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Abstract 

Walking, Exploration, and Communication: An Investigation of Developmental Cascades 

in Infants with Low vs. Heightened Risk for Autism Spectrum Disorder 

 

Kelsey Louise West, PhD 

 

University of Pittsburgh, 2019 

 

 

 

 

Learning to walk enables infants to travel faster and farther, exploring more of their 

environment (e.g., Adolph & Tamis-LeMonda, 2012). This enhanced mobility may have a 

cascading effect on infants’ exploration and social interactions. Notably, infants with autism 

spectrum disorder (ASD) begin walking later and with reduced proficiency compared with 

neurotypical infants (e.g., Esposito, Venuti, Apicella, & Muratori, 2011; Minshew, Sung, Jones, 

& Furman, 2004; West, 2018; Bhat et al., 2011). This may lead infants with ASD to experience 

this transition differently. This dissertation had two overarching objectives: 1.) investigate 

whether the onset of walking corresponds to a shift in infants’ interactions with objects and 

people, and 2.) examine whether and how this cascade diverges in ASD. To this end, we 

measured longitudinal changes in infants’ locomotion, object interactions, communication, and 

caregivers’ contingent responses during the transition to walking in two cohorts of infants. The 

first cohort consisted of 25 infants with no family history of ASD (Low Risk; LR). The second 

consisted of were 91 infants who are at Heightened Risk (HR) for ASD by virtue of having an 

older sibling with an ASD diagnosis. In particular, we compared data across three HR outcome 

groups: infants who later developed ASD (HR-ASD), infants with language delay (HR-LD), and 

infants with no diagnosis (HR-ND). Across this transition, neurotypical infants walked more, 

played with a greater variety of objects, produced more frequent gestures and vocalizations, 

coordinated communicative behaviors with locomotion more frequently, and received 
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proportionately more contingent verbal responses from caregivers. These findings lend support 

to the notion that learning to walk instigates a cascade, affecting many other domains of 

development. This transition differed for HR-ASD infants in important ways. Compared to their 

neurotypical peers, HR-ASD infants showed reduced growth in the variety of objects they played 

with, the frequency of gestures and vocalizations they produced, reduced coordination of 

communication and locomotion, and fewer verbal responses from caregivers. This dissertation 

thus provides evidence that the transition to walking marks a point in development when the gap 

in communication and social-interaction between ASD and neurotypical infants widens.  
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1.0 INTRODUCTION 

Learning to walk changes how infants interact with the environment. They travel faster 

and farther than before, accessing far-off objects and people on the way (Adolph & Tamis-

LeMonda, 2012). In addition, walk onset coincides with accelerated growth in vocabulary, 

regardless of infant age (He, Walle & Campos, 2015; Walle, 2016; Walle & Campos, 2014; 

West, Leezenbaum, Northrup & Iverson, 2017). When infants begin walking, the number of 

words that they say and understand increases substantially. What might account for this 

association? Although it is likely driven by multiple factors, one possibility is that walking has 

cascading effects on infants’ interactions with objects and people that in turn support language 

learning. For example, an infant may forage for an alluring object, and then walk to another 

room to share it with a caregiver. These “moving” social bids elicit timely responses from 

caregivers (e.g., “What did you find? Is that your bear?”; Karasik, Tamis-LeMonda & Adolph 

2014), which may benefit word learning. The cascade hypothesis asserts that it is not walking per 

se, but rather the opportunities that walking creates for exploration and social communication 

that ultimately assist language development.  

If walking offers enhanced opportunity for exploration and social interaction, then 

walking delays or difficulties could constrain these opportunities. We hypothesize that this is the 

case for infants with autism spectrum disorder (ASD). Mounting evidence indicates that motor 

function is atypical in ASD, including walking (e.g., Bhat, Landa & Galloway, 2011; Fournier, 

Hass, Naik, Lodha, & Cauraugh, 2010; West, 2018). Indeed, walking emerges later and with less 
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proficiency for infants with ASD compared to neurotypical1 infants (Esposito, Venuti, Apicella, 

& Muratori, 2011; Minshew, Sung, Jones, & Furman, 2004; West, 2018; Bhat et al., 2011). This 

disruption could alter the exploratory and communicative behaviors of infants with ASD, and 

consequently the language infants elicit from caregivers. 

This dissertation has two overarching objectives. The first is to investigate the cascade 

hypothesis—that is, that learning to walk corresponds to a shift in infants’ interactions with 

objects and people.  The second is to examine whether and how this cascade diverges in ASD. 

These objectives are motivated by the notion that development (both typical and atypical) is best 

understood by considering change in multiple domains simultaneously. “Motor”, 

“communication”, and “exploration” behaviors are not produced separately—they are integrated 

together within more complex behavioral sequences. A major setting event in one domain can 

reverberate across other, seemingly unrelated domains (e.g., Thelen & Smith, 1998; Campos et 

al., 2000). Here, we examine whether the emergence of walking is such an event. In the 

following sections, I review current literature on walking-related changes in infant and caregiver 

behaviors. This is followed by an overview of research on infant walking and communicative 

development in ASD.  

                                                 

1 “Neurotypical” (an abbreviation of “neurologically typical”) refers to individuals without ASD 

or another neurological condition. This term reflects a neurodiversity perspective, which advocates 

that ASD is part of natural variation in humans, and should be recognized as a social category. The 

absence of a term for non-autistic individuals implies a “normal” default. For this reason, we use 

the term neurotypical to refer to individuals not on the autism spectrum.  
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Before proceeding, however, three caveats are in order. First, we hypothesize that 

walking is participatory in the development of infants’ social and exploratory behaviors—not 

that it is necessary or sufficient. Clearly walking is unnecessary for advances in exploration and 

communication to occur. Infants begin to vocalize, gesture, and explore objects well before they 

begin walking. Further, although motor and communication deficits do frequently co-occur (e.g., 

Trauner, Wulfeck, Tallal & Hesselink, 2000; Paquet et al., 2015), some infants with significant 

motor impairments display typical communicative development. For instance, infants with type 2 

spinal muscular atrophy experience severe deprivation in locomotor experiences (most are never 

able to walk unaided), but nevertheless they communicate typically (Riviere, Lecuyer & 

Hickmann, 2009). We propose that for typically developing infants, all else being equal, walking 

acts as an agent of developmental change. This does not preclude other, alternative 

developmental pathways.  

Second, there are many complex and multifaceted ways by which walking and 

communication could interrelate across development. The scope of the present study is therefore 

necessarily limited. Our focus is measuring how infants’ social communication and caregivers’ 

responses to this communication changes as infants transition from crawling to walking. Of 

course, walking is probably multiply determined by infants’ social communicative context. 

Caregivers’ behaviors encourage and constrain locomotion. They call their infants to them, direct 

them to retrieve far-off objects, and place them in high chairs and car seats that prevent 

movement. Relatedly, advances in infant communication could provide motivation to walk. For 

example, the desire to engage socially may drive infants to locomote and seek out caregivers. 

And in fact, infants who display a stronger motivation to move at 7 months (as measured by 

infants’ activity level, persistence, and the strength of stimuli required to elicit motor actions) 
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walk earlier than less motivated infants (Atun-Einy, Berger & Scher, 2013). The 

interconnections among walking, exploration, and social-communication behaviors are numerous 

and elaborate, and this research cannot provide a full account of these mechanisms. Rather, our 

objective is to probe whether a developmental cascade hypothesis is supported by measuring 

longitudinal changes in exploration and communication during this transition.  

Finally, given the phenotypic complexity of ASD (e.g., Wozniak, Leezenbaum, Northrup, 

West & Iverson, 2016), it is clear that delayed or disrupted walking cannot fully account for 

atypical communication among young children with ASD. Infants with ASD are vulnerable to 

communication deficits even prior to walk onset (e.g., Iverson et al., 2017). Nonetheless, 

disrupted walking may compound upon this vulnerability, widening the gap between ASD and 

neurotypical infants. 

1.1 The Transition to Walking in Neurotypical Development 

Infants typically transition from crawling to walking in the second year of life (e.g., 

Adolph & Berger, 2006). The incentives to do so are clear. Walking enables infants to travel 

great distances—up to 700 meters per hour. Even newly walking infants locomote three times 

farther than expert crawlers (Adolph & Tamis-LeMonda, 2014). In addition, walkers gain an 

elevated vantage point by standing upright. Whereas crawlers’ view is dominated by the floor in 

front of them, walkers have a broad view of the landscape (Kretch, Franchak & Adolph, 2014). 

These distinct vantage points may guide infants’ exploration in different ways. Walkers travel to 

distant objects and people more frequently, whereas crawlers tend to interact within arms’ reach 

(Karasik, Adolph, Tamis-LeMonda & Zuckerman, 2012). An added benefit is that walking frees 
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the hands during locomotion, allowing walkers to carry objects with them (Karasik, Adolph, 

Tamis-LeMonda & Zuckerman, 2012).  

Learning to walk may prompt changes in infants’ social interactions. Infants initiate 

social interactions more often after they walk (e.g., by gesturing or vocalizing; Clearfield et al., 

2008; Clearfield, 2011; Walle, 2016). The format of social interactions may also change. 

Researchers have observed a back-and-forth pattern of social interaction among walking infants, 

where walkers repeatedly travel between a parent and a distal location (Walle & Campos, 2014). 

Notably, walkers display more “moving” social bids (e.g., they carry objects over to caregivers 

to bid for their attention) than do same-aged crawlers (Karasik, Tamis-LeMonda & Adolph, 

2011). In turn, caregivers are more likely to respond to these moving bids than to stationary bids, 

presumably because stationary bids can be easily overlooked (Karasik, Tamis-LeMonda & 

Adolph, 2014). This distinction could be impactful over the course of day-to-day routines, when 

parents’ attention is divided between infant care and other everyday activities. Walkers’ ability to 

approach their caregiver with ease may foster more frequent social interactions.   

There are multiple reasons why this shift may benefit infants’ language development. 

Bouts of joint engagement—in which dyads attend to one another or an object, and a caregiver 

provides verbal input—facilitate word learning (e.g., Tamis-LeMonda, Kuchirko & Song, 2014; 

Tomasello & Farrar, 1986; Yu & Smith, 2012). If the frequency or quality of these interactions 

increases with walking, it may prompt a simultaneous boost in language growth. Additionally, 

infants’ object interactions may affect the language they hear and consequently learn. Caregivers 

frequently “follow in” and talk about the objects with which infants are currently interacting 

(e.g., Bornstein, Tamis-LeMonda, Hahn & Haynes, 2008; West & Iverson, 2017). In particular, 

they frequently provide the objects’ corresponding label (e.g., “Are you talking on the phone?” 
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West & Iverson, 2017). If walkers access a wider range of objects than crawlers, this diversity 

may be reflected in the language they elicit (e.g., an infant who plays with six objects may hear 

descriptions of these six objects from a caregiver). 

Evidence suggests that the onset of walking coincides with increased growth in language 

acquisition (He, Walle & Campos, 2015; Oudgenoeg-Paz, Volman & Leseman, 2012; Walle, 

2016; Walle & Campos, 2014; West, Leezenbaum, Northrup & Iverson, 2017). An initial study 

by Walle and colleagues (2014) measured infant vocabulary longitudinally across the transition 

to walking. Walking experience predicted vocabulary growth (both receptive and expressive) 

above and beyond infants’ chronological age. Moreover, while age predicted a linear pattern of 

growth, walking experience predicted a nonlinear trend, with growth accelerating following walk 

onset. This finding has since been replicated in multiple diverse samples (He, Walle & Campos, 

2015; Walle, 2016; Walle & Campos, 2014; West, Leezenbaum, Northrup & Iverson, 2017). 

Researchers have hypothesized that this phenomenon is driven by accompanying changes in 

infants’ social and object interactions (i.e., the developmental cascade hypothesis).  To date, 

however, this hypothesis has been largely untested. 

Past research on the association between walking and communication has been 

predominantly cross-sectional, involving between-subjects comparisons of age-matched crawlers 

and walkers. However, this design may be confounded by infants’ general developmental ability. 

That is, it cannot tell us whether walking and communication are functionally related, or whether 

precocious walkers also just happen to be precocious communicators. The few studies that do 

use longitudinal designs are limited to two time points (e.g., pre-walk and post-walk; Clearfield, 

2011). This obscures the functional form of change over this transition (i.e., there is no baseline 

comparison for the rate of change prior to walking, and no information about the shape of 
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change). The present study addresses these limitations by following infants longitudinally for 

seven months as they transition from crawling to walking. We investigate whether walk onset is 

concomitant with shifts in infants’ object interactions, communication, and verbal responses 

from caregivers. In doing so, we provide new knowledge regarding the extent to which walk 

onset is a setting event in infant development.  

1.2 The Transition to Walking in ASD 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

difficulty with social-communication and the presence of restricted or repetitive behaviors (DSM 

5; American Psychiatric Association, 2013). Because ASD is not typically diagnosed until 40 

months of age (Christensen et al., 2016), it is difficult for researchers to study the development 

of ASD in infancy. To circumvent this barrier, researchers have focused on the infant siblings of 

children with ASD, who are at heightened biological risk (Heightened Risk; HR) of developing 

ASD. The recurrence rate for HR infants is 18.7%, which is well above the prevalence in the 

general population (e.g., Ozonofff et al., 2011). Prospectively studying HR infants enables 

researchers to probe early-occurring differences between infants who are later diagnosed with 

ASD and those who are not.  

