
Using the Dimension Reduction Method FAMD in the Data Pre-processing Step for 
Risk Prediction and for Unsupervised Clustering 

by 

Xinhui Ran 

BS, Chongqing University of Post and Telecommunications, China, 2006 

MMedSc, Guangzhou University of Chinese Medicine, China, 2010 

Submitted to the Graduate Faculty of 

the Department of Biostatistics 

Graduate School of Public Health in partial fulfillment 

of the requirements for the degree of 

Master of Science 

University of Pittsburgh 

2019



ii 

 

UNIVERSITY OF PITTSBURGH 

GRADUATE SCHOOL OF PUBLIC HEALTH 

This thesis was presented 

by 

Xinhui Ran 

It was defended on 

April 12, 2019 

and approved by 

Thesis Advisor:  
Chung-Chou H. Chang, PhD 

 Professor 
Departments of Medicine and Biostatistics 

School of Medicine and Graduate School of Public Health 
 University of Pittsburgh 

Committee Members: 
Jonathan G. Yabes, PhD 

 Assistant Professor 
Departments of Medicine and Biostatistics  

School of Medicine and Graduate School of Public Health 
 University of Pittsburgh 

Florian Mayr, MD 
Assistant Professor 

 Department of Critical Care Medicine 
School of Medicine 

 University of Pittsburgh  



iii 

Copyright © by Xinhui Ran 

2019 



iv 

Chung-Chou H. Chang, PhD 

Using the Dimension Reduction method FAMD in the Data Pre-processing Step for Risk 
Prediction and for Unsupervised Clustering 

Xinhui Ran, MS 

University of Pittsburgh, 2019 

Abstract 

High-dimensional data generated from various resources including the electronic health 

records (EHRs), Medicare, and Medicaid, are used in multiple research areas such as public 

health and medical research. However, working with high-dimensional data is a no easy task 

because of methodological challenges. Dimensionality reduction technique has been used to 

transform high-dimensional data into a lower dimensional space while preserving meaningful 

characteristics of the original data. Principal component Analysis (PCA) is the most widely used 

method for dimension reduction. However, it has its limitation on linearity assumption and is 

unsuitable for data containing both numeric and categorical types. Factor analysis of mixed data 

(FAMD) is a dimension reduction method that can be used for data with mixed types of 

variables. Dimension reduction is often used as a data pre-processing step prior to further 

analyses. However, this approach should be used with caution as it depends on the purpose of the 

application. In this thesis, I demonstrate that using the dimension reduction method FAMD in the 

data pre-processing step for risk prediction can achieve comparable prediction performance as 

the traditional variable selection procedure; however, when classifying individuals into similar 

groups using the unsupervising clustering techniques, the clustering results of using principal 

components generated from FAMD are substantially different from those of using the original 

variables.  
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PUBLIC HEALTH SIGNIFICANCE: High-dimensional data often present challenges 

in building a risk prediction model or in classifying individuals into groups with more 

homogeneous characteristics. Dimension reduction techniques, such as incorporating dimension 

reduction tools, can be incorporated in the data pre-processing step for high-dimensional data 

collected from public health or medical records. The results of the thesis show that using 

dimension reduction method (e.g., FAMD for mixed variable types) as a data pre-processing step 

should be used with caution.  



 vi 

Table of Contents 

1.0 Introduction ............................................................................................................................. 1 

2.0 Methods .................................................................................................................................... 5 

2.1 Principal Component Analysis (PCA) .......................................................................... 5 

2.2 Multiple Correspondence Analysis (MCA) .................................................................. 8 

2.3 Factor Analysis of Mixed Data (FAMD) .................................................................... 10 

3.0 Application............................................................................................................................. 12 

3.1 Risk prediction .............................................................................................................. 21 

3.2 Clustering ...................................................................................................................... 23 

4.0 Discussion............................................................................................................................... 24 

Appendix A Table Dictionary .................................................................................................... 28 

Appendix B Plots ......................................................................................................................... 29 

Bibliography ................................................................................................................................ 31 



 vii 

List of Tables 

Table 1 Summary statistics for all variables measured at the time of ICU admission ................. 12 

Table 2 Mortality predictive model performance with different number of PCs ......................... 22 

Table 3 Mortality predictive model performance with all original variables and selected variables

....................................................................................................................................................... 22 

Table 4 Cross-tabulation of the clustering results of using all 39 PCs and using all original 

variables ........................................................................................................................................ 23 

Table 5 Cross-tabulation of the clustering results of using first 30 PCs and using all original 

variables ........................................................................................................................................ 23 

Table 6 Cross-tabulation of the clustering results of using first 17 PCs and using all original 

variables ........................................................................................................................................ 23 

Table 7 Data dictionary for all variables ....................................................................................... 28 



 viii 

List of Figures 

Figure 1 Scree plot of eigenvalues ................................................................................................ 14 

Figure 2 Scree plot of variance explained by principal components ............................................ 15 

Figure 3 Plot of cumulative percent of explained variance by principal components .................. 15 

Figure 4 Scatter plot of variables correlations with new PCs (PC1 vs PC2) ................................ 16 

Figure 5 Scatter plot of variables correlations with new PCs (PC1 vs PC3) ................................ 17 

Figure 6 Scatter plot of variables correlations with new PCs (PC2 vs PC3) ................................ 17 

Figure 7 Scatter plot of variables correlations with new PCs (PC3 vs PC4) ................................ 18 

Figure 8 Cos2 values of variables on each PC .............................................................................. 20 

Figure 9 Density plots for raw quantitative variables ................................................................... 29 

Figure 10 Density plot for quantitative variables with necessary log-transformation .................. 30 

 



 1 

1.0 Introduction 

High-dimensional data generated from the electronic health records (EHRs) can be 

suitable for developing risk prediction models to estimate the intensive care unit (ICU) 

mortality1, estimate the hospital readmissions2, discover causal risk factors of severe acute 

kidney injury (AKI)3, develop disease phenotyping algorithms4, and make the bed-side decision 

makings.5 

Working with high-dimensional data may cause several methodological issues. First, if 

we have thousands of variables in the data set, it is not practical to analyze each one in a 

microscope level for that will take too much computational time and power. Second, oftentimes 

there exists intercorrelation between variables which can increase computational complexities 

tremendously. For example, to include all covariates in a multiple regression model will likely 

lead to severe multicollinearity issues. Also, if we aim to develop a risk prediction model with a 

set of intercorrelated variables, it could result in unacceptably large standard errors and 

inaccurate predictions. Third, it is very difficult to plot or visualize the patterns of data and 

relationship between data when the feature (or covariate) space is higher than three dimensions. 

