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Wireless control systems (WCSs) enable several advantages over traditional wired indus-

trial monitoring and control systems, including self-organization, flexibility, rapid deploy-

ment, and lower maintenance. However, wireless network delay and packet loss can result

in two main challenges for the control system: instability and performance degradation.

This dissertation aims at solving the instability and performance degradation challenges by

developing fault-tolerance and real-time approaches for a WCS.

For the instability challenge, we first developed a fault-tolerant network design and a

novel model to meet the control system stability requirement for one-way wireless trans-

mission. The evaluation results showed that our model was accurate with average 4.1%

difference from the simulation result. We scaled the work to two-way wireless transmission

to meet the control system stability requirement by analyzing the worst-case end-to-end de-

lay. We carried out an analysis to calculate the maximum number of conflicts that could

happen during one message transmission, and then derived the worst-case end-to-end delay.

The simulation results showed that our end-to-end delay analysis was accurate within 4.2%

of realistic simulation results.

For the performance degradation challenge, we explored a hybrid offline-online network

reconfiguration framework with time-varying link failures to improve control system perfor-

mance for the WCS with a single physical system. Accordingly, a precise network imperfec-

tion model and six reconfiguration algorithms had been developed to quantify and improve

the performance, respectively. The case study results showed that our network imperfection

model was accurate with Pearson correlation 0.993 and our network reconfiguration approach

performed better than the state-of-the-art static scheme. To improve the overall control sys-

tem performance for the WCS with multiple physical systems, we studied a dynamic packet

assignment approach. The case study results demonstrated that our approach was effective

in improving the overall control system performance.
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1.0 Introduction

1.1 Background

A control system is a system, which provides the desired input by controlling the output

[con, 2018] as shown in Figure 1. The desired input is called reference function. For example,

cruise control in a car controls the speed with the reference function of a constant function

of a certain speed setting by users. A stable control system produces a bounded output for

a given bounded input. Control systems can be classified as open loop control systems and

closed loop control systems. In open loop control systems, output is not fed-back to the

input. Whereas, in closed loop control systems, output is fed back to the input. In this

dissertation, we focus on the closed loop control systems.

Traditional control systems rely on wires to connect controller, sensors, and actuators,

where the controller is the central point that can control one or more physical systems (we

call them wired control systems in this dissertation). Typically, the controller is physically

separated from the physical plant, in a remote location. Figure 2 shows a general wired

control system with a single physical system. The sensors attached to the physical system

send measurement packets to the remote controller periodically and the remote controller

calculates the control signal and sends back the control signal to the actuator to actuate the

physical system using the received control signal. However, when a wired control system with

a single physical system is scaled to control a large number of physical systems, it will bring

the deployment and maintenance problems. Motivated by these problems, wireless control

Figure 1: Control system

1



Figure 2: Wired control system Figure 3: Wireless control system

systems (WCSs) are gaining rapid adoption in the industrial process, because WCSs can

overcome the problems of wired control systems and have the advantages of self-organization

and flexibility [Gungor and Hancke, 2009]. WCSs have been widely applied to domains

of transportation, health-care, manufacturing, agriculture, energy, aerospace and building.

WCSs controlled over multi-hop wireless sensor networks (WSNs) have especially received

significant attention in recent years [Han et al., 2011; Li et al., 2015, 2016; Pajic et al.,

2011b,a; Wang et al., 2016; Kim and Kumar, 2010]. As shown in Figure 3, the wireless

transmission has two directions: (1) up, sensors sending measurement messages to the remote

controller; (2) down, the remote controller transmitting the messages with control signals

back to the actuators. In this dissertation, we say a message is sent “up” to the remote

controller and “down” to the actuator. We focus on two wireless communication scenarios in

a WCS: (1) one-way wireless transmission: transmitting messages up to the remote controller

by assuming the messages are sent down on another wireless channel with a different radio

frequency; (2) two-way wireless transmission: transmitting messages up to the controller and

down to the actuator sharing a wireless network with the same radio frequency.

1.2 Problem Description

While early success of WSNs has been recognized, significant potential remains in ex-

ploring WSNs as fault-tolerance and real-time networks for industrial plants. Even though
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WSNs are good for deployment, wireless network communications are imperfect in terms

of packet loss and network delay. Most WSNs embedded in WCSs are deployed and ap-

plied in industrial environments, such as smart grids [Gungor et al., 2010], water tanks [Li

et al., 2015] and even nuclear power plants (NPPs) [Wang et al., 2016]. Harsh and complex

electric-power-system environments pose great challenges in the reliability of WSN commu-

nications. Interference is the main factor of packet losses in WSN [Li, 2015], where wireless

links exhibit widely varying characteristics over time due to moving people/obstacles and

electromagnetic and radio frequency interference (EMI/RFI) [Baccour et al., 2012; Kar and

Moura, 2009; Baccour et al., 2012; Gungor et al., 2010; Ganesan et al., 2001]. The inter-

ference can make some links/nodes inaccessible and disconnected for a limited amount of

time (e.g., if an obstacle, like a factory robot transporting materials, blocks the wireless

transmission). Moreover, the time delay is another issue of WSN due to retransmissions

and multi-hop characteristic. Real-time scheduling has been studied in WSN to constraint

network delays in [Saifullah et al., 2010; Gobriel et al., 2009b; Stankovic et al., 2003].

A WCS is a system with two subsystems, the wireless sensor network and the control

system. The performance of one subsystem will affect the other. Network-induced imper-

fections [Zhang et al., 2013; Gupta and Chow, 2010], that is, packet loss and time delay

(discussed above) can result in two main problems for the control system: instability [Zhang

et al., 2001; Zhang and Yu, 2008; Jusuf and Joelianto] and performance degradation [Pant

et al., 2015; Li et al., 2016]. When the control system is unstable, the plant (i.e., the physical

system) or part thereof can be damaged and lead to serious safety issues and financial loss.

On the other hand, even if the control system is stable under network-induced imperfec-

tions, WSN can introduce unreliable/non-deterministic levels of service in terms of delays

and losses and induce undesirable additional errors, that is, network-induced error. The

smaller the network-induced error, the closer to the wired control system performance.

The control system application desired requirements can be categorized as hard and soft

requirements, which are stability and performance, respectively. The performance require-

ment comes after the stability requirements are met. This dissertation studies different fault

tolerance and real-time techniques in WSN to solve the following two problems:

• P1 : control system stability guarantee;
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• P2 : network-induced error reduction.

In a WCS, the control sampling period is the interval where the control loop makes deci-

sions. In practice, the control sampling period in a WCS and cyber-physical system (CPS)

is 2n seconds, where −2 ≤ n ≤ 9, that is, from 250 ms to approximately 8 minutes [Han

et al., 2011] and it depends on the plant being controlled. After one knows the control

sampling period, there are two cases for the network delay: (1) worst-case network delay

is less than or equal to the control sampling period; (2) worst-case network delay is more

than the control sampling period. For the first case, the network reliability is the key effect

on control system performance. The higher the reliability, the better the control system

performance. To achieve high reliability, the network can be designed to be ”as reliable as

possible,” that is, a high level of redundancy, which requires more backup nodes. A higher

number of backup nodes typically induces more delay for messages to be delivered (more

traffic on the network), but all messages still arrive within the control sampling period and,

thus the delay has little (if any) effect on the control system performance. Recent research

works mainly focus on this case [Saifullah et al., 2011; Li et al., 2015; Saifullah et al., 2015;

Li et al., 2016]. However, for the second case, there is a trade-off between network delay and

packet losses for the control system stability and performance, which is a more complex case

that there is limited research insight on.

Our dissertation focuses on addressing P1 and P2 covering the two cases above, that is,

it is possible that the worst-case network delay is more than the control sampling period,

which is more general and complicated than previous research.

1.3 Research Overview

In this dissertation, there is a delicate interplay between network reliability and network

delay for designing a WSN in the WCS. Redundancy requires an additional delay to achieve

network reliability. Conversely, it is easy to see that reducing the redundancy (e.g., backup

rely nodes) in a WSN to reduce end-to-end network delay increases the probability of packet

loss. The trade-off between fault tolerance and real-time network for the industrial wireless
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Figure 4: The relationship between the problems and solutions of this dissertation

network has been explored in the literature [Han et al., 2011; Yu et al., 2014]. Limited

insights have emerged with respect to how the wireless control system application’s desired

requirements affect and are affected by the fault tolerance and real-time communication.

To this end, this dissertation aims at developing fault-tolerance and real-time approaches

to address P1 and P2. Our goal is to study the viability of and provide the justification for

the following dissertation statement:

“It is possible to achieve stability and reduce network-induced error for control systems,

while operating under packet losses and real-time constraints in a wireless network.”

We seek to achieve this objective by studying the two problems (P1 and P2).

For P1, the control system stability requirement in this dissertation is given by the control

engineering researchers (see Equation (4.1)), that is, an inequality constraint of network delay

and packet loss. Given the control system stability requirement, we propose a fault-tolerant

network node placement design and a model to estimate the minimum number of active nodes

in the network, by network delay and packet loss analysis, to meet the stability requirement

for the one-way transmission (solution 1: S1 ). To meet the stability requirement for two-way
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transmission, the network delay analysis is more complicated than the one-way transmission

(the packet loss analysis in S1 can be applied to two-way transmission). So we proposed a

worst-case end-to-end delay analysis (solution 2: S2 ).

For P2, under the assumption that the control system stability requirement is met,

we studied reducing the network-induced error in the WCS with a single physical system

and with multiple physical systems. Specifically, we explored a network reconfiguration

framework with offline and online parts to reduce the network-induced error for a WCS with

a single physical system (solution 3: S3 ). We then studied a dynamic packet assignment

approach to reduce the network-induced error for a WCS with multiple physical systems

(solution 4: S4 ).

Figure 4 shows the relationship between the problems and solutions.

1.4 Contributions

This dissertation consists of the following main contributions.

Fault-tolerant network design. Control system stability is critical for physical plants,

since system instability can result in plant damage and severe safety issues [Zhang et al.,

2001; Zhang and Yu, 2008; Jusuf and Joelianto]. In WCSs, network delay and packet loss are

the potential threats to control system stability. Given a control system stability require-

ment in terms of network delay and packet loss, we first propose a flexible fault-tolerant

node placement design. We then develop a model to meet the requirement for one-way wire-

less transmission and to determine the initial network topology with the minimum number

of active nodes [Wang et al., 2016]. This contribution is S1 to solve P1, with the detail

presenting in Chapter 4.

Worst-case end-to-end delay analysis. S1 cannot be scaled to two-way wireless

transmission for meeting the control system stability requirement is because the difference

in network delay analysis. Specifically, the two-way wireless communication will incur com-

munication conflicts. Therefore, we propose a worst-case end-to-end delay analysis to meet

control system stability requirement for two-way wireless transmission. We first carried out
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the conflict analysis to get a message schedulability condition. Based on the condition, we

then calculate the maximum number of conflicts that will happen during one message trans-

mission and derive the worst-case end-to-end delay [Wang et al., 2018a]. This contribution

is S2 to solve P1, with the detail explaining in Chapter 5.

Offline-online network reconfiguration framework for a WCS with a single

physical system. The trade-off of network delays and packet losses affecting the WCS

performance motivates us to find the optimal network configuration to minimize the network-

induced error. Another main difficulty of having wireless networks for the control systems

is caused by interference and noise that produce time-varying fault patterns [Cerpa et al.,

2005; Srinivasan et al., 2010], which motivates us to find a fast and effective way to carry

out network reconfiguration at run time. We design and implement a new framework with

offline and online components to do network reconfiguration for the control system with

time-varying link failures [Wang et al., 2017a, 2018b]. We propose a network imperfection

model in the offline part and six network reconfiguration algorithms in the online part. This

contribution is S3 to solve P2, with the detail showing in Chapter 6.

Dynamic packet assignment for WCS with multiple physical systems. Wireless

control system with multiple physical systems will be increasingly common due to the devel-

opment of IoT (Internet of Things) systems and IIoT (Industrial IoT). Network delay and

packet loss will impact each control system performance differently due to different applica-

tion demand. For the same delay and packet loss, we found that the physical system with

more urgent application demand will have more network-induced error than the one with

less urgent demand. In addition, the network paths within the wireless network can have

different network characteristic in terms of delay and packet loss (e.g., the source routing and

the graph routing in WirelessHart[wir, 2007]). The facts above motivate us to assign urgent

demand packets to network path with low delay and high reliability. We propose a dynamic

packet assignment approach to assign the packets from the WCS with multiple physical sys-

tems to the network paths, in order to reduce the overall network-induced error [Wang et al.,

2018a, 2017b]. This contribution is S4 to solve P2, with the detail introducing in Chapter

7.

Nuclear power plant case study. In order to evaluate the performance of our pro-
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posed methods and models for WCSs, we conducted case studies of one or more primary

heat exchangers (PHXs) in nuclear power plants (NPP) with a wireless sensor network. We

combined a start-of-the-art cyber-physical system simulator (WCPS 2.0 [Li et al., 2015])

with an NPP simulator to mimic our wireless control system. For the wireless network, we

use the TOSSIM network simulator (embedded in WCPS) with wireless noise traces from

a 21-node subset of WUSTL Testbed [tes, 2017] under a wide range of wireless conditions

(e.g., different levels of noise/interference). For each case study, we evaluate the network

and control system performance, that is, the network delay + reliability and network-induced

error, respectively. This contribution is spread from Chapter 4 to Chapter 7.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows: Chapter 2 reviews existing fault

tolerance and real-time techniques in WCSs. Chapter 3 introduces the background and

assumptions of this dissertation. In Chapter 4, we present the energy-aware fault-tolerant

network design approach and results. In Chapter 5, we do a worst-case end-to-end delay

analysis for two-way wireless transmission. In Chapter 6, we build a network reconfiguration

framework for link failures varying over time for a WCS with a single physical system. Chap-

ter 7 presents the dynamic packet assignment approach for a WCS with multiple physical

systems. Finally, Chapter 8 concludes the dissertation.
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2.0 Related Work

The solutions for network delay and packet losses in WCS are typically divided into three

categories: control only, network only, and control and network co-design solutions. In this

dissertation, we only review the last two categories of fault tolerance and real-time techniques.

