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Abstract 

‘Pb Predict’: Using Machine Learning to Locate Lead Plumbing in a Large Public Water 

System 

 

Raanan Sharohn Gurewitsch, BPhil 

 

University of Pittsburgh, 2019 

 

 

Struggling to respond to elevated lead levels in residential tap water, cities like Flint, MI and 

Pittsburgh, PA are undergoing large-scale efforts to remove the lead pipes that bring water 

service to their customers. However, limited geographic data on plumbing materials throughout 

housing stocks represents a logistical challenge for local authorities to locate and replace lead 

service lines. This study tests whether available geographic data on housing conditions and 

plumbing materials can effectively inform risk assessment and thus, expedite replacement 

programs and help prevent exposure to lead. To do so, we train and compare multiple types of 

machine learning classification algorithms to predict the presence or absence of lead service lines 

at properties in Pittsburgh. The results show that the probability of having a lead service line 

increases for houses built before 1930 and demonstrate the significance of parcel age, spatial 

proximity and other housing characteristics as predictive features for locating lead in water 

hazards. Accurate targeting of high-risk housing units may inform the strategy of decision-

makers working to ensure that residents of aging American homes have safe drinking water. 

Therefore, the results are mapped to simulate the prevalence of lead service lines throughout the 

City of Pittsburgh and a framework for other cities is discussed. 
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1.0 Introduction 

To this day, public water systems throughout the United States remain riddled with lead 

plumbing, an issue that gained significant attention throughout the country following the crisis in 

Flint, Michigan. The threat of harmful exposure to this invisible, tasteless neurotoxin, primarily to 

pregnant women and young children, is a serious public health concern with wide-ranging 

socioeconomic implications. Without appropriate corrosion control measures, the drinking water 

in a public system will leach lead from pipes, fixtures and solder, endangering those who consume 

it. According to the Centers for Disease Control and Prevention (CDC), blood lead levels under 

10 µg/dL, which were previously considered safe, have been associated with behavioral issues, 

poor academic performance and learning disabilities in children (Advisory Committee on 

Childhood Lead Poisoning Prevention, 2012). Lead in drinking water, though less common a 

source of poisoning than lead-based paint or contaminated soil or dust, has been known as a cause 

of elevated blood lead levels in children since the 1980’s (Shannon & Greaf, 1989; Cosgrove et 

al., 1989). Lead pipes, which were most commonly installed at American residences from the late 

1800s until the 1930s, deliver water to homes in over 70% of cities with populations over 30,000 

people (Troesken, 2008). However, even after widespread installation of LSLs became less 

common in the 1930’s, the practice continued in several major US cities including Philadelphia, 

PA; Milwaukee, WI; Boston, MA; and Chicago, IL (Rabin, 2008).  

The Safe Drinking Water Act’s Lead and Copper Rule (LCR) banned the material from use in 

public water systems in 1986 and enacted a federal mandate for local water authorities to conduct 

periodic testing and remediation efforts. This rule constitutes noncompliance as either a failure to 

implement testing procedures or when at least 10% of homes that are tested have lead 
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concentrations above an “action level” of 15 parts per billion (U.S. Environmental Protection 

Agency, 2016). In 2016, a Natural Resources Defense Council report showed that over 5,300 

community water systems throughout the US, serving over 18 million people, were in violation of 

the LCR, while other surveys have estimated that 6.1 million lead service lines (LSL) are still in 

use around the country (Olson & Fedinick, 2016, Cornwell, Brown & Via, 2016). In addition to 

compliance sampling practices that systematically underestimate high lead levels and potential 

human exposure, as suggested by Del Toral, Porter, & Schock (2013), lack of enforcement of 

88.8% of LCR violations demonstrates a substantial need for more effective responses to what is 

a widespread environmental health and justice problem (Katner et al, 2016; U.S. Environmental 

Protection Agency, 2016). 

Several American cities have undertaken largescale remediation efforts with respect to LSL 

replacements in the interest of public health. Service lines are pipes that carry tap water from the 

water main to a residential unit through a curb stop and can be fully or partially made of lead. 

