
 

  

Development of Biorelevant In Vitro Release Testing Methods for Periodontal 

Microparticles 

 

 

 

 

 

 

 

 

by 

 

Stuti M. Desai 

 

Bachelor of Pharmacy, Institute of Chemical Technology, 2017 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

 

School of Pharmacy in partial fulfillment 

  

of the requirements for the degree of 

 

Master of Science 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2019



 ii 

Committee Membership Page  

UNIVERSITY OF PITTSBURGH 

 

SCHOOL OF PHARMACY 

 

 

 

 

 

 

 

 

 

This thesis/dissertation was presented 

 

by 

 

 

Stuti M. Desai 

 

 

It was defended on 

 

March 21, 2019 

 

and approved by 

 

Dr. Lisa C. Rohan, Professor, Pharmaceutical Sciences 

 

Dr. Vinayak Sant, Assistant Professor, Pharmaceutical Sciences 

 

Dr. Sravan Kumar Patel, Instructor, Pharmaceutical Sciences 

 

Thesis Advisor/Dissertation Director: Dr. Lisa C. Rohan, Professor, Pharmaceutical Sciences 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Stuti M. Desai 

 

2019 

 

 

 

 

 

 

 

 

 

 

 



 iv 

Abstract 

Development of Biorelevant In Vitro Release Testing Methods for Periodontal 

Microparticles 

 

Stuti M. Desai, B.Pharm 

 

University of Pittsburgh, 2019 

 

 

 

 

Dissolution testing is one of the primary methods employed not only as a quality control 

tool but also to evaluate bioequivalence and assess the effect of process and formulation parameters 

on drug release. Currently, there is no compendial-level method to assess dissolution of particulate 

systems administered in the periodontal pocket. Therefore, the goal of this work is to develop and 

demonstrate the utility of dissolution methods for microparticles applied in the periodontal pocket. 

Arestin®, a clinically used extended release periodontal system was used as the reference product. 

It is composed of poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with an antibacterial 

drug, minocycline hydrochloride (MIN). Two methods were evaluated in this study. The first 

method utilized a standard USP IV apparatus modified to include a dialysis tube with dispersed 

microparticles, which was developed as a rapid screening method.  In the second method, a novel 

apparatus was designed by our group to simulate the in vivo environment of the periodontal pocket. 

The applicability of these methods was evaluated by rigorously testing for reproducibility and 

discriminatory ability. To test the discriminatory ability of the developed methods, a panel of MIN-

loaded PLGA microparticles that differed in composition and process conditions were utilized. 

The method utilizing the USP IV apparatus was equipped with online UV-analysis and was carried 

out at a flow rate of 10mL/min for 3 days. Microparticles that showed different dissolution profiles 

in this method were tested in the novel, more biorelevant small volume apparatus, which was 

designed to hold 250µL of gingival crevicular fluid simulant (sGCF), where the particles are 
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dispersed. sGCF was continuously delivered to the device at a biorelevant flow rate and collected 

daily for dug content analysis using a stability-indicating UPLC method. Both the developed 

methods could discriminate between Arestin® and the comparators. Release of MIN was largely 

dependent on molecular weight of PLGA used, with higher molecular weight showing higher 

release. The methods evaluated in this work can be used in routine quality control analysis to detect 

batch-to-batch variability. Future studies can evaluate the applicability of the developed methods 

to assess bioequivalence of MIN-loaded periodontal systems. 
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1.0 Introduction 

Dissolution is the process by which a solute in a solid, liquid or gaseous state dissolves in 

a solvent, yielding a solution [1]. In the pharmaceutical context, dissolution is the process by which 

the drug in a drug product dissolves in body fluids and becomes available for absorption. There 

are a variety of factors that affect the rate and extent of dissolution. Dissolution testing is a pivotal 

quality control test that assesses the impact of formulation and process variables on the drug 

product. In addition, dissolution testing has implications for better design of drug products and 

prediction of in vivo performance. This chapter discusses the concept of dissolution testing, 

followed by the applications of dissolution testing, development of dissolution methods and 

ultimately the currently used methods for dissolution testing of particulate systems. 

1.1 The Concept of Dissolution Testing 

The concept of dissolution testing was first explored at the end of the 19th century. 

However, the use of in vitro dissolution testing methods in the pharmaceutical industry gained 

importance only in the mid-20th century [2]. Since then, dissolution testing has experienced a 

phenomenal increase in importance and is currently one of the most important characterization 

tests employed in the pharmaceutical industry. With around 84 % of the top 50 drug products in 

the US and European markets administered orally [3], dissolution testing methods for tablets and 

capsules are understandably the most advanced. However, with the advent of a vast number of 

novel drug delivery systems, development of dissolution testing methods for modified-release 
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dosage forms has gained increased recognition. Interest has concurrently developed in correlating 

in vitro dissolution data to in vivo product performance, creating the need for development of 

predictive in vitro dissolution tests.  

According to the International Union of Pure and Applied Chemistry (IUPAC), the rate of 

dissolution can be defined as the change in concentration of a dissolved substance over a certain 

period of time [4]. The concept of rate of dissolution was first introduced in 1897 by Arthur A. 

Noyes and Willis R. Whitney [5]. They studied the dissolution of two sparingly soluble salts in 

water and observed that the rate of dissolution of a compound is proportional to the difference 

between the instantaneous concentration of the solution and the saturation solubility. This 

observation, stated mathematically, forms the Noyes and Whitney equation (Equation 1). 

𝑑𝐶

𝑑𝑡
= 𝑘(𝐶s − 𝐶t)                                                                                                                     (1) 

Where,  

dC = change in concentration over time dt 

Ct  = concentration at time t 

Cs = saturation solubility of substance 

  k = constant 

Noyes and Whitney proposed the mechanism of dissolution to the formation of a thin layer 

of unstirred liquid forming around the particle. They called this the diffusion layer and particles 

were proposed to diffuse from the diffusion layer to the bulk fluid [5] . To quantify the diffusion 

that occurs through the diffusion layer, Fick’s first law of diffusion was used [6] (Equation 2).  

𝑑𝑀

𝑑𝑡
= −𝑆𝐷

𝑑𝐶

𝑑𝑥
                                                                                                                       (2) 

Where, 

dM = mass diffused in time dt 
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S = surface area 

D = diffusion coefficient 

dC = concentration difference 

dx = distance to overcome 

As reviewed by Dokoumetzidis, A. and Macheras, P., the next development in the field 

took place at the dawn of the 20th century. In 1900, Erich Brunner and Stanis-laus von Tolloczko 

proposed further conditions under which Equation 1 holds [2]. According to their paper, properties 

of the exposed surface, including surface area and structure, rate of agitation, temperature and 

arrangement of the apparatus influenced the rate of dissolution. They modified Equation 1 to 

include a term for exposed area (S) available for dissolution (Equation 3). 

𝑑𝐶

𝑑𝑡
= 𝑘1𝑆(𝐶S − 𝐶t)                                                                                                                   (3) 

In 1904, Erich Brunner and Nernst Walther combined the diffusion layer theory with Fick’s 

first law of diffusion (Equation 2) to give the Nernst-Brunner equation (Equation 4) [6]. 

𝑑𝐶

𝑑𝑡
=

𝐷𝑆

𝑉ℎ
(𝐶s − 𝐶t)                                                                                                                   (4) 

Where, 

V = volume of dissolution media 

h = thickness of diffusion layer 

In the above equations, surface area is considered to be constant during the experiment. 

However, in most practical cases, the surface area of a particle reduces as it continues to dissolve 

in a liquid [6]. In 1931, A. W. Hixson and J. H. Crowell studied the dissolution of solids under 

perfect sink conditions [7]. Under sink conditions, the change in concentration of the bulk fluid is 

negligible and thus can be considered to be a constant. Incorporating these changes in Equation 2, 
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the diffusional mass transport can be considered to be a function of the surface area, S (Equation 

5). 

𝑑𝑀

𝑑𝑡
= −𝑘2𝑆t                                                                                                                         (5) 

Where, 

St = surface area of the particle at time t 

For a perfectly spherical particle, the surface area S is proportional to its mass, M2/3. 

Substituting surface area for mass in Equation 5 and integrating the resulting equation gives 

Hixson-Crowell’s “cube root law” (Equation 6) [7]. 

√𝑀t
3

=  √𝑀0
3

− 𝑘3𝑡                                                                                                             (6) 

Where, 

Mt = mass of substance at time t 

M0 = initial mass of substance 

This equation holds true for non-disintegrating, perfectly spherical particles undergoing 

dissolution under sink conditions. The Hixson-Crowell equation is one of the most commonly used 

equations to model drug release from pharmaceutical dosage forms. However, application of the 

equation becomes challenging as it is difficult to provide perfectly sink conditions and have non-

disintegrating dosage forms in a practical setting. Thus, various other models have been developed 

over the years in order to model different types of dosage forms. 

Although the concept of in vitro dissolution had advanced considerably in the first half of 

the 20th century, its applications were limited to the field of chemical engineering [2]. During this 

time, the in vivo availability of the drug was thought to be determined by the disintegration time 

of tablets [8]. However, a number of bioavailability concerns were raised in the 1950s. These 

incidences brought to light the insufficiency of disintegration to test the equivalence of two 
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products [9-11]. The importance of in vitro dissolution testing as a quality control tool was 

recognized in 1970, when dissolution testing was adopted as a routine quality control test in 6 

monographs in the United States Pharmacopoeia (USP) and National Formulary (NF) [2].  

According to the USP, a dissolution test evaluates the rate and extent to which a compound 

(drug) forms a solution (dissolves) under a predetermined set of carefully controlled conditions 

[12]. There are multiple variables which need to be considered while developing a dissolution 

method. These are mentioned in the USP general chapter on development and validation of 

dissolution methods [13] and would be highlighted later in the document. As with any other 

analytical method, a dissolution method should be robust, reproducible and discriminatory in 

nature. However, with the increasing applications of in vitro dissolution testing, new paradigms 

are being set to define an ideal dissolution test. 

1.1.1  Characteristics of an Ideal Dissolution Test 

The ideal characteristics of a dissolution test vary according to their intended application. 

In general, dissolution tests are expected to be discriminatory in nature, robust and reproducible 

[14]. Dissolution tests intended to be used for predicting in vivo release should display certain level 

of correlation.    

1.1.1.1 Discriminatory Potential 

One of the core characteristics of a dissolution test is its discriminatory potential. A 

dissolution method should be able to differentiate between products that are not equivalent to one 

another. However, the method should not be so sensitive that it discriminates between products 

that are clinically equivalent [15]. The discriminatory potential of a dissolution method is 
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influenced by the type of apparatus, media composition, temperature and stir/flow rate. Of note, 

the criteria chosen to decide equivalence also determines the discriminatory potential of a method. 

For example, in Figure 1 the test is discriminatory when the one-point acceptance criteria states 

that more than 90 % of the drug should dissolve within 90 minutes. However, the same test is non-

discriminatory when the acceptance criteria states that more than 90 % of the drug should be 

dissolved at 120 minutes. 

 

Figure 1. Representative Figure Showing Dependence of Discriminatory Potential on Acceptance Criteria 

1.1.1.2 Robustness 

Robustness is the ability of the dissolution method to remain unaffected by small, 

deliberate changes made to the method [16]. Like any other analytical procedure, a dissolution test 

should be robust and not be sensitive to small changes in method parameters. There should not be 
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differences in results obtained by different labs or analysts. The dissolution method should not be 

sensitive to small changes in rate of agitation, media composition and temperature. [15]. 

1.1.1.3 Transferability/ Reproducibility 

The method should be simple enough to enable adoption by different laboratories [14]. The 

results should be independent of the source of materials, quality of solvent and brand of equipment. 

Anyone with the standard operation procedure (SOP) for the method should be able to run the test 

provided they have the required equipment at hand. Easy transferability of the test becomes 

important as it is likely that the same dissolution method would be used for routine quality control 

analysis in the future.   

1.1.1.4 Ability to Predict In-vivo Response 

In vitro dissolution tests are one of the major characterization methods used to simulate in 

vivo drug release. Ideally, there should be a strong correlation between a dissolution test and in 

vivo response (absorption/plasma drug concentration) of the drug product. Thus, an in vitro test 

could serve as a predictor of in vivo bioavailability [17]. Use of biorelevant media, reservoir 

volumes and agitation rates that mimic in vivo environments help in enhancing the predictive 

power of dissolution tests. As we will see further, a dissolution test which predicts in vivo response 

plays an important role in determining bioequivalence. The use of predictive dissolution testing in 

obtaining biowaivers increases its importance exponentially.  
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1.1.2  Applications of Dissolution Testing 

Dissolution testing has evolved from being a routine quality control method to an important 

evaluation technique used in the pharmaceutical industry. Reliable dissolution tests find 

applications in various areas of the product life-cycle, from drug development and optimization to 

quality assurance post marketing, as described below.  

1.1.2.1 Product Development 

An important role of in vitro dissolution testing in the early stages of drug development is 

in product development. A good dissolution test can discriminate between products that are 

different due to differences in formulation and/or manufacturing conditions. Thus, dissolution 

testing is used to screen products prepared using different excipients and using different processing 

parameters. Drug products that show superior and reproducible dissolution profiles are further 

optimized to produce a marketable formulation [18]. The use of in vitro dissolution testing in 

product development has become more important as manufacturers are shifting to developing 

products using the quality by design (QbD) approach. For example, dissolution testing can provide 

information on the effect of process parameters on product performance. Such knowledge can be 

utilized to determine a design space, as explained by Dickinson, P. A. and colleagues [19].  Use 

of a design space reduces the regulatory burden on manufacturers and provides them some 

flexibility in modifying manufacturing conditions post approval.  

1.1.2.2 Routine Quality Control Analysis 

The most common use of a validated dissolution method is for ensuring batch-to-batch 

reproducibility. The Food and Drug Administration (FDA) requires dissolution testing to be 
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performed on all batches before they are released to the market. In case the produced batches fail 

to meet the acceptance criteria for dissolution, the batches will be rejected. Dissolution testing is 

also a required characterization test for assessing shelf-life stability of drug products [20]. If a 

stability sample fails in the dissolution test, the batch must be recalled from the market. 

1.1.2.3 Biowaiver Application for Drugs containing Lower Strength of Actives 

Another important application of dissolution testing is for the request of biowaivers. If a 

manufacturer has got an approval for a higher strength of dosage form, in vivo bioequivalence 

studies for lower strength products can be waived [21]. Such biowaivers are accepted if the relative 

ratios of API-to-excipients of the lower strength product and approved product are similar. Instead 

of single-point comparisons routinely used in the industry, biowaiver applications require 

dissolution profile comparisons. The dissolution profiles are compared at each timepoint for 

similarity and differences. If the difference factor (f1) between the two dissolution profiles is below 

15 (0 – 15) and the similarity factor (f2) is above 50 (50 – 100), the dissolution profiles are said to 

be similar and in vivo bioequivalence studies can be waived. The f1 and f2 values can be calculated 

as per equations 7 and 8 respectively. 