This chapter first reviews the literature of fault tolerance and real-time solution from the

WSN perspective only, then presents the recent fault tolerance and real-time research works

in WCSs considering the interaction between network and control system, respectively.

2.1 Fault Tolerance Technique

2.1.1 Failures in WCSs

The failures in WCSs have hierarchical characteristics due to the joint of two subsystems,

control system and wireless network. The highest level of failures of WCS is control system

instability and performance degradation. One of the main causes of the instability and

performance degradation of WCSs is the unreliability of the wireless network, that is, packet

loss. Packet loss in WSNs is caused by two categories of failures, link and node failures

due to various factors such as power depletion, environmental impact, radio interference,

asymmetric communication links, dislocation of the sensor node and collision [Kakamanshadi

et al., 2015]. We mainly focus on link failures in this dissertation and the literature review

in the following subsections.

2.1.2 Network only Solutions

Radio link quality estimation (LQE) is the first step to tolerate the link failures, which

has fundamental impact on the network performance and network protocol design [Baccour

et al., 2012]. LQE is the statistical characterization of wireless links through estimation

theory. PRR (packet reception ratio)-based passive LQE algorithms are presented in [Woo
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and Culler, 2003; Cerpa et al., 2005]. In [Gobriel et al., 2009a], the authors show how different

fault-tolerant, duplicate-sensitive, aggregation schemes for WSNs can take advantage of link

quality information by an extensive simulation study. The fault tolerance techniques for the

link failures are typically divided as static and dynamic solutions.

For the static fault tolerance solutions, fault tolerance in-network aggregation protocols

in WSNs have been studied on the tree-based [Gobriel et al., 2006], cluster-based [Zhou et al.,

2004; Mahimkar and Rappaport, 2004], multipath [Nath et al., 2008], hybrid [Manjhi et al.,

2005], and gossip-based [Boyd et al., 2006; Aysal et al., 2009] approaches. Their objectives

are to extract useful global information by collecting individual sensor readings and sending

the aggregated information to the sink node. They are applied to monitor a specific envi-

ronment, which is different from the communication in a WCS with no need of information

aggregation. On the other hand, fault-tolerant node placement algorithms for link failures,

k edge-disjoint algorithms with the minimum number of nodes in the network to save net-

work energy consumption have been investigated in [Frank and Tardos, 1989; Han et al.,

2010]. As the adoption of the WSN in process control system, reliable routing algorithms

are proposed from wireless sensor network perspective for the WCS in [Heo et al., 2009; Han

et al., 2011]. Specifically, EARQ [Heo et al., 2009] provides real-time, reliable delivery of a

packet considering network energy consumption. It calculates the probability of selecting a

path, using the estimates of the energy cost, delay and reliability of a path to the sink node.

In [Han et al., 2011], the authors propose three routing graphs for different communication

ways of transmitting messages up (sensing), down (actuation) and broadcasting messages.

Based on the graphs, data link layer communication schedules are generated. However, all

the aforementioned works focus solely on the network without considering the control as-

pect of a WCS. We solve control system instability issue by a flexible fault-tolerant node

placement design and a model to quantify the network-induced imperfections (see Chapter

4).

Since the network interference is unpredictable and varies with time, the link quality

fluctuates over time [Cerpa et al., 2005; Srinivasan et al., 2010]. It is necessary to tolerate

the network link failures in a dynamic way. Interference can make the network disconnected

and becomes inaccessible for a certain amount of time and will degrade the control system
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performance. Network reconfiguration is an essential part of the network fault-tolerance

technique. Based on the LQE algorithms, network reconfiguration schemes are explored in

dynamic routing algorithms [Zhang et al., 2015]. In addition, several algorithms [Li et al.,

2003; Li and Hou, 2004] mitigate the impact of lossy links by maintaining k-connectivity of

the network. Topology control is another active research area to dynamically tolerant link

failures [Ramanathan and Rosales-Hain, 2000; Santi, 2005]. Topology control is achieved by

adjusting the transmit powers of nodes, which brings the positive effect of reducing contention

when accessing the wireless channel and making the network more reliable. Unfortunately,

these works do not consider control system performance. We design a network reconfiguration

framework with a network imperfection model, indicating the impact of network delay and

packet loss on control system performance (see Chapter 6).

2.1.3 Control and Network Co-design Solutions

Fault-tolerant co-design of the network and control system is effective for WCSs. Most

solutions of recent research works either extract the condition/requirements of the control

system or design a wireless network based on a control requirement or both. A set of topo-

logical conditions is extracted for the controller, distributed over the nodes in the network

that allows the control system to be stabilized in [Pajic et al., 2011a]. A reliability analysis

that evaluates a given configuration of an actively replicated networked control system and

quantifies its resiliency to electromagnetic interference-induced transient faults is presented

in [Gujarati et al., 2018]. In [Mouradian and Augé-Blum, 2013], the authors propose a for-

mal verification method to derive the property of correctness probability of a given network

topology based on the WSN radio links probability. This probability must meet the re-

quirements of the control application; otherwise, the system must be changed to increase the

probability. Other co-design solutions are case studies to observe the interaction between the

network dynamics and control system performance. For example, a case study is conducted

to see the interaction between the model predictive control and network routing schemes in

[Li et al., 2016] with the observation of control system having different levels of resilience

to packet loss for sensing and actuation. However, none of these works address the tradeoff
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between network delay and packet loss in WCSs, nor present the interaction between the

network reconfiguration and control. We conduct a case study to show how the network

reconfiguration affects the control system performance (see Chapter 6).

2.2 Real-time Technique

2.2.1 Network Delay in WCS

There are mainly two kinds of message delays in WCSs: sensor-controller delay and

controller-actuator delay. The sensor-controller delay represents the time interval from the

instant when the physical plant is sampled to the instant when the controller receives the

sampled message; and the controller-actuator delay indicates the time duration from the

generation of the control message at the controller until its reception at the actuator. In

control theory, these delays cause phase shifts that limit the control bandwidth and affect

closed-loop stability and performance [Park et al., 2018].

2.2.2 Network only Solutions

In order to guarantee the application deadline of a WSN, worst-case end-to-end delay

analysis is an important research area to study. In recent research works [Saifullah et al.,

2010, 2011, 2015], the worst-case end-to-end delay analysis for source and graph routing based

on wirelessHart standard to guarantee the real-time communication in WCSs are discussed.

However, they all consider the network flow deadlines are smaller than their periods. We

focus on a general case when it is possible that the transmission deadlines are greater than

their periods. To the best of our knowledge, no other works are studying this case before, but

it is common in real-time WCSs. We came up with a worst-case end-to-end delay analysis,

which helps a network design to guarantee the control system deadline (see Chapter 5).

Dynamic real-time network scheduling is an effective solution to constrain network de-

lays. Real-time TDMA scheduling algorithms in WSNs are studied from many aspects to

reduce the end-to-end network delays: parallel transmission design [Gobriel et al., 2009b];
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packet prioritization [Liu et al., 2006; Zhang et al., 2015]; and optimization with other con-

strains, such as energy consumption [Gu et al., 2009] and the number of packet drops [Hong

et al., 2015]. However, the above works do not consider control system application demands.

We propose a dynamic packet assignment approach considering dynamic control system ap-

plication demands and network reliability + delay impact on the control system performance

(see Chapter 7).

2.2.3 Control and Network Co-design Solutions

For the co-design of real-time network and control system, [Li et al., 2015] explores a

data link layer real-time communication protocol with slot stealing algorithm [Gobriel et al.,

2009b] and event-based communication on top of the WirelessHART protocol [wir, 2007]

to reserve time slots for emergency packets. However, neither network-induced error mini-

mization is considered, nor multiple control systems are involved. Online dynamic link layer

scheduling algorithms have been proposed in [Hong et al., 2015; Zhang et al., 2017] to meet

the deadline of a rhythmic flow and minimize the number of dropped regular packets in a

centralized and distributed way, respectively, based on a rhythmic task model proposed in

[Kim et al., 2012]. While the impact of network dynamics on existing network flows is mini-

mized, overall control system performance (different control system application demands) is

not considered ,and there is no case study for real-world applications. In [Gatsis et al., 2014],

the authors first abstract the control performance requirements as desired decrease rates of

Lyapunov functions. Since the channel conditions on wireless medium not only change un-

predictably overtime but also differ among users, they present a framework for designing

opportunistic channel-aware centralized schedulers for a WCS of multiple control tasks over

a shared wireless medium. In their later work [Gatsis et al., 2016], they derive a sufficient

decoupling condition for the random access policy employed by each node in the wireless

network given control dynamics. They then design a random access policy that can adapt

to the dynamic of the physical system online. The end-to-end real-time guarantee between

interfaces of distributed components in WCS besides the wireless network is proposed in

[Jacob et al., 2016]. A real-time high-speed wireless protocol is explored in [Wei et al., 2013].
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However, the above works only consider the control stability and not the overall control

system performance. To the best of our knowledge, a cross-layer dynamic packet assignment

has not been studied in a WCS with multiple physical systems, which is our last work in

this dissertation (see Chapter 7).

2.3 Summary

This chapter reviews related work in the fields of fault tolerance and real-time techniques

in WSNs and WCSs. We introduce the failures in WCSs and state-of-the-art fault tolerance

techniques from only the WSN aspect and control and network interaction aspect. On the

other hand, we discuss the network delay in WCSs and the real-time solutions of network

only and control and network co-design.

Motivated by the WCS challenges and shortcomings of existing work, this dissertation

targets at the work that lies at the intersection of fault tolerance and real-time scheduling

for WCSs.
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3.0 Background and Assumptions

In this chapter, we first introduce the background for this dissertation with (a) the control

system we use to do our performance evaluation and (b) the network protocol we apply to

do wireless transmission. Then we discuss the definitions and assumptions we made for this

dissertation before we go into more details in the following chapters.

3.1 Background

3.1.1 Primary Heat Exchanger System

The control system we study in this dissertation is a remote controller controlling one

or more primary heat exchanger systems in a nuclear power plant (NPP). A new trend in

nuclear power plants is to use several Small Modular Reactors (SMRs) rather than a single

large reactor [Greene et al., 2010], due to the flexibility and cost-benefit of starting and

stopping SMRs. Given the large number of SMRs in a modern NPP, the cost and difficulty

of cabling all sensors and actuators would be prohibitive. Typically there is one primary heat

exchanger system (PHX) and two secondary heat exchangers in each SMR. Note that we only

model the PHX in this dissertation, since the two secondary heat exchangers are backups for

safety and would follow a similar approach with a different network. A PHX in an NPP is

modeled as a nonlinear system and has as its main function the exchange of heat from inside

of the reactor to the outside, which controls the pressure and the temperature of the reactor.

A PHX makes many measurements, three of which are the focus of this dissertation, given

its importance to the NPP control, namely the outlet hot leg temperature, the inlet hot

leg temperature, and the mass flow rate. In our NPP, these measurements are periodically

sent via a wireless network to the remote controller locating in the operator control room.

The remote controller will compute the control signal using the received measurements and

then send back the control signal to the actuators to actuate the PHX. When there are
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multiple PHXs, they all share one wireless network to transmit the measurement packets to

the centralized remote controller and send the control signals back to each PHX.

We use the control system we discussed above to do case studies in this dissertation to

evaluate our models and approaches. We conducted wireless control case studies for one

PHX in Chapter 4 and Chapter 6, and the case study for three PHXs in Chapter 7. Note

that although important for NPPs, safety issues are beyond the scope of this dissertation and

we focus on the feasibility of making control system stable and reducing network-induced

error.

3.1.2 Ridesharing Protocol

The network protocol we use in this dissertation is based on a TDMA protocol 1, rideshar-

ing [Gobriel et al., 2006] to tolerate link failures. Ridesharing is an in-network aggregation

protocol, which is used to monitor a certain environment. We define relay nodes as the

sensor nodes passing messages in between the source and destination. In ridesharing (shown

in Figure 5), relay nodes are organized in a children-parent relationship. There is a direct

wireless link between the child and parent node, where a child node (e.g., C1) is a transmit-

ter, and a parent node (e.g., P1) is a receiver of the message from its child node. To make

the network more reliable, besides a relay node which is called primary node, we place one

or more relay nodes as backups which are called backup nodes. For example, P2 and P3 in

Figure 5 are the backup nodes of the primary node P1. The primary node and its backup

nodes are called sibling nodes (e.g., P1, P2 and P3 are sibling nodes). Thus, a node has

one primary parent and zero, one or more backup parents, and also has zero, one or more

siblings. If the backup parent finds out (while overhearing) that the primary parent did not

send out the values it should receive from their children, the backup parent will compensate

for the primary parent. For example, in Figure 5, C1 has one primary parent P1, two backup

parents, P2 and P3. The link between C1 and P1 fails. When C1 broadcasts its message in

1

TDMA scheduling can achieve the real-time transmission, since the transmission slots are scheduled ahead
of time. The non-TDMA scheduling protocols can also achieve real-time transmission purpose, such as ad-
hoc protocols. The network analysis in terms of network delay and message losses is the same as TDMA
protocols.
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time slot 0, P2 and P3 receive the message. When P1 broadcasts its message in time slot 1,

P2 overhears P1’s message and knows that P1 did not receive C1’s message. At time slot 2,

P2 aggregates C1’s measurement with the measurement it senses itself and sends a message

with an added field indicating that it received C1’s message. P3 overhears P2’s message

knowing that P2 already handled C1’s message and P3 discards C1’s message. In time slot 3,

P3 sends out a message with its own sensed measurement. In this way, the backup parent P2

tolerates the link failure between C1 and P1 and improves the network reliability. If P2 fails

to handle the fault (i.e., the link between C1 and P2 fails), P3 does so in a similar manner.