Partial LSLs have a non-lead portion either from the main to the curb stop or from the curb stop to 

the home. Occurrence of partial LSLs have not only been linked with higher water lead levels 

(WLLs) than full LSLs, but also with higher prevalence of elevated blood lead levels among 

children who reside at those homes (Trueman, Camara, & Gagnon, 2016; Dore, Deshommes, 

Laroche, Nour, & Prevost, 2019). The first major city in the United States to implement a complete 

LSL replacement program was Madison, WI, where more than 8,000 LSLs were removed from 

residential units between 2000 and 2012 at a cost of approximately $15.5 million. To gather data 

on private side plumbing material, the City of Madison commissioned a compulsory survey to 

thousands of property owners after holding several community meetings where consumers were 

informed of how to locate their servile lines and test for lead (City of Madison, 2016). As similar 
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initiatives are carried out in different cities around the United States, further investigation into 

lead’s prevalence throughout public water systems will help protect at-risk families and children 

from harmful exposure. 

1.1 Background 

Pittsburgh, Pennsylvania’s lead problem emerged in 2016 after the Pittsburgh Water and Sewer 

Authority’s (PWSA) failed its LCR compliance testing. The PWSA’s immediate response 

included statements that LSLs remained at an estimated 25% of homes and that homes built before 

1986, which represent 94% of Pittsburgh’s housing stock, were “more likely to have lead pipes” 

(Pittsburgh Water and Sewer Authority, 2016) (Data.gov, 2017). Of the 100 homes sampled during 

the PWSA’s 2016 compliance testing, more than 10% of homes sampled tested above the federal 

action level, triggering mandatory public education as well as certain SL replacement measures 

(U.S. Environmental Protection Agency, 2016). Although studies have demonstrated inherent 

variability and limited reliability of standardized sampling for lead testing (Masters, Parks, Atassi, 

& Edwards, 2016), the PWSA’s results still reflect an LCR violation and a public health hazard. 

Regardless of the difficulty and uncertain effectiveness of voluntary tap water testing, the PWSA 

must still replace 7% of remaining LSLs annually until the public system is lead-free, as well as 

other public engagement efforts (U.S. Environmental Protection Agency, 2016). In 2017, the 

PWSA and City of Pittsburgh stepped up their community response, allocating $1 million to the 

Safe Water Program for free voluntary water testing and discounted water filters, and halting the 

practice of partial LSL replacements, which Trueman et al. (2016) and Del Toral et al. (2013) have 

shown to increase lead contamination. However, a lack of available data remains the most 
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significant logistical challenge in identifying LSL locations where replacements and additional 

remediation efforts should take place (Blackhurst, 2017).  

The challenge of locating Pittsburgh’s remaining LSLs presents an opportunity to test 

computational approaches to achieving lead-free water systems. To date, there is a small body of 

scientific literature focused on modeling the distribution of lead hazards in a large public water 

system such as Pittsburgh. With each focusing on the city of Flint, similar analyses have mapped 

the city-wide prevalence of LSLs using geostatistical prediction and machine learning 

classification (Goovaerts, 2017; Abernethy, Schwartz, Chojnacki, Webb, & Farahi, 2018).  Other 

studies have employed similar methodology to model the geographic distribution of WLLs in Flint, 

as well as deterministic factors for plumbosolvency in Raleigh, North Carolina (Goovaerts, 2018; 

Wang, Devine, Zhang, & Waldroup, 2014; Abernethy et al., 2016). This study approaches city-

wide risk assessment of LSL with respect to Pittsburgh, a much larger city than Flint, as a binary 

classification problem. A thorough analysis of publicly available housing data from the City of 

Pittsburgh enabled the inclusion of several address-level predictors in a suite of seven machine 

learning classification algorithms. The models were trained to predict the presence or absence of 

full and or partial LSLs and then compared to assess predictive accuracy. Building upon previous 

studies of Flint, Michigan’s city-wide LSL distribution, this approach incorporates a variety of 

data types as predictive features into a suite of classification models. The results demonstrate the 

relative importance as well as the limitations of housing conditions and spatial data in locating 

lead hazards. For policy makers and health advocates in Pittsburgh, as well as other cities with 

known LSL stocks, this analysis provides insight that could improve the efficiency of future 

remediation efforts. 
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2.0 Methodology 

 

2.1 Data Sources 

In July 2018, the PWSA released an online map of over 43,000 homes within its service 

area with information on service line material (Clift, 2018). To date, employees at the PWSA have 

digitized more than 120,000 paper records and conducted over 5,300 curb box inspections (CBI) 

to create this LSL inventory (Pittsburgh Water and Sewer Authority, 2018). The CBI field data 

consist of predominantly unknown or partially unknown values, as seen in Figure 1, due to the 

inability of PWSA field engineers to locate curb boxes or identify SL material at many of the 

addresses. In fact, only 29% of the PWSA’s inspections had entirely conclusive results. The 

digitized historical records, however, show a more complete picture of lead’s prevalence 

throughout Pittsburgh. Each observation in this data set was re-coded into a binary indicator of 

‘Lead’ or ‘Non-Lead’ and georeferenced using the centroid of each observation’s tax parcel (Table 

1). When projected geographically, the data show high levels of clustering with respect to these 

newly labeled observations (Figure 2).  

