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Ligand-Protected Nanocluster Stability, Doping, and Prediction

Michael G. Taylor, PhD

University of Pittsburgh, 2019

Though new nanomaterials are synthesized everyday for applications ranging from tar-

geted drug delivery to chemical catalysis via ligand-stabilized colloidal growth methods, the

physical underpinnings of these processes are often unknown. Without detailed knowledge

of growth mechanisms or an understanding of the stability of the final product, synthesis

of colloidal nanomaterials often relies on trial-and-error experimentation. Towards enabling

nanomaterials-by-design, precise control of nanomaterial morphology (i.e. size, shape, chem-

ical composition, and chemical ordering) is desired as morphology often dictates properties.

To control morphology, an understanding of how nanomaterial structure relates to stability

is needed. An ideal class of colloidal nanomaterials for studying structure-stability relations

are the atomically-precise thiolate-protected metal nanoclusters (MNCs).

In this work, we focus on developing deeper understanding of the structure-related

remarkable stability of MNCs and their physicochemical transformations utilizing ab ini-

tio computational methods. First, we introduce a novel Thermodynamic Stability Model

(TSM) for ligand-protected MNCs and demonstrate its power for understanding the sta-

bility of a wide range of MNCs. Next, we focus on the energetics of heterometal doping

and ligand/dopant-mediated precise transformations of several smaller Au MNCs, showing

remarkable agreement with experimental results. Finally, we demonstrate the application of

the TSM to capture a wide range of experimental heterometal doping observations in Au25

MNCs for which no simple explanation previously existed. We also use the TSM to make

predictions related to dopant locations and concentrations within the Au38 MNC.

Overall, this dissertation advances knowledge of the underpinnings of the stability of

ligand-protected atomically-precise MNCs contributing to MNC design for targeted applica-

tions.
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1.0 Introduction

Following the discovery of emergent catalytic properties of nanoscale gold (famously

inert in bulk) for low-temperature CO oxidation by Haruta [2], the race for precise nanoscale

engineering has rapidly accelerated.[3] For example, we have shown efficient engineering at

the nanoscale has potential to transform problems from excessive kidney stone growth[4, 5]

to screening of the stability of possible catalytic nanoparticles (NPs).[6] While a variety

of synthetic routes for NPs have been created [7], few are scalable to large quantities [8]

or allow for atomic-level precision in the synthesized NPs.[9] More precise control of NP

structure is highly desirable as NP morphology (i.e. size, shape, composition, and chemical

ordering) often directly relates to the useful pysicochemical properties of the NP for specific

applications.[3] For example, we showed that the activity of gold NPs for the catalytic

oxidation of CO trends with Au NP size.[10]

Therefore, moving towards application-targeted nanoscale engineering will require

atomic-level synthetic precision.[11]

1.1 Atomically-Precise Ligand Protected Metal Nanoclusters (MNCs)

One of the only classes of inorganic nanomaterials for which atomic-level precision has

been achieved is ligand-protected noble metal nanoclusters (MNCs). Since the first success-

ful crystallization and structural determination of a MNC, the Au102(MBA)44 MNC, in 2007

[12], several other atomically-precise noble metal MNCs have been solved via single crystal

X-ray diffraction (XRD).[13] These XRD-resolved, thermally-stable (“magic-number”) thi-

olated MNCs (Mn(SR)m, where M=metal and SR=thiolate group) range from 10 to a few

hundred metal atoms.[9, 14] A large majority of these precise MNCs are produced using a

Brust-Schiffrin-type synthesis.[15] In the Brust-Schiffrin synthesis, metal salts (most notably,

Au), are reduced in the presence of thiolate ligands to produce MNCs of specific sizes, de-

pending on the ligands and reaction conditions used.[16] Applying higher temperatures and
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excess ligand to a product mixture from an initial reduction step in a process named “size-

focusing”,[17] in combination with ligand exchange induced size/structural transformation

(LEIST)[18] techniques have enabled the synthesis of a series of atomically-precise MNCs.

These synthesis techniques favor thermodynamic control as a final step, making their sta-

bility more a function of thermodynamic stability. A schematic view of these two synthetic

techniques adapted from work by Jin et al. [17, 18] along with examples of solution phase

species at each step is highlighted in Figure 1.1.

Figure 1.1: Schematic overview of size-focusing and LEIST techniques used in synthesizing

and isolating atomically-precise MNCs.

1.2 Theories for MNC Structure and Stability

Given their atomically-precise structure, MNCs are ideal for first-principles-based com-

putational modeling and have been employed to probe structural and electronic properties

of these magic-number MNCs. In particular, the “divide-and-protect” theory [19] emerged
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in an effort to rationalize the observed structural characteristics of Au MNC and the “su-

peratom” theory to explain the magic-number MNC stability.[20, 21]

The divide-and-protect theory suggests that Au MNCs form from maximizing Au-Au and

Au-S interactions that take place in the core and on the surface of the MNCs, respectively.

This leads to MNC structures consisting of metallic Au cores with shell structures formed

from thiolate-Au bond networks, –SR(-Au-SR)n-, known as “staple motifs”. [22, 23] Divide-

and-protect theory has proven effective in suggesting MNC structural characteristics, with

nearly every MNC displaying such a core-shell structure. However, the divide-and-protect

theory only suggests structural trends and does not introduce quantitative descriptors for

MNC stability, resulting in a loose general structural criteria. Here, we define structure as

composition (Au vs. S content) in addition to MNC size and shape (morphology).

The superatom theory, on the other hand, states that magic-number stability results from

the formation of closed-shell electronic orbital structures, similar to noble gases.[20, 21] This

theory has been successful in explaining the optical and catalytic properties of several magic-

number MNCs, but has been shown weakness as a universal descriptor for the thermodynamic

stability of thiolated Au MNCs.[24] In particular, the Au20(SR)16 and Au36(SR)24 MNCs do

not fall in the predictions of the superatom theory, but have been successfully experimentally

synthesized and isolated under thermodynamic conditions (i.e. long times of reaction).[25, 26]

To capture the stability of MNC like the Au20(SR)16, an extension to the “superatom model”

called the “superatom newtork” was proposed.[27] This superatom network theory states that

all MNCs are either simple superatoms, or are comprised of multiple superatomic subunits

combined together. Following this logic of the superatom network model, a “grand unified

model” was also proposed stating that all Au MNCs are built of electronically closed-shell

subunits.[28, 29] Although the combination of the superatom network/grand unified models

are able to capture the stability of all reported Au MNC structures, they should theoretically

apply to all metals that fall on the same column of the periodic table as they all apply

simple electron counting and shell closure rules. Yet, metals that fall in the same periodic

table column (e.g. Au vs. Cu) do not form MNCs of the same size (number of metal

atoms and ligands) and structures. Most recently, combinations of divide-and-protect and

electron counting methods have been extended to “growth rule” concepts, where larger MNCs
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share structural trends with smaller MNCs.[30] Such methods, however, do not clarify the

extraordinary stability of particular MNC compositions, sizes, or structures in a “growth

rule” path compared to other possible MNCs. This is particularly important as the thiol

layers and metals of the MNCs and the MNCs themselves have been shown to be in dynamic

equilibrium. [31, 32]

Beyond first-principles calculations, electron-counting methods, and structural rules, sim-

ple geometric scaling laws relating the total number of Au atoms (n) to the number of ligands

(m) in MNCs have been discovered, though these relations are not designed to predict specific

MNC morphologies.[33, 34] In summary, although rich work has been completed in analyz-

ing and predicting MNC structure, exceptions and weakness of each reveal the need for new

methods for understanding and rationalizing the “magic” stability of these atomically-precise

ligand-protected MNCs.

1.3 Heterometal Doping of MNCs

Heterometal doping and alloying of Au MNCs has been shown to modulate the

optical,[35] catalytic,[36] and stability [37] properties of the MNCs and is therefore a promis-

ing avenue towards application-driven MNC design. Experimental techniques such as anti-

galvanic substitution,[38] intercluster reactions,[39] and simple metal exchange[40] have been

successful in doping or alloying heterometals into monometallic MNC frameworks.[41] The

properties of doped MNCs are dictated by both the precise dopant locations within the

MNC[42] along with dopant concentrations.[35, 43] Towards control of dopants, the first

prediction (via density functional theory (DFT) calculations[44]) of doped MNCs and their

emergent properties highlighted the potential of doping within the [Au25(SR)18]
− MNC.

From this original work two design rules emerged for dopant viability. First, the dopant

metal should be of similar size to Au, where metals with similar diameters to Au will not

cause a MNC to geometrically reconstruct. Second, the resultant doped MNC should have a

similar HOMO-LUMO gap to the undoped MNC. Since this initial work, DFT has proven in-

valuable in determining the feasibility of doping within specific MNC frameworks [45] and can
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give reliable dopant position-dependent energetics for several metals.[46] For some dopants,

however, DFT has not matched experimental observations for dopant location and the design

rule of HOMO-LUMO gap similarity has failed to predict doping feasibility.[47, 48, 49] Ad-

ditionally,theoretical studies addressing observed dopant concentrations are rare and there is

no existing proven rules for dopant concentration rationalization.[42] Therefore, new theories

and methods are needed towards understanding dopant positions and concentration effects

within heterometal-doped MNCs.
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2.0 Thermodynamic Stability of Ligand-Protected MNCs

The content of this chapter is taken from M. G. Taylor and G. Mpourmpakis, “Thermo-

dynamic Stability of Ligand-Protected Metal Nanoclusters,” Nature Communications, vol.

8, no. May, p. 15988, 2017.

