Phenylacetic acid derivatives (m=1) 
Not available (m=1) 

Phenylpropanoids and polyketides (m=1) Phenylpropanoic acids (m=1) Not available (m=1) 
Alkaloids and derivatives (m=1) Not available (m=1) Not available (m=1) 
Not classified (m=2) Not classified (m=2) Not classified (m=2) 

*According to the Human Metabolome Database 
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Table 6. Top pathways involving at least one of the metabolites* associated with walking ability extremes among 120 CHS All Stars 
 

Pathway name Match 
Status 

Fisher’s exact 
test p-value 

False 
discovery rate Impact 

Caffeine metabolism 4/21 0.0003 0.02 0.38 
Arginine and proline metabolism 6/77 0.001 0.05 0.37 
D-Arginine and D-ornithine metabolism 2/8 0.007 0.18 0 
Glycerophospholipid metabolism 3/39 0.02 0.48 0.23 
Glycerolipid metabolism 2/32 0.09 1.00 0.07 
Nicotinate and nicotinamide metabolism 2/44 0.16 1.00 0.02 
Phenylalanine metabolism 2/45 0.16 1.00 0.04 
Glycine, serine and threonine metabolism 2/48 0.18 1.00 0.05 
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 1/14 0.20 1.00 0.04 
Linoleic acid metabolism 1/15 0.22 1.00 0 

 

*88 metabolites with Human Metabolome Database identification number and in MetaboAnalyst database: 
proline, C38:7 PE plasmalogen, 1-methylguanine, C58:10 TAG, imidazole propionate, C36:5 PE plasmalogen, C40:7 PE 
plasmalogen, C60:12 TAG, C56:8 TAG, C38:7 PC plasmalogen, C58:9 TAG, C18:1 SM, N2,N2-dimethylguanosine, C56:7 
TAG, C58:11 TAG, C56:9 TAG, hydrocinnamate, 1-methylnicotinamide, C38:6 PE plasmalogen, saccharin, C34:5 PC 
plasmalogen, lactate, C24:0 LPC, 3-methylxanthine, ibuprofen, C56:10 TAG, p-hydroxyphenylacetate, serotonin,  C38:6 PC 
plasmalogen, anserine, C50:3 TAG, cinnamoylglycine, C34:3 PC plasmalogen, 7-methylguanine, 3-hydroxydecanoate,  
bilirubin, C54:9 TAG, cysteine, C48:2 TAG, indole-3-propionate, docosahexaenoate, C38:6 PC, C54:7 TAG, C22:0 LPE, 
C40:9 PC, arginine, acetyl-galactosamine, C36:5 PC plasmalogen-A, C54:8 TAG, C50:2 TAG, glycerate, C34:3 PE 
plasmalogen, 1-methyladenosine, homocitrulline, pseudouridine, ethyl glucuronide, C52:1 TAG, C50:1 TAG, C38:5 PE 
plasmalogen, N-acetylputrescine, malonate, C34:2 PE plasmalogen, C38:3 PE plasmalogen, C5:1 carnitine, N6-acetyllysine, 
C18:0 SM, dimethylurate, caffeine, C54:6 TAG, caproate, C48:1 TAG, 4-acetamidobutanoate, 7-methylxanthine, C52:2 
TAG, sarcosine, mandelate, C22:6 LPC, C49:2 TAG, C51:2 TAG, 1,7-dimethyluric acid, C46:1 TAG, trigonelline, 
glycoursodeoxycholate, NMMA, C36:5 PC plasmalogen-B, C34:2 PC-A, heptanoate, ornithine, theophylline 
 
Note: The following four metabolites did not have a Human Metabolome Database identification number:  
C36:3 PS plasmalogen, C18:2 SM, C-glycosyltryptophan, , cys-gly-oxidized. 
The following four metabolites had a Human Metabolome Database identification number, but were not in the 
MetaboAnalyst database: diacetylspermine (HMDB41876), 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF; 
HMDB61112), C49:3 TAG (HMDB42103), Dimethylguanidino valeric acid (DMGV; HMDB0240212). 
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Table 7. Associations between 96 metabolites and body mass index, waist circumference, arthritis, total number of prescription medications, 
and interleukin-6 using a random intercept model adjusting for the matched design among 120 CHS All Stars 

 
Taxonomy super class 
Log-transformed and 
standardized metabolites 

Estimate (standard error), p-value Number of 
significant 

associations* Body mass index** Waist circumference** Arthritis Number of  
medications* Interleukin-6*** 

Lipids and lipid-like 
molecules:       

  C5:1 carnitine -0.01 (0.08), p=0.87 -0.02 (0.08), p=0.78 -0.23 (0.18), p=0.21 -0.11 (0.09), p=0.21 -0.03 (0.1), p=0.73 0 
  Caproate 0.07 (0.09), p=0.43 0.11 (0.09), p=0.23 0.11 (0.18), p=0.54 0.006 (0.09), p=0.95 0.003 (0.1), p=0.97 0 
  Heptanoate 0.13 (0.09), p=0.16 0.12 (0.09), p=0.20 0.14 (0.18), p=0.45 -0.04 (0.09), p=0.67 0.008 (0.09), p=0.93 0 
  CMPF  -0.09 (0.09), p=0.30 -0.10 (0.09), p=0.26 -0.15 (0.17), p=0.40 0.09 (0.09), p=0.31 0.11 (0.09), p=0.27 0 
  Docosahexaenoate -0.23 (0.09), p=0.02 -0.26 (0.09), p=0.004 -0.47 (0.17), p=0.009 0.04 (0.09), p=0.68 -0.19 (0.1), p=0.06 3 
  C58:10 TAG -0.12 (0.09), p=0.21 -0.14 (0.09), p=0.12 -0.34 (0.18), p=0.07 0.08 (0.09), p=0.40 -0.22 (0.09), p=0.02 1 
  C56:8 TAG -0.11 (0.09), p=0.25 -0.10 (0.09), p=0.26 -0.30 (0.18), p=0.10 0.06 (0.09), p=0.50 -0.17 (0.09), p=0.07 0 
  C58:9 TAG -0.11 (0.09), p=0.25 -0.17 (0.09), p=0.07 -0.37 (0.18), p=0.04 0.05 (0.09), p=0.56 -0.10 (0.09), p=0.29 1 
  C56:9 TAG -0.12 (0.09), p=0.22 -0.10 (0.09), p=0.28 -0.35 (0.18), p=0.06 0.11 (0.09), p=0.21 -0.23 (0.09), p=0.01 1 
  C58:11 TAG -0.09 (0.09), p=0.33 -0.10 (0.09), p=0.31 -0.37 (0.18), p=0.04 0.12 (0.09), p=0.18 -0.25 (0.09), p=0.008 2 
  C56:7 TAG -0.09 (0.09), p=0.34 -0.08 (0.09), p=0.38 -0.26 (0.18), p=0.15 0.09 (0.09), p=0.33 -0.15 (0.09), p=0.10 0 
  C56:10 TAG -0.11 (0.09), p=0.24 -0.10 (0.09), p=0.30 -0.34 (0.18), p=0.07 0.14 (0.09), p=0.12 -0.26 (0.09), p=0.005 1 
  C50:3 TAG 0.16 (0.09), p=0.08 0.20 (0.09), p=0.03 0.25 (0.18), p=0.18 0.10 (0.09), p=0.27 0.06 (0.09), p=0.52 1 
  C54:7 TAG -0.13 (0.09), p=0.16 -0.03 (0.09), p=0.72 -0.26 (0.18), p=0.15 0.08 (0.09), p=0.40 -0.10 (0.1), p=0.31 0 
  C54:9 TAG -0.11 (0.09), p=0.25 -0.08 (0.09), p=0.40 -0.28 (0.18), p=0.12 0.14 (0.09), p=0.13 -0.28 (0.09), p=0.003 1 
  C54:6 TAG -0.13 (0.09), p=0.19 -0.01 (0.09), p=0.87 -0.21 (0.18), p=0.25 0.004 (0.09), p=0.97 0.01 (0.1), p=0.88 0 
  C48:2 TAG 0.18 (0.09), p=0.06 0.17 (0.09), p=0.07 0.26 (0.18), p=0.16 0.09 (0.09), p=0.36 0.02 (0.1), p=0.80 0 
  C50:2 TAG 0.31 (0.09), p=0.001 0.29 (0.09), p=0.002 0.20 (0.18), p=0.27 0.14 (0.09), p=0.14 0.13 (0.1), p=0.18 2 
  C50:1 TAG 0.35 (0.09), p=0.0002 0.33 (0.09), p=0.0003 0.19 (0.18), p=0.29 0.10 (0.09), p=0.28 0.17 (0.1), p=0.08 2 
  C48:1 TAG 0.23 (0.09), p=0.02 0.22 (0.09), p=0.02 0.20 (0.18), p=0.28 0.11 (0.09), p=0.23 0.07 (0.1), p=0.46 2 
  C54:8 TAG -0.12 (0.09), p=0.21 -0.05 (0.09), p=0.57 -0.28 (0.18), p=0.13 0.14 (0.09), p=0.12 -0.18 (0.09), p=0.05 0 
  C52:1 TAG 0.34 (0.09), p=0.0003 0.34 (0.09), p=0.0002 0.16 (0.18), p=0.39 0.15 (0.09), p=0.11 0.23 (0.09), p=0.02 3 
  C46:1 TAG 0.14 (0.09), p=0.14 0.13 (0.09), p=0.16 0.22 (0.18), p=0.24 0.10 (0.09), p=0.27 0.04 (0.1), p=0.69 0 
  C52:2 TAG 0.29 (0.09), p=0.002 0.30 (0.09), p=0.001 0.25 (0.18), p=0.18 0.17 (0.09), p=0.07 0.23 (0.1), p=0.02 3 
  C60:12 TAG -0.09 (0.09), p=0.35 -0.16 (0.09), p=0.08 -0.32 (0.18), p=0.08 0.06 (0.09), p=0.49 -0.17 (0.09), p=0.08 0 
  C51:2 TAG 0.21 (0.09), p=0.03 0.17 (0.09), p=0.07 0.20 (0.18), p=0.28 0.03 (0.09), p=0.74 0.03 (0.1), p=0.75 1 
  C49:2 TAG 0.17 (0.09), p=0.08 0.12 (0.09), p=0.20 0.24 (0.18), p=0.19 -0.02 (0.09), p=0.84 -0.02 (0.1), p=0.85 0 
  C49:3 TAG 0.11 (0.09), p=0.23 0.11 (0.09), p=0.25 0.26 (0.18), p=0.16 -0.003 (0.09), p=0.98 -0.03 (0.1), p=0.78 0 
  C38:7 PC plasmalogen -0.21 (0.09), p=0.03 -0.27 (0.09), p=0.004 -0.29 (0.18), p=0.11 -0.01 (0.09), p=0.87 -0.05 (0.09), p=0.57 2 
  C24:0 LPC -0.31 (0.09), p=0.001 -0.23 (0.09), p=0.01 0.08 (0.18), p=0.68 -0.09 (0.09), p=0.31 -0.23 (0.09), p=0.02 3 
  C34:3 PC plasmalogen -0.27 (0.09), p=0.003 -0.30 (0.09), p=0.001 -0.17 (0.17), p=0.33 -0.18 (0.09), p=0.04 -0.20 (0.09), p=0.04 4 
  C38:6 PC plasmalogen -0.22 (0.09), p=0.02 -0.25 (0.09), p=0.006 -0.36 (0.18), p=0.05 -0.03 (0.09), p=0.75 -0.03 (0.1), p=0.77 2 
  C38:6 PC -0.21 (0.09), p=0.03 -0.23 (0.09), p=0.01 -0.37 (0.18), p=0.04 0.14 (0.09), p=0.12 -0.11 (0.09), p=0.25 3 
  C36:5 PC plasmalogen-A -0.15 (0.09), p=0.12 -0.15 (0.09), p=0.10 -0.21 (0.18), p=0.26 0.007 (0.09), p=0.94 -0.13 (0.1), p=0.19 0 
  C40:9 PC -0.15 (0.09), p=0.12 -0.18 (0.09), p=0.05 -0.40 (0.18), p=0.03 0.17 (0.09), p=0.07 -0.10 (0.09), p=0.27 1 
  C36:5 PC plasmalogen-B -0.05 (0.09), p=0.58 -0.15 (0.09), p=0.11 0.009 (0.18), p=0.96 -0.22 (0.09), p=0.01 -0.11 (0.09), p=0.23 1 
  C22:6 LPC -0.20 (0.09), p=0.03 -0.17 (0.09), p=0.07 -0.48 (0.17), p=0.007 0.14 (0.09), p=0.12 -0.05 (0.1), p=0.62 2 
  C34:2 PC-A -0.05 (0.09), p=0.59 -0.02 (0.09), p=0.85 0.03 (0.18), p=0.88 -0.11 (0.09), p=0.24 -0.07 (0.09), p=0.44 0 
  C34:5 PC plasmalogen 0.004 (0.09), p=0.96 -0.09 (0.09), p=0.35 -0.13 (0.18), p=0.46 -0.26 (0.09), p=0.005 0.002 (0.1), p=0.98 1 
  C38:7 PE plasmalogen -0.18 (0.09), p=0.05 -0.19 (0.09), p=0.04 -0.29 (0.18), p=0.11 0.002 (0.09), p=0.99 -0.06 (0.1), p=0.54 1 
  C36:5 PE plasmalogen 0.06 (0.09), p=0.55 -0.03 (0.09), p=0.76 -0.05 (0.18), p=0.76 -0.12 (0.09), p=0.19 -0.12 (0.09), p=0.22 0 
  C40:7 PE plasmalogen -0.27 (0.09), p=0.003 -0.29 (0.09), p=0.002 -0.17 (0.18), p=0.33 -0.05 (0.09), p=0.60 -0.01 (0.1), p=0.88 2 
  C38:6 PE plasmalogen -0.05 (0.09), p=0.60 -0.11 (0.09), p=0.22 -0.06 (0.18), p=0.74 -0.15 (0.09), p=0.09 -0.16 (0.1), p=0.10 0 
  C34:3 PE plasmalogen -0.13 (0.09), p=0.16 -0.09 (0.09), p=0.33 -0.008 (0.18), p=0.97 -0.12 (0.09), p=0.20 -0.14 (0.1), p=0.15 0 
  C38:5 PE plasmalogen -0.03 (0.09), p=0.78 -0.11 (0.09), p=0.25 0.03 (0.18), p=0.88 -0.16 (0.09), p=0.06 -0.08 (0.09), p=0.40 0 
  C34:2 PE plasmalogen -0.09 (0.09), p=0.33 -0.13 (0.09), p=0.16 0.006 (0.18), p=0.97 -0.14 (0.09), p=0.13 -0.16 (0.1), p=0.11 0 
  C38:3 PE plasmalogen -0.25 (0.09), p=0.009 -0.29 (0.09), p=0.002 -0.12 (0.18), p=0.53 -0.26 (0.09), p=0.004 -0.23 (0.1), p=0.02 4 
  C22:0 LPE -0.33 (0.09), p=0.0005 -0.26 (0.09), p=0.004 -0.34 (0.18), p=0.07 -0.15 (0.09), p=0.11 -0.30 (0.09), p=0.001 3 
  C18:1 SM 0.09 (0.09), p=0.34 0.03 (0.09), p=0.74 0.22 (0.18), p=0.22 -0.05 (0.09), p=0.58 0.04 (0.09), p=0.66 0 
  C18:0 SM 0.06 (0.09), p=0.50 -0.004 (0.09), p=0.96 0.06 (0.18), p=0.76 -0.09 (0.09), p=0.33 0.03 (0.09), p=0.74 0 
  C16:1 SM 0.05 (0.09), p=0.55 0.04 (0.09), p=0.65 0.22 (0.18), p=0.21 -0.06 (0.09), p=0.54 -0.03 (0.09), p=0.73 0 
  C18:2 SM -0.009 (0.09), p=0.92 -0.04 (0.09), p=0.66 0.22 (0.18), p=0.22 -0.02 (0.09), p=0.84 -0.05 (0.09), p=0.62 0 
  C36:3 PS plasmalogen 0.12 (0.09), p=0.22 0.04 (0.09), p=0.69 0.63 (0.17), p=0.0006 -0.06 (0.09), p=0.53 0.22 (0.1), p=0.03 2 
  Glycoursodeoxycholate 0.21 (0.09), p=0.02 0.16 (0.09), p=0.09 0.21 (0.18), p=0.26 0.008 (0.09), p=0.93 0.13 (0.1), p=0.19 1 
Organic acids and 
derivatives:       

  N-acetylputrescine -0.10 (0.09), p=0.26 -0.09 (0.09), p=0.31 0.12 (0.18), p=0.50 0.14 (0.09), p=0.13 0.06 (0.1), p=0.51 0 
  Sarcosine -0.09 (0.09), p=0.34 -0.02 (0.09), p=0.79 -0.04 (0.18), p=0.84 0.10 (0.09), p=0.26 -0.02 (0.09), p=0.79 0 
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Taxonomy super class 
Log-transformed and 
standardized metabolites 

Estimate (standard error), p-value Number of 
significant 

associations* Body mass index** Waist circumference** Arthritis Number of  
medications* Interleukin-6*** 

  Ornithine 0.14 (0.09), p=0.14 0.16 (0.09), p=0.09 0.38 (0.18), p=0.04 0.14 (0.09), p=0.13 0.09 (0.09), p=0.34 1 
  N-mono-methylarginine 0.08 (0.09), p=0.38 0.05 (0.09), p=0.60 -0.05 (0.17), p=0.78 -0.02 (0.09), p=0.83 -0.07 (0.09), p=0.47 0 
  Proline 0.23 (0.09), p=0.01 0.26 (0.09), p=0.003 0.17 (0.18), p=0.33 0.03 (0.09), p=0.73 0.34 (0.09), p=0.0006 3 
  Homocitrulline 0.16 (0.09), p=0.08 0.18 (0.09), p=0.04 0.22 (0.17), p=0.21 0.08 (0.09), p=0.40 0.34 (0.09), p=0.0005 2 
  N6-acetyllysine 0.10 (0.09), p=0.30 0.11 (0.09), p=0.25 0.29 (0.18), p=0.11 0.006 (0.09), p=0.95 0.28 (0.1), p=0.006 1 
  4-acetamidobutanoate 0.04 (0.09), p=0.69 0.11 (0.09), p=0.25 0.11 (0.18), p=0.55 0.03 (0.09), p=0.74 0.31 (0.09), p=0.002 1 
  Cinnamoylglycine -0.32 (0.09), p=0.0006 -0.29 (0.09), p=0.002 -0.56 (0.17), p=0.002 -0.27 (0.09), p=0.004 -0.09 (0.09), p=0.34 4 
  Cystine 0.18 (0.09), p=0.04 0.22 (0.09), p=0.01 0.31 (0.17), p=0.08 0.11 (0.09), p=0.22 0.24 (0.09), p=0.01 3 
  Arginine -0.24 (0.09), p=0.009 -0.26 (0.09), p=0.006 0.16 (0.18), p=0.39 -0.18 (0.09), p=0.05 -0.09 (0.09), p=0.31 2 
  Diacetylspermine 0.17 (0.09), p=0.07 0.16 (0.09), p=0.08 0.27 (0.18), p=0.14 0.02 (0.09), p=0.79 0.37 (0.09), p=0.0001 1 
  Malonate -0.23 (0.09), p=0.01 -0.19 (0.09), p=0.04 -0.23 (0.18), p=0.21 0.05 (0.09), p=0.57 -0.23 (0.09), p=0.009 3 
  Lactate 0.14 (0.09), p=0.12 0.18 (0.09), p=0.048 -0.01 (0.18), p=0.95 0.11 (0.09), p=0.24 0.18 (0.09), p=0.05 1 
  3-hydroxydecanoate -0.10 (0.09), p=0.28 -0.07 (0.09), p=0.45 -0.34 (0.17), p=0.05 -0.11 (0.09), p=0.23 -0.06 (0.09), p=0.56 0 
  DMGV 0.25 (0.09), p=0.007 0.27 (0.09), p=0.003 0.19 (0.18), p=0.28 0.09 (0.09), p=0.30 0.38 (0.09), p<0.0001 3 
Organoheterocyclic 
compounds:       

  Imidazole propionate 0.22 (0.09), p=0.02 0.24 (0.09), p=0.01 0.42 (0.18), p=0.02 0.16 (0.09), p=0.09 0.22 (0.09), p=0.03 4 
  Saccharin -0.13 (0.09), p=0.16 -0.15 (0.09), p=0.12 -0.12 (0.18), p=0.52 -0.04 (0.09), p=0.64 -0.04 (0.1), p=0.69 0 
  1-methylguanine 0.23 (0.09), p=0.01 0.18 (0.09), p=0.048 0.14 (0.18), p=0.45 -0.002 (0.09), p=0.98 0.37 (0.09), p<0.0001 3 
  3-methylxanthine 0.09 (0.09), p=0.32 0.19 (0.09), p=0.04 0.14 (0.18), p=0.45 0.21 (0.09), p=0.02 0.19 (0.09), p=0.05 2 
  Theophylline 0.12 (0.09), p=0.22 0.23 (0.09), p=0.01 -0.04 (0.18), p=0.83 0.16 (0.09), p=0.09 0.07 (0.09), p=0.48 1 
  7-methylguanine 0.05 (0.09), p=0.60 0.09 (0.09), p=0.28 0.06 (0.17), p=0.71 -0.01 (0.08), p=0.89 0.26 (0.09), p=0.005 1 
  7-methylxanthine 0.08 (0.09), p=0.40 0.18 (0.09), p=0.05 0.15 (0.18), p=0.41 0.19 (0.09), p=0.03 0.14 (0.1), p=0.14 1 
  1,7-dimethyluric acid 0.20 (0.09), p=0.04 0.31 (0.09), p=0.0007 -0.06 (0.18), p=0.73 0.11 (0.09), p=0.21 0.18 (0.1), p=0.06 2 
  Dimethylurate 0.17 (0.09), p=0.06 0.28 (0.09), p=0.003 -0.07 (0.18), p=0.71 0.12 (0.09), p=0.18 0.20 (0.1), p=0.04 2 
  Caffeine 0.23 (0.09), p=0.01 0.30 (0.09), p=0.001 -0.02 (0.18), p=0.90 0.15 (0.09), p=0.09 0.14 (0.1), p=0.17 2 
  Indole-3-propionate -0.44 (0.08), p<0.0001 -0.35 (0.08), p<0.0001 -0.56 (0.18), p=0.002 0.001 (0.09), p=0.99 -0.17 (0.1), p=0.08 3 
  Serotonin -0.11 (0.09), p=0.23 -0.20 (0.09), p=0.03 -0.12 (0.18), p=0.51 -0.14 (0.09), p=0.13 0.02 (0.1), p=0.82 1 
  1-methylnicotinamide -0.17 (0.09), p=0.08 -0.19 (0.09), p=0.04 -0.51 (0.18), p=0.006 -0.09 (0.09), p=0.31 -0.14 (0.09), p=0.13 2 
  Bilirubin -0.16 (0.09), p=0.09 -0.08 (0.09), p=0.40 -0.41 (0.18), p=0.03 -0.28 (0.09), p=0.002 -0.16 (0.09), p=0.09 2 
Nucleosides, nucleotides, 
and analogues:       

  N2,N2-dimethylguanosine 0.14 (0.09), p=0.14 0.18 (0.09), p=0.06 -0.03 (0.18), p=0.86 0.004 (0.09), p=0.96 0.39 (0.09), p<.0001 1 
  1-methyladenosine 0.16 (0.09), p=0.08 0.15 (0.09), p=0.09 0.22 (0.17), p=0.21 -0.02 (0.09), p=0.84 0.33 (0.09), p=0.0005 1 
  Pseudouridine 0.15 (0.09), p=0.10 0.20 (0.09), p=0.03 0.07 (0.17), p=0.69 0.06 (0.09), p=0.48 0.39 (0.09), p<0.0001 2 
Organic oxygen 
compounds:       