Table 1: Recoding of PWSA Data 

‘Lead’ Unknown (Null) ‘Non-Lead’ 

Lead / Lead Unknown / Unknown Non-Lead / Non-Lead 

Lead / Non-Lead Unknown / Non-Lead  

Non-Lead / Lead Non-Lead / Unknown  

Lead / Galvanized Unable to Locate  

Non-Lead / Galvanized No Data  

Lead / No Data Non-Lead / No Data  
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No Data / Lead   

No Data / Galvanized   

Lead / Unknown   

Unknown / Lead   

 

 

Figure 1: Distribution of Existing Lead Service Line Data 

 

Figure 2: Spatial Density of Known Lead Observations 

Data on Pittsburgh’s housing stock was acquired from the Western Pennsylvania Regional 

Data Center. The Allegheny County Property Assessments data set contains property tax 
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information on residential building characteristics such as property value, condition and the year 

built (Snyder, 2018). These two sources were merged in order to build a data set containing each 

address in the PWSA service area with corresponding values for location, SL material, age of 

house and other characteristics. Determining the latitude-longitude point coordinates of each 

address facilitated a spatial analysis of the data. An initial geographic analysis of this data shows 

only a small number of neighborhoods with an average year built later than 1946, forty years prior 

to the national lead ban (Figure 3).  

 

Figure 3: Average Year Built by Pittsburgh Neighborhood 
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2.2 Selecting and Eliminating Features 

The historical legacy of lead in the United States would suggest that housing age as an 

important predictor of lead throughout Pittsburgh’s housing stock. Of the 43,616 LSL records, 

36,115 addresses have data for year built, according to PWSA historical records. At those houses 

in the data set built before the 1930s, majority have a partial or full LSL. However, patterns in the 

Allegheny County property assessments data set demonstrate the potential for inaccurate or biased 

reporting. The higher frequency among the first years of each decade (Figure 4) skew the 

distribution of housing age in Pittsburgh and suggest that data collectors may have estimated the 

year built of those houses lacking definitive records. To account for potential bias in these reported 

values, different coding formats for housing age were considered in the final training set of 37,532 

addresses. These consisted of age (current year minus year built) as well as 20-year and 40-year 

age groups starting at year 1900 (e.g., pre-1900, 1900-1919, etc.).  

 

Figure 4: Lead and Non-Lead Observations by Year Built (Historical Records) 
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Due to the geographic nature of the data, we can evaluate the relationship between events 

as a spatial pattern of lead and non-lead observations. To do so, each address in the dataset was 

georeferenced with the coordinates of each corresponding tax parcel’s centroid. When modeling 

the distribution of point events over space, it is important to describe the patterns made by the 

observations of each class within the study region (O’Sullivan & Unwin, 2014). In this example, 

latitude/longitude data were used to determine the impact of proximity on the presence or absence 

of lead. After splitting the observations in the data set into lead and non-lead point patterns, we 

determined the Euclidean distance between every address, i and the nearest event with service line 

material mi, denoted by,  

𝒎𝒊 = {
𝑳𝑺𝑳, 𝒏𝒆𝒂𝒓𝒆𝒔𝒕 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 𝒘𝒊𝒕𝒉 𝑳𝑺𝑳

𝑵𝑳𝑺𝑳, 𝒏𝒆𝒂𝒓𝒆𝒔𝒕 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 𝒘𝒊𝒕𝒉 𝑵𝑳𝑺𝑳 
 

Equation A 

𝑑𝑖
𝑚 =  √(𝑋𝑚 − 𝑋𝑖)2 +  (𝑌𝑚 − 𝑌𝑖)2 

Equation B 

𝐷𝑖 = 𝑑𝑖
𝐿𝑆𝐿 −  𝑑𝑖

𝑁𝐿𝑆𝐿 

Equation C 

where Xm and Ym represent the latitude-longitude coordinates of the nearest neighbor events in the 

lead (LSL) and non-lead (NLSL) point pattern, respectively. The difference, Di, between the two 

distance measures, 𝑑𝑖
𝐿𝑆𝐿 and 𝑑𝑖

𝐿𝑆𝐿, represents the relative proximity of each observation to another 

unit with an LSL. In other words, Di is a measure of whether an address is closer to an event in the 

LSL point pattern or one in the NLSL one. In Figure 6, it is evident that on average, points in the 

LSL pattern are closer to each other than to NLSL events, due to the distribution’s negative skew. 