2.1 Computational Methods

In this work we used DFT calculations to develop and propose a new Thermodynamic

Stability Model (TSM) and structural trends in Au MNCs. Specifically, we used the BP-

86[51, 52] functional combined with the def2-SV(P) basis set[53] accelerated with the resolu-

tion of identities (RI) approximation[54, 55] as implemented in the Turbomole package.[56]

Structures were taken directly from previously published work and the R groups of the thi-

olates were substituted by methyl groups.[12, 57, 58, 25, 1, 59, 60, 61, 62, 63, 64, 65, 66]

The BP-86 functional has been successfully used on thiolated-MNC systems [67, 68] and the

R=methyl group substitution has been previously applied in computational Au MNC struc-

tural determinations.[69, 70] All MNCs were relaxed with a quasi-Newton-Raphson method

and were performed without any symmetry constraints. Two methods were used to identify

if Au atoms were “core” or “shell”, that of natural bond orbital (NBO) charge analysis and

that of measuring S-contacts of Au atoms in the structure, where the shell Au atoms have

exactly 2 bonded sulfur groups.[71] These two methods were in perfect agreement over all

MNCs. With core and shell designations, we isolated the core and shell sections of the MNCs

and performed single point energy calculations on each section. From the 1) optimized MNC

structure, 2) separated core and 3) separated shell results, two energetic factors of interest,

Shell-to-core binding energy (BE) and Core Cohesive Energy (CE) were calculated. The

shell-to-core BE is defined as:

Shell − to− core BE =
EFullCluster − EShell − ECore

nShellInt
(2.1)
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where Ex = electronic energy of group X and nShellInt = number of shell contacts interacting

with the core. nshellInt is largely dictated by the number of shell Au atoms in contact with the

surface of the cores (less than 4Å from the nearest core Au atom) because metal-metal bonds

dominate the shell-to-core BE (see Figure B3 and related note in Appendix B). Beyond shell

metal contacts to the cores, SR groups that are not bound to any shell metals but are bound

directly to core metals represent a direct shell-to-core contact and thus are also included in

nShellInt. The Core CE is defined as:

Core CE =
EFullCluster − nc ∗ EMetalAtom − EShell

nc + nShellInt
(2.2)

where nc = number of metal atoms contained in the core structures (and E is the total

electronic energy). For each of the core structures different multiplicities were tested and

the lowest-energy spin states were selected for the core CE calculation. For the gas phase

minimum energy clusters and MNC core structures the CE is defined:

CE =
ECluster − nc ∗ EMetalAtom

nc
(2.3)

For the core structures, Lennard-Jones radii were used to determine the coordination num-

bers (CNs). [72] COnductor-like Screening MOdel (COSMO) implicit solvation models were

also employed to gauge the effect of dichloromethane (ε=8.93) and water ε=78.46 solvents

on MNC energetics. [73, 74]

2.2 Results and Discussion

2.2.1 Derivation of the Thermodynamic Stability Model (TSM)

The TSM theory is derived from a thermodynamic argument from the following the

chemical potentials of all the metal atoms after a reducing agent has been added to the

final, fully-formed MNCs. Simply stated, in the TSM, the BE of the shell to the core of

a synthesized MNC (Shell-to-core BE) should be balanced with the CE of the core. These

two regions or phases of metals in the MNCs are selected as they have been shown to
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be chemically distinct by the divide and protect theory and other work on self-assembled

monolayers of thiolate on Au.[19, 75] Since we are separating the MNC into two distinct

phases (core and shell) which are in direct contact, in order to achieve chemical equilibrium,

the partial molar Gibbs free energy (chemical potential (µ) of the two phases should be equal

(so ∆µ(MNC)=0).The proposed stability descriptors of core CE and shell-to-core BE are

also linked to these thermodynamic parameters. Towards linking the proposed descriptors

to thermodynamic parameters, we select a thermodynamic reference state that corresponds

to the solution in the Brust-Schiffrin synthesis immediately following the addition of the

reducing agent, consisting of solvated M0 and staple groups, SR-(M-SR)n, that then, self-

assemble to form the MNC core and shell regions, respectively. For example, we envision

an initial state where 23 Au0 atoms exist along with 6 SR-Au-SR-Au-SR and 3 SR-Au-SR

staple groups (in addition to excess thiol and solvent) immediately following the addition

of the reducing agent. Following the self-assembly process over thermodynamic time frames

(e.g. 24 hours), the final state would be the assembled Au38(SR)24 MNC in the same

solution. Given experimental evidence [76], we assume the difference of the partial molar

entropy (s) of the M0 and staple group between the reference solution and the MNC phases

are equivalent. In addition, the core CE in the presence of the shell can largely represent the

partial molar enthalpy (h) of the Au atoms in the core relative to the reference solution phase,

as electronic energy will dominate h values in a constant volume, liquid phase reaction. To

make the analysis of the core CE in the presence of the shell we rely on the core CE and

shell-to-core BE above in Equation 2.2:

Core CE =
EFullCluster − nc ∗ EMetalAtom − EShellInt

nc + nShellInt
(2.4)

where Ex is the electronic energy of species X, nc is the number of metal atoms in the core,

and nShellInt is the number of interactions between the shell and core. This equation can

then be rewritten as:

Core CE =
EFullCluster + nc ∗ CECore − ECore − EShell

nc + nShellInt
(2.5)
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where CECore represents the atomization energy for the isolated gas-phase core as defined

in Equation 2.3. Equation 2.5 can then be rearranged as:

Core CE =
nc ∗ CECore + nShellInt ∗ Shell − to− core BE

nc + nShellInt
(2.6)

Where Shell− to− coreBE is defined in Equation 2.1. Thus, the CE of the metal atoms in

the core in the presence of the shell can be viewed as a weighted average of the gas phase core

CE and shell-to-core BEs. Finally, the shell-to-core BE likewise is treated as the h of the

core-binding shell M atoms relative to the reference solution phase, considering interactions

between staple groups are known to be very weak relative to their interactions with the core

M0 atoms.[75] These assumptions are summarized as:

∆µSolution−MNC
MCore = ∆hMCore − T∆sMCore ≈ CoreCE(withshell)− T∆sMCore (2.7)

and,

∆µSolution−MNC
MShell = ∆hMShell − T∆sMShell ≈ Shell − to− core BE − T∆sMCore (2.8)

where µ is chemical potential, h is partial molar enthalpy, s is partial molar entropy, T is

temperature, and Solution-MNC indicates the difference between the initial solution-phase

thermodynamic reference and the formed MNC thermodynamic reference. Thus, the chem-

ical potential difference between the surface and core metal atoms is given as:

∆µ(MNC) = 0 = ∆µSolution−MNC
MShell −∆µSolution−MNC

MCore ≈ Shell−to−coreBE−CoreCE (2.9)

which indicates that for the stable MNCs, this difference in chemical potential should equal

to zero, highlighting a balance of chemical potentials at this core-shell interface. This ther-

modynamic analysis helps rationalize the lack of temperature-dependence in the stability of

MNCs in temperature regimes where enthalpic dominate entropic contributions. In addition,

it highlights the thermodynamic basis for the TSM for MNC stability.
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2.2.2 Testing Applicability of TSM to MNCs

Figure 2.1 highlights all DFT-optimized Au nanostructures along with the designation

of which atoms are part of the core or shell. We note that the definitions of core and shell

metal atoms in Figure 2.1 agrees with previous work [25, 1, 59, 60, 61, 77, 78, 62] with

the exception of Au18SR14 and Au102SR44, where the NBO charge analysis and S-bonding

methods revealed that the core could be more precisely defined by 8 atoms rather than 9, and

77 rather than 79 (see analysis in B and Figure B2). [25] When we applied the TSM in Figure

2.2, we plot the calculated shell-to-core BE vs. the CE of the cores for the experimentally

determined thiolate-protected Au MNCs (points colored in gold). Interestingly, we reveal a

near-perfect match between the shell-to-core BE and the CE of the metal cores. This trend

highlights a unique physicochemical feature of the experimentally synthesized Aun(SR)m

MNCs: that there is a fine balance between the CE of the core and the BE of the shell to

the core.

Interesting enough is the observation that this criterion applies to both neutral (Fig-

ure 2.1 (a)-(i)) and charged (Figure 2.2(i)) MNCs. Additionally, the two structures which

would not be identified as stable by the superatom theory, Au20SR16 and the Au36SR24, are

shown as stable here by the TSM. In order to test if our TSM can be extended to other

metals, we performed the same analysis for the [Ag25(SPhMe2)18]
− MNC (Figure 2.2(ii))

which has been experimentally synthesized.[79] As shown in Figure 2.2, again, the CE of the

core and the BE of the shell to the core strike a perfect energy balance (see silver point on

parity graph). It should be noticed that the Ag MNC is negatively charged as in the case of

the [Au25SR18]
− MNC (Figure 2.2(i)), verifying not only that this trend holds for different

metals, but also when these metals are charged. As an additional validation test, we cre-

ated the [Cu25SR18]
− MNC (Figure 2.2(iii)) based on the crystallographic structure of the

corresponding [Au25SR18]
− MNC. It is worth mentioning that, according to the superatom

theory, the [Cu25SR18]
− should be a thermodynamically stable nanostructure since Cu and

Au are metals with similar electronic shell closure (same period metals).

However, the [Cu25SR18]
− has not been experimentally synthesized as of yet, and, we

note that that according to our model, the CE of the core dominates the BE of the shell
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Figure 2.1: Relaxed geometries of the experimentally-synthesized MNCs. (a) Au18SR14 (b)

Au20SR16 (c) Au24SR20 (d) Au28SR20 (e) Au30S(SR)18 (f) Au36SR24 (g) Au38SR24q (h)

Au38SR24t (i) Au102SR44. Ligands (S-CH3) are shown in stick representation while core and

shell atoms, in ball and stick, and have been colored yellow and blue, respectively. In (b)

and (c), shell Au atoms which do not interact with the core have been colored red and are

shown in stick representation, while in (a) and (i) shell Au atoms which were previously

identified as core are colored darker blue. In (e) and (h) shell sulfur atoms which are not

directly bound to a shell Au atom are shown as brown balls.
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Figure 2.2: Parity between core CE and the shell-to-core BE. The corresponding structures

of the Aun(SR)m MNCs are presented in Figure 2.1 except from the optimized structures

of (i) [Au25SR18]
−, (ii) [Cu25SR18]

− , and (iii) [Ag25(SPhMe2)18]
− MNCs, which are shown

as insets in the graph. For (i)-(iii) nc=13 metal atoms (Au/Cu/Ag) and nShellInt = 12 as in

Figure 2.1. The shell metal atoms are shown in blue, whereas, the Cu and Ag core metal

atoms are shown in red and green, respectively. Here, the Au and Ag MNCs reported were

experimentally determined. The Cu MNC structure is hypothetical, relaxed from the Au

MNC analogous structure (i).
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to the core (red point in Figure 2.2 deviating from the parity line). While the challenge

with synthesizing Cu MNCs is largely tied to the persistence of the Cu(I) state [80], our

calculation imposes the ideal experimental case where the Cu in [Cu25SR18]
− remains Cu(0).

Therefore, we suggest that, at least for this ligand configuration (type and number of ligands),

the [Cu25SR18]
− cannot be a magic number MNC. We thus believe that the [Cu25SR18]

−

serves as a case where the core CE is not balanced with the shell-to-core BE, ruling out this

energetic balance as a simple interfacial effect.