Although not included in the diagnostic criteria, delays in gross motor development are 

well-documented in ASD (e.g., Bhat, Landa & Galloway, 2010; Garrido et al., 2017; West, 

2018). In particular, evidence suggests the development of walking is affected. One study using 

retrospective parent report indicated that infants with ASD walked up to 2 months later than 

neurotypical infants (Ozonoff et al., 2008). This finding was corroborated by analysis of 
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retrospective home videos, which revealed that infants with ASD did not display mature walking 

until 3 months after their neurotypical peers. Additionally, studies find that gait—the pace and 

spatial features of footfalls—differs in ASD relative to neurotypical infants (Esposito et al., 

2008, 2011). This investigation led researchers to conclude the following: 

Children with a diagnosis of Autistic Disorder have shown (i) problems performing the  

heel-to-toe pattern, (ii) more asymmetric posture of the arm while walking, (iii) higher  

frequency of anomalies in general movement, both for the presence of stereotyped  

movement and "waddling walk". (p. 266).  

Taken together, these findings suggest that atypical walking development may be characteristic 

of the disorder. 

 Evidence of atypical walking has led researchers to investigate whether the walking-

language link described previously is disrupted in ASD. Two studies examined whether parent 

report of walk onset age (retrospectively collected) predicts language ability, and they have 

yielded mixed findings. Kim (2008) reported that walk onset age did not predict language in 

preschool-aged children with ASD. By contrast, Bedford and colleagues (2015) found that walk 

onset age predicted language growth from 2-9 years—however, this effect became non-

significant after controlling for overall gross motor ability (i.e., walking age was not a unique 

predictor). Importantly, neither of these studies examined language growth at the time of walk 

onset.  

To address this gap, my colleagues and I examined longitudinal trajectories of receptive 

and expressive vocabulary development during the transition to walking in HR and LR infants. 

We then compared the trajectories for three subgroups of HR infants who varied in 

developmental outcomes assessed at age 3 to those of a group of infants with no family history 
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of ASD (Low Risk; LR).  For LR infants and HR infants with no ASD diagnosis or other 

developmental concerns (HR-ND), walk onset coincided with additional linear growth in 

receptive and expressive vocabulary. The same pattern was observed for HR infants with 

language delay (HR-LD), although growth was attenuated relative to LR infants. Only HR 

infants later diagnosed with ASD (HR-ASD) did not demonstrate increased language growth at 

walk onset (West, Leezenbaum, Northrup & Iverson, 2017).   

What might account for the lack of growth in vocabulary observed among HR-ASD 

infants during the transition to walking? There are at least two possible, non-mutually exclusive 

explanations. One has to do with potential differences in walking proficiency after walking onset 

has been achieved. Not only does walking emerge later in ASD, but as previously described, 

infant gait is less fluid and less symmetrical (Esposito et al., 2008, 2011). Children with ASD 

also display qualitative differences in walking compared to neurotypical children, including 

difficulty with balance, slower speed, and a greater degree of dysrhythmia, a neurological sign of 

reduced motor control (e.g., Jansiewicz et al., 2006; Hallett et al., 1993). If walking is more 

effortful, infants with ASD may walk less frequently or for shorter distances, potentially 

reducing the benefits of enhanced locomotion for communication. Moreover, difficulty walking 

may lead infants with ASD to crawl and cruise (take steps while their body weight is supported, 

typically by furniture) for a more extended time than is typical. Longer reliance on crawling and 

cruising would likely correspond to slower speed, diminished visual vantage point, and fewer 

opportunities to explore. These less-advanced forms of locomotion may lead infants with ASD to 

very different experiences. Thus, the present study will examine whether HR-ASD infants 

display an atypical pattern of walking development compared to their neurotypical peers.  
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Second, the social function of walking may differ in ASD. The ability to walk offers 

infants increased autonomy to initiate social interactions, which may lead infants with ASD to 

different experiences than peers. For instance, affected infants may approach social partners less 

often, or disengage from social interactions more frequently. Recall that past studies have 

observed an increase in back-and-forth social interactions following walk onset: neurotypical 

infants walked to-and-from their caregiver and distal locations, prompting verbal input upon 

their return (e.g., Mahler, 1975; Biringen, Emde, Campos & Appelbaum, 2008). Even if infants 

with ASD travel comparable distances as their peers, they may seek out social interactions less 

often.  

This hypothesis is supported by abundant research showing that infants with ASD initiate 

social interactions less frequently than their peers (see Jones et al., 2014, for a review of social-

communicative development in ASD). Further support comes from a study of HR and LR infants 

that examined object sharing (bringing an object to a caregiver) longitudinally across the 

transition to walking (Srinivasan & Bhat, 2016). All infants showed the expected increase in 

object sharing; but the increase was lessened in HR infants. This attenuation may be driven by a 

subset of HR infants who later developed ASD, but diagnostic outcome data were unavailable in 

this study. The present study builds on this work by examining how HR-ASD infants’ 

communicative behaviors and object interactions change as they gain walking experience. We 

will test whether these trajectories differ from those of their neurotypically developing peers.  
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1.3 The Present Study 

The overarching goal of this dissertation is to investigate: 1.) how infants’ locomotion, 

interactions with objects, communication, and the responses they elicit from caregivers change 

during the transition to walking, and 2.) how these changes differ for infants who develop ASD. 

Mounting evidence indicates that motor milestones are correlated with advances in far-flung 

psychological domains (e.g., Clearfield, 2004; Gottwald, Achermann, Marciszko, Lindskog & 

Gredebäck, 2016; Libertus & Violi, 2016; Schwarzer, Freitag, Buckel, & Lofruthe, 2013). This 

work has identified only the book-ends of these developmental cascades, leaving open questions 

about the intermediary links. This study investigates potential intermediary links for one such 

developmental cascade—the link between walking and communication. To this end, we followed 

infants for seven repeated observations anchored by their walk onset—four months prior to walk 

onset, and three months after—enabling us to measure baseline growth prior to walk onset, and 

identify the functional form of developmental change across multiple domains. The research has 

four specific aims: 

Aim 1: Measure the functional form of change in locomotion across the transition to 

walking in LR infants, and in three HR outcome groups. This will be the first study to our 

knowledge to examine whether the longitudinal progression from crawling to walking differs for 

HR-ASD infants. Based on previous research, we hypothesize that: 

1. Following walk onset, LR, HR-ND, and HR-LD infants will show an increase in 

time spent walking and a corresponding decrease in less-advanced crawling and 

cruising. 

2. HR-ASD infants will display an attenuated increase in time spent walking and 

will continue to crawl and cruise for longer in development than their peers.  
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3. LR, HR-ND, and HR-LD infants will increasingly carry objects and locomote to 

and from social partners as they gain walking experience.  

4. HR-ASD infants will approach social partners less frequently than their peers.  

Aim 2: Measure the functional form of change in object interactions across the transition 

to walking in LR infants, and in three HR outcome groups. Although previous research finds that 

infants access more distal objects after they begin walking, no study has examined whether they 

access a greater variety of objects overall. We expected that: 

1. The variety of objects that LR, HR-ND, and HR-LD infants access will increase 

following walk onset.  

2. Because we expect HR-ASD infants to locomote less frequently than their peers, 

we anticipated that they will correspondingly encounter fewer objects.  

Aim 3: Measure the functional form of change in infant communication across the 

transition to walking in LR infants, and in three HR outcome groups. Previous research suggests 

that walk onset corresponds to a shift in infant communication. We have several hypotheses 

related to how communication changes in quantitative and qualitative ways with the emergence 

of walking: 

1. LR and HR-ND infants will increase production of gestures and vocalizations 

following walk onset. Further, these behaviors will be increasingly coupled with 

infants’ social gaze and locomotion behavior.  

2. Based on past work, we expect that growth in communication will be attenuated 

for HR-LD infants relative to LR infants (e.g. Iverson et al., 2017; Parlade & 

Iverson, 2015).  
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3. For HR-ASD infants, walk onset will not be accompanied by increased growth in 

gesture and vocal production. Because we expect that walking is less proficient in 

ASD, we anticipate that communication will be paired with locomotion (i.e., 

“moving”) less often than for LR infants.  

Aim 4: Measure the functional form of change in caregiver contingent responses across 

the transition to walking in LR infants, and in three HR outcome groups. Previous research 

indicates that walking infants produce more moving bids than do crawlers (Karasik, Tamis-

LeMonda & Adolph, 2011), and caregivers are more likely to respond to moving bids than 

stationary bids (Karasik, Tamis-LeMonda & Adolph, 2014). Based on this work, we hypothesize 

that: 

1. Walk onset will correspond to increased growth in caregiver responses to LR, 

HR-ND, and HR-LD infants. Further, these responses will be more likely to 

contain translations of infants’ communicative acts (i.e., a label that corresponds 

to the infants’ action; for example, if the infant points to a cup and the caregiver 

says “Do you want your sippy cup?”).  

2. In light of our hypothesis that “moving” communication will be reduced in HR-

ASD infants, we also expect that the responses they elicit from caregivers will be 

reduced relative to LR infants.  
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2.0 METHODS 

2.1 Participants 

This study included data from two cohorts of infants followed as part of two separate 

longitudinal studies. The first included 25 infants (15 female) with no first-degree relatives with 

ASD. These infants were at low risk (LR) for developing ASD. Of these infants, 16 had at least 

one older typically-developing sibling. The remaining 9 infants were first-born2. The second 

consisted of 91 infants (43 female) who had a full biological sibling with an ASD diagnosis 

(heightened risk; HR). Prior to HR infants’ enrollment, the older ASD sibling was administered 

the Autism Diagnostic Observation Schedule-Generic (ADOS-G; Lord et al., 2000) by a trained, 

research-reliable clinician. If the older sibling’s score met threshold for either Autistic Disorder 

(AD) or ASD, the HR infant was enrolled.   

                                                 

2 To investigate the effect of birth order, we ran growth models with LR infants only, and included 

Birth Order as a predictor of intercept and slope terms. Birth Order did not significantly 

differentiate LR infants on any variable other than gesture production; first-born LR infants 

produced more gestures at the intercept, p = 0.028, but slope terms did not differ between groups. 

In light of this difference, we re-ran the final model of gesture development, including all HR 

groups and only later-born LR infants. The pattern of significant differences between LR and HR 

outcome groups was unchanged by doing so.  
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Infants from both samples were from full-term, uncomplicated pregnancies and from 

monolingual English-speaking households. Demographic characteristics were similar across 

cohorts. In total, 105 infants (81 HR, 24 LR) were Caucasian, 10 (HR) were Hispanic, and one 

LR infant was Asian American. Parents across groups were highly educated. The majority of 

parents held either a college degree or had completed some college. Information about income 

was unavailable, but Nakao-Treas occupational prestige scores (Nakao & Treas, 1994) were 

calculated to provide an index of social class. These scores were calculated using fathers’ 

occupations because many of the mothers in both groups stayed at home with their infants. 

Overall, as is common in ASD research (e.g. Durkin et al., 2008), HR infants had older mothers, 

F (1,101) = 4.57, p = 0.035, and fathers, F (1,101) = 8.61, p = 0.004, compared with LR infants. 

There were no other significant differences between groups. Table 1 displays demographic 

information for LR and HR participants in the study.   

Table 1 Demographic Information for Low Risk (LR) and Heightened Risk (HR) groups 

 

  

LR 

(n = 25)   

HR 

(n = 91) 

Gender           

     Female (%) 10  (40%)   43 (47%) 

     Male (%) 15 (60%)   48 (53%) 

Racial or ethnic minority (%) 1 (4%)   10 (11%) 

Mean age for Mothers (sd) 31.92 (4.85)   34.19 (4.01) 

Mean age for Fathers (sd) 33.08 (4.00)   36.68 (5.10) 

Mean Parent Educationa (sd) 1.38 (0.50)   1.22 (0.50) 

Mean Paternal Occupational Prestige b 

(sd) 
48.18 (22.82) 

 
53.08 (18.90) 

a Parent education based on averaging education scores for mothers and fathers. 0 = High school,  

1 = Some college or college degree; 2 = Graduate or professional school 
b Nakao–Treas occupational prestige score. Unable to calculate for 4 LR and 5 HR fathers. 
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2.2 Procedure 

For both LR and HR groups, infants were videotaped in their homes for approximately 45 

minutes of unstructured and semi-structured play at each visit. However, the observation 

schedule for the two groups differed. LR infants were seen every 2 weeks from 2-19 months and 

did not have follow-up visits in the toddler years. HR infants were visited monthly from 5-14 

months, with follow-up visits at 18, 24, and 36 months. Here we focused on a window of seven 

visits surrounding infants’ walk onset (regardless of chronological age). This window began with 

the visit occurring 4 months prior to walk onset and ended with the visit occurring 3 months after 

walk onset. Thus, seven timepoints were included for each infant, and the mid-point was the final 

crawling-only visit (i.e., the visit just prior to infants’ walk onset). Note that although LR infants 

were seen bimonthly, only whole month visits were included (i.e., if a LR infant began walking 

at 10.5 months, the 11-month visit was designated as walk onset). This ensured that any risk 

status differences were not an artifact of different observation schedules.  

Walk onset was established through parent report. For both cohorts, parents were given a 

calendar to track their infants’ motor milestones. Walk onset was defined as the first visit when 

the infant took three consecutive, alternating, and independent steps with no support from 

furniture or a caregiver. Although walk onset could have occurred between infants’ monthly 

visits, we will refer to the first whole month in which infants met this criterion as “walk onset”.  

If an infant did not attain walk onset by 14 months (the end of the monthly visits), parents were 

contacted by phone each month thereafter to establish walk onset. This occurred for 14 HR 

infants (6 ND, 4 LD, 4 ASD). Thus, these infants only contributed partial data to analyses. 

Because this missing data did not occur at random, we ran additional models with these infants 
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removed. Significant findings were unchanged by excluding these infants, so results reported 

include data from the full sample. 