For units with LSLs, the median relative proximity measurement is –0.000257⁰ compared to 
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0.000119⁰ for non-lead observations, suggesting that spatial proximity would improve our ability 

to distinguish between the two classes.  

 

Figure 5: Frequency Distribution of Relative Proximity at LSL and Non-LSL Locations 

To further examine the geospatial differences between the two target classes, we consider 

the number of lead observations in the immediate vicinity of each home. In effect, we extend a 

circle of radius r from centroid of each tax parcel and count the number of lead observations within 

the resulting buffer. This approach is similar to that of Blackhurst (2018a), who considered the 

number of LSL locations among up to twenty neighboring houses on the same street when 

estimating total number of remaining LSLs in the PWSA’s service area. Instead, the total number 

of events was counted within a distance from each housing unit equal to one-half percent of the 

height of the overall study area. By doing so, we build on the insight of Blackhurst (2018a), who 

demonstrated that the likelihood of having a non-LSL at a given property decreases steadily as the 

number of houses with LSLs in the immediate vicinity grows (Figure 6). Introducing this new 

spatial feature allows us to examine whether there is more separation created by one approach or 

another. We first plot the relative proximity and then the number of neighboring LSLs against year 

built to see the extent to which the two target classes are separate or overlapping.  
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Figure 6: Nearest Neighbors with LSLs at Lead and Non-Lead Observations 

 

 

Figure 7: Scatterplot of Relative Proximity and Year Built 
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Figure 8: Nearest Neighbors with LSLs and Year Built 

After exploring age and location as predictors, we performed a recursive feature 

elimination analysis (RFE), which produces a model with those attributes that contribute most to 

predicting the target class (e.g., lead or non-lead), on the relevant fields in the merged dataset. The 

benefit of RFE is the removal of superfluous attributes that could either marginally or negatively 

impact model performance, as well as an empirical ranking of each remaining features in the data 

set. The RFE process uses a logistic regression model as an external estimator with which to 

generate coefficients for increasingly smaller and smaller subsets of features. After irrelevant 

features are eliminated, the remaining three are those that best predict the response variable (Sci-

kit Learn Developers, 2018). In this application, using RFE helps demonstrate the added value of 

publicly available housing data in predicting the presence of lead plumbing by distinguishing the 

most determinative characteristics. In Table 2, we report the name and description of each field in 

the property assessments data set included in the RFE process. The results show that the 40-year 

age grouping, physical condition and number of rooms were the three supported features. While 

the number of nearby lead observations ranked immediately after these fields, the relative 
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proximity measurement was second to last in the order, despite having more visible separation 

between lead and non-lead classes in the initial analysis (Figure 7). The assessed value of each 

property was also included in the feature selection analysis but performed poorly, ranking third to 

last. A higher ranking of property value would have suggested that the risk for LSLs increases for 

homes with lower value. Blackhurst (2018b) evaluates this relationship by assessing the impact of 

LSL presence on property values in Pittsburgh, concluding that the presence of the hazard resulted 

in an average price reduction of $9,700. The ‘StatisticalModel’ used to predict LSL locations in 

Flint included property values as a key predictor as well; however, while property values are an 

important indicator of lead in Flint, its impact may ultimately be context dependent (Abernethy et 

al., 2018). 

Table 2: Recursive Feature Elimination Results 

Feature Support Rank Description 

'AGE GROUP 40'  True 1 40-year age grouping (e.g., 1900-1939) 

'CONDITION'  True 1 Physical condition of the building 

'TOTALROOMS'  True 1 Number of stories in the structure 

‘COUNTPB’  False 2 Number of lead observations within standard 

distance from the unit 
'BEDROOMS'  False 3 Number of bedrooms 

'AGE GROUP 20'  False 4 20-year age grouping (e.g., 1900-1919) 

'AGE' (normalized)  False 5 Current year minus year built 

'GRADE'  False 6 Quality of construction 

'CDU'  False 7 Composite rating of condition, desirability and 

utility of the property 
'STYLEDESC'  False 8 Building style (e.g., townhouse) 

'HOOD'  False 9 Pittsburgh Neighborhood 

'USEDESC'  False 10 Primary use of the parcel (e.g., Two family home) 



 14 

'OWNERDESC'  False 11 Owner type (e.g., individual, corporation, etc.) 