In addition, certain algorithms which rely on distance measures (e.g., clustering algorithms) may 

struggle to train effective models when there are larger number of covariates than subjects in the 

dataset, which is referred to the curse of dimensionality phenomenon. Researchers have shown 

that in the high-dimensional feature space, the distance of each pairs of points are very close for 
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many data distributions.6 Thus, it may lead some clustering algorithms flawed when applied on 

high-dimensional data structure.  

The aforementioned issues in dealing with high-dimensional data using the traditional 

multivariate or multivariable methods accentuate the need of a new methodological approaches 

that can extract the most important information from high-dimensional data in the preprocessing 

step before proceeding to the subsequent developments.7 

Dimensionality reduction technique has been used to transform high-dimensional data 

into a lower dimensional space while preserving meaningful characteristics of the original data.8 

With efficient dimension reduction, not only data visualization is improved, but also a significant 

amount of computational time can be saved. By excluding the redundant variables in the data set 

or reconstructing a set of uncorrelated variables using dimension reduction techniques, the 

multicollinearity problem in the original data set can be resolved. It has been shown that building 

classification models with data from greatly reduced dimension can result in higher prediction 

accuracy while utilizing fewer features and training samples.9 The curse of dimensionality is also 

expected to get alleviated via dimension reduction.   

Principal components analysis (PCA)10 is one of the most commonly used techniques to 

perform dimension reduction.  For a given high-dimensional data, it produces the best linear 

combination of original data features. However, as an efficient way to perform data reduction, 

PCA suffers from some limitations, such as linear relationships between variables are assumed, 

and its interpretation is based on that the variables are scaled at the numeric levels. When dealing 

with categorical variables, or variables with mixed measurement types (continuous mixed with 

categorical), the numeric assumption made by the PCA is violated therefore PCA is 
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inappropriate to be applied. In addition, nonlinear association might also exist even among 

numeric variables. 

Besides PCA, there are some other classical dimension reduction methods, such as 

multidimensional scaling (MDS)11 and independent component analysis (ICA)12. However, all of 

these suffer from the drawback of the limitation on linearity as PCA does. Recent techniques, 

such as kernel PCA13, locally linear embedding (LLE)14, Laplacian eigenmaps (LEM)15, 

Isomap16, and semidefinite embedding (SDE)17 have been developed to overcome the strong 

assumption of linearity.  

When the variables of a given data are all categorical, multiple correspondence analysis 

(MCA)18 is often used. MCA represents data as points in a low-dimensional Euclidean space. For 

a given categorical variable, individuals with the same level are close together and individuals 

with different levels are far apart. For all the categorical variables under investigation, 

individuals having higher percent of variables with the same level are closer. The procedure can 

be considered as a generalization of PCA for categorical data, which allows us to analyze the 

patterns of relationships of categorical variables that represent the underlying structures. 

In practice, it is common that data contain both numeric and categorical variables. 

Originated from introducing qualitative variables in PCA or introducing quantitative variables in 

MCA, factor analysis of mixed data (FAMD)19 acts as PCA to handle numeric variables and as 

MCA to deal with categorical variables. The Jérôme Pages' multiple FAMD replaces each 

qualitative variable by a set of dummy variables for each level of the variables.19 It incorporates 

the unique scaling of MCA on categorical variables and imposes a refinement to balance 

dispersions of the numeric variables and dummy variables. Then standard PCA can be applied to 

analyze the association between all variables using FAMD. 
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The goal of this research is to perform FAMD on the Recombinant human activated 

protein worldwide evaluation in severe sepsis (PROWESS) dataset that contains demographic 

and clinical information for patients admitted to ICUs.22 After performing dimension reduction, 

we made two different applications. First, we built risk prediction models of 28-day mortality 

using data before and after dimension reduction. We then assessed the performance of these two 

models. Second, we uncovered the hidden covariate patterns using the PAM clustering algorithm 

for data before and after dimension reduction and compared the clustering findings.  

In Section 2, we provide a brief description on PCA, MCA, and FAMD dimension 

reduction methods. In Section 3, we apply the FAMD method to the PROWESS data. Based on 

the original and dimension reduction datasets, we build risk prediction models and partition the 

covariate space using a clustering method. In Section 4, we discuss our findings by focusing on 

the impact of dimension reduction performed in a data pre-processing step on risk prediction and 

clustering.  
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2.0 Methods 

2.1 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a commonly applied technique for dimension 

reduction. The original set of possibly correlated variables in the dataset is transformed into new 

features that are uncorrelated. The transformed uncorrelated variables are called principal 

components, which are rank ordered with respect to the variability of the data they explained. 

Therefore, the first principal component explains the largest variability of the data. By applying 

the PCA, a high-dimensional feature (or covariate) space spanned by a large set of variables can 

then be reduced to a lower dimensional space spanned by a smaller number of principal 

components. The choice of the number of principal components determines the dimension of the 

reduced space.  