2.3 Outcome Measures 

Three measures were collected in service of determining HR infants’ outcome group 

status. These were collected at 18, 24, and 36-month follow up visits. These measures are 

detailed below, followed by a description of how scores were used in determining HR infants’ 

outcome group membership.  

2.3.1  MacArthur-Bates Communicative Development Inventory 

At 18, 24, and 36 months, the MacArthur-Bates Communicative Developmental 

Inventory (CDI; Fenson et al., 2002) was completed for HR infants by the primary caregiver. 

Ample work indicate that the CDI is reliable and valid in measuring language ability, and it is 

sensitive to detect patterns of atypical language development across a variety of samples, 

including in ASD (e.g., Charman, Drew, Baird, & Baird, 2003; Dale, Bates, Reznick, & 23 

Morisset, 1989; Fenson et al., 1994; Luyster, Qiu, Lopez, & Lord, 2007; Miller, Sedey, & Miolo, 

1995; Mitchell et al., 2006; Thal, O'Hanlon, Clemmons, & Fralin, 1999).  

During infants’ 18-month visit, caregivers completed the Words and Gestures form of the 

CDI (CDI-I), or the Words and Sentences form (CDI-II). The form parents received depended on 

the infants’ language ability. If the child had very few words (as indicated by the caregiver), the 

caregiver completed the CDI-I. If the infant was producing words frequently or combining 
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words, the caregiver completed the CDI-II. The CDI-I is a 396-item vocabulary checklist, which 

requires that parents report: a) words that their infant only understands (receptive language), and 

b) words that their infant both says and understands (expressive language). Additionally, the 

CDI-I asks parents to report on their infants’ production of gestures and actions.  

At infants’ 24-month visit, all caregivers completed the CDI-II. The CDI-II is a 680-item 

vocabulary checklist. Caregivers are asked to report on words their infant says. It also includes 

questions regarding the morphology and syntax of the infants’ language.  

Finally, at the 36-month visit, parents completed the CDI-III. The CDI-III is a 100-item 

checklist in which caregivers are asked to report on words their infant says. In addition, it 

includes 12 questions inquiring about infants’ grammatical complexity, and 12 questions 

inquiring about the semantics and pragmatics of infants’ speech. It is appropriate for infants aged 

30-37 months.  

2.3.2  Mullen Scales of Early Learning 

At the 18, 24, and 36-month follow up visits, HR infants were administered the Mullen 

Scales of Early Learning (MSEL; Mullen, 1995). The MSEL is a standardized and normed 

assessment which is administered by an experimenter. It provides an index of infants’ general 

cognitive functioning from birth through 68 months and is organized into five subsections: Fine 

Motor, Visual Reception, Expressive Language, Receptive language, and Gross Motor. It has 

strong internal consistency, ranging from 0.83 to 0.95.  
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2.3.3  Autism Diagnostic Observation Schedule 

When HR infants were 36 months old, they were administered the Autism Diagnostic 

Observation Schedule-Generic (ADOS-G; Lord et al., 2000). A research-reliable evaluator 

administered the ADOS. The evaluator was naïve to all prior collected study data. The ADOS is 

a play-based assessment designed to measure characteristics of ASD in social, communication, 

and play behaviors. Infants’ production of repetitive behaviors is also observed. ADOS items are 

scored on a scale from 0 to 3—higher scores denote more severe impairment. A scoring 

algorithm is used to determine whether a threshold for ASD or Autism is met. The ADOS 

reliably distinguishes children with ASD from neurotypical children and children with other 

developmental disorders (Lord et al., 2000).  

2.4 Outcome Classification 

Using scores obtained from the measures described above, HR infants were classified 

into one of the following three outcome groups according to the following criteria.   

Infants were classified as HR-ASD if their score on the ADOS-G met or exceeded the 

algorithm threshold for ASD or AD and they received a clinical best estimate diagnosis of AD, 

ASD, or PDD-NOS (Pervasive Developmental Disorder-Not Otherwise Specified) using DSM–

IV–TR criteria (diagnostic evaluations occurred prior to the release of the DSM–V in 2013). 

Fifteen HR infants (5 female) were diagnosed with ASD. 

Infants were classified as language delayed (HR-LD) if they did not receive an ASD 

diagnosis and either of the following criteria were met:  
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1.  Standardized scores on the CDI–II and or CDI–III at or below the 10th percentile at 

more than one time point between 18 and 36 months. 

2.  Standardized scores on the CDI–III at or below the 10th percentile and standardized 

scores on the receptive and/or expressive subscales of the MSEL equal or greater than 1.5 SDs 

below the mean at 36 months.  

These criteria have been used extensively to identify a pattern of language delay in 

community samples (Gershkoff-Stowe, Thal, Smith, & Namy, 1997; Heilmann et al., 2005; 

Robertson & Weismer, 1999; Weismer & Evans, 2002) as well as HR infants (Iverson et al., 

2018; Ozonoff et al., 2010; Parlade & Iverson, 2015; West et al., 2017). Twenty-six infants were 

classified as HR-LD (11 female).  

The remaining 50 HR infants were classified as No Diagnosis (HR-ND; 28 female). 

Outcome measures were not part of the study protocol for LR infants, who graduated from the 

study at 19-months old. There was no indication that LR infants developed atypically.  

2.5 Coding 

A 10-minute segment of each visit was coded. This segment was selected by taking the 

first available 10 minutes when dyads were interacting naturally (i.e., when they were instructed 

to do what they typically do, with no other instruction) and the infant was not constrained by a 

high-chair. For 663 of the 674 sessions, this segment was completely continuous with no pauses 

(98.8% of LR sessions, 98.2% of HR sessions). However, for 11 sessions it was impossible to 

find 10 continuous minutes of naturalistic interaction because the infant was intermittently 

placed in a high chair (1.2% of LR sessions, 1.8% of HR sessions). In these instances, the 10 
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minutes was broken into two pieces (e.g., from 1:00-6:00 & 10:00-15:00 minutes). A full 10-

minutes was scored for every complete session (i.e., no infant had a shorter segment).  

Coding was completed by one primary and seven secondary coders, who were naïve to 

infants’ risk status and outcome classification. Coding was completed in version 4.8 of Elan for 

Windows (http://tla.mpi.nl/tools/tla-tools/elan; Lausberg & Sloetjes, 2009). Each secondary 

coder was assigned to one of four coding teams, which focused on either locomotion, object 

interactions, gesture, or vocalizations. Gesture and vocalization coding teams also identified 

caregiver responses. For each team, secondary coders were trained by double-coding clips with 

the primary coder until they met threshold scores on all variables for 3 consecutive clips 

(Cohen’s kappa ≥ 0.80 for categorical variables; mean percent agreement ≥ 90% for 

identification of behaviors; inter-coder correlations ≥ 0.90 for agreement on the duration 

variables). Following this training period, coders continued to double-code 19% of all clips to 

ensure data quality and prevent coder drift. Coding discrepancies were discussed and resolved 

through group consensus. Original codes were used to calculate reliability data. However, the 

revised codes were used for data included in final analyses. Coding manuals are presented in 

Appendix B. 

2.5.1  Infant Locomotion 

All bouts of locomotion were identified at each timepoint. A bout of locomotion was 

defined as 2 or more steps or crawl-cycles, which occurred within 0.5 second intervals (i.e., if an 

infant paused for more than 0.5 seconds while locomoting, two separate bouts were coded; e.g., 

Adolph et al., 2012). A 0.5-second pause marks a meaningful disruption in continuous infant 

locomotion (e.g., Bril & Breniere, 1989; Garciaguirre, Adolph & Shrout, 2007). The onset of 
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each bout was determined as the first frame in which the infants’ leg (or arm in instances of arm-

dominant crawl styles) was in motion. The offset was determined when the final step (or crawl 

cycle) was completed. Bouts were identified as crawling if the infant was on all fours. Bouts 

were identified as cruising (supported walking) if the infant was upright and was holding onto a 

source of support (typically furniture). Bouts were identified as walking independently if the 

infant was upright and was not receiving any external support.  

Additionally, coders identified bouts in which the infant approached a social partner. 

These were coded when the infant was beyond arm’s reach of the social partner at the onset of 

locomotion, and within arm’s reach at the offset (note that the infant did not have to take a direct 

path). Coders also identified bouts in which the infant disengaged from a social partner. These 

were coded when the infant was within arm’s reach at the onset of locomotion, and beyond arm’s 

reach at the offset.  

2.5.2  Infant Object Interactions 

Next, infants’ interactions with objects were coded.  For each bout of locomotion, coders 

identified whether the infant approached an object. Object approaches were identified if the 

infant was distal to the object at the onset of locomotion, and then touched the object within 2 

seconds of the offset of locomotion. For each bout of locomotion, we identified whether the 

infant carried an object. This was defined as any time the infant held an object and moved it with 

them as they locomoted. Next, we identified each unique object the infant interacted with (object 

variety). To count as an interaction, the infants must have touched the object with a hand or 

finger for at least 0.5 seconds. This prevented incidental “grazes” from being included. When 

infants interacted with sets of objects (e.g., puzzle pieces, crayons, blocks), the entire set counted 
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as a single object. To illustrate, if an infant touched six different crayons, the event was coded as 

only one object.  

2.5.3  Infant Communication 

All deictic gestures produced by infants were coded. We focused only on deictic gestures 

because they occur frequently in infancy and are not produced as part of ritualized routines (such 

as waving bye-bye; e.g., Bates et al., 1975). Deictic gestures included: a) gives: infant handed an 

object to a social partner; b) shows: infant held up an object to show a social partner; c) reaches: 

infant reached with an open hand to request a distal object; d) index finger points: infant pointed 

to a distal object with an isolated index finger (i.e., the finger does not contact the object); e.) 

index finger touches: infant touched an object with an isolated index finger. Only gestures that 

were produced spontaneously were coded (i.e., gestures that were verbally elicited by a caregiver 

were excluded; Iverson & Goldin-Meadow, 2005). To illustrate, if a caregiver said, “Where’s 

teddy?” and then baby pointed to teddy, the pointing gesture was not considered spontaneous and 

was not coded.  

Coders also identified all infant vocalizations, defined as any pre-speech sound the infant 

produced.  Vegetative sounds (e.g., coughs, sneezes, breathing) and affective sounds (e.g., 

laughing, fussing, crying) were not coded.  

Next, coders indicated whether previously-identified gestures and vocalizations were 

directed. The behavior was coded as directed if it was paired with simultaneous eye gaze toward 

a social partner following the procedure used by Clearfield (2011). Finally, coders identified 

whether gestures and vocalizations were moving. Behaviors were identified as moving if they 
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temporally overlapped with locomotion, or occurred within 2 seconds of locomotion offset. All 

gestures and vocalizations not identified as moving were coded as stationary.  

2.5.4  Caregiver Responses 

Coders indicated whether each previously-identified gesture and vocalization received a 

contingent verbal response from a caregiver. A verbal response was identified if the caregiver 

produced a linguistic vocalization (i.e., containing words) within 2 seconds of the infant’s 

gesture or vocalization. These criteria have been previously used to capture patterns of 

caregivers’ contingent responses (e.g., Gros-Louis, West & Goldstein, 2006; Tamis-LeMonda, 

Bornstein & Baumwell, 2001). For each verbal response identified, coders indicated whether the 

response contained a translation. A translation was defined as a label corresponding to the 

infants’ focus of attention (e.g., an infant holds up a ball and the caregiver says, “Are your going 

to throw me your ball?”; an infant vocalizes while looking at a car and caregiver says, “That’s 

your favorite car”). Consistent with prior work, we took an inclusive approach to identifying 

translations and included any concrete noun that described all or part of the referent 

(Leezenbaum, Campbell, Butler & Iverson, 2014; Goldin-Meadow, Goodrich, Sauer & Iverson, 

2007). For example, if an infant points to a dog and the caregiver says, “He has big paws,” 

“paws” was still counted as a translation even though it does not refer to the entire object.  

2.5.5  Inter-rater Reliability 

For locomotion variables, mean percent agreement was 92% (71 - 100%) for 

identification of locomotion bouts and inter-coder correlations were 0.92 (0.77 - 1.00) for the 
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duration of locomotion bouts.  Cohen’s kappas were κ = 0.97 (0.63 - 1.00) for categorizing 

locomotion as either crawling, cruising, or walking, κ = 0.93 (0.52 - 1.00) for categorizing 

locomotion as a social approach, and κ = 0.91 (0.57 - 1.00) for categorizing locomotion as a 

social disengagement.  

For object interaction variables, Cohen’s kappas were κ = 0.88 (0.64 - 1.00) for 

categorizing bouts as object approaches and κ = 0.97 (0.64 - 1.00) for carrying objects. Mean 

percent agreement for identification of unique objects was 94% (80 - 100%).  

For communication variables, mean percent agreement was 83% (64 - 100%) for 

identification of gestures and 90% (71 - 100%) for identification of vocalizations. Cohen’s 

kappas were κ = 0.92 (0.69 - 1.00) for categorizing the directedness of gestures and κ = 0.97 

(0.72 - 1.00), and κ = 0.82 (0.61 - 1.00) for categorizing the directedness of vocalizations. 

Cohen’s kappas were κ =0.97 (0.72 - 1.00) for categorizing gestures as moving and κ = 0.99 

(0.80 - 1.00) for categorizing vocalizations as moving.  

For caregiver response variables, Cohen’s kappas were κ = 0.90 (0.63 - 1.00) for 

caregiver verbal responses to gestures, κ = 0.89 (0.64 - 1.00) for caregiver verbal responses to 

vocalizations, κ = 0.95 (0.58 - 1.00) for caregiver translations to gestures, and κ = 0.95 (0.60 - 

1.00) for caregiver translations to vocalizations. 