It should be noticed that when switching the thiolate R group to methyl (to reduce com-

putational cost), attention should be given to the effect that this change introduces to the

stability of the shell structure, and in turn, to the shell binding to the core of the MNC. To-

ward understanding ligand impact we highlight that experimentally[81] and theoretically[58],

the [Au25SR18]
− MNC has been shown to be stable for a wide variety of ligands, and was

successfully synthesized even with small, ethyl R groups.[82] Therefore, the exceptional struc-

tural stability of [Au25SR18]
− MNC seems to be experimentally independent of the ligand

type, highlighting the importance of metal structure and Au/S stoichiometry in determining

stable MNCs. For MNC structures investigated here, interactions at the interface between

their core and shell regions should be, to a large degree, unaffected by the ligand selection (see

Figure B4 where Au18SR14 and [Au25SR18]
− optimization with full ligands resulted to minor

energy shifts and for detailed analysis of the [Ag25SR18]
− case). In addition, metal-metal

interactions at the interface are energetically far stronger than the ligand-ligand interactions

and capture the core-shell and the relative MNC stability. However, enhanced ligand-ligand

(R-group) interactions can impact the overall MNC stability as seen in several other recent

works.[83, 84] For example, in the case of the [Ag25]
− MNCs, a pi-stacking is observed in the

original experimental crystal structures between the phenyl groups present on the shell of

the MNC. Although the R=methyl group substitution has been shown to have small effect

on the RS-Au bond strength [70, 67], a hydrogen-bond network formed at the MNC surface

by groups of the ligands can potentially induce strain on the shell structure, changing in

turn the shell-to-core BE (see Figure B4). Interestingly, this observation is in agreement

with recent work where conversion from Au38SR24 (SR=phenylethanethiolate (PET)) to

Au36SR24 (SR=4-tert-butylbenzenethiolate (TBBT)) was achieved in solution by swapping
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the thiolate R groups from PET to TBBT, altering the hydrogen-bond network formed the

surface of the MNCs.[85]

To further prove that this structural thermodynamic stabilization is a general behavior

and originates solely from the energy balance between the core and shell of the MNCs, we

analyzed CE and BE in the presence of the common [45] dichloromethane and water solvents

(see Figure B5). Similar to Figure 2.2, the parity between core CE and shell-to-core BE was

maintained, with the solvent only weakly affecting the shell-to-core BE. Moreover, we have

also tested different DFT methods. In Table D3), core CE (kcal mol−1) and shell-to-core

BE (kcal mol−1) from BP-86 [52, 51], PBE [86] and BLYP [51, 87] from single point energy

calculations on the BP-86 optimized [Au25SR18]
− structure. We note that there is a tight

match between the core CE and shell-to-core BE regardless of density functional for the

BLYP, BP-86, and PBE methods.

2.2.3 Synthetic Accessibility and Structural Implications from TSM

To develop a functional “boundary” between synthetically accessible and non-accessible

MNCs with the TSM we performed a linear regression on all the experimentally synthesized

MNCs with 95% confidence and superimposed the prediction bands (See Figure 2.3).To

explore the effectiveness of the 95% confidence and prediction bands in distinguishing be-

tween non-stable and stable MNCs we relaxed additional hypothetical MNCs. Beyond the

hypothetical [Cu25SR18]
− MNC, we investigated the Ag18SR14, Cu18SR14, Ag38SR24q, and

Cu38SR24q theoretical MNCs generated directly from their corresponding Au MNC analogs.

We found that they exhibit CE and BE values that deviate beyond the 95% prediction band

(Figure 2.3). Additionally, we have tested our method on four theoretically-predicted Au

MNCs, the Au18SR14,[63] Au20SR16,[65] Au24SR20,[88] and Au40SR24,[64] and showed that

two (Au24SR20 and Au40SR24) out of the four exhibit similar deviation from parity as the

theoretical Cu MNCs, whereas, the Au18SR14 and Au20SR16 MNCs exhibit the CE and BE

energy balance. Therefore, this TSM energetic balance is sensitive to the MNC structure and

the 95% prediction bands can further be used as potential quantitative “cutoffs” to screen

synthetically-accessible MNCs with current best MNC structural prediction practices. [89]
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Figure 2.3: Statistical prediction band as synthesizability cutoff. Parity plot between core

CE and the shell-to-core BE with 95% Confidence and Prediction bands from experimentally-

synthesized Au MNCs superimposed. Additional points to Figure 2.2 include: 1) theoreti-

cally predicted Au nanoclusters (NCs) (i) Au24SR20, (ii) Au18SR14, (iii) Au40SR24, and (iv)

Au20SR16 and 2) MNCs of different metals (*) generated and optimized from their analogous

experimental Au MNC structures.
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Additionally, because the developed TSM is based on the morphology-dependent ener-

getic factors of CE of the core and the BE of the shell to the core, we expect these properties

to correlate with the structural characteristics of the MNCs (i.e. size and shape). For exam-

ple, it is well-known that the CE of metals scale linearly with n
−1/3
m , where nm is the number

of metal atoms in a pure metal nanocluster (NC).[90] Actually, one can apply first princi-

ples calculations to derive such linear trends, the limit of which shows the CE of the bulk,

when nm → inf, as has been shown in the case of Au.[90, 91] In Figure 2.4(a) we present

such an analysis (core CE vs. n
−1/3
c , where nc is the number of Au atoms in the core of

the MNCs) and superimpose the shell-to-core BE results, highlighting the linearity between

both energetic factors with n
−1/3
c for the thermodynamically-stable Au MNCs. The reason

n
−1/3
c trends linearly with CE is attributed to the decrease in the fraction of low-coordinated

(surface) sites observed on the MNCs as the cluster size increases.[91] Surprisingly, the shell-

to-core BE was also found to scale linearly with n
−1/3
c , with almost identical behavior (see

linear fits) as the CE. The identification of a common structural descriptor for the CE and

the shell-to-core BE behavior on the MNCs helps rationalize the observed parity between

these two energy contributions in Figure 2.2. Since the n
−1/3
c shows how the low coordinated

sites scale with nanocluster size (number of metal atoms, nc), then we should expect that

the average CN to scale linearly as well with both the CE and the shell-to-core BE. This

behavior is clearly demonstrated in Figure 2.4(b). The average CN on Au can practically

range from 0 (atom) to 12 (bulk). As the average CN of the nanocluster increases, the CE

increases (more exothermic values) because the Au atoms tend to form more bonds with their

neighbors, increasing the overall stability of the nanocluster. On the other hand, as we have

recently shown in the area of catalysis, the adsorbates show higher BEs (more exothermic)

on sites of the nanoclusters with low CNs.[92, 10] However, this is not the case here (see red

point data in Figure 2.4(b)). The thiolated-Au shell network binds the core in a way that

is counterintuitive to the common belief: as the average CN of the MNC core increases, the

adsorption strength of the shell increases as well. This counterintuitive trend is highlighted

by the difference between the predicted and experimental core structures (and resulting

deviation from the parity plot) in the Au24SR20 MNC, where the experimental structure

showed a core with lower CN than the predicted structure (see Figure B4).[59, 88] In Figure
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2.4(c) we plot the shell-to-core BE vs. the shell nAu n
−1
S ratio (red circles), where nAu is the

number of shell Au atoms and nS is the number of sulfur atoms on the shell (equivalent to

m in AunSRm). The shell nAu n
−1
S ratio demonstrates the cationic character degree of Au

on the shell of the MNC (S-Rδ− interacting with Auδ+) and concentration of bridging thiol

groups (SR groups not directly bound to the cores). On the same graph, we plot the average

CN of the MNC cores vs. the nAu n
−1
S ratio (black rectangles) on the shell. Notice that

both the shell-to-core BE and the core CN scale linearly with the shell nAu n
−1
S ratio. It can

be observed that the lower the nAu n
−1
S ratio, the stronger the shell-to-core BE because of

both the increased electrostatic interactions between the core and shell Au atoms (latter are

charged more positively) and the decreased amount of bridging thiol groups, which tend to

pull shell Au atoms away from the core.[70] On the other hand, the CN vs. shell nAu n
−1
S

ratio linear trend has a negative slope compared to the shell-to-core BE vs. nAu n
−1
S ratio

linear trend. This fact explains why the shell-to-core BE was found to counterintuitively

increase as the average core CN increases. This observation was made based on the Au to

SR stoichiometry in only the shells of the MNCs. Examining the total Au to SR ratio on the

entire MNC, we note an overall agreement with the experimental observation of increasing

MNC diameter resulting from increasing Au to SR ratio in solution.[93]

In Figure 2.4(d) we show the gas phase CE vs n
−1/3
c trend for the AunSRm core structures

(without the presence of the shells) identified from the crystal structures of the experimen-

tally synthesized MNCs (black rectangles) and compare against the CE behavior of the global

minimum energy gas phase Au MNC structures of the same size range (red circles). Inter-

estingly, the gas phase CE (Equation 2.3) is roughly equivalent to the core CE calculated

with the presence of the shells in the MNCs (see Equation 2.2 and Figure B6). Therefore,

the gas phase CEs of the MNC cores accurately represents the stability of the cores in the

MNC (presence of shell), and can be directly compared with the gas phase global minimum

energy structures, as in Figure 2.4(d). The initial structures of the global minimum gas

phase clusters were taken from recent literature and were relaxed at the same level of theory

as the MNC cores.[94, 95, 96] Figure 2.4(d) reveals a difference in the slopes between the

minimum energy MNCs and the core nanocluster structures. The difference in slopes can

be attributed to the morphology imposed on the Au MNC cores by the presence of the thi-

17



Figure 2.4: MNC stability-morphology relations. (a) Core CE and shell-to core BE vs. n
−1/3
c

(number of core metal atoms) for cores of thermodynamically stable magic number Au MNCs

(b) Core CE and shell-to-core BE vs. average coordination numbers (CNs) for cores of Au

nanoclusters (c) Shell-to-core BE and average core CN vs. the ratio of total Au atoms and S

atoms in the shells and (d) Global minima gas phase Au clusters and cores of Au MNCs. From

Figures 2.1 and 2.2, the Au MNC cores contain: Au18SR14=8, Au20SR16=7, Au24SR20=8,

[Au25SR18]
−=13, Au28SR14=14, Au30S(SR)18=17, Au36SR24=20, Au38SR24q,t=23, and

Au102SR44=77 Au atoms, respectively.
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olate shell. Notice that gas phase minimum energy Au clusters preferentially obtain planar

structures up to Au13, whereas, in the presence of the metal-thiolate shell, they obtain 3-

dimentional structures.[94, 97] We believe that other magic-number thiolated Au MNC cores

will fall directly on the black line. Overall, Figure 2.4 demonstrates for the first time that

the stabilization of colloidal MNCs in solution is dictated by two thermodynamic descriptors

that need to balance: the metal core of the MNC tends to grow to increase the CE with

MNC size (descriptor: CE), while the thiolate-Au network on the shell (acting as adsorbates)

obtains a specific composition in staple motifs (nAu n
−1
S ratio), tuning the shell-to-core BE

to match the CE of the core at each MNC size.

Moving forward, using these relations discovered in Figure 2.4, additional stoichiometry

rules are needed (i.e. Aun(SR)m stoichiometries in addition to core and shell information)

to construct a useful methodology for MNC prediction. Toward stoichiometry prediction,

previous work identified a geometric descriptor based on the surface area to volume ratio of

the MNCs that relates the number of ligands (m) to the total number of Au atoms (n) in

the MNCs with a linear trend of m vs. n2/3.[34] For the MNCs n ≈ nc +nShellInt (very small

deviations can occur when a shell Au does not bind the core, or a S atom is a direct contact

to the core). Given that nShellInt ≈ n−nc and the Au S−1 ratio in the shell dictates a linear

trend with shell-to-core BE (Figure 2.4(a)) we would expect m and nShellInt to be correlated.