  Acetyl-galactosamine 0.02 (0.09), p=0.84 -0.009 (0.09), p=0.92 0.12 (0.18), p=0.52 0.04 (0.09), p=0.64 0.12 (0.1), p=0.24 0 
  Ethyl glucuronide -0.13 (0.09), p=0.14 -0.04 (0.09), p=0.62 -0.23 (0.17), p=0.19 0.09 (0.09), p=0.32 0.04 (0.09), p=0.71 0 
  Glycerate -0.11 (0.09), p=0.24 -0.07 (0.09), p=0.45 -0.08 (0.18), p=0.67 0.19 (0.09), p=0.04 -0.23 (0.1), p=0.02 2 
Benzenoids:       
  p-hydroxyphenylacetate 0.27 (0.09), p=0.004 0.27 (0.09), p=0.004 0.14 (0.18), p=0.45 0.12 (0.09), p=0.19 0.27 (0.09), p=0.007 3 
  Mandelate 0.23 (0.09), p=0.01 0.23 (0.09), p=0.01 0.10 (0.17), p=0.56 -0.03 (0.09), p=0.71 0.40 (0.09), p<0.0001 3 
Phenylpropanoids and 
polyketides:       

  Hydrocinnamate -0.21 (0.09), p=0.02 -0.23 (0.09), p=0.01 -0.47 (0.18), p=0.01 -0.18 (0.09), p=0.06 -0.08 (0.09), p=0.38 3 
Alkaloids and derivatives:       
  Trigonelline 0.05 (0.09), p=0.58 0.16 (0.09), p=0.08 -0.04 (0.18), p=0.84 0.16 (0.09), p=0.09 0.29 (0.09), p=0.003 1 
Class not available:       
  C-glycosyltryptophan 0.16 (0.09), p=0.09 0.22 (0.09), p=0.02 0.14 (0.18), p=0.44 -0.02 (0.09), p=0.79 0.42 (0.08), p<0.0001 2 
  Cys-gly-oxidized -0.20 (0.09), p=0.03 -0.19 (0.09), p=0.04 -0.19 (0.18), p=0.32 0.01 (0.09), p=0.91 -0.12 (0.09), p=0.20 2 
*Number of associations (p<0.05) between a metabolite and body mass index, waist circumference, arthritis, number of medications, and interleukin-6 
**Standardized to a mean of zero and standard deviation of one 
***Log-transformed and standardized to a mean of zero and standard deviation of one 
LPC= lysophosphatidylcholine 
LPE= lysophosphatidylethanolamine 
PC= phosphatidylcholine 
PE= phosphatidylethanolamine 
PS= phosphatidylserine 
SM= sphingomyelin 
TAG= triacylglycerol  
DMGV= Dimethylguanidino valeric acid 
Purple shading indicates significant association at a 0.05 significance level 

Table 7 Continued 
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Table 8. Body mass index-adjusted associations between walking ability extremes and 32 metabolites that were significantly 
associated with body mass index using conditional logistic regression adjusting for matched design among 120 CHS All Stars 

 
HMDB Taxonomy super class  
Log-transformed/standardized  
metabolites 

Model 1: Unadjusted Model 2: Metabolite + BMI 
Metabolite* BMI* 

Odds ratio** (95% CI), 
p-value 

Odds ratio** (95% CI), 
p-value Attenuation Odds ratio** (95% CI), 

p-value Attenuation 

Body mass index* 0.35 (0.19, 0.67), p=0.001 ----- 
Lipids and lipid-like molecules:      
   Docosahexaenoate 1.60 (1.03, 2.48), p=0.04 1.31 (0.81, 2.15), p=0.28 42% 0.38 (0.20, 0.73), p=0.003 8% 
   C50:2 TAG 0.67 (0.46, 0.96), p=0.03 0.85 (0.55, 1.32), p=0.47 60% 0.39 (0.20, 0.74), p=0.004 9% 
   C50:1 TAG 0.69 (0.49, 0.98), p=0.04 0.90 (0.59, 1.37), p=0.62 72% 0.38 (0.19, 0.74), p=0.005 7% 
   C48:1 TAG 0.67 (0.46, 0.97), p=0.04 0.82 (0.52, 1.27), p=0.37 49% 0.39 (0.21, 0.74), p=0.004 10% 
   C52:1 TAG 0.68 (0.47, 0.98), p=0.04 0.84 (0.55, 1.28), p=0.41 54% 0.38 (0.20, 0.73), p=0.004 9% 
   C52:2 TAG 0.67 (0.46, 0.98), p=0.04 0.83 (0.53, 1.30), p=0.42 55% 0.38 (0.20, 0.73), p=0.003 8% 
   C51:2 TAG 0.68 (0.47, 0.98), p=0.04 0.80 (0.53, 1.20), p=0.28 42% 0.39 (0.21, 0.73), p=0.003 10% 
   C38:7 PC plasmalogen 1.89 (1.22, 2.93), p=0.005 1.40 (0.88, 2.22), p=0.16 48% 0.42 (0.22, 0.81), p=0.01 17% 
   C24:0 LPC 1.82 (1.15, 2.90), p=0.01 1.35 (0.83, 2.19), p=0.22 50% 0.40 (0.20, 0.77), p=0.006 11% 
   C34:3 PC plasmalogen 1.92 (1.16, 3.15), p=0.01 1.43 (0.82, 2.49), p=0.20 45% 0.40 (0.21, 0.76), p=0.006 12% 
   C38:6 PC plasmalogen 1.63 (1.09, 2.44), p=0.02 1.22 (0.79, 1.88), p=0.37 60% 0.39 (0.20, 0.75), p=0.005 9% 
   C38:6 PC 1.60 (1.04, 2.46), p=0.03 1.27 (0.81, 1.98), p=0.29 50% 0.38 (0.20, 0.73), p=0.004 8% 
   C22:6 LPC 1.56 (1.01, 2.39), p=0.04 1.27 (0.79, 2.03), p=0.33 47% 0.38 (0.20, 0.72), p=0.003 7% 
   C40:7 PE plasmalogen 2.10 (1.28, 3.42), p=0.003 1.49 (0.88, 2.51), p=0.14 47% 0.43 (0.22, 0.83), p=0.01 19% 
   C38:3 PE plasmalogen 1.57 (1.03, 2.39), p=0.04 1.27 (0.79, 2.05), p=0.33 47% 0.37 (0.19, 0.71), p=0.003 5% 
   C22:0 LPE 1.72 (1.12, 2.63), p=0.01 1.32 (0.85, 2.06), p=0.21 48% 0.38 (0.20, 0.75), p=0.005 9% 
   Glycoursodeoxycholate 0.74 (0.51, 1.06), p=0.10 0.86 (0.57, 1.31), p=0.49 51% 0.37 (0.19, 0.69), p=0.002 4% 
Organic acids and derivatives:      
   Proline 0.30 (0.15, 0.61), p=0.0009 0.39 (0.19, 0.82), p=0.01 21% 0.45 (0.24, 0.85), p=0.01 24% 
   Cinnamoylglycine 1.87 (1.15, 3.05), p=0.01 1.56 (0.87, 2.79), p=0.13 29% 0.40 (0.21, 0.76), p=0.005 13% 
   Cystine 0.61 (0.38, 0.98), p=0.04 0.59 (0.33, 1.04), p=0.07 -9% 0.34 (0.17, 0.66), p=0.002 -4% 
   Arginine 1.77 (1.13, 2.77), p=0.01 1.85 (1.06, 3.23), p=0.03 -8% 0.34 (0.17, 0.66), p=0.001 -4% 
   Malonate 1.53 (1.00, 2.33), p=0.0498 1.33 (0.82, 2.15), p=0.25 33% 0.37 (0.20, 0.71), p=0.003 6% 
   Dimethylguanidino valeric acid 0.56 (0.34, 0.90), p=0.02 0.62 (0.36, 1.08), p=0.09 19% 0.37 (0.20, 0.72), p=0.003 6% 
Organoheterocyclic compounds:      
   Imidazole propionate 0.42 (0.24, 0.74), p=0.003 0.38 (0.19, 0.77), p=0.007 -10% 0.32 (0.16, 0.67), p=0.002 -8% 
   1-methylguanine 0.41 (0.24, 0.71), p=0.001 0.50 (0.28, 0.89), p=0.02 22% 0.43 (0.23, 0.81), p=0.009 20% 
   1,7-dimethyluric acid 0.69 (0.45, 1.04), p=0.07 0.78 (0.49, 1.25), p=0.31 36% 0.38 (0.20, 0.71), p=0.002 7% 
   Caffeine 0.72 (0.49, 1.04), p=0.08 0.80 (0.51, 1.24), p=0.32 32% 0.38 (0.20, 0.70), p=0.002 7% 
   Indole-3-propionate 1.57 (0.99, 2.49), p=0.05 1.19 (0.69, 2.06), p=0.52 61% 0.37 (0.19, 0.72), p=0.003 6% 
Benzenoids:      
   p-hydroxyphenylacetate 0.58 (0.37, 0.91), p=0.02 0.57 (0.33, 0.98), p=0.04 -5% 0.33 (0.17, 0.67), p=0.002 -5% 
   Mandelate 0.63 (0.41, 0.99), p=0.045 0.67 (0.40, 1.12), p=0.12 12% 0.36 (0.19, 0.69), p=0.002 3% 
Phenylpropanoids and polyketides:      
   Hydrocinnamate 1.90 (1.19, 3.04), p=0.008 2.03 (1.13, 3.65), p=0.02 -10% 0.36 (0.19, 0.68), p=0.002 3% 
Taxonomy class not available:      
   Cys-gly-oxidized 1.44 (0.94, 2.21), p=0.09 1.52 (0.88, 2.63), p=0.14 -14% 0.37 (0.20, 0.68), p=0.002 4% 

*All continuous variables were standardized to a mean of zero and standard deviation of one 
**Modeling the probability of high walking ability versus low walking ability 
Attenuation=100*(beta coefficient from unadjusted model – beta coefficient from adjusted model) / beta coefficient from unadjusted model 
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Table 9. Waist circumference-adjusted associations between walking ability extremes and 40 metabolites that were significantly 
associated with waist circumference using conditional logistic regression adjusting for matched design among 120 CHS All Stars 

 
HMDB Taxonomy super class  
Log-transformed/standardized  
metabolites 

Model 1: Unadjusted Model 2: Metabolite + Waist circumference 
Metabolite* Waist circumference* 

Odds ratio** (95% CI), 
p-value 

Odds ratio** (95% CI), 
p-value Attenuation Odds ratio** (95% CI), 

p-value Attenuation 

Waist circumference* 0.34 (0.18, 0.64), p=0.0007 ----- 
Lipids and lipid-like molecules:      
   Docosahexaenoate 1.65 (1.06, 2.58), p=0.03 1.31 (0.79, 2.18), p=0.29 46% 0.38 (0.20, 0.70), p=0.002 9% 
   C50:3 TAG 0.57 (0.37, 0.88), p=0.01 0.72 (0.43, 1.20), p=0.20 40% 0.38 (0.20, 0.71), p=0.003 9% 
   C50:2 TAG 0.67 (0.46, 0.97), p=0.03 0.88 (0.57, 1.37), p=0.57 68% 0.36 (0.19, 0.69), p=0.002 6% 
   C50:1 TAG 0.71 (0.50, 1.00), p=0.048 0.95 (0.62, 1.44), p=0.80 84% 0.35 (0.18, 0.68), p=0.002 3% 
   C48:1 TAG 0.69 (0.48, 0.99), p=0.04 0.89 (0.57, 1.39), p=0.61 69% 0.36 (0.19, 0.69), p=0.002 5% 
   C52:1 TAG 0.69 (0.49, 0.99), p=0.04 0.92 (0.59, 1.42), p=0.70 76% 0.36 (0.18, 0.69), p=0.002 4% 
   C52:2 TAG 0.67 (0.46, 0.98), p=0.04 0.87 (0.55, 1.37), p=0.54 65% 0.36 (0.19, 0.68), p=0.002 5% 
   C38:7 PC plasmalogen 1.95 (1.25, 3.03), p=0.003 1.40 (0.86, 2.26), p=0.18 50% 0.41 (0.21, 0.78), p=0.007 17% 
   C24:0 LPC 1.82 (1.14, 2.89), p=0.01 1.51 (0.92, 2.49), p=0.10 31% 0.37 (0.19, 0.70), p=0.002 7% 
   C34:3 PC plasmalogen 1.82 (1.14, 2.93), p=0.01 1.47 (0.86, 2.50), p=0.16 36% 0.37 (0.19, 0.70), p=0.002 7% 
   C38:6 PC plasmalogen 1.69 (1.13, 2.52), p=0.01 1.26 (0.81, 1.96), p=0.31 56% 0.38 (0.20, 0.72), p=0.003 10% 
   C38:6 PC 1.63 (1.06, 2.50), p=0.03 1.27 (0.81, 1.99), p=0.29 51% 0.37 (0.20, 0.70), p=0.002 9% 
   C38:7 PE plasmalogen 2.40 (1.45, 3.98), p=0.0007 1.91 (1.11, 3.27), p=0.02 26% 0.43 (0.23, 0.80), p=0.008 22% 
   C40:7 PE plasmalogen 2.18 (1.34, 3.57), p=0.002 1.55 (0.91, 2.62), p=0.11 44% 0.42 (0.22, 0.80), p=0.009 19% 
   C38:3 PE plasmalogen 1.54 (1.03, 2.30), p=0.04 1.28 (0.81, 2.02), p=0.30 44% 0.35 (0.19, 0.67), p=0.002 4% 
   C22:0 LPE 1.60 (1.07, 2.39), p=0.02 1.30 (0.85, 2.01), p=0.23 43% 0.36 (0.19, 0.68), p=0.002 5% 
Organic acids and derivatives:      
   Proline 0.29 (0.14, 0.59), p=0.0007 0.39 (0.19, 0.81), p=0.01 23% 0.45 (0.24, 0.84), p=0.01 26% 
   Homocitrulline 0.59 (0.38, 0.93), p=0.02 0.71 (0.43, 1.16), p=0.17 34% 0.36 (0.19, 0.68), p=0.002 6% 
   Cinnamoylglycine 1.82 (1.13, 2.93), p=0.01 1.54 (0.87, 2.73), p=0.14 28% 0.38 (0.20, 0.72), p=0.003 10% 
   Cystine 0.58 (0.36, 0.93), p=0.02 0.62 (0.35, 1.10), p=0.10 12% 0.36 (0.19, 0.67), p=0.001 4% 
   Arginine 1.60 (1.05, 2.42), p=0.03 1.67 (1.01, 2.75), p=0.046 -9% 0.32 (0.17, 0.62), p=0.0008 -5% 
   Malonate 1.40 (0.96, 2.05), p=0.08 1.30 (0.83, 2.03), p=0.26 24% 0.35 (0.19, 0.66), p=0.001 3% 
   Lactate 0.52 (0.32, 0.84), p=0.008 0.59 (0.36, 0.98), p=0.04 20% 0.38 (0.20, 0.70), p=0.002 9% 
   Dimethylguanidino valeric acid 0.53 (0.33, 0.85), p=0.008 0.57 (0.33, 0.98), p=0.04 12% 0.35 (0.18, 0.67), p=0.002 3% 
Organoheterocyclic compounds:      
   Imidazole propionate 0.41 (0.23, 0.72), p=0.002 0.38 (0.19, 0.76), p=0.006 -9% 0.33 (0.17, 0.65), p=0.001 -3% 
   1-methylguanine 0.40 (0.23, 0.67), p=0.0006 0.45 (0.25, 0.80), p=0.007 13% 0.40 (0.22, 0.75), p=0.004 15% 
   3-methylxanthine 0.57 (0.37, 0.88), p=0.01 0.56 (0.34, 0.94), p=0.03 -3% 0.36 (0.20, 0.65), p=0.0008 5% 
   Theophylline 0.69 (0.45, 1.06), p=0.09 0.82 (0.50, 1.36), p=0.44 47% 0.37 (0.20, 0.68), p=0.002 7% 
   1,7-dimethyluric acid 0.68 (0.45, 1.02), p=0.06 0.85 (0.53, 1.37), p=0.51 59% 0.36 (0.19, 0.69), p=0.002 7% 
   Dimethylurate 0.67 (0.44, 1.01), p=0.06 0.80 (0.49, 1.31), p=0.37 43% 0.37 (0.20, 0.68), p=0.002 7% 
   Caffeine 0.71 (0.49, 1.02), p=0.06 0.83 (0.53, 1.30), p=0.42 48% 0.36 (0.20, 0.68), p=0.002 6% 
   Indole-3-propionate 1.51 (1.00, 2.30), p=0.05 1.30 (0.81, 2.09), p=0.28 37% 0.36 (0.19, 0.68), p=0.002 5% 
   Serotonin 1.59 (1.07, 2.38), p=0.02 1.24 (0.80, 1.93), p=0.34 53% 0.37 (0.20, 0.71), p=0.003 9% 
   1-methylnicotinamide 1.77 (1.15, 2.70), p=0.009 1.98 (1.16, 3.38), p=0.01 -20% 0.31 (0.16, 0.61), p=0.0006 -8% 
Nucleosides, nucleotides, and analogues:      
   Pseudouridine 0.56 (0.33, 0.94), p=0.03 0.64 (0.36, 1.14), p=0.13 25% 0.36 (0.20, 0.67), p=0.001 6% 
Benzenoids:      
   p-hydroxyphenylacetate 0.57 (0.36, 0.89), p=0.01 0.52 (0.29, 0.90), p=0.02 -17% 0.31 (0.16, 0.61), p=0.0007 -9% 
   Mandelate 0.63 (0.41, 0.99), p=0.045 0.63 (0.37, 1.08), p=0.09 -1% 0.34 (0.18, 0.64), p=0.0009 0% 
Phenylpropanoids and polyketides:      
   Hydrocinnamate 1.93 (1.20, 3.10), p=0.007 1.88 (1.07, 3.30), p=0.03 4% 0.37 (0.20, 0.69), p=0.002 8% 
Alkaloids and derivatives:      
   C-glycosyltryptophan 0.56 (0.35, 0.90), p=0.02 0.65 (0.38, 1.13), p=0.12 26% 0.37 (0.20, 0.69), p=0.002 8% 
   Cys-gly-oxidized 1.51 (1.00, 2.28), p=0.05 1.73 (1.02, 2.95), p=0.04 -33% 0.31 (0.16, 0.61), p=0.0007 -7% 

*All continuous variables were standardized to a mean of zero and standard deviation of one 
**Modeling the probability of high walking ability versus low walking ability 
Attenuation=100*(beta coefficient from unadjusted model – beta coefficient from adjusted model) / beta coefficient from unadjusted model
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Table 10. Arthritis-adjusted associations between walking ability extremes and 14 metabolites that were significantly associated with 
arthritis using conditional logistic regression adjusting for matched design among 120 CHS All Stars 
 

HMDB Taxonomy super class 
Log-transformed/standardized 
metabolites 

Model 1: Unadjusted Model 2: Metabolite + Arthritis 
Metabolite Arthritis 

Odds ratio* (95% CI), 
p-value 

Odds ratio* (95% CI), 
p-value Attenuation Odds ratio* (95% CI), 

p-value Attenuation 

Arthritis 0.23 (0.10, 0.53), p=0.0005 ----- 
Lipids and lipid-like molecules:      
   Docosahexaenoate 1.69 (1.08, 2.64), p=0.02 1.47 (0.92, 2.37), p=0.11 26% 0.26 (0.11, 0.60), p=0.002 8% 
   C58:9 TAG 2.08 (1.27, 3.42), p=0.004 1.93 (1.16, 3.22), p=0.01 10% 0.25 (0.11, 0.60), p=0.002 5% 
   C58:11 TAG 1.94 (1.23, 3.07), p=0.005 1.69 (1.04, 2.76), p=0.03 21% 0.28 (0.12, 0.65), p=0.003 12% 
   C38:6 PC 1.65 (1.07, 2.53), p=0.02 1.33 (0.83, 2.15), p=0.24 42% 0.27 (0.12, 0.64), p=0.003 11% 
   C40:9 PC 1.63 (1.06, 2.49), p=0.03 1.34 (0.83, 2.14), p=0.23 41% 0.27 (0.12, 0.63), p=0.003 10% 
   C22:6 LPC 1.55 (1.01, 2.39), p=0.04 1.21 (0.74, 1.96), p=0.45 58% 0.26 (0.11, 0.61), p=0.002 7% 
   C36:3 PS plasmalogen 0.50 (0.31, 0.82), p=0.006 0.59 (0.35, 0.97), p=0.04 22% 0.28 (0.12, 0.66), p=0.004 12% 
Organic acids and derivatives:      
   Ornithine 0.67 (0.44, 1.01), p=0.05 0.75 (0.47, 1.18), p=0.21 29% 0.25 (0.11, 0.58), p=0.001 5% 
   Cinnamoylglycine 1.79 (1.12, 2.88), p=0.02 1.63 (0.96, 2.75), p=0.07 17% 0.26 (0.11, 0.60), p=0.002 7% 
Organoheterocyclic compounds:      
   Imidazole propionate 0.40 (0.23, 0.71), p=0.002 0.44 (0.25, 0.80), p=0.007 11% 0.27 (0.11, 0.65), p=0.004 9% 
   Indole-3-propionate 1.56 (1.03, 2.34), p=0.03 1.38 (0.91, 2.11), p=0.13 26% 0.26 (0.11, 0.59), p=0.002 7% 
   1-methylnicotinamide 1.80 (1.18, 2.73), p=0.006 1.55 (0.98, 2.45), p=0.06 25% 0.28 (0.12, 0.66), p=0.004 13% 
   Bilirubin 1.66 (1.10, 2.52), p=0.02 1.47 (0.92, 2.34), p=0.10 24% 0.26 (0.11, 0.61), p=0.002 8% 
Phenylpropanoids and polyketides:      
   Hydrocinnamate 1.94 (1.21, 3.13), p=0.006 2.02 (1.15, 3.56), p=0.01 -6% 0.23 (0.10, 0.56), p=0.001 -1% 

*Modeling the probability of high walking ability versus low walking ability 
Attenuation=100*(beta coefficient from unadjusted model – beta coefficient from adjusted model) / beta coefficient from unadjusted model 
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Table 11. Medication-adjusted associations between walking ability extremes and 9 metabolites that were associated with total 
number of prescription medications using conditional logistic regression adjusting for matched design among 120 CHS All Stars 

 
HMDB Taxonomy super class 
Log-transformed/standardized 
metabolites 

Model 1: Unadjusted Model 2: Metabolite + Total number of prescription medications 
Metabolite* Total number of prescription medications* 