'LOCALBUILDING' 

(normalized) 
 False  12 Locally assessed building value 

'LOCALTOTAL’ 

(normalized) 
 False 13 Locally assessed property value 

'DIF' (normalized)  
 

 False 14 Proximity difference 

'LOTAREA’ 

(normalized) 

 False 15 Total square footage of land 

2.3 Supervised Learning Approach 

This study matches the PWSA’s historical records and inspections results with county 

property assessments data to train seven binary classification models. The output is an indicator of 

whether or not the hazard exists at a house with unknown LSL data.  Multiple types of machine 

learning algorithm—specifically logistic regression, support vector machine (SVM), k-nearest 

neighbors (k-NN), decision tree and random forest—were trained and ten-fold cross validated to 

determine the approach with the highest relative accuracy. In addition, four separate sets of features 

were trained and compared to help decide on an optimal approach. The first three sets consist of 

the age of the housing unit, and then the age and the two geospatial statistics, relative proximity 

and number of nearby LSLs. These first three sets are meant to provide a baseline predictive 

accuracy level with which to compare higher-dimensional models that include housing 

characteristics data. With respect to the scalability and functionality of this approach, determining 

a baseline level of accuracy with only historical and geographic information is advantageous 

because detailed housing characteristics may not be available in certain cities. Given the national 

scope of the lead water contamination issue, a more scalable baseline approach allows for potential 

adaption to more locations with aging water infrastructure. 
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Table 3: Machine Learning Models and Configurations 

Algorithm Model-Specific Configurations 

Logistic Regression n/a 

Support Vector Machine RBF kernel 

Support Vector Machine  Linear kernel 

K-Nearest Neighbors  k = 3 

K-Nearest Neighbors k = 5 

K-Nearest Neighbors k = 7 

Decision Tree n/a 

Random Forest 1,000 decision trees 

 

The k-NN algorithm is a non-linear model trained with k = 3, 5 and 7 to test which cluster 

size yielded the lowest error. The kernel size, k, indicates the number of closest observations in 

the test data which determine the prediction class by taking a “vote” (James, Hastie, & Witten, 

2017). Non-linear models such as k-NN or decision tree and random forest are expected to perform 

better than linear ones where data are not linearly separable. The SVM algorithm, in contrast to 

non-linear models, employs a so-called “kernel trick,” which constructs a maximum margin 

separator in multi-dimensional space in order to better differentiate between data that are not easily 

separable in the original input space. In this application, the SVM is the hyperplane separator at 

the largest possible distance between ‘Lead’ and ‘Non-Lead’ observations, mapped in n 

dimensions, where n is the number of features in the support vector. While SVMs are an effective 

tool for classification in high-dimensional spaces and are memory efficient, they tend to perform 

worse (i.e., longer training time, lower accuracy) with large, noisy data sets in which target classes 

are overlapping and more difficult to separate (Russel & Norvig, 2016). This approach determines 

the relative advantage of linear and non-linear, parametric and non-parametric and simple and 

ensemble models. Comparing several classification algorithms allows us to account for different 

relationships between the various features that were ultimately supported after RFE.  
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For each of the four feature sets in this analysis, we choose the determine algorithm by 

computing the following two cross-validation statistics: 1) cross-validated accuracy score, and 2) 

area under ROC curve (AUC). The cross-validated accuracy score measures the expected accuracy 

of out-of-sample predictions by removing one-by-one each observation from the training set and 

re-classifying using the existing model (James et al., 2017). A Receiver Operating Characteristics 

(ROC) curve plots the probability of false positive versus the probability of detection (Swets, 1988; 

Fawcett, 2006; Goovaerts et al., 2016). The relative area under the ROC curve (AUC statistic), 

which ranges from 0 (worst case) to 1 (best case), is equivalent to the probability that the classifier 

will rank a randomly chosen positive instance (e.g., presence of LSL) higher than a randomly 

chosen negative instance (e.g., absence of LSL). Therefore, the cross-validated accuracy score is 

treated as a measure of the model’s expected performance and the AUC statistic as a measure of 

its ability to distinguish between the presence or absence of an LSL. Once the models with the 

highest accuracy were determined, predictions were made at addresses where CBIs had 

successfully gathered ground truth data to further evaluate the approach’s effectiveness. 