The more backup nodes, the more reliable the network. In this dissertation, we modified

the ridesharing protocol, by concatenating measurements into one message, instead of ag-

gregating the measurements. We remove the measurement aggregation is because there are

different types of measurements that cannot be aggregated in WCS applications. We choose

not to send each measurement with one message is to save network energy and reduce the

network contention, since more messages will bring more chances of transmission conflicts.

But we only concatenate the measurements sensed at the same control sampling period due

to the limited size of the message. Therefore, when a relay node receives multiple messages

before it sends out its own message, it will first discard the duplicate messages, which were

already received by its siblings via overhearing its siblings’ messages; then it concatenates the

measurements of the remaining received messages of the same control sampling period to the

message it is going to send (note that the concatenated measurements are distinct, since the

duplicate messages are discarded). For the communication frequency, we use single-channel

communication in Chapter 4, 5 and 6, and use multi-channel communication in Chapter 7.

3.2 Assumptions and Definitions

In this dissertation, we make definitions as follows.

• Link success ratio and delivery ratio. Links in wireless network fail independently

with a certain probability and we define link success ratio (LSR) as the probability a

message can be sent out successfully on that link. We use average LSR over all the
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Figure 5: Ridesharing protocol example illustration

network links as the indication of the average network interference. We use network

delivery ratio (DR) as the network reliability indicator, that is, the ratio of arrived

measurements or signals or messages in the destination (DR ∈ [0, 1]). Typically, the

bigger the LSR value, the bigger the DR.

• Sleep nodes and active nodes. Sleep nodes are the relay nodes in sleep mode that

cannot receive and transmit messages, while active nodes are the relay nodes that can

receive and transmit messages. To save energy, we make relay nodes to sleep for a while.

We also wake up the sleep nodes to be active as needed by sending reconfiguration mes-

sages periodically. Thus, in this dissertation, the sleep nodes will wake up periodically to

listen to the reconfiguration messages to see whether they need to wake up. The recon-

figuration messages are sent in reserved slots, as in many proposed TDMA algorithms

[Yackovich et al., 2011]. Thus, active nodes in this dissertation listen to the messages

of their children, overhear the messages of their siblings, listen to the reconfiguration

messages and send out its own messages.

• Neighbors of a relay node. Neighbors of a relay node A are defined as the network

nodes that are one hop from A.
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We make assumptions as follows.

• There is no message retransmission in our wireless transmissions. Similar to [Li et al.,

2015], when a message gets lost during a transmission, the controller/actuator uses the

last received measurements/control signal to carry out the control algorithm/actuation,

respectively.

• All sensors attached to one physical system send out the measurements at the same

period as the control period (i.e., the sensing sampling period is the same as the control

sampling period).

• In a traditional wired control system, the packet loss and delay can be ignored.

• The reconfiguration messages to activate (i.e., wake up sleep nodes) or deactivate (i.e,

put active nodes to sleep) relay nodes never get lost.

• The links between parent nodes and children nodes can fail, but the links between sibling

nodes never fail.

• An active node only overhears its sibling’s messages if the sibling node is scheduled to

transmit messages before it.

• We ignore the time delay of the control signal computation in the remote controller.
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4.0 Fault-tolerant Network Design

Control system stability is critical for physical plants, since system instability can result

in plant damage and severe safety issues [Zhang et al., 2001; Zhang and Yu, 2008; Jusuf and

Joelianto]. In WCS, network delay and packet loss are the potential threats to control system

stability. Given a control system stability requirement in terms of network delay and packet

loss, we first propose a fault-tolerant node placement design. We then develop a model

quantifying the stability requirement for different network topologies. We can determine the

initial network topologies with the minimum number of active nodes to meet the requirement

for different average LSR values. Finally, we evaluate our model by simulating a WCS with

one PHX and a 12-hop wireless network.

4.1 Introduction

In [Wang et al., 2016], the control engineering researchers use system damping ratio to

quantify the system stability. System damping ratio is a dimensionless measure describing

how oscillations in a system decay after a disturbance. In other words, the damping ratio

is a measure of describing how rapidly the oscillations decay from one bounce to the next.

Different system has their own system damping ratio threshold to bound the system stability

(e.g., the damping ratio threshold of a PHX is 0.2 [Wang et al., 2016]). The less the damping

ratio, the more time system need to come to the rest, the less stable. Network health (NH)

is derived by the damping ratio (the derivation process details can be found in [Wang et al.,

2016]). NH is shown in Equation 4.1 in terms of end-to-end network delay Dnetwork and

delivery ratio (DR), where p1, p2, p3 are constants (they are real numbers and could be

positive or negative) for a specific controller [Wang et al., 2016]. The end-to-end delay

Dnetwork is the time delay of any one message from the time it is sent out to the time it is

received by the controller (for one-way wireless transmission)/actuator (for two-way wireless

transmission). We will consider the Dnetwork of one-way wireless transmission in this chapter
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NH = p1D
2
network + p2Dnetwork + p3 − (1−DR) (4.1)

and two-way wireless transmission in Chapter 5.

Figure 6: Example of network performance region of a PHX with damping ratio threshold

0.2

When NH = 0, the system damping ratio equals to the damping ratio threshold (system

is stable) and p1, p2, and p3 can be calculated accordingly (NH is correlated with system

damping ratio, which equals to the damping ratio threshold). When NH > 0, the system

damping ratio is greater than the damping ratio threshold (system is stable). When NH < 0,

the system damping ratio is less than the damping ratio threshold (system is unstable). In

other words, the control engineers have came up with a general control system stability

requirement that when NH ≥ 0, the control system is stable. Figure 6 shows an example

of acceptable network performance region in terms of network delay Dnetwork and network
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reliability 1 − DR with damping ratio threshold of 0.2 of one PHX. Specifically, the black

curve is when NH = 0; the blue region is the acceptable region when NH > 0 and damping

ratio is greater then 0.2; and the white region is when NH < 0 and damping ratio is less

than 0.2 and system is unstable. We can get the maximum network loss rate (1 −DR)max

by setting Dnetwork = 0, which means the maximum network loss rate the control system

can tolerate to remain stable. Similarly, we can get the maximum network delay Dmax
network

the control system can tolerate by setting 1−DR = 0. Both (1−DR)max and Dmax
network can

be used in the network design phase.

Given the NH in Equation (4.1), our goal is to design a fault-tolerant wireless network

to meet the requirement (NH ≥ 0) with the minimum active relay nodes to save network

energy for one-way wireless transmission (messages sending up to the remote controller). In

this chapter, we first design a fault-tolerant network node placement for WCS and propose

a model to quantify NH and determine the minimum number of active nodes to have in the

network, to meet NH ≥ 0 requirement. We will scale our approach to two-way wireless

transmission in Chapter 5.

4.2 Network Node Placement Design

Since the remote controller is not on the same site (physically separated) as the sensors

and actuators, the periodic measurement messages will be transmitted through relay nodes

to the remote controller. In this chapter, we assume each wireless network link fails indepen-

dently with a the same probability. As the first network design step, we place relay nodes

in between the measurement sensors and the remote controller. We divide the network area

into two regions, namely k-connected region and relay region (see Figure 7). A virtual root

demarcates the connection between the two regions. The reason why we have two regions is

that a physical system could be very large and the sensors sensing different types of mea-

surements could be dispersed attached to it and we want to have the measurements sent to

one location (virtual root) first, then pass them together to the remote controller. After we

place the relay nodes in the network area, we describe how we generate a network topology
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set that will be used to determine the initial topology to meet the control system stability

requirement. Note that topology in this dissertation is the set of nodes that are active and

that are not (i.e., nodes that are asleep), assuming that there are a certain number of nodes

already physically placed (Section 4.2.1 and 4.2.2 discusses in detail how nodes are placed).

Every time a topology change occurs, it means that some nodes are activated and some are

put to sleep. Finally, we introduce the TDMA scheduling for each region based on the node

placement design.

4.2.1 k-connected Region

Optimal node placement in a wireless sensor network has been shown to be NP-hard [Han

et al., 2010]. Given that we only consider link failures, we apply k edge-disjoint algorithms

[Frank and Tardos, 1989; Han et al., 2010], instead of k node-disjoint algorithms [Zhang et al.;

Bredin et al.]. We define a k-connected region as the nodes and links having k edge-disjoint

paths from each measurement sensor to the virtual root. In the k-connected region, we apply

Han’s algorithm to place relay nodes [Han et al., 2010]. To get k edge-disjoint paths, we solve

an optimization problem for finding a minimum-cost subgraph H of a digraph G = (V,E)

such that H contains k edge-disjoint paths from a fixed node of G to any other node, which

can be reduced to a weighted matroid intersection problem [Frank and Tardos, 1989]. A

common basis of these matroids corresponds to a subgraph, that is, the union of k disjoint

spanning trees. Therefore, finding k edge-disjoint paths of a graph is equivalent to finding the

subgraph of k disjoint spanning trees with minimum cost (e.g., [Yang, 2005]). We also add

(k− 1) backup nodes to the virtual root to improve reliability. Note that we call the virtual

root and its backup nodes as virtual roots and treat them as one node when generating the

k edge-disjoint paths. The last relay node of each path can reach all the virtual roots, as we

place virtual roots as close as possible together (will explain the reason in Theorem 4.2.1).

In k-connected region, for k edge-disjoint paths of each measurement sensor, the path with

the minimum number of relay nodes is called the primary path, the path with the second

smallest number of relay nodes is called the first backup path, and so on.

23



Figure 7: Fault-tolerant relay nodes placement design for a single control system

(2-connected region and 3 lines of backup nodes in relay region)
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4.2.2 Relay Region

In the relay region, primary relay nodes are placed in a “straight line” between the virtual

roots and the remote controller, called the line of primary relay nodes. The distance between

two consecutive primary nodes is the same. In addition, we place b lines of backup nodes

(b ≥ 1), that is, each primary relay node have b backup nodes. For example, in Figure 7,

A and B are the primary nodes, and D and C are the backup nodes. Horizontally, the level

where one primary node and its backup nodes are located is called one level. Each node in

level h is able to listen to all the nodes in its lower level h−1 (the level closer to the physical

system) and its upper level h+ 1 (the level closer to the remote controller). To ensure each

node can hear all the nodes one hop from it with the minimum number of relay nodes, we

place the nodes in each level as close as possible (“horizontally” right next to each other),

as proved below. We will also place a virtual root and its backups as close as possible for

the same reason. Thus, we can assume the side link between any two nodes (siblings) in the

same level (e.g., A → D) never fails, given they are so close (it is one of the assumptions

mentioned in Section 3.2).

Theorem 4.2.1. Assuming faults are independent events, adding backup nodes as close as

possible to each primary relay node, minimizes the number of relay nodes in the relay region.

Proof. Referring to the inset in the upper left corner of Figure 7, note that the distance

between two consecutive primary nodes (e.g., A and B) is x, which is a function the radio

technology used and the power level each node transmits. The maximum distance between a

primary node and its furthest backup node (e.g., B-C) is m. The maximum distance between

the sender and any backup receivers (e.g., B-D) is r. We use an auxiliary imaginary point, E,

that forms a right angle between D and the primary node B. θ is the angle DCE. Therefore, we

can get (m+cos θx)2 +(sin θ)2x2 = r2. Solving the equation, x =

√
4r2−4(sin θ)2m2−2 cos θm

2
, r ≥

sin θm. To minimize the number of primary nodes, we need to maximize x, the distance

between two consecutive primary nodes. Therefore, m should be as small as possible (note

the negative sign of factors containing m), which means primary and backup nodes in the

same level should be placed as close as possible, since θ and r are constant.
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4.2.3 A Network Topology Set Generation

After placing the relay nodes in the network area, backup paths in the k-connected

region and backup nodes in the relay region can be put to sleep to save energy when the

network condition is bad (LSR is low), and some of the backup paths in the k-connected

region or backup nodes in the relay region need to be activated when the network condition

is good (the LSR is high). Thus, we generate a network topology set with the different

number of active nodes based on the node placement design. The reason why we need

different typologies with different levels of redundancy is different typologies have different

packet loss, delay and energy consumption that could fit to different physical system needs

at different time. For example, the more redundancy, the less packet loss, but more network

energy consumption and network delay, that is suitable to the physical system with high

delay but low measurement loss tolerance. Specifically, we activate the primary paths for

each measurement sensor in the k-connected region and the primary line of relay nodes in

the relay region to make sure the network is connected. Then, for each measurement sensor,

we activate the backup paths in k-connected region from the first backup path (the shortest)

to the last backup path (the longest) one path at a time. Meanwhile, we also activate

one node at a time in the first line of backup nodes from the virtual roots to the remote

controller, then add one node at a time in the second line of backup nodes, etc. Thus, we

can generate a network topology set with different number of active nodes (e.g., a topology

with a 2-connected region and one and a half lines of backup nodes in the relay region or a

topology with a 1-connected region and three lines of backup nodes in the relay region).

4.2.4 TDMA Scheduling

The TDMA scheduling in k-connected region is done first and then, after synchronizing

at the virtual roots, the TDMA scheduling for the relay region. This is due to different node

placement design in the two regions.