Odds ratio* (95% CI), 
p-value 

Odds ratio** (95% CI), 
p-value Attenuation Odds ratio** (95% CI), 

p-value Attenuation 

Total number of medications* 0.63 (0.42, 0.93), p=0.02 ----- 
Lipids and lipid-like molecules:      
   C34:3 PC plasmalogen 1.78 (1.11, 2.84), p=0.02 1.61 (1.00, 2.60), p=0.05 17% 0.68 (0.45, 1.02), p=0.06 17% 
   C36:5 PC plasmalogen-B 1.49 (0.99, 2.24), p=0.05 1.33 (0.87, 2.03), p=0.19 29% 0.66 (0.44, 1.01), p=0.05 13% 
   C38:3 PE plasmalogen 1.55 (1.03, 2.32), p=0.03 1.36 (0.89, 2.08), p=0.15 29% 0.68 (0.45, 1.03), p=0.07 18% 
   C34:5 PC plasmalogen 1.85 (1.17, 2.91), p=0.008 1.70 (1.07, 2.70), p=0.02 13% 0.67 (0.44, 1.03), p=0.07 15% 
Organic acids and derivatives:      
   Cinnamoylglycine 1.85 (1.14, 3.00), p=0.01 1.79 (1.05, 3.03), p=0.03 6% 0.65 (0.43, 1.0), p=0.05 10% 
Organoheterocyclic compounds:      
   3-methylxanthine 0.57 (0.36, 0.90), p=0.02 0.64 (0.40, 1.02), p=0.06 19% 0.69 (0.46, 1.04), p=0.08 21% 
   7-methylxanthine 0.67 (0.44, 1.03), p=0.07 0.74 (0.48, 1.16), p=0.19 26% 0.67 (0.44, 1.00), p=0.048 13% 
   Bilirubin 1.63 (1.07, 2.46), p=0.02 1.43 (0.94, 2.18), p=0.10 26% 0.69 (0.46, 1.05), p=0.08 21% 
Organic oxygen compounds:      
   Glycerate 1.63 (1.08, 2.44), p=0.02 2.34 (1.36, 4.04), p=0.002 -75% 0.46 (0.28, 0.75), p=0.002 -66% 
*All continuous variables were standardized to a mean of zero and standard deviation of one 
**Modeling the probability of high walking ability versus low walking ability 
Attenuation=100*(beta coefficient from unadjusted model – beta coefficient from adjusted model) / beta coefficient from unadjusted model
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Table 12. Interleukin-6-adjusted associations between walking ability extremes and 32 metabolites that were significantly associated 
with interleukin-6 using conditional logistic regression adjusting for matched design among 120 CHS All Stars 

 
HMDB Taxonomy super class 
Log-transformed/standardized 
metabolites 

Model 1: Unadjusted Model 2: Metabolite + Interleukin-6 
Metabolite* Interleukin-6* 

Odds ratio* (95% CI), 
p-value 

Odds ratio** (95% CI), 
p-value Attenuation Odds ratio** (95% CI), 

p-value Attenuation 

Interleukin-6* 0.43 (0.24, 0.75), p=0.003 ----- 
Lipids and lipid-like molecules:      
   C58:10 TAG 2.69 (1.44, 5.02), p=0.002 2.69 (1.28, 5.63), p=0.009 0% 0.46 (0.25, 0.85), p=0.01 10% 
   C56:9 TAG 2.58 (1.41, 4.74), p=0.002 2.36 (1.21, 4.60), p=0.01 10% 0.49 (0.27, 0.89), p=0.02 17% 
   C58:11 TAG 2.75 (1.47, 5.13), p=0.002 2.48 (1.25, 4.92), p=0.009 10% 0.50 (0.28, 0.92), p=0.03 20% 
   C56:10 TAG 2.75 (1.42, 5.34), p=0.003 2.40 (1.18, 4.92), p=0.02 13% 0.51 (0.28, 0.93), p=0.03 22% 
   C54:9 TAG 2.59 (1.32, 5.08), p=0.006 2.18 (1.07, 4.44), p=0.03 18% 0.51 (0.28, 0.92), p=0.02 21% 
    C52:1 TAG 0.62 (0.42, 0.94), p=0.02 0.64 (0.41, 1.01), p=0.05 6% 0.44 (0.25, 0.78), p=0.005 5% 
   C52:2 TAG 0.63 (0.42, 0.95), p=0.03 0.67 (0.42, 1.06), p=0.09 13% 0.45 (0.26, 0.80), p=0.006 7% 
   C24:0 LPC 1.90 (1.12, 3.22), p=0.02 1.76 (0.99, 3.10), p=0.05 12% 0.45 (0.25, 0.81), p=0.007 6% 
   C34:3 PC plasmalogen 1.90 (1.14, 3.19), p=0.01 1.87 (1.04, 3.39), p=0.04 2% 0.44 (0.25, 0.79), p=0.006 5% 
   C38:3 PE plasmalogen 1.66 (1.07, 2.57), p=0.02 1.54 (0.96, 2.49), p=0.08 14% 0.45 (0.25, 0.80), p=0.006 6% 
   C22:0 LPE 2.22 (1.26, 3.93), p=0.006 1.72 (0.95, 3.11), p=0.07 32% 0.50 (0.28, 0.92), p=0.02 20% 
   C36:3 PS plasmalogen 0.50 (0.30, 0.85), p=0.01 0.60 (0.34, 1.04), p=0.07 24% 0.48 (0.27, 0.87), p=0.01 15% 
Organic acids and derivatives:      
   Proline 0.28 (0.13, 0.62), p=0.001 0.32 (0.14, 0.73), p=0.007 11% 0.51 (0.28, 0.94), p=0.03 21% 
   Homocitrulline 0.59 (0.35, 0.98), p=0.04 0.73 (0.41, 1.30), p=0.29 42% 0.46 (0.26, 0.82), p=0.009 10% 
   N6-acetyllysine 0.50 (0.26, 0.99), p=0.046 0.66 (0.33, 1.34), p=0.25 40% 0.47 (0.27, 0.83), p=0.01 12% 
   4-acetamidobutanoate 0.63 (0.37, 1.06), p=0.08 0.80 (0.45, 1.41), p=0.44 52% 0.45 (0.25, 0.80), p=0.007 7% 
   Cystine 0.55 (0.32, 0.93), p=0.03 0.70 (0.40, 1.24), p=0.22 41% 0.47 (0.26, 0.84), p=0.01 11% 
   Diacetylspermine 0.48 (0.27, 0.84), p=0.01 0.57 (0.32, 1.02), p=0.06 25% 0.49 (0.27, 0.87), p=0.01 16% 
   Malonate 1.59 (1.01, 2.49), p=0.04 1.29 (0.79, 2.08), p=0.31 46% 0.47 (0.26, 0.83), p=0.01 11% 
   Dimethylguanidino valeric acid 0.60 (0.36, 0.98), p=0.04 0.76 (0.43, 1.34), p=0.34 47% 0.47 (0.26, 0.83), p=0.01 11% 
Organoheterocyclic compounds:      
   Imidazole propionate 0.44 (0.24, 0.80), p=0.008 0.45 (0.23, 0.85), p=0.01 2% 0.43 (0.23, 0.78), p=0.006 0% 
   1-methylguanine 0.37 (0.20, 0.69), p=0.002 0.46 (0.24, 0.89), p=0.02 22% 0.53 (0.30, 0.96), p=0.04 26% 
   7-methylguanine 0.55 (0.31, 0.97), p=0.04 0.64 (0.34, 1.22), p=0.17 26% 0.46 (0.26, 0.81), p=0.007 9% 
   Dimethylurate 0.61 (0.38, 0.98), p=0.04 0.72 (0.42, 1.24), p=0.24 34% 0.46 (0.26, 0.82), p=0.008 9% 
Nucleosides, nucleotides, and 
analogues:      

   N2,N2-dimethylguanosine 0.40 (0.21, 0.76), p=0.005 0.51 (0.26, 0.99), p=0.048 25% 0.51 (0.29, 0.90), p=0.02 21% 
   1-methyladenosine 0.57 (0.34, 0.96), p=0.03 0.73 (0.41, 1.30), p=0.29 44% 0.47 (0.26, 0.84), p=0.01 11% 
   Pseudouridine 0.57 (0.32, 1.02), p=0.06 0.75 (0.39, 1.43), p=0.38 48% 0.46 (0.26, 0.82), p=0.008 9% 
Organic oxygen compounds:      
   Glycerate 1.53 (1.00, 2.35), p=0.05 1.32 (0.83, 2.11), p=0.25 35% 0.45 (0.25, 0.81), p=0.007 7% 
Benzenoids:      
   p-hydroxyphenylacetate 0.63 (0.40, 1.01), p=0.05 0.63 (0.38, 1.07), p=0.09 1% 0.42 (0.24, 0.76), p=0.004 -1% 
   Mandelate 0.55 (0.33, 0.91), p=0.02 0.65 (0.38, 1.12), p=0.12 27% 0.47 (0.27, 0.83), p=0.01 12% 
Alkaloids and derivatives:      
   Trigonelline 0.77 (0.49, 1.19), p=0.24 0.95 (0.57, 1.58), p=0.83 79% 0.43 (0.24, 0.77), p=0.004 2% 
Taxonomy class not available:      
   C-glycosyltryptophan 0.55 (0.33, 0.94), p=0.03 0.74 (0.42, 1.29), p=0.28 48% 0.47 (0.26, 0.85), p=0.01 12% 
*All continuous variables were standardized to a mean of zero and standard deviation of one; interleukin-6 was log-transformed prior to 
standardization 
**Modeling the probability of high walking ability versus low walking ability 
Attenuation=100*(beta coefficient from unadjusted model – beta coefficient from adjusted model) / beta coefficient from unadjusted model
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2.7 FIGURES 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3. Flow chart of CHS All Stars eligible for our nested case-control study examining metabolites associated 
with walking ability extremes 
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Figure 4. Flow chart of potential responses and follow-up questions used to calculate the original Walking Ability 
Index in the Health, Aging, and Body Composition study 
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Figure 5. Simplified hypothetical causal diagram of more commonly measured risk factors, metabolites, and 

walking ability 
 

Higher body mass index 
Higher waist circumference 
Arthritis  
Larger number of medications 
More inflammation 

Differences in metabolites Low versus high walking 
ability 



86 

 
Each point is a single metabolite organized by its taxonomy super class, according to the Human Metabolome Database: green squares are 
lipids and lipid-like molecules; navy blue asterisks are organic acids and derivatives; pink triangles are organoheterocyclic compounds; light 
blue circles are nucleosides, nucleotides, and analogues; purple upside-down triangles are organic oxygen compounds; red circles are 
benzenoids; orange plus sign is phenylpropanoids and polyketides; grey square is alkaloids and derivatives; and gold diamonds are 
unclassified metabolites. 

 
Figure 6. Percent attenuations in the associations between select metabolites and walking ability after adjusting for a more commonly 
measured variable (y-axis) versus percent attenuations in the association between a more commonly measured variable and walking 

ability after adjusting for a metabolite (x-axis), organized by taxonomy class among 120 CHS All Stars 



87 

3.0  METABOLITES ASSOCIATED WITH VIGOR TO FRAILTY AMONG 

COMMUNITY-DWELLING OLDER BLACK MEN 

3.1 ABSTRACT 

Black versus white older Americans are more likely to experience frailty, a condition associated 

with multiple major health outcomes. To reduce racial disparities in health, a complete 

understanding of the pathophysiology of frailty is needed. Metabolomics may further our 

understanding by characterizing differences in the body during a vigorous versus frail state. 

Here, we sought to identify metabolites and biological pathways associated with vigor to frailty 

using a cohort of 287 black men ages 70-81 from the Health, Aging, and Body Composition 

study. Using liquid chromatography-mass spectrometry, 350 metabolites were measured in 

overnight-fasting plasma. Vigor to frailty was measured using the scale of aging vigor in 

epidemiology (SAVE), based on weight change, strength, energy, gait speed, and physical 

activity. Thirty-seven metabolites correlated with SAVE scores (p<0.05) adjusting for age and 

site, 14 remained significant after multiple comparisons adjustment (false discovery rate<0.30). 

Lower values of amino acids (tryptophan, methionine, tyrosine, and asparagine), C14:0 

sphingomyelin, and 1-methylnicotinamide and higher values of glucoronate, N-carbamoyl-beta-

alanine, isocitrate, creatinine, C4-OH carnitine, cystathionine, hydroxyphenylacetate, and 

putrescine were associated with frailer SAVE scores. Pathway analyses identified nitrogen 
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metabolism, aminoacyl-tRNA biosynthesis, and the citric acid cycle associated with SAVE 

scores. Future studies need to confirm whether these metabolites and pathways characterize 

vigor versus frailty in late-life, which will indicate novel mechanisms potentially involved in the 

frailty syndrome that can then be intervened on to promote healthy, vigorous aging. 

3.2 INTRODUCTION 

In the United States, black compared to white older adults are more likely to be frail (141). In 

fact at every age group, older community-dwelling black men and women had a higher 

prevalence of frailty than white men and women, respectively (54). To reduce racial disparities 

in health and further the understanding of the biology and pathophysiology of frailty, a deeper 

characterization of frailty is needed. One way to provide a deeper characterization is by 

identifying metabolites associated with the full spectrum of healthy aging from vigor to frailty. 

Using metabolites to identify differences in the body during a frail state may reveal new insights 

into altered biological processes that adapt to maintain homeostasis in the presence of evolving 

frailty. 

A pilot study measured metabolites in a subset of randomly selected black men from the 

Health, Aging, and Body Composition (Health ABC) study (113). Such a well-characterized 

cohort allows for identifying metabolites associated with vigor to frailty, while controlling for 

important confounders. Thus, the aims of this report were first, to identify novel metabolites and 

biologic pathways associated with vigor to frailty and second, to determine whether these 

associations are attenuated after adjusting for more commonly measured variables. 
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3.3 METHODS 

3.3.1 Health, Aging, and Body Composition (Health ABC) study 

The Health ABC study was a prospective cohort of 3075 black and white men and women 

recruited from Pittsburgh, Pennsylvania and Memphis, Tennessee during March 1997 to July 

1998. The study was originally designed to address the role of weight-related health conditions 

and body composition in the onset of disability (142). Eligible participants were ages 70-79 

during recruitment and self-reported no difficulty walking ¼ mile, climbing ten steps, or with 

basic activities of daily living. Ineligibility included history of active cancer treatment in the past 

three years or planning on moving from the study area within the next three years. The study was 

approved by each site’s institutional review board. Participants provided written informed 

consent. 

An ancillary pilot study measured 350 known and numerous unknown metabolites in a 

randomly selected subset of 319 black men from the second visit of the Health ABC study to 

provide insight on the influence of lean mass and adiposity in human metabolism (123). The 

study was limited in size, so it was restricted to black men since there is a higher prevalence of 

obesity and obesity-related health conditions, but more muscle mass among black versus white 

Americans, and to limit heterogeneity due to differences in body composition by sex. The 

randomly selected black men were healthier than the whole sample of Health ABC black men 

since the second visit was used and attrition had occurred during the first year (123). 
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3.3.2 Metabolites 

Metabolites were measured in plasma extracts collected at visit 2 in the morning after an 

overnight fast of at least eight hours (mean=14 hours). We used plasma samples that had never 

been thawed and were stored at -80ºC from the time of collection (1998-1999) until 2016 when 

metabolites were measured. Using liquid chromatography-mass spectrometry (LC-MS), 

metabolite profiling platforms measured: 1) amines and polar metabolites (e.g., amino acids, 

dipeptides), 2) central metabolites and polar metabolites (e.g., sugars, organic acids, purine and 

pyrimidines), and 3) lipids (e.g., triglycerides). Metabolite values used for this report are LC-MS 

peak areas, analyzed using TraceFinder (ThermoFisher Scientific, US) and Progenesis QI 

(Nonlinear Dynamics, UK). Peaks were confirmed manually using known standards. Metabolites 

below the limit of quantitation (signal/noise<10) were classified as unquantifiable (120). The 

median intraclass correlation coefficient of known metabolites from 16 blinded duplicates was 

0.92 (interquartile range: 0.81-0.97), indicating high reliability (123). 

Positive ion mode detection used a 4000 QTRAP triple quadrupole mass spectrometer 

(SCIEX) coupled to an 1100 Series pump (Agilent) and an HTS PAL autosampler (Leap 

Technologies) with a 4.5kV ion spray voltage and at 450ºC source temperature. Using protein 

precipitation, plasma samples (10µL) were prepared with the addition of nine volumes of 

74.9:24.9:0.2 (v/v/v) acetonitrile/methanol/formic acid containing stable isotope-labeled internal 

standards (0.2ng/μL valine-d8, Isotec; and 0.2ng/μL phenylalanine-d8; Cambridge Isotope 

Laboratories). Samples were centrifuged for 10 minutes (9,000g, 4°C). Resulting supernatants 

were injected onto a 150×2mm Atlantis HILIC column that was eluted at a 250µL/min flow rate. 

Initial conditions were set at 5% mobile phase A (10mM ammonium formate and 0.1% formic 
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acid in water) for one minute and then altered linearly over ten minutes to 40% mobile phase B 

(acetonitrile with 0.1% formic acid) (120, 121). 

Negative ion mode detection used a 5500 QTRAP triple quadrupole mass spectrometer 

(SCIEX) coupled to an ACQUITY UPLC (Waters) with a modified hydrophilic interaction 

chromatography method and −4.5kV ion spray voltage and at 500ºC source temperature. Using 

protein precipitation, plasma samples (30µL) were prepared with the addition of 120μL of 80% 

methanol containing 0.05 ng/μL inosine-15N4, 0.05 ng/μL thymine-d4, and 0.1ng/μL 

glycocholate-d4 as internal standards. Samples were centrifuged (10 min, 9,000×g, 4°C) and 

10µL of supernatants were injected onto a 150×2.0mm Luna NH2 column (Phenomenex) that 

underwent elution at a 400µL/min flow rate. Initial conditions were set at 10% mobile phase A 

(20 mM ammonium acetate and 20 mM ammonium hydroxide; Sigma-Aldrich) in water (VMR) 

along with 90% mobile phase B (10 mM ammonium hydroxide in 75:25 v/v 

acetonitrile/methanol (VWR)) and then altered linearly over ten minutes to 100% mobile phase 

A (120, 121). 

Lipids were detected using an Exactive Plus orbitrap mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA) coupled to a Nexera X2 UHPLC (Shimadzu, Marlborough, MA) with 

electrospray ionization and positive ion mode Q1 scans. The ion spray voltage was 5.0 kV with 

400ºC source temperature. Plasma samples (10 µL) were extracted using 190μL of isopropanol 

containing 0.25 ng/μL 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphocholine (Avanti Polar 

Lipids). Samples were centrifuged and 10 µL of supernatants were injected onto a 150×3.0 mm 

Prosphere HP C4 column (Grace). The column was eluted with initial conditions set at 80% 

mobile phase A (95:5:0.1 vol/vol/vol 10mM ammonium acetate/methanol/acetic acid), then after 

two minutes, changed linearly over one minute to 80% mobile phase B (99.9:0.1 vol/vol 



92 

methanol/acetic acid), followed by a linear change over 12 minutes to 100% mobile phase B. 

Conditions remained at 100% mobile phase B for 10 minutes (120, 121). 

3.3.3 Scale of Aging Vigor in Epidemiology (SAVE) 

The Scale of Aging Vigor in Epidemiology (SAVE) was developed by modifying the Fried 

frailty phenotype (54) to allow for measuring both the healthy (i.e., vigorous), in addition to the 

unhealthy (i.e. frail), extremes (59, 60). The SAVE was calculated using information from five 

items assessed at year 2: weight change, physical activity, grip strength, gait speed, and energy 

level (11). Weight change was the difference between measurements at year one and two. Self-

reported time spent doing major chores, walking, climbing stairs, working, volunteering, and 

caregiving in the past week was converted to kilocalories/kilogram/week and summed to get an 

estimate of weekly physical activity. Grip strength was the maximum of two trials on the right 

hand using a hand-held dynamometer. Gait speed was the average over 20 meters. Participants 

self-reported usual energy level in the past month on a scale of 0 (no energy) to 10 (most energy 

ever had). Scores on each of the five items were ranked into tertiles using information from all 

Health ABC men (Table 13). Individuals who scored in the best, middle, or worst tertile for a 

component received a score of 0, 1, or 2, respectively. SAVE scores were the sum of tertile 

scores for the five items, ranging from 0 (most vigorous) to 10 (most frail), and examined 

continuously and as tertiles. SAVE tertiles were determined using information from all Health 

ABC participants and ranged from 0-3 (most vigorous), 4-5, and 6-10 (most frail). 
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3.3.3.1 Health ABC black men with information on metabolites and the SAVE 

Among the 319 black men with metabolites measured, 287 (90%) had complete 

information to calculate the SAVE. In this report, we focused on the known metabolites. Among 

the 350 known metabolites, 301 were measured in all 287 participants and 33 were measured in 

at least 80% of participants, of which missing values were assumed to be due to the true values 

being below the detectable limit and were replaced with half the minimum recorded value for 

that respective metabolite (123). Sixteen (5%) metabolites were excluded from the current 

analysis because they were measured in less than 80% of participants (124). Thus, we examined 

334 metabolites among 287 black men. 

3.3.4 Potential confounders of metabolites and SAVE scores 

Participants self-reported age, race, highest level of education, and smoking habits at baseline. 

Height and weight were recorded at year 2. Baseline history or presence of cardiovascular 

disease, hypertension, diabetes, cancer, peripheral arterial disease, osteoarthritis, depression, 

pulmonary disease, and kidney disease were based on self-report of a physician diagnosis. 

Participants were also classified as having cardiovascular disease, hypertension, diabetes, cancer, 

depression, or pulmonary disease if taking medication for those diseases and peripheral arterial 

disease if self-reported intermittent claudication, leg pain, or leg artery bypass or angioplasty. 

Participants brought all prescription medications used in the last two weeks to the visit at year 2 

for a medication inventory. 

Daily calories, protein, and fat intake at year 2 were determined using a 108-item 

interviewer-administered food frequency questionnaire estimating usual nutrient intake over the 

past year and was developed for the Health ABC study by Block Dietary Data Systems 
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(Berkeley, CA) using food lists obtained from a 24-hour recall among participants who were 

ages 65 or older, black or white race, and living in the Northeastern or Southern U.S. from the 

Third National Health and Nutrition Examination Survey (143). Protein per kilogram of body 

weight and percent of kilocalories from protein and from fat were also examined.  

Body composition at year 2 was estimated using total body dual-energy x-ray 

absorptiometry (Hologic QDR 4500A; Hologic, Bedford, MA). Appendicular lean mass was the 

bone-free lean mass in the arms and legs standardized to height2. Percent fat was examined 

relative to total body mass. A core laboratory at Wake Forest University measured interleukin-6 

and C-reactive protein in serum and EDTA plasma, respectively, collected at year 2 in the 

morning after an overnight fast. Cystatin C and creatinine were measured in serum at year 1 by 

the Laboratory for Clinical Biochemistry Research at the University of Vermont. Glomerular 

filtration rate was estimated as 133*(cystatin C/0.8)-y*0.996age, where y=0.499 when cystatin C 

≤0.8 mg/L and y=1.328 when cystatin C >0.8 mg/L (144). 

3.3.5 Statistical analysis 

Mean (standard deviation) or frequency (percent) described differences in potential confounders 

by SAVE tertiles and were tested using Analysis of Variance or Kruskal-Wallis for continuous 

measures and chi-square tests or Fisher’s exact test for categorical measures. Metabolites were 

log-transformed and standardized. Partial Pearson correlation coefficients identified metabolites 

associated with SAVE scores, while minimally adjusting for age and study site. A Benjamini-

Hochberg correction was used for multiple comparisons (99). Since this was a hypothesis-

generating report, we used a liberal 30% false discovery rate (124). We examined the extent to 

which more commonly measured variables explained the age- and study site-adjusted 
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associations between metabolites and SAVE scores using percent attenuation calculated as 

100*(r1-r2)/r1, where r1 is the age- and study site-adjusted correlation coefficients between SAVE 

scores and metabolites and r2 is the correlation coefficients after further adjusting for a more 

commonly measured variable. 