𝑓1 = [
∑ |𝑅t−𝑇t|𝑛

𝑡=1

∑ 𝑅t
𝑛
𝑡=1

] × 100                                                                                                       (7) 

𝑓2 = 50 ×  log[
1

√[1+
1

𝑛
∑ (𝑅t−𝑇t)2]𝑛

𝑡=1

 ×  100]                                               (8) 

Where,  

n = number of time points 

Rt = dissolution value of the reference at time t 

Tt = dissolution value of the test at time t 



 10 

1.1.2.4 Scale-Up and Post Approval Changes 

The FDA allows for in vitro dissolution testing data to substitute for in vivo bioequivalence 

tests for most scale-up and post approval changes. Minor changes in excipient concentrations, 

changes in batch size or manufacturing unit can be approved based on similarity in dissolution 

profiles of the new and old products [22].  

1.1.2.5 Generic Product Bioequivalence 

In vivo bio-equivalence studies can be waived for most immediate-release (IR) 

formulations containing highly soluble and highly permeable APIs. Extended-release (ER) 

formulations usually require in vivo bioequivalence studies to be performed only on the highest 

strength. In vitro data is acceptable for the other strengths, provided that in vivo bioequivalence 

studies are performed on the highest strength of drug product [14]. However, biowaivers for 

generic drug products of low therapeutic index drugs are understandably not accepted. FDA also 

requires modified release (MR) dosage forms to be tested for alcohol effects. Different levels of 

ethanol are added to the dissolution media to see if burst release occurs from MR formulations. 

Burst release or “dose dumping” from MR formulations is unacceptable. If an in vitro-in vivo 

correlation has been established, in vitro dissolution testing can be substituted for in vivo 

bioequivalence studies for IR/ER formulations administered orally or non-orally, but these cases 

are dealt on a case basis. Thus, dissolution testing is the most important in vitro test to determine 

bioequivalence and in some cases bioavailability of drug products.  
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1.1.3  Role of Dissolution Testing in Assessing Bioavailability and Bioequivalence 

Bioavailability (BA) can be defined as the fraction of the drug from the dosage form that 

reaches the systemic circulation unchanged [23]. Comparative BA studies compare the 

bioavailabilities of two or more formulations of the same drug [24]. Consequently, drug products 

are said to be bioequivalent (BE) when there is no significant difference in their BAs. In order to 

be BE, the drug products need to be either pharmaceutical equivalents or pharmaceutical 

alternatives. Pharmaceutically equivalent drug products contain identical amounts of the same 

API. Pharmaceutical alternatives are drug products that contain the same API but it may be in a 

different dosage form, amount or chemical form. The various criteria to determine BE and the use 

of in vitro dissolution tests as surrogate to clinical studies to prove BE has been discussed in the 

following sections. 

1.1.3.1 Criteria for Bioequivalence 

The currently employed method for determining bioequivalence for two drug products is 

the 80/125 criteria after log transformation [25]. Accordingly, FDA considers two drug products 

to be bioequivalent if the 90 % confidence interval of the ratio of geometric means of key 

pharmacokinetic properties after log-transformation is within 80 % to 125 %. The key 

pharmacokinetic properties that are required to meet this criterion include the Cmax (maximum 

plasma concentration), area under the curve (AUC) from time 0-t and AUC from time 0-∞ [26]. 

Figure 2 illustrates the criteria required in order to prove BE. 
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Figure 2. Illustration of criteria required to prove bioequivalence (Adapted from [27]). In this figure, The green 

lines are examples of bioequivalent formulae and red lines are examples of bioinequivalent formulae. 

1.1.3.2 Tests for Determining Bioequivalence 

When BA and BE regulations were first introduced, there was confusion as to whether in 

vivo studies were required to be performed on drugs that were approved prior to introduction of 

these regulations. In 1974, the Drug Bioequivalence Study Panel which was a part of the Office of 

Technology Assessment stated that it was not practical to perform BE studies on all drugs or drug 

products that were approved before the inclusion of BA guidelines [28]. It was proposed that a 

certain group of drugs be identified where evidence of BA is crucial. In vivo studies should be 

required to determine BA and BE of only these drug products. These suggestions were 

incorporated in the guidelines in 1977 and in vivo efficacy studies were waived for some drugs 

that were approved before 1962 [29]. 
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The current tests that can be used to determine BA and BE are listed in Title 21 of the Code 

of Federal Regulations (CFR). BA and BE are covered under part 320 of the regulations. 

According to the section, the following test procedures, in descending order of preference are 

acceptable as evidence to determine the BA and BE of a drug product [30]: 

A. In vivo (clinical) studies determining the concentration of drug (and/or its active 

metabolites) in the blood/plasma/serum or another appropriate biological fluid 

as a function of time. If there is an in vitro test that has been correlated with and 

is predictive of human in vivo bioavailability data, it can be used in lieu of in 

vivo studies.  

B. In vivo (clinical) studies where the concentration of API/active metabolites are 

measured in the urine as a function of time can also be used as a measure of BA 

and BE. FDA recommends the time intervals to be as small as possible in order 

to effectively estimate the rate of elimination of the drug. This approach is not 

appropriate for drugs that are not excreted primarily in the urine. 

C. A third way to determine BA and BE is by using pharmacological end points. 

This in vivo approach is used when there is no method to determine the 

concentration of API in biological fluids or excretory products. There should, 

however, be a well-established method to determine the acute pharmacological 

effect. BA determination by pharmacological studies is suitable for use of drugs 

that are administered for local use. 

D. The least accurate method as described by the FDA is that of well-controlled 

clinical trials comparing the safety and efficacy of two drug products. This 

method is accepted when previous approaches cannot be used. Accepted 
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application of this technique is for locally administered products which are not 

intended to be absorbed, e.g.: topical preparations and inhaled bronchodilators. 

Periodontal microparticles such as Arestin® and their generic products can also 

be considered in this category. 

E. An in vitro test (usually the dissolution test) which is currently available and 

accepted by the FDA. This test should ensure that the drug product has a 

suitable in vivo human BA. 

F. Any other approach that the FDA deems fit to establish BA and BE of drug 

product. 

1.1.3.3 Bioequivalence Testing According to the Biopharmaceutics Classification System 

In the past two decades, the role of dissolution testing in determining BA and BE has 

increased considerably. This is a result of the introduction of the Biopharmaceutics Classification 

System (BCS). The BCS classification of drug substances was introduced by G. L. Amidon. 

According to the BCS, drug substances can be divided into four categories as follows: Class I – 

high solubility, high permeability; Class II – low solubility, high permeability; Class III – high 

solubility, low permeability; and Class IV – low solubility, low permeability [31]. In context of 

biowaiver applications, a drug is said to be ‘highly soluble’ when the highest strength of the API 

in a drug product is soluble in 250 mL or less of aqueous media at 37  1 °C within the pH range 

of 1 – 6.8 [32]. A ‘highly permeable’ drug has a systemic BA (or extent of absorption) of 85 % or 

more of an administered dose, provided the drug is stable in the gastrointestinal (GI) tract. Besides 

solubility and permeability, the FDA considers dissolution as a third parameter when assessing 

biowaiver requirements. The FDA suggests that it will consider applications to grant biowaivers 

to manufacturers for BCS Class I or Class III drugs when formulated in an IR product.  
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1.2 Development and Validation of Dissolution Methods 

Development of reliable dissolution method is therefore an important step in the product 

development and approval process. Dissolution method development involves optimization of a 

number of variables, such as the type of dissolution apparatus, dissolution media and volume, 

agitation/flow rate, sampling times, temperature and analytical procedure [13]. The most important 

steps in development of a dissolution method are the selection of an apparatus and the 

determination of which dissolution media will be used, as described in the following paragraphs. 

1.2.1  Types of Dissolution Testing Apparatus 

Dissolution tests can be carried out in a variety of apparatuses, depending on the type of 

drug product that needs to be tested. However, to standardize the dissolution tests worldwide, 

regulatory agencies compiled a list of official dissolution apparatuses. There are seven types of 

dissolution apparatuses that are listed in the USP. The first four types of official dissolution 

apparatuses (Apparatus I – IV) are listed in USP general chapter 711 [33]. This chapter is 

harmonized with the Japanese Pharmacopoeia and European Pharmacopoeia. USP Apparatus V – 

VII are listed in general chapter 724 [34]. These three apparatuses are intended for testing of 

transdermal systems and are not accepted by the European and Japanese pharmacopoeias. The 

seven official USP apparatuses are tabulated in Table 1 and an illustration of their agitation 

assembly is presented in Figure 3.  
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Table 1. List of Official Dissolution Apparatus, their Properties and Applications [35]  

Apparatus Type Agitation Rate Media 

Volume/ Flow 

Rate 

Applications 

Apparatus I – Basket 25 – 50 rpm 500 – 4000 mL Capsules, tablets 

Apparatus II – Paddle 25 – 150 rpm 500 – 4000 mL 
Capsules, tablets, 

suspensions 

Apparatus III – 

Reciprocating Cylinder 

9.9 – 10.1 cm 

(reciprocating 

amplitude) 

250 mL 
Capsules, tablets, 

suspensions, granules 

Apparatus IV – Flow 

Through Cell 
NA 

Up to 50 

mL/min 

Any dosage form, with 

appropriate 

modification 

Apparatus V – Paddle 

Over Disk 
25 – 150 rpm 500 – 4000 mL Transdermal patch 

Apparatus VI – 

Cylinder 
50 rpm 500 – 4000 mL Transdermal patch 

Apparatus VII – 

Reciprocating Holder 

2 cm (reciprocating 

amplitude) 
Variable 

Transdermal patch, 

non-disintegrating 

tablets 
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Figure 3. Illustration of Agitation Assemblies of USP Apparatuses. (A) Apparatus I – Basket, (B) Apparatus II – 

Paddle, (C) Apparatus III – Reciprocating cylinder, (D) Apparatus IV – Flow through cell, (E) Apparatus V – Paddle 

over disk, (F) Apparatus VI – Cylinder, (G) Apparatus VII – Reciprocating holders 

1.2.2  Types of Media Used for Dissolution Testing 

The FDA recommends all dissolution tests to be carried out using aqueous media [36]. 

However, the choice of media depends on the purpose of dissolution testing. In general, types of 

dissolution media used for dissolution testing can be classified as non-biorelevant and biorelevant.   

1.2.2.1 Non-Biorelevant Dissolution Media 

When a dissolution test is carried for routine quality control purposes, non-biorelevant 

media are generally used [37]. Such dissolution tests are conducted mainly to obtain dissolution 

profiles of drug products and are not intended for determining in vitro-in vivo correlations 
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(IVIVC). Usually, the limited buffering capacity of pure water discourages its use as a dissolution 

media. Many a times, researches use pH-adjusted aqueous solutions that mimic the pH of stomach 

(1.2) for dissolution testing. Thus the use of 0.1 N HCl solution recommended by the FDA to 

simulate the gastric pH is a non-biorelevant dissolution medium [21]. The volume of media 

employed is usually either 500, 900 or 1000 mL in compendial methods. Surfactants such as 

sodium lauryl sulfate and tween are often used to maintain sink conditions for drugs exhibiting 

poor aqueous solubility.  

1.2.2.2 Biorelevant Dissolution Media 

Biorelevant media are those media which mimic the fluid present at a particular site, at 

least to some extent. In 2015, Markopoulos, C. and colleagues classified biorelevant media into 

four categories [38]. Level 0 biorelevant media are those which mimic just the pH of the system. 

Such media were proposed to have some buffer capacity (not necessarily biorelevant) that could 

maintain the pH of the system. Under this classification, a pH 6.8 buffer media that is 

recommended by the FDA to mimic the pH of the intestine can be considered to be biorelevant 

[21]. Level I biorelevant media simulate the pH and buffering capacity present in vivo. 

Consideration of fasted and fed states comes into account as the fed conditions influence buffering 

capacity. Level II biorelevant media contain bile salts, lipids and other digestion products. The 

osmolality of the solution, along with composition is mimicked. Level III biorelevant media most 

closely mimic the fluid present in the body. They are similar in pH, buffer capacity, composition, 

osmolality, protein and enzyme content as well as viscosity [38].  

The most commonly used biorelevant media simulate the gastro-intestinal environment. 

There are biorelevant media which mimic both the fasted and fed states of the stomach and small 

intestine [37, 39]. Over time, media mimicking the fluids present in various regions, such as 
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synovial fluid [40], vaginal fluid [41], colonic fluid [42] and lung fluid [43] among others have 

been reported. Marques, M. R. C. and colleagues reviewed the various biorelevant dissolution 

media that can have potential applications in dissolution testing of drug products [43]. 

1.2.3  Validation of Dissolution Methods 

The guidelines for validation of dissolution methods are more general than those for 

chromatographic methods. The USP Chapter 1225 on Validation of Compendial Procedures [16] 

categorizes analytical procedures into four different categories. Each category has different 

requirements for validation. According to this chapter, dissolution methods need to be validated 

for precision. Other parameters such as accuracy, specificity, limit of detection and quantitation, 

linearity and range may be done, depending on the specific dissolution test. USP Chapter 1092 on 

The Dissolution Procedure: Development and Validation [13] gives a more detailed guideline on 

validation of dissolution tests. Some parameters that should be checked while validating 

dissolution methods include the discriminatory potential, specificity, linearity, accuracy, precision, 

robustness, filter compatibility and stability of sample.  

1.3 Dissolution Testing of Micro/Nano-particulate Systems 

A closer look at the various apparatuses and media would suggest that most of the methods 

are designed to test drug release from oral solid dosage forms. These methods are usually not 

suitable to test drug release from micro- or nanoparticulate systems. Thus, there have recently been 

efforts to develop methods to assess drug release from particulate dosage forms. Dissolution 
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methods used for particulate systems were first classified by D’souza S. S. and DeLuca P. P. to be 

of the following three types: sample and separate, dialysis-based methods and continuous flow 

methods [44].  

1.3.1  Sample-and-Separate Type Methods 

Sample and separate based methods are the most commonly used dissolution methods for 

release testing of particulate systems [44, 45]. In sample and separate procedures, micro- or 

nanoparticles are added to tubes containing a suitable dissolution medium. These tubes are exposed 

to the desired temperatures and may be agitated during the test. Sampling of media is conducted 

at predetermined times by separating the particles from the media. Separation of microparticles is 

carried out by either filtration or centrifugation of the solution. After sampling, new media is added 

to the tubes to maintain sink conditions and dissolution volume [46]. 