In the k-connected region, one relay node could be shared by multiple paths of different

measurement sensors. Thus, we design a TDMA scheduling to make sure each relay node

receives all the messages from its children before transmitting its own message. For example,
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pc =


LSRlc1 , if k = 1

k(LSRlc1 +
k∑
i=2

LSRlci (
i−1∏
j=1

(1− LSRlcj ))), k > 1
(4.2)

in a 2-connected region, two measurement sensors (numbered as 0 and 1) send messages to

a virtual root (numbered as 3) by 5 relay nodes (numbered as 2, 4, 5, 6, and 7). The two

paths of sensor 0 are 0→ 7→ 6→ 3 and 0→ 2→ 5→ 4→ 3 and the two paths of sensor 1

are 1→ 7→ 5→ 4→ 3 and 1→ 2→ 5→ 6→ 3. One of the feasible TDMA schedulings is

0-1-2-7-5-4-6-3. The relay nodes in k-connected region only listen to its children’s messages

and do not overhear the messages from other relay nodes. Thus, the virtual roots can (and

probably will) receive duplicate messages, discard them and only send out messages with

the measurements of the remaining received messages.

In the relay region, the relay nodes broadcast messages from the lowest level (where

the virtual roots are located) to the highest level (where the remote controller is located).

Within each level, the primary node will broadcast first, then the first, second, and third

active backup node (if any), in order. Each relay node will overhear the messages of some

siblings before it sends out its own message. Therefore, the more active backup nodes in the

network, the more messages are sent, and thus the higher network delay.

4.3 A Model for Quantifying NH

We propose a model to quantify the DR in terms of average LSR and the worst-case end-

to-end network delay, Dworst
network, in order to quantify NH for the network topology set with

different number of active nodes. We can determine the network topology with the minimum

number of active nodes to meet the requirement NH ≥ 0, for different LSR values.
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4.3.1 Delivery Ratio Calculation

We calculate the DR at the remote controller as the ratio of the expected number of mea-

surements received at the remote controller and the total number of measurements it should

receive for the different number of active nodes in the network given an average LSR value.

Specifically, we calculate the probability of measurement reception at the virtual roots in

k-connected region from the measurement sensors. We then design a dynamic programming

algorithm to calculate the probability of different measurement receiving situations level by

level from the virtual roots to the remote controller for the relay region.

For the k-connected region, we assume there are m measurement sensors and each mea-

surement sensor sends out one message with one measurement value in every control sampling

period. We denote the number of hops in the ith path from measurement sensor c to virtual

roots is lci . The probability of the measurement sent from measurement sensor c and received

by at least one of the virtual roots is shown in Equation 4.2, where LSRlc1 is the probability

the primary path transmits the measurement sent from measurement sensor c successfully

over lc1 hops to one of the virtual roots; LSRlci (
i−1∏
j=1

(1 − LSRlcj )) is the probability the ith

backup path transmits the measurement sent from measurement sensor c successfully over

lcj hops and the primary path and i− 1 previous backup paths fail. As mentioned in Section

4.2.1, if we have k edge-disjoint paths in the k-connected region, we have k virtual roots,

each one can receive the last nodes in all the paths. Thus, the probability that at least one

of the virtual roots receives the measurement c should have the factor k as a multiplier.

For the relay region, each node sends one message with one or more measurements that

it has received to its parent nodes in the next level. According to the ridesharing protocol

in Section 3.1.2, the number of measurements received by each node varies (due to network

errors) from 0 to the number of sensed values, but the total number of measurements of all

the active nodes in current level that are going to send out to the next level cannot exceed

the total number of measurements (or sensed values), due to the overhearing mechanism.

We introduce the concept of state, which represents the measurement receiving situation

of a level. A state of level h, sh is [ch,1, ch,2, ..., ch,nh
,mh, ph], where nh is the total number of

active nodes in level h, ch,i is the number of measurements that are going to send to level
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(a) (b)

(c)

Figure 8: Three example states of level h generated from one of the states of level h− 1

h + 1 by the ith node in level h; we define the array [ch,1, ch,2, ..., ch,nh
] as the measurement-

sending array of level h; mh =
nh∑
i=1

ch,i (mh ≤ m), which is the total number of measurements

that are going to pass to the next level; ph is the probability of state sh occurring. We define

xh,i as the number of received messages from level h− 1 that are going to be concatenated

into one message by the ith node in level h (i.e., the number of remaining messages, since the

duplicated messages were already discarded via overhearing mechanism), so xh,i messages

of the ith node contain ch,i measurements. We define yh as the total number of messages

that are going to be used to do the measurement concatenation, yh =
nh∑
i=1

xh,i. For example

in Figure 8(a), there are three nodes in level h − 1 and h, respectively; 5 measurements

are sent from level h − 1 to level h; the rectangle represents a message with one or more
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ph = ph−1

nh∏
i=1

((1− LSR)i−1LSR)xh,i × ((1− LSR)nh)yh−1−yh (4.3)

measurements and the circle represents a relay node; the rectangles below the nodes represent

the messages received from the previous level; the rectangles above the nodes represent the

messages received from previous level that are used to do measurement concatenation; and

the top rectangles represent the messages are going to send to the next level. Figure 8(a)

shows that n1 sends a message with two measurements, 1 and 2; n2 sends a message with

two measurements, 3 and 4; and n3 sends a message with one measurement 5; n4 receives the

messages from n1 and n2; n5 receives the message from n2; and n6 receives all the message

from level h−1. n4 concatenates the four measurements to its message from the received two

messages (xh,1 = 2) and sends out the message. n5 and n6 overhear n4’s message, knowing

that n4 already got messages from n1 and n2, and discard the messages received from n1

and n2 (if any). n5 does not send a message (xh,2 = 0). n6 sends a message only including

measurement 5 from one received message (xh,3 = 1). The measurement-sending array of

level h is [4, 0, 1].

sh is one of the states calculated recursively from a state in the previous (lower) level

h − 1, sh−1. For example, let the previous level h − 1 have nh−1 nodes, each node in level

h − 1 sends one message to the upper level h. Note that mh ≤ mh−1 and yh ≤ yh−1 (the

reason is discussed above), where mh−1 is the total number of measurements sent from lower

level h − 1, and yh−1 is the total number messages used for measurement concatenation of

level h − 1. The probability of state sh can be computed recursively as shown in Equation

4.3.

The above notation is a simplification of the problem, because there are many possible

states at level h that can be derived from many possible states at level h− 1. For example,

Figure 8 shows three example states of level h that generated from one state of level h− 1:
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DR =

m∑
i=1

(pRC(i)× i)

m
(4.4)

the measurement-sending array of the state of level h − 1 in the example is [2, 2, 1]. From

Figure 8(a) and 8(b), the measurement-sending arrays of level h are [4, 0, 1] and [2, 2, 1],

respectively. Figure 8(c) shows that the measurement 5 is lost during the transmission

and the measurement-sending array of level h is [2, 0, 2]. Therefore, strictly speaking, we

should treat each element of the state representation with another superscript, as follows.

A state k of level h is represented as skh = [ckh,1, c
k
h,2, ..., c

k
h,nh

,mk
h, p

k
h] computed from a state

j of level h − 1, sjh−1 similarly defined. Note that the states of level 0 (where virtual roots

locate) are computed by enumerating all possible values in the measurement-sending array

and calculating the corresponding occuring probability from Equation (4.2). To calculate

the probability of all possible number of measurements received by the remote controller, we

need to enumerate all possible states each level could have. For each level, we carry out the

calculation with two phases, namely, a states-generating phase and states-combining phase.

For the former, one or more states are generated by one of the states of the previous level (like

the examples shown in Figure 8). Formally, the new states, skh of level h that are generated

by one state, state sjh−1 in level h− 1, are the combinations of all possible values of ckh,i with

the following conditions: mk
h ≤ mj

h−1, 0 ≤ ckh,i ≤ mj
h (1 ≤ i ≤ nh). For the states-combining

phase, the probability of states with the same measurement-sending array (generated from

different states of level h − 1), [ckh,1, c
k
h,2, ..., c

k
h,nh

] are summed up and combined into one

state. Since we compute each state’s probability iteratively from the measurement sensors

to the remote controller, all possible number of measurements will be accounted for at the

remote controller. The delivery ratio at the remote controller is calculated in Equation 4.4,

where m is number of measurements sent from the sensors, and pRC(i) is the combined state

probability that the remote controller receives exactly i measurements. pRC(i) is calculated
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Dworst
network = nactive∆t (4.5)

recursively from the level of measurement sensors to the level of the remote controller, where

the states of each level in relay region are calculated during the phases of states-generating

(using Equation (4.3) for each state probability calculation) and states-combining.

4.3.2 Worst-case End-to-end Delay and NH Calculation

Based on the ridesharing protocol [Gobriel et al., 2006], which is a modification of TDMA

scheduling, each active node is reserved one time slot for transmitting the measurement

message. We focus on one-way wireless transmission in a WCS in this chapter and there is a

pipeline of messages one after another (periodic messages). If the level difference between the

two messages from consecutive control sampling periods is less than 3, there will be message

transmission conflict. The messages are unschedulable (messages cannot be delivered to the

destination) and will be stuck at a certain level forever. We will explain later in the Lemma

5.2.1 in Chapter 5. Once the messages are schedulable (messages can be delivered to the

destination), it is not possible that the messages of previous control sampling period are

conflicted by the messages of the current period, because previous messages are always sent

and arrive at the remote controller before the current message. Therefore, the worst-case

network delay is calculated in Equation 4.5 where nactive is the number of the current active

nodes and ∆t is the time slot of TDMA scheduling.

Therefore, for a given LSR, we can calculate NH using Equation (4.1) for the topology

set (generated in Section 4.2.3) with the different number of active nodes in the network, by

calculating DR from Equation (4.4) and Dworst
network from Equation (4.5). Then, we select the

topology with the minimum number of active nodes that meets the constraint NH ≥ 0 for

different LSR values.
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4.4 Performance Evaluation

We carried out a case study of a WCS with one PHX in an NPP to evaluate our model,

with the control system stability requirement as p1 = −0.714, p2 = −0.138, and p3 = 0.330

[Wang et al., 2016] (Equation (4.1)). We use the TOSSIM network simulator [Levis et al.,

2003] with wireless noise traces from a 21-node subset of the WUSTL Testbed [tes, 2017].

Similar to [Li et al., 2015], we use controlled Received Signal Strength (RSSI) [Lee et al.,

2007] with uniform gaps to simulate various LSR values. For the wireless network, we

evaluate a 12-hop (5 hops in the k-connected region and 7 levels in the relay region) network

of both the model results and simulation results. For our model analysis, we place 3 lines

of backup nodes in the relay region (b = 3) to avoid long-running computations. For the

simulation analysis, we place 7 lines of backup nodes in the relay region (b = 7) for sensitivity

analysis purposes. We set the maximum connectivity degree of k-connected region as 4 (i.e.,

k ≤ 4). Starting with one line of primary nodes and fixed k-connected region, we activate

lines of backup nodes from virtual roots to the remote controller (as discussed in Section

4.2.3). We assume the same time slot duration, ∆t = 0.01s, of WirelessHart [wir, 2007]. We

evaluate three metrics: DR, NH, and the minimum number of active nodes in the network

for different LSRs with NH ≥ 0.

4.4.1 The Model for Quantifying NH Result

The calculated DR from Equation (4.4) at the remote controller is shown in Figure 9(a)

for the average LSR 0.8 (other values of LSR show the same trend). Figure 9(a) represents

the calculated DR as a function of the number of added backup nodes in the relay region for

different values of k-connected region. Three interesting observations are as follows. First,

the inflection points happen when all primary relay nodes have the same number of backup

nodes (every 7 nodes or a complete line in this case). Second, while adding the first line of

backup nodes, the DR exponentially increases because the probability of sending a message

successfully from virtual roots to the remote controller is (2LSR(1 − LSR) + 2LSR)b ×

LSR7−b = 2bLSR7(2−LSR)b, where b is the number of backup nodes added in the first line
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of backup nodes; (2LSR(1 − LSR) + 2LSR)b means the probability of sending a message

successfully from the level of virtual roots to the level of the last backup nodes added in the

first line of backup nodes. As b increases, the probability increases exponentially. Third, the

slope decreases when adding more lines of backup nodes. Figure 10 demonstrates the reason:

the probability of using the last active node in one level handling a message decreases as the

number of backup nodes in each level increases, which explains why the slope of the first

line of backup nodes is the steepest.
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(a) Delivery ratio at remote controller; aver-
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(b) NH with different LSRs: 0.7, 0.8 and 0.9.

Figure 9: The model of quantifying NH results

Figure 9(b) shows the average NH for different LSRs. The system should operate above

NH ≥ 0, when the network meets the control system requirements (above the horizontal

line in Figure 9(b)). From this result, we are able to select topologies with the minimum

number of active nodes that meet NH ≥ 0 for different LSR values (more results are shown

in Table 1). For example, given LSR value of 0.8, the minimum number of active nodes in

a topology meeting the requirement is 34 (see Figure 9(b)). As the number of backup nodes

increases, the NH increases, but the slope of the improvement decreases. When the LSR is

0.9 and 0.8, the NH starts to decrease after more than 40 nodes in the network. It is because

the network delay increases faster than the network reliability and starts to have bad effect

on NH.
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Figure 10: Illustration of the probability of a message sent from previous level is handled by

the last node of a level. Red nodes do not receive messages and green nodes handle messages

4.4.2 Simulation Results

In the simulation, we adjust the RSSI value to simulate various LSR values. Figure 11

shows how to correlate RSSI and LSR based on 12,000 transmissions, where RSSI is between

-64 dBm and -84dBm. As the RSSI increases, the average LSR increases, which indicates

the network condition becomes better. The simulated average DR is shown in Figure 12(a)

for different RSSI values as a function of the number of active nodes in the network. The DR

increases when the number of active nodes increases, showing network gains in reliability.