Metabolites associated with SAVE scores at a p<0.05 were examined in a pathway 

analysis using MetaboAnalyst (129), which compared the set of associated metabolites against 

established sets of metabolites involved in metabolic pathways. A Fisher’s exact test determined 

whether the number of SAVE-associated metabolites involved in a pathway was more than 

expected by chance. Impact scores indicated how centrally located SAVE-associated metabolites 

were in particular pathways, i.e., the amount of impact on the pathway if the values for those 

metabolites were altered. Impact scores range from zero to one, indicating matched metabolites 

account for none to all of the pathway importance, respectively (129). 

3.4 RESULTS 

3.4.1 Characteristics by SAVE score tertiles among Health ABC black men 

Participants were 75 years old, on average. There was no difference in daily calories, protein 

intake, or body composition by SAVE tertiles (Table 14). Median levels of markers of 

inflammation and kidney disease were slightly higher among frailer participants. The frailest 

individuals had the highest prevalence of cardiovascular disease, diabetes, and pulmonary 

disease, as well as were taking a larger number of medications, specifically medications for 

hypertension, diabetes, and pulmonary diseases. 
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3.4.2 Metabolites correlated with SAVE scores 

Among 334 metabolites, 37 correlated with SAVE scores (p<0.05) adjusting for age and site 

(Table 15), most of the associations did not appear to be driven by a single item used to calculate 

SAVE scores (Table 16). However, only 2 of the 37 metabolites correlated with weight change 

(p<0.05), whereas more than a third correlated with gait speed and physical activity (Table 16). 

Among the 37 metabolites, 14 remained significant after multiple comparisons adjustment (false 

discovery rate<0.30). Eight metabolites (glucoronate, N-carbamoyl-beta-alanine, isocitrate, 

creatinine, C4-OH carnitine, cystathionine, hydroxyphenylacetate, and putrescine) were 

positively correlated with SAVE scores, indicating lower metabolite values associated with vigor 

and higher values associated with frailty. The remaining six metabolites (tryptophan, methionine, 

tyrosine, C14:0 SM, 1-methylnicotinamide, asparagine) were negatively correlated with SAVE 

scores, indicating higher metabolite values associated with vigor and lower values associated 

with frailty.  

3.4.3 Attenuating associations between metabolites and SAVE scores 

Figure 7 illustrates the percent attenuations of the correlations between SAVE scores and the 37 

top metabolites after further adjusting for more commonly measured variables, in addition to age 

and study site, where each data point on the plot is a different metabolite organized by its 

taxonomy super class according to the Human Metabolome Database (84). Adjusting for current 

smoking status or body mass index minimally attenuated the associations between SAVE scores 

and metabolites (Figure 7A-B; attenuations≤0.5%; Table 17). Adjusting for percent fat and 

appendicular lean mass, daily protein intake, or inflammation markers attenuated more of the 
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associations between SAVE scores and metabolites (Figure 7C-E), though attenuations were still 

<12% (Table 17). Among the more commonly measured variables considered, adjusting for 

creatinine, prevalent diseases, or medications resulted in the most attenuation between SAVE 

scores and metabolites (Figure 7F-H; attenuations <84%, <59%, and <69%, respectively). 

Adjusting for multiple more commonly measured variables (Figure 7I) attenuated the 

associations between SAVE scores and 11 metabolites by at least 40%: salicylurate, 5-

aminolevulinic acid, hydroxyphenylacetate, creatinine, symmetric dimethylarginine, 

trimethylamine-N-oxide, 2-hydroxyglutarate, glucoronate, homogentisate, C36:4 PE, and 

isocitrate. Conversely, adjusting for multiple more commonly measured variables did not explain 

the association between SAVE scores and 13 metabolites (attenuations<10%). Specifically, the 

associations between SAVE scores and leucine, 1-methylnicotinamide, C54:10 triacylglycerol, 

C34:3 PE plasmalogen, glycodeoxycholate, and C22:0 sphingomyelin were actually 

strengthened by ≥10%, after further adjusting for multiple more commonly measured variables 

(Table 17).  

3.4.4 Pathway analysis 

Among the 37 metabolites correlated with SAVE scores at a p<0.05, 35 were in the Human 

Metabolome Database Version 4.0 (84) and were included in the pathway analysis. Table 18 

includes the top ten pathways among 36 that involved at least one SAVE-associated metabolite. 

The most significant pathways were nitrogen metabolism, aminoacyl-transfer RNA biosynthesis, 

and the citric acid cycle. The match status for nitrogen metabolism was 5/39, meaning 39 known 

metabolites are involved in nitrogen metabolism and five of them were associated with SAVE 

scores (tyrosine, tryptophan, asparagine, histidine, and cystathionine). The match status was 6/75 
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for aminoacyl-transfer RNA biosynthesis (tyrosine, tryptophan, asparagine, histidine, 

methionine, and leucine) and 3/20 for the citric acid cycle (isocitrate, malate, and fumarate). 

However, low impact scores were observed for these pathways (Table 18). 

3.5 DISCUSSION 

We identified unique patterns of plasma metabolites differing across the range of health from 

vigorous to frail older black men. Thirty-seven metabolites correlated with SAVE scores, of 

which 14 remained significant after multiple comparisons adjustment. Nitrogen metabolism, 

aminoacyl-transfer RNA biosynthesis, and the citric acid cycle were top metabolic pathways 

associated with SAVE scores, suggesting differences in functioning of these pathways may be 

present during a frail versus vigorous state. Since many other factors influence metabolism, it 

was notable that several metabolites were associated with SAVE scores independent of more 

commonly measured variables, such as body composition, smoking status, daily protein intake, 

inflammation markers, several chronic conditions, and medication use. 

Several amino acids were associated with SAVE scores, where lower values were 

correlated with frailer scores. Lower values of tryptophan, methionine, tyrosine, and leucine 

were also correlated with less appendicular lean mass among the Health ABC black men (123) 

and lower values of leucine and other branched-chain amino acid-related metabolites were 

correlated with lower thigh muscle cross-sectional area and fat-free mass index among 

functionally-limited older adults (145). To date, few studies examined metabolites associated 

with frailty. A targeted set of metabolites in muscle biopsies similarly found tryptophan, 

methionine, tyrosine, asparagine, and histidine lower among frail older adults (103). In addition, 
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blood-based tryptophan and tyrosine measured among a Spanish older adult cohort were lower 

among frail participants (146). Conversely, higher levels of amino acids have been associated 

with obesity, diabetes, and cardiovascular disease (114-116). Notably, frailer Health ABC black 

men were more likely to have diabetes, though there was no difference in body mass index by 

level of frailty. It may be that the difference in direction of associations between amino acids and 

adverse health outcomes may be explained by a U-shaped relationship, where higher values of 

certain amino acids are associated with metabolic disorders, such as obesity, diabetes, and 

cardiovascular disease, but lower values are associated with wasting disorders that are further 

along in pathogenesis, such as frailty. 

 It was previously reported that seven metabolites (glucoronate, tryptophan, asparagine, 

C24:1 Ceramide (d18:1), 2-hydroxyglutarate, salicylurate, and C54:10 TAG) correlated with gait 

speed among the Health ABC black men (98), of which all were similarly associated with SAVE 

scores, as expected since gait speed is an item of the SAVE. In addition, eight metabolites (N-

carbamoyl-beta-alanine, creatinine, C4-OH carnitine, 5-aminolevulinic acid, inosine, symmetric 

dimethylarginine, C36:4 PE, and C18:2 CE) that predicted incident disability (98) and nine 

metabolites (glucoronate, N-carbamoyl-beta-alanine, isocitrate, creatinine, 

hydroxyphenylacetate, 5-aminolevulinic acid, symmetric dimethylarginine, urate, and 

trimethylamine-N-oxide) that were associated with extremes of a healthy aging index (107) 

among the Health ABC black men were also associated with SAVE scores. N-carbamoyl-beta-

alanine, creatinine, inosine, and symmetric dimethylarginine are indicators of kidney functioning 

(98) and may be important markers of healthy aging.  

SAVE-associated metabolites involved in nitrogen metabolism and aminoacyl-transfer 

RNA biosynthesis were mostly amino acids. In a healthy individual, plasma levels of amino acid 
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are tightly regulated within a fixed range (147, 148). The rate of appearance of amino acids in 

plasma is a result of dietary protein intake and release of amino acids by muscles and other 

tissues, whereas, the rate of disappearance from plasma is due to amino acid oxidation, 

metabolism, and incorporation into proteins, and, to a lesser degree, loss through excretion. 

Hypoaminoacidemia may occur from insufficient protein intake/storage and/or stress (147). 

Protein intake in Health ABC did not vary by level of frailty and appeared to be sufficient with 

an overall average of 0.97 g/kg/day. However, it is possible that this level of intake is insufficient 

in the frailer men to overcome aging-related anabolic resistance, where the body’s ability to 

utilize amino acids to synthesize muscle proteins appears to be altered (149-151). Additionally or 

alternatively, the frailer participants may have lower levels of tryptophan, methionine, tyrosine, 

asparagine, and histidine due to an increased stress response causing conversion of plasma amino 

acids to glucose (147). There may be specific mechanisms that adapt to aging-related disease 

states, but by doing so have adverse effects that potentially lead to altered energy pathways and 

then eventually frailty. 

A limitation of this report was that measurements for metabolites were unit-less LC-MS 

peak areas. If we instead had concentration of metabolites, we could determine whether the 

metabolites that were either lower or higher among the frailer participants were more extreme 

than what is considered within a healthy range. In addition, we measured frailty severity using 

the SAVE, which only describes how frail an individual is relative to the rest of their cohort, 

whereas that same individual may appear much less frail if they were instead compared to the 

United States population of older adults. Other limitations include studying only black men, 

limiting the generalizability and comparability of results; using self-reported dietary information 

from the Food Frequency Questionnaire, which may not be accurate to what the participants 
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were actually consuming, as well as it only provides information on usual diet; and the potential 

for false positives given the liberal false discovery rate. Strengths were the well-characterized 

cohort of ambulatory older adults, allowing us to examine whether several potential factors 

attenuated the associations between metabolites and SAVE scores, as well as information on a 

large number of metabolites from blood plasma carefully collected and stored after an overnight 

fast. 

Several metabolites, particularly amino acids, were associated with vigor to frailty scores 

among older black men from the Health ABC study, which may help us better understand the 

mechanisms underlying progression of frailty. Multisystem decline with frailty makes it 

impossible to pinpoint any one organ system responsible; instead the aggregate of multisystem 

dysfunction may actually be responsible for these metabolic characteristics. The generalizability 

of these findings needs to be confirmed. Once confirmed, more research will be needed to 

identify biologic mechanisms causing these differences in metabolites that are associated with 

frailty, either through animal models that can directly alter specific pathways or through 

interventions in humans that attempt to enhance a pathway, for example, by providing a certain 

supplement coupled with physical activity.  
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3.6 TABLES 

Table 13. Tertile cut-offs of the five items used to calculate SAVE scores for Health ABC men 
 

SAVE items: Best tertile=0 Mid tertile=1 Worst tertile=2 
   Weight change (kg) > 0.68 > -1.36 to ≤ 0.68 ≤ -1.36 
   Physical activity* (kcal/kg/week) ≥ 43 > 11 to < 43 ≤ 11 
   20 meter walk time (sec)** ≤ 16 > 16 to ≤ 18 > 18 
   Grip strength (kg):    
      BMI <24 > 38 >32 to ≤ 38 ≤ 32 
      BMI ≥24  > 41 >35 to ≤ 41 ≤ 35 
   Usual energy level 8 to 10 6 to 7 0 to 5 

*Total physical activity is only based off of kcal/kg/week doing major chores, walking and climbing stairs, working, 
volunteering and caregiving (did not collect data for kcal/kg/week of exercise/recreation). 
**Tertiles for walk time did not differ for men by mean height 
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Table 14. Characteristics of 287 Health ABC black men by tertiles of SAVE scores 
 

Mean (standard deviation)  
or Frequency (percent) 

SAVE tertiles Overall p-value, 
Pairwise comparisons Vigorous (T1) n=73 Average (T2) n=105 Frail (T3) n=109 

SAVE scores 2.4 (0.7) 
Range: 0-3 

4.5 (0.5) 
Range: 4-5 

7.0 (1.1) 
Range: 6-10 ----- 

Age 74 (3) 75 (3) 75 (3) .006, T1<T2,T3 
Pittsburgh site 34 (47%) 56 (53%) 63 (58%) .33 
More than high school education 28 (38%) 24 (23%) 28 (26%) .06 
Current smoker at baseline 9 (12%) 22 (21%) 21 (19%) .31 
Body mass index (kg/m2) 27 (4) 27 (4) 27 (5) .82 
Dietary intake:     
  Total calories (Kcal/day) 2329 (1111) 2199 (1022) 2095 (1038) .35 
  Protein intake (g/day) 81 (44) 75 (37) 73 (39) .41 
  Percent of daily kilocalories from protein 14 (3) 14 (3) 14 (3) .82 
  Daily protein intake per body weight (g/kg) 1.0 (0.6) 0.97 (0.5) 0.94 (0.5) .71 
  Fat intake (g/day)  92 (51) 87 (49) 81 (48) .30 
  Percent of daily kilocalories from fat 35 (6) 35 (8) 34 (8) .57 
Body composition:     
  Appendicular lean mass (kg/m2) 8.4 (1) 8.3 (1) 8.3 (1) .68 
  Percent fat 28 (5) 28 (5) 28 (6) .92 
Inflammation markers:     

  Interleukin-6 (pg/mL) 
4.2 (5.9) 

Median=2.5 
IQR: 1.4, 4.1 

3.2 (2.2) 
Median=2.4 
IQR: 1.6, 3.8 

4.2 (3.4) 
Median=3.0 
IQR: 1.8, 5.4 

.05 

  C-reactive protein (ug/mL) 
5.4 (8.9) 

Median=2.8 
IQR: 1.4, 6.2 

5.3 (9.7) 
Median=2.1 
IQR: 1.1, 6.2 

8.4 (16) 
Median=3.9 
IQR: 1.6, 8.8 

.05 

Markers of kidney disease at baseline:     

  Creatinine (mg/dL) 
1.2 (0.2) 

Median=1.2 
IQR: 1.0, 1.3 

1.2 (0.3) 
Median=1.2 
IQR: 1.0, 1.3 

1.3 (0.4) 
Median=1.2 
IQR: 1.1, 1.5 

.04 

  Cystatin C (mg/L) at baseline 
1.0 (0.2) 

Median=0.96 
IQR: 0.87, 1.1 

1.0 (0.3) 
Median=1.0 

IQR: 0.87, 1.1 

1.1 (0.3) 
Median=1.1 

IQR: 0.94, 1.2 
.05 

  Estimated glomerular filtration rate 77 (17) 75 (19) 70 (19) .03, T1>T3 
Prevalent disease at baseline:     
   Cardiovascular disease 11 (15%) 36 (34%) 39 (36%) .006, T1<T2,T3 
   Hypertension 34 (47%) 65 (62%) 67 (61%) .08 
   Diabetes 8 (11%) 18 (17%) 37 (34%) .0004, T1,T2<T3 
   Cancer 10 (14%) 11 (10%) 11 (10%) .72 
   Peripheral artery disease 2 (3%) 7 (7%) 9 (8%) .32 
   Osteoarthritis 2 (3%) 9 (9%) 11 (10%) .17 
   Depression 4 (5%) 5 (5%) 8 (7%) .71 
   Pulmonary disease 7 (10%) 8 (8%) 21 (19%) .02, T2<T3 
   Kidney disease 1 (1%) 2 (2%) 0 .36 
Medication use:     
  Total number of prescription medications 2.2 (2) 3.0 (3) 4.0 (4) .0003, T1,T2<T3 
  Antihypertensive medications 35 (48%) 64 (61%) 74 (68%) .03, T1<T3 
  Antilipemic medications 14 (19%) 11 (10%) 17 (16%) .25 
  Medications for diabetes: 5 (7%) 17 (16%) 36 (33%) <.0001, T1,T2<T3 
    Insulin 0 2 (2%) 10 (9%) .004, T1,T2<T3 
    Oral hypoglycemic 5 (7%) 15 (14%) 28 (26%) .003, T1,T2<T3 
  Medications for prostate disease 10 (14%) 14 (13%) 19 (17%) .83, P=0.66 
  Medications for pulmonary diseases 5 (7%) 2 (2%) 13 (12%) .02, T2<T3 
  Spasmolytics (theophylline and others) 0 1 (1%) 5 (5%) .09 
  Anti-inflammatory 24 (33%) 43 (41%) 52 (49%) .09 

IQR=interquartile range 
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Table 15. Correlation of 37 metabolites with SAVE scores (p<0.05) among 287 Health ABC black men adjusted for age and study site 
 

Log-transformed and standardized 
Metabolites 

HMDB 
ID number Taxonomy sub class 

Continuous SAVE scores 
Partial  

Pearson 
Correlation 

p-value 
False 

discovery 
rate 

Glucuronate 00127 Carbohydrates and carbohydrate conjugates 0.21 0.0003 0.08 
Tryptophan 00929 Indolyl carboxylic acids and derivatives -0.21 0.0005 0.08 
Methionine 00696 Amino acids, peptides, and analogues  -0.19 0.001 0.15 
N-carbamoyl-beta-alanine 00026 Ureas  0.17 0.004 0.22 
Tyrosine 00158 Amino acids, peptides, and analogues -0.17 0.004 0.22 
Isocitrate 00193 Tricarboxylic acids and derivatives  0.17 0.004 0.22 
Creatinine 00562 Amino acids, peptides, and analogues  0.16 0.008 0.27 
C4-OH carnitine 13127 Beta hydroxy acids and derivatives  0.16 0.009 0.27 
C14:0 SM 12097 Phosphosphingolipids -0.15 0.009 0.27 
Cystathionine 00099 Amino acids, peptides, and analogues  0.15 0.009 0.27 
Hydroxyphenylacetate 00020 1-hydroxy-2-unsubstituted benzenoids   0.15 0.01 0.27 
Putrescine 01414 Amines   0.15 0.01 0.27 
1-methylnicotinamide 00699 Pyridinecarboxylic acids and derivatives  -0.15 0.01 0.27 
Asparagine 00168 Amino acids, peptides, and analogues -0.15 0.01 0.27 
Leucine 00687 Amino acids, peptides, and analogues -0.14 0.02 0.35 
5-aminolevulinic acid 01149 Amino acids, peptides, and analogues  0.14 0.02 0.36 
Inosine 00195 Not available  0.14 0.02 0.39 
Histidine 00177 Amino acids, peptides, and analogues -0.13 0.03 0.39 
C34:3 PE plasmalogen 11343 Glycerophosphoethanolamines -0.13 0.03 0.39 
Symmetric dimethylarginine (SDMA) 03334 Amino acids, peptides, and analogues  0.13 0.03 0.39 
C24:1 Ceramide (d18:1) 04953 Ceramides   0.13 0.03 0.39 
C36:4 PE 08937 Glycerophosphoethanolamines   0.13 0.03 0.39 
Urate 00289 Purines and purine derivatives   0.13 0.03 0.39 
C18:2 CE 00610 Steroid esters  -0.13 0.03 0.39 
Trimethylamine-N-oxide 00925 Aminoxides  0.13 0.03 0.39 
2-hydroxyglutarate 00694 Fatty acids and conjugates   0.13 0.03 0.39 
C24:0 SM 11697 Phosphosphingolipids -0.13 0.03 0.39 
Fumarate 00134 Dicarboxylic acids and derivatives   0.13 0.03 0.39 
C22:0 SM 12103 Phosphosphingolipids -0.13 0.03 0.39 
C20:5 LPC 10397 Glycerophosphocholines  -0.12 0.04 0.39 
Salicylurate 00840 Benzoic acids and derivatives   0.12 0.04 0.41 
Homogentisate 00130 Phenylacetic acids   0.12 0.04 0.41 
Glycodeoxycholate 00631 Bile acids, alcohols and derivatives -0.12 0.04 0.42 
Malate 00156 Beta hydroxy acids and derivatives   0.12 0.04 0.42 
5-hydroxytryptophan 00472 Tryptamines and derivatives  -0.12 0.04 0.42 
C54:10 TAG ---- Triradylcglycerols -0.12 0.046 0.43 
C44:13 PE plasmalogen ---- Glycerophosphoethanolamines -0.12 0.049 0.44 

HMDB= Human Metabolome Database (84) 
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Table 16. Correlations of components of the SAVE and 37 top metabolites among N=287 Health ABC black men, adjusting for age and study site 
 

Log-transformed and 
standardized metabolites: SAVE scores Individual components of SAVE scores (coded by tertiles: 0=best, 1=mid, 2=worst; see Table S2) 