Sample-and-separate methods provide flexibility in the amount of media that can be used 

for drug release testing. Methods reported in literature use either tubes or bottles and vary greatly 

in volume of media that is used for testing [45]. Media volumes of 1 mL [47, 48] to more than 100 

mL [49, 50] can be used for drug release testing. Multiple modes of agitation (if desired) can be 

used in the methods. This is a simple method and can be carried out in almost every laboratory 

setting without the need of specialized equipment. However, the most common problem with this 

method is the loss and/or destruction of particles during sampling. Both filtration and 

centrifugation are unsuitable techniques for separation of particles from the dissolution media. 

Another issue that is often encountered with this technique is aggregation of microparticles [51]. 

Hydrolyzed polymers can clog filters and centrifugation can disrupt particle structure, giving 

unreliable results. 
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1.3.2  Dialysis-Based Methods 

Dialysis methods were initially used for drug release testing of oily and liquid formulations 

[44]. Using dialysis-based methods to test drug release from microparticles helps in overcoming 

the problems involved with separation in the sample-and-separate methods. Briefly, in dialysis 

methods, the formulation to be tested is physically separated from the sampling media with the 

help of a dialysis membrane. Originally, the formulation to be tested was added to dialysis sacs, 

which was exposed to the dissolution media and maintained at an appropriate temperature [51]. 

The bulk media is generally agitated to assist drug diffusion from inside the dialysis sac [44]. Sink 

conditions are better maintained when the ratio of bulk fluid to fluid inside the dialysis sac is 5-10 

[45]. In order to avoid interference of dialysis membrane in drug release, it is recommended that 

the molecular weight cut off (MWCO) of the membrane should be at least 100 times the size of 

the compound [52]. 

Although dialysis methods are convenient to measure drug release of particulate systems, 

they are often criticized for inadequate agitation and violation the sink conditions within the 

dialysis sacs [51]. In order to avoid sink violations, reverse dialysis methods were introduced, 

where microparticles are suspended in the outer bulk media and samples are taken from inside the 

dialysis sac. Reverse dialysis methods have been shown to have lesser variability than dialysis 

methods [53] but may lead to loss of sample [45]. In general, both dialysis and reverse dialysis 

membranes require a large amount of media to maintain sink conditions.  
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1.3.3  Continuous Flow Methods 

Continuous flow methods involve the use of a flow through cell. Typically, particles are 

added to a cell and the desired media is made to flow through the cell with the help of pumps. 

Media can be allowed to flow either without re-circulation (open loop) or with re-circulation 

(closed loop). Like the previous methods, continuous flow methods provide flexibility to use the 

desired media volume for drug release studies [46]. As reported in literature, continuous flow 

methods can be used in various configurations. One of the earliest tests involved dispersing 

microparticles in filtration cells and passing media continuously through the cells at a constant 

flow rate [54]. Aubert-Pouëssel, A. and coworkers developed a method where microparticles were 

dispersed in unpacked high-performance liquid chromatography (HPLC) tubes and incubated at 

37°C. Media was continuously circulated through the cells at 5 µL/min and was collected in a 

refrigerated chamber where samples were stored prior to analysis [55]. The microparticles tested 

in this method were not separated from the dissolution media. Since microparticles are not 

separated from the continuously flowing media, the released polymer and/or the particles 

themselves may block the filter, causing irregular of flow rates during the test.  

The most recently applied continuous flow dissolution method used to measure drug 

release from particulate systems utilizes the USP IV apparatus. It is currently the preferred method 

for drug release testing [46] and provides several advantages such as greater lab-to-lab uniformity, 

decreased aggregation of particles, and flexibility in the flow rate, volume and type media used. 

The USP IV apparatus can also be run in various configurations. In some configurations, 

microparticles are added to flow through cells and glass beads are used to prevent aggregation of 

particles, achieve a laminar flow and decrease the dead volume inside the cell [56]. Use of a filter 

on the exit side of the cell allows for separation of particles from the released drug. However, 
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polymers can settle in the tubes, blocking tubes and causing irregularities in the flow [46]. More 

recently, a dialysis enclosure has been used to physically separate microparticles from the 

dissolution media [57]. This technique combines the advantages of the dialysis-based techniques 

with those of continuous flow methods.  

Another advantage of continuous flow-based methods is that a broad range of flow rates 

can be used for media circulation. Depending on the flow rate required, three types of pumps are 

used for continuous flow dissolution methods. HPLC pumps are used to achieve low flow rates of 

0.4 mL/min [58] and peristaltic pumps are used for re-circulation and higher flow rates up to 30 

mL/min [59]. Syringe pumps are generally used when extremely low flow rates are required. One 

of the lowest flow rates that has been used for drug release of microparticles is 5 µL/min [55]. 

Most of the methods for drug release testing of particulate systems have been developed 

for testing injectable micro- or nanoparticles. They are usually carried out at high flow rates and 

relatively low media volumes to simulate the site of injection [60]. Since parenteral microparticles 

are designed to release the drug over extended periods of time, most of the research efforts focus 

on developing accelerated methods to study drug release from microparticles in a shorter time 

span. Researchers have developed accelerated continuous-flow methods for parenteral 

microparticles by using elevated temperatures [61], acidic [62] or alkaline [63] pH and changing 

the ionic strength [64].  

There have been minimal efforts to design drug release testing methods for microparticles 

under biorelevant conditions. The dispersion releaser technology was recently introduced to test 

drug release from micro- and nanosized carriers. It is a dialysis-based device comprising of a 

slotted sample holder which is wrapped with a dialysis membrane [65]. This device is magnetically 

attached to the mini-paddle set-up of the mini-vessel assembly [66]. Jung, F. and coworkers 
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compared the dispersion releaser technology to filtration-based drug release testing using 

biorelevant release media [67]. A physiologically-based pharmacokinetic model (PBPK) was 

developed and tested for both the methods. Although the filtration-based method was faster, the 

dispersion releaser technology could discriminate between slight changes in the formulation, 

providing better discriminatory potential. 

1.4 Dissolution Testing of PLGA-based Micro-/Nanoparticles 

PLGA is a synthetic aliphatic copolymer of poly(lactic acid) (PLA) and poly(glycolic acid) 

(PGA). PLGA is available in a wide range of lactic acid-to-glycolic acid ratio (LA:GA) and 

molecular weights (Mw) of 10 – 200 kDa [68]. PLGA is a very versatile, biodegradable and 

biocompatible polymer approved by the FDA for human use. The versatility of PLGA stems from 

the ease with which properties of the polymer can be manipulated to obtain a suitable release 

profile. Some of the properties that affect the release of drugs from PLGA-based systems are listed 

below: 

A. LA:GA Ratio: PLA contains a methyl group in its structure, making it more 

hydrophobic in nature as opposed to PGA, which lacks the methyl group. Thus, 

increase in LA:GA ratio of PLGA increases the hydrophobicity of the polymer and 

results in lower rate of drug release [69]. 

B. Polymer Crystallinity and Glass Transition: In general, when drug release is controlled 

by diffusion, increase in polymer crystallinity and glass transition temperature (Tg) 

decreases the rate of drug release [70]. PLGA can be prepared using poly(L-lactic acid) 

(PLLA), which is highly crystalline or poly(D-lactic acid) (PDLA), which is 
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completely amorphous or a mixture of the two forms. Although GA is more crystalline 

in nature, it reduces the overall crystallinity of PLGA. Thus, higher LA content causes 

an increase in crystallinity of the final PLGA, leading to decrease in rate of drug release 

[71]. Higher LA content, in addition to its effect on hydrophobicity, also increases the 

Tg of the polymer, reducing polymer chain motility and rate of drug release [70]. 

C. Molecular weight of PLGA: Increase in Mw of PLGA causes increase in Tg and 

hydrophobicity. Thus, higher Mw PLGA releases drug more slowly than lower Mw 

PLGA [72, 73]. It is important to note that higher Mw PLGA degrades at a faster rate 

than lower Mw PLGA due to more sites of hydrolysis. However, polymer degradation 

affects drug release at a later stage than diffusion. Thus, the effect of faster polymer 

erosion in case of higher Mw PLGA is countered by more drug diffusing out of the 

particles during the initial phase in case of lower Mw PLGA [69]. 

D. Size of Matrix: Autocatalysis of PLGA is one of the major mechanisms of drug release 

from PLGA systems. There are two processes countering each other during PLGA 

hydrolysis. First is the formation of acidic components which causes further hydrolysis 

of PLGA. Second in the influx of relatively basic release media, which neutralizes the 

acidic moieties [71]. Microparticles with a larger particle size have a longer diffusion 

path which reduces the rate of influx of basic moieties. Thus, larger microparticles are 

expected to increase the rate of drug release from PLGA microparticles. 

E. Type of Drug: Hydrophilic drugs diffuse through water-filled pores and hydrophobic 

drugs diffuse through the polymer. Diffusion through the polymer is usually slower 

than diffusion through water [74] and it has been shown previously that hydrophobic 

drugs show lower rates of drug release than hydrophilic drugs [75]. Weakly acidic and 
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basic drugs can also impact drug release from PLGA systems. Acidic drugs decrease 

the pH inside particles, increasing the PLGA hydrolysis. Basic drugs can either increase 

PLGA hydrolysis increasing the rate of drug release or neutralize the hydrolysis 

products and reduce drug release rate [71]. Further, time-dependent changes in pH 

within PLGA microparticles can affect drug ionization and charge-based interaction 

with PLGA. Drugs molecules are also known to interact with PLGA, altering the rates 

of drug release in these special cases. For example, Klose and coworkers [76] showed 

that ibuprofen (slightly acidic) has a much faster rate of drug release than lidocaine 

(slightly basic). This was attributed to the interaction of positively charged lidocaine to 

the negatively charged PLGA end groups.  

F. Drug Loading: Generally, microparticles which contain higher amount of drug show 

greater drug release. This is because the ratio of oligomer-to-drug is lower in particles 

with higher drug loading [72]. However, when a basic drug is encapsulated in PLGA 

systems, the Tg of the product increases with increase in drug loading. This is because 

basic drugs interact with PLGA, increasing matrix rigidity. Thus, the rate of drug 

release reduces with an increase in drug loading [77]. 

G. Fabrication Technique and Sterilization: Various formulation and process parameters 

can significantly affect the characteristics of the PLGA particles [78]. Porosity of the 

particle is highly influenced by the manufacturing technique [79]. Increase in porosity 

increases the mobility of drug molecules leading to an increase in drug release. Increase 

in porosity can also change drug release mechanisms. In comparison to large porous 

particles, smaller porous particles display increased rate of drug release [80]. This is 

because drug molecules in smaller porous particles have access to more media and 
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surface area for drug release as compared to non-porous molecules, which require the 

polymer to degrade to release the drug.  

1.4.1  Mechanisms of Release from PLGA-based Systems 

Although there are various factors that affect the release of drug from PLGA matrices, the 

actual mechanisms of drug release are limited. The “true” mechanisms of drug release, as 

summarized by Fredenberg, S. and colleagues [74] include: 

A. Diffusion through water filled pores is most common during the initial phase of drug 

release. Molecules diffuse through the water present in the pores in the matrix through 

random movements. This transport is driven by concentration gradient and is dependent 

on the porosity of the matrix.  

B. Osmotic pumping occurs usually in a non-swellable matrix. This phenomenon is a 

result of water absorption, which increases the osmotic pressure inside the particle. In 

this case, the drug releases out of the particle due to convection and not diffusion. 

Osmotic pumping is not a very commonly-observed mechanism of drug release in 

PLGA-based systems as PLGA has mobile chains which allow for swelling. However, 

it has been reported in literature in cases of hydrophobic (LA:GA ratio of 85:15) and 

high molecular weight (> 300 kDa) systems [81]. 

C. Diffusion through polymer occurs in cases of very small hydrophobic molecules. The 

molecules partition into the polymer and travel through the polymer chains to the 

surface of the matrix. From there, the molecules need to dissolve in water before they 

can be released. Diffusion through polymer chains is not dependent on the porosity of 
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the matrix. However, increased porosity affects the overall release rate by increasing 

the rate of drug dissolution in water. 

D. Polymer erosion is the main mechanism of drug release for low Mw PLGA systems. 

Polymer erosion is the hydrolytic cleavage of polymer chains leading to production of 

smaller oligomers. Once the polymer matrix erodes, the encapsulated drug is exposed 

to dissolution fluid, causing release of drug. This mechanism is especially important 

for high Mw drugs that cannot diffuse through the polymer or water to get released.  

1.4.2  Methods to Determine Drug-Release from PLGA-based Micro-/Nanoparticles 

Since there are a number of PLGA-based products in the market, the polymer is popular 

among researchers for investigation. This has driven the development of a number of approaches 

to test the drug-release from PLGA-based systems. The methods used to evaluate drug-release 

from PLGA micro- and nanoparticles can be categorized into sample-and-separate, dialysis-based 

and continuous flow methods. Most methods used for PLGA-based systems can be used for drug-

release testing of other microparticles and are summarized in the previous section. The 

development of accelerated drug-release testing methods is popular amongst PLGA microparticles 

as well. The USP IV apparatus is being increasingly used and explored for determining drug-

release from PLGA-based particulate systems. Particles are either dispersed with glass beads in 

dissolution cells [56] or placed in a dialysis adapter [57]. Dissolution tests are run either under 

“real-time” (37°C) or accelerated conditions, such as increased temperature [56, 61].  

The dialysis adapter combines the advantages of dialysis and continuous flow methods. It 

helps in separating particles from the release media, reducing problems of filter blockage. The 

USP IV method is preferred over other methods as it is a standardized equipment, enabling the 
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lab-to-lab transferability [56]. The USP IV method has been reported to simulate the subcutaneous 

environment present in clinical settings as the media in the environment is continuously 

replenished [82]. Thus, the USP IV apparatus is very suitable for drug release testing of parenteral 

PLGA particles which are administered subcutaneously.  

