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Abstract 

Oxidative Damage and Selective Neuronal Vulnerability in Alzheimer’s Disease 
 

Jacqueline Starr Welty, PhD 
 

University of Pittsburgh, 2019 
 
 
 
 

Human cells are constantly under assault by damaging agents that arise from endogenous 

and exogenous sources. Damage to DNA is especially harmful because it encodes essential RNA 

molecules and proteins necessary for cellular functions. Failure to carry out sufficient DNA repair 

may compromise the genome and lead to the development of mutations and potential disease. 

Specifically, oxidative damage in the form of reactive oxygen species (ROS) and resulting DNA 

double strand breaks (DSBs) have been implicated in neurodegenerative diseases such as 

Alzheimer’s Disease (AD). Many cells, such as epithelial cells, are constantly replaced and do not 

need robust systems of repair. However, terminally differentiated and post-mitotic cells such as 

neurons must survive a lifetime and maintain genomic stability. How they manage to do so is still 

under investigation.  

For error-free repair of DSBs, homologous recombination (HR) can occur during the S/G2 

phases of the cell cycle utilizing a sister chromatid template. However, for post-mitotic cells such 

as neurons that cannot utilize a sister chromatid template, only the error-prone non-homologous 

end joining (NHEJ) pathway has been proposed. Recent studies in my lab have elucidated a novel 

RNA-templated recombination based repair pathway that occurs in the G0/G1 phase of the cell 

cycle. How post-mitotic terminally differentiated neuronal cells utilize these pathways has yet to 

be understood. 

The goal of my thesis is to understand how post-mitotic neurons maintain genomic 

integrity in repairing DSBs when faced with excessive oxidative damage. My preliminary studies 

have shown recruitment of transcription coupled homologous recombination (TC-HR) factor 

RAD52 to sites of DSB induced by laser microirradiation in primary post-mitotic rat cortical 
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neuronal cells. This recruitment is largely dependent upon active transcription. How neurons 

utilize TC-HR proteins in DSB repair has yet to be elucidated. My main hypothesis is that 

terminally differentiated post-mitotic neurons utilize the TC-HR pathway to repair DSBs 

and maintain genomic integrity. To test this hypothesis, I investigated the roles of TC-HR 

associated proteins in post-mitotic neurons and how toxic soluble amyloid beta (Aβ1-42) oligomers 

compromise this pathway, which may lead to neurodegenerative pathologies seen in AD. 
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1.0 Introduction 

1.1 Alzheimer’s Disease 

1.1.1  Alzheimer’s Disease statistics and characteristics 

Alzheimer’s Disease (AD) is an irreversible neurodegenerative disorder that afflicts 

millions of people worldwide. It is the leading cause of dementia among the elderly, comprising 

approximately 60-80 percent of dementia cases. It currently has no cure. By 2025, it is estimated 

that the number of individuals over 65 with Alzheimer’s dementia will reach 50 million worldwide, 

a 35% increase from 2017. More women than men are affected by AD, but the reason for this 

remains unknown [1].  

In its early stages, AD is characterized by difficulty remembering recent conversations, 

names or events, along with apathy and depression. Late stage symptoms include impaired 

communication, disorientation, confusion, poor judgment, behavior changes and finally difficulties 

with motor movements such as coordination, walking, and swallowing. Later stage AD can lead 

to death due to immobility, swallowing disorders, malnutrition, and pneumonia [1, 2]. 

Characteristics of AD are typically analyzed post-mortem and consist of extracellular amyloid beta 

(Aβ) plaques and intracellular hyper-phosphorylated tau tangles in the brain. AD progresses 

throughout the basal forebrain, frontal lobe, cerebral cortex and hippocampal regions of the brain, 

leading to neuronal loss and synaptic dysfunction as the disease progresses [3-5]. Studies now 

indicate that AD can begin up to 20 years prior to the manifestation of symptoms [6-9].  

Currently, diagnosis of AD requires a comprehensive medical evaluation as there is no 

single test. The National Institute on Aging-Alzheimer’s Association has established updated 

criteria to assess AD in the elderly which now includes a pre-clinical stage and degrees of amyloid 
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accumulation, tau tangle-bearing neurons, and neuritic plaques [10]. These criteria help to 

distinguish AD from other neurologic diseases such as Parkinson’s and Lewy body disease.  

Tests for biomarkers such as Aβ have been recently developed and are currently being 

used in AD diagnosis. Structural imaging of the brain utilizing magnetic resonance imaging (MRI) 

or computed tomography (CT) scans can be used to identify brain atrophy associated with later 

stage neurodegeneration [11]. Imaging compounds such as Pittsburgh compound B, which 

selectively binds Aβ deposits and can be visualized using PET scans, can be used to detect 

earlier stages of AD [12]. Although there is no current cure or efficient treatment for AD, these 

diagnostic screens can assist with tracking and staging of the disease process, differential 

diagnosis, and identification of prodromal stages of neurodegeneration. They can also be helpful 

to establish clinical trials of treatments involving early stage AD patients in the hope of preventing 

the progression of the disease into irreparable neuronal degeneration.    

Studies have shown the accumulation of aggregated Aβ plaques found in AD patients has 

been associated with increased amounts of oxidative damage and consequent DSBs in the 

human brain [13, 14]. These Aβ aggregates primarily consist of the longer form of Aβ precursory 

product, Aβ1-42, as compared to the shorter, more commonly found Aβ1-40  [15]. DSBs are the most 

deleterious forms of DNA damage, and can lead to mutations, cellular senescence, and 

apoptosis. How Aβ1-42 is associated with DSB repair in post-mitotic neurons is generally unknown, 

such as whether this toxic precursory form of Aβ aggregates directly or indirectly affects repair 

processes, or affects the DNA itself through the production of ROS. Understanding the direct role 

of Aβ1-42 in DNA damage and repair will increase our understanding of other neurodegenerative 

diseases such as Parkinson’s disease which are also characterized by protein aggregates. 
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1.1.2  Alzheimer’s Disease associated mutations 

Only a small subset of AD cases is a result of identified inherited genetic mutations. 

Named early-onset familial AD (FAD), these constitute about 1% or less of all AD cases. They 

are the result of mutations in three genes: APP (amyloid precursor protein), PSEN1, and PSEN2 

(presenilin 1 and 2). Presenilin 1 and 2 are subunits of the γ-secretase complex, one of the 

secretase enzymes responsible for processing APP into soluble Aβ1-42 oligomers. Individuals with 

mutations in APP or PSEN1 are guaranteed to develop AD. Those with mutations in PSEN2 have 

a 95% chance of developing AD. Individuals with these specific mutations tend to develop AD 

well before age 65, typically around age 30, while the remaining population tends to develop late-

stage AD after age 65 [1]. Importantly, mice and rats do not produce Aβ that aggregates in the 

same manner as human Aβ found in AD pathology. Mouse and human APP differ by 17 amino 

acids, 3 of which are located in the Aβ region, thus affecting its cleavage and aggregation [16]. 

Therefore, in order to more accurately investigate AD pathology in a rodent model, transgenic 

mice and rats are engineered using these FAD mutations to create more accurate models for 

essential research. Individuals with trisomy 21, or an extra copy of chromosome 21, are also 

prone develop AD due to overexpression of the APP gene. Reports indicate that nearly all 

individuals with trisomy 21, or Down’s Syndrome, display AD neuropathology after age 40 due to 

higher amyloid plaque load and neurofibrillary tangles[17].    

Risk factors known to increase the likelihood of developing late-stage AD include type II 

diabetes, obesity, cardiovascular disease, smoking, lack of physical and mental activity, and 

hypertension [1, 18-20]. Individuals may also carry genetic risk factors such as specific isoforms 

of the apolipoprotein gene (APOE).  Unlike the APP and PSEN1 and PSEN2 mutations, however, 

having specific APOE isoforms does not guarantee the development of late-stage AD. The APOE 

gene codes for a protein that redistributes lipids (e.g.- cholesterol) in the central nervous system 

(CNS), and is normally synthesized and secreted by astrocytes[21]. There are three isoforms of 
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APOE which differ in single amino acid substitutions: ε2, ε3, or ε4, one of which is inherited from 

each parent. The most common isoform is ε3, with ε2 being the least common. Having the ε2 

isoform may decrease one’s risk of developing AD, while having one allele of the ε4 isoform 

increases one’s risk by threefold compared to having two alleles of the ε4 isoform, which increases 

one’s risk by eight to twelve fold. In vitro studies associated apoε3 and apoε2 with the production 

of long neurites, while apoε4 was associated with an inhibition of neurite outgrowth [22-24]. This 

association was specific to microtubule assembly in that apoε3 would stimulate the polymerization 

of β-tubulin and stabilize the formation of microtubules, and apoε4 would destabilize their 

formation. It was hypothesized that since apoε3 preferentially interacts with tau, it may protect tau 

from hyper-phosphorylation, one of the hallmarks of AD pathology [24, 25]. Another hypothesis 

states that low levels of apoε as seen in apoε4 carriers would lead to impaired clearance of soluble 

Aβ1-42. This is a pathology reported in the cortex and hippocampus of apoε4/AD patients, and is 

based upon research findings postulating that apoε lipoprotein complexes bind to the lipophilic 

portion of soluble Aβ (localized in the amino acid 18–42 portion of the peptide) and clear it from 

the extracellular space [26].   

In FAD mutations which lead to early onset AD, many contribute to increased Aβ1-42 levels 

due to mutations in APP or its cleavage. However, these mutations are not present in late-stage 

AD.  Aβ deposits have been associated with elevated levels of Aβ1-42 in transgenic rodent models 

expressing human APP [27]. The accumulation of extracellular Aβ1-42 has also been associated 

with both the seeding and further deposition of long and short forms of Aβ [28, 29]. Therefore, not 

only is the production of Aβ and its precursors relevant in understanding the development and 

pathology of AD as seen in the FAD associated mutations, but as illustrated in the case of apoε, 

clearing mechanisms of Aβ and its precursors before aggregation products develop is also 

essential to our understanding in order to develop strategies to prevent this devastating disease.  
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1.2 Tau pathology 

Tau is a microtubule–associated protein (MAP) that stimulates tubulin assembly into 

microtubules in the brain. The single tau gene encodes six isoforms as a result of alternative 

splicing, all of which are expressed in the adult human brain [30]. Its reported beneficial effect is 

to stabilize microtubules, promoting neuritic extension and stabilization. A negative effect of tau 

is its competition with the motor protein kinesin, which could lead to decreased axonal transport 

[31-33].  

Tau can be post-translationally modified in numerous ways including phosphorylation, 

glycosylation, ubiquitination, polyamination, nitration, truncation, and aggregation. However, the 

hyper-phosphorylation of tau has most strongly been implicated in the pathology of AD [34]. 

Phosphorylation sites implicated in AD include Ser199/Ser202/Thr205, Thr212, Thr231/Ser235, 

Ser262/Ser356, and Ser422 which have been found to convert tau to an inhibitory molecule that 

sequesters normal microtubule-associated proteins from microtubules [35]. Phosphorylation at 

Thr231, Ser396, and Ser422 promotes the self-aggregation of tau into filaments, impacting its 

activity and disrupting microtubules [36]. How abnormal tau leads to toxicity isn’t fully understood. 

Some studies have shown a gain in toxic ability of abnormal hyper-phosphorylated tau to 

sequester normal tau and other microtubule associated proteins, leading to microtubule 

disassembly [37-39]. More recent studies have even begun probing correlations between amyloid 

beta protein (Aβ) and tau hyper-phosphorylation, and whether one may contribute to the other. 

For example, a study found aggregated Aβ peptides induced tau phosphorylation in primary rat 

neuronal cultures [40]. For the purposes and simplicity of this thesis, however, we focused on 

Aβ’s role in AD pathology. 
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1.3 The amyloid beta hypothesis 

1.3.1  Amyloid beta processing 

The amyloid precursor protein (APP), a transmembrane protein consisting of 695-770 

amino acids involved in neurodevelopment, synaptogenesis, and cell adhesion, is proteolytically 

processed along two separate pathways: 1) the amyloidogenic, which leads to amyloid beta (Aβ) 

production, and 2) the non-amyloidogenic pathway [41-44]. As illustrated in Fig. 1-1, in the non-

amyloidogenic pathway, APP cleavage is mediated by α-secretases (ADAM9, ADAM10, or 

ADAM17),  releasing: the larger soluble ectodomain sAPPα. The membrane-anchored carboxy-

terminal domain of C83 can undergo further cleavage by γ- secretase to produce p3 [45, 46], an 

innocuous fragment. In the amyloidogenic pathway, β- secretase (BACE1) first cleaves APP to 

release an ectodomain (sAPPβ), leaving 99 amino acids of APP within the membrane (C99). C99 

is then cleaved by γ- secretase 38-43 amino acids from the N-terminus to produce Aβ [43, 44, 

47]. The final cleavage of Aβ produces fragments which vary in length from 37-43 amino acids.  

The longer Aβ peptides, including Aβ1-42, are more hydrophobic and more prone to aggregate in 

the brains of AD patients. Low concentrations (pM) of Aβ1-42 have been confirmed in the interstitial 

fluid of normal brains by microdialysis, but higher concentrations in the nM-μM range lead to 

neurotoxicity and neuronal death [48, 49]. 

It is only partially known what triggers the amyloidogenic vs the non-amyloidogenic 

pathway in neurons: the α-secretases, which cleave APP along the non-amyloidogenic pathway, 

are more abundant than the β-secretases, which cleave APP in the amyloidogenic pathway [50-

52]. However, what function Aβ1-42 serves is not clear.  
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Figure 1-1 The amyloidogenic pathway of Aß production. 

In the amyloidogenic pathway, amyloid precursor protein (APP) is cleaved by β-secretase (BACE1) and γ-

secretase to generate amyloid-beta fragments ranging in size from 38-43aa. These aggregate outside the 

cells into oligomers, and further aggregate into fibrils and plaques. 

 

1.3.2  Amyloid beta as a metallo-protein 

Free metals such as Fe, Cu, and Zn are essential for numerous functions in the brain such 

as neuronal transmission, oxygen transport, and electron transfer. Maintaining homeostasis of 

these metals and their reduced/oxidized forms is critical. Aβ has been implicated in numerous 

interactions with Fe, Cu, and Zn, both in beneficial and detrimental ways. For example, prior 

research has found that Fe2+ concentrations are higher in advanced AD brains than in normal 

patients [53]. Iron plays an extensive role in the production of oxidative stress by the formation of 
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a hydroxyl radical via the Fenton reaction. Here, Fe2+ is reduced to Fe3+ by O2, producing O2-. O2- 

then reacts with H+ and produces H2O2, which reacts with Fe2+ and produces hydroxyl radicals 

[54]. These chemically reactive hydroxyl radicals in turn generate lipid peroxidation products, 

protein carbonyl modifications, and nucleic acid adducts such as 8-hydroxyguanosine (8-OHG) 

which have all been implicated as characteristic of AD neuropathology [55, 56]. In vitro studies 

have also showed that Fe induces Aβ aggregation and tau hyper-phosphorylation [57, 58].  

Cu can be distributed differently throughout each brain region. However, overall levels of 

Cu are found to be lower in the cerebral cortex of AD patients compared to healthy patients, 

hypothetically due to the association of Cu to aggregated Aβ plaques and its depletion from the 

surrounding tissue and cells [59, 60]. Cu is known to directly bind Aβ. This Cu- Aβ peptide then 

produces H2O2 through the reduction of Cu2+ to Cu3+ and the production of hydroxyl radicals [61]. 

The redox activity of Aβ is greatest for Aβ1-42, largely mediated by the Cu- Aβ interaction. This 

then leads to the oxidative stress toxicity observed in neuronal cell culture and the evidence 

presented prior that oxidative injury contributes to the pathology of AD [62, 63]. An opposing 

effect, however, is that Cu2+ has also been shown to prevent the amyloid fibril formation of Aβ by 

binding with Aβ, thus inhibiting the production of Aβ aggregates [64].  

Brain tissue contains the highest levels of Zn in the human body where it is substantially 

enriched in the glutamatergic nerve terminals [65, 66]. Upon neuronal activation it is released into 

the synaptic cleft and interacts with neuronal receptors, ion channels, and transmitters to regulate 

neuronal transmission [67-69]. It has been established that Zn is highly enriched in AD in Aβ 

plaques, potentially mislocalizing functional Zn from the rest of the brain [60, 70-72]. Zn can also 

bind Aβ via its histidine residues. This binding alters Aβ’s conformation and prevents its binding 

to Cu, inhibiting the H2O2 production that would result from Cu2+ reduction[62, 73]. High Zn 

concentrations are neurotoxic, however, so it is only in lower competitive concentrations that Zn 

binding protects against Aβ toxicity [74].  
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These studies indicate both protective and detrimental roles of Aβ, leading to questions 

about when and under what specific conditions it would serve these contradictory functions. 

1.3.3  APP cleavage products are necessary for normal function 

The “Amyloid hypothesis” focuses on the imbalance of production and clearance of Aβ1-42 

and its related peptides as the neurotoxic factors that contribute to gradual impaired neuronal 

function and cell death as seen in the progressive pathology of AD [75].  Numerous therapies and 

studies have focused on understanding both the physiological roles of APP and its cleavage 

products. They also focus on how the imbalance of these products may contribute to 

neurodegeneration in order to provide treatments that do not exacerbate the effects of depleting 

what could be a necessary and functioning protein. For example, APP knockout mice initially 

appear normal in early development, but eventually show reductions in body weight, grip strength, 

locomotor activity and synaptic transmission as well as sensitivity to epileptic seizures, forebrain 

defects, and a reduction in cerebral blood flow as a response to ischemia (restriction in blood 

supply) or hypoxia (oxygen deprivation) [76, 77]. Both APP and Aβ1-42 expression were found to 

be increased in hypoxic and ischemic conditions in the wild type, indicating a role for APP and its 

cleavage fragments in cerebral blood flow under specific conditions [77]. Experiments with mice 

over-expressing human APP show they have increased basal levels of DSBs and retain them 

longer after exploring novel environments, implicating a reduced capacity for repair [78]. A specific 

β-secretase (BACE-1) knockout mouse model shows no consistent phenotypic difference from 

wild type littermates, despite BACE being the primary β-secretase of APP and its knockout 

resulting in significantly less Aβ1-40 and Aβ1-42 production overall [79]. 

γ-secretase knockouts, however, are not conducive to AD studies as this enzyme is not 

specific to a single pathway. The γ-secretase complex cleaves numerous substrates including 
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APP and Notch. Specifically, the γ-secretase subunit PSEN1 is a key regulator of Notch and Wnt, 

and is essential for the developmental maturation of glia and neurons. Notch signaling itself is 

responsible for neuronal differentiation during embryogenesis and is also involved in neuronal 

plasticity [80, 81]. PSEN1 knockout mouse models exhibit perinatal lethality, skeletal 

deformations, intracranial hemorrhaging, and CNS abnormalities resembling Notch knockout 

phenotypes [82, 83]. PSEN2 knockout mice, however, only show a mild pulmonary phenotype, 

indicating the γ-secretase subunits PSEN1 and PSEN2 have non-identical functions in mice [84, 

85]. Numerous γ-secretase inhibitors have been tested that successfully reduce the amount of Aβ 

produced in mouse models and patients. These inhibitors specifically target the PSEN1 and 

PSEN2 subunits of γ-secretase. Due to off target effects and side effects, however, including 

those affecting Notch signaling, these γ-secretase inhibitors are not currently able to be used in 

clinical trials for use as AD therapeutics [86]. What these and future studies do provide is insight 

into the targets of the secretases, maintenance of homeostasis of Aβ, and how to modify 

treatments to target specific proteins in order to prevent the pathology of AD from developing. 