 

Table 4: Feature Set Components 

 Features Units in Training Set 

Set 1 Age 34,769 

Set 2 Age 

Di 

34,769 

Set 3 Age 

Nearby LSLs 

34,769 

Set 4 Age Group (40-years) 

Nearby LSLs 

Condition 

Total Rooms 

34,769 

 



 17 

3.0 Results and Discussion 

Table 5: Classification Performance Scores 

 Set 1  Set 2  Set 3  Set 4  

Model CV Score AUC CV Score AUC  CV Score AUC  CV Score AUC 

Logistic 

Regression 
0.7409 0.6845 0.7998 0.7458 0.7750 0.7174 0.7169 0.7011 

SVM RBF 
0.4390 0.7085 0.6465 0.5322 0.4432 0.7311 0.7765 0.7221 

SVM Linear 
0.7455 0.6826 -- -- 0.7825 0.7213 0.7178 0.7005 

k-NN, k = 3 

 

0.3656 0.6988 0.7271 0.7299 0.4099 0.7097 0.7285 0.7126 

k-NN, k = 5 

 

0.3571 0.7057 0.7533 0.7367 0.4214 0.7161 0.7421 0.7181 

k-NN, k = 7 

 

0.4084 0.7094 0.7661 0.7400 0.4500 0.7158 0.7515 0.7234 

Decision 

Tree 

0.4396 0.7079 0.4025 0.7208 0.4303 0.7265 0.7630 0.7297 

Random 

Forest 

0.4396 0.7081 0.4026 0.7114 0.4535 0.7269 0.7800 0.7334 

 

3.1 Comparing Model Performance 

After preprocessing, training and resampling the data from each of the four sets of features, 

the performance statistics were reported to help choose the best model for informing our LSL risk 

assessment (Table 5). In Set 1, the SVM linear kernel model’s cross-validated accuracy score (CV 
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score) of 74.55 percent was the highest, indicating a strong link between an address’ documented 

age and its water service line material. Due to the simplicity of predicting on housing age alone, 

the results of the logistic regression model in Set 1 are promising with respect to the approach’s 

baseline accuracy and geographic scalability, as discussed in the previous section. However, 

predicting only by the age of a household neglects the numerous other factors as well as the 

potential advantages of more robust, multivariate approaches. With Set 2 predicting on age and 

relative proximity, we achieved the highest maximum performance score, 79.99 percent, with 

logistic regression. The entire set of performance statistics for Set 2 demonstrate that on average, 

the relative proximity increases cross-validated accuracy by 20.8 percent when added to the model 

along with housing age. Using our second spatial measurement, the number of nearby LSL 

observations, we see a 2.8 percent increase in the average cross-validated accuracy score compared 

to the univariate set. However, for both Sets 2 and 3, the linear parametric models (logistic 

regression and SVM linear kernel) perform at least 74 percent accuracy compared to a maximum 

of nearly 45% among the remaining algorithms.  

By considering housing characteristics however, we only see a marginal increase in overall 

cross-validated accuracy for the feature set. The highest cross-validated score in Set 3, which 

consisted of the house’s 40-year age group, number of nearby LSLs, condition and number of 

rooms, was the random forest algorithm at 78.00 percent. While the logistic regression model from 

Set 2 had the highest individual score, Set 3’s predictions were approximately 29.5 percent more 

accurate on average. The results of ten-fold cross-validation in this machine learning analysis 

demonstrate a relatively high level of expected accuracy for out-of-sample units (i.e., houses with 

none or unknown LSL data). However, to decide the optimal model for predicting the unknown 

LSL locations, we must also consider the discrimination ability of each model, represented by the 
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AUC score. In the previous section, we explore the separation and overlap that exists when age 

and spatial features are plotted together. To visualize the separation created by Set 4, we plot each 

address in three dimensions using age, nearest neighbors, condition and total rooms.  