However, despite all these efforts, there is a lack of biorelevant dissolution testing methods 

for microparticles that are intended to be administered in extremely small cavities, such as the 

periodontal and ocular pockets. There is thus a need for development of a small volume apparatus 

(SVA) that can be reliably used for drug release testing of particulate formulations intended to be 

delivered in small cavities.  
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2.0 Project Goal and Approach 

2.1 Project Goal 

Based on the current need for development of small volume dissolution apparatus, the goal 

of my project was to develop a biorelevant dissolution method for microparticulate systems 

intended to be delivered in small cavities. A rapid screening method utilizing the USP IV apparatus 

was also developed. The specific aims of my project were: 

A) To evaluate the discriminatory potential of the rapid screening and biorelevant 

dissolution methods 

B) To assess the reproducibility of the developed methods 
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2.2 Approach 

 

Figure 4. Overview of Approach Taken to Achieve Project Goal 

2.2.1  Model Drug Product 

The overall approach undertaken in order to achieve the project goal is summarized in 

Figure 4. In order to develop and demonstrate the applicability of a small volume dissolution 

apparatus, microparticles applied in the periodontal pocket were selected. Specifically, 

minocycline hydrochloride (MIN), an antibiotic, loaded PLGA-based microparticles were 

evaluated. These microparticles are used in periodontitis. Periodontitis affected about 64.7 million 

people (46 % of the population) between 2009-2012 in United States alone [83]. It is a chronic 
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bacterial inflammation of the epithelial and connective tissues that surround and support the teeth 

[84]. In healthy adults, the gap between these periodontal tissues and the tooth is 1-3 mm [85]. 

One of the hallmarks of periodontal disease is increase in pocket depth and formation of a 

periodontal pocket [86]. Figure 5 illustrates the differences between a healthy and inflamed 

periodontal pocket.  

 

Figure 5. Differences between a healthy and inflamed periodontal pocket. Reproduced with permission [84]. 

Various studies show a positive correlation between the volume of the periodontal pocket 

and the stage of periodontal disease [87-89]. The pocket volume varies from 0.4 µL to 1.5 µL 

depending on stage of disease [90]. The periodontal pocket is filled with a physiological and 

inflammatory exudate, called the gingival crevicular fluid (GCF). The composition of GCF is 
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similar to that of any inflammatory exudate with lower protein content [91]. The flow of GCF is 

highly variable and ranges between 0.33 – 0.73 µL/min [90]. 

The most common and effective treatment of periodontitis is scaling and root planing 

(SRP). It is often accompanied with administration of antibiotics either locally or systemically. 

Tetracyclines, doxycycline, metronidazole, amoxicillin, ciprofloxacin and macrolide antibiotics 

are reported to be useful as systemic antibiotics in periodontitis [92]. To avoid problems of 

systemic antimicrobial resistance and side effects, focus was shifted to locally administered 

antimicrobial therapy [93]. The first locally acting system for periodontitis was ActisiteTM, which 

was comprised of tetracycline-loaded fibers that were wound around the affected teeth. Since then, 

various films, gels, chips, cubes and micro- or nanoparticles have been studied for management of 

periodontitis [94].  

In the current study, we used Arestin® as a model drug product for the development of 

dissolution methods. Arestin® is manufactured by OraPharma and is composed of PLGA 

microspheres encapsulating 1 mg of MIN, a bacteriostatic agent. Arestin® is shown to maintain 

therapeutic levels in the periodontal pocket for a period of 14 days [95]. Clinical studies have 

shown Arestin® in conjunction to SRP is more effective than SRP alone [96]. Another study 

compared the effectiveness of Arestin® and Elyzol (25 % metronidazole gel) as adjunct treatments 

in periodontitis. At 3 months, only the Arestin®+SRP group showed a statistically significant 

increase in clinical attachment level and reduction in pocket probing depth [97]. Thus, Arestin® 

has been shown to be an effective strategy for management of periodontitis and has been available 

in the market for almost two decades. The physicochemical properties of the two main components 

of Arestin®, MIN, the active agent and PLGA, the release controlling polymer are listed below. 



 34 

2.2.1.1 Minocycline Hydrochloride – Active Pharmaceutical Ingredient 

 

Figure 6. Structure of Minocycline Hydrochloride 

Table 2. Properties of Minocycline Hydrochloride [98] 

Molecular weight 493.941 g/mol 

Molecular formula C23H27N3O7.HCl 

Class Tetracyclines (semi-synthetic) 

Mechanism of action Inhibition of protein translation 

Water solubility 52,000 mg/L at 25°C 

Log Kow 0.05 

pKa 2.8, 5.0, 7.5, 9.6 [99] 

Stability 

Stable in air; sensitive to heat, light, and 

oxidation. Degrades in acidic and basic 

conditions (pH 0.38 – 9.35) [100] 

 

2.2.1.2 Poly (lactic-co-glycolic acid) – Release Controlling Polymer 

As reviewed earlier, PLGA is a versatile polymer that has been used in multiple products 

which are currently in the market. Being FDA approved, the polymer finds applications in a wide 

variety of fields, from drug delivery to bone regeneration. Like in other PLGA-based systems, the 

role of PLGA in Arestin® is to control the rate of MIN release. Based on the results of reverse 

engineering of Arestin® (unpublished data), Arestin® is composed of PLGA with LA:GA ratio of 
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50:50. The polymer has acid-end groups and molecular weight of about 24 kDa. Arestin® 

microparticles encapsulate 25 % w/w of MIN. The slow degradation of PLGA inside the 

periodontal pocket helps in maintaining the concentration of MIN above therapeutic levels in the 

pocket for at least 14 days [101]. 

2.2.2  Development of Comparators to Challenge Developed Methods 

The discriminatory ability of dissolution methods is generally assessed by testing the 

effects of deliberate changes in manufacturing of the products on dissolution characteristics [102]. 

Thus, a panel of microparticles with deliberate changes in composition were prepared (unpublished 

data). These microparticles were prepared by varying the LA:GA ratios, Mw of PLGA and MIN 

drug loading and were expected to show differences in drug release.  

Additionally, a panel of microparticles with similar composition to Arestin® but prepared 

using different manufacturing conditions, specifically stir rate and solvent ratio were prepared. 

These microparticles were tested on the USP IV method to evaluate if the method can detect 

differences based on manufacturing differences. All microparticles were designed, fabricated and 

characterized for particle size by Ms. Ashlee C. Greene in Dr. Steven R. Little’s research group 

(Swanson School of Engineering, University of Pittsburgh).  

2.2.3  Development of Dissolution Methods 

Currently, the USP method for dissolution testing of periodontal systems containing MIN 

utilizes a tube rotator equipment. Briefly, one dose of the periodontal system is dispensed in a 15 

cm long glass tube between two 25 µm screens. 10 mL of phosphate buffer (pH 4.2) is added to 
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the tubes and they are sealed with a snap-seal closure made of Teflon. The tubes are rotated in the 

tube rotator and the entire assembly is maintained at 37°C. Samples are taken at 4 h, 24 h, 48 h 

and 72 h by total medium replacement. The amount of MIN in dissolution samples is calculated 

using a liquid chromatography method at 280 nm [103]. The acceptance criteria as give in the USP 

monograph is as follows: 

Table 3. Acceptance Criteria as per USP Monograph 

Time 

(hours) 

Release 

Rate (µg/h) 

Calculated Amount 

to be Released (µg) 

Cumulative Amount 

to be Released (µg) 

Calculated % 

Released (Ideal) 

0 – 4  NLT 25 NLT 100 NLT 100 NLT 10 

4 – 24 NLT 1 NLT 20 NLT 120 NLT 12 

24 – 48 NLT 0.2 NLT 4.8 NLT 124.8 NLT 12.48 

48 – 72  NLT 0.05 NLT 1.2 NLT 126 NLT 12.6 

*Note: NLT = Not less than 

Tariq M. and colleagues reviewed the numerous methods that have been used for drug 

release testing of periodontal systems in vitro [104]. A variety of dissolution media, from distilled 

water to simulated salivary fluid, human serum and hydroalcoholic solutions have been reported 

in literature. The media volumes also vary greatly, from 1 mL to 500 mL. Continuous flow 

methods with flow rates ranging from 0.65 mL/min to 10 mL/min have been used for testing. 

However, none of the methods simulated the extremely low fluid volumes and flow rates present 

in the periodontal pockets. The current work was focused on bridging this gap between in vitro 

evaluation settings and in vivo release conditions.  

First, a rapid screening method based on a previously reported USP IV method [57] was 

developed. This method was used to test drug release from the prepared microparticles and to 

ascertain that the microparticles produced broad differences in dissolution profiles. After 
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confirming that the microparticles showed differences using the USP IV method, the novel small 

volume method (SVM) was evaluated using these microparticles. 

The SVM was developed on a small volume apparatus (SVA) which was designed 

previously in our lab (Invention Disclosure Number 04686). The apparatus (Figure 7) consists of 

an inner slotted chamber and outer closed chamber. The inlet and outlet caps are designed to allow 

unidirectional flow of media, allowing the assembly to function like a flow-through cell. The 

assembly is connected to a syringe pump which allows for continuous media flow in an open-loop 

configuration. These flow through cells can be placed in an oven to regulate the temperature.  

 

Figure 7. Images of the Small Volume Apparatus. (A) Inlet cap, (B) Outlet cap, (C) Outer chamber, (D) Inner 

chamber with dialysis membrane, (E) Assembled device 

A GCF simulant (sGCF) was also developed in the laboratory. The sGCF was used as a 

biorelevant media for the SVM. Table 4 lists the composition of the sGCF and Table 5 compares 

the composition of sGCF and human GCF.  
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Table 4. Composition of GCF Simulant 

Component Amount (g/L) Amount (mM) 

Citric acid monohydrate 0.338 1.608 

Trisodium citrate dihydrate 5.411 20.968 

Sodium chloride 6.740 115.332 

Potassium chloride 0.719 9.644 

Bovine serum albumin 0.056 0.001 

Calcium chloride dihydrate 0.490 3.333 

MilliQ water 1 L - 

 

Table 5. Comparison between sGCF and human GCF [105] 

Component Human GCF sGCF 

Sodium (mEq/L) 174.7 ± 18 174.5 

Potassium (mEq/L) 9.54 ± 2.4 9.52 

Calcium (mEq/L) 5.41 ± 0.37 5.44 

pH 6.8-8.7 7.2 [106] 

 

2.2.4  Development of Analytical Methods 

MIN is sensitive to heat, light and oxidation [107]. About 10 % MIN degrades within an 

hour in phosphate buffered saline (PBS) at 37°C [108]. The degradation of MIN poses a challenge 

in the development of UV assay methods for quantitation of MIN in dissolution samples. It has 

been reported that for unstable drugs, UV analysis can be carried out at isosbestic point [109]. The 

isosbestic point is the wavelength at which the total absorbance of the sample does not change 

during a chemical reaction or when the sample undergoes a physical change [110]. Simply put, at 
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the isosbestic point, the total absorbance of the sample depends on the total molar concentration 

of two or more species in equilibrium.  

Isosbestic point analysis has been used in the compendial dissolution method for Aspirin 

tablets [111]. Previous reports have demonstrated that tetracycline hydrochloride also displays an 

isosbestic point and that analysis of tetracycline and its degradants can be carried out at the 

isosbestic point without separation of the components [112]. Yang, Z. and coworkers reported to 

have analyzed MIN dissolution samples using UV-Visible spectroscopy without chromatographic 

separation of the degradants [113]. This indicates that MIN may exhibit an isosbestic point, which 

can be used for UV analysis of MIN samples. Thus, an online UV-based analytical method was 

developed for analysis of MIN samples using the USP IV method. The dissolution samples 

obtained using the biorelevant dissolution method were evaluated using a liquid chromatography 

based-assay.  

A brief account of the development of analytical methods is presented in chapter 4. 

Chapters 4 and 5 also demonstrate the development and testing of the USP IV method and SVA 

using the developed microparticles as well as Arestin®. Specifically, Arestin® was utilized during 

method development and to test the reproducibility of the methods. The discriminatory ability of 

the method was evaluated using the developed microparticle panel(s).  
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3.0 Materials and Methods 

3.1 Materials 

Minocycline hydrochloride was purchased from Sigma Aldrich. Citric acid monohydrate, 

sodium hydroxide, sodium chloride, sodium citrate, bovine serum albumin, calcium chloride 

dihydrate, sodium azide and dimethyl sulfoxide were purchased from Spectrum Chemical. 

Potassium phosphate monobasic, potassium chloride, acetonitrile, ethanol and phosphate buffered 

saline (10x) were procured from Fisher Scientific. Tetra butyl ammonium hydrogen sulphate 

(98%) was obtained from J. T. Baker®. Float-A-Lyzer® G2 devices of 50 kDa MWCO and 

dialysis tubing (1 cm flat length, 50 kDa MWCO) were obtained from Spectrum Laboratories. 

Tygon tubing of 5/32” and 1/8” outer diameter was obtained from Fisher Scientific while tubing 

of 0.09” outer diameter was obtained from Cole-Parmer. All small volume chambers were 

manufactured by Mr. James Scott Macpherson at Swanson School of Engineering, University of 

Pittsburgh. 

3.2 Fabrication of MIN loaded PLGA Microparticles 

A panel of microparticles (Panel A), prepared using different process parameters, were 

prepared using the single emulsion method. Another panel of microparticles having differences in 

formulation (Panel B) were also prepared.  The microparticles in Panel A were prepared using 

PLGA of Mw 24 – 38 kDa. The ratio of PLGA:dichloromethane (DCM) and the stir rate used to 
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prepare the microparticles was varied, as given in Table 6. Panel B (Table 7) was prepared by 

varying the MIN drug loading, Mw and LA:GA ratio of PLGA. All microparticles were prepared 

using the single emulsion technique and were designed and fabricated by Ms. Ashlee C. Greene in 

Dr. Steven R. Little’s Laboratory (Swanson School of Engineering, University of Pittsburgh).  

Table 6. Microparticles Differing in Process Parameters (Panel A) 

Microparticle Name Stir Rate Ratio of PLGA:DCM 

0.025H 1500 0.025 

0.05H 1500 0.05 

0.0625M 1000 0.0625 

0.1L 500 0.1 

 

Table 7. Microparticles Differing in Formulation (Panel B) 

Microparticle 

Name 
LA:GA 

Molecular Weight 

(kDa) 

Theoretical Drug 

Loading (%) 

50L3 50:50 15.4 50 

50H1 50:50 64.14 25 

75L2 75:25 14.2 37.5 

85L1 85:15 21.8 25 

85H3 85:15 43.3 50 

3.3 Characterization of Prepared Comparators 

All microparticles were characterized for particle size, surface morphology, drug content 

and polymer Tg. Particle size and surface morphology were determined by Ms. Ashlee C. Greene. 