Obviously, the higher the RSSI, the higher the DR; however, the difference in DR decreases

as a function of the number of active nodes and RSSI becomes irrelevant for networks with

many nodes (backup nodes dominate then and network is very reliable). Simulated values

of NH are shown in Figure 12(b). From this result, we can also select topologies with the

minimum number of active nodes that meet NH ≥ 0 (above the horizontal line in Figure

12(b)) for different LSR values (we can correlate the RSSI values with the LSR values from

Figure 11). It is interesting to see that the NH increases at first as the number of active

nodes in the network increases, because the DR increases faster than the network delay. But

the NH then decreases as the number of active nodes increases, because the network delay

increases faster than the DR.

We compare our model results (MR) with the simulation results (SR). Table 1 is the

comparison of the minimum number of active nodes of MR (MinMR) and the minimum

number of active nodes of SR (MinSR) when satisfying NH ≥ 0 for various values of RSSI.

Diff is defined as the percentage difference between MinMR and MinSR, Diff = (MinMR−
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Figure 11: The relationship between RSSI and average LSR
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Figure 12: Simulation results
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MinSR)/MinMR, quantifying the difference between our model and the simulation. The

simulation result demonstrates that our model is accurate with average 4.1% difference from

the model result (minimum and maximum difference is 0% and 8.7%, respectively).

The MinMR is different from the MinSR due to the following reason. MR uses a constant

value of LSR to do the calculation of the minimum number of active nodes in the network

that would meet NH ≥ 0, while the distribution of LSR in our simulation follows the CPM

model [Lee et al., 2007] in TOSSIM. We conduct a simulation of 12,000 transmissions in a

network and calculate the average LSRs every 60 transmissions. In order to see the LSR

distribution clearly, we normalize the LSRs by subtracting with the average LSR over the

12,000 transmissions. Figure 13 shows the histograms of the LSR difference distribution,

for RSSI = −64, RSSI = −76 and RSSI = −84. They all have LSRs that are different

from the overall average LSR, but the more concentrated around 0, the more LSRs close to

the overall average LSR, which matches the LSR standard deviation in Table 1. The LSR

dispersion degree (Figure 13) is the highest for poor network (RSSI = −84), indicating

that the LSR has the most variation and is the most different from the constant LSR of our

model, which explains RSSI = −84 shows the highest Diff.

Table 1: Comparison of model and simulation results

RSSI (dBm) average LSR LSR stdv MinMR MinSR Diff

-64 0.93 0.020 26 26 0%

-70 0.88 0.024 29 30 -3.4%

-76 0.82 0.031 33 32 3.0%

-82 0.77 0.035 37 39 -5.4%

-84 0.71 0.037 46 42 8.7%

4.5 Summary

In this chapter, we focused on designing a fault-tolerant wireless network to meet control

system requirement with the minimum number of active nodes. We first propose a fault-
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tolerant network node placement design. We then present our model to calculate the control

system stability requirement, NH, and determine the minimum number of active nodes in

the network to meet NH ≥ 0. For validation, we simulate a 12-hop wireless network on

TOSSIM simulator, transmitting messages for a PHX in an NPP. The simulation result

demonstrates the correctness of our model with average 4.1% difference from the model

result. Furthermore, we find that the redundancy in the wireless network is not always good

for the control system stability, which could induce more network delay in the WCS.

Figure 13: Histogram of LSR difference distribution for RSSI = −64, RSSI = −76 and

RSSI = −84
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5.0 Worst-case End-to-end Delay Analysis

End-to-end network delay is critical to control system stability in WCS according to

our control system stability requirement (Equation (4.1)) and recent research works [Yu

et al., 2014; Saifullah et al., 2011, 2015], which require network packets transmitting within

a certain control system deadline to make the control system stable. Thus, it is necessary

to quantify the worst-case end-to-end network delay, which can be used to test, both at

design time and for online admission control, whether a set of real-time transmissions can

meet all their deadlines. Compared to extensive testing and simulations, analytical delay

bounds are highly desirable in wireless control system applications that require real-time

performance guarantees [Saifullah et al., 2011]. As mentioned in Chapter 1 and Chapter

4, there is no transmission conflict during the one-way wireless transmission in WCS if

the messages are schedulable. We quantify the associated worst-case end-to-end delay in

Equation (4.5). However, for the two-way wireless transmission, the messages going up will

conflict with the messages going down, which induce more delay than the one-way wireless

transmission. In order to scale our model of control system stability requirement estimation

(in terms of network delay and delivery ratio estimation 1) in Chapter 1 to two-way wireless

communication, this chapter focuses on analyzing the worst-case end-to-end delay for the

two-way wireless transmission in a general WCS.

In this chapter, we first introduce the network model we study. We then analyze the con-

flicts that could happen during the message transmission and get the schedulability condition

(the condition that messages can be delivered to the destination within the bounded amount

of time) from the analysis. Based on the schedualability condition, we then compute the

worst-case end-to-end delay by calculating the delay without conflict, the maximum number

of conflicts during one message transmission and maximum time to resolve the conflicts. To

the best of our knowledge, this is the first work that discusses the end-to-end delay analysis

1

The procedure of delivery ratio estimation in two-way wireless communication is the same as the procedure
in Chapter 4.3.1. Although the algorithm complexity increase for two-way communication, it is acceptable
since our analysis is offline.
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for the network deadline greater than the control sampling period in the real-time WCS with

traffic in both directions.

5.1 Network Model

In this chapter, the network model we study is the relay region of the network we proposed

in Chapter 4 (for the network topology please see Figure 7). Our network model is shown

in Figure 14: there is one primary line of relay nodes (marked as black) and zero or more

lines of backup relay nodes (marked as grey). Different from the relay region in Chapter 4,

each line of nodes in our network model are complete. The relay nodes broadcast messages

level by level towards the controller, then back to the actuator. Within each level, the

primary node will broadcast first, then the first, second, and third backup nodes, in order.

Therefore, the more relay nodes in the network, the more messages are sent, and thus the

higher network delay. Note that the node radio frequency in this chapter is the same for

all nodes (i.e., no multi-channel transmission). Every control sampling period, we assume

there is one message containing all the measurement data sent out via the wireless network

to the remote controller, which runs the control algorithm and then sends a message back

via the same network again to the actuator. The worst-case end-to-end delay analysis is the

worst-case time delay of any one message from the time it is sent out to the time it is received

by the actuator. We also assume there is no measurement concatenation for measurements

sensed from different time steps.

We assume that there are n hops from the sensors to the remote controller and l lines

of relay nodes, that is, it takes l time slots at each level to transmit messages (one slot per

node). To be reliable, the controller will send out l duplicate messages to the relay nodes

(i.e. takes l time slots). We denote the current time slot as t (t = 0, 1, 2, ...), the current

level as h (h = 0, 1, ..., n), and control sampling period as p. The number of time slots

during one sampling period is ps = p
∆t

, where ∆t is the duration of the time slot. Thus,

with the time delay (i.e., stall time) caused by conflicting with other messages, d0 (in terms

of the number of time slots), message m0 sent at time t = 0 up to the controller is at level
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Figure 14: Network model with one or more lines of relay nodes

h(m0) =
⌊
t−d0
l

⌋
(0 ≤

⌊
t−d0
l

⌋
< n) and the same message on its way down to the actuator

is at level h(m0) = 2n −
⌊
t−d0
l

⌋
( n ≤

⌊
t−d0
l

⌋
≤ 2n − 1). More generally, with the time

delay caused by conflicting with other messages, di, a message mi sent out at time t = ips,

(i = 0, 1, ...) traveling up is at level h(mi) =
⌊
t−di−ips

l

⌋
(0 ≤

⌊
t−di−ips

l

⌋
< n) and traveling

down is at level h(mi) = 2n −
⌊
t−di−ips

l

⌋
(n ≤

⌊
t−di−ips

l

⌋
≤ 2n − 1). We also use tc(mi,mj)

to denote the time message mi starts conflicting with mj.

5.2 Conflict Analysis

We want to determine the worst-case end-to-end delay for periodic messages in a general

case, when the network delay is greater than the control sampling period (as discussed in

Chapter 1). We focus on the delay analysis for fixed priority scheduling where message

transmissions are scheduled based on the most recent message first and the oldest message

first schemes. We only do our proof based on the most recent message first scheme, given that

the derivation for the oldest message first scheme first is symmetric, which will be discussed

in Section 5.4. We denote the priority of a message mi as pri(mi). The delay without

conflicts for transmitting one message up to the remote controller is nl and the same amount
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of delay for going down. Thus, the delay without conflict is 2nl. When 2nl ≤ ps, there will

be no conflcts, given that the messages will go up and down before the next message is sent

out. When 2nl > ps, the current message mi will conflict with the message mj with higher

priority (pri(mi) < pri(mj)) and induce more network delay. In this section, we will do the

conflict analysis of the message transmission.

(a) (b) (c) (d)

Figure 15: Conflict situation (a) (b) (c) and no conflict situation (d)

A node cannot both transmit and receive in the same time slot and two transmissions that

have the same intended receiver interfere each other. If two transmissions are conflicting, they

cannot be scheduled in the same slot, which induces more time delay to the lower-priority

transmission. Given a set of n, l and ps, where 2nl > ps, there are three canonical situations

that two messages will conflict with each other. As usual in wireless networks, conflicts arise

when simultaneous transmissions arrive at the same node. The three scenarios are shown as

conflict situations 1, 2 and 3 in Figure 15(a), 15(b) and 15(c), respectively, for a single line of

relay nodes (no backups). Conflict situation 1 shows the scenario when a message going up

is at a lower level than the other message going down. Conflict situation 2 and 3 show the

scenarios when two messages are going in the same direction but very close together. But

for the situation shown in 15(d), when the message going up is at a higher level than the

message going down, there is no conflict (even though the level difference is 1), since their
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(a) (b)

Figure 16: The conflicts of mi when the level difference with mi+j is 5 (a) and 4 (b)

receivers are separated apart. Thus, the two messages start to conflict at the level difference,

∆h is 1 or 2, only under the three conflict situations. When the ∆h ≥ 3, the two messages

will not conflict with each other, since it is not possible that one receiver listening to the

messages coming from more than one transmitters at the same time. For conflict situation

1, when the ∆h = 1 and the level of two messages is less or equal to n−2, it will take 2l time

slots to resolve the conflict, given that the high-priority message will go up two levels while

the low-priority message waits. At this time the conflict is resolved. Similarly, when the

∆h = 2 and the level of two messages is less or equal to n−2, the conflict will be resolved in

3l time slots. In general, when message mi starts going down, the level difference between

mi and mi+j, ∆h(mi,mi+j) can be odd or even. When ∆h(mi,mi+j) = |h(mi)− h(mi+j)| is

odd (as shown in Figure 16(a)), each of the two messages will make progress on one level at

a time, until they are separated by exactly 1 level, at which time the conflict happens and

will be resolved in 2l time slots. Similarly, when ∆h(mi,mi+j) is even (as shown in Figure

16(b)), they will make progress until they are separated by exactly 2 levels, at which time

the conflict happens and will be resolved in 3l time slots. For conflict situations 2 and 3,
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it will take 4l or 5l time slots to resolve the conflict, when the level difference is 1 or 2,

respectively.

Let us consider consecutive messages, m0, m1, m2, ..., mi that are sent at t = 0, t = ps,

t = 2ps, ..., t = ips, respectively. Since we apply the most recent message first message

priority scheduling scheme, where pri(m0) < pri(m1) < ... < pri(mi). We define level

separation of two messages mi and mi+j, ls(mi,mi+j) as the number of levels mi+j needs

to go through to be at the same level and in the same direction of mi if mi stays still.

The level separation of two consecutive messages before any conflicts is ls(mi,mi+1) =
⌊
ps
l

⌋
,

which describes how separated the two consecutive messages are (in other words, how long

in terms of levels to wait to transmit the next sensor value). Intuitively, the more
⌊
ps
l

⌋
, the

fewer conflicts will happen. Note that level separation is different from level difference of

two messages, when two messages go in opposite directions (e.g., if there are 5 hops in the

network and mi is going down at level 4 and mj is going up at level 0, ∆h(mi,mj) = 4 and

ls(mi,mj) = 6). Recall that if ps ≤ 2nl, there will be no conflicts, given that the message will

go up and down before the next message is sent out. Thus, three cases under the condition

of 2nl > ps are discussed in the following sections: (1)
⌊
ps
l

⌋
≤ 2, (2) 3 ≤

⌊
ps
l

⌋
≤ 4 and (3)⌊

ps
l

⌋
≥ 5.

5.2.1 Conflict Analysis for Case
⌊
ps
l

⌋
≤ 2

Lemma 5.2.1. When
⌊
ps
l

⌋
≤ 2, no message can be delivered to the destination.

Proof. For the base case of m0 and m1, when both m0 and m1 go up, their levels are

h(m0) =
⌊
t
l

⌋
and h(m1) =

⌊
t−ps
l

⌋
(
⌊
t
l

⌋
< n), respectively. The level difference of m0 and m1

is ∆h(m0,m1) =
⌊
ps
l

⌋
≤ 2. Conflict situation 2 happens, since m0 and m1 are separated by

less than 3 levels. At time t = ps, h(m0) =
⌊
ps
l

⌋
, m1 is sent out, and m0 needs to wait until

m1 is at level h(m1) =
⌊
ps
l

⌋
+ 3 at time t = ps + 3l. However, at time t = 2ps < ps + 3l

(i.e., before the conflict of m0 and m1 is resolved), m2 will be transmitted and also block

m1. Since the conflict of m0 and m1 cannot be resolved, m0 will never move past level
⌊
ps
l

⌋
.