The PCA procedure requires that the mean and variance of the data can be used to fully 

describe the corresponding probability distribution (i.e., mean and variance are the sufficient 

statistics), which implies that the probability distribution of each variable in the data must be 

Gaussian distributed.20 Therefore, proper transformation for variables deviated from normal is 

needed before applying PCA to avoid poor performance.  

We now briefly describe how PCA searches for the new vectors (principal components) 

in order to retain the maximum variation of the original data.19 Let matrix X represent a data set, 

with N individuals and K numeric variables. Therefore, each individual 𝑖𝑖 can be seen as a point 
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𝑀𝑀𝑖𝑖 in ℝ𝐾𝐾. In order for computational convenience and for preventing giving more emphasis to 

variables that having higher variance in developing the principal components21, we will need to 

standardize each variable by shifting its mean to 0 and scaling its variance to 1. Let 𝑥𝑥𝑘𝑘 be the 

standardized variable (𝑘𝑘 = 1, … ,𝐾𝐾). The squared distance of each individual data point 𝑀𝑀𝑖𝑖 to the 

origin is: 

𝑑𝑑𝑖𝑖2 = ∑ 𝑥𝑥𝑖𝑖𝑘𝑘2𝑘𝑘 . 

Let each individual is assigned the weight 𝑝𝑝𝑖𝑖 = 1 𝑁𝑁⁄ , where ∑ 𝑝𝑝𝑖𝑖𝑖𝑖  =1. The total inertia (variance) 

𝑁𝑁𝐼𝐼 then can be expressed as: 

𝑁𝑁𝐼𝐼 = ∑ 𝑝𝑝𝑖𝑖𝑑𝑑𝑖𝑖2𝑖𝑖 = ∑ ∑ 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖𝑘𝑘2𝑖𝑖𝑘𝑘 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉[𝑘𝑘]𝑘𝑘 = 𝐾𝐾. 

On the other hand, each variable can be seen as a point 𝑀𝑀𝐾𝐾 in space ℝ𝑁𝑁, of which each 

dimension corresponds to an individual. Therefore, the squared distance of each data point 𝑀𝑀𝐾𝐾 to 

the origin is: 

𝑑𝑑𝑀𝑀𝐾𝐾
2 = ∑ 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖𝑘𝑘2𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑘𝑘] = 1. 

The total inertia 𝑁𝑁𝐾𝐾 then can be expressed as: 

𝑁𝑁𝐾𝐾 =  ∑ 𝑑𝑑𝑀𝑀𝐾𝐾
2

𝑘𝑘 = ∑ ∑ 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖𝑘𝑘2𝑖𝑖𝑘𝑘 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉[𝑘𝑘]𝑘𝑘 = 𝐾𝐾. 

This inertia value is the same to the one we calculated through 𝑁𝑁𝐼𝐼 as it should be.  

The goal of conducting PCA is to find a set of orthogonal axes (principal components) of 

the maximum inertia through the iterative projection procedure. From this procedure, the amount 

of inertia explained by the s_th principal component is denoted by 𝜆𝜆𝑠𝑠, which is nothing more 

than the eigenvalue associated to the unit eigenvector 𝑣𝑣𝑠𝑠 .21 Therefore, given a standardized data 

set, the sum of all the eigenvalues will be the total inertia, that is, ∑ 𝜆𝜆𝑠𝑠𝑠𝑠 = 𝐾𝐾. In PCA analysis, 

we can examine the eigenvalues to determine the number of principal components to be 

considered. If we denote a unit vector as 𝜇𝜇𝑠𝑠 in ℝ𝐾𝐾,  project a point 𝑀𝑀𝑖𝑖 onto 𝜇𝜇𝑠𝑠 , and let ℎ𝑆𝑆
𝑀𝑀𝑖𝑖 
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denote the projected length of vector 𝑂𝑂𝑀𝑀𝚤𝚤��������⃗ , then we are searching for the  𝜇𝜇𝑠𝑠  such that 

∑ 𝑝𝑝𝑖𝑖𝑖𝑖 (ℎ𝑆𝑆
𝑀𝑀𝑖𝑖)2 is maximized, with the constraint of being orthogonal to s-1 directions already 

found. Or, if we denote a unit vector as 𝑣𝑣𝑠𝑠 in ℝ𝐼𝐼,  project a point 𝑀𝑀𝐾𝐾 onto 𝑣𝑣𝑠𝑠, and let ℎ𝑆𝑆
𝑀𝑀𝐾𝐾  denote 

the projected length of vector 𝑂𝑂𝑀𝑀𝐾𝐾���������⃗ , then we are searching for the 𝑣𝑣𝑠𝑠 such that ∑ (ℎ𝑆𝑆
𝑀𝑀𝐾𝐾)2𝐾𝐾  is 

maximized, with the constraint of being orthogonal to s -1 directions already found. 

When the data are standardized, an eigenvalue > 1 indicates that the corresponding 

principal component accounts for more variances than that accounted by one of the original 

variables. Therefore, it is common to use eigenvalue = 1 as a cutoff point to decide which 

principal components are remained.  

The contribution of individual i to compose a principal component can be calculated as: 

contrib (i, 𝑣𝑣𝑠𝑠) = projected inertia of point 𝑀𝑀𝑖𝑖 on 𝑣𝑣𝑠𝑠
projected total inertia of all points in 𝑁𝑁𝐼𝐼 on 𝑣𝑣𝑠𝑠

=
𝑝𝑝𝑖𝑖( ℎ𝑆𝑆

𝑀𝑀𝑖𝑖)2

∑ 𝑝𝑝𝑖𝑖( ℎ𝑆𝑆
𝑀𝑀𝑖𝑖)2𝑖𝑖

=
𝑝𝑝𝑖𝑖( ℎ𝑆𝑆

𝑀𝑀𝑖𝑖)2

𝜆𝜆𝑠𝑠
 . 