Weight change Physical activity Gait speed Grip strength Energy level 
Glucuronate 0.21 (p=0.0003) -0.04 (p=0.48) 0.14 (p=0.01) 0.19 (p=0.001) 0.24 (p<0.0001) -0.001 (p=0.98) 
Tryptophan -0.21 (p=0.0005) 0.01 (p=0.80) -0.19 (p=0.001) -0.13 (p=0.02) -0.14 (p=0.02) -0.06 (p=0.34) 
Methionine -0.19 (p=0.001) -0.03 (p=0.60) -0.08 (p=0.16) -0.11 (p=0.07) -0.06 (p=0.32) -0.18 (p=0.003) 
N-carbamoyl-beta-alanine 0.17 (p=0.004) -0.0009 (p=0.99) 0.11 (p=0.07) 0.12 (p=0.05) 0.10 (p=0.08) 0.10 (p=0.11) 
Tyrosine -0.17 (p=0.004) -0.05 (p=0.40) -0.13 (p=0.02) -0.06 (p=0.35) 0.01 (p=0.89) -0.18 (p=0.003) 
Isocitrate 0.17 (p=0.004) -0.05 (p=0.36) 0.14 (p=0.02) 0.14 (p=0.02) 0.13 (p=0.03) 0.07 (p=0.26) 
Creatinine 0.16 (p=0.008) 0.06 (p=0.28) 0.13 (p=0.03) 0.10 (p=0.10) 0.07 (p=0.23) 0.02 (p=0.76) 
C4-OH carnitine 0.16 (p=0.009) 0.03 (p=0.60) 0.17 (p=0.004) 0.10 (p=0.08) -0.01 (p=0.84) 0.08 (p=0.18) 
C14:0 SM -0.15 (p=0.009) -0.15 (p=0.01) 0.01 (p=0.91) -0.13 (p=0.03) -0.07 (p=0.25) -0.04 (p=0.49) 
Cystathionine 0.15 (p=0.009) 0.09 (p=0.12) 0.08 (p=0.17) 0.07 (p=0.26) 0.16 (p=0.007) -0.02 (p=0.76) 
Hydroxyphenylacetate 0.15 (p=0.01) 0.04 (p=0.51) 0.11 (p=0.06) 0.12 (p=0.04) 0.08 (p=0.19) 0.02 (p=0.73) 
Putrescine 0.15 (p=0.01) 0.01 (p=0.86) 0.12 (p=0.04) 0.09 (p=0.14) 0.10 (p=0.09) 0.04 (p=0.46) 
1-methylnicotinamide -0.15 (p=0.01) -0.05 (p=0.43) -0.05 (p=0.36) -0.11 (p=0.07) -0.02 (p=0.71) -0.13 (p=0.02) 
Asparagine -0.15 (p=0.01) 0.04 (p=0.49) -0.05 (p=0.44) -0.17 (p=0.003) -0.07 (p=0.21) -0.12 (p=0.05) 
Leucine -0.14 (p=0.02) 0.02 (p=0.78) -0.07 (p=0.22) -0.11 (p=0.06) -0.09 (p=0.15) -0.10 (p=0.09) 
5-aminolevulinic acid 0.14 (p=0.02) -0.01 (p=0.86) 0.10 (p=0.09) 0.11 (p=0.08) 0.17 (p=0.004) -0.01 (p=0.81) 
Inosine 0.14 (p=0.02) -0.07 (p=0.27) 0.13 (p=0.03) 0.14 (p=0.02) 0.11 (p=0.06) 0.03 (p=0.61) 
Histidine -0.13 (p=0.03) 0.08 (p=0.17) -0.05 (p=0.40) -0.12 (p=0.05) -0.09 (p=0.14) -0.16 (p=0.008) 
C34:3 PE plasmalogen -0.13 (p=0.03) -0.07 (p=0.23) -0.09 (p=0.13) -0.11 (p=0.05) -0.04 (p=0.49) 0 (p=0.97) 
Symmetric dimethylarginine (SDMA) 0.13 (p=0.03) 0.07 (p=0.27) 0.09 (p=0.15) 0.09 (p=0.14) 0.12 (p=0.04) -0.04 (p=0.54) 
C24:1 Ceramide (d18:1) 0.13 (p=0.03) 0.05 (p=0.36) 0.17 (p=0.005) 0.05 (p=0.39) -0.02 (p=0.74) 0.06 (p=0.34) 
C36:4 PE 0.13 (p=0.03) -0.01 (p=0.87) 0.12 (p=0.04) 0.09 (p=0.15) 0.06 (p=0.28) 0.06 (p=0.35) 
Urate 0.13 (p=0.03) 0.04 (p=0.53) 0.15 (p=0.009) 0.10 (p=0.08) 0.01 (p=0.92) 0.01 (p=0.88) 
C18:2 CE -0.13 (p=0.03) -0.04 (p=0.51) -0.12 (p=0.05) -0.06 (p=0.32) -0.11 (p=0.05) 0.01 (p=0.86) 
Trimethylamine-N-oxide 0.13 (p=0.03) 0.01 (p=0.87) 0.14 (p=0.01) 0.06 (p=0.31) 0.10 (p=0.10) -0.0003 (p=0.996) 
2-hydroxyglutarate 0.13 (p=0.03) -0.05 (p=0.36) 0.04 (p=0.50) 0.19 (p=0.001) 0.13 (p=0.03) 0.01 (p=0.80) 
C24:0 SM -0.13 (p=0.03) -0.13 (p=0.02) -0.06 (p=0.32) -0.04 (p=0.56) -0.07 (p=0.22) -0.01 (p=0.91) 
Fumarate 0.13 (p=0.03) -0.10 (p=0.08) 0.10 (p=0.09) 0.12 (p=0.04) 0.04 (p=0.53) 0.15 (p=0.01) 
C22:0 SM -0.13 (p=0.03) -0.11 (p=0.06) -0.04 (p=0.49) -0.05 (p=0.37) -0.11 (p=0.06) 0.01 (p=0.92) 
C20:5 LPC -0.12 (p=0.04) 0.03 (p=0.57) -0.12 (p=0.04) -0.05 (p=0.38) -0.10 (p=0.10) -0.07 (p=0.26) 
Salicylurate 0.12 (p=0.04) 0.01 (p=0.89) 0.03 (p=0.56) 0.17 (p=0.005) 0.01 (p=0.82) 0.08 (p=0.18) 
Homogentisate 0.12 (p=0.04) -0.02 (p=0.74) 0.08 (p=0.17) 0.13 (p=0.03) 0.11 (p=0.05) -0.004 (p=0.94) 
Glycodeoxycholate/Glycochenodeoxycholate -0.12 (p=0.04) -0.02 (p=0.70) -0.07 (p=0.22) -0.09 (p=0.12) -0.04 (p=0.48) -0.07 (p=0.27) 
Malate 0.12 (p=0.04) -0.05 (p=0.43) 0.12 (p=0.05) 0.10 (p=0.10) 0.02 (p=0.71) 0.10 (p=0.10) 
5-hydroxytryptophan -0.12 (p=0.04) 0.04 (p=0.49) -0.16 (p=0.006) -0.11 (p=0.07) -0.04 (p=0.47) -0.02 (p=0.79) 
C54:10 TAG -0.12 (p=0.046) -0.03 (p=0.58) -0.11 (p=0.07) -0.13 (p=0.03) 0.01 (p=0.93) -0.02 (p=0.73) 
C44:13 PE plasmalogen -0.12 (p=0.049) -0.06 (p=0.32) -0.12 (p=0.05) -0.03 (p=0.63) -0.01 (p=0.90) -0.07 (p=0.26) 

Note: blue shaded boxes indicate associations with p≤0.10 
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Table 17. Attenuation of correlation coefficients of SAVE scores and top metabolites after further adjustments in addition to age and study site 
 

Log-transformed and 
standardized Metabolites 

Age- and 
site-

adjusted 
correlation 
with SAVE 

Percent attenuationa of the association between metabolite and SAVE scores after further adjusting for more commonly measured variables, in addition to 
age and study site 

A) Adjusting 
for smoking 

status 

B) Adjusting 
for body 

mass index 

C) Adjusting 
for % fat and 
appendicular 

lean mass 

D) Adjusting 
for daily 

protein intake 

E) Adjusting 
for IL-6 
and CRP 

F) Adjusting 
for creatinine 

G) Adjusting 
for prevalent 

diseasesb 

H) Adjusting 
for 

medicationsc 

I) Adjusting for 
multiple more 

commonly 
measured variablesd 

Organic acids and 
derivatives:           

   Methionine -0.1889 0.17% -2.1% 5.6% 4.5% 4.1% -0.61% 11% 13% 16% 
   Tyrosine -0.1716 0.18% -6.9% -8.2% 3.6% -1.2% 9.0% -4.5% -14% -5.1% 
   Isocitrate 0.1703 0.06% 0.21% 6.1% 7.4% -3.4% 30% 8.5% 11% 40% 
   Creatinine 0.1564 -2.1% 0.29% -6.8% -1.4% 5.0% 74% 16% 30% 89% 
   Cystathionine 0.1544 0.26% 0.26% 0.36% 5.2% 1.4% 25% -15% 1.8% 32% 
   Asparagine -0.1495 0.30% 0.25% 5.9% 0.57% 4.5% -2.5% 11% 21% 13% 
   Leucine -0.1433 0.33% -8.6% 0.95% 0.71% -1.6% 3.7% -29% -41% -34% 
   5-aminolevulinic acid 0.1409 -1.9% 0.36% 7.7% 0.82% 4.9% 69% 20% 32% 113% 
   Histidine -0.1325 0.27% -1.1% 7.5% 4.4% 7.5% -3.9% 12% -2.3% 4.3% 
   Symmetric 
dimethylarginine 0.1312 -1.6% -1.5% 3.9% -1.3% 3.1% 83% 5.2% 18% 86% 

   Fumarate 0.1268 0.33% -0.84% 2.9% 5.3% -8.7% 12% -3.1% -11% -6.6% 
  C 4-OH carnitine 0.1550 0.13% 0.02% 2.1% 2.8% -5.1% 15% 23% 21% 35% 
   Malate 0.1194 0.36% -2.4% 2.3% 3.2% -7.0% 14% 0.09% -35% -8.8% 
   N-carbamoyl-beta-alanine 0.1722 0.05% -0.16% 2.7% 2.4% 1.5% 26% 20% 26% 39% 
Lipids and lipid-like 
molecules:           

   C34:3 PE plasmalogen -0.1318 -0.05% -0.69% -4.0% -2.4% 4.2% -6.3% 0.86% -35% -15% 
   C36:4 PE 0.1301 0.22% -0.26% -10% -1.9% -2.4% 17% 24% 16% 43% 
   C44:13 PE plasmalogen -0.1168 0.50% 0.39% 4.8% -2.2% 8.6% -4.4% 16% -5.3% 23% 
   C20:5 LPC -0.1249 0.23% -0.19% 5.8% -2.1% 11% 0.69% 23% 13% 40% 
   C14:0 SM -0.1546 0.23% -3.3% -7.3% -2.9% -1.5% -0.32% -0.73% -0.62% -6.2% 
   C24:0 SM -0.1269 0.42% -1.4% -4.9% 0.03% 4.2% -7.3% 2.4% 0.86% -2.5% 
   C22:0 SM -0.1254 0.44% -2.5% -8.9% -2.7% -0.15% -6.4% 2.4% 0.37% -10% 
   C24:1 Ceramide (d18:1) 0.1306 0.009% -0.74% 0.07% -0.29% 1.2% 4.1% 1.3% -5.4% -6.9% 
   C18:2 CE -0.1296 -0.14% -0.91% -0.33% -2.2% 4.8% -4.6% 17% 6.5% 22% 
   Glycodeoxycholate -0.1209 -0.49% 0.50% -4.9% -6.9% -2.3% 0.72% 7.3% 8.2% -13% 
   2-hydroxyglutarate 0.1270 -0.59% -0.03% 11% 0.15% -0.19% 47% 15% 4.2% 49% 
   C54:10 TAG -0.1183 0.47% -3.2% -5.1% -0.60% 2.3% -5.7% -14% -13% -23% 
Organoheterocyclic 
compounds:           

   Tryptophan -0.2052 0.14% -2.3% 5.1% -2.2% 0.66% 16% 1.8% 6.8% 15% 
   1-methylnicotinamide -0.1501 0.29% 0.18% -3.8% -5.3% 4.7% -12% -3.4% -13% -25% 
   Urate 0.1299 0.04% -0.75% -2.8% 3.2% -1.1% 32% -1.4% 10% 21% 
   5-hydroxytryptophan -0.1193 -2.0% -0.27% 11% 2.2% -0.59% 41% 0.52% 21% 31% 
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Log-transformed and 
standardized Metabolites 

Age- and 
site-

adjusted 
correlation 
with SAVE 

Percent attenuationa of the association between metabolite and SAVE scores after further adjusting for more commonly measured variables, in addition to 
age and study site 

A) Adjusting 
for smoking 

status 

B) Adjusting 
for body 

mass index 

C) Adjusting 
for % fat and 
appendicular 

lean mass 

D) Adjusting 
for daily 

protein intake 

E) Adjusting 
for IL-6 
and CRP 

F) Adjusting 
for creatinine 

G) Adjusting 
for prevalent 

diseasesb 

H) Adjusting 
for 

medicationsc 

I) Adjusting for 
multiple more 

commonly 
measured variablesd 

 

          
Benzenoids:           
   Hydroxyphenylacetate 0.1526 0.29% 0.32% 7.1% -4.5% 3.0% 41% 32% 45% 103% 
   Salicylurate 0.1230 0.25% 0.10% 11% 4.9% 4.3% 36% 59% 68% 118% 
   Homogentisate 0.1222 -0.04% 0.32% -8.6% 9.2% 3.2% 22% 32% 24% 45% 
Organic nitrogen compounds:           
   Putrescine 0.1506 -4.7% 0.03% -1.7% 7.9% -0.10% 19% -2.6% 6.5% 16% 
   Trimethylamine-N-oxide 0.1278 0.28% 0.35% 9.5% -11% 0.03% 47% 24% 49% 80% 
Nucleosides/nucleotides/ 
analogues:           

   Inosine 0.1368 0.24% 0.03% 1.8% 7.2% 3.6% 11% 3.3% -11% 16% 
Organic oxygen compounds:           
   Glucuronate 0.2115 -0.08% 0.01% 5.2% 3.9% 0.61% 25% 15% 30% 49% 

Shading: blue indicates negative attenuation (stronger association after adjustment) and red indicates positive attenuation (weaker association after adjustment) 
aPercent attenuation=100*(r1-r2)/r1; where r1=correlation coefficient of SAVE scores and a metabolite adjusting for age and study site, r2=same correlation coefficient after further adjustments 
bPrevalent diseases: cardiovascular diseases, diabetes, and pulmonary diseases 
cMedications: total number of prescription medications, anti-hypertensives, and medications for diabetes 
dMore commonly measured variables: current smoking status, body mass index, appendicular lean mass, percent fat, daily protein intake, interleukin-6, C-reactive protein, creatinine, cardiovascular disease, 
diabetes, pulmonary diseases, and total number of prescription medications 
 

Table 17 Continued 
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Table 18. Top results from pathway analysis of metabolites* correlated with SAVE scores (p<0.05) among 287 Health ABC black men 
 

Pathway name Match status Fisher’s exact 
test p-value 

False discovery 
rate Impact score 

Nitrogen metabolism 5/39 0.00009 0.007 0.008 
Aminoacyl-tRNA biosynthesis 6/75 0.0002 0.01 0 
Citric acid cycle (TCA cycle) 3/20 0.002 0.05 0.12 
Tyrosine metabolism 4/76 0.01 0.27 0.15 
Phenylalanine metabolism 3/45 0.02 0.28 0 
Glycine, serine and threonine metabolism 3/48 0.02 0.28 0 
Alanine, aspartate and glutamate metabolism 2/24 0.03 0.37 0.05 
Sphingolipid metabolism 2/25 0.04 0.37 0.30 
Phenylalanine, tyrosine and tryptophan biosynthesis 2/27 0.04 0.37 0.007 
beta-Alanine metabolism 2/28 0.05 0.37 0.04 

*35 metabolites with Human Metabolome Database identification number: glucuronate, tryptophan, methionine, N-
carbamoyl-beta-alanine, tyrosine, isocitrate, creatinine, C4-OH carnitine, C14:0 SM, cystathionine, 
hydroxyphenylacetate, putrescine, 1-methylnicotinamide, asparagine, leucine, 5-aminolevulinic acid, inosine, 
histidine, C34:3 PE plasmalogen, SMDA, C24:1 ceramide (d18:1), C36:4 PE, urate, C18:2 CE, trimethylamine-N-
oxide, 2-hydroxyglutarate, C24:0 SM, fumarate, C22:0 SM, C20:5 LPC, salicylurate, homogentisate, 
glycodeoxycholate/glycochenodeoxycholate, malate, 5-hydroxytryptophan 
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3.7 FIGURES 

 
Each point is a single metabolite, organized by its taxonomy super class, according to the Human Metabolome Database: Navy blue asterisks 
are organic acids and derivatives; green squares are lipids and lipid-like molecules; pink triangles are organoheterocyclic compounds; red 
circles are benzenoids; orange plus sign is organic nitrogen compounds; light blue circles are nucleosides, nucleotides, and analogues; and 
purple upside-down triangles are organic oxygen compounds. 
Percent attenuation=100*(r1-r2)/r1, where r1 is the age- and site-adjusted correlation coefficient between SAVE scores and a metabolite and r2 is 
the correlation coefficient after further adjusting for more commonly measured variable(s). 
*Prevalent diseases: cardiovascular diseases, diabetes, and pulmonary diseases 
**Medications: total number of prescription medications, anti-hypertensives, and medications for diabetes 
***More commonly measured variables: current smoking status, body mass index, appendicular lean mass, percent fat, daily protein intake, 
interleukin-6, C-reactive protein, creatinine, cardiovascular disease, diabetes, pulmonary diseases, and total number of prescription medications 

 
Figure 7. Percent attenuations of the correlation between metabolites and 37 SAVE scores after further adjusting for more commonly 

measured variables in addition to age and study site, organized by metabolite taxonomy super class 
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4.0  EXPLAINING THE FRAILTY-ASSOCIATED MORTALITY RISK WITH A 

NOVEL METABOLITE COMPOSITE SCORE 

4.1 ABSTRACT 

Frailty is more common with advanced age and is a risk factor for mortality. In the previous 

section, I identified 37 metabolites, mostly organic acids and derivatives and lipids and lipid-like 

molecules that potentially better characterize the body during a frail versus vigorous state. Here, 

I sought to develop a novel metabolite score composed of the 37 previously identified 

metabolites to determine whether it could explain the heightened mortality risk associated with 

frailty. Metabolites were measured in overnight-fasting plasma using liquid chromatography-

mass spectrometry among 287 community-dwelling black men ages 70-81. Our metabolite score 

was a tertile-ranked sum of the 37 previously identified metabolites. Frailty to vigor was 

measured using the scale of aging vigor in epidemiology (SAVE). One standard deviation frailer 

SAVE score was associated with 30% higher mortality (p=0.0002), adjusting for age and study 

site. Additionally adjusting for our metabolite composite score explained 56% of the higher 

mortality risk associated with frailer SAVE scores and 100% of its statistical significance. The 

majority of the attenuation was driven by organic acids and derivatives (mostly amino acids) and 

lipids and lipid-like molecules (mostly glycerophospholipids and sphingolipids). In the same 

model, one standard deviation higher metabolite composite score was associated with 46% 
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higher mortality (p<0.0001). The metabolite composite score also significantly predicted 

mortality risk among an independent validation cohort; one standard deviation higher metabolite 

composite score was associated with 30% higher mortality among 120 older adults from the CHS 

All Stars study (p=0.045), while adjusting for age and gender. Our set of plasma metabolites may 

provide a deeper characterization of the body at the time of frailty assessment that explains the 

increased vulnerability to death. Future work is needed to assess temporality between 

metabolites and frailty and further investigate the underlying mechanisms leading to mortality 

through frailty progression, which can then be intervened on. 

4.2 INTRODUCTION 

As discussed in Section 1.3, the prevalence of frailty is higher with older age (54). With a 

growing U.S. older adult population that is projected to more than double by year 2060 (1), we 

will see more individuals affected by frailty than ever before. In addition to its increased 

likelihood with advanced age, frailty is also a risk factor for multiple major health outcomes 

(54), including mortality, making it a major public health concern. To guide future research and 

inform effective interventions targeted at reducing frailty severity and its associated mortality 

risk, we need to better understand the altered molecular processes occurring during a frail state 

that contribute to its higher mortality risk. 

In Section 3.0, I examined the association between metabolites and vigor to frailty scores 

in a community-dwelling cohort of older black men, with the aim of better characterizing the 

body during a frail versus vigorous state and potentially furthering our understanding of the 

pathophysiology of frailty. We identified 37 metabolites associated with vigor to frailty scores. 
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The majority were lipids and lipid-like molecules (e.g., glycerophospholipids) and organic acids 

and derivatives (e.g., amino acids, peptides, and analogues; Table 19). These metabolites 

potentially indicate altered metabolic processes that occur as a consequence of frailty and/or 

altered metabolic processes that contribute to the progression of frailty severity, where in both 

cases the metabolites may contribute to mortality risk either directly or indirectly through frailty.  

In this current report, I sought to take this information a step further by examining 

whether select metabolites can characterize the higher mortality risk associated with frailty. To 

do so, I first developed a metabolite composite score using information on the 37 metabolites 

associated with vigor to frailty scores from Section 3.0. My specific aims were then to: 1) 

confirm that frailer black men in our study had a higher mortality risk than more vigorous 

participants, 2) determine the extent to which the metabolite composite score predicts mortality 

risk and explains the frailty-associated higher mortality risk, and 3) validate the metabolite 

composite score against all-cause mortality in an independent cohort of 120 community-dwelling 

older adults from the Cardiovascular Health Study (CHS) All Stars study. I hypothesized that the 

metabolite composite score would explain a greater proportion of the higher mortality risk 

associated with frailty than any single metabolite alone. 

4.3 METHODS 

4.3.1 Health, Aging, and Body Composition (Health ABC) study 

As described in Section 3.3.1, the Health ABC study was a prospective cohort of 3075 black and 

white men and women recruited from Pittsburgh, Pennsylvania and Memphis, Tennessee from 
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March 1997 to July 1998. The study was aimed to examine the role of weight-related health 

conditions and body composition in the onset of disability (142). Individuals were eligible if they 

were ages 70-79 during recruitment and self-reported no difficulty walking ¼ mile, climbing ten 

steps, or with basic activities of daily living. Exclusion criteria included a history of active 

cancer treatment in the past three years or planning on moving from the study area within the 

next three years. The institutional review boards from each site approved the study and all 

participants provided written informed consent.  

In 2016, an ancillary study measured 350 known and numerous unknown metabolites in a 

randomly selected subset of 319 black men from year 2 of the Health ABC study, with the goal 

of determining metabolites associated with  body composition (123). The ancillary study was 

limited in size, so it was restricted to black participants since there is a higher prevalence of 

obesity and obesity-related health conditions, but more muscle mass among black versus white 

Americans, and the study was restricted to men to limit heterogeneity in body composition 

differences by sex. 

4.3.2 CHS All Stars study as an independent validation cohort 

As described in Section 2.3.2, the CHS All Stars study was an ancillary study of 1862 men and 

women alive at year 18 (2005 to 2006) of the Cardiovascular Health Study (CHS) (118, 119). 

CHS was a prospective population-based cohort of 5888 older men and women recruited from 

Forsyth County, North Carolina; Sacramento County, California; Washington County, Maryland; 

and Allegheny County, Pennsylvania. Eligible participants were ≥65 years old during 

recruitment. Ineligibility included wheelchair bound, unable to participate in a clinic 

examination, undergoing active cancer treatment, or planning to move out of the study area 
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during the next three years. All CHS participants still alive and willing to participate were 

recruited for the CHS All Stars study. The study was designed to examine healthy aging and 

longevity. The CHS and the CHS All Stars study were both approved by the Human Research 

Protection Office at each participating university and all participants provided informed consent. 

4.3.3 Metabolites 

Metabolites in the Health ABC study were measured in plasma extracts collected at year 2 after 

an overnight fast of at least eight hours, average fasting time was 14 hours. Plasma samples had 

never been thawed and were stored at -80ºC from collection until metabolite measurement. 

Using liquid chromatography-mass spectrometry (LC-MS), metabolite profiling platforms 

measured: 1) amines and polar metabolites (e.g., amino acids, dipeptides), 2) central metabolites 

and polar metabolites (e.g., sugars, organic acids, purine and pyrimidines), and 3) lipids (e.g., 

triglycerides). The LC-MS peak areas were used as the metabolite values, which were analyzed 

using using TraceFinder (ThermoFisher Scientific, US) and Progenesis QI (Nonlinear Dynamics, 

UK). See Section 3.3.2 for more detail on the methods of measuring metabolites. 

In this report, we only focused on the following known metabolites associated with vigor 

to frailty scores in the subset of 319 older black men from the Health ABC study (see Section 

3.0; Table 15): glucoronate, tryptophan, methionine, N-carbamoyl-beta-alanine, tyrosine, 

isocitrate, creatinine, C4-OH carnitine, C14:0 SM, cystathionine, hydroxyphenylacetate, 

putrescine, 1-methylnicotinamide, asparagine, leucine, 5-aminolevulinic acid, inosine, histidine, 

C34:3 PE plasmalogen, symmetric dimethylarginine, C24:1 ceramide (d18:1), C36:4 PE, urate, 

C18:2 CE, trimethylamine-N-oxide, 2-hydroxyglutarate, C24:0 SM, fumarate, C22:0 SM, C20:5 

LPC, salicylurate, homogentisate, glycodeoxycholate, malate, 5-hydroxytryptophan, C54:10 
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TAG, and C44:13 PE plasmalogen. Four of these metabolites (5-hydroxytryptophan, 

cystathionine, C4-OH carnitine, C54:10 TAG) were not measured in all 287 participants, but 

were measured in more than 80% of the cohort, so missing values were assumed to be due to the 

true values being below the detectable limit and half the minimum recorded value for that 

respective metabolite was imputed to replace missing values (123). Metabolites were log-

transformed and standardized to a mean of zero and standard deviation of one.  