The inset of Figure 2.5(a) shows that m scales perfectly linearly with nShellInt (R2=0.967).

Since m and nShellInt, and m and n2/3, are linearly related and since nc ≈ n − nShellInt,

a 2/3 exponential relationship (predominates linear functionality) also exists between nc

and m (Figure 2.5(a)). As a result, these observations establish a parametric model for

n and m founded on nc. This parametric model, which can now predict the overall MNC

stoichiometry, is presented in Figure 2.5(b). We have thus shown (using the relations derived

from Figure 2.4) that the core morphology largely dictates the overall MNC characteristics.

Along these lines, our new model captures the previously identified m vs. n2/3 behavior

and nearly all of the MNCs fall within the 95% prediction intervals. Because this model is

parametric with nc, however, specific core and shell region information can be immediately

derived for MNCs of any given n,m. For example, given nc=45, m ≈ 32− 34 and nShellInt ≈

19 − 20 resulting in the Au64(SR)32, Au65SR34, and any other combination between these
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Figure 2.5: Stoichiometry relations in MNCs. (a) Number of Ligands (m) and nShellInt vs.

n
2/3
c for all MNCs of Figure 2.4. The inset graph shows the nShellInt vs. m behavior. (b)

Predicted stoichiometric trend between Number of Ligands (m) and Total Au (n) atoms

of the MNCs. The predictions were made using the relations shown in (a). The black

line represents the best fit, whereas, the surrounding red lines the standard error in the

prediction. The purple square points represent experimentally accessible MNCs used in our

calculations to develop the TSM, whereas, the blue circles represent other experimentally

accessible MNCs identified in literature.
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n,m vales to identify MNCs (see Figure 2.5(b) for experimentally synthesized Au64(SR)32

MNC). From this point, the structure-energy relationships identified in Figure 2.4 can be

used to feed structural information to the MNC prediction (e.g. core CN) as well as to screen

candidate structures on the energy balance criterion between the core CE and the shell-to-

core BE (see Figure 2.2). Thus, the identified relationships aid the prediction of MNCs that

span sizes larger than the ones currently affordable by high-throughput DFT calculations.

2.3 Conclusions

In this chapter we developed a thermodynamic stability theory (TSM) derived from

first-principles calculations, rationalizing the stability of colloidal metal MNCs in solu-

tion and significantly advancing the previously proposed divide-and-protect and superatom

theories.[21, 19] Our theory reveals that for every thermodynamically-isolated, experimen-

tally synthesized thiolate-protected MNC, there is a perfect energy balance between the

adsorption strength of the ligand-shell to the metal-core and the cohesive energy of the

core. Our theory applies to both neutral and charged MNCs, as well as to different met-

als. Additionally, we highlight the impact of the thiolate ligands on the overall stability

and size/shape of the MNC.[16] Finally, this theory directly relates these thermodynamic

stability (energy) contributions to geometrical characteristics of metal cores of the MNC,

rationalizing MNC size and shape effects on MNC stability and opening new avenues for

in-silico MNC predictions.

21



3.0 Understanding Targeted Transformations of MNCS

The content of this chapter is taken from:

• From/or modified from Q. Li, T.-y. Luo, M. G. Taylor, S. Wang, X. Zhu, Y. Song,

G. Mpourmpakis, N. L. Rosi, and R. Jin, “Molecular “Surgery” on a 23-gold-atom

Nanoparticle,” Science Advances, vol. 3, no. 5, p. e1603193, 2017. c©The Authors,

some rights reserved; exclusive licensee American Association for the Advancement of

Science. Distributed under a Creative Commons Attribution NonCommercial License

4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/.

• Taken in part from Q. Li, M. G. Taylor, K. Kirschbaum, K. J. Lambright, X. Zhu, G.

Mpourmpakis, and R. Jin, “Site-selective Substitution of Gold Atoms in the Au24(SR)20

Nanocluster by Silver,” Journal of Colloid and Interface Science, vol. 505, no. 1 Nov

2017, pp. 1202– 1207, 2017.

• Reprinted (adapted) with permission from Q. Li, K. J. Lambright, M. G. Taylor, K.

Kirschbaum, T.-Y. Luo, J. Zhao, G. Mpourm- pakis, S. Mokashi-Punekar, N. L. Rosi,

and R. Jin, “Reconstructing the Surface of Gold Nanoclusters by Cadmium Doping,”

Journal of the American Chemical Society, vol. 139, no. 49, pp. 17779–17782, 2017.

Copyright 2017 American Chemical Society.

3.1 Computational Methods

In this work we used DFT and free energy calculations to study targeted metal dop-

ing and MNC transformation phenomena. We used the BP-86[51, 52] functional com-

bined with the def2-SV(P) basis set[53] accelerated with the resolution of identities (RI)

approximation[54, 55] as implemented in the Turbomole package. Gibbs free energies were

calculated using the harmonic oscillator approach applied to the vibrational modes calculated

over the entire MNCs at 298.15 K. The [Au23(SR)16]
− and [Au25(SR)18]

− structures were

taken from previously published crystallographic information and the R groups of the thio-
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Table 3.1: Example reactions (using [Au23(SR)16]
−) for MNC doping and transformation.

Reaction Type Reaction Expression

Motif Exchange
[Au23(SR)16]

− + 2(AuCl)2PPh2CPPh2 → Au4(SR)4 +

[Au21(SR)12(Ph2PCH2PPh2)2(AuCl2)2]
−

Ag Doping [Au23(SR)16]
− + 1

4
Ag4(SR)4 → [Au22Ag(SR)16]

− + 1
4
Au4(SR)4

Au Growth [Au23(SR)16]
− + 1

2
Au4(SR)4 → [Au25(SR)18]

−

Ag Growth [Au23(SR)16]
− + 1

2
Ag4(SR)4 → [Au23Ag2(SR)18]

−

lates were substituted by methyl groups and the positive counterions were removed to main-

tain consistent charge states.[60, 101] The structure of the [Au21(SR)12(P−C−P )2(AgCl2)]
−

was taken from XRD results [98] and the R groups (−C6H11) of the thiolates were substi-

tuted for (-CH3). From the relaxed [Au23(SR)16]
− MNC, Au atoms were substituted for

Ag atoms in each location and up to 4 Ag total in the locations highlighted in Figure C1.

The Au24−xAgx(TBBM)20(x ≈ 1) [99] and [Au19Cd2(SR)16]
− [100] structures were taken

from XRD, with (-CH3) substituting the R groups. For the [Au19Cd2(SR)16]
− structural

MNCs, all calculations with system charge imposed such that electronic shell closure was

achieved and, when possible, matched experiments. Tetramers (M4SR4) were used as a ref-

erence for the growth and doping reactions for the M1SR complexes (M=Au or Ag), since

these tetramers have previously been shown to be highly thermodynamically stable.[92] A

summary of example reactions used to model the Gibbs free energy of each type of MNC

transformation are shown in Table 3.1. We also introduce a geometric displacement vector

to capture MNC rearrangement in Equation 3.1.

δ =
ΣNatoms
i=1

√
(xi,final − xi,initial)2 + (yi,final − yi,inital)2 + (zi,final − zi,initial)2

Natoms

(3.1)

where Natoms is the number of atoms and x, y, and z represent the spatial coordinates of the

atoms in both their initial and final states.
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3.2 Results and Discussion

3.2.1 Molecular “surgery” on a 23-gold-atom MNC

With single crystal XRD experiments, Ag doping and MNC transformations were

observed by the group of Professor Rongchao Jin at Carnegie Mellon University into

the [Au23(SR)16]
− MNC as summarized in Figure 3.1.[98] Briefly, when only a small

amount of Ag(SR) was added to a solution of [Au23(SR)16]
−, Ag doping was achieved to

[Au23−xAgx(SR)16]
− (x≈1) in two distinct locations. With the addition of more Ag(SR),

the [Au23−xAgx(SR)16]
− MNC transformed to a [Au25−xAgx(SR)18]

− MNC. However, if a

PPh2CPPh2 (P-C-P) ligand was added to the [Au23−xAgx(SR)16]
− (x≈1) the MNC would

react to form a new [Au21(SR)12(P −C−P )2]
+ MNC. Interestingly, the pure [Au23(SR)16]

−

MNC was inert to addition of Au(SR) or (P-C-P) ligands. Overall, this experimental work

presents a case of very interesting doping and ligand-induced MNC transformations are ob-

served where theoretical understanding of these MNC transformations is needed.

Figure 3.1: Experimentally-observed doping pathways and transformations in the

[Au23(SR)16]
− MNC.

Figure 3.2 shows our computational free energy results. First, we observe that for the

[Au23(SR)16]
− and [Au22Ag(SR)16]

−MNCs, Ag doping reactions are exothermic and slightly
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preferred over growth reactions to form [Au25−xAgx(SR)18]
− MNCs. Additionally, we see

that the growth of [Au23(SR)16]
− to [Au25(SR)18]

− is unfavorable.

Figure 3.2: DFT-calculated free energies of reactions (∆Grxn) of the experimentally synthe-

sized pure and Ag-doped Au MNCs. The inset picture demonstrates the different (thermody-

namically stable) doping positions of Ag in the Au15 core of the [Au23−xAgx(SR)16]
− MNC.

The different energy levels of the [Au23−xAgx(SR)16]
− MNCs represent the lowest-energy

isomers (based on doping positions of the inset).

However, for the [Au21Ag2(SR)16]
− MNC, growth to [Au21Ag4(SR)18]

− becomes energet-

ically more preferred than the doping step to [Au20Ag3(SR)16]
−, rationalizing the lack of ob-

served [Au20Ag3(SR)16]
−, especially given the low-stoichiometric amount of Ag(SR) added.

This preference in the Ag growth step over Ag doping is further enhanced in the reaction of
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[Au20Ag3(SR)16]
− to form [Au20Ag5(SR)18]

− over [Au19Ag4(SR)16]
−. This demonstrates an

increasing energetic preference for growth to [Au25−xAgx(SR)18]
− MNCs in agreement with

the fact that further (than x=2) doped [Au23−xAgx(SR)16]
− are not observed. Next, we ob-

serve a significantly uphill thermodynamic reaction between the Au2Cl2(PPh2CPPh2) and

the [Au23(SR)16]
− to form the [Au21(SR)12(Ph2PCH2PPh2)2(AuCl2)2]

− MNC (represent-

ing motif-exchange reactions). However, we see light doping of Ag into the [Au23(SR)16]
−

opens a now-exothermic path to [Au21(SR)12(Ph2PCH2PPh2)2(AuCl2)2]
−, enabling the

(P-C-P) transformation from an initial [Au23(SR)16]
−. It should be noticed that all these

theoretical findings are in perfect agreement with the experimental observations, demon-

strating that a thermodynamics (free energy) analysis can capture the growth behavior of

these MNCs (at least for the systems of interest).