Measurements were performed by volume impedance using Coulter Counter (Multisizer 3, 

Beckman Coulter). Surface morphology was tested using scanning electron microscopy (SEM). 
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The microparticles were sputter coated with gold/palladium (Au/Pd) using the Denton Sputter 

Coater and then imaged using the JEOL JSM-6510LV/LGS (JEOL Inc., USA). Drug content was 

measured by dissolving around 10 mg particles (or 2 units of Arestin®) in 100 mL of 20 % 

acetonitrile in MilliQ water. The particles were vortexed and stirred in the dark for 1 hour. The 

solution was then filtered using 0.22 µm teflon syringe filters (RestekTM) and analyzed using the 

ultra-high performance liquid chromatography (UPLC) method described below. The Tg of PLGA 

in microparticles was characterized using differential scanning calorimetry (DSC). 2-5 mg 

microparticles were weighed in aluminum pans and sealed with a sealing press (METTLER 

TOLEDO). The lids were punctured to allow for escape of water. Tg was calculated in a cyclic 

run on DSC 2 STARe System (METTLER TOLEDO). First, the microparticles were heated at 

10°C/min from 25 – 125°C. This was done to remove moisture from the sample. The samples were 

then cooled to 0°C at -10°C/min and heated again to 250°C at 10°C/min. All runs were carried out 

under nitrogen gas at a flow rate of 50 mL/min.  

3.4 Determination of Isosbestic Point 

To determine the isosbestic point of MIN, 25 µg/mL samples of MIN in 0.1 % sodium 

azide in PBS were kept in amber colored vials at 37°C for 5 days. Every day, one vial was removed 

and stored at -80°C. UV absorption spectra of all samples were taken using VISIONpro software 

with a UV spectrophotometer (Evolution 300, Thermo Scientific). 
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3.5 Dissolution of Microparticles by USP IV Method 

A USP IV method was developed based on a previously published method [57]. The media 

pumps were calibrated using water at 10 mL/min for 2 minutes. A % error of less than 5 % was 

accepted. Float-A-Lyzer® G2 devices of 50 kDa molecular weight cut-off (Spectrum 

Laboratories) were prepared by rinsing them first with 10 % ethanol for 10 minutes, then with 

purified water for 30 minutes and finally with 0.1 % sodium azide in PBS (dissolution media) for 

another 30 minutes. About 10 mg microparticles (or two Arestin® cartridges) were added to the 

prepared devices. 1.8 mL of dissolution media was added to the devices before capping them. The 

prepared devices were placed in 22.6 mm flow through cells and dissolution was carried out using 

USP IV apparatus (SOTAX CP7 manual closed loop system). 80 mL of dissolution media served 

as the reservoir and was made to recirculate at 10 mL/min flow rate. The test was carried out at 

37°C for 3 days. At predetermined intervals, the cumulative amount of drug released was measured 

by an online UV spectrophotometer (Evolution 300, Thermo Scientific) at 292 nm. At regular 

intervals, a calibration curve of minocycline hydrochloride in dissolution media was prepared and 

analyzed at 292 nm. The readings were used to determine the E11 value, utilized by the software 

to measure % dissolved values during on-line UV analysis. Figure 8 shows a schematic 

representation of the USP IV-based dissolution method. 
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Figure 8. Schematic Representation of USP IV Dissolution Method 

3.6 Dissolution of Microparticles Using Small Volume Apparatus 

Syringe pumps (KD Scientific) were filled with sGCF and calibrated at 0.5 µL/min. An 

error of <10 % was accepted. The inner chamber of the SVA was wrapped with a dialysis 

membrane of 50 kDa MWCO (Biotech CE, 1 cm flat width, Spectrum Laboratories) using an 

adhesive (Liquid Nails All Purpose Adhesive) and teflon tape. About 10 mg microparticles (or 1 

cartridge of Arestin®) were added to the chamber followed by 250 µL of sGCF. The inner chamber 

was inserted into the outer chamber and sGCF was made to flow through the assembled cell at 100 

µL/min to fill the chamber entirely. Once filled, the flow rate was reduced to 0.5 µL/min. Samples 

were collected daily for at least 14 days and diluted to a final of 20 % of acetonitrile in sGCF. The 

diluted samples were analyzed by UPLC. Figure 9 illustrates the small volume dissolution method. 
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Figure 9. Schematic Representation of (A) Dissolution Cell and (B) Set-up of Small Volume Method  

3.7 UPLC Analysis of Minocycline Hydrochloride 

A UPLC-based assay for MIN was developed in-house. A UPLC system (Acquity, Waters) 

with a TUV detector was used for analysis. An Acquity UPLC BEH C18 column (1.7 µm, 2.1 mm 

 50 mm) maintained at 35°C was used. The mobile phase composed of 76 % of citrate-phosphate 

buffer at pH 7.0 and 24 % of acetonitrile, added gravimetrically. A flow rate of 0.2 mL/min was 

used for the isocratic method. Samples were stored at 7°C throughout the run. Samples were run 

for 10 minutes and calibration standards were run for 7 minutes in the respective matrix. Analysis 

was carried out at 277 nm. 



 46 

3.8 Statistical analysis 

Wherever necessary, the dissolution profiles were compared for similarity using the f1 

difference factor (Equation 7) and f2 similarity factor (Equation 8). 
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4.0 Results 

Microparticles of both panels were characterized for particle size, surface morphology, 

drug loading and Tg. The particles were evaluated for drug release using the rapid screening USP 

IV method. Microparticles of Panel B were evaluated using the SVM as well. Both dissolution 

methods exhibited discriminatory ability.  

4.1 Characterization of MIN loaded PLGA Microparticles 

All microparticles that were manufactured to challenge the developed methods were 

spherical and had a smooth surface. Figure 10 shows a representative SEM image of Arestin®. 

The characteristics of microparticles in Panel A are summarized in Table 8. The particle size of all 

microparticles of Panel A was found to be 32 µm and 44 µm. The MIN content of these 

microparticles ranged between 9 – 22 % w/w. Figure 11 is a typical curve that was obtained using 

DSC. All microparticles had a Tg between 48 – 55°C, characteristic of the PLGA used. Table 9 

summarizes the properties of Panel B microparticles. All microparticles of Panel B and Arestin® 

had a particle size between 28 µm to 40 µm and drug loading between 9 – 21 % w/w. Overall, all 

microparticles that were prepared had a drug loading between 9 – 22 % w/w, which was found to 

be lower than Arestin® (25 % w/w).  
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Figure 10. SEM Image of Arestin® Microparticles 

 

Table 8. Characteristics of Panel A Microparticles 

Microparticle Solvent 

Ratio 

Stir 

Rate 

Particle 

Size (µm) 

Drug Loading 

(% w/w) 

Tg (°C) 

Onset Midpoint 

0.025H 0.025 1500 32.3±10.3 12.24 50.6 51.18 

0.05H 0.05 1500 38.8±9.9  9.2 47.77 50.46 

0.0625M 0.0625 1000 43.2±12.1 12.43 47.28 50.02 

0.1L 0.1 500 39.6±14.9 21.67 46.33 48.95 

*Particle size data generated by Ms. Ashlee Greene, Dr. Steven R. Little Lab 
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Table 9. Characteristics of Panel B Microparticles 

Microparticle LA:GA 

Ratio 

PLGA 

Mw (kDa) 

Particle 

Size (µm) 

Drug Loading 

(% w/w) 

Tg (°C) 

Onset Midpoint 

85H 85:15 43.3 33.9 ± 11.9 15.50 51.62 54.28 

85L 85:15 21.8 39.2 ± 11.3 9.9 0 51.93 55.36 

75L 75:25 14.2 36.9 ± 12.8 11.42 45.83 49.36 

50H 50:50 64.14 32.9 ± 10.1 9.10 47.49 50.15 

50L 50:50 15.4 28.7 ± 9.6 21.05 49.05 52.75 

Arestin®  50:50 ~24 28.6±12.3 

(Lot H) 

25.13 ± 0.4  

(Lot F) 

45.87 48.52 

*Particle size data generated by Ms. Ashlee Greene, Dr. Steven R. Little Lab 
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Figure 11. DSC Curve of Arestin® Microparticles. The light blue region represents the curve obtained during the 

first and second heat-cool cycle. The dark blue curve was obtained during the second heating cyle and was used for 

calculating Tg. The peaks at the end of the chromatogram indicate drug degradation. 

 

In order to quantify the released MIN from microparticles during dissolution using USP 

IV apparatus, an online UV-Vis spectrophotometer was utilized. However, rapid degradation of 

MIN precluded use of UV spectrophotometer for drug quantitation. Moreover, chromatographic 

methods were not preferred because the total degradation products cannot be accounted given their 

varied absorptivity. Therefore, to account for the degradation, isosbestic point was determined for 

MIN in the dissolution media. 
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4.2 Determination of Isosbestic Point of MIN 

Figure 12 shows an overlay of the UV spectra of MIN samples (25 µg/mL in 0.1% sodium 

azide in PBS) maintained at 37 °C over a period of 5 days under mild shaking. As can be observed 

from the graphs, the absorption maxima of MIN is 246 nm. The absorbance at this wavelength is 

influenced mainly by the amount of MIN in the sample. Thus, as MIN degrades with time, the 

absorbance at 246 nm decreases. However, the wavelength region from 276 – 312 nm showed 

overlapping UV spectra indicating no or minimal changes in absorbance for samples stored for 

different lengths of time. This region is termed as the isosbestic region. The absorbance of the 

sample in this region is proportional to the total concentration of MIN and its degradants in the 

sample. A wavelength of 292 nm, which lies in the middle of the isosbestic region, was chosen for 

online UV analysis. Absorbances were found to be linear from 0.5 µg/mL – 50 µg/mL at 292 nm. 

This range was used to calculate the E11 value, necessary for on-line UV analysis with the USP 

IV apparatus. E11 is a composite value relating absorbance, path length and concentration of the 

samples. Figure 13 shows an overlay of four calibration curves obtained using UV 

spectrophotometer at 292 nm. The average E11 value obtained was 258.62, with a relative standard 

deviation of 4.05 %. 
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Figure 12. Determination of Isosbestic Region. MIN samples in 0.1% sodium azide in PBS (25 µg/mL) were kept 

at 37°C under mild shaking for a period of 5 days. Samples were collected daily and their UV spectra were obtained. 

All UV spectra showed almost constant absorbance in the region between 276 – 312 nm. This region is called the 

isosbestic region.  A wavelength of 292 nm, which lies in the middle of this range, was chosen for online UV analysis. 
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Figure 13. Overlay of Calibration Curves of MIN (0.5 – 50 µg/mL in 0.1% sodium azide in PBS) used for E11 

Calculation at 292 nm. The E11 values were calculated on different days and using different lots of dissolution 

media. The average E11 values was found to be 258.62, with a relative standard deviation of 4.05 %. 

4.3 Analysis of Samples using the USP IV Apparatus 

USP IV dissolution apparatus was utilized to assess dissolution of MIN solution, Arestin®, 

and the prepared microparticle panels to test the reproducibility and discriminatory ability of the 

method. 
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4.3.1  MIN Solution 

Figure 14 shows the release profile of MIN solution (1 mg/mL) using the USP IV method. 

Complete release (100 %) of MIN was observed within 4 hours and the drug release remains almost 

constant up to 3 days. The release reached a plateau in 6 hours, indicating that the release of MIN 

is not affected by the dialysis membrane. The release remained constant over a period of 3 days, 

suggesting that the isosbestic point can be reliably used to test MIN release from microparticles. 

The greater than 100% release observed is attributed to possible interference from unknown 

degradants formed during degradation affecting the sensitivity of detection. This result further 

supports the use of USP IV method for a semi-quantitative comparison of dissolution profiles. 

 

Figure 14. Release of Minocycline Solution in USP IV Method. MIN solution (1 mg/mL) was added to Float-A-

Lyzer® dialysis devices of 50 kDa MWCO. The dialysis devices were inserted in USP IV flow-through cells and 

incubated at 37°C. Dissolution cells were subjected to a continous flow of 0.1% sodium azide in PBS at 10 mL/min 

for a period of 3 days. At predetermined intervals, samples were analyzed by an online UV-Vis spectrophotometer at 
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isosbestic point. Results are presented as Mean ± SD of n=5 samples. Complete release of MIN was observed within 

6 hours and the release profile remained constant over a period of 3 days. 

4.3.2  Arestin®  

Figure 15 shows the dissolution profile of Arestin® obtained using the USP IV method. 

The release profile resembled zero-order release kinetics for the first 13 hours (70 % drug 

released), after which the release approached a plateau. About 85 % of MIN releases within 1 day 

and complete release is observed within 3 days.  

 

Figure 15. Drug Release of Arestin® Microparticles from USP IV Method. Two units of Arestin® were added to 

Float-A-Lyzer® dialysis devices of 50 kDa MWCO. The dialysis devices were inserted in USP IV flow-through cells 

and incubated at 37°C. Dissolution cells were subjected to a continous flow of 0.1% sodium azide in PBS at 10 mL/min 

for a period of 3 days. At predetermined intervals, samples were analyzed by an online UV-Vis spectrophotometer at 

isosbestic point. Results are presented as Mean ± SD of n=3 samples. About 85 % MIN releases within 1 day and 

complete release is observed at the end of 3 days. 
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4.3.3  Panel A Microparticles (Process Changes) 

The dissolution profiles of Panel A microparticles (process changes) are shown in Figure 

16. Both, 0.05H and 0.1L microparticles release about 70 % of the drug over 3 days but 

demonstrate differences in release profiles. Microparticles 0.05H exhibit a faster release while 

0.1L microparticles release in a more sustained fashion. Microparticles 0.0625M release about 60 

% MIN over a period of 3 days. Microparticles 0.025H release the least cumulative amount of 

MIN, with about 15 % of MIN released over 3 days. Table 10 lists the f1 (difference) and f2 

(similarity) values of the dissolution profiles of Panel A microparticles. f1 and f2 values are 

calculated to statistically evaluate the similarities and differences between dissolution profiles.  f1 

values above 15 and f2 values below 50 indicate that the dissolution profiles are not similar to each 

other. As seen from Table 10,  none of the dissolution curves were found to be f1-f2 similar to each 

other, indicating that the USP IV method could discriminate between microparticles produced 

using different process parameters.  
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Figure 16. Drug Release Profiles of Panel A Microparticles (Process Changes) Obtained Using USP IV Method. 

About 10 mg of microparticles were added to Float-A-Lyzer® dialysis devices of 50 kDa MWCO. The dialysis devices 

were inserted in USP IV flow-through cells and incubated at 37°C. Dissolution cells were subjected to a continous 

flow of 0.1% sodium azide in PBS at 10 mL/min for a period of 3 days. At predetermined intervals, samples were 

analyzed by an online UV-Vis spectrophotometer at isosbestic point. Results are presented as Mean ± SD of n=3 

samples. The USP IV method could successfully discriminate between microparticles of Panel A. 

 

Table 10. Statistical Analysis of Dissolution Profiles of Panel A Microparticles. Numbers in bold denote 

values which are within limits (f1 < 15, f2 > 50). 