Metabolites were similarly measured among a subset of 120 participants from the CHS 

All Stars study by the same company as in the Health ABC study. Information on 32 of the 37 

metabolites examined in this report was available in the 120 CHS All Stars. The five metabolites 

that were not detected in the plasma samples of the CHS All Stars were: glucoronate, 

cystathionine, homogentisate, C54:10 TAG, and C44:13 PE plasmalogen. Two metabolites were 

not measured in all 120 participants. Inosine and glycodeoxycholate were measured in 113 

(94%) and 119 (99%) participants, respectively. We assumed the missing values for these two 

metabolites were due to the true values being below the detectable limit and were replaced with 

half the minimum recorded value for the respective metabolite. The 32 metabolites were log-

transformed and standardized using to the respective means and standard deviations among the 

120 CHS All Stars. 

4.3.4 Calculating a metabolite composite score 

We constructed the metabolite composite score similar to how the Physiologic Index of 

Comorbidity (48), the Healthy Aging Index (108), and the Scale of Aging Vigor in 

Epidemiology (59, 60) were constructed. We first ranked the top 37 SAVE-associated 

metabolites into tertiles (Table 20). Then we gave a score to the three tertiles for each metabolite. 
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Individuals who scored in the best, middle, or worst tertile for a metabolite received a score of 0, 

1, or 2, respectively. The “best” tertile for a metabolite was determined to be the tertile that was 

associated with more vigorous SAVE scores. Similarly, the “worst” tertile for a metabolite was 

the tertile that was associated with frailer SAVE scores (Table 20). Each participant’s metabolite 

composite score was then calculated as the sum of the tertile scores for the 37 metabolites. The 

metabolite composite score ranged from zero (best) to 74 (worst). If a participant had a score of 

zero then that meant their values for all 37 metabolites fell into the “best” tertile, or in other 

words fell into the tertile that was associated with more vigorous SAVE scores. Similarly, the 

maximum score of 74 indicated a participant had values for all 37 metabolites that fell into the 

“worst” tertile, or in other words fell into the tertile that was associated with frailer SAVE scores.  

For validation, the metabolite composite score was also calculated in 120 participants 

from the CHS All Stars study. The composite score was calculated in the same way as it was for 

the Health ABC black men, using the Health ABC-specific tertile cut offs and scoring for each 

metabolite (Table 20). The metabolite composite score was validated using a subset of 32 out of 

the 37 metabolites, since five of the metabolites were not measured in the CHS All Stars.  

4.3.4.1 Metabolite composite score by taxonomy super class 

To determine if results from our metabolite composite were based on a single subset of 

metabolites, we also calculated separate metabolite composite scores by their taxonomy super 

class according to the Human Metabolome Database (84). The taxonomy super classes of the 37 

metabolites are listed in Table 19 and Table 20. Five separate metabolite composite scores were 

calculated for the 14 organic acids and derivatives; 12 lipids and lipid-like molecules; 4 

organoheterocyclic compounds; 3 benzenoids; and the remaining five metabolites of taxonomy 

super classes: organic nitrogen compounds, organic oxygen compounds, and nucleosides, 
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nucleotides, and analogues. These five metabolite composite scores were calculated identically 

to how the total metabolite composite score was calculated, but with a subset of the 37 

metabolites. 

4.3.5 Scale of Aging Vigor in Epidemiology (SAVE) 

Weight change, physical activity, grip strength, gait speed, and energy level assessed at year 2 of 

the Health ABC study were used to calculate the SAVE (11). Weight change was the difference 

in weight from year 1 to year 2. An estimate of weekly physical activity was the sum of 

kilocalories/kilogram/week of self-reported time spent doing major chores, walking, climbing 

stairs, working, volunteering, and caregiving in the past week. Grip strength was assessed twice 

on the right hand using a hand-held dynamometer, of which the maximum was used for analysis. 

Gait speed was the average over 20 meters. Participants self-reported usual energy level in the 

past month, ranging from 0 (no energy) to 10 (most energy ever had). Scores on each of the five 

items of the SAVE were ranked into tertiles using information from all Health ABC men (Table 

13). Individuals who scored in the best, middle, or worst tertile for a component received a score 

of 0, 1, or 2, respectively. SAVE scores were the sum of tertile scores for the five items, ranging 

from 0 (most vigorous) to 10 (most frail). To illustrate the association between SAVE scores and 

mortality, we plotted the Kaplan-Meier all-cause mortality curve by SAVE tertiles. Tertiles were 

determined using information from all Health ABC participants and ranged from 0-3 (most 

vigorous), 4-5, and 6-10 (most frail). Among the 319 Health ABC black men with metabolites 

measured, 287 (90%) had complete information to calculate the SAVE. 
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4.3.5.1 Mortality 

Participants in the Health ABC study were contacted every six months after the baseline 

visit (March 1997 to July 1998), with a 17.4-year maximum follow-up. During that time, deaths 

were identified by obituaries and proxy interviews. At the time of analysis, those alive were 

censored at their last interview date. Median follow-up after year 2 was 10.3 years for the 287 

black men. Similar to all Health ABC black men, 76% (n=218) died during follow-up. 

Participants in the CHS All Stars study were contacted during follow-up by telephone 

interviews. Deaths were identified by obituaries and proxy interviews. Among the 120 CHS All 

Stars, 69 (58%) died during follow-up. At the time of analysis, those alive were censored at their 

last interview date. Median follow-up after the All Stars visit (year 18 of CHS) was 7.4 years 

among the 120 participants. 

4.3.6 Participant characteristics 

Health ABC participants self-reported their age, race, highest level of education, and smoking 

habits at baseline. Body mass index was calculated from height and weight recorded at year 2. 

History or presence of cardiovascular disease, hypertension, diabetes, cancer, peripheral arterial 

disease, osteoarthritis, depression, and pulmonary disease were based on a self-report of a 

physician diagnosis. Participants were also classified as having cardiovascular disease, 

hypertension, diabetes, cancer, depression, or pulmonary disease if taking medication for those 

diseases and peripheral arterial disease if self-reported intermittent claudication, leg pain, or leg 

artery bypass or angioplasty. Participants brought all prescription medications used in the last 

two weeks to the second visit (year 2) for a medication inventory. 
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4.3.7  Statistical analysis 

Mean and standard deviation or frequency and percent were used to characterize participants 

according to tertiles of SAVE scores. Differences were tested using Analysis of Variance or 

Kruskal-Wallis when normality could not be approximated for continuous measures and chi-

square tests or Fisher’s exact test for categorical measures. Pairwise comparisons were made 

when an overall difference was observed at a 0.05 significance level. Mortality rates per 100 

person-years were estimated according to SAVE tertiles and Kaplan-Meier survival curves were 

plotted for each tertile of SAVE scores and for each tertile of the metabolite composite score. 

The associations between log-transformed and standardized metabolites and SAVE scores were 

examined using partial Pearson correlation coefficients adjusting for age and study site. 

 The association between SAVE scores and mortality risk was estimated using Cox 

proportional hazards regression models adjusting for age and study site. We determined the 

extent to which additionally adjusting for top SAVE-associated metabolite(s) or the metabolite 

composite score attenuated the association between SAVE scores and mortality risk using 

percent attenuation. Percent attenuation was calculated as 100*(b1-b2)/b1, where b1 was the age-

and study site-adjusted beta coefficient of the association between SAVE scores and mortality 

risk from a Cox proportional hazards regression model and b2 was the same beta coefficient after 

further adjusting for either a single SAVE-associated metabolite, multiple SAVE-associated 

metabolites, or the metabolite composite score. As a sensitivity analysis, we re-ran mortality 

analyses using Aalen additive hazards models and found similar attenuations. 

The mortality predictive power for age, the SAVE, and the metabolite composite score 

was examined using area under the receiver operating characteristic curve (more commonly 

known as AUC). The AUC estimates the ability to discriminate between participants who died 
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during follow-up based on information included in a logistic regression model with an indicator 

for morality as the outcome. Pearson correlation coefficients were used to examine the 

associations between age, SAVE scores, and metabolite composite scores. 

4.4 RESULTS 

4.4.1 Cohort characteristics 

The 287 Health ABC black men were 75 (2.8) years old, on average, where those with the 

frailest SAVE scores were older (Table 21). SAVE scores were not associated with body mass 

index or baseline current smoking status. Frailer participants were more likely to self-report a 

physician diagnosis of cardiovascular disease, diabetes, and pulmonary disease and were taking 

more prescription medications, on average, than remaining participants. The 120 CHS All Stars 

used for validation were 85 (2.9) years old on average, 48 (40%) were men, and 12 (12%) were 

black.  

4.4.2 SAVE scores and mortality 

A Kaplan-Meier all-cause mortality curve by tertiles of SAVE scores (Figure 8) among the 287 

Health ABC black men illustrated that more vigorous participants had a greater survival 

probability than frailer participants. Participants in the most vigorous, average, and frailest 

tertiles of SAVE scores had a median survival (95% confidence interval) of 13.8 (11.3, 15.3), 

10.1 (7.4, 12.5), and 8.8 (7.1, 10.3) years, respectively, after year 2.  
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4.4.3 Metabolite composite score and mortality 

A Kaplan-Meier all-cause mortality curve was also illustrated by tertiles of the metabolite 

composite score among the Health ABC black men (Figure 9). Participants in the best, middle, 

and worst tertile of the metabolite composite score had a median survival (95% confidence 

interval) of 12.6 (10.7, 15.0), 11.5 (9.5, 13.3), and 6.8 (5.0, 8.6), years, respectively, after year 2. 

One standard deviation higher metabolite composite score was associated with a 52% higher 

mortality risk among the Health ABC black men, while adjusting for age and study site (95% 

confidence interval: 1.33, 1.75; p<0.0001).  

The metabolite composite score was also significantly associated with mortality risk 

among the 120 CHS All Stars; one standard deviation higher metabolite composite score was 

associated with a 30% higher mortality risk, adjusting for age and gender (95% confidence 

interval: 1.01, 1.67; p=0.045). Since the metabolite composite score was developed using 

information from only men in the Health ABC study, I examined the association between the 

metabolite composite score and mortality restricted to men from the CHS All Stars study and 

found a stronger association. One standard higher metabolite composite score was associated 

with a 52% higher mortality risk among the 48 men from the CHS All Stars study, while 

adjusting for age (95% confidence interval: 1.04, 2.22; p=0.03). Whereas, the metabolite 

composite score was not significantly associated with mortality risk among the 72 women from 

the CHS All Stars study (age-adjusted hazard ratio: 1.11; 95% confidence interval: 0.78, 1.58; 

p=0.57).   
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4.4.4 Attenuation of the higher mortality risk associated with frailer SAVE scores 

One standard deviation frailer SAVE score was associated with a 30% higher mortality risk 

among the 287 black men, adjusting for age and study site (p=0.0002). Table 22 includes 

information on how the association between frailer SAVE scores and mortality risk among the 

Health ABC black men was attenuated after further adjusting for metabolite(s), the metabolite 

composite score, or more commonly measured risk factors, in addition to age and study site. 

Adjusting for a single SAVE-associated metabolite resulted in small attenuations in the 

association between frailer SAVE scores and mortality risk (all attenuations <17%). Forcing all 

37 SAVE-associated metabolites into the same model attenuated the age and study site-adjusted 

association between frailer SAVE scores and mortality risk by only 33%. Applying a backwards 

stepwise selection approach (p<0.10 criterion) to the model containing all 37 SAVE-associated 

metabolites while forcing SAVE scores, age, and study site, left us with 10 metabolites (Model 3 

in Table 22). Though the model restricted to these ten metabolites only attenuated the age and 

study site-adjusted association between frailer SAVE scores and mortality by 26%. When 

adjusting for our metabolite composite score, in addition to age and study site, the association 

between SAVE scores and mortality risk was attenuated by 56% and the statistical significance 

of the association was completely explained away (Model 4 in Table 22).  

We also examined whether more commonly measured risk factors resulted in the same 

amount of attenuation in the association between the SAVE and mortality risk when compared to 

adjusting for our metabolite composite score among the Health ABC black men (Models 5 

versus 4; Table 22). When additionally adjusting for education, smoking status, body mass 

index, and chronic conditions, in addition to age and study site, the association between SAVE 

scores and mortality risk was only attenuated by 12%. Adjusting for our metabolite composite 
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score and the more commonly measured risk factors resulted in the greatest amount of 

attenuation (63%) in the age- and study site-adjusted association between frailer SAVE scores 

and mortality risk, of which the attenuation was mostly driven by the metabolite composite 

score. SAVE scores and more commonly measured risk factors minimally attenuated the 

association between the metabolite composite score and mortality risk. 

4.4.5 Mortality predictive power for age, the SAVE, and the metabolite composite score 

The mortality predictive power for age, the SAVE, and the metabolite composite score were 

compared in Table 23 using AUC among the Health ABC black men. Age alone had an AUC of 

0.65 (Model a), which was somewhat higher than the predictive power of the SAVE alone 

(AUC=0.61; Model b) and somewhat lower than the predictive power of the metabolite 

composite score alone (AUC=0.69; Model c). Interestingly, adding the metabolite composite 

score to a model that included age and study site resulted in a significantly higher predictive 

power for mortality (AUC=0.74, p=0.01; Model f versus d), whereas adding the SAVE to a 

model that included age and study site did not (AUC=0.69, p=0.25; Model e versus d). 

4.4.6 Stratifying the metabolite composite score by taxonomy super class 

I examined whether a subset of metabolites, based on taxonomy super class according to the 

Human Metabolome Database (84), within the total metabolite composite score appeared to be 

driving the attenuation between frailer SAVE scores and mortality risk among the Health ABC 

black men (Table 24). When adjusting for the metabolite composite score that was only based on 

the 14 organic acids and derivatives or that was only based on the 12 lipids and lipid-like 
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molecules, the age- and study site-adjusted association between frailer SAVE scores and 

mortality risk was attenuated by 35% and 24%, respectively. Other metabolite composite scores 

that were only based on a subset of metabolites according to other taxonomy super classes 

resulted in minimal attenuations between the SAVE scores and mortality risk. Our total 

metabolite composite score was highly correlated with both the subset metabolite composite 

score containing organic acids and derivatives (r=0.82) and the subset metabolite composite 

score containing lipids and lipid-like molecules (r=0.67; Table 25). When adjusting for both the 

subset metabolite composite score containing organic acids and derivatives and the subset 

metabolite composite score containing lipids and lipid-like molecules, the age- and study site-

adjusted association between frailer SAVE scores and mortality risk was attenuated by 50% 

(Model viii, Table 24), almost accounting for the full amount of attenuation that we saw when 

adjusting for the total metabolite composite score (Model 4, Table 22).  

4.4.7 Other methods of combining metabolites into a composite score 

Last, I developed several other metabolite composite scores (listed in Table 26) among the 287 

Health ABC black men, in addition to our final tertile-ranked sum score, to determine which 

method explained the association between SAVE scores and mortality risk the most. In Section 

3.4.4, I found nitrogen metabolism, aminoacyl-transfer RNA biosynthesis, and the citric acid 

cycle to be the top three most significant pathways associated with SAVE scores. There were 39 

known metabolites involved in the nitrogen metabolism pathway according to MetaboAnalyst 

(129), of which I had information on 11 in the Health ABC cohort. Using those 11 metabolites 

involved in nitrogen metabolism, I ran a factor analysis and got three significant factors and 

calculated factor scores. Next, I examined whether adjusting for the three factor scores consisting 
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of metabolites involved in the nitrogen metabolism pathway explained the association between 

frailer SAVE score and mortality risk, but found minimal attenuation (6%). I repeated this same 

process for the citric acid cycle and aminoacyl-transfer RNA biosynthesis pathways and 

similarly found that adjusting for their respective factor scores minimally attenuated the 

association between SAVE scores and mortality (attenuation ≤10%; Method #1 in Table 26). 

Next, I used the 37 top metabolites associated with SAVE scores (p<0.05) to calculate four 

different metabolite composite scores. The first composite score involved applying a factor 

analysis to the 37 SAVE-associated metabolites, the second involved the tertile-ranked sum of 

the 37 metabolites, the third involved summing the z-scores of the 37 metabolites, and the fourth 

involved applying LASSO regression to the 37 metabolites with SAVE scores as the outcome to 

get a predicted SAVE score. Adjusting for one of these 4 metabolite composite scores explained 

a similar amount of the association between frailer SAVE scores and mortality risk (attenuations 

ranging from 41% to 56%; Methods #2-5 in Table 26). Since all four methods resulted in similar 

amounts of attenuation, the final metabolite composite score used for this report was the tertile-

ranked sum since it was the simplest and a commonly used method of combining measurements 

among older adults (e.g., the physiologic index of comorbidity (48), the healthy aging index 

(108), and the Scale of Aging Vigor in Epidemiology (59, 60) are all calculated using a tertile-

ranked sum of their respective markers).   

4.5 DISCUSSION 

We developed a novel composite score using information from 37 metabolites associated with 

vigor to frailty scores among older black men. Frailer SAVE scores were significantly associated 
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with a higher risk of all-cause mortality, of which my metabolite composite score explained 56% 

of the association and all of its statistical significance. My metabolite composite score was also 

significantly associated with mortality independent of frailer SAVE scores, age, study site, and 

more commonly measured risk factors, such as education, smoking status, body mass index, and 

chronic conditions. The metabolite composite score also significantly predicted mortality among 

an independent validation cohort of community-dwelling older adults, where the association was 

stronger when restricted to men. This select set of plasma metabolites, especially those classified 

as organic acids and derivatives or lipids and lipid-like molecules, may provide a deeper 

characterization of the human body at the time of frailty, particularly among older men, that 

explains the increased vulnerability to major health outcomes, such as death. 

Among the 37 metabolites included in our composite score, 70% were classified as 

organic acids and derivatives (e.g., amino acids) or lipids and lipid-like molecules (e.g., 

glycerophospholipids). Composite scores based on the 26 metabolites classified into these two 

taxonomy super classes explained the higher mortality risk experienced by frailer black men in 

our cohort most prominently. Most of the lipids and lipid-like molecules (75%, m=9) included in 

our composite score were inversely associated with SAVE scores, indicating lower levels 

associated with being more frail. A U- or J-shaped association, or in some cases even an inverse 

association has been observed for lipids with respect to mortality among older adults (152). For 

example, levels of total cholesterol and LDL cholesterol in the lowest quartile (≤175 mg/dL and 

≤97.8 mg/dL, respectively) were significantly associated with a 70% and 90% higher mortality 

risk, respectively, when compared to levels in the highest quartile (>226 mg/dL and >144.0 

mg/dL, respectively) among community-dwelling older adults, even after adjusting for several 

potential confounders (152). Total cholesterol and LDL cholesterol appear to decline over time 
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among older adults (153-155). For example, total cholesterol and LDL-cholesterol decreased by 

an average of 13.7 mg/dL and 18.9 mg/dL, respectively, over 15 years in a prospective 

longitudinal cohort of community-dwelling Finnish older adults ages ≥70 who were not taking 

lipid-lowering medications (153). Predictors of a decline in lipids during follow-up in the 

Cardiovascular Health Study were male gender, older age, and a higher white blood cell count at 

baseline, as well as weight loss during follow-up (156). Acquired low levels of cholesterol have 

been suggested as a surrogate marker for frailty (152) and are thought to be a result of chronic 

conditions and immune dysregulation (157). Specifically, an increase in cytokines are thought to 

inhibit lipoprotein production in the liver and increase lipoprotein catabolism (157).  

In addition to observing an inverse association between most of the lipids and lipid-like 

molecules involved in our composite score and the SAVE, we also observed an inverse 

association between all amino acids involved in our composite score and the SAVE. Metabolic 

pathways involving the metabolism of lipids and amino acids are located in the mitochondrial 

matrix (158). Mitochondria are responsible for energy production and are especially vulnerable 

to oxidative stress (158). The lipid membrane of cells is vulnerable to oxidative stress, or 

reactive oxygen species, because of vulnerable double bonds between carbon atoms (158). In 

addition, one factor influencing the rate of disappearance of amino acids from plasma is amino 

acid oxidation. Is was previously shown that frail versus non-frail community-dwelling older 

adults had higher levels of oxidative stress estimated using plasma lipid peroxidation determined 

by malondialdehyde and protein oxidation (68).  Lipid replacement therapy has been suggested 

as a way to improve cellular function, specifically improve mitochondrial functioning by 

providing membrane phospholipids and antioxidants to a body that has accumulated age-related 

damage to phospholipids by oxidation (159).  



128 

As discussed in Section 3.5, hypoaminoacidemia may be a result of insufficient protein 

intake or storage, and/or stress (147). The recommended amount of dietary protein for adults is 

0.8 grams/kilogram/day. However, recently this recommendation has been thought to be too low 

for older adults, especially those with acute or chronic disease (149-151), to overcome aging-

related anabolic resistance, where the body’s ability to utilize amino acids to synthesize muscle 

proteins is not as efficient in older adults when compared to younger adults (150). Average 

(standard deviation) dietary protein intake was 0.97 (0.54) grams/kilogram/day among the Health 

ABC black men, with no difference by SAVE tertiles. Though, the Health ABC black men with 

frailer SAVE scores and lower plasma levels of certain amino acids may have needed more 

dietary protein to maintain nitrogen balance and homeostasis during their frailer state. More 

research is needed to identify processes that adapt to aging-related disease states, but by doing so 

have adverse effects that can lead to further dysregulation. 

I validated the metabolite composite score against all-cause mortality among 120 

participants from the CHS All Stars study. Those participants were about 12 years older, on 

average, when compared to the 287 Health ABC black men. As well as, 62 (52%) were white 

women, 46 (38%) were white men, 10 (8%) were black women, and 2 (2%) were black men, 

whereas the 287 Health ABC participants with metabolites measured were all black men. Even 

with these demographic differences between the two cohorts, we still found a significant 

association between the metabolite composite score and all-cause mortality among the 120 CHS 

All Stars, where the association was stronger when restricted to men. It may be that the 

molecular characterization of the body in the presence of frailty that causes an increased 

vulnerability to death differs between older men versus women. 
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Frailty is defined as a dynamic state at which physiologic reserves are so reduced that an 

older adult cannot tolerate additional challenges, placing them at an increased vulnerability to 

disease, disability, and death (160). Metabolomics has the potential to identify new biomarkers 

that can be used as therapeutic targets to improve physiologic reserve and thus, reverse the 

vulnerability that comes during a frail state. It is thought that dysregulated immune, endocrine, 

stress, and energy responses are involved in the pathophysiology of frailty (55). More research is 

needed to replicate the findings from this report, as well as determine the underlying mechanisms 

causing differences in metabolite profiles among those who are frail versus vigorous, which can 

then be used to inform secondary and tertiary intervention efforts to alleviate symptoms of 

frailty, improve quality of life, and reduce the frailty-associated mortality risk.  

Similar to Section 3.0, a limitation was that metabolite values were unit-less LC-MS peak 

areas, which do not provide information on whether values were outside a healthy range. 