3.2.2 Site-selective substitution of Au by Ag in the Au24(SR)20 MNC.

Though the free energy analysis used in tracking the Ag doping in the

[Au23−xAgx(SR)16]
− MNC was promising, it did little to reveal any underpinning physics

for why the doping was preferred at the specific locations observed. To start to address

this question we first studied Ag doping within the Au24(SR)20 MNC. Experimentally, it

was shown that ligand exchange on the lightly doped [Au23−xAgx(SR)16]
− transformed the

MNC to a lightly doped Au24(SR)20 MNC.[99] Interestingly, only three Ag locations were

observed in the XRD single crystal analysis. To study doping within this Au24(SR)20 MNC,

we looked at free energy of doping utilizing an Ag doping reaction as in 3.1. Beyond this, we

compared the NBO charge [71] of Au atoms at specific locations with the doped Ag atoms at

the same locations (∆Charge) to see if charge transfer to Ag might play a role in determining

preferred dopant location.

After substituting the full ligands for methyls and performing Gibbs free energy analysis

on the preference of doping Ag into various positions within the Au24(SR)20 framework,

we verified that the lowest-energy doping locations correspond to the positions observed in

the experiments (see Figure 3.3). Upon examining the NBO charges of the Ag atoms when

doped in the MNC versus the equivalent Au charges within the Au24(SR)20, we find that the
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Figure 3.3: Upper: (a) Au24(SCH3)20 and (b)-(d) experimental doping locations; (e)-(j)

non-experimental dopant positions for Ag atoms tested via DFT in the Au23Ag(SCH3)20

MNC. The −CH3 groups have been removed for clarity. Lower: Free Energies of doping

reactions and ∆Charge (NBO) on between Ag atoms in locations of doping (upper) and the

equivalent-position Aus within the Au24(SCH3)20 MNC.
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locations that are lowest in energy impart a nearly identical change in NBO charge on the Ag

atoms when doped into the framework. The other doping locations (Figure 3.3), however,

impose a lower charge state change than the three experimental locations. Therefore, we

suggest the doping location is directly tied with relative charge transfer between Ag and

the rest of the MNC when it is doped into the MNC. The larger the charge transfer, the

more electrostatic interactions likely occur between the dopant and the surrounding MNC,

lowering the overall energy of the doped MNC. Thus, we have explained why the experimental

doping locations are observed using DFT and suggest that targeted charge analysis can aid

in screening doping locations of other metals into MNCs.

3.2.3 Reconstructing the Surface of Au MNCs by Cd Doping.

Experimentally, the [Au19Cd2(SR)16]
− (representing a doped MNC with no Au MNC

analog, unique in literature) was synthesized.[100] This [Au19Cd2(SR)16]
− was also interest-

ing in that it featured two Cd dopants tri-coordinated with sulfur, which has never been

observed in any other doped Au MNC. Here, we focused on developing better understanding

on the unique dopant locations of the [Au19Cd2(SR)16]
− MNC. Figure 3.4 shows the cal-

culated structural and electronic characteristics as well as the energy preference of various

[Au19Cd2(SR)16]
− isomers, where the first Cd atom is placed on the experimentally deter-

mined position and the second Cd is placed on one of the remaining metal positions of the

cluster.

First, we note that over geometry relaxation the [Au19Cd2(SR)16]
− MNC with the Cd

dopants at the experimental positions (labeled 9 in Figure 3.4 A) is a stable MNC with little

geometric displacement (δ). However, when this [Au19Cd2(SR)16]
− MNC has just one of the

Cd positions shifted, in most cases the cluster becomes unstable under relaxation, displaying

significant geometric displacement (δ), cases (1) – (8), see Figure 3.4(b). Furthermore, the

two additional doping positions that do not displace, (10) and (11), are of higher Gibbs Free

Energy (approximately +65 kJ/mol, Figure 3.4(b)) than the experimentally-determined dop-

ing position (9), highlighting the unique preference of Cd doping locations in this MNC. For

comparison, the energetic difference between Ag doping locations within the [Au23(SR)16]
−
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Figure 3.4: DFT results for [Au19Cd2(SR)16]
− with Cd dopants shifted to different locations

where doping location (9) represents the experimentally observed structure. (a) Experi-

mental nanocluster geometries before (‘ball and stick’) and after (black sticks) geometry

relaxation. In the ‘ball and stick’ representations, Magenta=Au; Blue=Cd; and Yellow=S.

All C and H atoms are omitted for clarity. (b) Doping locations compared to geometric rear-

rangement, Gibbs free energy, and NBO charge. For clusters with > 0.2Å, the free energies

and NBO charges have been omitted due to their geometric reconstruction.
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MNC previously reported [98] were closer to +10 kJ/mol. For the three doping positions

(9, 10, and 11) that did not displace (in Figure 3.4), the charge state of the dopants trends

exactly with the energetic preference of the dopants in these positions, as observed in our

previous study of Ag doping into the Au24(SR)20 MNC.[99] Taken together, the DFT results

suggest that the presence of this unique “paw-like” surface motif formed in the presence of

Cd, makes back-replacement of Cd with Au unfavorable.

Additionally, when only either one or both Cd atoms are replaced with Au in the

[Au19Cd2(SR)16]
− MNC framework, the MNC reconstructs, regardless of the dopant po-

sition (see Figure C2). To our knowledge this is the first observation of a doped nanocluster

structure that is independent of an analogous pure Au cluster and is likely due to the pres-

ence of the unique “paw” surface motif introduced by the presence of Cd. These observations

help rationalize the formation of this new surface motif and MNC compared to other MNCs

produced from doping the [Au23(SR)16]
− MNC in Section 3.2.1. [98]

3.3 Conclusions

In this chapter we highlighted three examples of targeted doping and MNC transforma-

tion and how DFT was used to gain deeper understanding into how and why the doping and

transformations occurred. Specifically, we used free energy analysis to study MNC trans-

formations in [Au23(SR)16]
− MNC that perfectly matched theoretical results directly to

experiments, rationalizing both dopant locations and concentrations. We also used free en-

ergy and charge analysis to study doping in Au24(SCH3)20 MNC, capturing dopant location

preference through dopant charge transfer trends. Finally, we studied the unique stability of

tri-coordinated Cd atom in the [Au19Cd2(SR)16]
− MNC, and its lack of a pure Au structural

analog. For the [Au19Cd2(SR)16]
− MNC we introduced the geometric displacement vector

(δ) from DFT relaxations as a measure of MNC rearrangement that helps identify synthet-

ically inaccessible MNCs. We also verified dopant NBO charge transfer again trends with

doping preference at specific locations. Overall, we have demonstrated three targeted MNC

transformation cases and ways of understanding their physical underpinnings.

30



4.0 Heterometal Doping in Ligand-Protected MNCs

Reprinted (adapted) with permission from M. G. Taylor and G. Mpourmpakis, “Re-

thinking Heterometal Doping in Ligand-Protected Metal Nanoclusters,” Journal of Physical

Chemistry Letters, vol. 9, pp. 6773–6778, 2018. Copyright 2018 American Chemical Society.

4.1 Computational Methods

The thermodynamic stability model (TSM) that was applied is largely the same as

outlined in Section 2. To capture doping, we first relaxed the [Au25(SC2H4Ph)18]
− [60]

(Au25) and Au38(SC2H4Ph)18 [78] (Au38q) MNCs as found from their experimental crystal

structures. From the relaxed forms of the Au MNC we doped each position and fully re-

relaxed the doped MNC structures to find the final structures as reported in Figure D2.

To most directly compare our results with experiments, the doped-MNC charges were also

assigned based on experimentally-observed charge states.[9] Assignment of (q=-1) charges

on the core/shell region was also applied as in Section B where the electron affinities (EAs)

of the core and shell regions were calculated and all the shell regions showed higher EAs

(stabilization of electron on the shell). To ensure the lowest energy electronic state was

selected for the core and shell regions, we tested all applicable multiplicities lower than 14

for every core and shell structure. We also quantified reconstruction in the cores, using

displacement as defined in Equation 3.1 over the core of the Au25 MNC as indicated and n

represents the total number of atoms in the core structures. After quantifying reconstruction,

we applied the TSM by calculating the core CE and shell-to core BE (see Equation 2.1) terms

to capture the chemical potentials of both the core and shell regions. For doped MNCs, the

core CE is calculated slightly different than Equation 2.2 as:

Core CE =
(EFullCluster −

∑nc

i=1EMetalAtom,i)− EShell
nc + nShellInt

(4.1)

31



where Ex = electronic energy of species X, and all other definitions are identical to Equation

2.2. Note that in bimetallic MNCs, each individual metal atom identity must be taken into

account to calculate the Core CE.

4.2 Results and Discussion

4.2.1 Full Ligand TSM Extension

We first applied the TSM on monometallic fully-ligated systems, rationaliz-

ing the stability of the experimental Au18(SC6H11)14,[1] Au24(SCH2PhC(CH3)3)20,[59]

[Au25(SC2H4Ph)18]
−,[60] and Au38(SC2H4Ph)24q-isomer [78] MNCs as seen in Figure 4.1.

These structures were selected since they have been successfully doped with at least one

heterometal, [99, 103, 104, 46] and represent DFT-tractable fully-ligated MNCs. The

[Au25(SC2H4Ph)18]
− MNC, especially, has been the focus of extensive study in doping.[105]

In Figure 4.2 we highlight that these full-ligand structures are all well within the previously-

defined [50] 95% prediction interval (for Aun(SR)m R=CH3 MNCs) in a parity plot between

shell-to-core BE and core CE. As there is a non-zero energetic shift in the core CE and

shell-to-core BEs for methyl vs. full ligands (Figure D1), herein we treat the 95% prediction

interval as an approximate boundary for the synthetic accessibility of full-ligand structures,

serving more as a guide rather than as a strict cutoff for doped MNC synthesis. For exam-

ple, a structure within the 95% prediction interval should be considered synthesizable, while

structures that fall within 0.7 kcal mol−1 (See Figure D1 for justification of this number)

of the 95% prediction interval may also be considered synthesizable. With this definition of

synthetic accessibility for thiolate-protected MNCs within the TSM we turn to doped MNCs.

4.2.2 Heterometal Doping of Au25 MNC

We started by doping the [Au25(SC2H4Ph)18]
−1 MNC structure (hereafter referred to

as the Au25 MNC) to form [Au25−xMx(SC2H4Ph)18]
q with M=Ag (q = -1), Cd (q = 0),

Cu (q = -1), Hg (q = 0), Pd (q = 0), and Pt (q = 0), x=1,2. These metals have all been
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Figure 4.1: DFT-relaxed structures of (a) Au18(SC6H11)14 (b) Au24(SCH2PhC(CH3)3)20

(c) [Au25(SC2H4Ph)18]
− and (d) Au38(SC2H4Ph)24q-isomer. Organic ligands are shown in

sticks, whereas, Au and S atoms, in yellow and brown balls, respectively.
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successfully doped into the Au25 MNC with full −SC2H4Ph ligands, but display distinct

concentration, dopant location, and doped MNC charge (q) behavior as summarized in

Table 4.1.[9] Although MNC charge behavior is an important aspect in predicting doped

MNC stability,[106] here we have only run the experimentally observed charge states of each

MNC for the purpose of directly comparing our calculations and the TSM to all experiments.