Similarly, the contribution of variable k to compose a principal component can be calculated as: 

contrib (k, 𝑣𝑣𝑠𝑠) = projected inertia of point 𝑀𝑀𝐾𝐾 on 𝑣𝑣𝑠𝑠
projected total inertia of all points in 𝑁𝑁𝐾𝐾 on 𝑣𝑣𝑠𝑠

=
( ℎ𝑆𝑆

𝑀𝑀𝐾𝐾)2

∑ ( ℎ𝑆𝑆
𝑀𝑀𝐾𝐾)2𝐾𝐾

=  r(k,𝑣𝑣𝑠𝑠)2

𝜆𝜆𝑠𝑠
 . 

Note that the contribution of variable k to compose a principal component usually is not 

expressed by the form of proportion calculated above. Instead, it is expressed by the squared 

correlation coefficient, r(k, 𝑣𝑣𝑠𝑠)2 multiplied by 100. Therefore, for each component, the 

contributions of all variables sum up to 100; and for each variable, its contributions to all 

components sum up to 100.  

As we described earlier, PCA is only appropriate when the data are comprised of a set of 

normally distributed variables. When the data contains a categorical variable with Q levels, a 

suggestion is to replace this variable by a set of Q – 1 dummy variables and then apply PCA on 

the reconstructed data. Although the convenience of this strategy, the results could be biased 
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because of the distributions of the numeric variables and the dummy indicator variables are not 

comparable. Factor Analysis of Mixed Data (FAMD) has been developed to handle data with 

mixed variable types. Instead of using the 0/1 value for the dummy variables, FAMD 

incorporates a unique scaling technique in the Multiple Correspondence Analysis (MCA) in 

order to balance the influence of the two types of variables (numeric and categorical) during the 

construction of the principal components.19 

MCA is a dimension reduction method that is used for data only including 

categorical/qualitative variables. Previously, researchers had suggested a strategy to deal with the 

data with mixed variable types by discretizing the numeric variables and then use the MCA to 

analyze all the variables. However, this procedure is not recommended for several reasons. First, 

it results in a loss of information by discretizing a numeric variable. Second, the choice of the 

optimal cutoff points are often not obvious, especially when there are only a few number of 

observations in the data set. In addition, the process could be tedious if there are a considerably 

large number of numeric variables. 

In the following section, we briefly describe the MCA dimension reduction procedure, 

where PCA and MCA together will be the basis of FAMD.  

2.2 Multiple Correspondence Analysis (MCA) 

Let matrix X represent a data set with N individuals and a set of J categorical variables. 

Let 𝐾𝐾𝑗𝑗 denote the number of levels of variable j, and 𝐻𝐻 = ∑ 𝐾𝐾𝑗𝑗𝑗𝑗  is the total number of levels for 

all variables. Let matrix Y represent the expanded data with N individuals (rows) and H total 

levels (columns), where 𝑦𝑦𝑖𝑖𝑘𝑘 = 1 if the ith individual possesses the 𝑘𝑘𝑗𝑗th level of variable j; and 𝑦𝑦𝑖𝑖𝑘𝑘 
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= 0 in all other cases. Let 𝑝𝑝𝑘𝑘 denote the proportion of individuals possessing level k so that 𝑝𝑝𝑘𝑘 =

1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖𝑘𝑘𝑖𝑖 . To standardize the data, we scale each cell in matrix Y by 𝑦𝑦𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖
 – 1, so that the mean of 

each column (i.e., one level of a variable) is 0. Let matrix Z denote this scaled new data, within 

which the (𝑖𝑖,𝑘𝑘)th element 𝑧𝑧𝑖𝑖𝑘𝑘 = 𝑦𝑦𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖
− 1.  

Using the similar idea in PCA, treating each individual i as a data point 𝑀𝑀𝑖𝑖 in space ℝ𝐾𝐾. 

By assigning the weight of 𝑝𝑝𝑖𝑖 = 1
𝑁𝑁

 to each individual and assigning the weight of 𝑚𝑚𝑘𝑘 = 𝑝𝑝𝑖𝑖
𝐽𝐽

  for 

each column (one level of a variable), the squared distance of each data point  𝑀𝑀𝑖𝑖 to the origin 

becomes: 

𝑑𝑑𝑖𝑖2 = ∑ 𝑝𝑝𝑖𝑖
𝐽𝐽
𝑧𝑧𝑖𝑖𝑘𝑘2𝑘𝑘 = 1

𝐽𝐽
∑ �𝑦𝑦𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖
− 1�𝑘𝑘 . 

Therefore, the total inertia (variance) can be expressed as: 

𝑁𝑁𝐼𝐼 = ∑ 𝑝𝑝𝑖𝑖𝑑𝑑𝑖𝑖2𝑖𝑖 = 𝐾𝐾
𝐽𝐽
− 1. 

By treating each level of a variable as a data point 𝑀𝑀𝐾𝐾 in space ℝ𝑁𝑁, of which each dimension 

corresponds to an individual. The inertia of category k can be expressed as: 

𝑚𝑚𝑘𝑘𝑑𝑑𝑀𝑀𝐾𝐾
2 =  𝑝𝑝𝑖𝑖

𝐽𝐽
∑ 𝑝𝑝𝑖𝑖𝑧𝑧𝑖𝑖𝑘𝑘2𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖

𝐽𝐽
. 