In general, the situation of any two consecutive messages mi and mi+1 is similar to

the situation of m0 and m1, where at time t = (i + 1)ps, mi+1 will start transmission and

44



interrupt mi at level
⌊
ps
l

⌋
, creating a chain reaction. Therefore, all messages will be blocked

by messages with higher priority and no message can be delivered to the destination. Since

all messages are blocked at level
⌊
ps
l

⌋
when going up, we do not need to consider conflicts

situation 1 and 3 because they will never occur if
⌊
ps
l

⌋
≤ 2.

5.2.2 Conflict Analysis for Case 3 ≤
⌊
ps
l

⌋
≤ 4

Lemma 5.2.2. When 3 ≤
⌊
ps
l

⌋
≤ 4, no message can be delivered to the destination.

(a) (b)

Figure 17: Conflict situation when
⌊
ps
l

⌋
= 4: (a) m0 starts conflicting with m1 and (b) the

conflict is resolved in 7l time slots if the subsequent messages do not exist

Proof. Let us first consider the best case (the largest separation between two consecutive

messages):
⌊
ps
l

⌋
= 4.

For the base case, when both m0 and m1 go up (
⌊
t
l

⌋
< n), ∆h(m0,m1) =

⌊
ps
l

⌋
≥ 3 with

no conflict. When m0 is already going down (
⌊
t
l

⌋
≥ n) and m1 is still going up (

⌊
t−ps
l

⌋
< n),

∆h(m0,m1) = 2n −
⌊
t
l

⌋
−
⌊
t−ps
l

⌋
≤ 2n − 2

⌊
t
l

⌋
+
⌊
ps
l

⌋
≤
⌊
ps
l

⌋
= 4. Let us consider the best

case (the largest separation of m0 and m1) with ∆h(m0,m1) = 4. As shown in Figure 17(a),

the conflict happens when h(m0) = n− 1 on the way down (grey arrow represents m0) and
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h(m1) = n − 3 on the way up (black arrow represents m1). As shown in Figure 17(b), the

conflict involves conflict situations 1 and 3: (1) during the conflict situation 1, m0 is blocked

by m1, while m1 goes up to the remote controller; (2) when m1 reaches remote controller,

the conflict becomes conflict situation 3 and is resolved until m1 reaches level n− 3. So the

conflict is resolved in 7l time slots if m2 and the following messages do not exist. However,

after 4l slots of the conflict of m0 and m1, where m1 is on the way down at level n− 1, m1

will conflict with m2 (like the situation in Figure 17(a)) and the previous conflict of m0 and

m1 will never be resolved. m0 will be blocked at level n− 1 forever.

For general case of mi and mi+1, when mi goes down, h(mi) = 2n−
⌊
t−ips
l

⌋
(
⌊
t−ips
l

⌋
≥ n);

and when mi+1 goes up, h(mi+1) =
⌊
t−(i+1)ps

l

⌋
(
⌊
t−(i+1)ps

l

⌋
< n). Since ∆h(mi,mi+1) =

2n−
⌊
t−ips
l

⌋
−
⌊
t−(i+1)ps

l

⌋
≤ 2n− 2

⌊
t−ips
l

⌋
+
⌊
ps
l

⌋
≤ 4, with the best case of the largest level

difference of 4, mi will conflict with mi+1 as the same situation of m0 and m1 above. After 4l

of the conflict of mi and mi+1 (the conflict takes 7l to resolve), mi+1 conflicts with mi+2, and

the conflict of mi and mi+1 cannot be resolved. Therefore, all the messages will be blocked

by higher priority messages at level n− 1 with
⌊
ps
l

⌋
= 4.

Clearly, if the best case of
⌊
ps
l

⌋
= 4 causes indefinite blocking, the case of

⌊
ps
l

⌋
= 3 will

come to the same conclusion.

5.2.3 Conflict Analysis for Case
⌊
ps
l

⌋
≥ 5

We consider two cases for
⌊
ps
l

⌋
≥ 5: the case of odd value of

⌊
ps
l

⌋
in Lemma 5.2.3 and

the case of even value of
⌊
ps
l

⌋
in Lemma 5.2.4.

Lemma 5.2.3. When
⌊
ps
l

⌋
≥ 5, all messages will be delivered, if

⌊
ps
l

⌋
is odd.

Proof. We prove this Lemma by showing that it is true for the worst case (smallest separa-

tion of two consecutive messages) when
⌊
ps
l

⌋
is odd, that is, ps

l
= 5. We show the Lemma is

true for the base case of m0 and m1, and then generalize to any two consecutive messages,

mi and mi+1. There are three cases:

(1) When both m0 and m1 go up (
⌊
t
l

⌋
< n), ∆h(m0,m1) =

⌊
t
l

⌋
−
⌊
t−ps
l

⌋
= ps

l
= 5 ≥ 3,

there is no conflict.
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Figure 18: The calculation process of level separations with higher priority messages of m0

and m1, when ps
l

= 5

(2) When m0 goes down (
⌊
t
l

⌋
≥ n) and m1 goes up (

⌊
t−ps
l

⌋
< n), ∆h(m0,m1) = 2n −⌊

t
l

⌋
−
⌊
t−ps
l

⌋
= 2n− 2

⌊
t
l

⌋
+ ps

l
. The conflict only involves the conflict situation 1. Since we

are dealing with the case of ps
l

= 5, which means level separation is odd, so is ∆h(m0,m1),

the conflict happens with ∆h(m0,m1) = 1 and can be resolved in 2l time slots. By solving

∆h(m0,m1) = 2n − 2
⌊
t
l

⌋
+ ps

l
= 1, we get

⌊
t
l

⌋
= n + 2. After this conflict, m0 stays at the

same level as the conflict before (stalled), h(m0) = 2n −
⌊
t
l

⌋
= n − 2; m1 goes up 2 levels

and h(m1) =
⌊
t−ps
l

⌋
+ 2 = n − 1. Although the level difference is 1, m0 and m1 are in the

situation shown in Figure 15(d), there is no more conflict between m0 and m1. Figure 18

shows the level separation of m0 and m1 is 5 to start with (before conflict), going down to

3, after the conflict (because m1 advances 2 levels while m0 stalls).

(3) When bothm0 andm1 go down, m0 andm1 will conflict with higher priority messages,

m2, m3, ... mj. These conflicts involve the conflict situation 1, given that m2, m3, ..., mj

are going up. For both m0 and m1, only the first conflict starts with an odd level separation

(for m0 see case (2) above) and the rest of conflicts are all even. Therefore, as shown in

Figure 18, conflicts after the first conflict are resolved in 3l time slots. A similar process can
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Table 2: The total stalls of m0 and m1 (i.e., d0 and d1) when m0 and m1 conflict with

higher priority messages (ps
l

= 5)

m1 m2 m3 ... mj

m0 2l (2 + 3)l (2 + 2 ∗ 3)l 2l + 3(j − 1)l

m1 - 2l (2 + 3)l 2l + 3(j − 2)l

be followed for m1. Table 2 shows the total stalls in terms of the number of time slots when

m0 and m1 conflict with m2, m3, ..., mj under the condition ps
l

= 5.

In addition to conflict situation 1, we also need to consider conflict situation 3, given

that when both m0 and m1 go down and m0 is ahead of m1, m0 will stall first given the

conflict, causing m1 to approach m0, further causing situation 3 conflict. Below, we discuss

three subcases to show how these conflicts are resolved: (3A) m0 and m1 conflicting with

m2, (3B) m0 and m1 conflicting with m3 and (3C) m0 and m1 conflicting with mj (j ≥ 2).

Case 3A: m0 and m1 conflict with m2. During the conflict of m0 with m2, m0 will go

down 1 level, and during the conflict of m1 with m2, m1 will go down 2 levels, as follows.

The level of m0, m1 and m2 is h(m0) = 2n −
⌊
t−2l
l

⌋
(as shown in Table 2, d0 = 2l due to

the conflict with m1), h(m1) = 2n −
⌊
t−ps
l

⌋
and h(m2) =

⌊
t−2ps
l

⌋
, respectively. When m0

starts conflicting with m2, ∆h(m0,m2) = 2n−
⌊
t−2l
l

⌋
−
⌊
t−2ps
l

⌋
= 2, and we get

⌊
t
l

⌋
= n+ ps

l
,

so tc(m0,m2) = nl + ps (as mentioned earlier, it is the time m0 and m2 starts conflicting)

and h(m0) = 2n −
⌊
t−2l
l

⌋
= 2n −

⌊
t
l

⌋
+ 2 = n − ps

l
+ 2. When m1 starts conflicting

with m2, ∆h(m1,m2) = 2n −
⌊
t−ps
l

⌋
−
⌊
t−2ps
l

⌋
= 1, and we get

⌊
t−ps
l

⌋
= n + 1

2
ps
l
− 1

2
,

so tc(m1,m2) = nl + 3
2
ps − 1

2
l and h(m1) = 2n −

⌊
t−ps
l

⌋
= n − 1

2
ps
l

+ 1
2
. Given that

∆h(m1,m0) = n− 1
2
ps
l

+ 1
2
− (n− ps

l
+ 2) = 1

2
ps
l
− 3

2
= 1 < 3 (i.e., the level difference between

m0 and m1 when m0 and m1 start conflicting with m2), m0 and m1 will conflict again with

each other (this time under conflict situation 3).

To explain how long m0 gets stalled before m1 starts its conflict with m2, we turn to

Figure 19, which shows the stall time of m0 from I0 to I2 and m1 from I2 to I3. The length of
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I0, I1, I2 and I3 is l, the time to transmit a message for one level. Since m0 stalls for 3l and

tc(m1,m2) − tc(m0,m2) = 1
2
ps − 1

2
l = 2l, the overlap of m0 and m2 is l, that is, I2. During

I0 to I1, m0 conflicts with m2 (and stalls), while m1 keeps going down 2 levels and m2 goes

up 2 levels. During I2, both m0 and m1 conflict with m2 and only m2 (highest priority) goes

up 1 level. During I3, m1 conflicts with m2, allowing m0 to go down 1 level and m2 to go up

1 level.

m0 and m1 will not conflict with m3, since during I3 (
⌊
t
l

⌋
= n+ ps

l
+ 3), the level of m0,

m1 and m3 is h(m0) = n− ps
l

+ 2, h(m1) = n− 1
2
ps
l

+ 1
2

and h(m3) =
⌊
t−3ps
l

⌋
=
⌊
t
l

⌋
− 3ps

l
=

n − 2ps
l

+ 3, respectively, with ∆h(m0,m3) = 4 and ∆h(m1,m3) = 5 both greater than 3.

From I0 to I2, the level of m0 and m1 are both higher than their levels during I3 and the

level of m3 is lower than its level of I3. Since there is no conflict with m3 during I3, there

is no conflict from I0 to I2. Thus, m0 and m1 will not conflict with m3 and will not conflict

with other messages (i.e., higher priority messages of m3) either during I0 to I3.

Figure 19: The stall time for m0 (lower segments) and m1 (upper segments), when

conflicting with m2

Case 3B: m0 and m1 conflict with m3. m0 and m1 will not be completely blocked during

the conflicts with m3: m0 and m1 will both go down for 1 level. The level of m0, m1 and

m3 is h(m0) = 2n −
⌊
t−5l
l

⌋
(as shown in Table 2, d0 = 5l due to the conflicts with m1

and m2), h(m1) = 2n −
⌊
t−ps−2l

l

⌋
(as shown in Table 2, d1 = 2l due to the conflicts with

m2) and h(m3) =
⌊
t−3ps
l

⌋
, respectively. When m0 starts conflicting with m3, ∆h(m0,m3) =

2n −
⌊
t−5l
l

⌋
−
⌊
t−3ps
l

⌋
= 2 , and we get

⌊
t
l

⌋
= n + 3

2
ps
l

+ 3
2
, so tc(m0,m3) = nl + 3

2
ps + 3

2
l

and h(m0) = 2n −
⌊
t−5l
l

⌋
= 2n −

⌊
t
l

⌋
+ 5 = n − 3

2
ps
l

+ 7
2
. When m1 starts conflicting
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Figure 20: The stall time for m0 (lower segments) and m1 (upper segments), when

conflicting with m3

with m3, ∆h(m1,m3) = 2n −
⌊
t−ps−2l

l

⌋
−
⌊
t−3ps
l

⌋
= 2 , and we get

⌊
t−ps
l

⌋
= n +

⌊
ps
l

⌋
, so

tc(m1,m3) = nl + 2ps and h(m1) = 2n −
⌊
t−ps−2l

l

⌋
= 2n −

⌊
t−ps
l

⌋
+ 2 = n − ps

l
+ 2. Thus,

∆h(m1,m0) = 1
2
ps
l
− 3

2
= 1 > 3, which means m0 and m1 have conflict (conflict situation

3). The start conflicting time difference is tc(m1,m3)− tc(m0,m3) = 1
2
ps− 3

2
l = l. Figure 20

illustrates the stall intervals for m0 conflicting with m1 and m3. During I0, m0 conflicts with

m1 and m3, allowing both m1 and m3 to go down and up for 1 level, respectively. During

I1 to I2, m0 conflicts with m1 and m3, and m1 conflicts with m0 and m3, allowing only m3

to go up 2 levels. During I3, m1 conflicts with m0 and m3, allowing m0 to go down for 1

level and m3 to go up 1 level. Even though m0 and m1 conflict, each gets a chance to move

further by 1 level when the other one is stalled with m3.