We note that the TSM may also readily be applied to MNCs with different charge states

(see Figure 2.2). To test the ability of the TSM to rationalize the synthetic accessibility of

doped MNCs, we first focus on doped MNCs that have not been experimentally observed

(utilizing information from Table 4.1 and Figure 4.2). In Figure 4.2 the core (C), shell

(S), and icosahedron (I) distinct dopant locations within the Au25 MNC are shown and

all metals were doped (one at a time) into each location. Based on the observed doping

locations in Figure 4.2 we also tested one double-doped configuration for each metal in the

Au25 MNC. We note that the only doped MNCs that do not fall near the 95% prediction

interval on Figure 4.2 are the PtC/I , HgC , and CuC MNCs. Experimentally, Pt [107] has

been shown to only be mono-doped to the C location in the Au25 MNC, so deviation from

parity for the double doped PtC/I MNCs aligns with the experimental observation of dopant

concentration. Additionally, CuC falling away from parity in the TSM appears to largely

align with experimental observations where either the S [108] or I [109] sites are preferred for

Cu incorporation into this MNC. The CuC MNC has been predicted only by comparison of

time-dependent DFT (TD-DFT) calculations with uv-vis spectrum, representing relatively

weak evidence compared to that of the CuS or CuI MNCs (see Table 4.1). [110] Thus, all

doped MNCs that deviate from the TSM in Figure 4.2 either have not been experimentally

synthesized, or show weak experimental evidence compared to other MNC isomers.

Apart from the TSM shown in Figure 4.2, work in Section 3.2.3 has indicated geometric

reconstruction can serve as a metric for lack of stability for doped MNC. Here, we quantify

reconstruction by comparing the relaxed structures of the cores of the doped MNC structures

to that of the core of the Au25 MNC in the displacement (δ) metric. The structures and

δs of the cores of the doped MNCs are shown in Figure D2 and Table D1. From Figure

D2 we highlight that the doped MNCs showing reconstruction under geometry relaxation

included the Cd2I , Hg2S, PdI , PdS, PdC/I , PtI , and PtS MNCs. We note in Figure D3
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Figure 4.2: Thermodynamic stability parity plot between Shell-to-core BE and core CE on

both monometallic and doped [Au25−xMx(SC2H4Ph)18]
q MNCs (x= 1,2) (M = Ag (q=-

1), Cd (q=0), Cu (q=-1), Hg (q=0), Pd (q=0), and Pt (q=0)). Monometalic Au MNC

structures are displayed in Figure 4.1. 95% prediction and confidence intervals displayed

were generated based on previously-tested monometallic Au methyl-thiolate MNCs (Figure

2.3. The inset image shows the 3 different dopant locations (Icosahedron, I; Center, C;

and Shell, S) within the Au25 MNC. All data points with metal labels correspond to doped

[Au25−xMx(SC2H4Ph)18]
q MNCs with subscripts corresponding to the location(s) doped

within the MNC. Energetics are shown only for MNCs that did not reconstruct during DFT

geometry relaxation.
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Table 4.1: Combined experimental doping results and locations tested for this work within

the Au25 MNC along with experimental characterization techniques of doped MNCs.

dopant, q
locations

tested

experimentally

observed?

experimental methods for dopant loca-

tions

Ag, -1 I, S, C, 2I

I[111, 109],

S[112], 2I[112] ,

Up to 20Ag[112]

I/2I–XRD[111] , MALDI-MS [109] , S-

XRD[112] (in heavily-doped MNC)

Cu, -1 I, S, C, 2S

I/(C)[109, 108],

S[110], 2I[109] ,

Up to 5Cu[108]

I/2I–MALDI-MS[109] , C–UV-VIS/TD-

DFT[108], S-EXAFS[110]

Cd, 0 I, S, C, 2I I[47] , C[113] I-XRD[113] , C-XRD[47]

Hg, 0 I, S, C, 2S S[48], C[47]
S-XRD/MALDI–MS/TGA[48],

C–XRD/MALDI-MS[47]

Pd, 0 I, S, C, C/I C[114, 35, 115] C-MALDI-MS[114, 35] XRD[115]

Pt, 0 I, S, C, C/I C[116, 107]
C–EXAFS/XPS[107] , MALDI-

MS/NMR[116]
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that although some of these reconstructed MNCs follow the TSM, they are not likely to be

experimentally isolated due to further reconstruction and possible transformation to other

MNCs.[112] Given Cd,[113] Hg,[48] and Pd[35] have only been successfully mono-doped into

Au25 MNCs in experiments, δ here appears to capture lack of stability of the double-doped

Cd2I , Hg2S, and PdC/I MNCs. Additionally, both Pd[115] and Pt[107] have been shown

to only occupy the C position within the MNC, indicating that δ further rationalizes why

the PtI , PtS, PdI , and PdS MNCs are not observed in experiments. We therefore show the

combination of the TSM with core δ during geometry relaxation to be effective for screening

the potentially non-synthesizable doped MNCs.

Beyond synthetic accessibility, the TSM can also be applied to rationalize dopant

location-dependent preference trends. For MNCs, such as the Pd- and Pt-doped Au25, where

only one doping event does not induce MNC reconstruction and the doping location energet-

ically follows the TSM, then, the location preference assignment is trivial. For other dopants

it is not as simple, and several dopant locations remain under debate in literature (in the

absence of definitive single-crystal x-ray diffraction (XRD) results) as highlighted in Table

4.1. For Ag, we note in Figure 4.2 that all Ag-doped Au25 MNCs tested did not reconstruct

and fall well within the 95% prediction interval. For cases such as Ag, we propose that the

distance from parity in the TSM for these MNCs can serve as a metric for dopant location

preference. Thus, the AgI MNC is favored (XRD results) at lower doping[111] concentra-

tions and falls closest to the parity line in Figure 4.2. The Ag2I MNC also falls close to the

parity line in Figure 4.2, suggesting further doping is achievable, in line with experimental

observations.[109] Additionally, heavily Ag-doped MNCs showed the S-locations being occu-

pied following the filling of the I-locations,[112] and our TSM shows (with single doping) the

AgS MNC being the next closest to the parity line (vs. AgI) in Figure 4.2. Finally, the C-

location doping with Ag is predicted accessible by the TSM, where in Figure 4.2 the AgC falls

within 95% prediction interval. However, the AgC MNC falls much further away from the

parity line than either the AgI or AgS MNCs which helps explain the experimental inaccessi-

bility of this AuC MNC as two other doping locations are more thermodynamically favored.

Looking to dopant metals other than Ag, we note Cu was shown to likely be doped into the
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S site of the MNC by extended X-ray absorption fine structure (EXAFS) analysis[110] and it

falls closest to the parity line in Figure 4.2. The next closest MNC laying within the 95% pre-

diction interval in Figure 4.2 is the Cu2S MNC, and experimental doping has been observed

up to 5 Cu atoms within the MNC.[108] Next, while still within the 95% prediction interval

in Figure 4.2, the CuI has been inferred from experiments by matrix-assisted laser desorp-

tion/ionization mass spectroscopy (MALDI-MS) fragment analysis (though less definitive

than EXAFS results).[109] A potential experimental verification of these results would be

using electrospray ionization mass spectroscopy (ESI-MS), as this analytical technique has

proven more effective in rationalizing dopant positions than MALDI-MS.[117] Finally, the

CuC MNC is shown to fall outside the 95% prediction interval in Figure 4.2, and, as discussed

above, shows relatively weaker experimental evidence.[108] Following a similar analysis as for

Ag and Cu, for Hg we note that the MNC most conclusively observed in single crystal XRD

was the HgS MNC,[48] which falls closest to the parity line of any Hg-doped Au25 MNCs

in Figure 4.2. We note that the doping of Hg into the Au25 MNC gives conflicting results

in experimental literature where reports of both the HgS[48] and HgC [47] exist. The study

reporting HgC indicates difficulty in properly assigning doping location based on the XRD

patterns and relies on MALDI-MS fragmentation analysis to suggest the HgC position.[47]

However, the study reporting the HgS MNC appears conclusive as to the dopant location,

combining XRD with MALDI-MS and thermogravimetric analysis (TGA) results. We there-

fore highlight the HgS as more prominently observed in experiments and further note that

the HgC MNC deviates significantly from the parity in Figure 4.2. Although the HgI MNC

is also near the 95% prediction interval (i.e. potentially synthesizable) in Figure 4.2 (unlike

HgC that deviates), the relative proximity of the HgS to the parity compared to the HgI

MNC seems to indicate stronger preference for the HgS MNC over the HgI MNCs, providing

the first theoretical rationalization for the experimental observation of the HgS MNC. Thus,

the Ag, Cu, and Hg doping results shown in Figure 4.2 (ranked by distance from the parity

line) qualitatively agree with a series of experimental observations of both concentration and

dopant location preference.

The doping location preferences for Cd within the MNC, though, first appear to slightly

deviate from those in Table 4.1. For the Cd-doped Au25 MNC, all the dopant locations appear
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to fall within, or near the 95% prediction interval, and therefore would all be predicted as

synthesizable by the TSM. However, in XRD crystal structures of the isolated Cd-doped

MNCs, only the I[118] and C[113] locations have been replaced by Cd. In Figure 4.2 We

also note that the CdC falls closer to the parity line in Figure 4.2, and therefore suggest

that CdI could potentially be transformed to the CdC MNC under appropriate experimental

conditions. Additionally, although the CdS is not observed in these experiments it appears

closest to the parity line in Figure 4.2 and does not undergo reconstruction during relaxation.

This deviation of TSM from experiments, specific to Cd doping, is likely due to the high

reactivity of the Cd dopant and its relative oxidation state in the CdS MNC. In metal

exchange experiments, the Cd-doped MNC was observed to rapidly react with Hg2+ ions to

form the HgS MNC, while the reverse reaction to form CdI from HgS was unfavorable. This

indicates that the HgS MNC is more stable and the doped Cd is likely more reactive than the

doped Hg.[113] When the doped Cd atom occupies either the C or I locations within the Au25

MNC framework it is likely shielded from further reactions with Au salts in solution, while

the S-doped Cd atoms react with surrounding Au salts and are destroyed. Additionally, our

previous work on doping within Au MNCs showed that difference in the charge of dopant and

the Au atom replaced in a MNC (delta charge) can be tied to the relative dopant oxidation

state and trends directly with the Gibbs free energy of formation of the doped MNC (see

Section 3). In Table D2 we highlight the delta charges of all the monodoped Au25 MNCs,

showing that the Cd delta charge in CdS (charge compared to the equivalent Au atom in the

Au25 MNC) shows the largest positive charge transfer. This seems to indicate the Cd in the

CdS is closer to an oxidized form of dopant metal than in any of the other doped MNCs, in

seeming agreement that the CdS is highly reactive and likely chemically unstable relative to

either the CdI or CdC MNCs. Taking these special considerations for Cd, the TSM captures

the experimental observations of Cd doping location within the Au25 MNC as well.