 Difference Factor (f1) Similarity Factor (f2) Similar? 

0.025H vs. 0.0625M  233.51 23.97 N 

0.0625M vs. 0.1L 17.40 54.23 N 

0.1L vs. 0.025H 72.50 20.54 N 

0.025H vs. 0.05H 322.88 17.92 N 

0.0625M vs. 0.05H 26.80 45.74 N 

0.1L vs. 0.05H 21.05 43.10 N 
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Previous studies have shown that drug release profiles can be normalized to the total 

amount of drug released in order to compare the mechanism of drug release from dosage forms 

[114-116]. Thus, in order to compare the way in which MIN releases from Panel A microparticles, 

the dissolution profiles obtained using the USP IV method were normalized to the total amount of 

MIN released. Figure 17 shows these normalized dissolution profiles of Panel A microparticles. 

Note that the normalized drug release profile of 0.025H microparticles in very uneven. This can 

be attributed to the low amounts of drug released from the microparticles, which may have fallen 

below the sensitivity of the method. A crude comparison of dissolution profiles indicates that 

increase in stir rate increases the burst release properties of microparticles (Figure 17), while the 

solvent ratio may affect the total amount of MIN that is released from the microparticles (Figure 

16). However, there are multiple variables that can affect the drug release profiles of 

microparticles. Thus, additional information is needed before any conclusions about the effect of 

microparticle properties on drug release profiles can be made.  Nevertheless, normalization of 

drugs release profiles removes bias caused due to differences in cumulative amount of drug 

released. Thus, normalization facilitates a fair comparison of drug release profiles of different 

microparticles.  
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Figure 17. Drug Release Profiles of Panel A Microparticles Normalized to Total Drug Released. Drug release 

profiles of Panel A microparticles (process changes) that were obtained using the USP IV apparatus were normalized 

to the total amount of MIN released over a period of 3 days. Normalization was carried out to understand the way in 

which MIN releases from the microparticles. Results are reported as Mean ± SD of n=3 samples. A basic comparison 

of dissolution profiles suggests that increase in stir rate causes an increase in burst release from microparticles (as for 

microparticles 0.025H and 0.05H) while reducing stir rate causes a more sustained release (0.0625M and 0.1L).   

4.3.4  Panel B Microparticles (Formulation Changes) 

Figure 18 shows the dissolution profiles of microparticles differing in composition. 

Microparticles 85H released the highest amount of MIN, about 60 %, whereas 85L released the 

lowest amount of MIN. Given the sensitivity limitations of this method, such low drug release 

cannot be quantified. Microparticles 50H, 75L and 50L released about 40 %, 25 % and 10 % of 
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MIN over the test duration. Overall, The USP IV method could successfully discriminated between 

the microparticles of Panel B. 

 

Figure 18. Dissolution Profiles of Panel B Microparticles (Formulation Changes) Obtained Using USP IV 

Method. About 10 mg of microparticles were added to Float-A-Lyzer® dialysis devices of 50 kDa MWCO. The 

dialysis devices were inserted in USP IV flow-through cells and incubated at 37°C. Dissolution cells were subjected 

to a continous flow of 0.1% sodium azide in PBS at 10 mL/min for a period of 3 days. At predetermined intervals, 

samples were analyzed by an online UV-Vis spectrophotometer at isosbestic point. Results are presented as Mean ± 

SD of n=3 samples. The USP IV method could successfully discriminate between microparticles of Panel B.  

 

Different batches of 85H microparticles were prepared and tested using the developed USP 

IV method to assess if the method could identify batch-to-batch differences between 

microparticles. Table 11 shows the characteristics of the multiple 85H batches. Microparticles 

85H_1, 85H_2 and 85H_3 were three different batches of 85H that were produced. “Batch 0” is 
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the original batch that was produced and is included for comparison. Slight differences in drug 

loading (10-16% w/w) was observed. Two of the three microparticle samples (Batches 1 and 3) 

showed similar dissolution profiles (Figure 19, Table 12), releasing about 80 % MIN over a period 

of 3 days. One batch (Batch 2) showed a different drug release profile, releasing a cumulative of 

60 % MIN over 3 days, similar to the original batch (Batch 0).  

Table 11. Characteristics of 85H Reproducibility Batches 

Microparticle Particle Size (µm) Drug Loading (%) 
Tg (°C) 

Onset Midpoint 

85H_1 40.96±11.24 13.34 52.09 54.88 

85H_2 43.51±12.00 11.07 52.15 54.68 

85H_3 43.25±9.87 10.44 51.56 54.17 

85H_Batch0 33.9±11.19 15.50 51.62 54.28 
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Figure 19. Dissolution Profiles of Multiple Batches of 85H. About 10 mg of microparticles were added to Float-A-

Lyzer® dialysis devices of 50 kDa MWCO. The dialysis devices were inserted in USP IV flow-through cells and 

incubated at 37°C. Dissolution cells were subjected to a continous flow of 0.1% sodium azide in PBS at 10 mL/min 

for a period of 3 days. At predetermined intervals, samples were analyzed by an online UV-Vis spectrophotometer at 

isosbestic point. Results are presented as Mean ± SD of n=3 samples. The microparticles showed lot-to-lot differences, 

which could be identified using the USP IV method. 
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Table 12. Statistical Analysis of Dissolution Profiles of Multiple 85H Batches. Numbers in bold denote values 

which are within limits (f1 < 15, f2 > 50). 

 Difference Factor (f1) Similarity Factor (f2) Similar? 

85H_1 vs. 85H_2 19.84 42.51 N 

85H_2 vs. 85H_3 24.37 41.23 N 

85H_1 vs. 85H_3 3.86 74.92 Y 

85H_1 vs. 

85H_Batch0 
27.67 37.89 N 

85H_2 vs. 

85H_Batch0 
11.25 61.51 Y 

85H_3 vs. 

85H_Batch0 
26.81 37.94 N 

4.3.5  Method Reproducibility 

Arestin® dissolution was performed at three different times by two analysts using the USP 

IV method to check for reproducibility of the method. As seen in Figure 20, all three Arestin® 

runs were found to be f1- f2 similar to each other. The f1 and f2 comparisons of the obtained 

dissolution profiles are listed in Table 13. All values fall within the range, confirming the 

repeatability of the method. 
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Figure 20. Overlay of Dissolution Profiles of Three Arestin® Runs. Two units of Arestin® were added to Float-

A-Lyzer® dialysis devices of 50 kDa MWCO. The dialysis devices were inserted in USP IV flow-through cells and 

incubated at 37°C. Dissolution cells were subjected to a continous flow of 0.1% sodium azide in PBS at 10 mL/min 

for a period of 3 days. At predetermined intervals, samples were analyzed by an online UV-Vis spectrophotometer at 

isosbestic point. Results are presented as Mean ± SD of n=3 samples of 3 individual runs of Arestin®. All three runs 

of Arestin® were similar to each other, indicating that the method is reproducible. 

 

Table 13. Statistical Analysis of Dissolution Profiles of Multiple Runs of Arestin®. Numbers in bold denote 

values which are within limits (f1 < 15, f2 > 50). 

 Difference Factor (f1) Similarity Factor (f2) Similar? 

Run 1 vs. Run 2 3.48 77.05 Y 

Run 2 vs. Run 3 6.96 64.74 Y 

Run 3 vs. Run 1 10.55 56.55 Y 
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4.4 Analysis of Microparticles using the Small Volume Method 

The SVM was evaluated using microparticles of Panel B to assess its discriminatory 

potential and reproducibility. The effect of flow rate on drug release of MIN solution and Arestin® 

was also assessed. The discriminatory ability was assessed by performing dissolution of Panel B 

microparticles (compositional changes). The reproducibility of the method was determined by 

performing the dissolution of Arestin® microparticles multiple times.   

4.4.1  Analysis of MIN by UPLC 

A stability-indicating UPLC assay was developed and qualified for use in-house. The 

method was used for analyzing drug content of microparticles and dissolution samples. Figure 21 

shows a representative chromatogram. The method was linear in the concentration range of 0.125 

– 50 µg/mL (Figure 22). Dissolution samples were collected during the biorelevant test and stored 

at -80°C prior to analysis. The stability of samples (20 and 50 µg/mL) was measured in 20 % 

acetonitrile in sGCF over a period of 7 months. A percent recovery of 97 – 101 % was obtained, 

which suggested that the dissolution samples were stable during the time frame. Stability of the 

samples on tray by measuring % recovery of QC samples (20 µg/mL) over 53 hours. More than 

95 % recovery was obtained over the time frame, suggesting that the samples were stable on tray. 
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Degradant Retention Time (min) Relative Retention Time 

Epimer 1.394 0.425 

Minocycline HCl 3.278 1.000 

Figure 21. Representative Chromatogram of Arestin® Dissolution Sample 

 

 

Figure 22. Overaly of Three Calibration Curves of MIN in 20 % acetonitrile in sGCF 
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4.4.2  MIN solution 

Figure 23 shows the dissolution profiles of MIN solution (2 mg/mL) performed using flow 

rates of 0.5 µL/min, 2 µL/min and 10 µL/min. As expected, release of MIN solution was dependent 

on the flow rate used. The time to reach plateau decreased from 4 days for 0.5 µL/min to 22 hours 

for 2 µL/min and 9 hours for 10 µL/min. This result suggests that the release of MIN is dependent 

on the concentration flux created inside the dissolution cells and is not a function of membrane 

permeability.  

 

Figure 23. Effect of Flow Rate on Release of Minocycline Solution from Small Volume Method. Two-hundred 

and fifty microliters of MIN solution (2 mg/mL in sGCF) was added to dialysis enclosures of 50 kDa MWCO. The 

dialysis enclosure was incubated at 37°C and subjected to continous flow of sGCF at 0.5, 2 or 10 µL/min. Samples 

were collected at regular intervals and analyzed for MIN content by a UPLC-based assay. Results are presented as 

Mean ± SD of n=4 samples. Increase in flow rate increases the rate of release of MIN from the dialysis enclosure, 

indicating that the release of MIN depends on the concentration gradient and is not affected by the dialysis membrane. 
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4.4.3  Arestin® 

Arestin showed a cumulative release of about 65 % over 2 weeks (Figure 24) in the 

biorelevant method. A fairly constant release was observed until a period of 5 days, after which 

the release plateaued.  

 

Figure 24. Drug Release from Arestin® Obtained by Small Volume Method. One unit of Arestin® was dispersed 

in 250 µL of sGCF in dialysis enclosures of 50 kDa MWCO. The dialysis enclosure was incubated at 37°C and 

subjected to continous flow of sGCF at 0.5 µL/min. Samples were collected daily and analyzed for MIN content by a 

UPLC-based assay. Results are presented as Mean ± SD of n=4 samples. A fairly constant release is observed during 

the initial 5 days, after which the release plateaus.  

 

In order to assess the effect of flow rate on dissolution of Arestin®, experiments were 

performed at 0.5 and 2 µL/min flow rates. Dissolution profiles of Arestin® at 0.5 and 2 µL/min 

are shown in Figure 24. Because the sampling time points did not match between these runs, the 
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dissolution data was fitted with a polynomial function (Figure 26) to obtain predicted % dissolved 

values from the trendlines. The release profiles were analyzed for similarity (f2) and difference 

(f1) factors. As seen in Table 14, flow rate did not have a significant impact on drug release from 

Arestin®, although an increased dissolution trend was observed with higher flow rate. It has been 

reported that the flow rates in the gingival pocket range from 0.33 – 2.24 µL/min [90]. These 

results indicate that the release of MIN from Arestin® microparticles is independent of the flow 

rates present clinically. However, the dissolution may be affected with further increase (or 

decrease) in flow rates, which was not evaluated in this study.  

 

Figure 25. Drug Release from Arestin® in Small Volume Method at Different Flow Rates. One unit of Arestin® 

was dispersed in 250 µL of sGCF in dialysis enclosures of 50 kDa MWCO. The dialysis enclosure was incubated at 

37°C and subjected to continous flow of sGCF at 0.5 or 2 µL/min. Samples were collected daily and analyzed for 

MIN content by a UPLC-based assay. Results are presented as Mean ± SD of n=4 samples. The release of Arestin® 

is fairly constant under the clinical relevant flow rates of 0.5 and 2 µL/min. 
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Figure 26. Fitting of Polynomial Trendline to Obtained Drug Release Profiles of Arestin®. The dissolution 

profiles of Arestin® obtained using flow rates of 0.5 and 2 µL/min were acquired at different timepoints. Similar 

timepoints are required in order to calculate f1 and f2 values to compare the dissolution profiles. Thus, the profiles 

were fitted onto polynomial curves and % dissolved values at pre-determines timepoints were estimated. These 

estimated values were used to calculate the f1 and f2 values for comparing the two profiles. 

 

Table 14. Statistical Analysis of Drug Release Profiles of Arestin® at 0.5 and 2 µL/min Flow Rate. Numbers 

in bold denote values which are within limits (f1 < 15, f2 > 50). 

 Difference Factor (f1) Similarity Factor (f2) Similar? 

Arestin® at 0.5 µL/min 

vs. Arestin® at 2 µL/min 

13.64 55.40 Y 

4.4.4  Panel B Microparticles (Formulation Changes) 

The small volume dissolution profiles of Panel B microparticles (differing in composition) 

are shown in Figure 27. The rank order of microparticles (85H > 50H > 75L > 50L > 85L) is same 

as that observed with the USP IV method. However, the cumulative amount of MIN released 

within 14 days is less than the MIN amount released over 3 days in the USP IV method. As seen 
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in Figure 27, the small volume dissolution method could effectively discriminate between the 

prepared microparticles that are compositionally different.  

 

Figure 27. Drug Release Profiles of Panel B Microparticles (Formulation Chnages) Obtained Using Small 

Volume Method. Around 10 mg of microparticles were dispersed in 250 µL of sGCF in dialysis enclosures of 50 kDa 

MWCO. The dialysis enclosure was incubated at 37°C and subjected to continous flow of sGCF at 0.5 µL/min. 

Samples were collected daily and analyzed for MIN content by a UPLC-based assay. Results are presented as Mean 

± SD of n=4 samples. The biorelevant method could successfully discriminate between microparticles of Panel B. The 

rank order of release from microparticles is constant between the USP IV and biorelevant methods. 

4.4.5  Method Reproducibility 

Dissolution of Arestin® was performed three times using the SVM to check for 

reproducibility of the method. Two different batches of Arestin® were run at different times. As 

seen in Figure 28, two of the three Arestin® runs were f1- f2 similar to each other and different 
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than the first run (original run). The f1 and f2 comparisons of the obtained dissolution profiles are 

listed in Table 15. These results can indicate differences between Arestin® batches, as the runs 

performed using the same batch (Run #2 and Run #3) are shown to be f1- f2 similar.  