Similar to case 3A, m4 cannot conflict with m0 and m1 during the conflict from I0 to I3.

Since during I3 (
⌊
t
l

⌋
= n + 3

2
ps
l

+ 9
2
), the level of m0, m1 and m4 is h(m0) = n − 3

2
ps
l

+ 7
2
,

h(m1) = n − ps
l

+ 2 and h(m4) = n − 5
2
ps
l

+ 9
2
, respectively, with ∆h(m0,m4) = 4 and

∆h(m1,m4) = 5 both greater than 3, m4 will not conflict with m0 and m1 during I3.

Therefore, m4 will not conflict with any messages from I0 to I3 and thus no conflict of m1,

m2 with other messages (i.e., the higher priority messages of m4) also.

Case 3C: m0 and m1 conflict with mj (j ≥ 2). m0 and m1 will not be completely

blocked during the conflict and can both go down 1 level. The level of m0, m1 and mj is

h(m0) = 2n−
⌊
t−(2+3(j−2))l

l

⌋
(as shown in Table 2, d0 = (2+3(j−2))l due to the conflicts with
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Figure 21: The stall time for m0 (lower segments) and m1 (upper segments), when

conflicting with mj and mj+1

m0, m1, ..., mj−1), h(m1) = 2n−
⌊
t−ps−(2+3(j−3))l

l

⌋
(as shown in Table 2, d1 = (2 + 3(j− 3))l

due to the conflicts with m1, ..., mj−1) and h(mj) =
⌊
t−jps
l

⌋
, respectively. In general,

when m0 starts conflicting with mj, ∆h(m0,mj) = 2n −
⌊
t−(2+3(j−2))l

l

⌋
−
⌊
t−jps
l

⌋
= 2 ,

and we get
⌊
t
l

⌋
= n + 3

2
(j − 2) + j

2
ps
l

, so tc(m0,mj) = nl + 3
2
(j − 2)l + j

2
ps and h(m0) =

2n −
⌊
t−(2+3(j−2))l

l

⌋
= 2n −

⌊
t
l

⌋
+ (2 + 3(j − 2)) = n − j

2
ps
l

+ 3
2
(j − 2) + 2. When m1

starts conflicting with mj, ∆h(m1,mj) = 2n −
⌊
t−ps−(2+3(j−3))l

l

⌋
−
⌊
t−jp
l

⌋
= 2 , and we

get
⌊
t−ps
l

⌋
= n + 3

2
(j − 3) + 1

2

⌊
(j−1)ps

l

⌋
, so tc(m1,mj) = nl + 3

2
(j − 3)l + j

2
ps + 1

2
ps and

h(m1) = 2n−
⌊
t−ps−(2+3(j−3))l

l

⌋
= 2n−

⌊
t−ps
l

⌋
+ (2 + 3(j−3)) = n− 1

2
(j−1)ps

l
+ 2 + 3

2
(j−3).

Thus, ∆h(m1,m0) = 1
2
ps
l
− 3

2
= 1 and m0 and m1 are still conflicting with each other. The

start conflict time difference is tc(m1,mj) − tc(m0,mj) = 1
2
ps − 3

2
l = l. The stall time for

both m0 and m1 is the same as Figure 20: during the conflict, m1 can go down 1 level

during I0; and m0 can go down 1 level during I3. Also, mj+1 will not conflict with conflict

with m0 and m1 from I0 to I3. Since during I3 (
⌊
t
l

⌋
= n + 3

2
j + j

2
ps
l

), the level of m0, m1

and m4 is h(m0) = n − j
2
ps
l

+ 3
2
(j − 2) + 2, h(m1) = n − 1

2
(j − 1)ps

l
+ 2 + 3

2
(j − 3) and

h(mj+1) = n+ 3
2
j − ( j

2
+ 1)ps

l
, respectively. With ∆h(m0,mj+1) = 4 and ∆h(m1,mj+1) = 5,

mj+1 and other higher priority messages will not conflict with m0 and m1 from I0 to I3. This

pattern will repeat itself indefinitely in the worst case.

No delay caused by the conflict of m0 and m1 for Case 3A, 3B and 3C According

to the Case 3A, Case 3B and Case 3C, m0 and m1 always conflict with each other. However,
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the conflict does not induce more delay is because the duration between the start time of

the conflict of m0 with mj (j ≥ 2) and the start time of the conflict of m0 with mj+1 is

tc(m0,mj+1)− tc(m0,mj) = nl + 3
2
(j − 1)l + j+1

2
ps − (nl + 3

2
(j − 2)l + j

2
ps) = 3

2
l + 1

2
ps = 4l.

As shown in Figure 21, the duration between the start time of the two conflicts equals to the

duration of the conflicts among m0, m1 and mj, which means that the new conflict of m0

and mj+1 starts when the conflicts among m0, m1 and mj finishes. There is no “rest time”

between the conflicts among m0, m1 and mj and the conflicts among m0, m1 and mj+1.

So, the conflict of m0 and m1 always happen during the conflicts with other higher priority

messages and will not induce more stall time alone.

For any two consecutive messages, mi and mi+1, we can show the message progress,

similar to the process above. Conflicts always happen when the lower priority messages are

going down (conflict situation 1). Even though the two messages going down conflict with

each other (conflict situation 3), each gets a chance to make progress when the other one is

stalled due to the conflicts with higher priority messages (the newer message mi+1 will never

get ahead of the older message mi); both messages finally can reach to the destination.

The proof above is for the worst case for odd separation (ps
l

= 5). Outside the worst

case, the message density is lower, and therefore fewer conflicts and stalls will happen, which

comes to the same conclusion.

Lemma 5.2.4. When
⌊
ps
l

⌋
, all messages will be delivered, if

⌊
ps
l

⌋
is even

Proof. Similar to odd value of
⌊
ps
l

⌋
≥ 5, we first consider the worst case of the smallest

separation of two consecutive messages when
⌊
ps
l

⌋
is even, ps

l
= 6. We show the lemma is

true for the base case of m0 and m1, and then generalize to any two consecutive messages,

mi and mi+1. There are three cases:

(1) When both m0 and m1 go up (
⌊
t
l

⌋
< n), ∆h(m0,m1) =

⌊
t
l

⌋
−
⌊
t−ps
l

⌋
= ps

l
= 6 > 3,

there is no conflict.

(2) When m0 goes down (
⌊
t
l

⌋
≥ n) and m1 goes up (

⌊
t−ps
l

⌋
< n), ∆h(m0,m1) = 2n −⌊

t
l

⌋
−
⌊
t−ps
l

⌋
= 2n−2

⌊
t
l

⌋
+ ps

l
. The conflict only involves the conflict situation 1. Since ps

l
= 6

is even (∆h(m0,m1) is even), the conflict happens with ∆h(m0,m1) = 2 and can be resolved
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Figure 22: The calculation process of level separations with higher priority messages for m0

and m1, when ps
l

= 6

in 3l time slots. By solving ∆h(m0,m1) = 2n−2
⌊
t
l

⌋
+ ps

l
= 2, we get

⌊
t
l

⌋
= n+ 2. After this

conflict, m0 stays at the same level as the conflict before (stalled), h(m0) = 2n−
⌊
t
l

⌋
= n−2;

m1 goes up 2 levels and h(m1) =
⌊
t−ps
l

⌋
+ 3 = n − 1. Although the level difference is 1,

m0 and m1 are in the situation shown in Figure 15(d), there is no more conflict between m0

and m1. Figure 22 shows that the level separation of m0 and m1 is 6 to start with (before

conflict), going down to 3, after the conflict (because m1 advances 3 levels while m0 stalls).

(3) Similar to the case of ps
l

= 5, when both m0 and m1 go down, both m0 and m1 will

conflict with higher priority messages, m2, m3, ..., mj. These conflicts involve the conflict

situation 1, given that m2, m3, ..., mj go up. For both m0 and m1, only the first conflict

starts with an even level separation (for m0 see case (2) above) and the rest of conflicts are

all odd. Therefore, as shown in Figure 22, conflicts after the first conflict are resolved in

2l time slots. A similar process can be followed for m1. Table 3 shows the total stalls in

terms of the number of time slots when m0 and m1 conflict with m2, m3, ..., mj under the

condition ps
l

= 6. Below, we separate this into three subcases to show how these conflicts

are resolved: (3A) m0 and m1 conflicting with m2, (3B) m0 and m1 conflicting with m3 and
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Table 3: The total stalls of m0 and m1 (i.e., d0 and d1) when m0 and m1 conflict with

higher priority messages (ps
l

= 6)

m1 m2 m3 ... mj

m0 3l (3 + 2)l (3 + 2 ∗ 2)l 3l + 2(j − 1)l

m1 - 3l (3 + 2)l 3l + 2(j − 2)l

(3C) m0 and m1 conflicting with mj.

Figure 23: The stall time for m0 (lower segments) and m1 (upper segments), when

conflicting with m2

Case 3A: m0 and m1 conflict with m2. m0 and m1 will not be completely blocked during

the conflicts with m2: m0 will go down for 2 levels, and m1 will go down for 1 level. The level

of m0, m1 and m2 is h(m0) = 2n−
⌊
t−3l
l

⌋
(as shown in Table 3, d0 = 3l due to the conflict with

m1), h(m1) = 2n−
⌊
t−ps
l

⌋
and h(m2) =

⌊
t−2ps
l

⌋
, respectively. When m0 starts conflicting with

m2, ∆h(m0,m2) = 2n−
⌊
t−3l
l

⌋
−
⌊
t−2ps
l

⌋
= 1 , and we get

⌊
t
l

⌋
= n+

⌊
ps
l

⌋
+1, so tc(m0,m2) =

nl+ ps + l and h(m0) = 2n−
⌊
t−3l
l

⌋
= 2n−

⌊
t
l

⌋
+ 3 = n− ps

l
+ 2. When m1 starts conflicting

with m2, ∆h(m1,m2) = 2n −
⌊
t−ps
l

⌋
−
⌊
t−2ps
l

⌋
= 2 , and we get

⌊
t−ps
l

⌋
= n + 1

2

⌊
ps
l

⌋
− 1, so

tc(m1,m2) = nl+ 3
2
p− l and h(m1) = 2n−

⌊
t−ps
l

⌋
= n− 1

2
ps
l

+ 1. ∆h(m1,m0) = 1
2
ps
l
− 1 = 2,

which means m0 and m1 will conflict again (conflict situation 3) with each other given that

m0 got stalled before m1 conflicts with m2. tc(m1,m2)− tc(m0,m2) = 1
2
ps − 2l = l. Figure
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Figure 24: The stall time for m0 (lower segments) and m1 (upper segments), when

conflicting with m3

23 represents the stall time for m0 and m1. During I0, m0 conflicts with m2 (and stalls),

while m1 keeps going down for 1 level and m2 goes up for 1 level. During I1, m0 conflicts

with both m1 and m2; m1 conflicts with m2; only m2 (the highest priority message) goes up

1 level. During I2 to I3, m1 conflicts with m2, allowing m0 to go down 2 levels and m2 to go

up 2 levels.

m0 and m1 will not conflict with m3, since during I3 (
⌊
t
l

⌋
= n+

⌊
ps
l

⌋
+4), the level of m0,

m1 and m3 is h(m0) = n− ps
l

+ 2, h(m1) = n− 1
2
ps
l

+ 1 and h(m3) =
⌊
t−3ps
l

⌋
=
⌊
t
l

⌋
− 3ps

l
=

n− 2ps
l

+ 4, respectively, with ∆h(m0,m3) = 4 and ∆h(m1,m3) = 6 both greater than 3, m3

will not conflict with m0 and m1. Thus, m3 and its other higher priority messages will not

conflict with m0 and m1 during I0 to I3 (see Figure 23).

Case 3B: m0 and m1 conflict with m3. m0 and m1 will not be blocked during the

conflicts with m3: m0 will go down for 2 levels, and m1 will go down for 2 levels. The

level of m0, m1 and m3 is h(m0) = 2n −
⌊
t−5l
l

⌋
(as shown in Table 3, d0 = 5l due to the

conflicts with m1 and m2), h(m1) = 2n −
⌊
t−ps−3l

l

⌋
(as shown in Table 3, d1 = 3l due

to the conflict with m2) and h(m3) =
⌊
t−3ps
l

⌋
, respectively. When m0 starts conflicting

with m3, ∆h(m0,m3) = 2n −
⌊
t−5l
l

⌋
−
⌊
t−3ps
l

⌋
= 1 , and we get

⌊
t
l

⌋
= n + 3

2

⌊
ps
l

⌋
+ 2, so

tc(m0,m3) = nl+3
2
ps+2l and h(m0) = 2n−

⌊
t−5l
l

⌋
= 2n−

⌊
t
l

⌋
+5 = n−3

2
ps
l

+3. Whenm1 starts

conflicting with m3, ∆h(m1,m3) = 2n−
⌊
t−ps−3l

l

⌋
−
⌊
t−3ps
l

⌋
= 1 and get

⌊
t−ps
l

⌋
= n+

⌊
ps
l

⌋
+1,

so tc(m1,m3) = nl+2ps+l and h(m1) = 2n−
⌊
t−ps−3l

l

⌋
= 2n−

⌊
t−ps
l

⌋
+3 = n− ps

l
+2. The level
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difference between m1 and m0 is ∆h(m1,m0) = 1
2
ps
l
−1 = 2, which means m0 and m1 conflict

with each other again. The start conflicting time difference is tc(m1,m3) − tc(m0,m3) =

1
2
ps− l = 2l. Figure 24 illustrates stall intervals for m0 and m1. During I0 to I1, m0 conflicts

with m3, allowing both m1 and m3 to go down and up for 2 levels, respectively. During I2 to

I3, m1 conflicts with m0 and m3, allowing both m0 and m3 to go down and up for 2 levels,

respectively. Even though m0 and m1 conflict, each can move further by 2 levels when the

other one conflicts with m3.