1.4 Oxidative stress in AD 

Oxidative stress is characterized by an imbalance in the production of ROS and manifests 

in high levels of oxidized proteins, advanced glycation end products, lipid peroxidation end 

products, and the formation of toxic species such as peroxides, alcohols, aldehydes, free 

carbonyls, ketones, cholestenone and oxidative modifications in nuclear and mitochondrial DNA. 

ROS are generated endogenously by cellular metabolism and by a variety of exogenous agents 

such as ionizing radiation. Metabolically-generated ROS can generate ~10,000 oxidative lesions 

in DNA per day [87].  Neurons also carry a large number of mitochondria which are the main 
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sources of ROS during glutamate excitotoxicity [88].  

Oxidative DNA lesions resulting from ROS can consist of single and double strand DNA 

breaks and oxidized base adducts such as 8-hydroxyguanosine (8-OHG). Studies have found 

both increased levels of 8-OHG in mitochondrial and nuclear DNA in the cortex of AD patients 

and increased levels of γ-H2AX, a modified histone and marker for DSBs, in the hippocampal 

region of AD patients [13, 89].  

Other markers for oxidation have been used to indicate oxidative stress in AD studies, 

including methionine, an essential amino acid [90]. In the case of Aβ1-42, which contains a 

methionine at residue 35, it is suggested that the interaction of the sulfur atom of Met-35 with Ile-

31 leads to an intermediate that can be oxidized by free oxygen to produce a sulfuramyl radical 

[91]. When introduced to rat embryonic primary hippocampal neurons, it induces oxidative 

damage evidenced by protein carbonyls and neurotoxicity. Vitamin E, a chain breaking 

antioxidant, modulates these effects [90]. When the sulfur in methionine is substituted with a 

methylene moiety to lead to a norleucine derivative (Aβ(1-42M35NLE), these peptide led to no 

oxidative damage, no neurotoxicity, and no free radical formation in 9-11 day murine primary 

hippocampal neurons [92]. In vivo studies utilizing transgenic Caenorhabditis elegans modified to 

produce human Aβ in their muscle wall further confirmed the importance of methionine in the 

oxidative and neurotoxic properties of Aβ1-42 as experimental organisms with Met35 substitutions 

displayed reduced Aβ aggregates and did not show progressive paralysis or slow growth observed 

in the wt Aβ strains  [93]. These studies support that Aβ1-42 itself induces oxidative stress and that 

antioxidant therapies may modulate its neurotoxic effects.   

More evidence of free radical induced oxidative stress in AD has been found in lipid 

peroxidation, protein oxidation, and DNA/RNA oxidation in AD patient brain samples. Altered 

indices of lipid peroxidation in AD brains include thiobarbituric acid reactive substances (TBARS), 

phospholipid composition, enzyme activity to clear lipid peroxidation products, isoprostane 
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concentrations, and concentrations of α- and β- unsaturated aldehydes [94, 95]. Thiobarbituric 

acid reacts with lipid peroxidation products, providing a means to measure oxidative stress. Levels 

of TBARS were found to be significantly increased in the hippocampal and pyriform cortex regions 

of AD patients compared to controls, indicating increased oxidative stress in AD patients [94]. 

Polyunsaturated fatty acids such as arachidonic acid and docosohexenoic acid are abundant in 

the brain and have been shown to be highly oxidizable. Studies on membrane phospholipids have 

indicated a decrease in levels of these specific phospholipids in AD, indicating high levels of 

oxidation activity [96].  

As mentioned in Chapter 1.3 redox recycling of Aβ produces hydrogen peroxide. This has 

been found to occur in the presence of biological reducing reagents with cholesterol and long-

chain fatty acids as the most likely reductants due to Aβ toxicity mostly associated with the 

membrane [97-99]. One β- unsaturated aldehyde, HNE (4-hydroxy-2-trans-noneal), is a major 

product of lipid peroxidation in the membrane, and concentrations of HNE have been shown to 

be increased in multiple brain regions, including the hippocampus, and in the ventricular 

cerebrospinal fluid (CSF) of AD patients [100]. HNE has also been implicated in Fe-induced 

oxidative damage in cholinergic neurons [100, 101]. These are the neurons primarily affected in 

the basal forebrain of advanced AD patients with a reduction in number of cholinergic neurons 

and decrease in choline acetyltransferase (ChAT) activity correlating with cognitive decline [102-

104].   

Studies have shown that oxidative stress induces the γ-secretase mediated expression of 

β-secretase, contributing to an increase in amyloidogenic Aβ production in AD pathology. In 

response to oxidative stress [e.g.-production of lipid peroxidation product 4-hydroxy-2,3 noneal 

(HNE)], γ-secretase cleavage of APP produces the ACID cleavage product which translocates to 

the nucleus and mediates transcriptional upregulation of BACE1 expression [105-107]. Some 

studies have found an increase in Aβ oligomers associated with an increase in DSBs in human 
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brain tissue, while others have found higher levels of oxidative damage associated with an 

increase in Aβ oligomers in human AD patients despite research claiming an anti-oxidative role 

of Aβ [13, 14, 105]. 

The oxidative modification of amino acid side chains and protein cross-linking can alter 

protein function and prevent malfunctioning proteins from being degraded by proteinases [108-

110]. Direct attacks on amino acid side chains by free radicals or the products of lipid peroxidation 

(e.g.-HNE) acting upon proteins can produce protein carbonyl groups which can be used as 

biomarkers of oxidative stress [111]. These can be detected via numerous fluorescent or 

immunochemical assays [108, 112]. Studies have consequently shown that protein carbonyl 

levels are increased in the frontal pole, hippocampus, and superior middle temporal gyrus in AD 

brains, correlating with AD histopathology [113-117].  

Together, these studies that utilize markers for evidence of oxidative stress including 

increased levels of 8-OHG, γ-H2AX, lipid peroxidation, DNA/RNA oxidation, and protein carbonyl 

groups imply a strong correlation between oxidative damage, Aβ, and AD neuropathology.  

1.5 DNA repair and genomic stability 

1.5.1  DNA repair mechanisms 

Many different types of DNA lesions can occur due to damage from endogenous and 

exogenous sources. The main pathways to repair DNA lesions are nucleotide excision repair 

(NER), base excision repair (BER), mismatch repair (MMR), single strand break repair (SSBR), 

and double strand break repair (DSBR) (Fig. 1-2). UV light and polycyclic aromatic hydrocarbons 

can directly damage DNA, leading to 6-4 photoproducts, bulky adducts, or cyclobutane pyrimidine 

dimers. The DNA strand containing the lesion is excised via NER. X-rays, ROS from oxidative 
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damage, and alkylating agents can cause abasic sites, oxidized, deaminated, and alkylated 

bases, and DNA single strand breaks (SSBs) which can be removed via BER or single strand 

annealing (SSA). In the BER pathway, specific glycosylases recognize and remove damaged 

nucleotide bases [118]. Ionizing radiation, UV light, and chemotherapy agents such as 

hydroxyurea can all lead to DSBs in the backbone of DNA. They can also occur due to SSBs in 

close proximity, or replication past previously existing lesions. DSBs are repaired via DSBR, either 

through single strand annealing (SSA), microhomology-mediated end joining (MMEJ), 

homologous recombination (HR), or non-homologous end joining (NHEJ). In SSA, homologous 

repeats are used to bridge DSB ends with RAD52 promoting the annealing of complementary 

ssDNA [119-121]. MMEJ promotes the use of 5-25 bp microhomologous sequences as broken 

DNA ends are aligned before ligation and does not rely on the NHEJ associated Ku70/80 complex 

proteins. This pathway often leads to significant deletions, insertions, translocations, inversions 

and rearrangements [122]. In NHEJ, the broken DNA ends are processed/digested and then 

directly ligated, potentially leading to nucleotide deletions and consequent frameshift mutations. 

Thus, NHEJ is considered error-prone [123]. HR utilizes undamaged templates in order to direct 

repair of the damaged strands. Replication and recombination errors can result in base 

mismatches, insertions and deletions. These erroneous nucleotides are excised via MMR 

independently of any specific glycosylases, unlike the BER pathway [124, 125].  

Maintaining the stability of the genome is essential for survival and overall health. Failure 

to efficiently and completely repair DNA lesions can lead to deleterious mutations, insertions and 

deletions, premature stop codons, and interrupted essential coding genes, the consequences of 

which can lead to cellular apoptosis or senescence and disease pathologies such as cancer or 

neurodegeneration [126-132]. Numerous studies have shown that deficiencies in BER, which is 

utilized primarily for the repair of DNA base modifications, play a large role in neurodegeneration. 

For example, the expression of DNA polymerase β, the polymerase that conducts gap-filling DNA 

synthesis, was reduced in AD patients [133]. Also, numerous mutations in BER proteins have 



 17 

resulted in an increase in genomic mutation rates, implying that the reduction in efficient repair 

could lead to genomic instability, cancer, and neurodegenerative pathologies [134]. Mutations in 

genes required for efficient repair of SSBs or DSBs can also lead to numerous neurodegenerative 

diseases such as Cockayne syndrome (CS), Xeroderma pigmentosum (XP), and Ataxia 

telangiectasia (A-T) [135].  Studies have also found high levels of oxidized DNA bases such as 

8-oxoG in nuclear and mitochondrial DNA in the brains of Mild Cognitive Impairment (MCI) 

patients who are in the phase between normal aging and early dementia [136]. 
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Figure 1-2 Representation of DNA repair pathways. 

A. Endogenous and exogenous sources of DNA damage. B. Types of DNA lesions resulting from damage. 

C. DNA repair pathways utilized for repair of specific DNA lesions. 
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1.5.2  Homologous Recombination (HR) 

DSB are the most deleterious forms of DNA damage. While NHEJ tends to be more error 

prone and HR more error free, there are numerous factors that influence DSB repair pathway 

choice. These factors include the cell cycle phase and the initial resectioning process [137]. The 

result after damage is the initiation of cell cycle arrest and repair either via HR or NHEJ followed 

by the re-initiation of the cell cycle or, failing sufficient repair, apoptosis or senescence.  

For more error-free repair of DSBs, canonical HR can occur during the late S & G2/M 

phases of the cell cycle when an intact sister chromatid is present and in close proximity of the 

break & can be utilized as a template (Fig. 1-3) [138]. This pathway first involves resection, or 

degradation of the broken DNA ends, into single stranded DNA tails with 3’ overhangs by the 

MRN complex of nucleases (MRE11, RAD50, NBS1) and its co-factor Sae2. Once the MRN 

complex binds to the DSB ends, the endonuclease CtIP interacts with the complex and initiates 

resectioning in the 5’ to 3’ direction, generating 3’-OH single-stranded DNA (ssDNA) overhangs. 

The ssDNA generated is immediately coated by the ssDNA binding protein replication protein A 

(RPA) to prevent degradation or direct ligation [139].  

RAD51 filament formation, which is essential for HR recombination, occurs following RPA 

coating. However, RPA directly blocks RAD51 binding to ssDNA. In human cells, BRCA1 recruits 

PALB2 (Partner and Localizer of BRCA2) and BRCA2 to assist in loading RAD51 onto the DNA 

[140]. This is another step where pathway choice can be mediated. Here, ubiquitylation of key 

residues of PALB2 by the E3 ligase complex CRL3-KEAP1 in the G1 phase of the cell cycle 

prevents BRCA1 binding, thus favoring NHEJ instead in the G1 phase. CRL3-KEAP1 is 

downregulated in the S phase when the deubiquitinase USP11 is upregulated, thus favoring HR 

in the S phase [141]. ATR activation at the resected DSB also leads to the phosphorylation of S59 

in PALB2, enhancing its complex formation with BRCA1 and further favoring HR [142]. 
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After BRCA1 recruits PALB2 and BRCA2, BRCA2 assists in loading RAD51 recombinase 

onto the 3’ DNA overhangs to form nucleoprotein filaments, displacing RPA. In yeast cells, Rad52 

is essential for Rad51 filament formation in vivo. This is not the case in human cells as RAD52’s 

role in canonical HR is not clearly defined [143, 144]. However, in BRCA2 deficient cells, RAD52 

becomes essential for RAD51 filament formation [145]. In vertebrates, there are five different 

RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3), each necessary for RAD51 

foci formation after damage, and each playing different roles in filament formation that are still 

being investigated [146]. These RAD51 paralogs each load into the RAD51 filament in a varying 

arrangement, the purpose of which isn’t entirely known. It is speculated, however, that their 

arrangement helps protect the ssDNA from nuclease activity as Rad55 and Rad57 in yeast form 

a heterodimer that blocks Srs2 helicase activity intended to prevent hyper-recombination [147].   

These RAD51 filaments then search for a homologous DNA template on the sister 

chromatid and form a joint heteroduplex molecule between the damaged DNA and undamaged 

template. RAD54 associates with the RAD51-ssDNA filaments and stabilizes them independently 

of its ATPase activity [148]. The 3’ end of the invading DNA strand must then intertwine with the 

donor complement strand to form a primer-template junction competent for DNA synthesis. This 

is known as the D-loop. Minimally, only the 3’ end is required to form a primer-template junction, 

however it can be hundreds of base pairs long. As evidenced by studies using substrates with 

terminal heterologies, the junction forming sequence need not be directly located at the 3’ end 

[149].  

DNA synthesis begins at the D-loop, involving Pol δ, PCNA, and its loader RFC1-5, 

followed by disengagement of the invading strand [150]. The resulting ssDNA strands are then 

immediately bound by RPA. The DNA ends can now anneal within the region of homology created 

within the D-loop. However, how this annealing process occurs is largely unknown. In yeast, 

Rad52 fulfills this role [151]. In humans, RAD52 is capable of annealing homologous RPA-coated 
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ssDNA strands such as in the SSA pathway [119, 121]. However, there are no studies that 

currently clearly define its role in HR.  

If annealing does not occur, the formation of double Holliday junctions (dHJ) may proceed. 

In forming the dHJ, the second resected DSB end may anneal to the D-loop, or both DSB ends 

instead invade the donor and proceed onto DNA synthesis. When the dHJ is processed, it will 

result in either non-crossover or crossover products. Due to crossover products (as high as 50%), 

somatic cells largely avoid the formation of dHJ, and prefer resolution of HR via annealing, also 

known as synthesis-dependent strand annealing (SDSA) [152].  
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Figure 1-3 Simplified representation of Homologous Recombination (HR) repair pathway. 

A. After DSB formation, resection occurs to form 3’ ssDNA overhangs. After successful homology search, 

strand invasion occurs to form a D-loop structure, followed by DNA synthesis. B. In SDSA, only non-

crossover products are formed after the D-loop unwinds and the freed ssDNA anneals with the 

complementary ssDNA on the other end. C. Alternately, the second DSB end can be captured to form an 
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intermediate, resulting in noncrossover or crossover products after resolution of two Holliday junctions 

(HJ)s. 

 

1.5.3  Non-homologous end joining (NHEJ) 

For more error-prone resolution of DSBs, the NHEJ pathway can be used throughout the 

cell cycle (Fig 1-4) [153]. In studies using human fibroblasts, NHEJ was found to repair nearly all 

DSBs outside of the G2/S cell cycle phases, as well as almost 80% of DSBs within the G2/S 

phases not proximal to replication forks [154]. It has been proposed that preference for NHEJ 

repair is largely due to a high abundance of Ku protein, one of the first proteins recruited to broken 

DNA ends, which promotes NHEJ and also inhibits the DNA resectioning event that leads to HR 

[155, 156]. 53BP1 has also been identified as a negative regulator of HR, promoting NHEJ 

instead. It limits the resection process by binding to specific histone modifications around the 

break site. The Tudor domain of 53BP1 binds to H4K20Me2, a histone modification present 

throughout the genome, while its “Ubiquitin-Dependent Recruitment” region binds to H2AK15ub, 

a histone modification induced by RNF168 after DNA damage signaling at the DSB [157, 158]. 

This negative regulation of HR by 53BP1 is counteracted by BRCA1, which allows resection to 

continue in the presence of 53BP1. 53BP1 binding is also influenced by multiple factors, thus 

affecting its ability to direct DSB repair pathway choice. These factors include proteins that 

compete for H4K20Me2 binding sites such as JMJD2A and L3MBTL1, or the histone 

acetyltransferase complex TIP60 [159, 160]. TIP60 also creates a chromatin environment more 

favorable to BRCA1 binding than 53BP1 by acetylating H4K16 to H4K16ac, interfering with the 

binding between 53BP1’s Tudor domain and histone H4 [161, 162]. 53BP1 also has reduced 

binding during S phase due to a lessening of H4K20Me2 modifications during DNA replication, 

driving DSB repair towards HR [163].     
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Nuclease activity occurs first at the two incompatible broken DNA ends involved in a DSB. 

The resectioning process in NHEJ occurs by the recruitment of DNA-PKcs with the endonuclease 

Artemis. In NHEJ, the Ku heterodimer consisting of Ku70 and Ku80 is first recruited to the damage 

site. This complex acts as a scaffold for DNA-PKcs as DNA-PKcs interact with the C-terminus of 

Ku80. Although the last 12 amino acids of Ku80 are sufficient for this interaction, Ku80 must be 

bound to a DNA end in order to form a strong complex with DNA-PKcs [164-166]. Following 

binding to DNA, the DNA-PKcs autophosphorylate and activate Artemis. This is accomplished by 

the phosphorylated DNA-PKcs phosphorylating the C-terminal inhibitory region of Artemis, 

dissociating it from the N-terminal catalytic domain [167]. When in complex with DNA-PKcs, 

activated Artemis has endonuclease activity on the 5’ and 3’ overhangs [168, 169]. Numerous 

members of the polymerase X family of polymerases then participate in DSB repair by NHEJ. 

These polymerases, such as Pol µ and Pol λ have an N-terminal BRCA1 C terminus (BRCT) 

domain that allows them to interact with the Ku complex [167]. These polymerases incorporate 

nucleotides during NHEJ, but in a template independent manner [170, 171]. In a complex with X-

ray repair cross-complementing 4 (XRCC4) protein, DNA ligase IV (Lig4) then ligates the two 

DNA ends together [172]. The result of NHEJ is not a perfect joining of the two broken DNA ends 

as Artemis activity can lead to nucleotide loss and polymerase activity can lead to nucleotide gain 

[173]. These final results can promote frameshift mutations, interrupted essential genes, and 

premature stop codons, all of which compromise genomic fidelity. 
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Figure 1-4 Simplified representation of Non-homologous end joining (NHEJ) repair pathway. 

The broken DNA ends are processed and directly ligated by actions of the end-binding Ku70/80 complex 

and DNA-PKcs, followed by Artemis end processing and XRCC4 and DNA ligase IV. 

1.5.4  Transcription-coupled homologous recombination (TC-HR) 

It has long been assumed that HR can only take place during the late S/G2 phases of the 

cell cycle where sister chromatids are present as templates [174]. Except for in the hippocampus 

and striatum, most neurons in the adult human brain are terminally differentiated and non-dividing, 

and therefore are assumed to be incapable of utilizing HR for DSB repair [175, 176]. For post-

mitotic cells such as terminally differentiated neurons that cannot utilize a sister chromatid 

template, only the error-prone NHEJ pathway has been proposed [123]. However, recent studies 

in the Lan lab have elucidated an RNA-templated HR repair mechanism of DSBs at active 
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transcription sites during the G0/G1 phase called transcription-coupled homologous recombination 

(TC-HR) [177].  