 

Figure 28. Dissolution Profiles of three Arestin® Runs Obtained Using Small Volume Method. One unit of 

Arestin® was dispersed in 250 µL of sGCF in dialysis enclosures of 50 kDa MWCO. The dialysis enclosure was 

incubated at 37°C and subjected to continous flow of sGCF at 0.5 µL/min. Samples were collected daily and analyzed 

for MIN content by a UPLC-based assay. Results are presented as Mean ± SD of n=4 samples of 3 individual runs of 

Arestin® microparticles. Runs #2 and #3 were similar to each other and different to run #1. The differences between 

runs can be attributed to differences between lots of Arestin®. 
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Table 15. Statistical Analysis of Dissolution Profiles of Multiple Runs of Arestin®. Numbers in bold denote 

values which are within limits (f1 < 15, f2 > 50). 

 Difference Factor (f1) Similarity Factor (f2) Similar? 

Run 1 vs. Run 2 23.91 43.78 N 

Run 2 vs. Run 3 5.85 78.33 Y 

Run 3 vs. Run 1 39.27 40.26 N 
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5.0 Discussion 

There are several methods reported in the literature that can be used to evaluate drug release 

from PLGA microparticles [17, 44-46, 55, 61, 117, 118]. Many of these tests are conducted for 

microparticles that are developed for parenteral administration. For microparticles intended to be 

administered in the periodontal pocket (such as Arestin®), the current USP method utilizes a 

sample-and-separate type approach. This method utilizes agitation forces during incubation and is 

not biorelevant. The discriminatory potential of the method has also not been reported. Given these 

limitations, the current work attempts to address some of the limitations of the currently used 

methods by developing a novel, more biorelevant dissolution method. Further, attempts were made 

to develop a rapid screening method utilizing a compendial-level standardized USP IV apparatus. 

This method can be used during routine quality control analysis. Both the developed methods were 

shown to be discriminatory and reproducible.  

5.1 Selection of Test Conditions for Dissolution Methods 

As discussed previously, there are multiple variables that need to be determined while 

developing a dissolution method. In general, the dissolution media, test temperature, type and rate 

of agitation and method of analysis need to be defined. Type of pump and flow rate are important 

variables that need to be determined for continuous flow methods. For dialysis-based methods, the 

MWCO of the membrane and the volume-ratio of inner chamber to outer chamber are essential.  
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The USP IV method was designed to be a quick method for screening of microparticles. 

An easy-to-prepare and widely used dissolution media was selected for rapid analysis. The USP 

IV method was operated under closed-loop configuration at a flow rate of 10 mL/min. An internal 

volume of 1.8 mL and a reservoir volume of 80 mL was used for the method. The test was carried 

out at a physiological temperature of 37°C. Selection of MWCO of the dialysis membrane was 

based on the molecular size of MIN (~ 494 Da). It is reported that the MWCO of dialysis 

membranes should be around 100 times more than the molecular size [119]. Hence, a Float-A-

Lyzer® device of MWCO of 50,000 Da (50 kDa) was used for the method.  

It has been previously reported that MIN undergoes extensive degradation in PBS [108]. 

About 10 % MIN degrades within an hour at 37°C. PLGA microparticles have been reported to 

release drug in multiple phases. The first “burst release” phase is usually controlled by diffusion. 

The second phase is usually a “lag phase” which is the phase of lower drug release. This phase is 

followed by the third phase of “second burst release” which is controlled by polymer erosion [63]. 

During the “lag” phase, the amount of drug released will be lower than the amount of drug being 

degraded in the release medium. Thus, the apparent MIN concentration in the release medium will 

continuously reduce over 3 days due to degradation instead of remaining constant, posing a 

challenge for development of an online-UV assay. This problem was partially solved by measuring 

drug release at isosbestic point. As seen in Figure 12, MIN displays near constant absorbance in 

the isosbestic region between 276 – 312 nm, where the absorbance of the sample is proportional 

to the total concentration of MIN and its degradants. A wavelength of 292 nm, which lies 

approximately in the middle of this range was selected for online UV analysis. The choice of 

wavelength was confirmed by evaluating drug release from MIN solution in the USP IV method. 

As seen from Figure 14, the drug release from MIN solution plateaus in about 6 hours and remains 
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constant (instead of reducing) over a period of 3 days, justifying the choice of wavelength for 

online-UV analysis. 

For the biorelevant SVM, sGCF was developed and used as the biorelevant release media. 

The sGCF simulates the ionic strength of the major ions present in GCF, pH, and to some extent 

the protein content. The actual protein content of GCF is significantly high and poses challenges 

to simulate in vitro. The test was run at a physiological temperature of 37°C. Arestin® 

microparticles adhere to the gums immediately after insertion [120]. Thus, the use of any type of 

agitation to decrease the presence of unstirred layers surrounding the dialysis tubes is not 

biorelevant and was avoided. A dialysis-based method was selected as it serves a dual purpose. 

First, the dialysis enclosure contains microparticles and separates them from the dissolution media. 

Secondly, they more closely mimic in vivo settings where microparticles are deposited in the 

periodontal pocket and become immobilized, surrounded by a layer of unstirred fluid (GCF) [121]. 

The SVM was run at the biorelevant flow rate of 0.5 µL/min in an open loop configuration, to 

mimic the continuous flow and replenishment of GCF as experienced in vivo.  

A media volume of 250 µL in the inner chamber was utilized in the SVM. Though a volume 

of 250 µL is not biorelevant, it is more practical to use in an in vitro setting. In order to maintain 

an appropriate concentration gradient between the inside and outside of a dialysis membrane, the 

volume outside the dialysis enclosure should be 6-10 times more than the volume inside [44]. 

However, this requirement holds for pure dialysis methods that are not under continuous flow of 

media. In our setting, at any given point of time, the media in the outer chamber is about 3 times 

the media in the inner chamber. However, media is continuously flowing through the dissolution 

cells, replenishing the dissolution media present outside the dialysis membrane. This continuous 

media flow should help in maintaining the concentration gradient. Moreover, since the SVM is a 
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biorelevant method, it is not subject to the requirements of general dialysis-based methods, which 

do not mimic in vivo conditions. Of note, the requirement for sink may be met in the dialysis 

enclosure. However, the rate of media replenishment outside the dialysis membrane affects drug 

diffusion and may impact release from the microparticles. 

In order to quantify the amount of MIN released during the biorelevant dissolution run, a 

stability-indicating UPLC-based assay was utilized. Only the MIN peak, and not the epimer or 

other degradant peaks, was considered to account for the percent drug released. Thus, the SVM is 

a quantitative method that can be utilized to measure the absolute amount of MIN released over 

the test period.  

5.2 Effect of Flow Rate on Drug Release 

The effect of flow rate on release of MIN solution and Arestin® was assessed using the 

SVM. MIN solution (2 mg/mL) was subjected to dissolution using SVA at flow rates of 0.5, 2 and 

10 µL/min. Since MIN solution had drug in dissolved state, the amount of MIN released will 

depend on two factors: a) rate of re-establishment of concentration gradient between the sGCF in 

the inner and outer chambers and b) the diffusibility of MIN across the dialysis membrane. When 

the flow rate is increased, media in the outer chamber is replenished at a faster rate, which increases 

the concentration gradient between the inner and outer chambers. Increased flow rate also reduces 

the layer of unstirred water molecules on the boundary of the dialysis membrane [44]. Thus, higher 

flow rate is expected to increase the rate of drug release, which was observed in case of MIN 

solution (Figure 23). Greater than 90 % MIN solution is released within 24 hours at 2 and 10 

µL/min flow rate, suggesting that the low release observed in the 0.5 µL/min run is due to a low 
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concentration flux and not because of the barrier properties of dialysis membrane. Interestingly, 

when MIN solution was evaluated for drug release at a flow rate of 0.5 µL/min, the release 

approached a plateau at ~ 80 % release (~ 5 days). A complete release was not observed. This can 

be attributed to the degradation of MIN in the dissolution cells and samples as the solutions were 

exposed to 37°C for prolonged periods of time. 

In case of Arestin®, increase in flow rate from 0.5 to 2 µL/min did not significantly 

increase the release of MIN (Figure 25, Table 14). A maximum difference of ~ 10 % in the two 

dissolution profiles was observed at Day 1. This difference was maintained almost constant 

throughout the run. This can be due to the extended release behavior of Arestin® microparticles. 

Arestin® releases ~20 % of MIN within one day under biorelevant conditions. This amounts to 

200 µg of MIN, released in 250 µL of sGCF (inner chamber volume). The final concentration of 

MIN in the inner chamber is 800 µg/mL, which is significantly less than the saturation solubility 

of MIN in sGCF (> 2 mg/mL). Under higher flow rate, MIN is released faster due to faster re-

establishment of concentration gradient between the inner and outer chambers. On the contrary, 

under lower flow rate, the concentration flux will not be re-established that fast, hindering drug 

diffusion from inside the inner chamber to outside. This explains the 10 % difference in MIN 

release observed between 0.5 and 2 µL/min flow rates. Interestingly, the flow rate in the 

periodontal pocket has been reported to be anywhere between 0.33 – 2.28 µL/min [90]. As seen 

from Table 14, the release of MIN from Arestin® microparticles does not vary significantly in this 

clinically relevant range.  

It is worthy to note that flow rate is an important parameter when using a purely continuous-

flow method, where the media comes in direct contact with the test product. In this case, a higher 

flow rate not only determines the concentration gradient but also interaction between media and 
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test sample. Higher flow rate leads to better hydration of the particles [122], and induce shear 

depending on the flow regime (laminar vs. turbulent), resulting in higher drug release. However, 

when the particles are enclosed in a dialysis-sac, flow rate can be expected to have a lesser effect 

on drug release.   

5.3 Assessing the Discriminatory Potential of Developed Methods 

A good dissolution method for quality control analysis of finished drug products should be 

able to discriminate between microparticles that are chemically equivalent but may not have 

similar physical properties. For example, physical properties of microparticles can change due to 

differences in processing parameters such as stir rate and ratio of solvent [123, 124]. To replicate 

these differences, microparticles were fabricated using the same raw materials but by deliberately 

changing the process parameters (stir speed and solvent ratio, see Panel A). The goal of the 

experiment was to assess if the USP IV method, with potential application in routine quality control 

analysis, could identify differences between particles that were chemically equivalent but had 

different physical properties. The prepared microparticles showed differences in particle size, as 

summarized in Tables 8 and 9. The USP IV method was able to differentiate between 

microparticles of Panel A (Figure 16, 17, Table 10). Since differences in manufacturing during 

production usually arise due to deviations in process parameters, the ability of a dissolution method 

to identify such dissimilarities become crucial.  

In order to assess bioequivalence of generic products, the FDA requires generic products 

to be Q1/Q2 similar to the RLD. Accordingly, a dissolution method intended for bioequivalence 

testing should be able to discriminate between microparticles that are Q1/Q2 different than the 
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RLD. Thus, a panel of microparticles that were compositionally different to Arestin® were 

fabricated. These microparticles had different LA:GA ratios, Mw and drug loading than Arestin® 

(see Panel B). As seen in Figures 18 and 27, both the developed methods could effectively 

discriminate between microparticles of Panel B.  

In general, the USP IV method operates under conditions that can be considered as 

‘accelerated’ compared to the biorelevant method. The method utilizes a very high flow rate of 10 

mL/min, internal volume of 1.8 mL and media reservoir of 80 mL. Although the method utilizes 

physiological temperature of 37°C, the larger amount of media in the dialysis tube, nature of media 

and high flow rate can accelerate drug release from microparticles. As reported earlier, increased 

flow rate causes a greater diffusion flux, resulting in higher diffusion of the drug from inside the 

dialysis bag to outside [56]. Zolnik, B. S. and colleagues reported that increasing flow rate 

increases drug release from low Mw PLGA microparticles, with diffusion-controlled release 

kinetics. However, flow rate did not have any effect on drug release from high Mw PLGA 

microparticles, which were believed to show erosion-controlled release kinetics [56]. The 

differences in media flow rate between USP IV method and SVM are significantly higher than 

reported in the literature, which in combination with the dialysis enclosure volume could impact 

drug release. The initial burst phase, which is usually diffusion-controlled, is the region that defines 

the discriminatory potential of a dissolution method. Thus, a slower burst phase, as observed in 

the SVM, can potentially enable the biorelevant dissolution method to have a better discriminatory 

potential than the USP IV method.  
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5.4 Dependence of Rate of Release on Microparticle Properties 

In general, it was observed that drug release from microparticles composed of a particular 

LA:GA ratio depended on the Mw of PLGA. Microparticles composed of higher Mw PLGA 

released higher amount of MIN than those composed of lower Mw PLGA (Figures 18, 27). As 

previously mentioned, usually Mw and drug release have an inverse relationship. The opposite 

effect seen in our studies can be attributed to the following two reasons. First, MIN is a tetracycline 

analogue with multiple sites of ionization. MIN has four pKas, as depicted in Figure 29A [99, 

125]. During dissolution, MIN is already positively charged, which can interact with the acid end 

groups of PLGA. The effect of ionic interaction between positively charged proteins and uncapped 

(acid-end) PLGAs on drug release has already been studied by Balmert, S. C. and coworkers [126]. 

The group showed that positively charged peptides show lesser drug release than neutral peptides. 

Moreover, drug release of positively charged peptides from higher Mw PLGA was higher than 

that from lower Mw PLGA. This effect is similar to what was observed in our studies. 
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Figure 29. (A) Sites of Interaction between MIN and PLGA and (B) Flow Chart Explaining the Relation 

Between Mw and Drug Release 

Another reason for the positive correlation of drug release and Mw can be attributed to 

faster decrease in intraparticular pH of lower Mw PLGA microparticles. Balmert, S. C. and group 

reported that the intraparticular pH decreases much faster in case of lower Mw PLGA as compared 

to higher Mw PLGA [126]. The group found that the intraparticular pH was below 4.5 for lower 

Mw PLGA (7 and 15 kDa) within 1 hour of incubation in PBS solution. The pH reduced to 3.3 

within 3 days and as low as 2.2 within 12 days. In contrast, the pH of higher Mw PLGA (43 kDa), 

was 6 after 1 hour of incubation in PBS and reduced gradually to 3.2 over 21 days. Thus, the 

interaction of MIN in microparticles composed of lower Mw PLGA would be stronger than that 

in higher Mw PLGA, reducing the drug release from microparticles fabricated with lower Mw 

PLGA (Figure 29B).  