Apart from the special case of the CdS MNC, the TSM captures both doping locations

and concentration behavior within the Au25 MNC for a wide variety of metals and experi-

mental observations. Importantly, we note that simple DFT energetics to a large extent do

not capture these same trends and offer little to no insights into synthetic accessibility of

doped MNCs. In Table D3 we show the relative DFT energies of the three isomers of the
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mono-doped Au25 MNCs with each metal. By only utilizing the total DFT energies shown in

Table D3 we would predict Ag to occupy the I location, Cu to occupy the C and I locations,

Cd and Hg to only occupy the I location, and Pd and Pt to only occupy the C location

(due to the high energy difference 10-18 kcal mol−1 between the ground state and other

dopant positions). While Ag, Pd, and Pt doping locations are quite accurately captured by

this method in comparison to experiments, the Hg, Cu, and Cd doping locations/energetics

are not. Hg, for instance is predicted most stable at the I location by 10 kcal mol−1 and is

not observed at this position in experiments. We therefore highlight the power of the TSM

over simple DFT energetics for predicting and screening heterometal doping within a MNC

framework. Doped MNCs which show low total energetics, but do not follow the TSM, can

be viewed as intermediate structures of MNCs that will either grow in size, or change compo-

sition in a way to alter the core/shell energetics and fulfill the perfect energy balance of the

TSM. We note that while experimental attempts to dope other metals (such as Ni[113] and

Zn[47] in the Au25 MNC) have proven unsuccessful thus far, we focused here on metals that

have been successfully doped into the Au25 MNCs and rationalize the preference on doping

positions. Additionally, ligands can play a role in determining the preference of doping[112]

and our results with −CH2CH2Ph ligands may not be straightforwardly transferable to

doped Au25 MNCs stabilized by other ligands.

4.2.3 Doping and Prediction of Au38 MNC

Beyond the ubiquitous Au25 MNC, we also tested doping within the Au38−xMx(SR)24 (q-

isomer) MNC with M=Pd (x=1,2) (q=0) and Pt (x=1 (q=-1) ,2 (q=-2)) in the locations seen

in Table 4.2 and Figure 4.3. Due to the larger computational cost of the Au38−xMx(SR)24 sys-

tem (herein referred to as the Au38q MNC) we did not exhaustively test all doping locations,

but focused on the ones that were shown to remain rigid in previous theoretical work.[49]

Focusing first on the Pd-doped MNCs, we see that only one of the MNCs falls outside the

“synthesizable regime”, which is the Pd2C MNC. In Table 4.2 we see that DFT[37, 119] has

previously predicted the Pd2C to be the most stable structure. However, another experimen-

tal work showed evidence of Pd-S bonds in EXAFS analysis,[49] leading them to conclude the
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Figure 4.3: Thermodynamic stability parity plot between Shell-to-core BE and core CE on

both monometallic and doped [Au38−xMx(SC2H4Ph)24]
q MNCs (x= 1,2) (M = Pd (q=0),

and Pt (q=-1, -2)). Monometallic Au MNC structures are displayed in Figure 4.1. 95%

prediction and confidence intervals displayed were generated based on previously-tested

monometallic Au methyl-thiolate MNCs (Figure 2.3). The inset image shows the 3 different

dopant locations (Icosahedron, I; Center, C; and Shell, S) within the Au38a MNC. All data

points with metal labels beginning with 38 correspond to doped [Au38−xMx(SC2H4Ph)24]
q

MNCs with subscripts corresponding to the location(s) doped within the MNC. None of

these MNCs showed reconstruction during relaxation with DFT.
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Table 4.2: Combined experimental doping results and locations tested for this work within

the Au38q MNC along with experimental characterization techniques of doped MNCs.

dopant, q
locations

tested

experimentally

observed?

experimental methods for dopant loca-

tions

Pd, 0

I, S, C,

2I, 2S, 2C,

C/S

2C[37, 119],

C/S[49]

2C-DFT-Suggested[37, 119] C/S-

EXAFS[49]

Pt, 0 I, S, C ——– ——–

Pt, -1
2I, 2S, 2C,

C/S
2C[119] 2C-XPS[119]

actual structure was largely comprised of either the Pd2S or PdC/S MNCs. Pd2S and PdC/S

both also match the results suggested by the TSM in Figure 4.3, where the Pd2S MNC falls

closest to the parity line and the PdC/S MNC is next closest of the double doped MNCs.

Based on the results from the TSM, we suggest, along with previous authors,[49] that the

Pd is located at the S site of the Pd-doped Au38q MNC, distinct from the Pd-doped Au25

MNC, where the heterometal Pd is definitively doped in the C location. Finally, we turn to

the Pt-doped Au38q MNC. This MNC was recently reported[119] to have a q=-2 charge and

the authors utilized DFT and X-ray photoelectron spectroscopy (XPS) analysis to conclude

that the only Pt dopant location within the Au38q MNC would be the Pt2C MNC. In the

absence of a more conclusive experimental method such as XRD for Pt-location determina-

tion, we cannot rule out the stabilization of Pt at other locations of the MNC. Analysis with

TSM in Figure 4.3 again reveals that the S location is highly preferred in this structure,

with the PtS and Pt2S being the only two Pt-doped MNCs to fall within the 95% prediction

interval. Based on the doping observations in the Pd-doped Au38q MNC and the demon-

strated ability of the TSM to capture experimental dopant locations in the Au25 MNCs we

suggest that at least some of the Pt dopants are located at the S position within the Au38q

MNC. In analyzing the Au38q MNC for doping with different metals, we have found the
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TSM to agree with at least one report of the Pd-doped MNC and suggest dopant locations

not currently reported in literature for the Pt-doping within the Au38 MNC. We have also

shown that the TSM works for doping in MNCs beyond the Au25 and have used the TSM to

make predictions surrounding doping location within an already experimentally-synthesized

MNCs.

4.3 Conclusions

In summary, we have applied our TSM for understanding doping effects and stability

of ligand protected MNCs. We have shown the TSM to be a valuable extension to the

current knowledge surrounding doping within MNCs, capturing a wide range of experimen-

tal observations from dopant locations to concentrations. The application of the TSM to

doped MNCs represents a novel way for rationalizing doping within MNCs, moving away

from simplified total-energy (DFT) calculations and significantly increasing the agreement

between theory and experimental observations of doping on MNCs. We therefore view the

application of the TSM to the doped MNCs as a new way to revisit doping energetics on

ligand-protected MNCs. As such, it has the potential to open new avenues for accelerating

bimetallic MNC discovery.
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5.0 Future Work

5.1 TSM for MNC Structure Prediction AND Ligand-Mediated Doping

While experimental identification of new Au MNCs crystal structures has accelerated

in recent years, computational prediction of MNC structures (especially larger MNCs) has

begun to lag experiments.[120] To overcome this lag in computational predictions and create

new datasets a universal tool should be developed for Au MNC structure prediction. To

achieve this, ideas from the TSM can be combined with those previously proposed for MNC

“inherent structure rules” and geometric scaling principles to create candidate structures[57]

to expand the creation of valid MNC structures. Importantly, our TSM energetic analysis

should be incorporated into this process to rule out physically-unreasonable MNC struc-

tures. The addition of the TSM should allow a ready and robust criterion for experimental

accessibility to be introduced to the structure-prediction process. We note that the TSM has

already been referenced and applied in structural prediction literature. [89] This future work

would therefore result in an accelerated Au MNC structural prediction procedure targeted

towards larger and currently undiscovered MNCs.

Additionally, with the value of the TSM in identifying dopant locations and concentra-

tions as highlighted in Chapter 4, more Au MNC structures should be screened for poten-

tial targeted doping. As ligands have been shown to influence doping behavior [112], the

TSM should also be tested against ligand-mediated doping behavior in MNCs. The TSM

would be especially important for analysis of ligand-mediated doping as free energy methods

highlighted in Chapter 3 are currently computationally intractable on full-ligand MNCs. In

Figure 5.1, as a proof of concept for ligand-mediated doping, we tested three different ligands

and two compositions of Ag doped into the Au38q MNC. The 5-Ag-doped MNC in Figure

5.1 was reported in literature to have a layered structure and was achieved with the R=PET

ligand, which seems to agree quite well with R=CH3 ligand energetics as well.[104] We note

that at higher Ag dopant concentrations than experimentally accessible with R=PET ligands

(24-Ag) in Figure 5.1, both R=PET and R=CH3 ligands deviate significantly from parity.
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Figure 5.1: Thermodynamic stability parity plot between Shell-to-core BE and core CE on

both monometallic and doped Au38−xAgx(SC2H4Ph)24 MNCs (Ag= 5, 24). Monometallic

Au MNC structures are displayed in Figure 4.1 and are identical to those shown in Figure D1.

95% prediction and confidence intervals displayed were generated based on previously-tested

monometallic Au methyl-thiolate MNCs (Figure 2.3). The inset images show the 5-Ag- and

25-Ag-doped MNCs, with Au as pink, Ag as silver, and S as yellow (R groups omitted for

clarity). None of these MNCs showed reconstruction during relaxation with DFT.
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However, when the ortho-methylbenzenethiolate (o-MBT) ligand is used (as in the synthesis

of other MNCs[16]) with 24-Ag doped, the MNC now falls within parity and is predicted

synthetically accessible. We note the 24-Ag MNC tested is layered in a similar way to the

5-Ag-doped MNC. Therefore, with additional testing, the TSM may open avenues to MNC

synthesis via ligand-mediated doping for tailored applications.
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Appendix A

Abbreviations

BE Binding Energy

CE Cohesive Energy

CN Coordination Number

COSMO COnductor-like Screening MOdel

DFT Density Functional Theory

ESI-MS ElectroSpray Ionization Mass Spectroscopy

EXAFS Extended X-ray Absorption Fine Structure

LEIST Ligand Exchange Induced Size/Structural Transformation

MALDI-MS Matrix-Assisted Laser Desorption/Ionization Mass Spectroscopy

MD Molecular Dynamics

MNC Metal Nanocluster

MNP Metal Nanoparticle

NBO Natural Bond Orbital

o-MBT ortho-methylbenzethiolate

PET Phenylethanethiolate

TBBT 4-tert-butylbenzenethiolate

TGA Thermogravimetric analysis

TSM Thermodynamic Stability Model

XPS X-ray photoelectron spectroscopy

XRD X-ray Diffraction
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Appendix B

Thermodynamic Stability Model

Note: Charge and orbital determination of interacting shell atoms.

The metal atoms were first determined as core vs. shell by examining their NBO charge

state. Metal atoms with more than 0.2 charge were identified as shell (indicating partially

cationic Au atoms). This 0.2 charge threshold was established based on the charge of the

shell Au atoms in all of the structures (via same analysis as in Figure B1). For this same core

vs. shell determination, alternatively, metal atoms that were coordinated to 2 sulfurs were

assigned as shell metal atoms and all other metal atoms were assigned as core. These two

methods produced identical results. To determine the number of interacting metal atoms

we identified the distance between the shell metal atoms and their nearest core atoms.