Cockayne syndrome B (CSB) protein is involved in the transcription-coupled NER (TC-

NER) pathway. After DNA damage induced by UV light, RNA polymerase II (RNA POLII) stalls at 

bulky lesions and CSB is recruited to facilitate NER directed repair of the transcribed DNA strand 

[178, 179]. Due to the fact that patients with CSB deficiencies also manifest neurodegenerative 

pathologies and CSB-defective cells are sensitive to IR, it was hypothesized that CSB must play 

a larger role in maintaining genomic stability against other forms of DNA damage, specifically 

DSBs, the more deleterious form of damage [180-183]. The Lan lab therefore investigated the 

role of CSB in DSB repair using the DNA damage at active transcription sites (DART) system 

(Fig. 1-5A-D), which enables the study of molecular responses to light-induced DNA damage at 

single genomic loci with controllable transcription [184, 185]. In the DART system, when activated 

by visible light (550-580 nm), the modified red fluorescent protein chromophore KillerRed (KR) 

emits site-specific ROS [186, 187] (Fig. 1-5A). When positioned directly onto DNA, KR can induce 

oxidative damage and DNA strand breaks after white fluorescent light excitation. In order to 

localize KR, a tandem tetracycline repressive element (TRE) array cassette of approximately 200 

copies of 96 random TRE repeats was integrated at a defined genomic locus in U2OS TRE cells. 

This specific locus has been determined as adjacent to the centromere of the X chromosome in 

a heterochromatinized region, or region with condensed chromatin. A CMV promoter is located 

after the TRE repeats to allow the activation of transcription upon transient expression of TRE-

fusion proteins, specifically those fused to the transcription activator VP16 (TA) (Fig. 1-5B). U2OS 

TRE cells are exposed to white light for 15 min, and the tet-repressor (tetR)- or tet-transcription 

activator (TA)-tagged KR proteins (tetR-KR or TA-KR) induce similar amounts of ROS-induced 

DSBs at transcriptionally inactive or active sites, respectively in real time [184] (Fig. 1-5C&D). 
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Figure 1-5. Schematic for the DNA damage at active transcription sites (DART) system for targeted 

single cell nuclei DNA damage. 

A. KillerRed (KR) induced by white or green light (550-580nm) produces ROS. B. A tandem tetracycline 

repressive element (TRE) array cassette integrated at a defined genomic locus in U2OS-TRE cells allows 

fusion proteins to translocate to a specific location for DNA damage induction. A CMV promoter is located 

after the TRE repeats to allow the activation of transcription upon transient expression of transcription 

activator (VP16) containing proteins. C. Scheme of the experimental system and senerios of TA-KR/cherry 

and tetR-KR/cherry in U2OS TRE cells where cherry is the non-ROS producing control. D. Confocal image 

of single U2OS-TRE nucleus with TA-KR (red), DSB marker γ-H2AX (blue), and DSB repair protein 53BP1 

(green) after light induction to illustrate DNA damage. Adapted from [177] with permission from the 

publisher. 
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Using the DART system, the Lan lab demonstrated that HR proteins RAD52, RAD51, 

RAD51C, and RPA1 are enriched at transcriptionally active DNA damage sites in cells 

synchronized in the G0/G1 phase. This recruitment is dependent upon CSB repair protein (Fig. 1-

6). They also found that RAD52 and RAD51C interact with CSB independently of DNA after 

damage, but this interaction is abolished with transcription inhibition. The C-terminus of RAD52 

co-localizes to actively transcribed DNA damage sites [177]. These data imply that RAD52 foci at 

actively transcribed DNA damage sites require the presence of an RNA template. This messenger 

RNA (mRNA) may be utilized as a bridge or template for the recombination process for error-free 

break repair in TC-HR [188-190]. Finally, inhibition of transcription sensitizes wild type cells to IR, 

but not CSB-deficient cells. This indicates that CSB facilitates transcription-coupled 

recombination to enable cell survival [177].   
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Figure 1-6. Model of CSB dependent RNA templated repair at transcriptionally activated DNA 

damage sites. 

RNA polymerase II stalls at actively transcribed DNA damage sites containing DSBs, followed by 

recruitment of CSB, RAD52 and RAD51C, RAD51 and RPA. After repair, CSB is polyubiquitinated, followed 

by the release of remaining repair factors and RNA polymerase II phosphorylation to resume transcription. 

 

An RNA-templated, RAD52 directed mechanism of HR has also been reported in yeast 

[191]. Prior to my research, however, it was not known whether this transcription dependent HR 

pathway existed in neurons or other post-mitotic cells.  

R-loops are three stranded nucleic acid structures formed during the transcription process. 

They are composed of a nascent RNA strand hybridized with the DNA template and the single 

stranded non-template DNA strand. They are formed by RNA polymerase II transcribing a C-rich 

template so that a G-rich transcript is generated and depend on three main features: high G 

density, negative supercoiling, and DNA nicks [192-194]. It’s been hypothesized that the formation 

of R-loops can lead to genomic instability. The precise mechanisms for this are still under 

investigation, but models have been proposed showing that the exposure of ssDNA during the 
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RNA/DNA hybrid formation would leave the ssDNA strand susceptible to DNA lesions [195]. Also, 

the unpaired strand may be susceptible to DNA damage from deamination of dC to dU, leading 

to DSBs [196-198]. Unpublished research in the Lan lab using the DART system and antibodies 

for anti-S9.6, which is an antibody specific for RNA/DNA hybrids, has also shown that oxidative 

stress induces the formation of R-loops. TC-HR repair factors RAD52 and RAD51 have been 

shown to co-localize with R-loops at actively transcribed damage sites as compared to I-SceI 

endonuclease cleavage sites. (Of note, the I-SceI endonuclease recognizes a specific 18bp 

sequence and leaves a 4bp 5’ overhang, but does not induce or require transcriptional activity 

[199].)  

1.6 Therapies and treatments 

Current treatments for AD cannot slow or stop the neuronal death or synaptic loss seen in 

AD pathology, nor have they been able to sufficiently prevent toxic Aβ1-42 oligomers from incurring 

AD associated damage to neurons. Many therapies focus instead on alleviating symptoms 

through increasing neurotransmitter levels. There are five such treatments currently available, 

which are rivastigmine, galantamine, donepezil, memantine, and memantine combined with 

donepezil. Rivastigmine, galantamine, and donepezil are acetylcholinesterase inhibitors. 

Synthesis of the neurotransmitter acetylcholine (ACh) takes place in the cytoplasm of cholinergic 

neurons via synthesis from choline and acetyl-coenzyme-A by the enzyme choline 

acetyltransferase (ChAT) [200]. During neurotransmission, ACh is released from a nerve into the 

synaptic cleft where it binds to ACh receptors on the post-synaptic membrane and relays a signal 

from the nerve. Acetylcholinesterase terminates this signal by hydrolyzing ACh [201].  Cholinergic 

neurons innervate almost all regions of the human brain. They are involved in critical processes 

such as waking and sleep, memory formation, learning, stress response, and sensory information 
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[202]. In AD, one notable change in the human brain is a significant reduction in cholinergic 

neurons. Cholinergic neuronal loss and consequent deficits in cholinergic transmission have been 

shown to impair cortical and hippocampal information processing, decision-making processes, 

and changes in hippocampal synaptic transmission which correlate with memory loss [203-208]. 

The use of acetylcholinesterase inhibitors has been shown to temporarily improve symptoms in 

AD patients by increasing availability of the neurotransmitter ACh, but the effectiveness of the 

drugs is patient specific and limited in duration [1].   

There are over 112 agents being tested for use as treatment for AD in 2018. These include 

26 agents in 35 trials in phase III, 63 agents in 75 trials in phase II, and 23 agents in 25 trials in 

phase I. 63% of these are disease modifying therapies (DMTs) intended to prevent or delay the 

onset of AD or slow its progression, 22% are symptomatic cognitive enhancers, 12% are 

symptomatic agents addressing neuropsychiatric and behavioral changes, and 3% have 

undisclosed methods of action (MOAs). The majority of individuals involved in these studies 

include cognitively normal patients with evidence of amyloid pathology (analyzed by cerebrospinal 

fluid-CSF measures or amyloid positron emission tomography-PET) or individuals with genetic 

profiles placing them at high risk for developing AD, patients with prodromal AD/mild cognitive 

impairment (MCI), and patients with mild-moderate AD [209].  

There are very few agents currently being tested that target the moderate to advanced 

stages of AD. The reason for this is the lack of surrogate markers, or measures of disease that 

can be used for a clinical endpoint. There are also very few biomarkers in AD. The most common 

ones used in the 2018 clinical trials were CSF amyloid, CSF tau, volumetric magnetic resonance 

imaging (MRI), and amyloid PET [209]. This dearth of biomarkers has led to a misdiagnosis rate 

of upwards of 20% in previous AD clinical trials. This can contribute significantly to trial failures 

[210]. What is important to consider is that these trials are increasingly using preclinical and 

prodromal populations, reflecting current research findings that indicate AD pathology develops 

much earlier than when patients manifest the disease symptoms. 
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1.7 Summary 

Although a great amount of research has been conducted on AD, little progress has been 

made on the actual treatment of the disease. This is mainly due to the elusive nature of the 

disease’s causal factors. Although the amyloid hypothesis can explain the pathology and 

progression of AD, it does not explain what leads to the initial events that trigger overproduction 

and accumulation of toxic Aβ, nor how it affects distinct cellular processes. 

The data acquired in this thesis implies that although the TC-HR pathway provides the 

means for post-mitotic cells (and cells in the G0/G1 phase of the cell cycle) to maintain genomic 

stability over the more error-prone NHEJ DSB repair pathway, the process of active transcription 

and R-loop formation itself can predispose these neuronal cells to detrimental DNA damage when 

exposed to endogenous cellular products like Aβ1-42. This thesis also provides insight into how Aβ 

contributes to the downregulation of essential repair proteins and their DNA damage response in 

the TC-HR pathway, pointing to a mechanism of Aβ and the dysregulation of DNA damage repair 

in the development of AD. 
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2.0 Materials and Methods 

Cell cultures and transfection 

U2OS osteocarcinoma cells and U2OS-TRE osteocarcinoma stable cells containing a 

tandem tetracycline repressive element (TRE) array cassette were cultured in high-glucose 

Dulbecco’s modified Eagle’s medium (DMEM) with 10% (vol/vol) fetal bovine serum (FBS) at 

37°C, 5% CO2. U2OS-TRE cell line for the DART system has been described in previous literature 

[177]. DR-GFP and Ej5-GFP stable cells were cultured in Dulbecco’s modified Eagle’s medium 

with 4.5 g/L glucose and L-glutamine without sodium pyruvate with 10% (vol/vol) FBS and 0.1X 

GlutaMAX (Gibco) at 37°C, 5% CO2. Primary neuronal cultures were prepared as previously 

described [211] with minor modifications. Rat cortical tissues were dissected from E17 Sprague 

Dawley rat brains. For the first 48 hr, brain cultures were maintained in MEM (Life Technologies) 

containing 2% heat-inactivated fetal bovine serum (Cellgro), 2% heat-inactivated horse serum 

(Life Technologies), 1 g/L glucose (Sigma), 2 mM Glutamax (Life Technologies), 1 mM sodium 

pyruvate (Cellgro), 100 μM non-essential amino acids (Cellgro), 50 U/mL penicillin and 50 μg/mL 

streptomycin (Corning). The culture medium was then changed to 0.5 mL/well of fresh serum-free 

Neurobasal medium containing 2% B27 supplement (Life Technologies), 2 mM Glutamax I (Life 

Technologies), 0.5 mg/mL albumax I (Life Technologies) and penicillin-streptomycin 

(Corning). Primary neurons were plated at 1.0 × 105 on 3.5 cm glass bottom culture PDL (0.1 

mg/mL) coated dishes (MatTek) or on 12mm glass coverslips coated with poly-D-lysine (Millipore) 

in 6-well plates.  

Neuronal cells were treated or transfected at DIV12-14. For transfection, Neurobasal 

media was removed and saved in 37°C, 5% CO2, and 1 mL pre-warmed transfection media was 

added (1XMEM w/o bicarb [11430-030, Invitrogen], 2XGlutamax [35050-061, Invitrogen], 0.02 M 
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Hepes [H30237.01, Thermo Fisher], 1 mM NaPyruvate [11360-070, Invitrogen], and 0.033 M filter 

sterilized glucose [G5400, Sigma]). Transfected neurons were incubated at 37°C, 0% CO2 for 1.5 

hr, then transfection media was removed and replaced with warmed saved Neurobasal media. 

All U2OS cells were transfected using Lipofectamine 2000 (Invitrogen) and Opti-MEM 

(Gibco). All neurons were transfected using 1 mL transfection media, 500 µL OptiMEM, 5 µL 

Lipofectamine2000, and 4 µg total DNA per 3.5 cm MatTek glass-bottom dish 

 

Plasmids 

pBROAD3/TA-KR, tetR-KR, TA-Cherry, tetR-Cherry, pCMV-NLS-I-SceI, pEGFP-RAD52 

[177], pEGFP-Ku70, pEGFP-XRCC1, and pEGFP-BRCA1 [212] are described in previous 

literature. 

 

Polymerase II inhibitors  

RNA polymerase II inhibitors 5,6-Dichlorobenzimidazole 1-β-d-ribofuranoside (DRB; 

D1916, Sigma) was added with a final concentration of 40 µM for 24 hr, or α-amanitin (A2263, 

Sigma) at 100 µg/mL for 15 min before laser microirradiation.  

The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by student’s unpaired t test. *p<0.05, **p<0.01, ***p<<0.01. 

 

RNase H treatment  

Previously transfected 80% confluent U2OS cells and neurons in 3.5cm glass bottom 

dishes (MatTek) were rinsed once with 1XPBS and incubated with 1xRNase H buffer with/without 

RNase H (EN0201, Thermo Scientific) at room temperature (RT) for 15 min. Cells were treated 

with 0.1 mM 8-MOP and incubated for 10 min at 37°C followed by confocal microscopy and laser 

microirradiation. 
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The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by student’s unpaired t test. *p<0.05, **p<0.01, ***p<<0.01. 

 

Immunofluorescent staining (IF) 

For staining, 80-100% confluent neurons and U2OS cells in a 3.5 cm dish were washed 

with 1XPBS three times and fixed with 3.7% paraformaldehyde (Affymetrix, 19943 1 LT) for 15 

min at RT. The fixed cells were rinsed three times with 1XPBS, then permeabilized with 0.2% 

Triton X-100 for 10 min at room temperature, then rinsed three times with 1XPBS. They were 

optionally blocked by 5% BSA (SIGMA, A-7030) in 0.1% PBS-Tween (PBST) for 1 hr at room 

temperature. Primary antibodies were diluted in 0.1% PBST and 5% BSA and incubated with cells 

overnight in 4°C. Cells were then washed three times with 0.05% PBST and incubated with 

secondary antibody Alexa Fluor 488 goat anti-mouse immunoglobulin G and Alexa Fluor 594 goat 

anti-rabbit immunoglobulin G conjugate; or Alexa Fluor 488 goat anti-rabbit immunoglobulin G 

conjugate, Alexa Fluor 594 goat anti-mouse immunoglobulin G conjugate, and Alexa Fluor 405 

goat anti-mouse immunoglobulin G conjugate (Invitrogen) for 1 hr at room temperature. Cells 

were washed three times with 0.05% PBST and once with 1XPBS. For optional DAPI staining of 

the nuclei, cells were treated with 1:1000 DAPI for 5 min, washed three times in 1XPBS. Cells 

were then washed once with DI water, dried, then kept in 1XPBS and imaged using an Olympus 

FV1000 confocal microscopy system (Cat. F10PRDMYR-1, Olympus). Primary antibodies used 

in this research were anti-γH2AX ser139 (1:2000, JBW301, Millipore), anti-MAP2 (1:1000, 

MAB378, Millipore), anti-BrdU (IIB5) (I1212, Santa Cruz), anti-phospho-histone H3 (Ser10) 

(1:100, PA5-17869, Invitrogen),  

FV1000 software was used for acquisition of images. For quantification of relative foci 

intensity at KR sites, the intensity of foci and background was acquired by ImageJ 1.50i software, 

and the fold increase of foci is calculated as the foci intensity divided by background intensity 

(n=10). For quantification of the percentage of foci positive cells, 100 cells were counted in every 
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experiment (n=3), and representative data are shown. For quantification of γ-H2AX foci frequency 

after IR, the cells with more than 20 γ-H2AX foci were counted and divided by the total cell 

number.  

The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by student’s unpaired t test or two-way ANOVA and Tukey’s multiple comparisons 

test. *p<0.05, **p<0.01, ***p<<0.01. 

 

Immunostaining of R-loops (anti-S9.6 antibody) 

For S9.6 staining, U2OS-TRE cells were fixed and permeabilized in a 3.5 cm glass-bottom 

dish using standard protocol with 4% paraformaldahyde, then incubated in TE buffer (10 mM Tris-

HCl, 2 mM EDTA, pH=9) and steamed on a 95°C heating block for 20 min to expose the antigen. 

Then the dish was allowed to cool and washed 3 times with 1XPBS. The cells were then blocked 

using 5% BSA in 0.1% PBST for 0.5 h at room temperature. The first antibody S9.6 (ENH001, 

Kerafast) and secondary antibody were diluted in 5% BSA in 0.1% PBST and the standard IF 

protocol was followed. This protocol was modified from the classical heat-induced antigen 

retrieval method for paraformaldehyde-fixed tissues using Tris-EDTA buffer [213].   

The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by two-way ANOVA and Tukey’s multiple comparisons test. *p<0.05, **p<0.01, 

***p<<0.01. 

 

Microscopy and laser light irradiation  

Prior to laser irradiation, except for GFP-XRCC1 transfected cells, live cells were treated 

with 0.1 mM 8-MOP in Opti-MEM medium (Gibco) in glass bottom dishes and incubated for 10 

min at 37°C.  

Fluorescent images were obtained and processed with an FV-500 confocal scanning laser 

microscopy system (Olympus). U2OS and neuronal cells were placed on a temperature-controlled 
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(37°C) plate. A 405-nm scan laser system (Olympus) for irradiation of cells in the epifluorescence 

path of the microscope system was used. One scan of the laser light at full power delivers 

approximately 1,600 nW. We scanned cells 100-500 times with the 405-nm laser at full power 

focused through a 40x objective lens, which has been shown to induce SSBs and DSBs. The 

fluorescence intensity at an irradiated site was initially measured with a laser power/energy 

monitor (Orion; Ophir Optronics, Israel). The fold increase in fluorescence intensity of each site 

was quantified by measuring fluorescent intensity after damage induction/background nuclear 

intensity using ImageJ software (Fig 2-1) [212, 214, 215].  

The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by student’s unpaired t test. *p<0.05, **p<0.01, ***p<<0.01. 

 

Figure 2-1 Model of laser microirradiation. 