Another limitation was that we do not have a measure of clinically manifested frailty. Instead, 

we only have a measure of vigor to frailty relative to the participants in the Health ABC cohort, 

which was a relatively healthy cohort of older adults recruited to be non-disabled at year 1. It 

may be that a participant with a frail SAVE score in Health ABC may not actually appear frail 

when compared to a more general older adult population. There were several strengths of this 

report, including the well-characterized cohort with detailed mortality information available on 

every participant, plasma samples that were carefully collected after an overnight fast of at least 

eight hours, information on known metabolites among a unique sample of older black men, and 

validating the metabolite composite score against all-cause mortality in an independent cohort of 

community-dwelling older adults. 
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In this study, I sought to better characterize the increased vulnerability to death that 

occurs during a frail state at a molecular level. I developed a composite score of 37 metabolites 

that appeared to be a meaningful marker of the higher mortality risk associated with frailty 

versus vigor among older black men from the Health ABC study, and validated this metabolite 

composite score among older adults from the CHS All Stars study. Future work will need to 

determine temporality between the metabolite composite score and vigor to frailty to better 

inform points of intervention that can have the largest and most sustainable impact among older 

adults. For example, if the metabolite composite score is causing frailty progression, then 

interventions targeted at improving those specific metabolite levels may successfully halt frailty 

progression, whereas if frailty severity is instead causing the metabolite composite score then an 

intervention targeted at improving those specific metabolite levels may only soften the negative 

impact that frailty has on an individual, rather than fixing the underlying issue.  
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4.6 TABLES 

 
Table 19. Taxonomy classification of 37 SAVE-associated metabolites among 287 Health ABC black men 

 
Taxonomy super class Taxonomy class Taxonomy sub class 

Organic acids and derivatives (m=14) 
Carboxylic acids and derivatives (m=11) 

Amino acids, peptides, and analogues (m=9) 
Tricarboxylic acids and derivatives (m=1) 
Dicarboxylic acids and derivatives (m=1) 

Hydroxy acids and derivatives (m=2) Beta hydroxy acids and derivatives (m=2) 
Organic carbonic acids and derivatives (m=1) Ureas (m=1) 

Lipids and lipid-like molecules (m=12) 

Glycerophospholipids (m=4) Glycerophosphoethanolamines (m=3) 
Glycerophosphocholines  (m=1) 

Sphingolipids (m=4) Phosphosphingolipids (m=3) 
Ceramides  (m=1) 

Steroids and steroid derivatives  (m=2) Bile acids, alcohols and derivatives (m=1) 
Steroid esters (m=1) 

Glycerolipids (m=1) Triradylcglycerols (m=1) 
Fatty Acyls (m=1) Fatty acids and conjugates (m=1) 

Organoheterocyclic compounds (m=4) 
Indoles and derivatives (m=2) Indolyl carboxylic acids and derivatives (m=1) 

Tryptamines and derivatives (m=1) 
Imidazopyrimidines (m=1) Purines and purine derivatives (m=1) 
Pyridines and derivatives (m=1) Pyridinecarboxylic acids and derivatives (m=1) 

Benzenoids (m=3) Benzene and substituted derivatives (m=2) Benzoic acids and derivatives (m=1) 
Phenylacetic acids (m=1) 

Phenols (m=1) 1-hydroxy-2-unsubstituted benzenoids (m=1) 

Organic nitrogen compounds (m=2) Organonitrogen compounds (m=2) Amines (m=1) 
Aminoxides (m=1) 

Organic oxygen compounds (m=1) Organooxygen compounds (m=1) Carbohydrates and carbohydrate conjugates (m=1) 
Nucleosides, nucleotides, and analogues (m=1) Purine nucleosides (m=1) Not available (m=1) 
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Table 20. Tertile cut-offs based on standardized values from 37 metabolites associated with SAVE scores in Health ABC 
black men, organized by taxonomy super class according to the Human Metabolome Database 

 
Taxonomy super class 
   Log-transformed and standardized metabolite 

SAVE Pearson 
correlation, adjusted 

for age and site 
Best tertile=0 Mid tertile=1 Worst tertile=2 

Organic acids and derivatives:     
   Methionine -0.19 ≥ 0.37 ≥ -0.37 to < 0.37 < -0.37 
   Tyrosine -0.17 ≥ 0.49 ≥ -0.43 to < 0.49 < -0.43 
   Isocitrate  0.17 < -0.43 ≥ -0.43 to < 0.37 ≥ 0.37 
   N-carbamoyl-beta-alanine  0.17 < -0.452 ≥ -0.452 to < 0.228 ≥ 0.228 
   Creatinine  0.16 < -0.439 ≥ -0.439 to < 0.30 ≥ 0.30 
   C4-OH carnitine  0.16 < -0.25 ≥ -0.25 to < 0.499 ≥ 0.499 
   Cystathionine  0.15 < -0.30 ≥ -0.30 to < 0.30 ≥ 0.30 
   Asparagine -0.15 ≥ 0.37 ≥ -0.45 to < 0.37 < -0.45 
   Leucine -0.14 ≥ 0.5339 ≥ -0.348 to < 0.5339 < -0.348 
   5-aminolevulinic acid  0.14 < -0.442 ≥ -0.442 to < 0.264 ≥ 0.264 
   Histidine -0.13 ≥ 0.40 ≥ -0.386 to < 0.40 < -0.386 
   Symmetric dimethylarginine (SDMA)  0.13 < -0.445 ≥ -0.445 to < 0.30 ≥ 0.30 
   Fumarate  0.13 < -0.39 ≥ -0.39 to < 0.24 ≥ 0.24 
   Malate  0.12 < -0.45 ≥ -0.45 to < 0.32 ≥ 0.32 
Lipids and lipid-like molecules:     
   C14:0 SM -0.15 ≥ 0.41 ≥ -0.42 to < 0.41 < -0.42 
   C34:3 PE plasmalogen -0.13 ≥ 0.42 ≥ -0.33 to < 0.42 < -0.33 
   C36:4 PE  0.13 < -0.341 ≥ -0.341 to < 0.518 ≥ 0.518 
   C24:0 SM -0.13 ≥ 0.40 ≥ -0.352 to < 0.40 < -0.352 
   C22:0 SM -0.13 ≥ 0.47 ≥ -0.366 to < 0.47 < -0.366 
   C24:1 Ceramide (d18:1)  0.13 < -0.354 ≥ -0.354 to < 0.53 ≥ 0.53 
   C18:2 CE -0.13 ≥ 0.48 ≥ -0.323 to < 0.48 < -0.323 
   2-hydroxyglutarate  0.13 < -0.43 ≥ -0.43 to < 0.20 ≥ 0.20 
   C44:13 PE plasmalogen -0.12 ≥ 0.47 ≥ -0.406 to < 0.47 < -0.406 
   C20:5 LPC -0.12 ≥ 0.457 ≥ -0.394 to < 0.457 < -0.394 
   Glycodeoxycholate -0.12 ≥ 0.375 ≥ -0.515 to < 0.375 < -0.515 
   C54:10 TAG -0.12 ≥ 0.305 ≥ -0.27 to < 0.305 < -0.27 
Organoheterocyclic compounds:     
   Tryptophan -0.21 ≥ 0.52 ≥ -0.29 to < 0.52 < -0.29 
   1-methylnicotinamide -0.15 ≥ 0.26 ≥ -0.395 to < 0.26 < -0.395 
   Urate  0.13 < -0.36 ≥ -0.36 to < 0.456 ≥ 0.456 
   5-hydroxytryptophan -0.12 ≥ 0.54 ≥ -0.18 to < 0.54 < -0.18 
Benzenoids:     
   Hydroxyphenylacetate  0.15 < -0.51 ≥ -0.51 to < 0.37 ≥ 0.37 
   Salicylurate  0.12 < -0.57 ≥ -0.57 to < 0.25 ≥ 0.25 
   Homogentisate  0.12 < -0.45 ≥ -0.45 to < 0.388 ≥ 0.388 
Organic nitrogen compounds:      
   Putrescine  0.15 < -0.39 ≥ -0.39 to < 0.39 ≥ 0.39 
   Trimethylamine-N-oxide  0.13 < -0.475 ≥ -0.475 to < 0.224 ≥ 0.224 
Organic oxygen compounds:     
   Glucuronate 0.21 < -0.461 ≥ -0.461 to < 0.10 ≥ 0.10 
Nucleosides, nucleotides, and analogues:     
   Inosine  0.14 < -0.24 ≥ -0.24 to < 0.32 ≥ 0.32 
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Table 21. Characteristics of 287 Health ABC black men by tertiles of SAVE scores 
 

Mean (standard deviation)  
or Frequency (percent) 

SAVE tertiles Overall p-value, 
Pairwise comparisons Vigorous (T1) 

n=73 
Average (T2) 

n=105 
Frail (T3) 

n=109 

SAVE scores 2.4 (0.7) 
Range: 0-3 

4.5 (0.5) 
Range: 4-5 

7.0 (1.1) 
Range: 6-10 ----- 

Age 74 (3) 75 (3) 75 (3) .006, T1<T2,T3 
Pittsburgh site 34 (47%) 56 (53%) 63 (58%) .33 
More than high school education 28 (38%) 24 (23%) 28 (26%) .06 
Current smoker at baseline 9 (12%) 22 (21%) 21 (19%) .31 
Body mass index (kg/m2) 27 (4) 27 (4) 27 (5) .82 
Prevalent disease at baseline:     
   Cardiovascular disease 11 (15%) 36 (34%) 39 (36%) .006, T1<T2,T3 
   Hypertension 34 (47%) 65 (62%) 67 (61%) .08 
   Diabetes 8 (11%) 18 (17%) 37 (34%) .0004, T1,T2<T3 
   Cancer 10 (14%) 11 (10%) 11 (10%) .72 
   Peripheral artery disease 2 (3%) 7 (7%) 9 (8%) .32 
   Osteoarthritis 2 (3%) 9 (9%) 11 (10%) .17 
   Depression 4 (5%) 5 (5%) 8 (7%) .71 
   Pulmonary disease 7 (10%) 8 (8%) 21 (19%) .02, T2<T3 
Total number of prescription medications 2.2 (2) 3.0 (3) 4.0 (4) .0003, T1,T2<T3 
All-cause mortality:     
   Number (%) of deaths  46 (63%) 82 (78%) 90 (83%) .008 
   Mortality rate per 100 person-years 5.3 (4.0, 7.0) 8.5 (6.8, 10.5) 9.5 (7.7, 11.7) ------ 
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Table 22. Attenuation of mortality hazard ratio per standard deviation higher SAVE score and one standard 
deviation older age after further adjusting for SAVE-associated metabolites among N=287 black men 

 
Model Covariates* Mortality hazard ratio (95% CI), p-value Beta coefficient (s.e.) Percent attenuation** 

Model 0 
SAVE 1.30 (1.14, 1.50), p=0.0002 0.2654 (0.07) 

Reference Age 1.25 (1.08, 1.44), p=0.002 0.2199 (0.07) 
Pittsburgh site 0.69 (0.53, 0.91), p=0.008 ------ 

Model 1a 

SAVE 1.25 (1.08, 1.44), p=0.002 0.2230 (0.07) 16% 
Age 1.24 (1.07, 1.42), p=0.004 0.2108 (0.07) 4% 
Pittsburgh site 0.71 (0.54, 0.93), p=0.01 ------ ------ Glucuronate 1.18 (1.05, 1.34), p=0.007 

Model 1b 

SAVE 1.27 (1.10, 1.46), p=0.001 0.2383 (0.07) 10% 
Age 1.24 (1.08, 1.43), p=0.003 0.2166 (0.07) 2% 
Pittsburgh site 0.72 (0.54, 0.94), p=0.02 ------ ------ Tryptophan 0.89 (0.78, 1.02), p=0.08 

Model 1c 

SAVE 1.28 (1.11, 1.47), p=0.0007 0.2445 (0.07) 8% 
Age 1.25 (1.09, 1.44), p=0.002 0.2248 (0.07) -2% 
Pittsburgh site 0.68 (0.52, 0.90), p=0.006 ------ ------ Methionine 0.91 (0.80, 1.04), p=0.17 

Model 1d 

SAVE 1.27 (1.10, 1.46), p=0.0008 0.2395 (0.07) 10% 
Age 1.24 (1.08, 1.43), p=0.003 0.2144 (0.07) 3% 
Pittsburgh site 0.71 (0.54, 0.93), p=0.01 ------ ------ N-carbamoyl-beta-alanine 1.19 (1.04, 1.37), p=0.01 

Model 1e: 

SAVE 1.32 (1.15, 1.53), p=0.0001 0.2806 (0.07) -6% 
Age 1.25 (1.09, 1.44), p=0.002 0.2230 (0.07) -1% 
Pittsburgh site 0.69 (0.52, 0.91), p=0.007 ------ ------ Tyrosine 1.07 (0.94, 1.23), p=0.30 

Model 1f: 

SAVE 1.25 (1.08, 1.43), p=0.002 0.2203 (0.07) 17% 
Age 1.25 (1.08, 1.44), p=0.002 0.2225 (0.07) -1% 
Pittsburgh site 0.72 (0.55, 0.95), p=0.02 ------ ------ Isocitrate 1.43 (1.24, 1.66), p<0.0001 

Model 1g: 

SAVE 1.3 (1.12, 1.49), p=0.0004 0.2586 (0.07) 3% 
Age 1.24 (1.08, 1.43), p=0.002 0.2185 (0.07) 1% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.009 ------ ------ Creatinine 1.04 (0.89, 1.20), p=0.65 

Model 1h: 

SAVE 1.27 (1.11, 1.47), p=0.0007 0.2424 (0.07) 9% 
Age 1.25 (1.08, 1.44), p=0.002 0.2224 (0.07) -1% 
Pittsburgh site 0.68 (0.52, 0.90), p=0.006 ------ ------ C4-OH carnitine 1.20 (1.04, 1.39), p=0.02 

Model 1i: 

SAVE 1.29 (1.12, 1.48), p=0.0004 0.2535 (0.07) 4% 
Age 1.24 (1.07, 1.42), p=0.003 0.2119 (0.07) 4% 
Pittsburgh site 0.72 (0.55, 0.96), p=0.02 ------ ------ C14:0 SM 0.91 (0.79, 1.05), p=0.18 

Model 1j: 

SAVE 1.28 (1.12, 1.48), p=0.0005 0.2486 (0.07) 6% 
Age 1.23 (1.07, 1.41), p=0.004 0.2048 (0.07) 7% 
Pittsburgh site 0.70 (0.54, 0.93), p=0.01 ------ ------ Cystathionine 1.19 (1.03, 1.38), p=0.02 

Model 1k 

SAVE 1.27 (1.10, 1.46), p=0.001 0.2367 (0.07) 11% 
Age 1.24 (1.08, 1.44), p=0.003 0.2186 (0.07) 1% 
Pittsburgh site 0.71 (0.54, 0.93), p=0.01 ------ ------ Hydroxyphenylacetate 1.16 (1.01, 1.34), p=0.04 

Model 1l 

SAVE 1.31 (1.14, 1.51), p=0.0001 0.2730 (0.07) -3% 
Age 1.25 (1.08, 1.44), p=0.002 0.2202 (0.07) 0% 
Pittsburgh site 0.71 (0.54, 0.93), p=0.01 ------ ------ Putrescine 0.94 (0.82, 1.08), p=0.37 

Model 1m 

SAVE 1.30 (1.13, 1.50), p=0.0002 0.2632 (0.07) 1% 
Age 1.25 (1.08, 1.44), p=0.002 0.2206 (0.07) 0% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.009 ------  1-methylnicotinamide 0.98 (0.85, 1.12), p=0.74 

Model 1n 

SAVE 1.29 (1.12, 1.49), p=0.0004 0.2559 (0.07) 4% 
Age 1.25 (1.09, 1.44), p=0.002 0.2254 (0.07) -2% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.008 ------ ------ Asparagine 0.95 (0.82, 1.09), p=0.43 
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Model Covariates* Mortality hazard ratio (95% CI), p-value Beta coefficient (s.e.) Percent attenuation** 
Model 1o SAVE 1.28 (1.12, 1.48), p=0.0005 0.2490 (0.07) 6% 

Age 1.23 (1.07, 1.42), p=0.004 0.2074 (0.07) 6% 
Pittsburgh site 0.70 (0.53, 0.91), p=0.009 ------ ------ Leucine 0.86 (0.75, 0.99), p=0.04 

Model 1p 

SAVE 1.27 (1.11, 1.46), p=0.0008 0.2402 (0.07) 9% 
Age 1.22 (1.06, 1.4), p=0.007 0.1968 (0.07) 11% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.009 ------ ------ 5-aminolevulinic acid 1.17 (1.03, 1.33), p=0.02 

Model 1q 

SAVE 1.30 (1.13, 1.49), p=0.0003 0.2599 (0.07) 2% 
Age 1.25 (1.08, 1.44), p=0.002 0.2209 (0.07) 0% 
Pittsburgh site 0.70 (0.53, 0.92), p=0.009 ------ ------ Inosine 1.04 (0.91, 1.19), p=0.53 

Model 1r 

SAVE 1.27 (1.11, 1.46), p=0.0007 0.2412 (0.07) 9% 
Age 1.26 (1.09, 1.45), p=0.002 0.2280 (0.07) -4% 
Pittsburgh site 0.65 (0.50, 0.86), p=0.003 ------ ------ Histidine 0.82 (0.72, 0.94), p=0.005 

Model 1s 

SAVE 1.30 (1.13, 1.49), p=0.0002 0.2617 (0.07) 1% 
Age 1.25 (1.08, 1.44), p=0.002 0.2201 (0.07) 0% 
Pittsburgh site 0.68 (0.51, 0.89), p=0.005 ------ ------ C34:3 PE plasmalogen 0.90 (0.78, 1.05), p=0.20 

Model 1t 

SAVE 1.28 (1.11, 1.47), p=0.0007 0.2431 (0.07) 8% 
Age 1.19 (1.03, 1.38), p=0.02 0.1776 (0.07) 19% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.008 ------ ------ Symmetric dimethylarginine 1.18 (1.02, 1.38), p=0.03 

Model 1u 

SAVE 1.30 (1.13, 1.49), p=0.0003 0.2598 (0.07) 2% 
Age 1.25 (1.08, 1.44), p=0.002 0.2202 (0.07) 0% 
Pittsburgh site 0.69 (0.52, 0.91), p=0.008 ------ ------ C24:1 Ceramide (d18:1) 1.05 (0.91, 1.20), p=0.53 

Model 1v 

SAVE 1.30 (1.13, 1.49), p=0.0003 0.2599 (0.07) 2% 
Age 1.24 (1.08, 1.43), p=0.003 0.2170 (0.07) 1% 
Pittsburgh site 0.69 (0.52, 0.90), p=0.007 ------ ------ C36:4 PE 1.06 (0.92, 1.24), p=0.42 

Model 1w 

SAVE 1.29 (1.12, 1.49), p=0.0004 0.2569 (0.07) 3% 
Age 1.25 (1.09, 1.45), p=0.002 0.2260 (0.07) -3% 
Pittsburgh site 0.70 (0.53, 0.92), p=0.009 ------ ------ Urate 1.05 (0.92, 1.19), p=0.48 

Model 1y 

SAVE 1.28 (1.11, 1.47), p=0.0006 0.2465 (0.07) 7% 
Age 1.25 (1.08, 1.44), p=0.002 0.2194 (0.07) 0% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.008 ------ ------ C18:2 CE 0.88 (0.77, 1.00), p=0.06 

Model 1x 

SAVE 1.29 (1.13, 1.49), p=0.0003 0.2578 (0.07) 3% 
Age 1.25 (1.08, 1.44), p=0.002 0.2199 (0.07) 0% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.009 ------ ------ Trimethylamine-N-oxide 1.10 (0.96, 1.25), p=0.17 

Model 1z 

SAVE 1.29 (1.12, 1.48), p=0.0005 0.2519 (0.07) 5% 
Age 1.25 (1.09, 1.44), p=0.002 0.2223 (0.07) -1% 
Pittsburgh site 0.68 (0.51, 0.89), p=0.005 ------ ------ 2-hydroxyglutarate 1.27 (1.11, 1.46), p=0.0007 

Model 1aa 

SAVE 1.29 (1.12, 1.48), p=0.0004 0.2547 (0.07) 4% 
Age 1.24 (1.07, 1.42), p=0.003 0.2115 (0.07) 4% 
Pittsburgh site 0.66 (0.50, 0.87), p=0.003 ------ ------ C24:0 SM 0.86 (0.75, 0.99), p=0.03 

Model 1ab 

SAVE 1.30 (1.13, 1.50), p=0.0002 0.2638 (0.07) 1% 
Age 1.23 (1.07, 1.41), p=0.005 0.2032 (0.07) 8% 
Pittsburgh site 0.65 (0.49, 0.86), p=0.003 ------ ------ Fumarate 1.13 (1.02, 1.27), p=0.03 

Model 1ac 

SAVE 1.28 (1.12, 1.48), p=0.0005 0.2491 (0.07) 6% 
Age 1.24 (1.07, 1.42), p=0.004 0.2111 (0.07) 4% 
Pittsburgh site 0.67 (0.51, 0.88), p=0.004 ------ ------ C22:0 SM 0.84 (0.73, 0.97), p=0.01 

Model 1ad 

SAVE 1.29 (1.12, 1.48), p=0.0004 0.2525 (0.07) 5% 
Age 1.25 (1.09, 1.44), p=0.002 0.2245 (0.07) -2% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.008 ------ ------ C20:5 LPC 0.92 (0.80, 1.06), p=0.24 
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Model Covariates* Mortality hazard ratio (95% CI), p-value Beta coefficient (s.e.) Percent attenuation** 
Model 1ae SAVE 1.29 (1.12, 1.48), p=0.0004 0.2546 (0.07) 4% 

Age 1.23 (1.07, 1.42), p=0.004 0.2099 (0.07) 5% 
Pittsburgh site 0.71 (0.54, 0.93), p=0.01 ------ ------ Salicylurate 1.14 (0.99, 1.32), p=0.07 

Model 1af 

SAVE 1.30 (1.13, 1.49), p=0.0003 0.2588 (0.07) 2% 
Age 1.25 (1.09, 1.44), p=0.002 0.2232 (0.07) -1% 
Pittsburgh site 0.71 (0.54, 0.93), p=0.01 ------ ------ Homogentisate 1.05 (0.92, 1.19), p=0.47 

Model 1ag 

SAVE 1.32 (1.15, 1.52), p=0.0001 0.2793 (0.07) -5% 
Age 1.25 (1.08, 1.44), p=0.002 0.2202 (0.07) 0% 
Pittsburgh site 0.68 (0.52, 0.90), p=0.006 ------ ------ Glycodeoxycholate 1.07 (0.94, 1.23), p=0.32 

Model 1ah 

SAVE 1.30 (1.13, 1.49), p=0.0003 0.2589 (0.07) 2% 
Age 1.21 (1.05, 1.39), p=0.009 0.1879 (0.07) 15% 
Pittsburgh site 0.66 (0.50, 0.87), p=0.003 ------ ------ Malate 1.25 (1.09, 1.44), p=0.002 

Model 1ai 

SAVE 1.29 (1.12, 1.48), p=0.0005 0.2511 (0.07) 5% 
Age 1.24 (1.08, 1.43), p=0.003 0.2142 (0.07) 3% 
Pittsburgh site 0.70 (0.54, 0.92), p=0.011 ------ ------ 5-hydroxytryptophan 0.90 (0.79, 1.02), p=0.11 

Model 1aj 

SAVE 1.30 (1.13, 1.49), p=0.0002 0.2607 (0.07) 2% 
Age 1.23 (1.07, 1.42), p=0.004 0.2099 (0.07) 5% 
Pittsburgh site 0.69 (0.52, 0.90), p=0.007 ------ ------ C54:10 TAG 0.93 (0.83, 1.05), p=0.23 

Model 1ak 

SAVE 1.29 (1.12, 1.49), p=0.0004 0.2555 (0.07) 4% 
Age 1.25 (1.08, 1.44), p=0.002 0.2196 (0.07) 0% 
Pittsburgh site 0.69 (0.53, 0.91), p=0.009 ------ ------ C44:13 PE plasmalogen 0.95 (0.83, 1.08), p=0.45 

Model 2 

SAVE 1.20 (1.01, 1.41), p=0.04 0.1782 (0.08) 33% 
Age 1.09 (0.92, 1.29), p=0.31 0.0849 (0.08) 61% 
Pittsburgh site 0.60 (0.42, 0.84), p=0.004 