The total inertia then can be expressed as: 

𝑁𝑁𝐾𝐾 = ∑ 1 − 𝑝𝑝𝑖𝑖
𝐽𝐽

 𝑘𝑘 = 𝐾𝐾
𝐽𝐽
− 1, 

which is the same to the one that is calculated through 𝑁𝑁𝐼𝐼 as it should be. In addition, a variable j 

is represented by its 𝐾𝐾𝑗𝑗 levels in a vector space. We denote this subspace formed by the 𝐾𝐾𝑗𝑗 levels 

as 𝐸𝐸𝑗𝑗, of which the dimension is 𝐾𝐾𝑗𝑗 − 1. Because the 𝐾𝐾𝑗𝑗 levels are orthogonal to each other in the 

subspace 𝐸𝐸𝑗𝑗, the total inertia of the 𝐾𝐾𝑗𝑗 levels of variable j are: 

∑ 1 − 𝑝𝑝𝑖𝑖
𝐽𝐽

 𝑘𝑘∈𝐾𝐾𝑗𝑗 = 𝐾𝐾𝑗𝑗 − 1
𝐽𝐽

. 
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Just like PCA, the goal of conducting MCA is to find a set of orthogonal axes (principal 

components) of the maximum inertia. This can be done iteratively by projecting level k of 

variable j on a centered unit vector ν in ℝ𝑁𝑁. Through this procedure, the projected inertia for 

each variable can be calculated.  

2.3 Factor Analysis of Mixed Data (FAMD) 

As we mentioned earlier, when data contains both numeric and categorical variables, 

FAMD acts as PCA in dealing with numeric variables and acts as MCA in dealing with 

categorical variables. Suppose there are J numeric variables and Q categorical variables, where 

𝑘𝑘𝑞𝑞 denotes the number of categories of the qth qualitative variable. Let 𝑝𝑝𝑘𝑘𝑞𝑞 denote the proportion 

of individuals possessing category 𝑘𝑘𝑞𝑞. Let H denote the total categories for all the qualitative 

variables. 

When processing the data, the numeric variables and the categorical variables are 

standardized as those described in PCA and MCA, respectively. The weight for each individual 

is still 1/N, but instead of assigning the weight of each level to 𝑝𝑝𝑘𝑘𝑞𝑞/𝐻𝐻 as that in MCA, the weight 

of each level of a categorical variable in FAMD is assigned to 𝑝𝑝𝑘𝑘𝑞𝑞 in order to balance the 

contributions of the two types of variables. As a result, in space ℝ𝐾𝐾, each numeric variable has 

inertia of 1 and is represented by a vector; each categorical variable has total inertia of 𝑘𝑘𝑞𝑞 – 1 and 

is represented by 𝑘𝑘𝑞𝑞 vectors. When projecting the total inertia of 𝑘𝑘𝑞𝑞 – 1 on each dimension of the 

subspace of a categorical variable, the projected inertia is 1. Therefore, when searching for the 

new axes with maximum inertia, the two types of variables are on the equal step. 
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When search for a new principal component in FAMD, we maximize the sum of the 

squared correlation coefficient between numeric variables and the principal component plus the 

sum of the squared correlation ratio between categorical variables and the principal component. 

The contribution of individual i (or a variable) to a principal component can be calculated in a 

similar sense as that in PCA and the quality of representation is defined as the cosine of the angle 

𝜃𝜃𝑘𝑘𝑗𝑗, which is the correlation coefficients of variable k and variable j. 
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3.0 Application 

We demonstrate the use of dimension reduction methods for data collected from a 

multicenter, randomized, double-blind, placebo-controlled trial (PROWESS trial) of 1,690 sepsis 

patients. The drug to be tested or placebo was administered intravenously. Details of the trial 

description and results can be found in the related research publication.22 Patients’ baseline 

characteristics including demographic, clinical, biomarkers, and laboratory information were 

assessed within 24 hours before the infusion began. All patients were followed for 28 days after 

the start of the infusion or until death. For this study, we chose 28 demographic and clinical 

variables which contain 21 numeric and 7 categorical or qualitative types. Because the 

distributions of several numeric variables were highly right-screwed, we applied the natural 

logarithm transformation to these variables before applying FAMD. Figures 9 and 10 depict the 

density plot of the numeric variables before and after necessary log transformation, respectively. 

Table 1 summarizes the descriptions of these variables. Mean (standard deviation [SD]) and 

frequency (percentage) are presented for numeric and categorical/qualitative variables, 

respectively.  

 

Table 1 Summary statistics for all variables measured at the time of ICU admission 

Variable Mean (SD) or n (%) 
Age in year, mean (SD) 60.52 (16.80) 
Albumin (g/dL), mean (SD) 2.01 (0.65) 
Log transformed Alanine aminotransferase (IU/L), mean (SD) 3.53 (1.14) 
Log transformed aspartate aminotransferase (IU/L), mean (SD) 4.01 (1.16) 
Log transformed BANDS, mean (SD) 0.04 (1.27) 
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Table 1 Continued  
Log transformed serum bilirubin, mean (SD) -0.28 (0.96) 
Log transformed BUN, mean (SD) 2.28 (0.67) 
Chlorine, mean (SD) 106.21 (7.49) 
Log transformed creatinine, mean (SD) 0.44 (0.64) 
Log transformed glucose, mean (SD) 5.02 (0.44) 
Heart rate, mean (SD) 129.67 (27.87) 
Hemoglobin (g/dL), mean (SD) 10.67 (1.97) 
Log transformed PaO2 (mmHg), mean (SD) 4.40 (0.49) 
Log transformed platelets, mean (SD) 5.05 (0.64) 
Respiratory rate, mean (SD) 30.83 (12.36) 
Sodium (mEq/L), mean (SD) 139.03 (6.31) 
Log transformed systolic blood pressure (mmHg), mean (SD) 4.42 (0.39) 
Temperature in Celsius, mean (SD) 38.19 (1.70) 
Log transformed white blood cell counts, mean (SD) 2.50 (0.79) 
Log transformed prothrombin time in second, mean (SD) 2.98 (0.27) 
Log transformed (101% – oxygen saturation), mean (SD) 1.88 (0.82) 
Number of comorbidity conditions, n (%)  