A. 405nm laser induces DNA DSB breaks in single cell nuclei allowing for real time visualization of GFP-

tagged repair protein recruitment to DNA damage sites. B. For quantification, fluorescence intensity of (a) 

GFP-tagged repair protein after DNA damage induction is compared to the (b) background intensity.  
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Protein expression and purification 

6xHis-tagged human RAD52 was expressed in E. coli Rosetta cells and purified as 

previously described [216]. 

 

Electrophoretic mobility shift assay 

RAD52 protein was serial diluted to indicated concentration and mixed with 10 nM 32P 

labeled ssDNA, ssRNA, dsDNA, dsRNA, RNA:DNA, or R-loop substrate in EMSA buffer (15 mM 

HEPES PH7.5, 1 mM MgCl2, 2% glycerol, 0.2 ug/ul BSA, 100 mM KCl, RNaseOut 0.16 U/𝝻𝝻l). The 

reaction mixtures were incubated at 37°C for 10min. After addition of gel loading buffer (50% 

glycerol, 20 mM Tris-HCl, pH 7.4, 0.5 mM EDTA, 0.05% orange G), the reaction mixtures were 

resolved by 5% native polyacrylamide gel electrophoresis in 1 × TBE buffer (90 mM Tris-borate, 

pH 8.0, 2 mM EDTA) at 4°C. The gels were dried, and the products were visualized by 

Phosphorimager. 

 

BrdU incorporation  

U2OS or neurons previously transfected with GFP-XRCC1 were treated with and without 

40 µM DRB and incubated at 37°C for 24 hr. Cells were then treated with laser microirradiation in 

sterile manner (lid not removed), then 0.01 mM BrdU was added and cells incubated at 37°C for 

24 hr. Cells were rinsed with 1XPBS, fixed with 3.7% paraformaldehyde for 15 min at room 

temperature, rinsed three times with 1XPBS, then treated with 2.5N HCl for 30 min at 37°C. Cells 

were rinsed three times with PBS, permeabilized with 0.2% Triton for 5 min at room temperature, 

then rinsed three times with PBS. Immunofluorescent staining proceeded as above. 

The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by student’s unpaired t test. *p<0.05, **p<0.01, ***p<<0.01. 
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Lysates and western blot 

Neurons seeded on a 24 well plate (3 wells per treatment) or 6 well plate (1 well per 

treatment), and U2OS cells seeded on 6 cm dishes were treated as indicated per each 

experiment. Cell lysates were prepared with 25-150 µL of lysis buffer per well (62.5 mM Tris pH 

6.8, 5% glycerol, 2% SDS, 0.1% Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride). Cells were 

scraped and pipetted into 1.5mL tubes, then allowed to sit on ice for 10 min. Samples were heated 

at 95°C and spun in a microcentrifuge at 10,000 rpm for 10 min, then the supernatant transferred 

to a new tube and the pellet discarded. Samples were run on 8%-12% SDS-polyacrylamide gels 

or 4-20% gradient gel (Mini-Protean TGX, 4561096), transferred to either PVDF or nitrocellulose 

membrane. For some transfers, the BioRad Trans-Blot Turbo system was used. The membranes 

were blocked in 5% non-fat milk with TBST for 1 hr before being incubated with primary antibody 

in 0.1% TBST and 5% non-fat milk overnight at 4°C. Primary antibodies used were anti-RAD52 

antibody (K1512, Santa Cruz), anti-BRCA1 (D-9, sc-6954, Santa Cruz Biotechnology), and anti-

γ-H2AX (ab12267, Abcam).  (Samples for probing with anti- γ-H2AX were not pre-treated with 

benzonase nuclease.) 

After primary antibody, membranes were washed with 0.1% TBST three times and 

incubated with secondary antibody in 0.1% TBST and 5% non-fat milk for 1 hr at room 

temperature. The membranes were washes three times with TBST and once with TBS before 

exposure using chemiluminescent HRP substrate (Millipore Catalog#: WBKLS0500). Secondary 

antibodies used were anti-β-Actin (A5441, Sigma Aldrich), anti-tubulin (ab6046, Abcam), and anti-

GAPDH (G9545, Sigma Adrich). 

Images were acquired in a BIO-RAD Universal Hood II machine or ChemiDoc Touch 

Imaging System (software version 2.3.0.07) and quantified with ImageLab software. All protein 

concentrations were normalized to loading controls before comparison to experimental controls.  
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The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by student’s unpaired t test or two-way ANOVA and Tukey’s multiple comparisons 

test. *p<0.05, **p<0.01, ***p<<0.01. 

 

Aβ1-42 oligomer preparation  

Recombinant Aβ1-42 oligomers were prepared from lyophilized monomers treated with 

HFIP (A-1163-2, rPeptide) as described [13, 217]. 0.5mg of peptide was dissolved in 22uL fresh 

DMSO, then further diluted in 978uL ice cold Neurobasal media or 1XPBS to make 0.5mg/mL 

(100uM) solution. Solution was spun at 5000rpm 5 min 4°C and supernatant removed and kept. 

Peptide solution was incubated at 4°C overnight to oligomerize the amyloid beta. Then the 

solution was spun 5000rpm 5 min 4°C and supernatant removed. Aliquots were flash frozen in 

dry ice and kept at -80°C. Once thawed they were not re-frozen. Control samples were made 

using 22uL DMSO in 978uL Neurobasal media or 1XPBS.  

Protein concentration was measured using reverse phase HPLC and Pierce BCA Protein 

Assay Kit (Thermo Scientific). The ratio of monomers vs oligomers was determined using size 

exclusion chromatography on a 24 hr incubated sample. We also investigated the pelleted and 

supernatant fraction and observed the supernatant fraction was the toxic fraction, and DMSO did 

not induce the resultant effects. Additionally, we investigated Aβ1-42 oligomers via western blot by 

running diluted fractions with monomeric controls on 4-20% gradient gel (Mini-Protean TGX, 

4561096) (Fig. 5-3). After transferring the protein to nitrocellulose membrane, the membrane was 

boiled in a microwave for 5 min in 1XPBS, blocked with 5% non-fat milk for 1 hr, and probed with 

anti-6E10 antibody (BioLegend, 803004) according to western blot protocol described previously.  

 

Transmission Electron Microscopy (TEM) 

Transmission electronic microscopy was used to detect the presence of Aβ1-42 oligomers 

(Fig. 5-2B). Aβ1-42 sample (5 μL) was placed on a formvar grid and allowed to partly dry at room 
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temperature (RT). It was washed by touching it 3X to the surface of a drop of distilled water, and 

excess water removed by touching the grid to filter paper. Then, a small drop of 1-3% uranyl 

acetate in distilled deionized water was added to the grid. After 10 sec excess stain was removed 

by touching the edge to filter paper. The grid allowed to air dry at RT before examination using a 

transmission electron microscope (Jeol JEM 1400, Tokyo, Japan) imaged at 80 kV with the 

MegaView III Soft Imaging System (SIS).  

 

HR and NHEJ assays  

DR-GFP and Ej5-GFP stable cells were passaged onto 6-well plates and incubated in 

DMEM with 10% FBS until 60% confluent. Cells were transfected with pCMV-I-SceI plasmid using 

Lipofectamine 2000 (Life Technologies) for 48 hr and kept in the dark. 1 µM Aβ1-42 or Aβ control 

media was added for 5 hr. Then cells were spun at 600 rpm and washed with 1xPBS three times. 

Cells were analyzed by fluorescence activated cell sorting (FACS) for HR or NHEJ repair 

efficiency using the Beckton Dickinson (Accuri) C6 flow cytometer and BD Accuri software.  

Results were normalized to controls with untreated samples with I-SceI plasmid 

representing 100% repair (Fig 5-1C). The error bars in all figures represent standard error of the 

mean (SEM) and the P value was calculated by student’s unpaired t test. *p<0.05, **p<0.01, 

***p<<0.01. 

 

Cell survival 

To determine the effect of 1 µM Aβ1-42 upon U2OS cell survival, 70% confluent U2OS cells 

were treated with/without 1 µM Aβ1-42 or Aβ control media for 24 hrs. The cells were suspended 

and counted using the AOPI cellometer counting software (Nexcelom). 300 cells were then 

seeded into a 6 cm dishes in 3mL culture media and incubated at 37°C for 10 days. Colonies 

were fixed and stained with 0.3% crystal violet, and survival (number of colonies) was expressed 
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as a percentage of non-treated colonies. To determine the effect of 1 µM Aβ1-42 upon U2OS IR 

sensitivity, U2OS cells were treated with/without 40 µM 5,6-Dichlorobenzimidazole 1-β-D-

ribofuranoside (DRB; D1916; Sigma) for 24 hrs and/or 1 µM Aβ1-42 or Aβ control media for 5 hrs, 

then seeded onto 6 cm dishes in fresh 3mL culture media. After seeding, cells were exposed to 

irradiation as indicated and incubated for 10 days at 37°C. Colonies were fixed and stained with 

0.3% crystal violet in methanol, and then survival (number of colonies) was expressed as a 

percentage of non-irradiated colonies. 

The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by student’s unpaired t test. *p<0.05, **p<0.01, ***p<<0.01. 

 

KillerRed induction 

U2OS-TRE cells were cultured in 35 mm glass-bottom dishes (MatTek, P35GC-1.5-14-C) 

at ~60% confluence 24 h before transfection. For ROS-induced damage, cells were transfected 

with plasmids containing KillerRed (TA-KR/tetR-KR) or cherry controls (TA-cherry/tetR-cherry). 

Light-induced KillerRed activation was done by exposing cells to a 15 W Sylvania cool white 

fluorescent bulb for 15-20 min in a stage UVP (Uvland, CA). A transparent flask filled with cool 

water was placed between the light source and the dishes to avoid temperature fluctuation in the 

exposed dish. Dishes were then covered with foil, and cells were allowed to recover at 37°C for 

indicated times. For γ-H2AX staining, cells recovered for 24 h before fixation. For GFP-BRCA1 

recruitment, cells recovered for 0.5-1 h before fixation.  

The error bars in all figures represent standard error of the mean (SEM) and the P value 

was calculated by student’s unpaired t test or two-way ANOVA and Tukey’s multiple comparisons 

test. *p<0.05, **p<0.01, ***p<<0.01. 
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CRISPR-Cas9 knockout  

The sgRNAs targeting RAD52 in the human genome were designed on the website 

http://crispr.mit.edu/ and cloned into PX330 vectors (Table 2-1). The sgRNAs were delivered to 

cells by standard transfection. After 24 hours, single cells were spread in 96-well plates or 10 

cm dishes and grown for 10 days to obtain single colonies. The colonies were transferred to 24 

well plates and grown for about one week before genome extraction and genotyping and 

western blot verification. The PCR check primers are also listed (Table 2-1). 

 
Table 2-1 Sequences of sgRNA oligonucleotides 

Oligo Name Sequence 

RAD52 sgRNA L1 up F CACCGCTAGGCTGGAGTCCGACCAG 
RAD52 sgRNA L1 up R AAACCTGGTCGGACTCCAGCCTAGC 
RAD52 sgRNA R1 down F CACCGACCCACAGCAGACTTTCAGC 
RAD52 sgRNA R1 down R AAACGCTGAAAGTCTGCTGTGGGTC 
RAD52 check primer F AATTCATGTGCCTGGAAAGC 
RAD52 check primer R CCCACGTAGAACTTGCCATT 

 

http://crispr.mit.edu/
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3.0 RAD52 is required for RNA-templated recombination repair in post-mitotic neurons 

This chapter is modified from the following collaborative published work: 

Welty, S., Teng, Y., Zhuobin, L., Weixing, Z., Sanders, L., Greenamyre, T., Rubio, M.E., Thathiah, 

A., Kodali, R., Wetzel, R., Levine, A., Lan, L.(2017) RAD52 is required for RNA-templated 

recombination repair in post-mitotic neurons. J Biol Chem. 293(4):1353-1362. 

 

3.1 Introduction 

The most deleterious form of DNA damage, double strand breaks (DSBs), can arise from 

endogenous metabolic processes or exogenous environmental factors such as radiation or 

chemicals [218]. Oxidative damage caused by reactive oxygen species (ROS) and consequent 

DSBs has been implicated in neurodegenerative disorders such as Alzheimer’s disease (AD). 

ROS are generated endogenously by cellular metabolism and a variety of exogenous agents such 

as IR. In studies conducted on replicating cells, it has been found that metabolically-generated 

ROS can cause around 10,000 oxidative lesions per day [87].  

ROS-induced damage predominantly leads to base or deoxyribose modifications that lead 

to single strand breaks (SSBs). DSBs can arise due to replication past ROS-induced lesions, or 

when SSBs occur in close proximity [125]. These lesions are repaired either via non-homologous 

end joining (NHEJ) or homologous recombination (HR). In NHEJ, the broken DNA ends are 

processed/digested and then directly ligated, potentially leading to nucleotide deletions and 

consequent frameshift mutations. Thus, NHEJ is considered to be error-prone [123]. HR utilizes 

undamaged DNA templates in order to direct error-free repair of the damaged strands. It has long 
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been assumed that HR can only take place during the late S/G2 phases of the cell cycle where 

sister chromatids are present as templates [174]. However, recent studies in terminally 

differentiated cells have revealed an RNA-templated HR repair mechanism of DSBs at active 

transcription sites during the G0/G1 phase (transcription coupled homologous recombination-TC-

HR). For this mechanism to occur, Cockayne syndrome B (CSB) protein is recruited to an actively 

transcribed damage site, followed by recruitment of RPA, RAD51, RAD51C, and RAD52; then, 

repair occurs utilizing the nascent RNA template produced by active transcription [177]. An RNA-

templated, RAD52 directed mechanism of HR has also been reported in yeast [191]. However, it 

is not known if the transcription dependent HR pathway exists in neurons. Except in the 

hippocampus and striatum, most neurons in the adult human brain are terminally differentiated 

and non-dividing, and therefore are assumed to be incapable of utilizing HR for DSB repair [175, 

176].  

In this study, utilizing our site-specific damage induction systems, we measured the 

recruitment of TC-HR-associated repair protein RAD52 to sites of DNA damage with and without 

transcription inhibition. We found that post-mitotic neurons employ this RNA-based 

recombinatorial mechanism for the DNA damage response. We also discovered preferential 

binding of RAD52 protein to R-loops, DNA:RNA hybrid structures present during active 

transcription [195], as further evidence of RAD52’s role in TC-HR. Given our finding of the novel 

TC-HR DNA repair mechanism in post-mitotic cells, we wondered if this mechanism might be 

affected in neurodegenerative disorders such as AD. We utilized Aβ1-42, neurotoxic oligomers 42 

amino acids in length that are heavily implicated in AD pathology as they are prone to aggregation 

[219]. We found that Aβ1-42 oligomers downregulate the expression and damage response of the 

essential TC-HR repair protein RAD52. How this dysregulation of DNA repair may significantly 

contribute to the development of neurodegenerative diseases such as AD is discussed below. 
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3.2 Results 

3.2.1  DNA repair factors are recruited to laser-induced damage in neurons 

To understand how non-dividing neurons repair oxidative DNA damage, we first verified 

that the primary rat cortical neurons utilized for experimentation were post-mitotic. Some findings 

have shown a link between cell cycle activation in post-mitotic neurons and a DNA damage 

response leading to apoptosis [132]. Therefore, we probed DIV12 neuronal cell cultures with anti-

phosphorylated histone H3 (Ser10) before and after DSB inducing gamma irradiation (Fig. 3-1A) 

[220]. Studies have shown a correlation between this phosphorylated histone H3 (Ser10) and 

mitotic chromosome condensation during early prophase, suggesting anti-phosphohistone H3 

can be used as a mitosis-specific marker [221]. Here we observed no evidence of mitosis in the 

primary cortical neurons as compared to replicating U2OS cells before or 24 hr after 5Gy gamma 

irradiation. We utilized U2OS human osteocarcinoma cells to represent mitotic cells due to their 

robustness in cell culture, fast growth, and high transfection rate. This cell line has also been 

established in a stable cell line for use with KillerRed fusion proteins as discussed in Chapter 

1.5.4.  

Prior studies in our lab have shown that terminally differentiated cells utilize an RNA-

templated homologous recombination mechanism for repair of DSBs in the G0/G1 phase of the 

cell cycle. This mechanism of repair can only occur with active transcription [177]. Members of 

our lab have also previously demonstrated by terminal deoxynucleotidyltransferase-mediated 

dUTP-biotin nick end labeling assay that our laser light microirradiation system induces DNA 

strand breaks in cells [222]. Therefore, we utilized 405 nm laser microirradiation to induce DSBs 

at localized sites in single cells which makes it possible to observe repair protein recruitment in 

non-dividing cells [214] (Fig 3-1B) [220]. We then investigated recruitment of GFP-tagged repair 

proteins specific to particular repair pathways including XRCC1 (DNA single strand break repair 
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[SSBR]), KU70 (NHEJ), and RAD52 (HR) (Fig. 3-1C) [220]. In this experiment, we were surprised 

to find the recruitment of TC-HR repair protein RAD52 to sites of damage in post-mitotic neurons 

despite the neurons’ lack of a sister chromatid to utilize as a template for homologous repair.  
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Figure 3-1 Post-mitotic neurons recruit TC-HR associated protein RAD52. 

A. Rat DIV12 cortical neurons and U2OS cells were treated with and without 5Gy irradiation and probed 

with anti-phospho-Histone H3 (Ser10) antibody. Error bars indicate the SEM of three separate experiments 

(n=100), and the p values were determined by using Student’s unpaired two-tailed t test. Cortical neurons 

do not show expression of phosphorylated H3 (Ser10). B. Schematic of 405 nm scan laser system for 

induction of DSBs in single cells where single cell nuclei are targeted with 100-500 msec of laser 
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microirradiation to visualize and quantify GFP-tagged repair protein recruitment at damage sites. C. 

Recruitment of GFP-tagged DNA repair proteins XRCC1 (SSBR), KU70 (NHEJ), and RAD52 (HR) at sites 

of DNA damage in U2OS and DIV12 cortical neurons before and 1 min after 100 msec-500 msec laser 

microirradiation. Error bars indicate the SEM of two separate experiments, and the p values were 

determined by using Student’s unpaired two-tailed t test (***p<<0.01). D. BrdU incorporation after 100 msec 

laser microirradiation with and without pre-treatment with DRB (40 μM) for 24 hr in U2OS and DIV12 cortical 

neurons. Error bars indicate the SEM of three separate experiments, n=10, and the p values were 

determined by using Student’s unpaired two-tailed t test (***p<<0.01). 

3.2.2  DNA incorporation at sites of damage is affected by transcription inhibition 

We next investigated whether transcription inhibition would affect the repair synthesis 

process of HR in post-mitotic neurons. We pre-treated the cells with the RNA polymerase II 

inhibitor DRB, (5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole), which inhibits transcription 

elongation, and analyzed the incorporation of bromodeoxyuridine (BrdU), a synthetic analog of 

thymidine, into newly repaired DNA after laser damage. Importantly, the replication-mediated 

incorporation of BrdU into genomic DNA of post-mitotic neurons does not occur. Therefore, BrdU 

staining in neurons should indicate repair-triggered BrdU incorporation. This incorporation was 

significantly decreased after DRB treatment (Fig. 3-1D) [220], indicating that active transcription 

and a nascent RNA template are necessary for HR repair in post-mitotic neurons.  