2.6 Data Reduction 

Raw data coded at each time point in Elan were extracted and exported into Version 24 of 

IBM SPSS, where individual infants’ data were reduced to form the final variables. Each coding 
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session lasted for precisely 10 minutes. Because session duration was standardized and there 

were no deviations, it was not necessary to account for differences in duration.  

For infant locomotion, six primary variables were calculated from the data for each 

session: a) the total duration of time spent crawling in seconds; b) the total duration of time spent 

cruising in seconds; c) the total duration of time spent walking independently in seconds; d) the 

total number of locomotion bouts in which infants approached a social partner; and e) the total 

number of locomotion bouts in which infants disengaged from a social partner.  

Three primary variables were computed separately for each session from the data on 

infant object interactions: a) the total number of locomotion bouts in which infants approached 

an object; b) the total number of locomotion bouts in which infants carried an object; and c) the 

total number of unique objects that the infant interacted with during the session.  

For infant communication, four primary variables were calculated: a) the total number of 

gestures that infants produced during the session; b) the total number of vocalizations that infants 

produced during the session; c) the total frequency of directed communication; i.e., [directed 

gestures + directed vocalizations]; and d) the total frequency of moving communication; i.e., 

[moving gestures + moving vocalizations].  

Finally, four primary variables were calculated from the data on caregiver responses: a) 

the proportion of infants’ total communication that received a verbal response, i.e., [(total # 

caregiver responses to gestures + total # caregiver responses to vocalizations) / (total # infant 

gestures + total # infant vocalizations)]; b) the proportion of infants’ total communication that 

received a translation, i.e., [(total # caregiver translations to gestures + total # caregiver 

translations to vocalizations) / (total # infant gestures + total # infant vocalizations)]; c) the 

proportion of infants’ total moving communication that received a verbal response, i.e., [(total # 
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caregiver responses to moving gestures + total # caregiver responses to moving vocalizations) / 

(total # infant moving gestures + total # infant moving vocalizations)]; and d) the proportion of 

infants’ total stationary communication that received a verbal response, i.e., [(total # caregiver 

responses to stationary gestures + total # caregiver responses to stationary vocalizations) / (total 

# infant stationary gestures + total # infant stationary vocalizations)].  

2.7 Analytic Approach 

This study had two overarching objectives. The first objective was to measure changes in 

infants’ locomotor behavior, object interactions, communication, and caregivers’ contingent 

responses as infants transitioned from crawling to walking. The second objective was to probe 

whether these changes differed among three HR outcome groups—HR-ASD, HR-LD, and HR-

ND infants—and their LR peers. Hierarchical linear modeling (HLM) was used to achieve these 

objectives. HLM partitions the variance of nested data into within-cluster effects and between-

cluster effects. This is well-suited for these data, as time-points are nested within individual 

infants, and individual infants are nested within risk/outcome groups. At the within-infant level 

(Level 1), we assessed how time-varying factors (e.g., walking experience) account for variance 

in dependent variables. At the between-infant level (Level 2), we assessed how time-invariant 

factors (e.g., outcome group membership) account for variance in infants’ intercept and slope 

terms. An additional advantage is that HLM accommodates missing and unequally spaced data 

(e.g., Huttenlocher, Haight, Bryk, Seltzer & Lyons, 1991; Singer, 1998). For the present study, 

674 of 812 (83.0%) observations were complete. Missingness was substantially greater for HR 

infants (96% complete for LR, 81% complete for HR), primarily because 7 HR infants were 



 28 

enrolled in the study late, and the frequency of missed visits was much greater among HR 

infants. However, within the HR group, patterns of missingness did not differ by outcome group 

(81% complete for HR-ND; 82% complete for HR-LD; 81% complete for HR-ASD). Data were 

analyzed using Version 7 of HLM for Windows (Raudenbush, Bryk, Cheong, Congdon & du 

Toit, 2011). 

2.7.1  Model Selection 

Data analysis began by selecting the best-fitting, most parsimonious model for each 

dependent variable. A multistep process was carried out to select the appropriate model. For each 

variable of interest, four unconditional models were calculated (i.e., models with no predictors 

other than intercept and slope terms). The first was an intercept-only model. An intercept-only 

model may seem counterintuitive for longitudinal data, but it is the most appropriate when the 

dependent variable remains stable over time (i.e., it depicts a flat line). Second, an unconditional 

linear model with TIME as a predictor was fitted. Next, an unconditional quadratic model with 

TIME and TIME2 predictors was calculated. Finally, an unconditional piecewise linear model 

was fitted, with PIECE 1 TIME and PIECE 2 TIME included as predictors. A piecewise model 

estimates growth over time as two pieces, rather than a single continuous variable. PIECE 1 

estimates baseline growth in the dependent variable across the entire period (i.e., all 7 timepoints 

in this study). PIECE 2 estimates linear growth following an inflection point (here, the session 

prior to walk onset; Figure 1 provides a schematic illustration of how time is coded). A 

significant PIECE 2 slope denotes an incremental change in linear growth following the 

inflection point.  
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Figure 1 Schematic Illustration of the Piece 1 and 2 Time Variables 

Next, we compared the fit of each unconditional model. A deviance score was generated 

for each model, comparing the observed values against the model-predicted values. Model 

deviance scores were compared using chi-square statistics. Higher-order growth models were 

selected only if they significantly reduced deviance, and if the additional growth term was 

significantly greater than zero. In some instances (crawling duration, crawling frequency, 

moving social bids), piecewise and quadratic models did not significantly differ in their model 

fit. When this occurred, the model with the lower deviance score was selected. This process led 

us to select linear, quadratic, and piecewise models to describe growth trajectories. 
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2.7.2  Final Conditional Models 

Final Linear Models. For linear models, Level 1 estimated individual linear growth 

across the period as a function of TIME. We centered the data at the mid-point, which was the 

visit prior to walk onset. This point was chosen as the intercept because it marks the very start of 

the transition to walking. The equation for Level 1 is as follows:  

(1) Yti = π0i + π1i*(TIMEti) + eti 

Here the intercept (π0i) represents the level of the dependent variable of infant i at the 

midpoint. The term π1i represents the linear slope—the rate and direction of change across the 

period—for infant i. 

At Level 2, time-invariant variables were included as predictors of the intercept and 

linear slope. This included a dummy variable for each HR outcome classification group (HR-

ND, HR-LD, and HR-ASD); the LR infants served as a reference group. Additionally, to control 

for differences in age, infants’ age at walk onset was included as a predictor on intercept and 

slope terms. The final Level 2 equations for the final linear model were as follows:   

(2) π0i = β00 + β01*(Age at Walk Onseti) + β02*(NDi) + β03*(LDi) + β04 (ASDi) + r0i 

(3) π1i = β10 + β11*(Age at Walk Onseti) + β12*(NDi) + β13*(LDi) + β14 (ASDi) + r1i 

Here, coefficients (the β terms) represent the deviation of each HR group from the LR 

reference group. For instance, β00 represents the LR group’s score at the intercept, and β02 

represents the deviation of the HR-ND group (i.e., the intercept for HR-ND infants can be 

calculated by summing β00 and β02). It should be noted that this model tests whether each HR 

group differs from the LR group; it does not allow us to compare the HR groups to one another. 

To test for differences between HR groups we recalculated the models and rotated the reference 
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group.  

Final Quadratic Models. At Level 1, quadratic models estimated individual growth as a 

function of TIME and TIME2. Again, we centered the data at the midpoint—the visit prior to 

walk onset.  The equation for Level 1 is as follows:  

(1) Yti = π0i + π1i*(TIMEti) + π2i*(TIME2
ti) + eti 

The intercept (π0i) represents an infant i’s score at the midpoint.  In this quadratic model, 

the term π1i represents the instantaneous linear slope for infant i—this term indicates the rate and 

the direction of change specifically at the intercept.  The term π2i represents the quadratic growth 

for infant i—i.e. the acceleration or deacceleration over time.  

Again, Level 2 included dummy variables for each outcome group (HR-ND, HR-LD, and 

HR-ASD) as well as infants’ age at walk onset as predictors of the intercept, instantaneous linear 

slope, and quadratic slope. The equations for Level 2 are:  

(2) π0i = β00 + β01*(Age at Walk Onseti) + β02*(NDi) + β03*(LDi) + β04 (ASDi) + r0i 

(3) π1i = β10 + β11*(Age at Walk Onseti) + β12*(NDi) + β13*(LDi) + β14 (ASDi) + r1i 

(4) π2i = β20 + β21*(Age at Walk Onseti) + β22*(NDi) + β23*(LDi) + β24 (ASDi) + r2i 

The intercept (π0i), instantaneous linear slope (π1i) and quadratic slope (π2i) are modeled 

as a function of the between-subject variables—the β terms. These β terms are interpreted as 

deviations of each outcome group from the reference group. To illustrate, β12 represents the HR-

ND’s deviation from the LR reference group (i.e. the instantaneous linear slope for HR-ND 

infants can be calculated by summing β10 and β12).  Again, to examine group-differences among 

the HR outcome groups, we recalculated each model, rotating the reference group.  

Final Piecewise Models. For piecewise models, growth was estimated as a function of 
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two slope terms: PIECE 1 slope (all time points; baseline growth) and PIECE 2 slope 

(incremental growth after walk onset). Again, we centered the data at the midpoint—the visit 

prior to walk onset. The equation for Level 1 is as follows:  

(1) Yti = π0i + π1i*(PIECE 1ti) + π2i*(PIECE 2ti) + eti 

Again, the intercept (π0i) represented infant i’s score at the visit prior to walk onset. The 

Piece 1 slope represents the estimated baseline linear growth rate for infant i, and the Piece 2 

slope represents the estimated additional incremental growth from the visit prior to walk onset 

forward for infant i (See Figure 1 for a depiction of the coding of piecewise time).  

Level 2 predictors were consistent with linear and quadratic models and included dummy 

variables for outcome groups and infants’ age at walk onset. The equations for Level 2 are:  

(2) π0i = β00 + β01*(Age at Walk Onseti) + β02*(NDi) + β03*(LDi) + β04 (ASDi) + r0i 

(3) π1i = β10 + β11*(Age at Walk Onseti) + β12*(NDi) + β13*(LDi) + β14 (ASDi) + r1i 

(4) π2i = β20 + β21*(Age at Walk Onseti) + β22*(NDi) + β23*(LDi) + β24 (ASDi) + r2i 

Again, Level 1 model terms (the intercept, Piece 1 slope, and Piece 2 slope) are modeled 

as a function of the Level 2 between-subject variables. These β terms are interpreted as 

deviations of each outcome group from the reference group.  
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3.0 RESULTS 

This study had two overarching objectives. First, we investigated the developmental 

cascade hypothesis—that walk onset corresponds to a cascade of events in which infants 

locomote more, interact with more objects, produce more gestures and vocalizations, and receive 

more contingent responses from parents. Second, we tested whether this transition differed 

among three groups of HR infants who varied in outcome at 36 months: HR-ND, HL-LD, and 

HR-ASD infants. Following preliminary analyses, we present data relevant to the primary study 

aims. The first set of analyses models changes in LR and HR infants’ locomotion (Aim 1), 

including mode of locomotion (crawling, cruising, and walking), and functional features of 

movement (e.g., how often infants approached social partners). Second, we modeled 

developmental trajectories of LR and HR infants’ object interactions during this transition (Aim 

2). Next, we analyzed trajectories of LR and HR infants’ communication, and the extent to which 

gestures and vocalizations were moving (paired with locomotion) and directed (paired with gaze 

to a social partner; Aim 3). Finally, models were fitted to measure trajectories of caregivers’ 

verbal responses as their infant transitioned from crawling to walking; These trajectories were 

compared across LR and HR outcome groups (Aim 4). Partial correlations between all dependent 

variables (controlling for age at each session) are included in Appendix A. For all final analyses, 

the descriptive statistics, model coefficients, and graphical depictions of model estimates are 

presented in turn. In addition, primary analyses were accompanied by supplemental comparisons 

when relevant, in order to further probe whether trajectories differed among HR groups (for 

example, to detect whether HR-ASD infants differed significantly from HR-LD infants).  
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3.1 Preliminary Analyses 

Preliminary analyses were conducted to test whether infants’ age at walk onset differed 

across outcome groups. Descriptive statistics are shown in Table 2. Overall, HR-ASD and HR-

LD infants tended to walk later than their peers. A one-way ANOVA uncovered a significant 

effect of Outcome Group Membership, F (3, 108) = 3.23, p = 0.025, and planned contrasts 

revealed that the HR-LD group was significantly older than the LR group (p = .033). There were 

no other significant differences among groups. To ensure that results of the final conditional 

models are not influenced by these age differences, infants’ age at walk onset was included as a 

predictor for every model term in all final HLM models.  

Table 2 Means and Standard Deviations for Age at Walk Onset by Outcome Group 

 LR  HR-ND  HR-LD  HR-ASD 

 M SD range  M SD range  M SD range  M SD range 

Age 11.76 1.56 9-15  12.51 1.82 8-17  13.15 1.791 10-17 
 

13.14 1.88 11-16 

 

3.2 Trajectories of Infant Locomotion 

The first aim of this research was to measure longitudinal changes in locomotion across 

the transition to walking by observing infants’ use of crawling, cruising, and walking in their 

home environments across the seven sessions. We also examined changes in infants’ social 

approaches (how often they locomoted to a social partner) and social disengagements (how often 

they locomoted away from a social partner). Descriptive statistics for all locomotion variables 

across the four outcome groups are shown below in Table 3. Model coefficients for locomotion 
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variables appear in Table 4 and 5. Because the LR infants served as a reference group, model 

coefficients for HR groups should be interpreted as deviations from the LR group in their 

intercept, linear growth, or quadratic growth. 