 1 549 (32.49%) 
 2 489 (28.93%) 
 3 392 (23.20%) 
 4 180 (10.65%) 
 5 or more 80 (4.73%) 

GCS levels, n (%)  
 Score of 3-12 562 (33.25%) 
 Score of 13 90 (5.33%) 
 Score of 14 211 (12.49%) 
 Score of 15 827 (48.93%) 

Site of infection, n (%)  
 Bloodstream 87 (5.15%) 
 Central nervous system 39 (2.31%) 
 Genitourinary 179 (10.59%) 
 Abdominal 337 (19.94%) 
 Lung 906 (53.61%) 
 Other 142 (8.40%) 

Gram stain of bacterial pathogen, n (%)  
 Mixed 610 (36.09%) 
 Fungus 85 (5.03%) 
 Purely gram-negative 266 (15.74%) 
 Purely gram-positive 375 (22.19%) 
 Organism negative 354 (20.95%) 

Male sex, n (%) 964 (57.04%) 
Drug resistance, n (%) 499 (29.53%) 

      Death within 28 days, n (%) 469 (27.75%) 
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After necessary log transformation of the right-screwed variables, FAMD was applied to 

the final data set to reduce dimension while keeping the most important information in the data. 

The associated scree plot (Figure 1) illustrates the eigenvalues of the corresponding principal 

components (PCs). The variance explained by each PC is depicted in Figure 2 and the 

cumulative variance explained by the PCs is shown in Figure 3. From Figures 1 to 3, there were 

17 eigenvalues that are greater than or equal to 1 (round to the second decimal point), which in 

total explained 64.12% of the total variances. The first PC explained most of the variation of the 

data (7.1%) and corresponds to the largest eigenvalue (2.8). The succeeding PC then explains 

most of the variation of the data among the remaining PCs. In Figures 1 and 2, the slopes of the 

first 4 PCs were steeper compared to those of the other PCs. This indicates that the first 4 PCs 

were the most important components that contained the most important information of the data. 

Thus, we will later focus on interpreting these 4 PCs. 

 

 

Figure 1 Scree plot of eigenvalues 
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Figure 2 Scree plot of variance explained by principal components 

 

 

Figure 3 Plot of cumulative percent of explained variance by principal components 
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Relationship between variables and the principal dimensions can be detected by 

inspecting the new coordinates of the variables in the new principal dimensions space. Variables 

that have larger coordinate value on the axis of dimension are more correlated to dimension 1; 

the same findings also apply to dimension 2 and other dimensions. Figure 4-7 illustrate the 

relationships between variables with PC1, PC2, PC3, and PC4, which are the first leading and 

the most important principal components that captures most variability of the data. The 

coordinates of Figures 4-7 are the variable coordinates in the new principal components space. 

 

 

Figure 4 Scatter plot of variables correlations with new PCs (PC1 vs PC2) 
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Figure 5 Scatter plot of variables correlations with new PCs (PC1 vs PC3) 

 

 

Figure 6 Scatter plot of variables correlations with new PCs (PC2 vs PC3) 
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Figure 7 Scatter plot of variables correlations with new PCs (PC3 vs PC4) 

 

Figure 4 to 7 showed the factor loadings for each of the variable on selected two principal 

components (PCs). Roughly speaking, for a given PC, the percentage of the variance it explains 

from an original variable can be represented by the squared factor loading. We found that log 

transformed creatinine level (ln_cr), log transformed blood urea nitrogen (BUN) level (ln_bun), 

log transformed AST level (ln_ast), log transformed ALT level (ln_alt), log transformed 

prothrombin time (ln_pt), and log transformed platelets count (ln_platelets) were correlated to 

PC1 the most. Log transformed SaO2 (ln_sat), respiratory rate (resp), Cl (cl), log transformed 

partial pressure of oxygen (PaO2) level (ln_pao2), log transformed ALT level (ln_alt), and log 

transformed AST level (ln_ast) were correlated to PC2 the most. Number of comorbidity 

conditions (comorbid), age, and Cl (cl) were the most correlated to PC3. Log transformed SaO2 

(ln_sat) and log transformed PaO2 level (ln_pao2) were correlated to PC4 the most. We also 

demonstrated the correlation between any two principal components using a scatter plot. As 
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shown in Figure 6, log transformed AST level (ln_ast) and log transformed ALT level (ln_alt) 

were correlated to both PC1 and PC2. Cl (cl) was correlated to both PC2 and PC3 (Figure 8). 

These results indicate that several variables in the original data were intercorrelated; therefore, 

the application dimension reduction was justified. 

Alternatively, we can use cos2 values to discern the relationships between variables and 

PCs. Cos2 values indicate the quality of representation of variables on the factor map. For a 

numeric variable, the cos2 value is equal to the squared coordinates on each PC, which is the 

squared correlation coefficient of that variable and a particular PC. For a categorical variable 

with k levels, the cos2 value is equal to the squared coordinates divided by k – 1, which is the 

squared correlation ratio of that variable and a particular PC. We can plot the cos2 values of a 

variable for all the principal component dimensions. The heatmap of Figure 8 depicts the cos2 

value of each variable on each dimension. A darker color represents a higher cos2 value, which 

indicates that the variable is more correlated to that corresponding PC. 
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Figure 8 Cos2 values of variables on each PC 

From figure 8, again we found that log transformed AST level (ln_ast), log transformed 

ALT level (ln_alt), log transformed blood urea nitrogen (BUN) level (ln_bun), log transformed 

creatinine level (ln_cr), log transformed PaO2 level (ln_pao2), and log transformed prothrombin 

time (ln_pt) were correlated to PC1 the most. Log transformed AST level (ln_ast), log 

transformed ALT level (ln_alt), Cl (cl), log transformed PaO2 level (ln_pao2), respiratory rate 

(rep), and log transformed SaO2 (ln_sat) were correlated to PC2 the most. Age, Cl (cl), and 

number of comorbidity conditions (comorbid) were correlated to PC3 the most. Log transformed 

PaO2 level (ln_pao2) and log transformed AST level (ln_ast) were correlated to PC4 the mos. 