3.2.3  Transcription inhibition or RNase H treatment reduces the recruitment of RAD52 in 

neurons 

RAD52 can be utilized in HR or a mutagenic repair process known as single strand 

annealing (SSA). SSA, which results in a deletion rearrangement between homologous repeating 
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sequences, is independent of active transcription [120]. Since our prior study indicated that the 

RAD52 dependent, RNA-templated recombination only occurs at sites of active transcription 

[177], we then tried to determine whether post-mitotic neurons utilize this particular 

recombinational mechanism for error-free repair of DSBs. To determine if active transcription is 

necessary for the damage response of RAD52 in post-mitotic neurons, we pretreated cells with 

RNA polymerase II inhibitors DRB, which  inhibits transcription elongation, or α-amanitin, which 

inhibits transcription initiation and elongation (Fig. 3-2A&B) [220]. Both inhibitors block 

transcription, thereby preventing the production of an mRNA template for use in RNA-templated 

HR. We found that after inhibiting RNA polymerase II with both inhibitors, recruitment of RAD52, 

an essential factor for RNA-templated recombinational repair, was significantly reduced at sites 

of laser damage in post-mitotic neurons. This supports our findings that RNA-templated HR in 

post-mitotic neurons requires active transcription to take place. 

To further establish that the recombination in post-mitotic neurons is associated with RNA-

templated repair, we examined the effect of RNase H, an endo-ribonuclease that specifically 

degrades the RNA strand in an RNA-DNA hybrid structure, on the recruitment of RAD52 (Fig. 3-

2C) [220]. After treatment with RNase H, RAD52 recruitment was significantly reduced at sites of 

laser damage in post-mitotic neurons. To test whether the effects of the RNase H assay were 

actually due to the enzyme activity or if the results were due to the conditions of the experiment, 

we measured recruitment of SSBR protein XRCC1 after RNase H treatment. Since XRCC1 does 

not rely on an RNA strand, recruitment of XRCC1 should not be affected by RNase H activity. As 

evidenced in Fig. 3-2D [220], we did not see significant reduction in XRCC1 activity after RNase 

H treatment. Combined, these results confirm that a nascent RNA template is necessary for HR 

repair to occur in post-mitotic neurons. 
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Figure 3-2 Transcription inhibition reduces template-driven repair in post-mitotic neurons. 

A. Recruitment of RAD52 before and 1 min after 200-500 msec laser microirradiation treatment with and 

without pre-treatment with RNA polymerase II inhibitor (40 μM) DRB for 24 hr in U2OS cells and DIV12 

ventral neurons. B. Recruitment of RAD52 before and 1 min after 200-500 msec laser microirradiation 

treatment with and without pre-treatment with RNA polymerase II inhibitor (100 μg/mL) α-amanitin for 0.5 

hr in U2OS cells and DIV12 ventral neurons. Error bars indicate the SEM of two separate experiments, 
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n=10, and the p values were determined by using Student’s unpaired two-tailed t test (***p<<0.01).C. 

Recruitment of RAD52 before and 1 min after 500 msec laser microirradiation treatment with and without 

pre-treatment with 15 U. RNase H for 15 min in U2OS cells and DIV12 ventral neurons. Error bars indicate 

the SEM of two different experiments, n=10, and the p values were determined by using Student’s unpaired 

two-tailed t test (**p<0.01; ***p<<0.01). D. Recruitment of XRCC1 before and 1 min after 500 msec laser 

microirradiation treatment with and without pre-treatment with 15 U. RNase H for 15 min in U2OS cells and 

DIV12 cortical neurons. Error bars indicate the SEM of two different experiments, n=10, and the p values 

were determined by using Student’s unpaired two-tailed t test. 

3.2.4  RAD52 binds to an R-loop substrate and preferentially binds to ssRNA 

RAD52 protein has been demonstrated to bind DNA structures with DSBs [223, 224]. 

Since previous studies from others and our study both indicate that RAD52 is involved in RNA-

templated recombination repair, we tested the affinity of RAD52 for RNA related substrates by 

electrophoretic mobility shift assay (EMSA). Results show that purified human RAD52 protein 

efficiently binds both single-stranded (ss) DNA and RNA (Fig. 3-3A&3-3B) [220], though its 

binding affinity to ssRNA is higher than that of ssDNA. Binding affinities of RAD52 to double-

stranded (ds) DNA and RNA (Fig. 3-3C&3-3D) [220] are significantly reduced compared to ss 

substrates (Fig. 3-3G) [220]. Interestingly, RAD52 has slightly higher affinity to RNA:DNA hybrid 

duplex than dsDNA and dsRNA (Fig. 3-3E) [220]. Furthermore, RAD52 has a higher binding 

affinity to R-loop substrates (Fig. 3-3F) [220], the damage-prone structures at transcriptionally 

active sites in the genome [195], than hybrid structures. These in vitro results are consistent with 

the possibility that RAD52 may bind ssRNA and the co-transcriptional R-loop upon transcriptional 

stress in post-mitotic neurons. 
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Figure 3-3 RAD52 preferentially binds ssRNA and R-loop substrate. 

Electrophoretic mobility shift assay (EMSA) to test binding of RAD52 protein to: A. ssDNA, B. ssRNA, C. 

dsDNA, D. dsRNA, E. RNA:DNA hybrid, and F. R-loop substrate (10 nM). G. Representative graph of A-F. 

RAD52 preferentially binds ssRNA and R-loop. 
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3.2.5  Discussion 

In this study, we first discovered that recruitment of HR factor RAD52 to sites of DNA 

damage is dependent upon the presence of a nascent mRNA template for HR, indicating the 

existence of a novel RNA-templated recombinational repair pathway in post-mitotic neurons. We 

also discovered that RAD52 preferentially binds ssRNA and has direct affinity for R-loops, 

reinforcing the involvement of RAD52 in TC-HR repair of double strand breaks. Utilization of this 

less error-prone pathway is essential for non-dividing neurons to maintain their genomic integrity 

when faced with environmental pressures such as metabolically-induced oxidative damage and 

other endogenous and exogenous stressors.  

Considering the fact that terminally differentiated, post-mitotic neurons must survive a 

human lifetime, utilizing an error-prone pathway such as NHEJ would subject the cells to 

potentially lethal genomic errors. In a study on cell-cycle arrested cells, it was found that NHEJ 

activity was responsible for approximately half of all replication-independent frameshift mutations, 

primarily due to deletions. Mutant yeast cells deficient for HR (RAD54-deletion) did not exhibit an 

increase in the number of of replication-independent mutations in the cell-cycle arrested cells, but 

RAD52-deletion mutants did [225]. This study confirms both the mutagenic nature of NHEJ, and 

the possibility of a RAD-52 dependent pathway such as TC-HR that counteracts the frameshift-

producing NHEJ pathway. 

Although post-mitotic neurons do not face the acquisition of mutations after replicating 

DNA past DNA lesions as commonly occurs in mitotic cells, DNA DSBs still pose massive risks 

to essential genes when not repaired. Failure to completely repair DNA may result in cellular 

senescence or apoptosis as a means for the cell to cope with an excess of damage and avoid 

malignant transformation [226, 227]. However, unrepaired cells may also accumulate mutations 

that affect genes involved in regulating apoptosis, cell division, and DNA repair. If proliferating 

stem and neural progenitor cells incur mutations due to unrepaired DNA during development, 
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disease may later develop as a result of disrupted essential genes passed down through cell 

division or if tumor suppressing or oncogenes are no longer properly regulated [228]. In post-

mitotic neurons, mutations may contribute to neuronal dysfunction and apoptosis, as seen in the 

pathology of AD where the cerebral cortex and hippocampus suffer extensive neuronal loss [229]. 

Many neurodegenerative pathologies have also been linked to genetic deficiencies in DNA repair 

genes. For example, in ataxia-telangiectasia (A-T), a mutation in the P 13 kinase A-T mutated 

(ATM) protein, which is activated by DNA DSBs and is responsible for phosphorylating numerous 

downstream targets involved in DNA repair, cell cycle arrest, and apoptosis, causes individuals 

to experience higher rates of cancer and undergo neurodegeneration before the age of five [230-

232]. New research has suggested that the neuronal loss observed in AD may also result from 

partial loss of ATM function as AD pathology progresses [233]. 

Study of repair mechanisms in post-mitotic neurons is essential if we are to understand 

the complex nature of neurodegenerative diseases. While certain genetic aberrations may 

constitute a significant role in contributing to physiological aspects of AD such as the APOEε4 

allele and its association with increased AD risk, other contributing factors remain unknown [234]. 

These factors may include deficiencies in DNA repair directly related to environmental exposures 

or internal processes such as the production of ROS during cellular metabolism or neuronal 

activity. 
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4.0 BRCA1 plays an important role in TC-HR 

4.1 Introduction 

BRCA1 is known to participate in numerous cellular processes including canonical HR. It 

has been shown to coexist with RAD51 and BARD1 in a complex named the BRCA1-BRCA2 

Containing Complex (BRCC) which has E3 ubiquitin ligase activities responsible for regulating 

DNA damage response factors [235]. Although its precise mechanism in canonical HR is still 

debated, cells deficient in BRCA1 are more sensitive to IR and contain numerous chromosomal 

aberrations, possibly due to unrepaired DNA damage [236, 237]. BRCA1 also has been found to 

play a role in transcription coupled repair (TCR). Here, BRCA1 accumulates at actively 

transcribed UV damage sites dependent upon Cockayne syndrome B protein (CSB). It 

polyubiquitinates CSB for degradation [238, 239]. The main types of DNA damage induced by UV 

irradiation are the formation of cyclobutane pyrimidine dimers (CPD) and (6-4) photoproduct 

adducts which can be repaired via nucleotide excision repair (NER) through either TCR or global 

genome repair (GGR). BRCA1 is primarily found in the cytoplasm during the majority of the cell 

cycle, but can localize to the nucleus following DNA damage during S phase [240]. How this 

affects post-mitotic neurons and BRCA1’s damage response has not been previously 

investigated. Importantly, however, the TC-HR pathway for DSB repair is dependent upon the 

recruitment of CSB and RAD52. Because the role of BRCA1 in TC-HR is entirely unknown, we 

sought to elucidate the role of BRCA1 in TC-HR.  
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4.2 Results 

4.2.1  Recuitment of BRCA1 to transcriptionally active sites of DNA damage dependent 

on active transcription 

We utilized the DNA damage at active transcription sites (DART) system, illustrated in Fig. 

1-5, to study molecular responses to light-induced DNA damage at single genomic loci with 

controllable transcription [184, 185]. In this system, U2OS TRE cells are exposed to white light 

for 15 min, and the transiently transfected tet-repressor (tetR)- or tet-transcription activator (TA)-

tagged KR proteins (tetR-KR or TA-KR) induce similar amounts of ROS-induced DSBs at 

transcriptionally inactive or active sites, respectively in real time. Recruitment of repair proteins to 

these sites of damage can then be measured by examining relative fluorescence intensity using 

fluorescent tagged proteins or immunofluorescent staining techniques. We first examined the 

recruitment of BRCA1 protein to both TA-KR and tetR-KR sites and control TA-cherry and tetR-

cherry sites after light activation (Fig. 4-1A). BRCA1 was recruited to sites of both active 

transcription and inactive transcription after damage induction, and was not recruited to control 

TA-cherry or tetR-cherry sites. To determine that BRCA1 recruitment to TA-KR damage sites is 

dependent upon active transcription and not DNA damage alone, we utilized the RNA polymerase 

II inhibitors DRB (5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole) and α-amanitin to examine 

BRCA1 recruitment to sites of active and inactive transcription after transcription inhibition (Fig. 

4-1C). We found a significant reduction in BRCA1 recruitment at TA-KR sites after both 

treatments, but only saw a reduction in BRCA1 recruitment at tetR-KR sites after DRB treatment. 

These results with α-amanitin treatment indicate that BRCA1 is preferentially recruited to DNA 

damage sites where active transcription is taking place. Experimentally, DRB treatment is 24 hrs 

and α-amanitin is 0.5 hrs. Hypothetically the longer DRB treatment could inhibit production of 
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BRCA1 protein, thus affecting its recruitment regardless of transcription activity at the damage 

site. In order to determine if the reduction in BRCA1 recruitment to tetR-KR sites was due to 

overall BRCA1 protein reduction due to DRB treatment, we performed a western blot to 

investigate BRCA1 protein level discrepancies between the two treatments. Western blot analysis 

of GFP-tagged BRCA1 in U2OS cells after the same treatments shows a significant reduction in 

BRCA1 protein after DRB treatment, but not a reduction in BRCA1 protein after α-amanitin 

treatment (Fig. 4-1B). These results indicate that the observed reduction in BRCA1 recruitment 

at TA-KR damage sites is not due to a reduction in protein alone, but is due to the inhibition of 

active transcription. Due to the confounding effect of DRB upon overall protein reduction over a 

24hr time period, we chose to utilize α-amanitin as the sole transcription inhibitor for all future 

experiments. 
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Figure 4-1 BRCA1 recruitment to TA-KR damage sites dependent upon active transcription. 

A. GFP-BRCA1 and TA-KR/tetR-KR transfected U2OS-TRE cells were illuminated with 15 W fluorescent 

white light for 15 min for damage induction. B. Western blot of GFP-BRCA1 in U2OS cells with and without 

DRB (40 µM) for 24 hr or α-amanitin (100 μg/mL) for 0.5 hr. Error bars indicate the SEM of three separate 

experiments, n=10, and the p values were determined by using Student’s unpaired two-tailed t test 

(*p<0.05). C. GFP-BRCA1 and TA-KR/tetR-KR transfected U2OS-TRE cells were pretreated with DRB (40 

µM) for 24 hr or α-amanitin (100 μg/mL) for 0.5 hr. Error bars indicate the SEM of three separate 

experiments, n=10, and the p values were determined by using Student’s unpaired two-tailed t test 

(***p<<0.01). (Of note, other treatments were included on these western blots, but were not relevant to this 

study; thus the cropped images.) 

 

Previous studies have shown that BRCA1’s C- and N-terminus are required for BRCA1’s 

DSB DNA repair response [241]. In order to elucidate BRCA1’s role in TC-HR, we utilized an N-

terminal mutant, C61G, which contains a mutation in the highly conserved RING finger domain 

and has been associated with numerous breast and ovarian cancers [242, 243]. This mutation 

abolishes BRCA1’s association with BARD1 protein and inhibits its E3 ubiquitin ligase activity 

[241]. Although the BRCA1/BARD1 E3 ligase activity is poorly understood, BRCA1 and BARD1 



 60 

are required to recruit RAD51 and BRCA2, repair proteins involved in canonical HR [244]. We 

found that recruitment of C61G to light induced TA-KR sites was not significantly enriched over 

tetR-KR sites (Fig. 4-2A). C61G also did not demonstrate significantly reduced recruitment to TA-

KR or tetR-KR sites compared to full length BRCA1 (Fig 4-2B).  

Treatment with the polymerase II inhibitor α-amanitin, however, significantly reduced the 

recruitment of C61G to TA-KR sites (Fig. 4-2A). Compared to full length BRCA1, C61G also 

demonstrated significantly reduced recruitment to actively transcribed TA-KR damage sites (Fig 

4-2B). These results indicate that BRCA1’s recruitment at actively transcribed damage sites is 

dependent on its E3 ubiquitin ligase activity and BARD1 binding.  
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Figure 4-2 C61G recruitment dependent upon BARD binding site. 

A. GFP-BRCA1 C61G mutant and TA-KR or tetR-KR transfected U2OS-TRE cells were pretreated with α-

amanitin (100 μg/mL) for 0.5 hr. and illuminated with 15 W fluorescent white light for 15 min for damage 
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induction. B. GFP-BRCA1 C61G mutant or full length GFP-BRCA1 and TA-KR or tetR-KR transfected 

U2OS-TRE cells were pretreated with α-amanitin (100 μg/mL) for 0.5 hr. Error bars indicate the SEM of 

three separate experiments, n=10, and the p values were determined by using Student’s unpaired two-

tailed t test (***p<<0.01, *p<0.05). 

4.2.2  BRCA1 recruitment at damage sites with active transcription independent of RAD52 

In humans, BRCA1 is a key protein that promotes DSB repair by HR over NHEJ. Although 

the precise mechanisms of pathway choice in DSB repair are still poorly understood, a crucial 

step lies in the 53BP1-dependent barrier that prevents DNA resection. Studies have shown that 

BRCA1 relieves this barrier by promoting 53BP1 phosphorylation [245].  

In yeast, RAD52 is a ring-shaped oligomer that helps load RAD51 onto RPA coated 

ssDNA to promote single-strand annealing [246, 247]. It also acts in strand capture during the 

invasion step of HR [151, 248]. RAD52 is conserved between yeast and humans, primarily in the 

N-terminal region [249]. However, RAD52’s precise role in HR in human cells is poorly 

understood. A recent study has shown that RAD52 binds to the RPA-ssDNA pre-synaptic complex 

in canonical HR in humans and is displaced after the addition of RAD51 [216]. Previous research 

in the Lan lab using the DART system showed that the C-terminus of RAD52, not its DNA-binding 

N-terminal domain, is required for its DNA damage response to actively transcribed regions in 

TC-HR. RAD52 also directly binds Cockayne syndrome B (CSB) protein, the precursory protein 

required for TC-HR factor recruitment [177]. As we discovered in Chapter 3, RAD52 recruitment 

to DNA damage sites is reduced by transcription inhibition in post-mitotic neurons in the G0/G1 

phase of the cell cycle. Purified RAD52 protein also preferentially binds ssDNA and R-loops, 

further implicating RAD52 early in the TC-HR pathway.  

In canonical HR, BRCA1 binds BARD1 to firm a RING heterodimer. This heterodimer then 

interacts with BRCA2 which binds RAD51 to promote strand invasion [250, 251]. Since we 



 63 

discovered BRCA1’s active transcription dependent DNA damage recruitment is dependent upon 

its BARD1 binding activity much like in canonical HR, we wanted to investigate further to 

determine where BRCA1 functions in TC-HR in relation to RAD52. We hypothesized that BRCA1 

functions upstream of RAD52 due to its BARD1 binding activity.  

To determine if BRCA1 functions dependently or independently of RAD52 in TC-HR, we 

utilized a stable U2OS TRE RAD52 knockout cell line developed by members of the Lan lab using 

CRISPR Cas9 (Fig. 4-3A). To make this knockout, sgRNA pairs were targeted to delete exon 4 

in RAD52 which causes a frameshift and premature stop of RAD52 protein. Since exon 4 also 

contains an alternative start codon, targeting exon 4 eliminates all the isoforms of RAD52. Using 

the DART system, we found that after light induction, there was no significant difference in 

recruitment of transiently transfected GFP-tagged BRCA1 to inactively transcribed DNA damage 

sites (tetR-KR) over actively transcribed damage sites (TA-KR) in the RAD52 KO (Fig. 4-3B). No 

significant difference in GFP-BRCA1 recruitment was seen even when compared to wt controls 

at TA-KR sites or tetR-KR sites (Fig 4-3C). This demonstrates that without RAD52, cells will still 

recruit BRCA1 at sites of damage with active transcription. When treated with RNA polymerase II 

inhibitor α-amanitin, however, recruitment to TA-KR sites was more significantly reduced than 

recruitment of BRCA1 to tetR-KR sites (Fig. 4-3B). This only further demonstrates the role of 

BRCA1 in the active transcription dependent TC-HR pathway. Together these results indicate 

that BRCA1 recruitment at DNA damage sites with active transcription is independent of RAD52. 
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Figure 4-3 BRCA1 recruitment at actively transcribed sites independent of RAD52. 