Assuming an interaction distance cutoff for bonding at approximately 2.5 times the van der

wall radii for the Au metals (4 Å), the interacting or non-interacting metals can simply

be counted by the number of shell metal atoms with a minimum shell-core distance less or

larger than this cutoff. This automated process exactly results in the energy balance shown in

Figure 2.2 for every MNC (core CE=shell-to-core BE) with the exception of Au20SR16 (and

the negative test [Cu25SR18]
− MNC). For the Au20SR16 MNC, further examination of the

HOMO (electronic) orbital structure indicated primary bonding for 2 of the atoms identified

as interacting shell with another shell Au atom as shown in Figure B1. This indicated that

these atoms could more accurately be represented as non-interacting shell atoms despite

their close proximity to one of the core metal atoms. For the charged systems ([Au25SR18]
−,

[Cu25SR18]
−, and [Ag25SR18]

−) we performed vertical electron affinity calculations between

the separated core and shell regions to identify where the negative charge will be located. In

all cases, the shell region showed a higher electron affinity and the electron was attributed

to the shell in the charged systems.
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Figure B1: Optimized structure of Au20SR16, R=CH3. (a): charge analysis, where red

tints indicate negative and blue positive charges, respectively (darkest red=-0.76, darkest

blue=+0.23). Dark blue metal atoms are counted as shell. Similarly, Au atom (i) shows

bonds (highlighted yellow) to two sulfurs (making it a shell Au), while Au atom (ii) only

shows one bond to a sulfur (making it a core Au). (b) HOMO orbital structure. Highlighted

(green) Au atoms show more bonding character with bridging shell metal atom (indicated

with black arrow) and therefore are counted as non-interacting shell metal atoms.
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Figure B2: NBO Charge analysis highlighting differences between reported core and shell

atoms. (a) optimized structure of Au18SR14 and (b) Au102SR44, with R=CH3. Red tints

indicate negative charge (darkest red=-0.76) and blue indicate positive charges (darkest

blue=+0.23). Highlighted (with red ovals) Au atoms correspond to atoms previously iden-

tified as core, [1] while here we show they share the same charge state as the shell Au atoms

leading to cores of 8 and 77 Au atoms for Au18SR14 and Au102SR44 , respectively.
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Figure B3: Binding energy of sulfur motifs with the core. Optimized structures of a single

Au-SR, R=CH3, ligand placed on the Au38 core structure. (a) Configuration where the S

atom of the ligand interacts with the core metal structure. The shell Au has been colored

in blue (the same color scheme as Figure 2.1) to differentiate from the core Au atoms. (b)

Configuration where the S atom of the ligand interacts with the core structure.
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Figure B4: Ligand effects in TSM. Parity plot between core CE and the shell-to-core BE as

suggested by our developed TSM. Most of the values are identical to Figure 2.2. Additional

points include: the [Ag25(SR)18]
−, with R=CH3 (i) optimized and (ii) experimental struc-

tures, respectively, (iii) the optimized Au18(SR)14 with R=C6H11 and (iv) the [Au25(SR)18]
−,

with R=PhenylEthyl structures. The silver arrow from (ii) to (i) indicates the shift of the

core CE and shell-to-core BE during optimization of the [Ag25(SR)18]
− R=CH3 MNC. In the

[Ag25(SR)18]
− R=CH3 MNC image, the red ball/stick represent the experimental structure,

whereas, the yellow sticks, the optimized structure.
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Note: Ligand Effects

For the [Ag25SR18]
− MNC (Figures B4 (i) and (ii)), geometric reconstruction during

optimization was noticeable (using as initial state the experimental structure and substitut-

ing the R-groups with methyls) and it is due to the lack of hydrogen-bonding in R-groups

when R=CH3. The surface reconstruction of the [Ag25SR18]
− MNC with methyls was also

evident in the energetics of the MNC after optimization when this was the only experimental

structure that did not show the BE-CE energy balance. Since we noticed this reconstruction

(and CE-BE imbalance), we considered the full ligands and we optimized the experimental

[Ag25(SPhMe2)18]
− MNC. Only in this case, we noticed that optimizing the MNC account-

ing for the full ligands results to a perfect CE-BE energy balance. It should be noticed that

none of the experimental Au structures showed any similar reconstruction upon methyl sub-

stitution and optimization. To further verify that the methyl R-group substitution does not

alter the stability of other Au MNCs, we optimized the Au18SR14 and [Au25SR18]
− MNCs

with their full ligands, finding variations of only 0.3 kcal mol−1 in the core to shell BE while

the core CE remained identical to the R=CH3 structure for each (Figures B4 (iii) and (iv)).
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Figure B5: Solvent effects in thermodynamic stability theory. Parity plot between core CE

(kcal mol−1) and the shell to core BE including (a) dichloromethane (ε=8.93) and (b) water

(ε=78.46) solvent effects, using the COSMO implicit solvation model.

Table B1: Density Functional comparison.

Method (DFT) core CE (kcal mol−1) shell-to-core BE (kcal mol−1)

ri-BP-86 -37.82 -37.40

ri-PBE -38.95 -39.29

ri-BLYP -31.0 -28.57

56



Figure B6: Gas phase to core cohesive energy comparison. Parity plot between core CE

and the gas phase core CE, indicating remarkable parity between the gas phase and shell-

influenced CE values.
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Appendix C

Targeted MNC Transformations
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Figure C1: DFT-relaxed [Au23−xAgx(SR)18]
− (x = 1 to 3) and [Au25−yAgy(SR)18]

− (y = 2,

3) MNCs and associated relative electronic energies (∆E in kcal mol−1 taken in reference

to lowest energy isomer for each composition). Carbon and hydrogen atoms have been

removed for clarity. Color code: Pink=Au, Yellow=S, Silver=Ag. In (a-f), x=1 and (a) and

(b) represent the positions observed in X-ray Diffraction experiments. In (g-i), x=2, in (j),

x=3, in (k), y=2, and in (l), y=3.
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Figure C2: DFT results for Au20Cd(SR)16 and [Au21(SR)16]
− MNCs, with the Cd dopant

placed at different locations. Structure (9) represents the experimentally determined doping

locations (in double doped configuration). (a) Au20Cd(SR)16 geometries generated from

experimental [Au20Cd2(SR)16]
− by switching or replacing Cd with Au at specific locations

before (‘ball and stick’) and after (red sticks) geometry relaxation. In the ‘ball and stick’

representations Magenta=Au; Blue=Cd; and Yellow = S. All C and H atoms are omitted for

clarity. (b) Doping locations in Au20Cd(SR)16 and pure [Au21(SR)16]
− compared to geomet-

ric rearrangement. Data for [Au20Cd2(SR)16]
− reconstruction as seen in Figure 3.4 is shown

for comparison. (c) [Au21(SR)16]
− geometry generated from experimental [Au20Cd2(SR)16]

−

by replacing Cd with Au before (‘ball and stick’) and after (red sticks) geometry relaxation

with the same coloring scheme as (a).
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Appendix D

Heterometal Doping of MNCs
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Figure D1: TSM (Shell-to-core BE vs. Core CE) applied to Au MNCs highlighted in Figure

4.2 (gold points) compared to the same MNC frameworks with R=CH3 (black points). The

distance between two corresponding black and gold points is at most 1.34 kcal mol−1 (Au24

MNC), while the average distance between the two is 0.65 kcal mol−1, which was rounded

up to 0.7 kcal mol−1 , representing the extended range of “synthesizability” with full-ligand

MNCs.
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Figure D2: Relaxed (golden balls/sticks) conformations of cores of the

[Au25−xMx(SC2H4Ph)18]
q MNCs shown in Figure 4.2 compared to the core of the

pure Au25 MNC (transparent blue balls). Different metal dopants are highlighted in the

rows, while the different dopant locations/concentrations are in the columns. Structures

that show reconstruction (distortion from icosahedral symmetry) are indicated with a red

X.
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Table D1: Average displacements (δ), in Å, of core structures of doped

[Au25−xMx(SC2H4Ph)18]
q MNCs (shown in Figure 4.2 and Figure D2). Cores that visi-

bly reconstructed above in Figure D2 are counted as reconstructed and are highlighted in

bold. We note that these MNCs all show δs larger than 0.17 Å.

MNC by Dopant Location/Concentration

C I S Double Doped

Ag 0.04 0.07 0.05 0.08

Cu 0.08 0.09 0.06 0.09

Metals Cd 0.07 0.08 0.11 0.26

Hg 0.08 0.10 0.09 0.17

Pd 0.14 0.18 0.30 0.20

Pt 0.14 0.32 0.33 0.16
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Figure D3: TSM parity plot between Shell-to-core BE and core CE applied to MNCs that

rearranged over the course of relaxation highlighted in Figure D2 and Table D1. Pure

Au structures are identical to those displayed in Figure 4.1. 95% prediction and confi-

dence are identical to Figure 2.3. All data points with metal labels correspond to doped

[Au25−xMx(SC2H4Ph)18]
q MNCs with subscripts corresponding to the location(s) doped

within the MNC.
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Table D2: Delta (difference in) charge (calculated via NBO) between the dopants in the

relaxed [Au24M(SC2H4Ph)18]
q MNCs (shown in Figure 4.2 and Figure D3) and the Au in

the corresponding location within the Au25 MNC. MNCs that reconstructed (see Table D1)

are not included as there are not roughly equivalent Au locations to compare to for these

MNCs. CdS is highlighted in bold due to its large positive charge relative to Au at this

position.

MNC by Dopant Location

C I S

Ag 0.16 0.26 0.24

Cu 0.55 0.46 0.40

Metals Cd 0.71 0.77 0.87

Hg 0.61 0.49 0.61

Pd -0.38 —- —-

Pt -0.61 —- —-

Table D3: Relative DFT electronic energies (taken with respect to the lowest-energy isomers)

in kcal mol−1 for relaxed [Au24M(SC2H4Ph)18]
q MNCs (shown in Figure 4.2 and Figure D2)

and Au in the corresponding location within the Au25 MNC. Lowest energy MNCs among

the isomers are highlighted in bold and are equal to zero.

MNC by Dopant Location

C I S

Ag 7.09 0.00 4.31

Cu 0.00 0.50 3.81

Metals Cd 10.83 0.00 10.93

Hg 14.83 0.00 15.92

Pd 0.00 12.33 14.97

Pt 0.00 14.25 18.40
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	D3. TSM parity plot between Shell-to-core BE and core CE applied to MNCs that rearranged over the course of relaxation highlighted in Figure D2 and Table D1. Pure Au structures are identical to those displayed in Figure 4.1. 95% prediction and confidence are identical to Figure 2.3. All data points with metal labels correspond to doped [Au25-xMx(SC2H4Ph)18]q MNCs with subscripts corresponding to the location(s) doped within the MNC.
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