It should be noted that, drug release during the initial timepoints can be attributed to un-

encapsulated drug present at the surface of the microparticles. During this initial phase, drug 
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release will not be dependent on the fraction of MIN that is bound to PLGA within the 

microparticles. However, once the un-encapsulated drug is released from the microparticles, the 

effect of interaction of MIN with PLGA becomes more prominent. During this stage, release of 

MIN is diffusion controlled. Thus, the higher amount of unbound MIN present in microparticles 

composed of high Mw PLGA would be released faster (and to a greater extent) than from 

microparticles composed of low Mw PLGA. However, drug-polymer interaction may not 

significantly affect drug release during the later stages, where drug release is controlled by polymer 

erosion. Polymer erosion can explain the almost zero-order release of MIN from 50L 

microparticles (Figure 27). Microparticles 50L are composed of low Mw PLGA (50:50 LA:GA) 

and can be expected to have the fastest rate of polymer erosion [72]. 

Other reasons that may affect the release of MIN from microparticles include the internal 

structure of microparticles, porosity, particle size, drug loading and distribution of drug within the 

microparticles. There may be differences in the amount of free drug vs. bound drug inside the 

microparticle, which may affect drug release but has not been accounted for in this work. It is 

important to note that although attempts have been made to explain the order of drug release from 

different microparticles using the designed methods, the goal of the study was to assess the 

discriminatory potential of the method and not study the effects of microparticle properties on 

release behavior of MIN. 

5.5 Assessing the Reproducibility of the Methods 

It is important for any dissolution method to produce reproducible and reliable results. The 

reproducibility of the methods was assessed by comparing multiple runs of Arestin®. The same 
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batch of Arestin® microparticles were used to assess repeatability of the USP IV method. Using 

the same batch assured that the results were not affected by differences in microparticles that may 

exist between different batches. One of the runs was performed by a second analyst to account for 

variations between analysts.  As seen in Figure 20, the three Arestin® dissolution profiles were 

very similar. Statistical analysis of the dissolution profiles (Table 13) confirm that the dissolution 

profiles are f1-f2 similar to each other.  

Once the reproducibility of the USP IV method was determined, different batches of 85H 

microparticles were prepared and tested for drug release using the method. As seen in Figure 19 

and Table 12, only two of the four batches produced showed f1-f2 similarity in the dissolution 

profiles. Differences in dissolution profiles may be attributed to the following three factors: 

variation in the method, batch-to-batch differences between microparticles and differences in 

sampling. Since the reproducibility of the USP IV method has already been established by 

comparing multiple runs of Arestin®, differences in dissolution profiles of 85H reproducibility 

batches can be attributed to batch-to-batch differences or differences in sampling. It has been 

previously reported that the effect of lot-to-lot differences during dissolution method development 

can be eliminated by normalizing release profiles to the total amount of drug released [127]. Thus, 

the obtained drug release profiles of 85H repeatability batches were normalized to the total amount 

of drug released over 3 days to account for batch-to-batch differences between microparticles. 

Figure 30 shows the dissolution profiles of 85H repeatability batches upon normalization. When 

the dissolution profiles were normalized, the profiles were found to be f1/f2 similar (Table 16).  
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Figure 30. Normalized Dissolution Profiles of 85H Repeatability Batches.  Drug release profiles of various batches 

of 85H microparticles were normalized to the total amount release in order to eliminate batch-to-batch differences 

between the microparticles. After normalization, the release profiles were found to be f1/f2 similar to each other, 

indicating that the differences between microparticles are not indicative of method variability. 

 

Table 16. Statistical Analysis of Normalized Dissolution Profiles of Multiple 85H Batches. Numbers in bold 

denote values which are within limits (f1 < 15, f2 > 50). 

 Difference Factor (f1) Similarity Factor (f2) Similar? 

85H_1 vs. 85H_2 4.79 65.28 Y 

85H_2 vs. 85H_3 8.87 51.86 Y 

85H_1 vs. 85H_3 4.81 65.75 Y 

85H_1 vs. 

85H_Batch0 

5.18 66.99 Y 

85H_2 vs. 

85H_Batch0 

4.73 64.71 Y 
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85H_3 vs. 

85H_Batch0 

9.25 55.71 Y 

 

The differences in the total amount of MIN released from 85H microparticles can stem 

from differences in the internal structure of microparticles, the distribution of MIN within the 

microparticles, porosity and overall size differences. Moreover, there can be differences in the 

amount of bound vs. free MIN inside the particles. Free drug diffuses faster than the bound drug, 

increasing the total amount of MIN released. Thus, to completely understand the drug release 

behavior of the produced microparticles, a thorough microparticle characterization will have to be 

performed, which is beyond the scope of this work. Moreover, the clinical relevance of these 

differences in drug release is not known and will have to be studied to assess the applicability of 

the method. 

For the SVM, two batches of Arestin® were used due to unavailability of the same lot. 

Runs 2 and 3 were similar to each other and different from the first run (Figure 28 and Table 15). 

The differences in release profiles could be attributed to differences between the lots of Arestin®. 

Runs 2 and 3 were carried out using the same lot of Arestin®, while run 1 was carried out on a 

different lot. To account for batch-to-batch differences between Arestin® runs, the release profiles 

were normalized to the total amount of drug released. Because the sampling time points did not 

match between the runs, the dissolution data was fitted with a polynomial function to obtain 

predicted % dissolved values from the trendlines (data not shown). Similarity (f2) and difference 

(f1) factors were calculated using these values. After normalization, the dissolution profiles of all 

Arestin® runs were f1-f2 similar, as seen in Figure 31 and Table 17. This suggests that the 

individual runs differ in absolute amount of MIN released but not in the way in which they release 

MIN, which may reflect differences between individual lots of Arestin®. Although the different 
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batches of Arestin® show different release profiles in SVM, they may have passed the dissolution 

test as per USP criteria for periodontal systems containing MIN (Table 3), where a minimum of 

12.6 % of MIN should be released at the end of 3 days. This argument seems plausible as the lots 

release at least 32 % MIN over 3 days even in the SVM, under extremely small volumes and flow 

rates. However, in order to be confident about repeatability of the method, another SVM run of 

Arestin® using the same lot will have to be performed. 

 

Figure 31. Normalized Dissolution Profiles of the Three Arestin® Small Volume Runs. Drug release profiles of 

three individual Arestin® runs carried out using the biorelevant method were normalized to the total amount released. 

Normalization was done in order to eliminate batch-to-batch differences between the microparticles. After 

normalization, the release profiles were found to be f1/f2 similar to each other, indicating that the differences between 

microparticles stem from differences between lots of Arestin® and are not indicative of method variability. 
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Table 17. Statistical Analysis of Normalized Dissolution Profiles of Multiple Arestin® Batches. Numbers in 

bold denote values which are within limits (f1 < 15, f2 > 50). 

 Difference Factor (f1) Similarity Factor (f2) Similar? 

Run 1 vs. Run 2 1.36 89.47 Y 

Run 2 vs. Run 3 2.17 79.32 Y 

Run 3 vs. Run 1 3.44 72.67 Y 

5.6 Impact of the Work and Potential Applications 

Two reliable, discriminatory and reproducible dissolution methods were developed that 

have distinct advantages over each other. The USP IV method utilizes a compendial dissolution 

apparatus to test drug release from PLGA microparticles under real-time conditions (37°C). A 

complete release from Arestin® is achieved within 3 days without employing elevated 

temperatures. The method is carried out using an online UV-Vis spectrophotometer, which avoids 

the need to analyze the samples after completion of the run. Data is obtained reasonably fast, 

reducing the number of person-hours required to carry out the test. Using the USP IV apparatus 

comes with the inherent advantages of lab-to-lab uniformity, reliability and easy transferability. 

The method is simple and can be employed during drug development for determining ideal process 

and formulation parameters. The method can also be used for routine quality control analysis to 

check for batch-to-batch variability.  

The SVM is a novel and more sensitive dissolution method. It provides the most practical 

representation of the in vivo environment for periodontal systems. Currently, there are more than 

15 PLGA-based FDA approved products in the market. However, no generic PLGA-based product 

has received FDA approval as yet. The SVM can potentially be used as an in vitro alternative to 
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test generic versions of Arestin® for bioequivalence. It can also be used in lieu of clinical testing 

during scale-up of batches and to prove bioequivalence during post-approval changes. Further, 

given the similarity of test conditions to in vivo environment, the antimicrobial activity of the 

samples collected can be tested and the results can serve as proof of efficacy of the product over a 

period of 14 days (or longer, unpublished results). SVM can also be used to validate the 

manufacturing processes on an annual basis during large-scale production of periodontal 

microparticles. The use of SVM can be extended to test other dosage forms intended for localized 

delivery in the periodontal pocket. 

In fact, the pumps and flow rates can be adjusted to simulate fluid-flow rates present in 

different parts of the body. The dissolution cells can be agitated to simulate the blinking of eyelids 

and turnover rate of lacrimal fluid. Thus, the use of the SVA shows promise to test drug release 

from other micro- and nanoparticulate systems, powders, solutions, suspensions, sprays and other 

formulations intended to be administered in small cavities such as the nasal, otic and ocular 

pockets. The small volume cell can also be modified to test drug release from vaginal products. 

For instance, a miniaturized USP I-type basket can be used as the sample holder. Clips can be 

utilized to secure the dosage form in the basket. The mesh size of the basket will have to be 

optimized in order to separate undissolved material from the dissolution media while preventing 

problems of back-pressure and clogging. The inner chamber can be designed to have a volume of 

1 mL and flow rate of 4.2 µL/min to simulate conditions present in the vagina [41, 128]. Glass 

beads and agitation can be introduced to simulate mechanical forces normally encountered. Flow 

rate and agitation can be modified during the run to simulate changes relating to the menstrual 

cycle. 
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Overall, the SVA is a novel biorelevant apparatus that has potential for adaptation towards 

a variety of applications. The SVM described here is the first application and proof-of-concept of 

the apparatus. The current work focusses on assessing the method’s discriminatory ability and 

reproducibility in an effort to justify the SVA’s use for drug release testing of MIN-loaded PLGA 

microparticles intended for application in the periodontal pocket.  

5.7 Limitations of the Developed Methods 

Both the developed methods were reproducible and exhibited a good discriminatory 

potential. Despite this, the developed methods possess certain limitations. Some advantages of the 

USP IV method include that it quick, it is based on a compendial system and it has an on-line UV 

system that reports the results without having the need to collect and analyze samples separately. 

However, since MIN is highly sensitive to hydrolytic degradation, the UV analysis needs to be 

carried out at isosbestic point. Because the online-UV system measures the total amount (drug + 

degradants) of MIN released, it does not give the absolute amount of MIN released. Moreover, the 

method may overestimate the amount of MIN released by up to 20 % for MIN solution. Thus, the 

drug release profiles may need to be normalized with respect to MIN solution during practical 

applications. A simple way to improve the sensitivity of the method is to collect samples at 

predetermined timepoints and analyze them to give the drug release profile. Although more 

cumbersome, this technique may be more reliable and quantitative, especially for the first 24 hours. 

However, it should be noted that MIN may degrade into several degradants that do not appear on 

the chromatogram, making quantitation challenging. 
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The SVM is a miniaturized version of the USP IV method with modifications that make 

the method more biorelevant. The method simulates more closely the flow rates, media and 

volumes that are experienced by periodontal microparticles in vivo. Since the length of dissolution 

study is 2 weeks, its application during formulation development may be met with practical 

limitations of length timelines. However, SVM may be more applicable to determine 

bioequivalence of generic and brand name products. Another major limitation of the SVM is that 

it requires special dissolution cells which are not yet commercially available. The method may 

also show extremely small differences between microparticles, which may not be clinically 

relevant. Thus, more work needs to be done to determine the criteria for acceptance of products 

tested using the SVM.  
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6.0 Conclusion and Future Directions 

Two reliable and reproducible dissolution methods were developed which could 

successfully discriminate between the prepared comparators. The USP IV method is a rapid 

dissolution test that can be used in drug development for determining optimum process and 

formulation parameters. It is semi-quantitative in nature as it provides the overall percentage of 

MIN released but cannot be used to quantify the absolute amount of MIN released. The method is 

reproducible and can be reliably used during product development for rapid screening of prototype 

drug formulations. The SVM has potential to exhibit a better discriminatory power than the USP 

IV method, as the SVM extends the ‘burst phase’ drug release from microparticles to ~ 5 days. 

The SVM can be used to calculate the amount of MIN released over time and is thus quantitative 

in nature. With certain modifications, the SVA can be used to test other dosage forms intended to 

be delivered in extremely small cavities, such as the nasal, otic and ocular sacs. The SVM can also 

be potentially used to test the bioequivalence of different MIN-loaded PLGA microparticles used 

in periodontitis. 

More studies comparing the in vitro release data to in vivo dissolution profiles will need to 

be performed in order to determine the clinical relevance of the SVM. The acceptance criteria for 

products tested with both the methods needs to be established. Future work will also focus on 

testing microparticles of Panel A (process changes) using the SVM to demonstrate that the method 

can discriminate between them. The main goal of future experiments would be to compare the in 

vitro and in vivo release profiles in order to develop and validate a robust IVIVC. 
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Appendix A : Abbreviations Used 

  

AUC : Area under the curve 

BA : Bioavailability 

BCS : Biopharmaceuticals classification system 

BE : Bioequivalent 

CFR : Code of Federal Regulations 

Cmax : Maximum plasma concentration 

DCM : Dichloromethane  

DSC : Differential scanning calorimetry 

ER : Extended-release 

f1 : Difference factor 

f2 : Similarity factor 

FDA : Food and Drug Administration 

GCF : Gingival crevicular fluid 

GI : Gastro-intestinal 

HPLC : High performance liquid chromatography 

IUPAC : International Union of Pure and Applied Chemistry 

IR : Immediate-release 

IVIVC : In vitro-in vivo correlation 

LA:GA : Lactic acid-to-glycolic acid ratio 
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MIN : Minocycline hydrochloride 

MR : Modified-release 

MWCO : Molecular weight cut-off 

NF : National Formulary 

NLT : Not less than 

PBPK : Physiologically-based pharmacokinetic model 

PDLA : Poly(D-lactic acid) 

PGA : Poly(glycolic acid) 

PLA : Poly(lactic acid) 

PLGA : Poly(lactic-co-glycolic acid) 

PLLA : Poly(L-lactic acid) 

QbD : Quality by design 

SEM : Scanning electron microscopy 

sGCF : Simulated gingival crevicular fluid 

SOP : Standard operating procedure 

SRP : Scaling and root planing 

SVA : Small volume apparatus 

SVM : Small volume method 

Tg : Glass transition temperature 

UPLC : Ultra-high performance liquid chromatography 

USP : United States Pharmacopoeia 
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