Table 3 Descriptive Statistics for Infant Locomotion Variables 
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Table 4 Model Estimates of Crawling, Cruising, and Walking Durations 

 

3.2.1  Crawling Duration 

Duration of infant crawling was modeled using a piecewise linear model. Estimated 

growth trajectories for groups are depicted in Figure 2, and Figure 3 shows individual infants’ 

estimated trajectories. These figures show that LR infants steadily increased in total time spent 

crawling until walk onset, after which crawling duration sharply declined. This trend is reflected 

in the final conditional model. Prior to walk onset, LR infants had significant positive growth in 

crawling duration (β10 = 4.48, SE = 2.22, p = 0.046); they increased by 4.48 seconds each month. 

After walk onset, LR infants had significant negative change in crawling (β20 = -17.75, SE = 

4.00, p < 0.001); their total crawling duration decreased by 12.24 seconds each month. The HR-
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ND and HR-LD groups showed a similar pattern and did not differ significantly from the LR 

reference group.  

HR-ASD infants, on the other hand, displayed a different pattern. Prior to walk onset, 

they increased by 14.93 seconds of crawling each month, surpassing the LR infants (β14 = 10.45, 

SE = 4.00, p = 0.010; see Figure 2). At the midpoint, HR-ASD infants crawled for a longer 

duration than any other group, though this difference was not significant (β04 = 6.29, SE = 5.27, p 

= 0.24). After walk onset, they decreased their total crawling time by 19.16 seconds each month; 

this decline was marginally steeper than the LR group (β24 = -16.34, SE = 8.49, p = 0.056).  

Although these results reveal how HR-ASD infants differed from the LR reference group, 

they do not provide information about whether the HR-ASD group differed from the other HR 

groups. To obtain this information, we reran the HLM model, this time substituting in the HR-

ASD infants as the reference group. This allowed us to compare their trajectory to those of the 

HR-ND and HR-LD groups. Doing so revealed that HR-ASD infants had a significantly steeper 

increase in total crawling duration prior to walk onset than HR-ND infants (p = 0.036). This was 

marginally steeper than HR-LD infants (p = 0.065). However, changes in total crawling time did 

not differ between groups after walk onset—all HR groups exhibited sharp declines after they 

attained walk onset.  
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Figure 2 Model Projections of Crawling Duration Over Time 

 

Figure 3 Individual Trajectories of Crawling Duration Over Time 
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3.2.2  Cruising Duration 

Figure 4 depicts the estimated growth trajectories for the total duration of infant cruising, 

which was again modeled using a piecewise linear model. As can be seen in the figure, cruising 

durations consistently increased until walk onset, after which there was a decline, presumably as 

infants began to walk independently. Prior to walk onset, LR infants showed significant positive 

growth in cruising duration (β10 = 8.37, SE = 2.53, p < 0.001), increasing by 8.37 seconds each 

month. Cruising duration peaked at the midpoint (the visit prior to walk onset), as LR infants 

spent 32.44 seconds cruising during the 10-minute session (β00 = 32.44, SE = 5.88, p < 0.001). 

After walk onset, LR infants displayed a significant, negative change in the total time they spent 

cruising (β20 = -16.54, SE = 4.50, p < 0.001), decreasing by 8.28 seconds each month. Model 

coefficients uncovered no significant differences between the HR groups and the LR reference 

group.  
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Figure 4 Model Projections of Cruising Duration Over Time 

3.2.3  Walking Duration 

Estimated trajectories of walking are presented in Figure 5. Prior to parents’ report of 

walk onset, infants almost never walked. However, in infrequent instances, pre-walking infants 

took short bouts of unsteady steps prior to their designated walk onset. Although we did not code 

the number of steps, these bouts lasted for short durations: on average, individual walking bouts 

lasted about 0.25 seconds prior to walk onset. LR infants’ walking duration did not change prior 

to their designated walk onset sessions (walking duration did not differ significantly from 0; β10 

= -2.04, SE = 1.19, p = 0.46). After walk onset, LR infants had significant positive growth: 

walking duration increased by 37.83 seconds each month (β20 = 37.83, SE = 8.44, p < 0.001). By 

the final session, LR infants spent 102.91 seconds walking—approximately 17% of the total 
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session time. Model coefficients indicated that there were no significant differences in the 

trajectories of LR and HR groups.  

 

Figure 5 Model Projections of Walking Duration Over Time 

3.2.4  Approaching & Disengaging from Social Partners 

Trajectories for the total numbers of infants’ social approaches (locomotion to a social 
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Table 5 Model Estimates for Infant Social Approaches and Disengagements 

 

Estimated trajectories for the frequency of social approaches (i.e., the number of 

locomotion bouts in which an infant approached a social partner) are presented in Figure 6. 

Initially, infants almost never approached social partners. LR infants exhibited modest but 

significant positive growth over time (β11 = 0.43, SE = 0.11, p < 0.001), increasing each month 

by 0.43 social approaches. At the midpoint, LR infants approached social partners approximately 

1.63 times during the 10-minute session (β10 = 1.63, SE = 0.22, p < 0.001). This trajectory was 

consistent across HR outcome groups; there were no significant differences between LR and HR 

infants.  
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Figure 6 Model Projections of Social Approaches Over Time 

The frequency of social disengagements (i.e., the number of locomotion bouts in which 

an infant locomoted away from a social partner) followed an almost identical trajectory. 

Estimated trajectories are shown below in Figure 7. At the first session, LR infants rarely 

disengaged from social partners. They exhibited positive linear growth, increasing by 0.40 social 

disengagements each month (β10 = 0.40, SE = 0.07, p < 0.001). At the midpoint, they disengaged 

from social partners 1.31 times during the 10-minute session (β00 = 1.31, SE = 0.15, p < 0.001). 

This pattern was consistent among the HR infants, and model coefficients indicated no 

significant differences between LR and HR outcome groups.  
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Figure 7 Model Projections of Social Disengagements Over Time 

3.2.5  Summary 
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of atypical walking development in ASD and may be due to methodological differences. Past 

research has used chronological age as the basis of comparison. Here, data were organized 

around the onset of walking. Therefore, the question we addressed here—which differs subtly 

from past work—is when HR-ASD infants do walk, does their developmental progression differ? 

Overall, trajectories of locomotion were similar to LR and HR peers, though future work should 

address this question using more finely-tuned measures.  

3.3 Trajectories of Infant Object Interactions 

The second study aim was to measure trajectories of object interactions across the 

transition to walking. The analyses reported below assessed: a) the frequency of locomotion 

bouts to retrieve distal objects (object approaches); b) the frequency of carrying objects; and c) 

the total number of unique objects that infants interacted with (object variety). Descriptive 

statistics are provided in Table 6. For object approaches and variety, linear models were found to 

fit the data best. Object carrying was best described by a quadratic growth model. All model 

coefficients appear in Table 7.  
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Table 6 Descriptive Statistics for Infant Object Interaction Variables 
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Table 7 Model Estimates for Infant Object Approaches, Carrying, and Variety 

 

3.3.1  Object Approaches 

Estimated growth trajectories for the frequency of object approaches are shown in Figure 

8. As can be seen, LR infants rarely approached objects during the first session. The LR group 

displayed significant positive growth (β10 = 0.89, SE = 0.13, p < 0.001), with an increase of 0.89 

object approaches each month. At the final timepoint LR infants approached objects 

approximately 7 times during the 10-minute session. Model estimates indicated that trajectories 

for HR infants did not differ from that of LR infants.  
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Figure 8 Model Projections of Object Approaches Over Time 

3.3.2  Carrying Objects 

Figure 9 shows the estimated growth trajectories for the frequency of object carrying 

bouts. As is evident, LR infants displayed positive and accelerating growth in object carrying. At 

the midpoint, the LR reference group carried objects approximately 2.55 times (β00 = 2.55, SE = 

0.69, p < 0.001). Additionally, their growth accelerated by 0.28 object carries each month (β20 = 

0.28, SE = 0.13, p = 0.029), such that by the final visit LR infants frequently carried objects, 

doing so approximately 17 times over the 10-mintue session. No differences were revealed 

between the HR groups and the LR reference group.  
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Figure 9 Model Projections for Object Carrying Over Time 

3.3.3  Object Variety 

Estimated growth trajectories for object variety (i.e., number of different objects 

contacted by infants) are shown in Figure 10. LR infants displayed positive linear growth in 

object variety (β10 = 0.64, SE = 0.09, p < 0.001), increasing the number of different objects they 

accessed by 0.64 each month. The model estimated that at the first session, LR infants interacted 

with 5.25 different objects; this escalated to 9.09 by the last session. There were no significant 

differences between LR and HR groups. However, HR-ASD showed a marginally significant 

attenuation in growth compared to LR infants (β14 = -0.44, SE = 0.24, p = 0.07). In fact, model 

estimates showed HR-ASD infants increased by only 0.20 different objects each month, and 

interacted with 7.64 objects at the final session.   
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Model coefficients tell us whether the HR-ASD group trajectory differed from the LR 

reference group, but they provide no information as to whether the linear growth experienced by 

HR-ASD was significantly greater than zero. Given HR-ASD infants’ pattern of attenuation, we 

decided to further probe whether their linear growth was significant. To do this, we reran the 

model, this time substituting the HR-ASD infants as the reference group. This revealed that the 

number of objects HR-ASD infants interacted with did not change significantly over time (p = 

0.34). Conversely, both HR-ND and HR-LD infants showed significant positive growth in the 

variety of objects they interacted with (p < 0.001; p = 0.007 respectively).  

 

Figure 10 Model Projections for Object Variety Over Time 

3.3.4  Summary 
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more objects. These hypotheses were supported. We replicated past findings showing that during 

this period, LR, HR-ND, and HR-LD infants increasingly locomoted to pick up out-of-reach 

objects and carried objects while locomoting. Further, we extended past work by showing that 

the variety of objects with which LR, HR-ND, and HR-LD infants interact increases over time. 

Although HR-ASD infants did not differ in their frequency of object approaches or object 

carrying bouts, they did not change in the variety of objects they accessed over time.  

3.4 Trajectories of Infant Gestures and Vocalizations 

The third study aim was to measure trajectories of infant gestures and vocalizations 

across the transition to walking in LR and HR outcome groups. Additionally, we examined the 

extent to which these behaviors were coupled with gaze to caregivers (“directed”) and 

locomotion (“moving”). Descriptive statistics are shown in Table 8, and model coefficients are 

presented in Table 9. For gestures and moving communication, piecewise linear models were 

selected to model growth over time. Linear models were the best fit for all other communication 

variables.  
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Table 8 Descriptive Statistics for Infant Communication Variables 
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Table 9 Model Estimates for Infant Communication Variables 

 

3.4.1  Gestures 

Figure 11 shows the estimated trajectories for the frequency of infants’ gesture 

production. In addition, individual infants’ trajectories are shown in Figure 12. As evidenced in 

these figures, LR infants display additional incremental growth after walk onset. This pattern is 

confirmed by model estimates. Prior to walk onset, LR infants show significant positive baseline 

growth (β10 = 0.84, SE = 0.23, p < 0.001), increasing by 0.84 gestures each month. After walk 

onset, there was additional incremental growth above and beyond their baseline growth (β20 = 

1.37, SE = 0.57, p = 0.018). Gestures increased by a rate of 2.21 gestures each month after walk 

onset (0.84 gestures per month baseline growth + 1.37 gestures per month additional incremental 
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growth). From the first to final session, LR infants escalated from 3.8 to 13.0 gestures in the 10-

minute session.  

Model coefficients revealed no differences between the LR reference group and HR-ND 

and HR-LD groups. However, the model does not provide information about whether these 

groups also experience enhanced growth following walk onset. To investigate this further, we re-

ran the model twice, with HR-ND and HR-LD each serving as the reference group. Consistent 

with LR infants, the HR-ND group displayed additional incremental growth after walk onset, 

above and beyond their baseline growth rate (p = 0.014). Therefore, neurotypically developing 

infants regardless of risk status exhibited an inflection in gesture growth at walk onset. In 

contrast, HR-LD infants did not experience significant additional growth in gesture production 

after walk onset (i.e., their rate of change after walk onset did not differ from their baseline rate 

of change, p = 0.39). 

Figure 11 shows that HR-ASD infants produced the fewest gestures of any group, and 

they displayed a substantially flatter trajectory of gesture production. At the midpoint, HR-ASD 

infants gestured significantly less frequently than the LR reference group (β04 = -2.99, SE = 0.90, 

p < 0.001). In addition, after walk onset HR-ASD infants’ slope significantly diverged from that 

of the LR infants (β24 = -1.79, SE = 0.88, p = 0.045). While LR infants added 2.21 gestures each 

month after walk onset, HR-ASD infants added only 0.17 gestures per month.  

In order to compare the HR-ASD infants to other HR outcome groups, we reran the 

model with HR-ASD infants serving as the reference group. This confirmed that HR-ASD 

infants had a significantly different trajectory than HR-ND infants: HR-ASD infants gestured 

significantly less often than HR-ND infants at the intercept (p = 0.007) and had significantly 
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reduced growth after walk onset (p = 0.05). However, there were no significant differences in the 

trajectories of HR-ASD and HR-LD infants.  