Also, we found that after PC16 the correlation of each variable to each dimension is very mild. 

This suggests that it is reasonable to keep only the first 17 PCs (the ones having corresponding 

eigenvalue ≥ 1).In fact, by checking the cos2 values, we found that from PC18 to PC39 the 

maximum cos2 value of a variable to a PC is 0.037, which indicates that the correlations between 

each variable to any PC is very low. In addition, we found that some of the variables have very 
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low correlation to any of the principal components, such as log transformed bands (ln_bands), 

log transformed serum total bilirubin level (ln_bili), heart rate (hr), log transformed systolic 

blood pressure (SBP) level (ln_sbp), and gram stain of bacterial pathogen (type_culture). Those 

variables can be considered to have little contributions to the total variation compared with other 

demographic and clinical variables. 

3.1 Risk prediction 

We used FAMD to generate 39 PCs which contains all variations of the original data. To 

predict the 28-day mortality of these patients, we built risk prediction models using logistic 

regression. Accuracy and area under the ROC curve (AUC) were used to evaluate the model 

performance. A 10-fold cross-validation was conducted for measuring the performance of a 

given predictive model on new test data sets. We compared the model performance using various 

sets of leading PCs as predictors. We also compared the model performance using reduced PCs 

and using the original variables same as above. 

The performance of the model based on reduced PCs as predictors is shown in Table 2. 

The performance of the model based on all original variables and the selected set of variables 

using stepwise variable selection and AIC as the selection criteria is shown in Table 3. The 

selected set of variables includes 16 variables: age, albumin, log transformed ALT level (ln_alt), 

log transformed AST level (ln_ast), log transformed serum total bilirubin level (ln_bili), log 

transformed blood urea nitrogen (BUN) level (ln_bun), Cl (cl), heart rate (hr), and log 

transformed platelets count (ln_platelets), log transformed systolic blood pressure (SBP) level 

(ln_sbp), temperature (temp), log transformed prothrombin time (ln_pt), log transformed SaO2 



 22 

(ln_sat), number of comorbidity conditions (comorbid), gender (male), site of infection (infisite). 

The calculation of accuracy is based on 0.5 cut point, meaning that if the predicted probability of 

having mortality is greater or equal to 0.5, the outcome is labeled as 1 (death) and that if the 

predicted probability of having mortality is less than 0.5, the outcome is labeled as 0 (alive). 

Results in Table 2 show that, in general, by including more PCs one can achieve better 

prediction in a model (e.g. higher accuracy and higher AUC). When a model included all 39 PCs 

as predictors, the performance was exactly the same as that included all variables as predictors. 

Moreover, the predictive model of 16 predictors selected from a forward stepwise procedure 

produced a similar performance as that produced from the full model (Table 3). 

 

Table 2 Mortality predictive model performance with different number of PCs 

Number of PCs Total variance explained Accuracy AUC 
1 PC 7.07% 0.73 0.63 
2 PCs 13.48% 0.73 0.63 
3 PCs 19.12% 0.73 0.65 
4 PCs 23.62% 0.74 0.68 
5 PCs 27.62% 0.74 0.68 
8 PCs 38.62% 0.74 0.70 
10 PCs 44.93% 0.74 0.70 
12 PCs 50.78% 0.74 0.71 
16 PCs 61.56% 0.75 0.72 
17 PCs 64.12% 0.75 0.72 
29 PCs 89.58% 0.76 0.73 

39 PCs (all PCs) 100% 0.75 0.77 
 

Table 3 Mortality predictive model performance with all original variables and selected variables 

predictors Accuracy AUC 
All variables 0.75 0.77 

Selected 16 variables 0.76 0.76 
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3.2 Clustering 

We applied the PAM clustering procedure on the lower-dimensional data obtained from 

FAMD. The result was compared to the same method applied to the original data. The number of 

clusters was determined from the corresponding k-means consensus matrix. Tables 4 to 6 show 

the cross tabulations of the clustering results using selected number of PCs vs. using all of the 

original variables. We found that clustering results were very different using two different sets of 

input data; even if we used all the PCs, the clustering results still differed substantially from 

those using all of the original variables. 

Table 4 Cross-tabulation of the clustering results of using all 39 PCs and using all original variables 

 Clusters (using all 39 PCs) 
Clusters (using all original variables) 1 2 3 4 

1 50 88 129 67 
2 67 145 168 166 
3 44 72 106 82 
4 182 106 97 121 

 

Table 5 Cross-tabulation of the clustering results of using first 30 PCs and using all original variables 

 Clusters (using first 30 PCs) 
Clusters (using original variables) 1 2 3 4 

1 155 64 64 51 
2 94 277 99 76 
3 94 89 69 52 
4 156 81 137 132 

 

Table 6 Cross-tabulation of the clustering results of using first 17 PCs and using all original variables 

 Clusters (using first 17 PCs) 
Clusters (using original variables) 1 2 3 4 

1 116 90 28 100 
2 102 140 131 173 
3 47 42 121 94 
4 96 144 89 177 

 



 24 

4.0 Discussion  

We have applied factor analysis of mixed data (FAMD) to achieve dimension reduction 

on the PROWESS dataset which contains demographic and clinical information measured at the 

time of ICU admission for sepsis patients. One of the most important advantages of this method 

is its ability to handle both numeric and categorical variables. In addition, using this method, not 

only we can analyze the relationships between numeric variables using PCA instead of MCA to 

analyze the relationships between categories, but also obtain the relationship between numeric 

and categorical variables. In practice, the number of principal components to be kept was based 

on the corresponding eigenvalues. We kept the principal components of which the corresponding 

eigenvalues are greater than or equal to 1. As a result, we reduced the dimensions of the 

covariate space from 39 to 17 which explained 64.12% of the total variances of data. One can 

also keep more principal components to maintain a higher proportion of total variances. For 

example, by keeping 20 principal components in PROWESS data we can explain 71.41% of the 

total variances.  