------ ------ 

Glucuronate 1.08 (0.89, 1.32), p=0.44 
Tryptophan 1.05 (0.83, 1.33), p=0.68 
Methionine 0.78 (0.58, 1.03), p=0.08 
N-carbamoyl-beta-alanine 0.87 (0.72, 1.04), p=0.12 
Tyrosine 1.31 (1.05, 1.64), p=0.02 
Isocitrate 1.27 (1.01, 1.59), p=0.04 
Creatinine 0.71 (0.55, 0.92), p=0.01 
C4-OH carnitine 1.10 (0.89, 1.37), p=0.36 
C14:0 SM 0.87 (0.71, 1.05), p=0.15 
Cystathionine 1.18 (0.97, 1.44), p=0.10 
Hydroxyphenylacetate 1.17 (0.93, 1.48), p=0.18 
Putrescine 0.97 (0.83, 1.13), p=0.69 
1-methylnicotinamide 0.98 (0.85, 1.13), p=0.77 
Asparagine 1.29 (1.05, 1.58), p=0.02 
Leucine 0.94 (0.78, 1.14), p=0.52 
5-aminolevulinic acid 1.07 (0.85, 1.34), p=0.58 
Inosine 0.98 (0.84, 1.15), p=0.83 
Histidine 0.74 (0.59, 0.93), p=0.009 
C34:3 PE plasmalogen 0.92 (0.75, 1.14), p=0.45 
Symmetric dimethylarginine 1.44 (1.10, 1.87), p=0.007 
C24:1 Ceramide (d18:1) 0.99 (0.84, 1.18), p=0.93 
C36:4 PE 1.02 (0.85, 1.24), p=0.82 
Urate 0.86 (0.73, 1.02), p=0.09 
C18:2 CE 1.20 (0.94, 1.53), p=0.14 
Trimethylamine-N-oxide 0.95 (0.80, 1.13), p=0.58 
2-hydroxyglutarate 1.17 (0.96, 1.42), p=0.12 
C24:0 SM 1.00 (0.70, 1.42), p=0.98 
Fumarate 1.02 (0.83, 1.26), p=0.84 
C22:0 SM 0.73 (0.51, 1.06), p=0.10 
C20:5 LPC 0.87 (0.68, 1.11), p=0.25 
Salicylurate 1.11 (0.92, 1.34), p=0.28 
Homogentisate 1.05 (0.89, 1.24), p=0.59 
Glycodeoxycholate 1.06 (0.91, 1.25), p=0.45 
Malate 1.02 (0.80, 1.31), p=0.87 

Table 22 Continued 



137 

Model Covariates* Mortality hazard ratio (95% CI), p-value Beta coefficient (s.e.) Percent attenuation** 
5-hydroxytryptophan 0.95 (0.80, 1.14), p=0.61 
C54:10 TAG 1.05 (0.88, 1.24), p=0.60 
C44:13 PE plasmalogen 0.95 (0.74, 1.23), p=0.71 

Model 3 

SAVE 1.22 (1.05, 1.41), p=0.01 0.1968 (0.08) 26% 
Age 1.16 (0.99, 1.35), p=0.06 0.1460 (0.08) 34% 
Pittsburgh site 0.65 (0.48, 0.88), p=0.005 

------ ------ 

Methionine 0.80 (0.63, 1.01), p=0.06 
Tyrosine 1.32 (1.10, 1.59), p=0.003 
Isocitrate 1.38 (1.17, 1.62), p=0.0001 
Creatinine 0.81 (0.66, 1.00), p=0.05 
C14:0 SM 0.86 (0.72, 1.02), p=0.08 
Hydroxyphenylacetate 1.21 (1.02, 1.42), p=0.03 
Asparagine 1.20 (1.01, 1.44), p=0.04 
Histidine 0.72 (0.59, 0.88), p=0.002 
Symmetric dimethylarginine 1.31 (1.06, 1.62), p=0.01 
C22:0 SM 0.85 (0.72, 1.01), p=0.06 

Model 4 

SAVE 1.12 (0.96, 1.31), p=0.14 0.1164 (0.08) 56% 
Age 1.22 (1.06, 1.41), p=0.007 0.1968 (0.07) 11% 
Pittsburgh site 0.68 (0.52, 0.90), p=0.0059 ------ ------ Metabolite composite score 1.46 (1.25, 1.69), p<0.0001 

Model 5 

SAVE 1.26 (1.09, 1.47), p=0.002 0.2346 12% 
Age 1.19 (1.02, 1.38), p=0.02 0.1717 22% 
Pittsburgh site 0.71 (0.54, 0.94), p=0.01 

------ ------ 

More than high school education 0.73 (0.53, 1.01), p=0.05 
Current smoker at baseline 1.43 (1.00, 2.04), p=0.05 
Body mass index 0.89 (0.77, 1.03), p=0.11 
Cardiovascular disease 1.34 (0.99, 1.80), p=0.06 
Hypertension 1.19 (0.90, 1.58), p=0.23 
Diabetes 1.46 (1.04, 2.05), p=0.03 

Model 6 

SAVE 1.10 (0.94, 1.30), p=0.23 0.0990 63% 
Age 1.17 (1.00, 1.36), p=0.05 0.1524 31% 
Pittsburgh site 0.70 (0.53, 0.92), p=0.01 

------ ------ 

More than high school education 0.83 (0.60, 1.15), p=0.26 
Current smoker at baseline 1.37 (0.96, 1.96), p=0.08 
Body mass index 0.89 (0.77, 1.03), p=0.11 
Cardiovascular disease 1.35 (1.00, 1.81), p=0.05 
Hypertension 1.14 (0.86, 1.51), p=0.38 
Diabetes 1.47 (1.05, 2.06), p=0.02 
Metabolite composite score 1.41 (1.21, 1.65), p<0.0001 

CI = confidence interval 
s.e. = standard error 
Model 0 is the reference model, examining how SAVE associated with mortality, while adjusting for age and study site. 
Models 1a – 1ak is Model 0 plus additionally adjusting for one of the 37 top SAVE-associated metabolites. 
Model 2 is Model 0 plus additionally adjusting for all 37 SAVE associated metabolites in the same model. 
Model 3 is Model 2 after performing backwards stepwise selection on the 37 SAVE-associated metabolites. 
Model 4 is Model 0 plus additionally adjusting for the metabolite composite score, rather than individual metabolite values. 
*All continuous covariates in the models were standardized prior to analysis. 
**Percent attenuation was calculated as: 
 100*[(beta coefficient from reduced model - beta coefficient from more complex model) / beta coefficient from reduced model] 

Table 22 Continued 

Model 2  
Continued 
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Table 23. Mortality predictive power for age, SAVE scores, and the metabolite composite index alone and together 
with study site using area under the receiver operating characteristic curve (AUC) among N=287 black men 

 
Model Covariates* Model AUC (95% CI)** 
Model a Age 0.65 (0.58, 0.73) 
Model b SAVE 0.61 (0.54, 0.69) 
Model c Metabolite composite score 0.69 (0.62, 0.76) 

Model d Age 0.67 (0.60, 0.74), reference Pittsburgh site 

Model e 
SAVE 

0.69 (0.62, 0.76), p=0.25 Age 
Pittsburgh site 

Model f 
Age 

0.74 (0.67, 0.80), p=0.01 Pittsburgh site 
Metabolite composite score 

Model g 

SAVE 

0.74 (0.67, 0.80), p=0.02 Age 
Pittsburgh site 
Metabolite composite score 

CI = confidence interval 
*All continuous covariates in the models were standardized prior to analysis. 
**AUC is the area under the receiver operating characteristic curve, outcome=mortality indicator. 
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Table 24. Attenuation of mortality hazard ratio per one standard deviation higher SAVE score and one standard deviation older age 
after further adjusting for subsets of our metabolite composite score based on taxonomy super class among N=287 black men 

 
Model Covariates* Mortality hazard ratio  

(95% CI), p-value 
Beta coefficient 
(standard error) 

Percent 
attenuation** 

Model i 
SAVE 1.30 (1.14, 1.50), p=0.0002 0.2654 (0.07) 

Reference Age 1.25 (1.08, 1.44), p=0.002 0.2199 (0.07) 
Pittsburgh site 0.69 (0.53, 0.91), p=0.008 ------ 

Model ii 

SAVE 1.19 (1.03, 1.38), p=0.02 0.1726 (0.07) 35% 
Age 1.21 (1.05, 1.40), p=0.009 0.191 (0.07) 13% 
Pittsburgh site 0.67 (0.51, 0.88), p=0.004 -0.3971 (0.14) ------ Composite score of 14 organic acids and derivatives 1.35 (1.17, 1.56), p<0.0001 0.2988 (0.07) 

Model iii 

SAVE 1.23 (1.06, 1.42), p=0.007 0.2026 (0.07) 24% 
Age 1.24 (1.07, 1.43), p=0.004 0.212 (0.07) 4% 
Pittsburgh site 0.68 (0.52, 0.89), p=0.005 -0.3896 (0.14) ------ Composite score of 12 lipids and lipid-like molecules 1.25 (1.09, 1.44), p=0.002 0.2249 (0.07) 

Model iv 

SAVE 1.26 (1.09, 1.46), p=0.001 0.2331 (0.07) 12% 
Age 1.26 (1.09, 1.45), p=0.002 0.2294 (0.07) -4% 
Pittsburgh site 0.71 (0.54, 0.93), p=0.01 -0.3433 (0.14)  ------ Composite score of 4 Organoheterocyclic compounds 1.16 (1.01, 1.33), p=0.03 0.1487 (0.07) 

Model v 

SAVE 1.28 (1.11, 1.48), p=0.0005 0.249 (0.07) 6% 
Age 1.24 (1.08, 1.43), p=0.003 0.2166 (0.07) 2% 
Pittsburgh site 0.71 (0.54, 0.93), p=0.01 -0.3428 (0.14) ------ Composite score of 3 Benzenoids 1.10 (0.96, 1.26), p=0.19 0.0909 (0.07) 

Model vi 

SAVE 1.29 (1.12, 1.48), p=0.0005 0.2516 (0.07) 5% 
Age 1.25 (1.08, 1.43), p=0.002 0.2188 (0.07) 0.5% 
Pittsburgh site 0.69 (0.52, 0.90), p=0.007 -0.3763 (0.14) ------  Composite score of 5 remaining metabolites*** 1.07 (0.93, 1.23), p=0.33 0.068 (0.07) 

Model vii 

SAVE 1.12 (0.96, 1.31), p=0.14 0.117 (0.08) 56% 
Age 1.21 (1.05, 1.40), p=0.01 0.1898 (0.07) 14% 
Pittsburgh site 0.68 (0.52, 0.90), p=0.008 -0.3808 (0.14)   

  
  

------  
  

  

Composite score of 14 organic acids and derivatives 1.28 (1.09, 1.51), p=0.003 0.2481 (0.08) 
Composite score of 12 lipids and lipid-like molecules 1.20 (1.05, 1.38), p=0.009 0.1836 (0.07) 
Composite score of 4 Organoheterocyclic compounds 1.04 (0.90, 1.21), p=0.61 0.0386 (0.08) 
Composite score of 3 Benzenoids 1.08 (0.93, 1.25), p=0.32 0.0734 (0.07) 
Composite score of 5 remaining metabolites*** 1.01 (0.87, 1.16), p=0.94 0.0056 (0.07) 

Model 
viii 

SAVE 1.14 (0.98, 1.33), p=0.08 0.1329 (0.08) 50% 
Age 1.20 (1.04, 1.39), p=0.01 0.1852 (0.07) 16% 
Pittsburgh site 0.67 (0.51, 0.87), p=0.003 -0.4077 (0.14) 

------ Composite score of 14 organic acids and derivatives 1.31 (1.13, 1.52), p=0.0003 0.2712 (0.07) 
Composite score of 12 lipids and lipid-like molecules 1.20 (1.05, 1.38), p=0.009 0.1828 (0.07) 

CI = confidence interval 
Model i is the reference model, examining how SAVE associated with mortality, while adjusting for age and study site. 
Models ii – vi is Model i plus additionally adjusting for a portion of the metabolite composite score based on taxonomy super class.  
Model vii is Model i plus additionally adjusting for all portions of the metabolite composite score by taxonomy super class. 
Model viii is Model vii after performing backwards stepwise selection, forcing SAVE, age, and site. 
*All continuous covariates in the models were standardized prior to analysis. 
**Percent attenuation was calculated as: 
 100*[(beta coefficient from reduced model - beta coefficient from more complex model) / beta coefficient from reduced model] 
***Two organic nitrogen compounds, one organic oxygen compounds, and one nucleosides, nucleotides, and analogues. 
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Table 25. Pearson correlation coefficients of SAVE scores, age, and total metabolite composite score and by taxonomy super class 
among N=287 black men 

 

 SAVE Age 
Metabolite  
composite  

score 

Metabolite composite score by taxonomy super class: 
Organic acids and  
derivatives (m=14) 

Lipids and lipid-like  
molecules (m=12) 

Organoheterocyclic  
compounds (m=4) 

Benzenoids 
(m=3) 

Age 0.17  
(p=0.004)       

Metabolite composite score 0.42  
(p<0.0001) 

0.13  
(p=0.03)      

Metabolite composite score  
by taxonomy super class:        

 Organic acids and derivatives (m=14) 0.31  
(p<0.0001) 

0.15  
(p=0.01) 

0.82  
(p<0.0001)     

 Lipids and lipid-like molecules (m=12) 0.29  
(p<0.0001) 

0.08  
(p=0.17) 

0.67  
(p<0.0001) 

0.29  
(p<0.0001)    

 Organoheterocyclic compounds (m=4) 0.22  
(p=0.0002) 

-0.04  
(p=0.48) 

0.53  
(p<0.0001) 

0.42  
(p<0.0001) 

0.13  
(p=0.03)   

 Benzenoids (m=3) 0.18  
(p=0.002) 

0.07  
(p=0.24) 

0.36  
(p<0.0001) 

0.16  
(p=0.008) 

0.03  
(p=0.63) 

0.11  
(p=0.07)  

 Remaining metabolites*  (m=5) 0.27  
(p<0.0001) 

0.06  
(p=0.33) 

0.47  
(p<0.0001) 

0.26  
(p<0.0001) 

0.10  
(p=0.10) 

0.15  
(p=0.009) 

0.37  
(p<0.0001) 

*Organic nitrogen compounds (m=2), organic oxygen compounds (m=1), and nucleosides, nucleotides, and analogues (m=1) 
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Table 26. Comparing how different methods of calculating metabolite composite scores attenuate the association 
between frailer SAVE scores and mortality risk among 287 Health ABC black men 

 

Method of combining metabolites: 
Scale of Aging Vigor in Epidemiology (SAVE) 

Mortality Hazard Ratio (95% confidence interval), 
adjusting for metabolite scores, age, site Percent attenuationa 

1. Pathway scores:   

    Nitrogen metabolismb beta=0.25038 
1.29 (1.11, 1.48), p=0.0006 6% 

    Citric acid cyclec beta=0.25287 
1.29 (1.12, 1.48), p=0.0004 5% 

    Aminoacyl-tRNA biosynthesisd beta=0.23934 
1.27 (1.10, 1.46), p=0.0009 10% 

2. Factor analysis:   

    37 SAVE-associated metabolitese beta=0.14738 
1.16 (0.99, 1.35), p=0.06 44% 

3. Tertile-ranked sum:   

    37 SAVE-associated metabolitesf beta=0.11643 
1.12 (0.96, 1.31), p=0.14 56% 

4. Sum of z-scores:   

    37 SAVE-associated metabolitesg beta=0.11703 
1.12 (0.96, 1.31), p=0.14 56% 

5. LASSO regression:   

    37 SAVE-associated metabolitesh beta=0.15695 
1.17 (1.01, 1.36), p=0.04 41% 

aPercent attenuation = 100*(b1-b2)/b1, where b1 is the age-and site-adjusted beta coefficient of the association between SAVE 
scores and mortality risk (=0.2654) and b2 is the same beta coefficient after further adjusting for a metabolite composite score. 

Note: For each factor analysis, factors with eigenvalues >1 were retained. Metabolites with absolute loadings ≥0.20 were 
considered to load onto a factor. Factor scores were calculated as a weighted sum of the metabolites that loaded onto the factor, 
where weights were the standardized scoring coefficients from the rotated factor pattern. 
bAmong the 39 metabolites involved in nitrogen metabolism, 11 were measured in the Health ABC study. Applying a factor 
analysis to those 11 metabolites resulted in three factors. Factor 1 consisted of tryptophan, phenylalanine, and tyrosine; factor 2 
consisted of tyrosine, taurine, histidine, glutamine, and asparagine; and factor 3 consisted of glutamine, tyrosine, AMP, taurine.  
cAmong the 20 metabolites involved in the citric acid cycle, 9 were measured in the Health ABC study. Applying a principal 
factor analysis to those 9 metabolites resulted in one factor (aconitate and malate).  
dAmong the 75 metabolites involved in the aminoacyl-transfer RNA biosynthesis pathway, 18 were measured in the Health ABC 
study. Applying a principal factor analysis to those 18 metabolites resulted in two factors. Factor 1 consisted of leucine, valine, 
methionine, and tyrosine; and factor 2 consisted of leucine, valine, methionine, glutamine, asparagine, serine, histidine, arginine, 
lysine, and threonine. 
eApplyingApplying a factor analysis to the 37 metabolites that were associated with SAVE scores (p<0.05) resulted in six factors. 
Factor 1 consisted of symmetric dimethylarginine, creatinine, glucoronate, 5-aminolevulinic acid, hydroxyphenylacetate, and 
isocitrate; factor 2 consisted of C22:0 SM, C24:0 SM, and C18:2 CE; factor 3 consisted of methionine, tryptophan, and tyrosine; 
factor 4 consisted of hydroxyphenylacetate, isocitrate, malate, and fumarate; factor 5 consisted of hydroxyphenylacetate, C22:0 
SM, methionine, tyrosine, C44:13 PE plasmalogen, C20:5 LPC, and C34:3 PE plasmalogen; and factor 6 consisted of symmetric 
dimethylarginine, creatinine, glucoronate, hydroxyphenylacetate, C18:2 CE, tyrosine, C44:13 PE plasmalogen, histidine, C36:4 
PE, C14:0 SM, salicylurate, homogentisate, and inosine. 
fDetails on how the tertile-ranked sum was calculated is in Section 4.3.4.1. 

gThe z-scores for the 17 metabolites that were negatively associated with SAVE scores were multiplied by -1, then the z-scores 
for the 37 SAVE-associated metabolites were summed.  
gLasso regression kept 11 of the 37 metabolites: glucoronate, tryptophan, methionine, isocitrate, creatinine, C4:OH carnitine, 
C14:0 SM, hydroxyphenylacetate, putrescine, 1-methylnicotinamide, histidine. 
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4.7 FIGURES 

 
 

Figure 8. Kaplan-Meier all-cause mortality curve by tertiles of the Scale of Aging Vigor in Epidemiology (SAVE) 
among 287 Health ABC black men 
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Figure 9. Kaplan-Meier all-cause mortality curve by tertiles of the metabolite composite score among 287 Health 
ABC black men 
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5.0  OVERALL DISCUSSION 

Using information from community-dwelling older adult cohorts, I identified several metabolites 

associated with vigor to frailty scores and walking ability extremes. A pattern of differences in 

metabolites including amino acids, glycerophospholipids, and spingolipids was associated with 

vigor to frailty in older black men from the Health ABC study. Top metabolites associated with 

walking ability extremes included proline, triacylglycerols, and glycerophospholipids in our 

nested case-control study of older adults from the CHS All Stars study. Lipids and lipid-like 

molecules and organic acids and derivatives were two classes of metabolites most commonly 

associated with these aging-related phenotypes. 

Differences in multiple triacylglycerols were observed by walking ability extremes 

among the CHS All Stars subset. The triacylglycerols that were higher among those with better 

walking ability consisted mostly of polyunsaturated fatty acids, whereas the triacylglycerols that 

were higher among those with worse walking ability consisted mostly of saturated or 

monounsaturated fatty acids. Behavioral differences in diet and physical activity is an underlying 

modifiable risk factor that has the potential to explain these differences in lipids by walking 

ability. Older adults with better walking ability likely have a more optimal diet consisting of 

more omega-3 fatty acids and less saturated fats. Caloric restriction and physical activity has 

long been suggested as methods to promote healthy aging (161, 162). Thus, older adults with low 
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walking ability may benefit most by multi-factorial interventions consisting of nutritional 

education with a reduced daily calorie goal and an increased daily physical activity goal. 

Frailer black men from the Health ABC study had lower levels of multiple amino acids 

and lipids than more vigorous participants, potentially indicating frailer individuals may benefit 

most from a nutritional intervention focused on improving the amount of amino acids and 

healthy lipids in their bodies. A specialized physical activity intervention for frail individuals 

would also likely have a benefit, since physical activity has shown to improve the body’s ability 

to utilize amino acids and other nutrients (163, 164). Lipid-replacement therapy has also been 

suggested as a way to improve mitochondrial functioning, and thus, increase energy levels, by 

providing membrane phospholipids and antioxidants to overcome age-related damage caused by 

oxidation (159). Another potential intervention for frail older adults is to evaluate their current 

medications and determine whether all medications still have more benefit than risk given their 

health status.  

Frailty may be viewed as further along in the pathogenesis of aging-related morbidity 

when compared to a slowed walking ability. However, it should be noted that the Health ABC 

black men were younger and had a faster gait speed, on average, than the CHS All Stars. Using 

the walking ability extreme definitions that were applied to the CHS All Stars report, only 4 

(1%) Health ABC black men would be classified as having low walking ability (gait speed <0.7 

meters/second and 0-1 score on the walking ability index), whereas 171 (60%) would be 

classified as having high walking ability (gait speed ≥0.9 meters/second and 7-9 score on the 

walking ability index). There were only three metabolites that were significantly associated with 

vigor to frailty in the Health ABC black men and associated with walking ability extremes in the 

CHS All Stars: hydroxyphenylacetate, 1-methylnicotinamide, and symmetric dimethylarginine. 
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Hydroxyphenylacetate and symmetric dimethylarginine were also associated with the healthy 

aging index (107), and thus, may be important markers of healthy aging. The differences in 

demographics and health status between the Health ABC black men and the CHS All Stars likely 

explain why there was not more overlap in individual metabolites associated with the two aging-

related phenotypes.  

There is a need to validate the associations observed in this dissertation between 

metabolites and vigor to frailty and metabolites and walking ability to determine the 

reproducibility and generalizability of these findings. The underlying mechanisms contributing 

to these differences in profiles of metabolites that potentially cause unhealthy versus healthy 

aging need to be determined to inform interventions to promote healthy aging and increase 

independence in the older adult population. Examining additional –omics methods may be one 

way to further investigate underlying mechanisms by identifying patterns in dysregulation at 

different molecular levels that may contribute to these alterations in metabolites. Unfortunately, 

with a cross-sectional study design, we cannot infer causal relationships between metabolites and 

vigor to frailty or walking ability. However, results obtained from this dissertation can inform 

longitudinal studies aimed at determining temporality. 

To offset the financial and societal challenges of a growing older adult population, we 

need to positively shift their distribution of health, so that a greater proportion of older adults are 

living free of morbidity with preserved independence and high quality of life. Lipids and lipid-

like molecules and organic acids and derivatives (e.g., amino acids) were two classes of 

metabolites commonly associated with the aging-related phenotypes, frailty and walking ability. 

Differences in these classes of metabolites may indicate metabolic processes that become altered 

as a result of aging. The public health significance of this dissertation is that knowledge on 
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differences in these metabolites and metabolic pathways associated with vigor to frailty and 

walking ability has the potential to better characterize these complex aging-related phenotypes 

and can inform points in their pathophysiology that can be intervened on to reduce their 

progression and ultimately promote healthy aging with preserved independence in the 

population. 
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