 

Figure 11 Model Projections for Infant Gestures Over Time 

 

Figure 12 Individual Trajectories of Infant Gestures Over Time 
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3.4.2  Vocalizations 

Estimated growth trajectories for the frequency of vocalizations3 are presented in Figure 

13. The LR reference group demonstrated significant positive growth in vocalization frequency 

over time (β01 = 4.58, SE = 0.74, p < 0.001), increasing by 4.58 vocalizations each month. This 

constituted a substantial change over time: LR infants increased from 20.7 to 48.1 vocalizations 

from the first to final session—more than doubling their volubility. Trajectories for HR-ND and 

HR-LD infants did not differ from the LR reference group.  

As is apparent in Figure 13, the HR-ASD infants vocalized far less often. At the 

midpoint, they produced 8.54 fewer vocalizations than LR infants (β04 = -8.54, SE = 3.24, p = 

0.01). Moreover, linear growth was significantly reduced for the HR-ASD group (β14 = -3.61, SE 

= 1.15, p = 0.002). While LR infants increased by 4.58 vocalizations each month, HR-ASD 

infants only increased by 0.96 vocalizations per month. The gap between groups amplified over 

time, such that by the final session HR-ASD infants vocalized almost 30 fewer times in 10 

minutes than the LR infants.  

In light of this difference, we re-ran the model with the HR-ASD infants as the reference 

group. This served to compare the trajectory of HR-ASD infants to those of the other HR groups.  

                                                 

3We initially planned to examine infants’ word production separately from non-word 

vocalizations. However, the base rates of words were extremely low. Eighty infants did not 

produce any words in any session. Of the remaining 36 infants, 19 produced words only during 

the final session. Given the severity of positive skew, infants’ word-vocalizations were collapsed 

with their non-word vocalizations. 



 57 

At the intercept, HR-ASD infants vocalized significantly less often than both HR-ND and HR-

LD infants (p < 0.001, p = 0.034 respectively). HR-ASD infants showed significantly reduced 

linear growth compared to HR-ND infants (p = 0.031), but their linear growth did not differ 

significantly from that of HR-LD peers (p = 0.10).  

 

Figure 13 Model Projections for Infant Vocalizations Over Time 
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14.27, SE = 1.05, p < 0.001). There were no significant differences between HR-ND and LR 

infants.  

In contrast, HR-LD and HR-ASD infants showed diverging trajectories of directed 

behaviors. Compared to the LR reference group, HR-LD infants showed reduced linear growth 

(β13 = -1.01, SE = 0.51, p = 0.049); but they did not differ at the intercept (β03 = -1.37, SE = 1.02, 

p = 0.42). Compared to the LR reference group, HR-ASD infants showed reduced linear growth 

(β14 = -2.13, SE = 0.62, p < 0.001), and produced 3.91 fewer directed communicative behaviors 

at the intercept (β04 = -3.91, SE = 1.49, p = 0.01). This same pattern was also found when 

comparing HR-ASD and HR-ND infants: groups differed in both their intercept and slope terms 

(p’s = 0.003, 0.029).  

Finally, we compared model terms for HR-ASD and HR-LD infants. This comparison 

revealed marginally reduced growth in directed communication for HR-ASD infants compared 

to HR-LR infants (p = 0.07).   
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Figure 14 Model Projections for Directed Communication Over Time 

3.4.4  Moving Communication 

Figure 15 displays growth trajectories of moving communicative behaviors (i.e., gestures 

and vocalizations that were paired with locomotion) and Figure 16 shows individual infants’ 
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frequency of moving communicative behaviors after walk onset. This is reflected in the final 
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moving behaviors (β10 = 2.21, SE = 0.68, p = 0.002), increasing by 2.21 behaviors each month. 

After walk onset, LR infants displayed significant additional incremental growth in moving 

behaviors, above and beyond their baseline slope (β20 = 2.16, SE = 1.30, p = 0.02). After walk 

onset, LR infants increased by 4.37 moving behaviors each month (2.21 baseline growth per 
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month + an additional 2.16 behaviors per month). Model estimates for LR infants did not differ 

from those for the HR-ND or HR-LD groups.  

Although the HR-ND and HR-LD groups did not differ from the LR reference group, we 

wanted to investigate whether walk onset was accompanied by additional growth in moving 

communication for these groups. To test this, we re-ran the model twice, substituting HR-ND 

and then HR-LD infants as the reference group. In doing so, we discovered that HR-ND infants 

also displayed significant additional growth in moving communication after walk onset (p < 

0.001), while HR-LD infants did not (p = 0.62).  

HR-ASD infants showed a different growth trajectory of moving communication 

compared to the LR reference group. Prior to walk onset, linear growth did not differ between 

the HR-ASD and LR groups (β14 = 1.21, SE = 1.01, p = 0.24). After walk onset, HR-ASD infants 

displayed significantly reduced growth in moving communication (β24 = -5.85, SE = 2.01, p = 

0.004). In fact, after walk onset HR-ASD infants declined by 0.23 moving behaviors each month.  

In light of HR-ASD infants’ reduced growth trajectory, we re-ran the model substituting 

the HR-AD group as the reference group. This permitted comparison of HR-ASD infants to the 

other HR outcome groups. HR-ASD infants showed significantly less growth in moving 

behaviors after walk onset than HR-ND infants (p < 0.001), and marginally less growth than HR-

LD infants (p = 0.052).  
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Figure 15 Model Projections of Moving Communication Over Time 

 

Figure 16 Individual Trajectories of Moving Communication Over Time 
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3.4.5  Summary 

To summarize, LR and HR-ND infants’ communication changed dramatically during the 

transition from crawling to walking. Walk onset was a point of inflection for growth in gestures 

and in moving communication. Further, vocalization production and directed communication 

increased consistently over time. The comparison of infant communication between the first and 

final session is stark: neurotypically developing infants (both LR and HR) more than doubled the 

frequencies of every communication variable.  

HR-LD infants showed similar, but attenuated patterns of communication development 

compared to LR infants. In particular, gesture production was reduced among HR-LD infants, 

which is consistent with previous findings (e.g., Iverson et al., 2017). Notably, HR-ASD infants 

deviated the furthest from LR infants. They demonstrated significantly flatter growth on all 

communication variables relative to LR infants, and did not show increased growth after walk 

onset on either gesture production or moving communication, as their LR and HR-ND peers did.  

However, it is important to note that while HR-ASD infants tended to show the least growth in 

communication variables over time, they differed only modestly from HR-LD infants. HR-ASD 

and HR-LD groups did not differ in their trajectories of gesture or vocalization production. 

Differences in moving and directed communicative behaviors between HR-ASD and HR-LD 

groups were only marginally significant. This suggests that while communicative development is 

atypical in ASD, it may not be specific enough to distinguish infants with ASD for other 

atypically developing infants.  
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3.5 Trajectories of Caregiver Responses to Infant Communication 

The final study aim was to measure growth trajectories of caregivers’ contingent 

responses to infant communication. Specifically, we modeled changes in verbal responses, 

responses that contained translations, as well as responses specifically to infants’ moving and 

stationary communicative behaviors. Table 10 presents descriptive statistics for all caregiver 

response variables. As discussed in the Methods, response variables were calculated as 

proportions of infants’ communicative behaviors. This controlled for the fact that caregivers of 

HR-LD and HR-ASD infants had fewer opportunities to respond because their infants produced 

fewer gestures and vocalizations. Linear models were the most appropriate models for all 

caregiver response variables, and model coefficients are shown in Table 11.  
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Table 10 Descriptive Statistics for Caregiver Response Variables 
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Table 11 Model Estimates for Caregiver Response Variables 

 

3.5.1  Caregiver Verbal Responses 

The estimated growth trajectories are depicted below in Figure 17. As is evident in the 

figure, caregivers of LR infants showed significant positive growth in the proportion of infant 

communication behaviors they verbally responded to (β10 = 0.053, SE = 0.008, p < 0.001); they 

responded to an additional 5% of infants’ communicative behaviors each month. The 

accumulated growth over time was substantial: initially caregivers responded to 19.9% of infant 

behaviors, and this rose to 51.8% at the final session. Growth trajectories for HR-ND and HR-

LD caregivers did not significantly differ from the LR reference group.  

Conversely, caregivers of HR-ASD infants displayed reduced positive growth in verbal 

responses (β14 = -0.035, SE = 0.015, p = 0.018). Each month, caregivers of HR-ASD infants 
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responded to additional 1.7% of infants’ communicative behaviors. By the final session, they 

responded to 36.7% of infant behaviors. To test whether caregivers of HR-ASD infants differed 

from caregivers of HR-ND and HR-LD infants, we re-ran this model with a HR-ASD reference 

group. Growth trajectories of verbal responses did not significantly differ among caregivers of 

HR-ASD, HR-ND, and HR-LD infants.  

 

Figure 17 Model Projections of Caregiver Responses Over Time 

3.5.2  Caregiver Translations 

Growth trajectories for caregiver responses containing translations (a label corresponding 

to the target of an infant gesture or vocalization; e.g., “Do you want your ball?”) are displayed 

below in Figure 18. Caregivers of LR infants demonstrated positive linear growth in the 

proportion of infant communicative behaviors that they responded with translations to (β10 = 
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0.0182, SE = 0.003, p < 0.001); they responded with a translation to an additional 1.8% of infant 

communicative behaviors each month. By the final session, caregivers of LR infants provided 

translations to 12.5% of infants’ communicative behaviors. Caregivers of HR-ND infants 

displayed a nearly identical growth trajectory, and did not differ significantly from the LR 

reference group.  

As seen in Figure 18, caregivers of HR-ASD and HR-LD infants displayed flatter 

trajectories of translations than the LR reference group. Linear growth was significantly reduced 

for HR-LD (β13 = -0.0147, SE = 0.004, p < 0.001) and HR-ASD caregivers (β14 = -0.0168, SE = 

0.008, p = 0.036) relative to the LR reference group. In light of these differences, we re-ran the 

model twice, with caregivers of HR-LD and HR-ASD respectively serving as the reference 

groups. Both groups displayed significantly flatter growth than HR-ND caregivers (p = 0.007 for 

HR-LD caregivers; p = 0.023 for HR-ASD caregivers). Moreover, neither group showed 

significant change in translations over time (p = 0.41 for HR-LD caregivers; p = 0.85 for HR-

ASD caregivers). Growth trajectories of translations did not differ between HR-LD and HR-ASD 

groups.  
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Figure 18 Model Projections of Caregiver Translations Over Time 

3.5.3  Caregiver Responses to Infants’ Moving and Stationary Communication 

The final set of analyses measured caregiver verbal responses to infants’ moving and 

stationary communicative behaviors in turn. Growth trajectories for verbal responses to moving 

behaviors are displayed in Figure 19. Caregivers of LR infants showed significant positive 

growth in their responses to moving behaviors over time (β10 = 0.05, SE = 0.014, p < 0.001). 

Each month, caregivers of LR infants responded to an additional 5% of infants’ moving 

behaviors. At the first timepoint, caregivers of LR infants responded to 23.7% of moving 

behaviors. This grew to 53.4% by the final session. There were no differences in the growth 

trajectories of LR and HR outcome groups. 
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Figure 19 Model Projections of Caregiver Responses to Moving Communication Over Time 

Estimated growth trajectories of caregiver responses to infants’ stationary communicative 

behaviors are depicted in Figure 20. For caregivers of LR infants, responses to stationary 

behaviors followed a notably similar trajectory as responses to moving behaviors. LR caregivers 

displayed significant positive growth (β10 = 0.05, SE = 0.014, p < 0.001); each month they 

responded to an additional 5% of infants’ stationary behaviors. At the first session, caregivers of 

LR infants responded to 18.2% of stationary behaviors; this grew to 50.5% by the last session. 

Caregivers of HR-ND and HR-LD infants displayed a marginal reduction in linear growth for 

their responses to stationary behaviors relative to the LR reference group (β12 = -0.019, SE = 

0.011, p = 0.085; β13 = -0.026, SE = 0.014, p = 0.069).  

The estimated growth trajectory for caregivers of HR-ASD infants was significantly 

attenuated (β14 = -0.05, SE = 0.016, p = 0.003) compared to the LR reference group. In fact, 

growth was essentially null, as caregivers of HR-ASD infants increased responses to stationary 
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behaviors by only 0.4% each month. The deviation between LR and HR-ASD caregivers 

widened over time, such that by the final session HR-ASD caregivers were responding to 

approximately 20% fewer stationary behaviors than LR caregivers.  

Finally, to test whether growth trajectories differed across HR outcome groups, we reran 

the model with HR-ASD infants serving as the reference group. This revealed that caregivers of 

HR-ND infants showed marginally greater linear growth in their responses to stationary 

behaviors than the caregivers of HR-ASD infants (p = 0.057). Model estimates did not differ 

between HR-LD and HR-ASD infants.  

 

Figure 20 Model Projections of Caregiver Responses to Stationary Communication Over Time 
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3.5.4  Summary 

Across the transition from crawling to walking, infants were increasingly successful in 

eliciting responses from caregivers. Neurotypically developing infants (both LR and HR) 

received more contingent verbal responses over time and more responses containing translations 

(i.e., the object of infants’ gesture or vocalization was named). Contrary to our predictions, 

caregivers of LR and HR-ND infants showed almost identical trajectories of responses to their 

infants’ moving and stationary behaviors.  

Notably, caregivers of HR-LD and HR-ASD infants rarely included translations in their 

responses, and did not increase in the proportion of translations over time. This may be driven by 

differences in communication exhibited by the HR-LD and HR-ASD infants, compared to their 

peers. For example, gestures and vocalizations were less directed (paired with gaze to caregiver) 

for both HR-LD and HR-ASD infants relative to the LR and HR-ND groups, which may have 

affected the types of responses they elicited.  