One potential disadvantage of FAMD is that as it handles numeric variables as PCA does, 

so the numeric variables are required to be approximately normally distributed in order to 

achieve good performance. In our application, though some of the numeric variables were log-

transformed in order to improve normality, a few of them were still not quite normally 

distributed or close to symmetric.  
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Another potential drawback of FAMD is that although it treats each numeric variable as 

one dimension, it treats a categorical variable with 𝐾𝐾 levels as 𝐾𝐾 − 1 dimensions. For example, 

in our application, we have a total of 27 variables in the raw data set, which can be seen as 27 

dimensions. However, while applying the FAMD, although it reduced the dimension to 17 with 

64.12% of the total variances remained, internally, it reduced the dimension from 39 to 17. That 

is saying that it treats each categorical variable as having more than 1 dimension. This suggests 

that if there are much more categorical variables than numeric variables in the data set and each 

categorical variable have relatively large number of levels, FAMD may not be appropriate. In 

addition, as we introduced in the methods section, in FAMD, each numeric variable has inertia of 

1 and is represented by a vector; each categorical variable has a total inertia of 𝑘𝑘𝑞𝑞 – 1 and is 

represented by 𝑘𝑘𝑞𝑞 vectors. With this setting, the contributions of the numeric and categorical 

variables are balanced when searching for the new axes with maximum inertia. 

Based on the results from our risk prediction, we concluded that the use of the leading 

principal components as predictors in the regression model is appropriate. Our analysis 

demonstrated that using different number of PCs as predictors would achieve comparable model 

performance to that using the original variables as predictors. When using all PCs, the predictive 

performance would be exactly the same as using all the original variables. Although, with larger 

number of PCs in general would achieve better predictive performance, one can find that even 

with a small number of PCs as predictor (e.g., 1 PC, 2 PCs, or 3 PCs), the predictive performance 

of the model is still acceptable. Thus, data after dimension reduction can be used in risk 

prediction. However, one should notice that using the reduced PCs as predictors does not 

necessarily achieve better performance than using variables obtained from the traditional 

variable selection method (e.g., stepwise procedure). In our analysis, the 16 variables selected by 
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using the stepwise procedure (using AIC as the selection criterion) performs better than using 

any reduced PCs. Nevertheless, when there are hundreds or thousands of candidate variables, 

using principal components from the dimension reduction methods will be a lot more efficient 

and applicable than the variable selection approach.  

When compared between applying dimension reduction as a data preprocessing step 

before using the PAM clustering algorithm with and directly applying PAM to the original data 

we found very different results. In fact, even if we used all the principal components for 

clustering, the results were substantially different from applying clustering algorithm to the 

original variables. This indicates that principal components do not necessarily keep the 

underlying clustering structure. Therefore, using dimension reduction as a data pre-processing 

step for clustering may not be appropriate. Our results are consistent with previous researchers’ 

findings. Previous research showed that applying principal components for dimension reduction 

before clustering algorithm is not justified in general23 and that the most important principal 

components do not necessarily contain any clustering information from the original data.24 Some 

research proposed adaptive dimension reduction to deal with this issue.25-27 Using adaptive 

dimension reduction, clustering and subspace learning are performed simultaneously to avoid the 

information loss as in the case when the clustering and subspace learning are separated (e.g., 

using dimension reduction as a data preprocessing step for clustering). However, in many 

applications, dimension reduction is still applied as a preprocessing step for clustering algorithms 

in high-dimensional data structure. Our application demonstrates the inappropriateness of using 

dimension reduction method to produce principal components as fixed new input for clustering 

algorithm. In practice, one needs to be cautious of using dimension reduction as a data 

preprocessing step for clustering application. 
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In summary, dimension reduction technique is useful in mapping data into a much lower 

dimensional space to filter out noise while maintaining the most important variabilities in the 

original high-dimensional data. When applying dimension reduction in a data preprocessing step, 

it is important to use caution because not all features of the original data will be kept. The loss of 

a critical data feature during dimension reduction could yield erroneous results in the subsequent 

analysis. 
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Appendix A Table Dictionary 

Table 7 Data dictionary for all variables 

variable Variable name 
age age 

albumin albumin 
ln_alt Alanine aminotransferase (ALT), log-transformed 
ln_ast aspartate aminotransferase (AST), log-transformed 

ln_bands BANDS, log-transformed 
ln_bili serum total bilirubin level, log-transformed 
ln_bun blood urea nitrogen (BUN) level, log-transformed 

cl Chloride 
ln_cr creatinine, log-transformed 

ln_gluc glucose, log-transformed 
hr heart rate 

hgb Hemoglobin 
ln_pao2 PaO2, log-transformed 

ln_platelets platelets count, log-transformed 
resp respiratory rate 

sodium sodium 
ln_sbp systolic blood pressure (SBP) level, log-transformed 
temp temperature 

ln_wbc white blood cell counts, log-transformed 
ln_pt prothrombin time, log-transformed 
ln_sat 101 – oxygen saturation, log-transformed 
mort28 death status of 28-day 

comorbid number of comorbidity conditions 
gcs GCS levels 

male gender 
type_culture gram stain of bacterial pathogen 

drugresis drug resistance 
infesite site of infection 
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Appendix B Plots 

 

Figure 9 Density plots for raw quantitative variables 
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Figure 10 Density plot for quantitative variables with necessary log-transformation 
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