A. Schematic of RAD52 KO in U2OS-TRE cell line and western blot knockout verification. B. GFP-BRCA1 

and TA-KR/tetR-KR transfected U2OS-TRE cells were pretreated with and without α-amanitin (100 μg/mL) 
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for 0.5 hr and illuminated with 15 W fluorescent white light for 15 min for damage induction. Error bars 

indicate the SEM of three separate experiments, n=10, and the p values were determined by using 

Student’s unpaired two-tailed t test (***p<<0.01,*p<0.05). C. GFP-BRCA1 and TA-KR/tetR-KR transfected 

U2OS-TRE cells and RAD52 KO U2OS-TRE cells were illuminated with 15 W fluorescent white light for 15 

min for damage induction. Error bars indicate the SEM of three separate experiments, n=10, and the p 

values were determined by using Student’s unpaired two-tailed t test. 

4.2.3  Discussion 

We have found that BRCA1 is preferentially recruited to actively transcribed DNA damage, 

and that this activity is independent of BRCA1’s BARD1 binding and its E3 ligase activity. 

Additionally, we discovered that BRCA1 recruitment to actively transcribed damage sites is 

independent of RAD52 in the TC-HR pathway.  

Further experiments are necessary in order to define BRCA1’s role in TC-HR. Many of 

these have already proven to be difficult due to the toxicity of BRCA1 overexpression after 24hrs. 

We have found that in cancer cell lines and post-mitotic neurons, GFP-BRCA1 overexpression 

induces cell death after more than 24hrs, resulting in observable transfection efficiencies of less 

than 50% after such time. Thus, some experiments have been reduced to shorter treatment times 

after transient transfections. Future studies would necessitate the use of stable cell lines or 

knockouts.  

In order to further elucidate RAD52 and BRCA1’s roles in TC-HR vs canonical HR, siRNA 

for BRCA1 and RAD52 should be used in U2OS-TRE cells to investigate γ-H2AX retention at TA-

KR sites after KillerRed induction at 0h, 1h, 4h, 24h, and 48h timepoints of recovery. Greater 

intensity of the γ-H2AX foci at TA-KR sites at later timepoints than controls will indicate unrepaired 

DSBs after the knockdown of RAD52, BRCA1, and RAD52/BRCA1 together. The inability to repair 

DSBs with either or both repair protein knockdowns will indicate which proteins are essential for 
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DSB repair at actively transcribed sites of DNA damage. A survival assay can also be conducted 

with the same knockdowns and increasing doses of gamma irradiation ranging from 1Gy, 3Gy, 

and 5Gy. The knockdown with fewer surviving colonies of U2OS cells after 7-10 days will indicate 

which repair protein(s) is/are necessary for repair fidelity. Western blots will verify all knockdowns.  

What needs to be considered in these experiments is that both RAD52 and BRCA1 

function in other DNA repair pathways besides DSB repair as mentioned in Chapter Three. The 

siRNA knockdowns may therefore affect these pathways as well. BRCA1 knockdowns may also 

affect processes other than DNA repair, such as apoptosis, confounding survival assays. Previous 

studies have found that ectopic expression of BRCA1 led to cell cycle arrest at the G2/M stage of 

the cell cycle in MCF-7 cells or apoptosis in U2OS cells [252-254]. Indeed, experiments involving 

transient transfection of GFP-BRCA1 and its consequent overexpression for longer than 48 hr 

time periods have led to decreased transfection efficiencies (<10%) in both U2OS cells and 

neurons. This implies that the overexpression of BRCA1 can lead to toxicity. Its knockdown should 

be monitored for similar effects using assays to measure apoptosis and proper controls. Also, 

since BRCA1 is not only localized to the nucleus, nuclear fractionation prior to western blotting 

may help in isolating DNA repair associated BRCA1 for specific investigations into its repair 

properties. 

Recruitment of repair factors to DNA damage sites is essential for their roles in the DNA 

damage response. Further studies are indeed necessary to elucidate both BRCA1 and RAD52 

repair activity in the TC-HR pathway such as comet assays and γ-H2AX retention to measure 

DSB repair after damage. In regards to performing repair function, however, demonstrating 

recruitment at DNA damage sites is significant in order to show the initiation of the repair process. 

For example, other investigations have been conducted into major repair pathways such as MMR 

using laser microirradiation and HeLa cells to demonstrate that the recruitment of key MMR repair 

proteins MSH2, MSH3, and MSH6 occurs at UVDE-induced SSBs in a poly(ADP-ribose)-

dependent manner [255]. This study is significant because MMR is used to repair base 
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mismatches and mismatched loops typically formed during DNA replication. Unless a lesion 

contains a mismatch, MMR associated factors do not directly bind to DNA damage sites such as 

DNA strand breaks or UV-induced damage. The experiments conducted in this study indicate that 

certain MMR repair factors are, indeed, recruited to SSB damage sites prior to repair via MMR. 

BRCA1 is a complex and important protein, but further defining its role in TC-HR will help 

to better understand how Aβ negatively affects the DNA damage response. The following section 

of this dissertation introduces this next concept.  
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5.0 Aβ1-42 oligomers affect the DNA damage response of BRCA1 and RAD52 

This chapter is expanded from the following collaborative published work: 

Welty, S., Teng, Y., Zhuobin, L., Weixing, Z., Sanders, L., Greenamyre, T., Rubio, M.E., Thathiah, 

A., Kodali, R., Wetzel, R., Levine, A., Lan, L. (2017) RAD52 is required for RNA-templated 

recombination repair in post-mitotic neurons. J Biol Chem. 293(4):1353-1362. 

 

5.1 Introduction 

Aβ is produced by proteolytic cleavage of the transmembrane protein APP, which is 

expressed in numerous tissue types. Low concentrations (pM) of Aβ have been confirmed via 

microdialysis in the interstitial fluid of normal brains, but higher concentrations in the nM-µM range 

lead to neurotoxicity and neuronal death [48, 49]. It was normally assumed that blood circulating 

Aβ originates from Aβ produced within brain regions that then crosses the blood-brain barrier 

[256, 257].  

Aβ can also be produced in peripheral tissues and secreted into the blood. Platelets can 

produce Aβ in a similar manner to neurons, and it’s also been shown that skin fibroblasts, skeletal 

muscles, and cerebrovascular smooth muscle cells can also produce Aβ [258-262]. In a recent 

study using a model of parabiosis, or surgically conjoined mice which share circulating blood, it 

was shown that this peripherally generated Aβ circulating in the bloodstream can contribute to AD 

pathology. This model used a transgenic AD mouse conjoined with a wild type littermate and 

found evidence of human Aβ plaques, hyperphosphorylated tau tangles, and AD-related 

pathologies such as neurodegeneration and impaired hippocampal long term potentiation in the 



 69 

wild type mouse after 12 months of parabiosis [263]. Importantly, these studies show that Aβ 

metabolism in both the brain and periphery can contribute to the development of late stage AD 

pathology.  

Measurement of this circulating Aβ is often used to help diagnose AD and is believed to 

be a more progressive method to keep track of patients showing signs of cognitive decline in the 

early stages of the disease. Traditional methods include measuring Aβ1-40 and Aβ1-42 levels from 

the cerebral spinal fluid (CSF), or visualizing amyloid or tau pathologies in the brain via positron 

emission tomography (PET) [264]. Testing blood plasma for Aβ1-40 and Aβ1-42 is currently possible 

with sensitive measurements such as mass spectrometry, but is not commonly used for patients 

due to the lower levels of Aβ found in the blood [265]. What needs to be considered, however, is 

that measurements of circulating Aβ levels in the CSF and plasma may be confounded due to 

their origin.  

Cellular responses to DNA damaging agents are not all the same depending upon stages 

of the cell cycle, cell type, regional specificity in the mammalian body, and also age. Cell cycle 

dependent responses to DSBs have been discussed in Chapter Two regarding canonical HR, 

TC-HR, and NHEJ. In addition, there is research showing cell type, age specific, and 

regional/tissue differences in DNA damage responses to DSBs. For example, studies have shown 

that differentiated mouse embryonic fibroblasts predominantly utilize error-prone NHEJ to repair 

DSBs. Undifferentiated mouse embryonic stem cells (ES), which would give rise to all cell types 

and globally affect the organism, preferentially use the more error-free canonical HR in order to 

increase their repair fidelity even when NHEJ repair proteins are artificially overexpressed [266]. 

Regarding regional specificity, lung basal stem cells were shown to use NHEJ to repair DSBs 

more efficiently than alveolar progenitor cells [267]. Epidermal stem cells are highly proficient in 

NER to repair UV induced DNA lesions, and individuals with deletions in XPA/XPC repair proteins 

are susceptible to squamous cell carcinoma [268].   
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 With these studies in mind, the research in this chapter was undertaken in order to 

investigate the effects of extracellular toxic Aβ1-42 oligomers on DNA DSB repair processes in 

mitotic and post-mitotic in vivo cellular models. My hypothesis was that Aβ1-42 would downregulate 

the recruitment of TC-HR associated proteins, thus leading to the inhibition of repair. This section 

demonstrates that Aβ1-42 negatively affects DSB repair activity dependent upon active 

transcription, reduces the TC-HR associated RAD52 protein and HR/TC-HR associated repair 

protein BRCA1 recruitment to DNA damage sites, reduces RAD52 protein levels, increases R-

loop formation, and decreases DSB repair efficiency. 

5.2 Results 

5.2.1  Aβ1-42 sensitizes cells to IR in the absence of active transcription 

The accumulation of Aβ1-42 in AD is correlated with DNA damage induced by oxidative 

stress. As mentioned in Chapter 4, a recent study has shown that high concentrations of Aβ1-42 (1 

µM) in mitotic mouse hippocampal neuron cultures and in brain samples from AD patients were 

correlated with reduced levels of BRCA1 and increased levels of DSB marker γ-H2AX [13]. 

BRCA1’s role in DSB repair and other cellular processes has been discussed in Chapter 2. 

However, it is not known whether Aβ1-42 affects the major DSB repair pathways: the error-prone 

NHEJ pathway and the less error-prone HR pathway.  

We investigated the effects of Aβ1-42 on overall HR and NHEJ in dividing U2OS cells using 

the HR (DR-GFP) and NHEJ (Ej5-GFP) reporter assays [269, 270] (Fig. 5-1A&B). For the HR 

reporter assay, the DR-GFP cell line utilizes an I-SceI recognition site inserted into a GFP coding 

sequence to create a nonfunctional GFP transgene. A wild type GFP fragment has been inserted 

downstream of the transgene. After transfection of an I-SceI expressing plasmid, a DSB is created 
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at the I-SceI cleavage site. If successful HR occurs, fully functional GFP is restored which can be 

detected by fluorescence activated cell sorting (FACS). For the NHEJ assay, the Ej5-GFP cell 

line utilizes a GFP coding sequence interrupted by a puromycine gene which is flanked by I-SceI 

recognition sites. After transfection of the I-SceI expressing plasmid, a DSB is induced at both 

sites, and if NHEJ occurs, a fully functional GFP is restored which can be detectable by FACS. 

For these experiments, both assays were treated with 1 µM Aβ1-42 to determine its effect on each 

pathway. 

 



 72 

 

Figure 5-1 HR and NHEJ reporter assays. 

A. Schematic of the DR-GFP reporter used to measure HR efficiency in U2OS cells. B. Schematic of the 

Ej5-GFP reporter used to measure NHEJ efficiency in U2OS cells. C. Representative FACS sample data 

of the DR-GFP reporter cells without I-SceI endonuclease (a.), with I-SceI endonuclease (b.), and I-SceI 

endonuclease and 5 hr 1 μM Aβ treatment. D. DR-GFP reporter cells were pretreated with 1μM Aβ for 5 hr 

and expression of GFP was measured by flow cytometry. Error bars indicate the SEM of three separate 

experiments and the p values were determined by using Student’s unpaired two-tailed t test. E. Ej5-GFP 
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reporter cells were pretreated with 1μM Aβ for 5 hr and expression of GFP was measured by flow cytometry. 

Error bars indicate the SEM of three separate experiments and the p values were determined by using 

Student’s unpaired two-tailed t test. Adapted from [220] with permission from the publisher. 

 

Prior to use, Aβ1-42 samples were investigated via western blot and Transmission electron 

microscopy (TEM) to verify that they contained oligomers (Fig. 5-2A&B, 5-3) [220].  
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Figure 5-2 Aβ1-42 solution contains low molecular weight oligomers. 

A. Western blot of Aβ1-40 & Aβ1-42 monomeric controls, titrated Aβ1-42 oligomeric solution incubated at 37℃ 

for 24 hrs, and Aβ1-42 oligomeric solution control not incubated at 37℃, all probed with anti-6E10 antibody. 
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B. Characterization of Aβ1-42 aggregates at 50 μM with transmission electron microscopy (TEM).  The length 

of the segments are 0.2μm in the upper panels.  The length of the segments are 50 nm in the lower panels.  

The lower panels represent higher magnification images. 

 

 

Figure 5-3 1 μM Aβ1-42 solution frozen at -20C contains oligomers. 

Comparative Western blots of increasing concentrations of Aβ1-42 standard aliquot previously stored in 

DMSO at -80C, 1 μM Aβ1-42 stored at -20C, and 1 μM Aβ1-42 stored at 4C., all probed with anti-6E10 

antibody. 

 

We found that Aβ1-42 did not significantly affect HR or NHEJ in dividing cells (Fig. 5-1D&E). 

This is most likely due to the ability of the dividing cells to utilize canonical HR in addition to TC-

HR for DSB repair.   

In order to determine whether Aβ1-42 would affect the TC-HR pathway, we utilized the RNA 

polymerase II inhibitor DRB to disrupt transcription in U2OS cells and measured clonogenic 

survival against ionizing radiation (IR). 1 µM Aβ1-42 alone negatively affects overall U2OS survival 

(Fig. 5-4A), and as shown in Fig. 5-4B, DRB treatment alone renders cells more sensitive to IR. 

However, the addition of 1 µM Aβ1-42 to DRB treatment did not further increase cells’ sensitivity to 

IR (Fig. 5-4C). This indicates that the activity of Aβ1-42 upon cell survival is dependent upon active 
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transcription, leading us to question its involvement in the downregulation of the more specific 

TC-HR pathway. 

 

Figure 5-4 1 μM Aβ sensitizes dividing cells to IR. 

A. U2OS cells were pre-treated with 1 μM Aβ for 24 hr. Colony forming assay was performed, and the 

surviving fraction is shown. Error bars indicate the SEM of three separate experiments, and the p values 

were determined by using Student’s unpaired two-tailed t test (***p<<0.01). B. U2OS cells were pre-treated 

for 24 hr with or without DRB (40 µM), then irradiated with IR at the indicated dose. Colony forming assay 

was performed and the surviving fraction is shown. Error bars indicate the SEM of three separate 

experiments, and the p values were determined by using Student’s unpaired two-tailed t test (***p<<0.01). 

C. U2OS cells were pre-treated for 24hrs with or without DRB (40 µM), then treated with or without 1 μM 

Aβ for 5 hr and irradiated with IR at the indicated dose. Colony forming assay was performed, and the 

surviving fraction is shown. Error bars indicate the SEM of three separate experiments, and the p values 

were determined by using Student’s unpaired two-tailed t test. Adapted from [220] with permission from the 

publisher. 
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5.2.2  High concentrations of Aβ1-42 downregulate the damage response of RAD52 and 

BRCA1 in post-mitotic neurons 

After determining that post-mitotic neurons utilize TC-HR, we wondered if Aβ1-42 might 

compromise the repair efficiency of specific proteins involved in TC-HR in non-dividing neurons. 

The Mucke group had previously discovered that Aβ1-42 reduced protein concentrations of BRCA1 

in hippocampal neurons [13]. These mitotic neurons are known to exhibit neurogenesis in adult 

humans and would primarily utilize canonical HR to repair DSBs [13]. Genome-wide microarrays 

have also found an increase in AD pathology correlating with the downregulation of RAD52 

expression in cortical and hippocampal brain regions of AD model mice [271]. To test whether 

Aβ1-42 oligomers would exhibit the same repressive effects upon the post-mitotic neurons, we 

treated primary rat cortical neuron cell cultures with 1 µM Aβ1-42 and investigated the DDR 

response and protein amounts of TC-HR associated proteins BRCA1 and RAD52 (Fig. 5-5&5-6).  

Here we found that BRCA1 recruitment to laser damage sites was significantly reduced in 

the presence of high concentrations (1 µM) of Aβ1-42, but not lower concentrations (1 nM) (Fig. 5-

5B). Interestingly, BRCA1 protein expression was not significantly reduced in cortical neuron 

cultures after increasing concentrations of Aβ1-42 or 5 hr and 24 hr treatment with 1 µM Aβ1-42 (Fig. 

5-5A). 
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Figure 5-5 1 μM Aβ reduces BRCA1 recruitment to damage sites. 

A. Western blot of endogenous BRCA1 of DIV12 primary rat cortical neurons with and without increasing 

concentrations of Aβ oligomers for 5 hr, and with and without 5 hr and 24 hr 1μM Aβ treatment. B. 

Recruitment of BRCA1 before and 1 min after 500 msec laser microirradiation treatment with and without 

1 nMand 1 μM Aβ for 5 hr in DIV12 cortical neurons. Error bars indicate the SEM of two separate 

experiments, n=10, and the p values were determined by using Student’s unpaired two-tailed t test 

(**p<0.01). 

 

Western blot analysis showed that 1 µM Aβ1-42 reduced overall RAD52 protein levels in 

post-mitotic neurons (Fig. 5-6A), but γ-H2AX expression was not significantly increased 

compared to untreated controls (Fig. 5-6C). After 24 hr of treatment, 1 µM Aβ1-42 significantly 

reduced RAD52 recruitment to damage sites in both post-mitotic neurons and U2OS cancer cells 

(Fig. 5-6B). This demonstrates inhibition of RAD52 repair protein dynamics by 1 µM Aβ1-42. The 

effects of 1 µM Aβ1-42 on γ-H2AX will be further explored in sections 5.2.4 and 5.2.5.  
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Figure 5-6 1 μM Aβ reduces RAD52 protein and recruitment to damage sites. 

A. Western blot of RAD52 in DIV12 cortical neurons with and without 1 pM, 1 nM, 1 μM Aβ treatment for 5 

hr. B. Recruitment of RAD52 before and 1 min after 500 msec laser microirradiation treatment with and 

without 1 μM Aβ for 24 hr in U2OS and DIV12 cortical neurons. Error bars indicate the SEM of two separate 

experiments, n=10, and the p values were determined by using Student’s unpaired two-tailed t test 

(***p<<0.01). C. Western blot of endogenous 𝛾𝛾-H2AX in DIV12 rat cortical neurons with and without 1 pM, 

1 nM, 1 μM Aβ treatment for 5 hr. Error bars indicate the SEM of three separate experiments and the p 

values were determined by using unpaired two-tailed Student’s t test. Adapted from [220] with permission 

from the publisher. 