 

Figure 9: Nearby LSL Locations, Housing Age and Condition 
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Figure 10: Nearby LSL Locations, Housing Age and Total Rooms 

3.2 Choosing a Final Model 

Table 6: Classification Results 

 Model True 

Positive 

False 

Positive 

True 

Negative 

False 

Negative 

Sensitivity 

(Recall) 

SET 1 Logistic Regression 4412 1337 968 237 95% 

k-NN (k = 3) 4277 1204 1101 372 92% 

k-NN (k = 5) 4325 1196 1109 324 93% 

k-NN (k = 7) 4343 1188 1117 306 93% 

Decision Tree 4368 1207 1098 281 94% 

Random Forest 4361 1203 1102 288 94% 

SVM (RBF Kernel) 4361 1201 1104 288 94% 

SVM (Linear Kernel) 4423 1351 954 226 95% 

SET 2 Logistic Regression 4167 958 1363 441 90% 

k-NN (k = 3) 3993 944 1377 615 87% 

k-NN (k = 5) 4087 960 1361 521 89% 

k-NN (k = 7) 4150 976 1345 458 90% 
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Decision Tree 3913 946 1375 695 85% 

Random Forest 3745 905 1416 863 81% 

SVM (RBF Kernel) 4490 2112 209 118 97% 

SVM (Linear Kernel) -- -- -- -- -- 

SET 3 Logistic Regression 4240 1100 1205 409 91% 

k-NN (k = 3) 3949 991 1314 700 85% 

k-NN (k = 5) 4254 1113 1192 395 92% 

k-NN (k = 7) 4302 1138 1167 347 93% 

Decision Tree 4331 1103 1202 318 93% 

Random Forest 4310 1091 1214 339 93% 

SVM (RBF Kernel) 4313 1073 1232 336 93% 

SVM (Linear Kernel) 4319 1121 1184 330 93% 

SET 4 Logistic Regression 4147 1140 1176 489 89% 

k-NN (k = 3) 4127 1077 1239 509 89% 

k-NN (k = 5) 4178 1077 1239 458 90% 

k-NN (k = 7) 4197 1062 1254 439 91% 

Decision Tree 4332 1100 1216 304 93% 

Random Forest 4298 1066 1250 338 93% 

SVM (RBF Kernel) 4419 1179 1137 217 95% 

SVM (Linear Kernel) 3907 1023 1293 729 84% 

 

In this specific problem, a false negative prediction means that the predicted material of a 

service line is safe at a particular house when in fact, there is an LSL that could potentially harm 

its residents. Therefore, a basic understanding of expected accuracy from cross-validation is not 

sufficient for determining the best approach. Table 6 reports the specific classification results of 

each model that was trained in this study. These scores allow for a more robust performance 

analysis focused on minimizing the number of false negative outcomes in implementation. We 

compare the sensitivity of each model, which specifically tells us how effective the approach is at 

detecting the presence of a LSL by dividing the number of true positive predictions by the total 

number of actual positives in a twenty percent subset of the data. Overall, we see an average recall 

above 90 percent, meaning that this approach is particularly effective with respect to predicting 

the presence of an LSL.  
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Ultimately, the models which perform the best while also making the fewest false negative 

predictions are the logistic regression model in Set 1 and the SVM RBF kernel model in Set 4, 

which both have a sensitivity of 95 percent. The highest recall rate was 97 percent, produced by 

the SVM RBF kernel model in Set 2; however, this model predicted LSL presence at all but five 

percent of the units in the sample. Thus, despite a marginally lower cross-validated accuracy than 

the logistic regression model in Set 2, we choose to implement the SVM RBF kernel model from 

Set 4, which predicts on the age group, total neighboring LSLs, physical condition and total rooms. 

The resulting predictions for LSL locations are visualized in Figure 11, which provides a detailed 

look at the predicted aggregate prevalence in each neighborhood. We see that in 68% of the 

Pittsburgh’s neighborhoods, the final model predicted the presence of an LSL at over half of the 

addresses. The average neighborhood prevalence of LSLs was just over 60 percent, further 

highlighting the scope of the problem faced by Pittsburgh residents and the PWSA. 
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Figure 11: Predicted Neighborhood Prevalence of LSLs (Final Model) 

3.3 Environmental Justice 

A serious concern for decision makers in the PWSA, local government and within 

communities is the impact of lead in water on disadvantaged communities. As seen in the bubble 

plot in Figure 9, many of the neighborhoods with a simulated LSL prevalence of 50% or higher 

also have high rates of poverty, which is represented by the size of each bubble. This implies that 

lead water contamination may disproportionately affect communities with lesser means and 
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therefore fewer resources. The implications of this are important in part because it reflects the 

financial means of particular neighborhoods to remediate exposure, either by paying for private-

side LSL replacements or repeatedly purchasing lead-certified water filters, which can become 

expensive over time. Lead poisoning in particular causes cognitive deficiencies that have been 

shown, at least in part, to undermine long term economic performance and contribute to the 

perpetuation of low socioeconomic status (Clay, Troesken, & Haines, 2014). Environmental 

justice is a crucial factor in the reality of the lead problem in Pittsburgh, as it is in Flint and other 

cities in the United States (Olson & Fedenick, 2016; Katner et al., 2016; Goovaerts, 2018). 
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4.0 Future Work and Conclusions 