Caregivers of HR-ASD infants displayed reduced growth in proportion of their behaviors 

that elicited verbal responses, and this attenuation appeared to be driven by responses to 

stationary behaviors. Caregivers of HR-ASD infants responded to an equivalent proportion of 

moving behaviors as LR caregivers did, but they displayed reduced growth in their responses to 

stationary behaviors.  
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4.0 DISCUSSION 

This dissertation had two overarching goals: a) to investigate whether walking instigates 

a developmental cascade, altering the way infants move through their environment, the objects 

they contact, their social interactions with caregivers, their communication, and the verbal 

responses caregivers provide to that communication; and b) to identify whether this 

developmental cascade diverges for HR infants, particularly infants later diagnosed with ASD. 

This research makes multiple novel contributions to our existing knowledge. Despite evidence 

that same-aged crawling and walking infants differ across many seemingly-unrelated domains 

(e.g., Walle & Campos, 2014; Biringen, Emde, Campos & Appelbaum, 2008; Clearfield, 2010), 

little was known about how these domains change as infants begin walking. Our findings 

uncovered the shape of change in infants’ interactions with objects and people as they learned to 

walk. This is a critical step toward understanding how the development of walking, exploration, 

and communication are functionally related. Results also illuminated differences in this transition 

for HR-ASD infants relative to their peers. While neurotypically-developing infants (both LR 

and HR) experienced dramatic changes in the frequency and content of communication, HR-

ASD infants’ communication remained largely unchanged. Findings related to each of these 

goals are discussed in turn below.  
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4.1 The Transition to Walking in Neurotypical Development 

Locomotion changed in predictable ways as infants progressed from “crawler” to 

“walker” status. Time spent walking surged, while crawling and cruising tapered off. However, 

this switch was not necessarily discrete. Infants continued to crawl and cruise long after they 

were capable walkers. Although we did not quantify whether infants traveled greater distances 

when they started walking, it seems likely. Walking bouts lasted substantially longer than 

crawling or cruising bouts. At the peak of walking (the final session), LR infants walked for 106 

seconds on average. In contrast, crawling and cruising peaked at 35 and 33 seconds respectively. 

Therefore, it is possible that walking enabled infants to explore more of their surroundings, 

which is consistent with prior work (e.g., Adolph & Tamis-LeMonda, 2012; Thurman, 2017). 

Moreover, infants contacted more objects in their environments over time. Past research finds 

that walkers retrieve far-off objects more often than same-aged crawlers do (Karasik, Adolph, 

Tamis-LeMonda & Zuckerman, 2012). Here we add that the variety of objects with which they 

interact also expands. This is likely impactful, considering that infant-caregiver interactions are 

frequently centered around toy play (e.g., Belsky & Most, 1981; Bornstein & Tamis-LeMonda, 

1990; Fein, 1981; West & Rheingold, 1978). Finally, as in past work, infants also increasingly 

carried objects with them as they locomoted (Karasik, Adolph, Tamis-LeMonda & Zuckerman, 

2012). Clearly, infants’ object interactions undergo substantial changes during this time.  

Across the transition from crawling to walking, infants increasingly approached their 

caregivers and locomoted away from them. This replicates prior findings that walking is 

associated with an increase in both “proximity-seeking” and “social distancing” behaviors (e.g., 

Biringen, Emde, Campos & Appelbaum, 2008; Mahler et al., 1975). Social interactions take on a 

back-and-forth pattern with walking experience, and infants become more active and 
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autonomous in establishing their proximity to caregivers. Walkers venture out from caregivers to 

explore spaces and things around them, and then return to engage with them. It is surprising that 

this pattern has not been given more research attention, as it is consistently observed across 

studies (Biringen, Emde, Campos & Appelbaum, 2008; Mahler et al., 1975; Karasik, Tamis-

LeMonda & Adolph, 2014; Thurman & Corbetta, 2017; Clearfield, 2010) and indicates that 

walking works to structure the timing of dyadic interactions.  

Infant communication changed dramatically during the transition to walking. In 

particular, gestures quadrupled from the first to final session. Past studies show that infants 

gesture more often after learning to walk (Clearfield, 2008; Walle, 2016). Our findings go a step 

further, indicating that walk onset was an inflection point for gesture development. That is, the 

timing of walk onset coincided with a steep increase in gesture production, as infants 

increasingly pointed, gave, and showed toys to their caregivers, and reached to request objects. 

Vocalizations also doubled over this period. This constitutes a clear transformation in the 

frequency of infant communication. Moreover, two distinct qualitative changes were observed. 

First, vocalizations and gestures were paired with gaze to caregivers more often over time, 

reflecting enhanced communicative intent (e.g., Clearfield, 2008). Second, the extent to which 

communication was moving—i.e., coordinated with locomotion—sharply increased at walk 

onset. Thus, during the transition from crawling to walking, infant communication became more 

multimodal and complex.  

Increasing complexity in infant communication after walking may account for the 

observed increase in caregivers’ contingent responses over time. As infant communication 

became more frequent and sophisticated, caregivers reciprocally responded to a greater 

proportion of infants’ communicative behaviors. In addition, their responses were more likely to 
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contain a translation (i.e., they labeled an object the infant was looking to or interacting with). 

Translation responses may be particularly important for infants’ language acquisition. Infants are 

most likely to learn words when the label is presented while the infant is holding and attending to 

the referent (e.g., Yu & Smith, 2013).  

One surprising finding was that caregiver response rates did not differ for moving and 

stationary communication. In fact, these responses followed strikingly similar trajectories. At the 

initial visit, caregivers responded to roughly 20% of infants’ moving and stationary 

communication. By the final visit, this increased to 50% for both types. This finding stands in 

contrast to previous reports indicating that caregivers are more responsive to moving bids 

(Karasik, Tamis-LeMonda & Adolph, 2014). The discrepancy is likely the result of different 

coding of infant behaviors. Karasik and colleagues specifically focused on instances when 

infants showed or approached their caregivers with objects. We coded a broader measure of 

communication, identifying all gestures and vocalizations produced by infants. In future work, 

we plan to disentangle whether response rates to moving vs. stationary behaviors vary across 

different types of infant communicative behaviors.  

4.2 Evidence for a Developmental Cascade 

The notion that motor achievements unlock opportunities for other types of learning has 

deep roots in developmental psychology (e.g., Piaget, 1964, Gibson, 1988). Recently, the 

development of walking has been investigated through this lens. Researchers hypothesize that 

learning to walk presents infants with new opportunities to explore objects and spaces, initiate 

social interactions, and produce new forms of communication. This dissertation aimed to 
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measure the shape of change in these domains over the transition from crawling to walking. In 

this section, I will discuss how these changes not only co-occur, but also may be functionally 

related to one another via cascading processes. 

Esther Thelen noted in 2000 that, “movement helps children sample the world more 

completely” (p. 394). This surely applies to the onset of walking. Walking enables infants to 

move more quickly and cover much more ground than crawling, expanding infants’ “sampling” 

of the visual, spatial, and social information available in their environment. Current findings 

support this association between locomotion and exploration. As walking increased, so too did 

locomotion to distal objects, as did the variety of objects that infants played with. This does not 

necessarily mean that walking is a goal-directed means to an end. In fact, infants only 

occasionally spot a far-away object and then make a clear path to obtain it (Cole, Robinson & 

Adolph, 2016). Rather, infants seem to move without a specific destination in mind, foraging for 

interesting stimuli along the way. As infants travel greater distances, they make more 

discoveries, interacting with a greater variety of objects. 

In turn, enhanced object interactions may have a cascading effect on infants’ play and 

language experiences. Infant-caregiver interactions are frequently structured around toy play 

(e.g., West & Rheingold, 1978; Belsky & Most, 1981; Bornstein & Lamb, 1992; Fein, 1981). If 

access to a wider variety of objects increases with walking, so too might the variety of play 

forms. For example, blocks afford counting and stacking, baby dolls afford symbolic play (like 

pretending to put baby to bed, or feed baby), strollers and carts afford gross-motor movements, 

and books afford rich literacy-relevant experiences like turning pages and telling stories. 

Interaction with a greater variety of these objects could engender more diverse play and learning 

experiences.  
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Increased object interactions may have a cascading effect on infants’ language 

experiences. Caregivers are sensitive responders: they “follow in” and talk about the things their 

infants play with (West & Iverson, 2017; Tamis-LeMonda, Kuchirko & Suh, 2018). If walking 

enables infants to play with more different objects, it could elicit a greater variety of language 

input from caregivers. Consequently, more and more varied language input likely impacts 

language learning (e.g., Hoff & Naigles, 2002; Huttenlocher, Haight, Bryk, Seltzer & Lyons, 

1991). 

Our findings also suggest that walking coincides with new forms of communication. 

Specifically, there was a significant inflection in moving communication (i.e., communication 

coupled with locomotion) when infants began to walk. Although caregivers’ overall response 

rates did not differ for moving and stationary communication, there is reason to believe that the 

content of their responses could differ. A study by Karasik and colleagues (2014) found that 

caregivers responded differently to infants’ moving vs. stationary bids. They were more likely to 

provide actions directives (e.g., “stack it”, “go give it to Daddy”) to moving bids, whereas 

stationary bids were more likely to receive referential (e.g., “that’s a spoon”) and affirmation 

(e.g., “thank you”, “good”) responses. These different response types could in turn have a 

reciprocal effect on infant locomotion; e.g., caregivers’ action directives may prompt infant 

actions. In future work, we plan to further investigate whether these changes in communication 

and exploration may account for changes in infants’ language ability.  

The fact that so many changes occurred during the transition to walking supports the 

notion of developmental cascades. That is, that a change in one domain can reverberate across 

other domains. For developmental researchers, the task of explicating these cascades is 

important, but difficult. Every achievement in infancy is multiply determined by a constellation 
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of factors—to start: infants’ other developing skills (which encompasses a huge spread, with 

skills as disparate as affordance-perception and theory of mind), interactions with the people, 

places, and things around them, epigenetic factors, and macro-level influences like culture (e.g., 

how infants are fed, dressed and cradled), family structure, geography, and even weather/climate. 

Despite the difficulty of the task, it is important to uncover and connect these cascading 

processes for multiple reasons. First, deviations in early-emerging skills can have far-reaching 

consequences. For example, infant walking predicts later vocabulary size, language pragmatics 

(e.g., the initiation of conversation, coherence, and rapport), and spatial processing (Walle & 

Campos, 2014; He, Walle & Campos, 2016; Oudgenoeg-Paz, Leseman & Volman, 2015; Logan 

et al., 2016). Second, doing so informs our understanding of how development unfolds. 

Historically, researchers have measured processes of development within the silos of their own 

expertise. The present study underscores the need to collaborate across these areas to form a 

more complete, comprehensive understanding of development.  

4.3 The Transition to Walking in Autism Spectrum Disorder 

According to most recent estimates, 1 in 40 children in the United States has an ASD 

(Kogan et al., 2018; Xu, Strathearn, Liu & Bao, 2018). There is a clear need for enhanced 

understanding of infant development in ASD to inform early intervention services and best serve 

affected infants and children. Current literature on infants with ASD has overwhelmingly 

focused on either social communicative or motor development—revealing disruptions in both 

domains—but far less is known about how these domains interrelate in ASD. The present study 

examined the concurrent development of independent walking, object interactions, and 
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communication behaviors—and how infants integrated these behaviors—in a sample of HR 

infants. We observed whether HR-ASD infants displayed different developmental trajectories 

than their LR and HR peers.  

Past research has found evidence that walking develops later and is less proficient in 

ASD compared to neurotypical development. However, our results uncovered very few 

differences in the progression of locomotor development leading up to and following walk onset 

(although there were differences in crawling prior to walk onset). In particular, trajectories of 

independent walking were similar for HR-ASD infants and their LR and HR peers. There are at 

least two potential reasons why we did not replicate past findings of atypical walking in ASD. 

First, past studies have conducted comparisons based on infant age. We employed a milestone-

based design, examining whether the progression of locomotor development differed during the 

transition from crawling to walking. It may be the case that walking is delayed in ASD (our data 

trended in this direction), but that it follows a typical pattern of development. It also possible that 

our measures of locomotion were not sensitive enough to capture differences. Our duration 

measure does not provide information regarding infants’ steps, speed, stability, gait patterns, or 

falls. Future work should use more detailed micro-coding and footfall data to capture differences 

in the quality of walking in HR-ASD infants.  

During the transition to walking, HR-ASD infants approached and carried objects more 

frequently each month, showing the same pattern as their peers. However, unlike their peers, 

HR-ASD infants did not show an increase in the variety of objects with which they interacted 

over time. Relatively few studies have examined early object interactions in infants with ASD, 

and the majority of these focus on social aspects such as symbolic and pretend play with objects. 

For this reason, it is not clear why infants with ASD showed this attenuated growth. These 



 80 

results are consistent with a study by Rowland and Schweigert (2009), which used the Hands On 

Learning instrument (Rowland & Schweigert, 2003)—a parent/teacher report survey of infants’ 

actions with objects—to measure the development of object interactions in 2- to 5-year old 

children with ASD. Results revealed that the development of object interactions (e.g., accessing 

objects, simple actions with objects) were delayed in ASD compared to neurotypical 

development. However, research on this topic is very sparse, and more work is needed to probe 

whether this difference is robust.  

Notably, HR-ASD infants experienced attenuated growth in every communication 

variable compared to LR and HR-ND peers. This is consistent with findings that communication 

is atypical among infants with ASD (e.g., Jones et al., 2014). The results reported here add to this 

work, showing that communication frequency was largely unchanged following the onset of 

walking for HR-ASD infants. In contrast to LR and HR-ND infants, there was no inflection in 

gesture development at walk onset for HR-ASD infants. Moreover, HR-ASD infants produced 

far fewer moving gestures and vocalizations than their neurotypical peers, showing no inflection 

at walk onset. At the final session, HR-ASD infants produced four times fewer moving 

communicative behaviors than the LR and HR-ND groups.  