 

To verify the specificity of Aβ1-42 oligomers, we also observed recruitment of GFP-tagged 

repair proteins specific to other repair pathways including XRCC1 (DNA single strand break repair 

[SSBR]) and KU70 (NHEJ) after treating primary rat cortical neuron cell cultures with 1 µM Aβ1-42 

(Fig 5-7.). We found that Aβ1-42 did not reduce XRCC1 or Ku70 recruitment to damage sites after 

5 hr treatments or 24 hr treatments. 
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Figure 5-7 1 μM Aβ does not reduce XRCC1 and Ku70 recruitment to damage sites. 

Recruitment of XRCC1 and KU70 before and 1 min after 100 msec and 500 msec laser microirradiation 

treatment with and without 1 μM Aβ for 5 hr in U2OS and DIV12 cortical neurons. Error bars indicate the 

SEM of two separate experiments, n=10, and the p values were determined by using Student’s unpaired 

two-tailed t test. 

 

The Aβ1-42 preparations used in this project are a mixture of oligomeric and monomeric 

intermediates, so it is difficult to ascertain which precise species of Aβ1-42 is responsible for the 

downregulatory properties demonstrated [272]. The prepared Aβ1-42 solution consists of 

approximately a 50:50 ratio of monomers and oligomers as confirmed by size exclusion 

chromatography. In solution, these monomers and oligomers can aggregate and will pellet when 

centrifuged. In order to determine what fraction of the Aβ1-42 solution exerted its toxic effect upon 

BRCA1 recruitment, we first performed a dose response curve to determine optimal concentration 

conditions (Fig. 5-8A). At 0.5 µM and 1.0 µM, Aβ1-42 reduced BRCA1 recruitment to sites of laser 

damage similarly in post-mitotic neurons. Next, we treated cells with the pelleted and supernatant 

fractions of the Aβ1-42 solution and found that the supernatant fraction containing monomers and 
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oligomers of Aβ1-42, but not the aggregated forms of Aβ1-42, was responsible for BRCA1 

recruitment reduction in neurons (Fig. 5-8B). 

 

 

Figure 5-8 Soluble fraction of 1 μM Aβ affects repair protein recruitment. 

A. Dose response curve measuring BRCA1 recruitment 1 min after 500 msec laser microirradiation 

treatment with indicated Aβ concentrations for 5 hr in DIV12 cortical neurons. Error bars indicate the SEM 

of two separate experiments, n=10, and the p values were determined by using Student’s unpaired two-

tailed t test (*p<0.05; **p<0.01). BRCA1 recruitment to damage sites was significantly reduced in post-

mitotic neurons after 0.5 μM and 1 μM Aβ treatment. B. Recruitment of BRCA1 before and 1 min after 500 

msec laser microirradiation treatment with and without 1 μM Aβ supernatant or resuspended pellet for 5 hr 

in DIV12 cortical neurons. Error bars indicate the SEM of two separate experiments, n=10, and the p values 

were determined by using Student’s unpaired two-tailed t test (**p<0.01). 

 

5.2.3  Increased Aβ1-42 concentration leads to R-loop formation 

Unpublished studies in the Lan lab have indicated that increased oxidative stress induces 

global R-loops, damage prone structures at active transcription sites. Through use of the DART 

system these studies have shown that R-loops are inducible at active transcription sites. Aβ1-42 

oligomers have been associated with ROS production through numerous mechanisms previously 
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mentioned such as the Fenton reaction, copper binding, and its methionine residue as discussed 

in Chapter One. Therefore, we hypothesized that overproduction of Aβ1-42 oligomers and the 

consequent ROS lead to increased R-loops. This in turn leaves more surface area of DNA 

exposed to breakage, thus compromising overall genomic stability. 

To verify this hypothesis, we treated wild type U2OS TRE cells with high concentrations 

of Aβ1-42 (1µM) and investigated R-loop formation using anti-S9.6 antibody staining (Fig. 5-9A&5-

9B). Anti-S9.6 antibody is a mouse monoclonal antibody generated against a φX714 

bacteriophage-derived synthetic DNA-RNA antigen which can recognize DNA-RNA hybrids. It 

has been verified for use to recognize the DNA-RNA hybrid formed during active transcription and 

is commonly used to detect R-loops [194]. We found that treatment with Aβ1-42 significantly 

increased the frequency of R-loops at actively transcribed DNA damage sites compared to 

controls (Fig. 5-9B). This demonstrates that high concentrations of Aβ1-42 exacerbate the ROS 

induced R-loop formation of activated KillerRed. 

 



 83 

 

Figure 5-9 1 μM Aβ increases R-loops. 

A. Diagram of R-loop formation during active transcription. B. TA-KR and tetR-KR transfected U2OS-TRE 

cells were pre-treated with 1 μM Aβ for 24hrs and cells were illuminated with 15 W fluorescent white light 

for 15 min for damage induction. R-loop formation was determined by co-localization of anti-S9.6 antibody 

to damage sites. Error bars indicate the SEM of two separate experiments, n=10, and the p values were 

determined by using Student’s unpaired two-tailed t test (*p<0.05). C. TA-KR transfected U2OS-TRE cells 
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were pre-treated with 1 μM Aβ for 24 hr. Cells were illuminated with 15 W fluorescent white light for 15 min 

for damage induction, allowed to recover for 4hr or 24hr, then stained with anti-γ-H2AX antibody. Error bars 

indicate the SEM of two separate experiments, n=10, and the p values were determined by using two-way 

ANOVA and Tukey’s multiple comparisons test. 

 

5.2.4  Increased Aβ1-42 delays γ-H2AX expression 

Within a few minutes of DSB formation, H2AX, a variant of the histone H2A, is rapidly 

phosphorylated in the vicinity of the break by the ATM or DNA-PK kinases [273]. This 

phosphorylated form, termed γ-H2AX, is essential for cell cycle checkpoint activation and the 

recruitment of downstream DSB repair factors, although some studies show it is not required for 

the initial break recognition step [274-277]. It has been hypothesized that γ-H2AX is involved in 

chromatin remodeling in order to allow for repair factors to access the damaged DNA. These 

findings have been confirmed by studies that show H2AX-/- cells exhibiting radiosensitivity and 

genomic instability and also double p53 and H2AX KO mice rapidly developing tumors [278, 279]. 

γ-H2AX has, therefore, been used extensively as a marker for DSBs in both immunofluorescent 

staining assays and western blots [280]. In radiobiology, the ratio of DSBs correlates to γ-H2AX 

foci in a 1:1 ratio, although its use as an indicator for DSB repair has been debated [273, 280]. 

One study that compared wild-type and Ku80 deficient mice argued that at low levels of IR 

damage (e.g.-2Gy), γ-H2AX expression and foci retention could be used to indicate DSB repair. 

Higher levels of DNA DSB inducing damage (e.g.-10Gy) produced conflicting results [281]. Other 

studies such as those produced by the Lan lab examining γ-H2AX foci retention after damage as 

an indication of efficient repair have shown consistent results. Typically, γ-H2AX retention is 
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strongest at approximately 2-4hrs after damage induction and is significantly reduced after 24-

48hrs, indicating a completion of repair [177, 282].  

In order to determine if Aβ1-42 inhibits overall DSB repair efficiency, we treated U2OS cells 

with 1µM concentrations of Aβ1-42 for 24hrs and investigated γ-H2AX expression and retention 

after recovery from 3Gy gamma irradiation treatment (Fig. 5-10A-D&5-11&5-12). Western blot 

analysis indicates a delay in γ-H2AX protein production in the early recovery stages of 1hr and 

4hr with the most significant reduction at the 4hr timepoint (Fig. 5-10A-D). (Of note, these results 

represent soluble γ-H2AX. Chromatin-associated γ-H2AX at repair sites may not have been 

completely released in lysis buffer due to lack of benzonase treatment.) There was no significant 

difference in γ-H2AX expression between non-irradiated control and non-irradiated samples 

treated with 1µM concentrations of Aβ1-42 for 24hrs (Fig. 5-11). However, analysis of γ-H2AX foci 

retention, an indicator of DSB resolution, shows no difference in the number of cells with reduced 

γ-H2AX foci after 24hrs and 48hrs (Fig 5-12). Specifically, cells treated with 1µM concentrations 

of Aβ1-42 for 24hrs and irradiated with 3Gy of gamma irradiation showed no retention of γ-H2AX 

foci after 24hrs or 48 hrs as compared to untreated controls. Together, these data indicate that 

Aβ1-42 interferes with early stages of DSB repair, but not overall DSB repair.  

We also investigated γ-H2AX retention at sites of active transcription in U2OS-TRE cells 

after treating cells with 1µM concentrations of Aβ1-42 for 24hrs (Fig 5-9C). Analysis of γ-H2AX foci 

retention showed no significant differences between treated samples and controls at 0 hr, 4 hr, 

and 24 hr timepoints. This further indicates that Aβ1-42 does not interfere with DSB resolution at 

actively transcribed sites of DNA damage. 

Survival assays have demonstrated that 1µM concentrations of Aβ1-42 for 24hrs 

significantly reduce cell survival (Fig. 5-4A), even in mitotic cell populations that are capable of 

utilizing canonical HR and NHEJ for DSB repair. This supports our findings that Aβ1-42 reduces 

the localization of early acting DSB repair proteins RAD52 and BRCA1 at DNA damage sites. 
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Such inhibition may lead to failure to repair and resultant cell death, contributing to the 

neurodegenerative pathology of AD. However, more studies are necessary because the reduction 

of γ-H2AX itself does not necessarily correlate directly with cell death. 

 

 

 

 



 87 

 

Figure 5-10 1µM Aβ1-42 delays γ-H2AX expression after IR in mitotic cells. 

U2OS cells were pre-treated with and without 1 μM Aβ for 24 hrs. Cells were then treated with 3Gy of 

gamma irradiation and allowed to recover for A. 1 hr, B. 4 hrs, C. 24 hrs, or D. 48 hrs at 37C, then probed 

via western blot with antibodies for anti-γ-H2AX. Error bars indicate the SEM of two separate experiments, 

and the p values were determined by using two-way ANOVA and Tukey’s multiple comparisons test 

(*p<0.05). 
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Figure 5-11 Aβ1-42 does not alter γ-H2AX expression in U2OS cells without DNA damage. 

Western blot of endogenous γ-H2AX before and after 24hrs of Aβ1-42 treatment. Error bars indicate the 

SEM of two separate experiments, and the p values were determined by using Student’s unpaired t-test. 
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Figure 5-12 1µM Aβ1-42 does not lead to retention of γ-H2AX foci after IR in mitotic cells. 

U2OS cells were pre-treated with and without 1 μM Aβ for 24 hrs. Cells were then treated with 3Gy of 

gamma irradiation and allowed to recover for 1 hr, 4 hrs, 24 hrs, or 48 hrs at 37C, then stained with 

antibodies for anti-γ-H2AX. Error bars indicate the SEM of two separate experiments, n=100, and the p 

values were determined by using two-way ANOVA and Tukey’s multiple comparisons test. 
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5.2.5  Discussion 

This section has shown that Aβ1-42 negatively affects HR in a transcriptionally dependent 

manner, inhibits RAD52 and BRCA1 recruitment to DNA damage sites, reduces RAD52 repair 

protein in post-mitotic neurons, increases R-loop formation, and inhibits γ-H2AX expression early 

following DNA damage. These experiments also indicate Aβ1-42 differentially affects repair proteins 

depending upon the protein itself and the model system utilized. For example, in regards to 

RAD52, in primary rat cortical neurons, endogenous RAD52 protein is reduced and its recruitment 

is downregulated after Aβ1-42 treatment (Fig 5-6A). In human U2OS cells, however, as evidenced 

in Fig 5-13 endogenous RAD52 protein is not reduced following Aβ1-42 treatment.  

 

Figure 5-13 1 μM Aβ1-42 does not affect RAD52 protein level in U2OS cells. 

U2OS cells were pre-treated with and without 1 μM Aβ for 24 hrs. Cells were then then probed via western 

blot with antibodies for anti-RAD52. Error bars indicate the SEM of two separate experiments, and the p 

values were determined by using unpaired Student’s t test. (Of note, other treatments were included on 

these blots, but were not relevant to this study; thus the cropped images.) 
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RAD52 DNA damage response recruitment is negatively affected in both cell lines after 

Aβ1-42 treatment, however (Fig 5-6B). This points to dysregulation of RAD52 protein, and perhaps 

its oxidation by Aβ1-42. One method to verify this is to investigate RAD52 protein after Aβ1-42 

treatment for oxidation, such as evidenced by carbonyl groups as described in Chapter 2. A simple 

method is to quantify overall change in carbonyl content using a colorimetric assay. These assays 

utilize 2,4-Dinitrophenylhydrazine (DNPH) to react with protein carbonyls. The derivatization of 

the carbonyl results in a modified protein that can be measured at 375nm [283, 284]. To measure 

oxidized protein products in low concentrations (µg) like RAD52, an antibody-based ELISA assay 

should be used. This type of assay quantifies the DNP-bound protein immunologically using an 

anti-DNP antibody [111, 285]. Immunoblotting techniques using western blot to determine the 

species of oxidized protein do not produce accurate determinations of carbonyl concentrations, 

but can be used to compare relative increase/decrease in amounts as compared to untreated 

samples when all appropriate controls are used [283].  

 Another experiment that will need to be conducted following the investigation of γ-H2AX 

retention at DNA damage sites with active transcription as well as western blots illuminating 

expression of γ-H2AX after treatment with Aβ1-42 is a comet assay. This assay utilizes lysed cells 

and agarose gel to measure DSBs. The DNA forms supercoiled loops and migrates through the 

gel by electrophoresis, and once imaged by fluorescence microscopy, presents as “comets” with 

the intensity of the comet tail relative to the head representing the number of DNA strand breaks 

[286]. Hypothetically, Aβ1-42  treatment should induce more DSBs, and after time, more DSBs 

should remain, correlating with an increased expression of γ-H2AX.  

Aβ1-42 may not inhibit successful DSB repair, but if it delays the initial response due to 

downregulation of essential DSB repair proteins and early repair factors this could lead to cell 

death or use of an alternate pathway like NHEJ which could lead to error prone repair. 

Experiments using primary rat cortical neurons showed a trend towards an increase in γ-H2AX 
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protein after Aβ1-42 treatment, though it was not statistically significant (Fig 5-6C). Western blots 

of U2OS cells also showed no increase in γ-H2AX protein after 24hrs of Aβ1-42 treatment (Fig 5-

11). The differences in γ-H2AX expression may be due to model organism type (rat vs human), 

cell type (neuron vs carcinoma), and region specificity (cortical vs bone). It is therefore necessary 

to conduct more experiments with a consistent cell line (preferentially post-mitotic neuronal 

cultures) to investigate how Aβ1-42 affects DSB repair and if Aβ1-42 forces these cells to 

preferentially utilize NHEJ or other repair pathways over TC-HR. It is impossible to fully block cells 

from using TC-HR because this pathway is not completely defined. However, cells may be guided 

to preferentially use NHEJ over HR by using siRNA such as for BRCA1 & BRCA2 or RAD52.  

Recent studies using molecular dynamics simulations have also shown that oxidized 

residues can induce conformational changes in Aβ, promoting less aggregation [287]. This would 

imply that oxidative damage to Aβ could reduce its toxicity and may have mitigated its effect upon 

U2OS cells in the experiments involving IR (Fig. 5-10&5-12). If this is the case, then proper 

controls must be utilized in future studies, such as samples treated with Aβ1-42 only and no IR.  

A cyclohexamide (CHX) chase assay can be performed to investigate the effects of Aβ1-

42 upon RAD52 protein stability. CHX inhibits the translocation step in protein synthesis, 

preventing more protein from being made. After treatment with CHX, proteins are degraded over 

time by regulatory processes such as RNA decay and proteolysis. This allows for visualization of 

protein levels via western blotting techniques in order to determine the protein half-life and stability 

[288-292]. Hypothetically, if Aβ1-42 is leading to an increase in RAD52 protein turnover (e.g.-

RAD52 is being degraded more rapidly), with CHX treatment in addition to Aβ1-42 treatment, 

RAD52 protein levels will be more significantly reduced more quickly than in untreated cells. More 

experiments also need to be conducted following the CHX chase assay such as qPCR and 

proteasome inhibition. The qPCR following Aβ1-42 treatment will demonstrate whether transcription 

is affected or mRNA levels are disrupted by Aβ1-42. Proteasomal inhibition in conjunction with the 
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CHX chase assay will show if RAD52 is degraded via the ubiquitin proteasomal pathway, and if 

Aβ1-42 affects the proteasome or ubiquitination of RAD52 in some manner.  

Although much work is still to be done, these findings which demonstrate how Aβ1-42 

negatively affects the initial DNA damage response in post-mitotic cells and contributes to AD 

pathology are an important first step in understanding early contributing factors to the 

development of AD disease. 
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6.0 Final Discussion & Future Directions 

The experiments outlined in this thesis have all culminated in evidence of post-mitotic 

neurons utilizing a novel pathway of DSB repair, TC-HR, in order to maintain lifelong genomic 

integrity when faced with the excessive stress induced by endogenous and exogenous sources 

of ROS. Specifically, this thesis has shown that BRCA1 plays a role in the TC-HR pathway 

dependent upon its BARD1 binding site and independent of RAD52 recruitment. This thesis has 

also shown that Aβ1-42 significantly affects the early stages of the DDR by inhibiting γ-H2AX and 

RAD52 expression and RAD52 and BRCA1 protein recruitment to DNA damage sites. It has also 

shown that Aβ1-42 induces R-loop formation at DNA damage sites with active transcription, 

exposing DNA to further damage. These results provide new insights into the mechanisms with 

which post-mitotic neurons maintain their genome and demonstrate how dysregulation of TC-HR 

by Aβ1-42 in early stages of AD can lead to downregulation of DNA repair.   

Our hypothetical model proposes a negative feedback loop of Aβ1-42 on genomic stability 

(Fig. 6-1). Excessive oxidative damage and consequent DNA DSBs induce γ-secretase to 

mediate the expression of β-secretase (BACE1), cleaving the transmembrane amyloid precursor 

protein (APP) into Aβ1-42  monomers which later form soluble oligomers. Re-uptake of Aβ1-42 for its 

aforementioned antioxidant properties leads to further intracellular ROS production and the 

consequent downregulation of recombinational repair proteins as we have outlined in this study. 

This deficit in high fidelity repair leads to genomic instability, which potentially promotes neuronal 

impairment and eventual apoptosis, both processes implicated in the neurodegenerative 

pathology of AD [293]. 
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Figure 6-1  Model for Aβ1-42 effect upon high fidelity DNA damage repair in post-mitotic neurons. 

Oxidative damage to DNA leads to the induction of beta and gamma secretases, which cleave pro-amyloid 

(APP) to Aβ1-42. The hypothetical model shows how oxidative damage leads to APP cleavage, consequent 

intracellular damage, and repair protein inhibition. This cycle leads to a downregulation in high fidelity 

recombinational repair and genomic instability, and may further contribute to neurodegenerative pathology. 

 

Currently we understand very little of how Aβ1-42 acts upon DNA repair proteins. As 

outlined in previous chapters, this mechanism is in need of much further investigation. What 

follows are some specific questions that this thesis has generated and several experimental 

approaches to address them. 