 

Figure 12: Breakdown of PWSA Curb Box Inspection Results (July 2018) 

4.1 Comparing Similar Approaches 

Despite practical and computational limitations, the results of this analysis nonetheless 

demonstrate a promising application of machine learning to modeling the distribution of lead 

hazards throughout a water service area. As additional address-level data become available (e.g., 

water contamination, SL materials and unaccounted-for SL replacements), the inclusion of more 

domain-specific features that are indicative of lead contamination could potentially improve the 

effectiveness of this approach. For example, further analysis of spatial point patterns could 

potentially improve the performance of Models 2 and 3 by including density-based geostatistical 
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features. In Abernethy et al. (2018), the classification accuracy of the ‘StatisticalModel,’ which 

predicted ‘safe’ or ‘unsafe’ service line materials in Flint, MI, improved over time as more data on 

LSL locations became available, reaching an accuracy level in a holdout set of 91.8 percent. This 

approach is also unique in that the problem is then extended from the identification of hazard 

locations to the decision-making for inspections and replacement. To emulate this approach in 

Pittsburgh, further cooperation with the PWSA, particularly with respect to the sharing of sensitive 

customer data, is necessary. The only existent analysis in Pittsburgh is that of Blackhurst (2018a) 

in which the number of young children, the cost of replacements and the income levels in each 

neighborhood are considered. Additionally, an approach which separates field data from historical 

records could strengthen the analysis by treating CBIs and historical records as primary and 

secondary data, respectively. This methodology resembles that of Goovaerts (2018), which 

matches address-level field data from inspections throughout the City of Flint with aggregated 

statistics based on historical records. Other potential extrapolations from this analysis include 

matching simulated LSL locations to data from annual blood testing. Such a study could help 

estimate the impact of LSLs on water contamination and childhood lead poisoning and as Potash 

et al. (2015) argues, help implement successful interventions that prevent rather than remediate 

harmful exposure. 

4.2 Conclusions 

The approach taken in this study builds off a strong theoretical background of geostatistical 

and machine learning applications for environmental risk assessment. Combining existing data on 

housing age and location, we can expect a baseline accuracy of nearly 80 percent in our prediction 
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of the presence or absence of an LSL at addresses without SL material records. This baseline was 

determined by training and testing three simple sets of features, which account for the age of the 

house and its age as well as its proximity to other properties where LSLs are known to exist. We 

also see that using a machine learning approach is very effective at locating LSL locations 

specifically, predicting correctly over 90 percent of the time, on average, when the actual material 

is lead. Given the age distribution of the PWSA’s existing plumbing records, it is likely that a 

considerable number of homes built between 1900 and 1930 once had LSLs that have since been 

replaced, making it more difficult to differentiate between housing units with LSLs and Non-LSLs. 

Despite this challenge, however, this approach is particularly promising due to the nature of the 

problem at hand. In our results, we see that false negatives, which are the worst possible outcome, 

are significantly less common among our predictive models. While false positive predictions could 

result in unnecessary inspections or excavations by the PWSA, a more precautionary approach 

will ultimately be more effective at preventing exposure in the short term while additional analyses 

are carried out.  

Leveraging Pittsburgh’s publicly available housing data offers insights into the process by 

which city officials, regulators and non-government decision makers can identify high risk 

constituents and act accordingly to protect public health. The results demonstrate the extent to 

which housing age contributes to predicting lead hazard locations throughout Pittsburgh’s housing 

stock without the consideration of other potentially valid predictors such as, tap water test results 

or aggregated poverty levels and average property values. Of the 5,348 reported curb box 

inspections as of July 2018 (Figure 10), only 29 percent yielded conclusive results, leaving the 

remaining 71 percent of homes either with incomplete or no information regarding the presence of 

a lead hazard. Moving forward, policy makers should consider the cost-effectiveness of conducting 
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further curb box inspections without specifically targeting houses identified as high-risk. As cities 

across the country embrace data-driven approaches to tackling public health emergencies, 

thorough analyses like the one presented in this study, as well as those conducted in Flint, MI can 

offer valuable insight into individualized risk-assessment and the formation of best practices. By 

applying machine learning to the process of locating and replacing LSLs, we can prevent lead 

poisoning through water effectively, efficiently and equitably. 
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