The HR-ASD group’s communication also differed from HR-LD group. Overall, HR-

ASD infants gestured and vocalized less often than HR-LD peers. However, the largest 

discrepancies were observed for communication that was directed (paired with eye gaze) and 

moving (paired with locomotion). Thus, communication was less multimodal for HR-ASD 

infants than their language-delayed peers. This aligns with growing work indicating that 

communication is less coordinated in ASD than in neurotypical samples (Parlade & Iverson, 

2015; Heymann et al., 2018; Sowden, Clegg, & Perkins, 2013). Coordinated communication (for 
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example, combining gestures and vocalizations into a single communicative act) is an advanced 

form of early communication. One such study by Parladé & Iverson (2015) measured gesture-

vocalization coordination in HR infants from 8 to 24 months. Both HR-LD and HR-ASD groups 

produced few coordinations initially. By 12 months, HR-LD began to coordinate behaviors, 

increasing at a rate comparable to LR peers. In contrast, coordinations remained low for HR-

ASD infants—they were almost unchanged across the period. Our findings extend this work, 

showing that infants with ASD not only combine communicative behaviors (like gestures and 

vocalizations) less frequently, they also pair them with other types of behavior (locomotion) less 

often. The coordinated quality of communicative behaviors—not just base-rates alone—may be 

useful in distinguishing infants with ASD from peers with non-ASD developmental delay.  

The communication behaviors of HR-ASD infants also received fewer contingent verbal 

responses from caregivers over time. This pattern appears to be driven by responses to HR-ASD 

infants’ stationary communicative behaviors. Over time, caregivers of HR-ASD infants 

increasingly responded to infants’ moving behaviors.  But they did not show the proportionate 

increase in their responses to stationary behaviors that was observed among caregivers of LR and 

other HR infants. It may be that over time, the communicative behaviors of neurotypical infants 

become more complex and salient to caregivers, regardless of whether they are moving or 

stationary; this is supported by our finding that communication becomes more socially-directed 

over time for LR, HR-ND, and HR-LD infants. However, this may not the case for HR-ASD 

infants, and their stationary behaviors may be more easily overlooked. Because HR-ASD infants 

both produced fewer communicative behaviors and received proportionately fewer responses, it 

is likely that there are considerable differences in language input that they elicit during this 

period in development.  
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Although there is substantial evidence that communication and motor development are 

both disrupted in infants with ASD, there has been a relative lack of research investigating 

interrelations across the two domains. The few studies that have investigated links between these 

domains have taken two approaches: 1) measuring correlations between the timing of motor 

milestones and later communicative ability (e.g., Kim, 2008; Bedford et al., 2015), or 2) testing 

whether communicative ability varies as function of infants’ “crawler” or “walker” status (e.g., 

Bradshaw et al., 2018). This is the first study to examine how HR-ASD infants integrate 

locomotion and communication behaviors spontaneously, and further, how this ability evolves 

longitudinally as they learn to walk.  

This new knowledge may inform early intervention strategies. Many early interventions 

are effective in improving outcomes of toddlers with ASD (e.g., Dawson et al., 2010). Currently, 

speech therapy, physical therapy, and occupational therapy are popular forms of intervention, 

and for good reason—they are among the most effective strategies (Autism Science Foundation, 

www.autismsciencefoundation.org). Speech therapy is administered by a speech language 

pathologist (with the help of parents and teachers) to improve infant communication (e.g., 

enhanced clarity of speech, gestures and body language, and use of speech-generating devices). 

Physical therapists focus on motor abilities, including coordination, balance, and specific skills 

like walking. Occupational therapists also target motor abilities as a means of promoting every-

day skills (e.g., strengthening fine motor ability to improve toddlers’ use of utensils). Although 

toddlers sometimes receive multiple interventions simultaneously, intervention activities are 

carried out separately. This study—among others (e.g., Bhat, Lobo & Galloway, 2011)—

suggests interventions could be strengthened by integrating these activities into a more holistic, 

comprehensive approach. For instance, an infant with difficulty walking may benefit from efforts 

http://www.autismsciencefoundation.org/
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to enhance their strength and balance walking, and from simultaneous efforts to coordinate this 

enhanced walking behavior into social interactions and exploration; i.e., by exploring far-off 

toys, carrying objects to share, or approaching distal caregivers to interact. By integrating 

locomotor behavior into every-day play activities, infants have increased opportunity to practice 

and refine their locomotor skill, and parallel improvements in the quality and variety of their 

exploration and play. Thus, a comprehensive approach has the potential to positively impact 

multiple developmental domains in concert.  

4.4 General Conclusions, Limitations, and Future Directions 

This study had many notable strengths: it employed a dense longitudinal design, 

sampling data over a period of seven months, which allowed us to establish baseline growth in 

each variable and thus empirically test whether walk onset marked an inflection point the 

developmental trajectory. Further, we included a large sample of HR infants, which enabled us to 

determine whether growth trajectories differed among three outcome groups—infants who 

developed neurotypically, infants who exhibited delayed language, and infants who were later 

diagnosed with ASD. However, it is important to acknowledge some limitations.  

First, this study was observational. We were not able to establish causal or directional 

links among variables of interest—we were only able to measure trajectories of their 

simultaneous development. The relations among communication, exploration, and walking are 

likely bidirectional and multiply determined. Infants’ desire to explore and socially engage may 

drive their walking behavior and development. When infants do attain motor milestones, new 

opportunities for communication and exploration are unlocked. Thus, the associations between 
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these domains are dynamic and transactional. And there are assuredly other variables that 

influence both walking and communication behaviors. For example, features of infants’ 

temperament are related to language development (e.g., Slomkowski, Nelson, Dunn & Plomin, 

1992), as well the timing of their motor milestone attainment (Biringen et al., 2008). Future 

studies with experimental designs are needed to tease apart potential causal relations.  

Additionally, we sampled 10 minutes of behavior at each session. This prevented us from 

capturing behaviors that have low base-rates. In particular, we were unable to capture sufficient 

levels of word production. At this point in development (around the end of the first year) infants 

are just beginning to produce words, and they do so infrequently. Had we observed longer 

windows of time, it is possible we would have captured more utterances containing words.  

Finally, the naturalistic observations were not recorded with the intention of capturing 

detailed information about infant gait. It was not possible to code variables related to the 

symmetry or speed of infant locomotion. Future work should use fine-grained measures (e.g., 

kinematic measures; footfall measures) to capture meaningful individual differences in the 

proficiency of walking.  

Together with the larger literature, this dissertation provides support for the hypothesis 

that walking instigates a developmental cascade, prompting change in infants’ social interactions 

and exploration. These changing experiences shape infants’ opportunities for learning and may 

therefore have ripple effects on the development of higher-level skills, including language. 

Additionally, it is increasingly evident that the transition to walking unfolds differently for 

infants with ASD. The transition marks a point in development when the gap in communication 

between ASD and neurotypical infants widens. Therefore, in addition to examining 
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developmental change as it relates to chronological age, it is crucial to observe changes during 

motor transitions, which appear to occur on a different timescale for infants with ASD.  
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Appendix A Correlation Matrix of All Dependent Variables 

Table 12 Partial Correlations Among Dependent Variables Controlling for Age 
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Appendix B Coding Descriptions 

B.1 Locomotion 

Tier 1.1:  Bouts of locomotion 

In this tier, we are identified moments when the infant was ‘locomoting’, which could 

mean crawling, walking, or cruising.  Criteria:  

▪ Must consist of at least 2 steps (or crawl cycles)  

▪ the infant must change location (i.e., walking in place does not count) 

▪ Steps must occur within .5 seconds intervals (if the infant paused for more than .5 

seconds while locomoting, this was treated as two separate bouts) 

This was a duration code: 

▪ Onset: the first frame in which the infants’ leg (or arm in instance of arm-

dominant crawl styles) is in motion. 

▪ Offset: the frame in which, during the final step, the leg (or arm) reached the 

floor.  

All subsequent locomotion tiers categorized these bouts along some dimension. 

Tier 1.2: Crawl or walk 

If the infant was an upright posture, coded ‘walk’.  If the infant was on the floor 

(typically on all fours), coded ‘crawl’.  

Tier 1.3: Social partner at destination? 

We coded whether an infant approached a social partner. If the infant was not near 

caregiver (or team leader) at the start, and then locomoted to them, coded ‘yes’. If caregiver 

followed the infant to the destination (e.g., in instances of “hitching”) coded as “follows”. All 

other instances were coded as ‘no’. 

Tier 1.4: Disengaged from social partner? 

We coded whether or not the infant walked or crawled away from a caregiver or team 

leader. This was the inverse of Tier 3.  Coded ‘yes’ if infant was near caregiver (or TL) initially, 

and then locomoted away from them.  
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Tier 1.5: Carried an object? 

We coded whether—during the bout of locomotion—the infant carried an object.  We 

coded ‘yes’ if this occurred at any point during the bout.  During crawling bouts, this often 

looked like they’re pushing the object with them as they crawl.  We coded ‘yes’ in these 

instances.  

Tier 1.6: Object at destination? 

We coded whether the infant approached an object during each bout. If infants’ 

locomotion bout ended with them immediately touching/grabbing a toy, code as ‘yes’.   

Tier 1.7: Using support? 

Did infants have an external source of support while locomoting?  This was always ‘no’ 

for crawling. For walking, this was coded as ‘yes’ if infant cruised along furniture, used a push 

walker toy, or if a parent held their hand. 

B.2 Gesture 

Tier 2.1:  Gestures 

In this tier, we identified Deictic Gestures: 

▪ Give: infant handed an object to a social partner. 

▪ Show:  infant held up an object to show a social partner 

▪ Reach:  infant reached for an out-of-reach object  

▪ Index Finger Point:  infant pointed to an object with an isolated index finger 

▪ Index Finger Touch:  infant touched an object with an isolated index finger 

This was not a duration code, so duration was set to around 1 second (but variations in 

duration are not meaningful—this is a point-event code). All subsequent Tiers categorized some 

dimension of the identified gestures. 

Tier 2.2: Moving or Stationary? 
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If the gesture occurred during or two seconds after a bout of locomotion, it was coded as 

“Moving”.  Otherwise, it was coded as “Stationary”.  

Tier 2.3: Directed or Undirected? 

If during the gesture, the infant looked at the social partner, it was coded as “directed”.  

Otherwise, it was coded as “undirected”.   

Tier 2.4: Caregiver verbal response? 

Coders watched for 2 seconds following the gesture.  If during this time, the caregiver 

verbally responded, it was coded as “yes”.  Otherwise, it was coded as “no”.   

Tier 2.5: Response contained a translation? 

If “no” was coded on the previous tier, this tier was left blank. If the caregiver did 

verbally respond, coders further specified whether the response contained a translation (“yes” or 

“no”).  A translation was defined as: a label corresponding to the referent of the infant’s gesture.  

For example, if the infant pointed at a dog and the response contained “dog”, this was coded as a 

translation. “Label” was inclusive. For instance, the pet’s name, “animal”, “pet”, “paws” etc, 

could count.  Essentially, any concrete noun that could be used to refer to that object or a part of 

that object.  

B.3 Vocalization 

Tier 3.1:  Vocalizations 

In this tier, we identified vocalizations (abbreviated as vocs): 
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▪ Non-word vocs: sounds produced by the infant. This did NOT include vegetative 

sounds like sneezing, coughing, breathing, or affective sounds like laughing, 

fussing, and crying.  

▪ Vocs with words:  vocs that contained either an English word, or a speech sound 

consistently used to refer to an object with half of the morphemes (e.g. “bah-bah” 

to refer to a bottle).  

As in gestures, this was not a duration code, so the length was standardized at 1 second. 

Any variation in duration were not meaningful, codes are point-events. All subsequent Tiers are 

categorized some dimension of these identified vocs.  

Tier 3.2: Moving or Stationary? 

If the voc occurred during or 2 seconds after a bout of locomotion, this was coded as 

“Moving”.  Otherwise, it was coded as “Stationary”.  

Tier 3.3: Object-directed, Parent-directed, or Undirected? 

If during the voc, the infant looked at the social partner, it was coded as “parent-

directed”.  If during the voc, the infant looked at an object, it was coded as “object-directed”.  

Otherwise, it was coded as “undirected”.   

Tier 3.4: Caregiver verbal response? 

Coders watched for 2 seconds following the voc.  If during this time, the caregiver 

verbally responded, it was coded as “yes”.  Otherwise, it was coded as “no”.   

Tier 3.5: Response contained a translation? 

If “no” was coded on the previous tier, this tier was left blank. If the caregiver did 

verbally respond, coders further specified whether the response contained a translation (“yes” or 

“no”).  A translation was defined as: a label corresponding to object the infant was looking at.  
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For example, if the infant was looking at a dog and the response contained “dog”, this was coded 

as a translation. “Label” was inclusive. For instance, the pet’s name, “animal”, “pet”, “paws” etc, 

could count.  Essentially, any concrete noun that could be used to refer to that object or a part of 

that object.  

B.4 Object Exploration 

Tier 4.1:  Infant touched object with hands 

In this tier, we identified moments when the infant touched an object.  Either the whole 

hand or part of the hand was in contact with object. In order to be included, contact with the 

object last at least 0.5 seconds (i.e. fleeting instances where the hand or finger graze an object 

were not counted). This was NOT a duration code—each touch is a point event.  

Tier 4.2: Name of object 

Coders annotated what the object was (e.g. “teddy bear”).   

Tier 4.3: Total number of objects 

Coders counted the total number of unique objects the infant contacted.  
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