 

6.1 What is the specific role of BRCA1 in the TC-HR pathway? 

The findings mentioned in Chapter 4 that BRCA1 is implicated in TC-HR dependent upon 

its BARD1 binding and independent of RAD52 recruitment raises numerous questions about the 

role of BRCA1 in this pathway. For instance, whether BRCA1 still forms a complex with PALB2 

and BRCA2 in order to promote RAD51 filament formation in TC-HR is unknown [140]. Also, 

BRCA1 poly-ubiquitinates CSB in the TCR pathway, but whether BRCA1 interacts with CSB in 

TC-HR has yet to be determined [238, 239]. Ubiquitination is the process where the 76-amino-
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acid polypeptide ubiquitin is covalently attached to other proteins singly (mono-ubiquitination) or 

in the form of polyubiquitin chains (poly-ubiquination) by the actions of ubiquitin E1, E2, and E3 

ligase proteins [294]. Some of these modifications target the proteins for proteasome-based 

degradation while others serve as docking platforms for DDR-based protein assembly. BRCA1 

could be involved in the poly-ubiquitination of CSB via its E3 ligase activity. This E3 ligase activity, 

as mentioned earlier, is dependent upon BARD1 binding, and in canonical HR involves BRCA2 

and RAD51 as well [244, 245]. CSB is essential for TC-HR and is poly-ubiquitinated at the 

resolution of DNA DSB repair [177]. Hypothetically, a loss of BRCA1 E3 ligase function targeted 

to CSB could have significantly negative impact upon DNA repair in post-mitotic neurons 

dependent upon the TC-HR pathway for DSB repair outside of the error-prone NHEJ pathway. 

This would be seen in retention of CSB at the site of damage and the failure of transcription to 

resume. 

Considering the involvement of BRCA1 in numerous pathways aside from canonical HR 

and TC-HR such as apoptosis and cell cycle checkpoints, initial investigations would have to focus 

upon the E3 ligase activity of BRCA1 on CSB in TC-HR. Co-IP experiments must be conducted 

in order to determine if the two proteins interact in the TC-HR pathway after DNA damage. Since 

HR commonly occurs in the S phase of the cell cycle and TCR occurs with UV damage, cells can 

be arrested in the G0/G1 phase of the cell cycle to drive them into either TC-HR or NHEJ for DSB 

repair. These experiments can be conducted with human cells such as HeLa arrested in G0/G1 

using double thymidine block following Lan lab protocols, or with primary rat cortical post-mitotic 

neurons such as those used in prior experiments [177]. Confirmation of cell cycle arrest and cell 

cycle phase will be done via FACS. If BRCA1 and CSB interact in G0/G1 arrested cells as 

determined by Co-IP, western blots with anti-ubiquitin antibodies can be utilized to determine if 

the CSB protein associated with BRCA1 is ubiquitinated, and recovery timecourses after DNA 

damage (IR) spanning 0h, 1h, 4h, 8h, 12h, and 24h can be conducted to determine if this 

ubiquitination increases over time. 
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To determine the binding region with which CSB interacts with BRCA1, GFP-tagged CSB 

fragments will be utilized in Co-IPs experiments with HA-tagged full length BRCA1. For the Co-

IPs, GFP-tagged CSB fragments will be transiently transfected along with HA-tagged BRCA1 

plasmids, and Co-IPs run with western blots after DNA damage (IR) to determine which CSB 

fragments and therefore which region(s) of CSB binds to BRCA1. Anti-ubiquitin antibodies will be 

used to measure the differences in CSB ubiquitination as well. CSB fragments used will be regions 

of amino acids 1-336, 337-590 (acidic domain), 510-960, 961-1399, 1400-1493, and full length. 

Survival assays using CSB knockout cell lines engineered with CRISPR as recently demonstrated 

in currently unpublished experiments in the Lan lab will be used. These CSB KO cell lines 

transiently transfected with the CSB fragments will be conducted to determine how inhibiting CSB 

ubiquitination affects overall cell survival. 

Similar experiments will be conducted to determine the binding region with which BRCA1 

interacts with CSB. GFP-tagged BRCA1 fragments will be used in Co-IP experiments with HA-

tagged full length CSB, both transiently transfected. Cells will be damaged with IR and western 

blots run to determine which region(s) of BRCA1 binds to CSB. GFP-tagged BRCA1 fragments 

utilized will be the following mutants and regions of amino acids: ∆305-770 (NLS deletion), ∆775-

1292, ∆1-302 (N-terminal deletion), ∆1527-1863 (C-terminal deletion), 303-1526 (N- & C-terminal 

deletion), 1-304 (N-terminus only), 1528-1863 (C-terminus only) (Fig. 6-2) [241].  
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Figure 6-2 BRCA1 and GFP-BRCA1 mutants. 

A. Important BRCA1 binding regions and domains. RING, Ring domain; NES, nuclear export sequence; 

NLS, nuclear localization sequence; BRCT, BRCA1 C-terminal domain. B. Diagram of GFP-tagged BRCA1 

mutants and truncations. 

 
These experiments will determine if BRCA1 is involved in the regulation of CSB in TC-HR, 

and if dysregulation of BRCA1 negatively affects the TC-HR pathway and overall cell survival. If 

the hypothesis is true that BRCA1 helps regulate CSB in TC-HR, then this will become a 

significant starting point to discovering a more precise role of BRCA1 in TC-HR. 
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6.2 Define the mechanism of Aβ1-42 on repair proteins using a more physiologically 

relevant model system 

A significant discovery in this thesis was that high concentrations of Aβ1-42 reduced protein 

concentrations of RAD52 in post-mitotic primary rat cortical neuronal cultures, but not mitotic 

U2OS osteocarcinoma cell cultures (Fig.5-6A&5-13). High concentrations of Aβ1-42 also only 

affected recruitment of specific DNA repair protein to damage sites. Notably, RAD52 and BRCA1 

recruitment to DNA damage sites were reduced after treatment with Aβ1-42, while Ku70 and 

XRCC1 recruitment remained unaffected (Fig. 5-5B&5-6B&5-7). Essential considerations for 

differences in these results include 1. Potential selective Aβ1-42 binding to proteins to affect their 

activity, 2. differences in model systems (rat vs human cells), 3. variability in cell types (neurons 

vs cancer cells, etc.), and 4. mitotic stages and differential use of repair pathways as discussed 

in Chapter 1.5.  

If Aβ1-42 directly binds repair proteins and alters their conformation, this could prevent them 

from being able to respond to DNA damage and bind to other partners, or it could lead them to 

be degraded by the proteasome due to their misfolding. The selectivity of Aβ1-42 and its effect 

upon repair proteins could be due to the need of particular binding regions or charges on the 

repair protein itself. If certain repair proteins lack these, they may not interact with Aβ1-42 at all. 

Those that do interact directly with Aβ1-42 could accumulate aggregates of Aβ1-42 and continue to 

misfold. This self-propagation of Aβ1-42 aggregates has been documented in numerous studies 

and has been termed the “prion-like effect” [295-297]. However, it has not been explored in 

regards to the effect of Aβ1-42 upon repair proteins. Such a phenomenon should be considered in 

this circumstance. It can be initially explored using AD mouse models and immunohistochemistry 

to investigate Aβ1-42 aggregates and their co-localization with repair proteins.  

The difference in RAD52 expression may also hypothetically be influenced by the mitotic 

U2OS cell preferential use of NHEJ to repair DSBs, and their ability to utilize canonical HR, which 
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is independent of RAD52 (as discussed in Chapter 1). Post-mitotic neurons, however, cannot 

utilize canonical HR, and so must rely predominantly on NHEJ for DSB repair. However, as 

outlined in Chapter 1.5.4 and in my research in Chapter 3, post-mitotic neurons can also utilize 

TC-HR for DSB repair, which has been associated with repair protein RAD52. As prior studies 

have implicated an important role for RAD52 in the TC-HR pathway, it would be reasonable to 

speculate that the reduction in RAD52 protein levels after Aβ1-42 treatment is dependent upon the 

ability to utilize particular DSBR pathways. However, a better model system must be developed 

in order to rule out further complicating variables that could be influencing repair pathway choice 

such as cell type (neurons vs cancer cells), repair protein availability (rat vs human), and 

robustness of particular cell lines (U2OS vs. rat primary cortical neurons).  

Another significant discovery in this research was that high concentrations of Aβ1-42 do not 

lead to γ-H2AX foci retention with or without DNA damage. Contradictory to studies conducted by 

the Mucke group, we also found that the same high concentration of 1µM Aβ1-42 does not lead to 

increased γ-H2AX expression in primary rat cortical neurons or in U2OS osteocarcinoma cells 

(Fig. 5-6C) [13]. The Mucke group utilized mouse cell cultures and AD brain samples from the 

hippocampal region which undergoes neurogenesis and therefore is comprised of mitotic cells. In 

adult humans, the generation of new neurons from a neuronal stem cell pool does not occur 

throughout the entire brain. This process of neurogenesis is thought to be restricted solely to the 

hippocampal region, namely the dentate gyrus, where glia-like precursor cells that express 

neuronal stem cell markers give rise to progenitor cells which develop into the neuronal granule 

cells found in the hippocampal region [298]. Adult neurogenesis consists of four main stages: 

precursor cell stage, early survivor cell stage, post-mitotic maturation stage, late survival stage. 

Within these stages, six distinct milestones can be identified: the radial glia-like precursor cell, 

three progenitor stages of adult neurogenesis with high proliferation activity, post-mitotic 

maturation phase, and the final granule cell (Fig 6-3) [299-304]. The precursor stage involves the 



 101 

expansion of the cell pool with the early survival stage marking the exit from the cell cycle. The 

post-mitotic maturation stage involves the growth of axons and dendrites and synaptogenesis 

with the survival phase covering final adjustments and fine-tuning. The entirety of adult 

neurogenesis in the hippocampus takes ~7 weeks [299]. One of the larger and highly debated 

questions is how similar adult neurogenesis in the dentate gyrus is to embryonic or early post-

natal neurogenesis. The data is not consistent when referring to functionality of neurons in adults 

compared to those produced in the neonatal period (e.g.- comparing action potentials and 

neurotransmitters such as glutamate), speed of maturation of the neurons, and quality and 

quantity of stimuli and memory contents that pass the dentate gyrus [298, 305, 306]. 
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Figure 6-3 Developmental stages in the course of adult hippocampal neurogenesis. 

Precursor phase: A radial glial-like precursor stem cell progresses into progenitor cells. Early postmitotic 

maturation phase: growth of axons, dendrites, and synaptogenesis. Late postmitotic maturation phase: final 

maturation of dendritic spines, fine-tuning. GFAP, Glial fibrillary acidic protein; BLBP, brain lipid-binding 

protein; DCX, doublecortin; PSA-NCAM, polysialilated neural-cell-adhesion molecule; LTP, long term 

potentiation. Adapted from [298] with permission from the publisher. 



 103 

 
Also relevant is the plasticity of DNA damage repair during neuronal differentiation 

compared to mature neurons. Numerous studies have been conducted that demonstrate 

differentiating neurons downregulate DNA repair compared to post-mitotic neurons [307]. For 

example, neurospheres were used in one study to investigate BER-associated glycosylase OGG1 

activity in neural stem cells compared to differentiating and adult neural cells in mice [308]. 

Researchers found that OGG1 activity was higher in neurospheres derived from newborn mice 

and decreased in those derived from adults and upon differentiation. Post-mitotic cells such as 

neurons have also been found to undergo an extra step prior to apoptosis. They require not only 

the release of cytochrome c from the mitochondria, but the additional step of releasing the X-

linked inhibitor of apoptosis protein (XIAP) which regulates caspases by directly binding them and 

inhibiting their activity. In post-mitotic neurons, studies have found that selective nerve growth 

factor deprivation can relieve XIAP activity through selectively degrading it. DNA damage can 

also overcome XIAP activity through p53-mediated induction of apoptotic peptidase activating 

factor 1 (Apaf-1) [309]. Prior studies have even shown that mouse stem cells lack a G1 checkpoint 

and consequently have shortened G1 and G2 cell cycle phases. As a result they spend over 70% 

of the cell cycle in S phase, implying these cells would utilize canonical HR over NHEJ for DSB 

repair [310, 311].  This would also imply that in the hippocampal region, namely the dentate gyrus, 

dividing stem cells in the precursor stage would favor HR over the typical NHEJ due to cell cycle 

regulation. More research into neuronal cell specificity and which DNA repair pathways are more 

upregulated or downregulated is essential if we are to understand how Aβ1-42 differentially affects 

each neuronal type and why. 

What will be most beneficial for the future is to establish a more physiologically relevant 

model for the investigation of selective neuronal vulnerability in DSB repair in AD. One such model 

is the immortalized hNPC cell line ReNcell VM (ReN). These are human neural progenitor cells 

which, when deprived of specific growth factors, differentiate into neurons astrocytes, and glial 
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cells. When engineered to express human APP with FAD associated mutations and cultured in a 

3D Matrigel environment, they deposit amyloid plaques [312]. Preliminary experiments have been 

conducted in the Thathiah lab utilizing neurosphere cultures of ReN cells passaged onto 2D and 

3D Matrigel cultures. Once differentiated over 16 days, these cell cultures were found to consist 

primarily of neurons (<80%) and astrocytes.  

 

6.2.1  What DNA repair proteins are differentially expressed in neuronal progenitors, 

differentiated neurons, and AD patient brains? 

Experiments using progenitor and differentiated ReN cell cultures will include 

investigations into the nuclear proteome after DNA damage using nuclear fractionation and mass 

spectrometry analysis. Different damaging reagents will be utilized in order to determine what 

significant DNA repair pathways are upregulated and downregulated dependent upon damage 

type (e.g.-global DNA damage using hydrogen peroxide and gamma irradiation vs DNA specific 

damage using phleomycin). Further investigations will also be conducted with extracellular 

applications of Aβ1-42 to determine how Aβ1-42 alters specific DNA repair pathways in progenitor 

vs differentiated neurons. These experiments will help isolate DNA repair proteins according to 

their repair function, specifically BRCA1, by investigating nuclear localized proteins only. 

In regards to regional specificity and its relevance in the pathology of AD, this model 

system can be utilized for these investigations as well. We will determine how to further 

differentiate these ReN cells into specific neuronal types such as glutamatergic or GABAergic 

cells (excitatory and inhibitory subtypes, respectively) and investigate their response to DNA 

damaging agents either as a population or individually using single cell targeting methods 

previously described throughout this thesis.    
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Pittsburgh is also home to the Neuropathy Brain Bank. This branch of the University of 

Pittsburgh Brain Institute provides over 1000 preserved neurodegenerative disease patient brain 

samples for research, including AD and healthy patient samples. We are able to use specific brain 

region tissue to perform nuclear isolation protocol and mass spec analysis in order to compare 

the proteome of regional sections of AD brain tissue versus healthy controls. Once optimized, 

these experiments will allow us to pinpoint specific DNA repair proteins that are upregulated and 

downregulated in brain regions in AD, providing us with genes we can target as knockdowns or 

knockouts in our model ReN system to further explore the origins of AD pathology and how Aβ1-

42 and the dysregulation of essential DNA repair proteins contribute to the development of 

neurodegenerative disease.  

 

6.2.2  How does Aβ1-42 affect DNA repair proteins in neurons? 

Using the more relevant ReN progenitors will also provide the means to better investigate 

the effect of Aβ1-42 on canonical HR and TC-HR in human neuronal cells rather than through use 

of murine models or cancer cells. Since they are immortalized, progenitors can be transfected 

with plasmids containing mutations and post-mitotic ReN cells can be used in the same 

experiments in Chapter 3 to verify their use of TC-HR when canonical HR is unavailable.  

Preliminary studies have already shown that Aβ1-42 negatively affects ReN progenitor 

survival after IR. Optimized survival assays using ReN progenitors can therefore provide more 

relevant insight into the effect of Aβ1-42 on neuronal stem cell populations in the human brain, most 

of which are located in the hippocampal dentate gyrus, but according to controversial studies may 

also be located elsewhere [313].  

The CHX chase assay will provide significant results using the differentiated and 

progenitor ReN cell model as these two systems can be used to compare how Aβ1-42 affects the 
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degradation of TC-HR associated repair proteins RAD52 and BRCA1 as well as other significant 

proteins in cells dependent upon TC-HR (differentiated ReN) versus those capable of using 

canonical HR and TC-HR (progenitor ReN). Few studies have been able to use the same cell line 

for such studies, so these results will be important in profiling details of Aβ1-42 and how it affects 

DNA repair.  

As a measure of DNA repair efficiency, we can use single-cell sequencing after IR and 

Aβ1-42 treatment to determine if Aβ1-42 treated ReN progenitor cells have repaired DNA lesions. 

Failure to repair efficiently will result in regions acquiring deletions, frameshift mutations, point 

mutations, base mismatches, etc. Unrepaired sequences will not match control sequences when 

nucleotide bases are compared within known genomic regions of ReN cells [314, 315]. A 

drawback to this technique is that DNA damage is random and the human genome is incredibly 

large (over 3 billion base pairs). It could take considerable time to verify the presence of 

unrepaired lesions even within the span of known nucleotide sequences. An additional assay to 

detect unrepaired DNA is the HPRT assay. This assay uses human cell culture and relies on 

mutations destroying the functionality of the hypoxanthine phosphoribosyl transferase (HPRT) 

gene, which is located on the X chromosome. Functionality of the gene/protein is tested via 

positive selection using a toxic analogue where HPRT deficient mutants are the surviving viable 

colonies [316]. ReN neuronal progenitor cells are derived from a human male, so contain only 

one X chromosome [317]. This makes it easier to select for loss of function. Performing this HPRT 

assay in conjunction with single-cell sequencing will provide a general measure of global DNA 

repair efficiency after Aβ1-42 treatment in the ReN progenitor cell line. 

Another major question is whether Aβ1-42 is inducing a positive feedback loop through 

production of ROS, triggering more oxidative damage. As discussed in Chapter 1.3.2, Aβ1-42 has 

been implicated in the production of ROS through its activity with free metal ions. In order to 

determine more specifically how Aβ1-42 is causing a positive feedback loop using the ReN cell 

model, the production of ROS after Aβ1-42 treatment must first be investigated. This can be done 
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using both progenitors and differentiated cells in 2D and 3D cultures using a simple ROS detection 

kit (e.g.-Abcam’s ROS/Superoxide Detection Assay Kit- ab139476) to monitor the real-time 

production of ROS via fluorescence microscopy after Aβ1-42 treatment. It will be interesting to see 

if there is a difference in ROS production between ReN progenitors and differentiated neurons, 

implying that uptake of Aβ1-42 may be different as well. Antibodies for Aβ1-42 can be used to 

determine nuclear localization of Aβ1-42 after treatment, indicating Aβ1-42 uptake. However, 

endogenous Aβ1-42 production must be considered to not confound experimental results. In that 

circumstance, APP KO cells can be used, or γ-secretase inhibitors to inhibit APP cleavage as 

described in Chapter 1.3.1. If ROS production and Aβ1-42 production/uptake is increased in 

neuronal progenitors, it implies that undifferentiated neuronal cells are susceptible to damage 

from Aβ1-42 and its consequent ROS, and could pass on deleterious effects of this damage to their 

differentiated progeny. This could contribute to the progression of AD pathology.  

Ultimately this data using the human neuronal ReN cell line will be important in 

demonstrating how Aβ1-42 can affect high fidelity DNA repair both in neuronal precursor cells and 

in differentiated cell populations. It will help to illuminate specifically how and when Aβ1-42 starts 

to contribute to the generation of AD pathology through its effect upon DNA repair pathways. 

Studies that follow may utilize this data to develop preventative therapies to combat the growing 

global threat of AD. 
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