Similar to case 3A, m4 cannot conflict with m0 and m1 during the conflict from I0 to

I3 in Figure 24. Since during I3 (
⌊
t
l

⌋
= n + 3

2

⌊
ps
l

⌋
+ 5), the level of m0, m1 and m4 is

h(m0) = n − 3
2
ps
l

+ 3, h(m1) = n − ps
l

+ 2 and h(m4) = n − 5
2
ps
l

+ 5, respectively, with

∆h(m0,m4) = 4 and ∆h(m1,m4) = 6 both greater than 3, m4 will not conflict with m0 and

m1. Therefore, m4 and its other higher priority messages will not conflict with any messages

from I0 to I3.

Case 3C: m0 and m1 conflict with mj (j ≥ 2). m0 and m1 will not be blocked during

the conflict and can go down by 2 levels. The level of m0, m1 and mj is h(m0) = 2n −⌊
t−(3+2(j−2))l

l

⌋
(as shown in Table 3, d0 = (3 + 2(j − 2))l due to the conflicts with m1, m2,

..., mj−1), h(m1) = 2n −
⌊
t−ps−(3+2(j−3))l

l

⌋
(as shown in Table 3, d1 = (3 + 2(j − 3))l due

to the conflicts with m2, ..., mj−1) and h(mj) =
⌊
t−jps
l

⌋
, respectively. In general, when

m0 starts conflicting with mj, ∆h(m0,mj) = 2n−
⌊
t−(3+2(j−2))l

l

⌋
−
⌊
t−jps
l

⌋
= 1 , and we get⌊

t
l

⌋
= n+ j

2

⌊
ps
l

⌋
+j−1, so tc(m0,mj) = nl+ j

2
ps+(j−1)l and h(m0) = 2n−

⌊
t−(3+2(j−2))l

l

⌋
=

2n−
⌊
t
l

⌋
+ (3 + 2(j − 2)) = n− j

2
ps
l

+ j. When m1 starts conflicting with mj, ∆h(m1,mj) =

2n−
⌊
t−ps−(3+2(j−3))l

l

⌋
−
⌊
t−jp
l

⌋
= 1 , and we get

⌊
t−ps
l

⌋
= n+ j−1

2

⌊
ps
l

⌋
+j−2, so tc(m1,mj) =

nl + j+1
2
ps + (j − 2)l and h(m1) = 2n −

⌊
t−ps−(3+2(j−3))l

l

⌋
= 2n −

⌊
t−ps
l

⌋
+ (3 + 2(j − 3)) =

n− 1
2
(j−1)ps

l
+ j−1. The level difference between m1 and m0 is ∆h(m1,m0) = 1

2
ps
l
−1 = 2,

which means m0 and m1 will conflict again (conflict situation 3). The start conflict time

difference is tc(m1,mj) − tc(m0,mj) = 1
2
ps − l = 2l. The stall time for both m0 and mj is

the same as Figure 24: during the conflict, m1 can go down for 2 levels during I0 to I1; and

m0 can go down for 2 levels during I2 and I3.

Also, mj+1 will not conflict with m0 and m1 from I0 to I3. Since during I3 (
⌊
t
l

⌋
= n +

j
2

⌊
ps
l

⌋
+j+2), the level of m0, m1 and m4 is h(m0) = n− j

2
ps
l

+j, h(m1) = n− 1
2
(j−1)ps

l
+j−1
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and h(mj+1) = n− ( j
2

+ 1)ps
l

+ j + 2, with ∆h(m0,mj+1) = 4 and ∆h(m1,mj+1) = 6, mj+1

and its higher priority messages will not conflict with m0 and m1 from I0 to I3. This pattern

will repeat itself indefinitely in the worst case.

Similar to the reason of the general case of ps
l

= 5, there is no delay caused by the conflict

of m0 and m1 for Case 3A, 3B and 3C above. For any two consecutive messages, mi and

mi+1, even though they conflict with each other during the downside transmission, each gets

a chance to make progress and finally reaches to the destination.

The proof above is for the worst case of ps
l

= 6. For the other even values of
⌊
ps
l

⌋
will

obviously come to the same conclusion.

5.3 Worst-case End-to-end Delay Determination

Based on Lemmas 5.2.1, 5.2.2, 5.2.3 and 5.2.4, we have the message schedulability con-

dition:
⌊
ps
l

⌋
≥ 5, which is independent of the number of hops n. We assume that a mes-

sage already conflicted with (Q − 1) higher priority messages. The upper-bound of the

total stalls is 3l(Q − 1) (given that each conflict can be resolved in at most 3l time slots

for conflict situation 1). The following formula shows the difference in levels between mi

and mQ+i, which is ∆h(mi,mQ+i); if that value is 1 or 2, the Qth conflict will happen:

1 ≤ ∆h(mi,mQ+i) = 2n−
⌊
t−ips−3(Q−1)l

l

⌋
−
⌊
t−ips−Qps

l

⌋
≤ 2. Based on properties of the floor

operation, we can get:

1 ≤ 2n−
⌊
t− ips
l

⌋
+ 3(Q− 1)−

⌊
t− ips
l

⌋
+

⌊
Qps
l

⌋
− 1 ≤ ∆h(mi,mQ+i)

≤ 2n−
⌊
t− ip
l

⌋
+ 3(Q− 1)−

⌊
t− ips
l

⌋
+

⌊
Qps
l

⌋
≤ 2

Then, we get 2n −
⌊
t−ips
l

⌋
+ 3(Q − 1) −

⌊
t−ips
l

⌋
+
⌊
Qps
l

⌋
= 2. Therefore, we can get

Equation 5.1.

Since the conflicts happen only when a message is transmitted down, the following con-

dition holds about the level of message mi: n ≤
⌊
t−3(Q−1)−ips

l

⌋
≤ 2n− 1, so n+ 3(Q− 1) ≤
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⌊
t− ips
l

⌋
= n+

3

2
(Q− 1) +

1

2

⌊
Qp

l

⌋
− 1 (5.1)

Table 4: Simulation parameters and values

parameters values

p 0.05s, 0.1s, 0.15s, 0.2s, 0.25s, 0.3s

ps 5, 10, 15, 20, 25, 30

l 1, 2, 3, 4

n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

⌊
t−ips
l

⌋
≤ 2n − 1 + 3(Q − 1). Put the Equation (5.1) into the above condition, we get

l
3l−ps ≤ Q ≤ 2nl−3l

ps−3l
and derive the maximum Q as

⌊
2nl−3l
ps−3l

⌋
. After calculating the maximum

number of conflicts, we can estimate the worst-case stalls in terms of the number of time

slots caused by conflicts, Dconflict = 3lQ = 3l
⌊

2nl−3l
ps−3l

⌋
. Recalling that the delay without

conflict, Dpure = 2nl, the worst-case end-to-end delay in terms of the number of time slots

is Dslots = Dpure +Dconflict = 2nl + 3l
⌊

2nl−3l
ps−3l

⌋
.

To determine the worst-case end-to-end delay, we multiply Dslots by ∆t, and obtain

Dworst
network = (2nl + 3l

⌊
2nl−3l
ps−3l

⌋
)∆t. Note that our derivation is general and scalable to any

network topology with n hops and l lines of nodes.

5.4 Worst-case End-to-end Delay Analysis Validation

To validate our worst-case end-to-end delay analysis, we implement a simulation to sim-

ulate the process of the dynamic message transmission. Recall that the schedulability con-
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dition (
⌊
ps
l

⌋
≥ 5) is to determine if a message can be delivered to the destination within a

limited amount of time. We carried out a set of tests on our simulation with different values

of p, l and n, as shown in Table 4, where each test corresponds to a value of p, l and n.

Our test set can be divided into two test sets, test set 1, where all the tests meet the

condition and test set 2 where all the tests do not meet the condition. We test the schedu-

lability condition on the test set and calculate the test accuracy by summing the percentage

of the tests that can deliver the messages within a limited amount of time for test set 1 and

the percentage of the tests that cannot deliver the messages within a limited amount of time

for test set 2. We get 100% accuracy for the schedulability condition test, demonstrating the

correctness of our schedulability condition. Under the test set 2, the worst-case delay anal-

ysis overestimates the delay by 4.2% compared with the realistic simulation results (always

pessimistic, but a very tight pessimism).

Figure 25 shows the examples of message transmission process of the most recent message

first (Figure 25(a)) and the oldest message first scheduling schemes (Figure 25(b)) with

p = 0.1s, ps = 10, l = 2 and n = 10. For the most recent message first scheme, as discussed

above and shown in Figure 25(a), the lower priority messages conflict with higher priority

messages and are delayed when traveling “down”. As analyzed in Section 5.2, when a message

traveling down, it is delayed at every level starting with level n− 2 (level 8 in this example)

but can still move down by 1 level until it reaches to the destination. Regardless, they still

arrive at the controller within the deadlines, because the condition
⌊
ps
l

⌋
≥ 5 is satisfied.

For the oldest message first, as shown in Figure 25(b), the conflicts happen when lower

priority messages (later messages) traveling up. The message transmissions are unsteady

(i.e., the end-to-end delays of the messages are not the same) at first, given that there are

not many higher priority messages ahead, so the delay is less for the earlier than for the later

(lower priority) messages. The transmissions get steady (The steady state of message delays,

that is, the end-to-end delays of the messages are the same.) after the 275 time slots and

the transmission process is symmetric with the most recent message first scheme. The proof

process for the oldest message first scheme is exactly the same as the most recent message

first scheme, that is, starting with the first two lowest priority messages, which are the last

two messages for the oldest message first scheme. Note that if the schedulability condition
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is not met, the oldest message first scheme will be always unsteady, but can still delivery

messages to the destination; this is a significant difference from the most recent message first

scheme. However, the end-to-end network delay is unbounded (becomes larger and larger),

since more and more conflicts are accumulated and are unresolved.

5.5 Summary

In this chapter, we carried out the worst-case end-to-end delay analysis for the two-

way wireless transmission in a WCS with one single physical system. From the transmis-

sion conflict analysis, we get the schedulability condition,
⌊
ps
l

⌋
≥ 5. Based on the condi-

tion, we calculate the maximum number of conflicts during one message transmission as⌊
2nl−3l
ps−3l

⌋
. With the maximum number of conflicts, we derive the worst-case end-to-end de-

lay as Dworst
network = (2nl + 3l

⌊
2nl−3l
ps−3l

⌋
)∆t. The simulation results show 100% accuracy for

the schedulability condition test. With the schedulablity condition satisfied, the simula-

tion results show that our end-to-end delay analysis is accurate within 4.2% of the realistic

simulation results (always pessimistic, but a very tight pessimism).
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(a)

(b)

Figure 25: Examples of (a) the most recent message first scheme and (b) the oldest

message first scheme transmission process with p = 0.1s, ps = 10, l = 2 and n = 10. Note

that the symmetry of the oldest message first scheduling scheme with the most recent

message first scheduling scheme begins at the 275th time slots.
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6.0 Dynamic Network Reconfiguration for WCS with One Physical System

In Chapter 4 and 5 we achieve the control system stability requirement with minimum

number of nodes in the network. However, only making sure the system stability is not

enough, since network-induced imperfections can still degrade control quality comparing

with the wired control system and result in equipment damage and serious economic losses

[Yu et al., 2014]. So it is necessary to reduce the network-induced error to make the control

system performance as close as the performance of the wired control system.

In this chapter, under the assumption that the control system stability is satisfied, we

discuss reducing network-induced error for a WCS with one single physical system for one-

way wireless transmission. The trade-off between network delay and packet loss motivates us

to find the estimated optimal network configuration (will explain in Section 6.2.2) to minimize

the network-induced error for the control system under different LSR values. Another main

difficulty of having wireless networks for the control systems is caused by the interference and

noise that produce time-varying fault patterns [Cerpa et al., 2005; Srinivasan et al., 2010],

which motivates us to find a fast and effective way to carry out network reconfiguration at

run time. Our goal is to reduce the network-induced error for a WCS with a single physical

system under time-varying network link failures. We design and implement a framework

with offline and online components to do network reconfiguration for the control system to

tolerate LSR changing over time (caused by the time-varying link failures). To evaluate

the control system performance with our network reconfiguration framework, we conduct a

systematic case study with a WCS for a single PHX in an NPP.

6.1 Network Reconfiguration Framework

We propose a network reconfiguration framework that has as input a network config-

uration set, that is, a network topology set generated in Section 4.2.3 based on the node

placement design discussed in Section 4.2. Different topologies correspond to different num-
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ber of active nodes in the network.

Our framework contains two parts, offline and online, as shown in Figure 26. For the

offline part, to quantify the network-induced imperfection impact on control system perfor-

mance, we propose a network imperfection model to transform network delay and DR to

the total induced delay on the control system. We estimate the total induced delay for each

topology in the network topology set. We find an estimated optimal (will be explained in

more details in Section 6.2.2) network topology set for each LSR offline, and store them at

the controller node. For the online part, at run time, the network notifies the controller what

the estimated LSR is and the controller selects a network topology from the estimated opti-

mal topology set computed offline. The controller then broadcasts the new network topology

to all the nodes in the network to carry out a reconfiguration. Therefore, the remote con-

troller acts as a centralized network manager and decides which network configuration should

choose.

6.2 Offline Optimal Network Configuration

We first introduce a model describing the network-induced imperfection impact on the

control system performance, which quantifies the trade-off between network delay and DR.

We then show how to find estimated optimal network topology set by using this model.

6.2.1 Network Imperfection Model

Although previous research discussed how the network reliability and network delay

affect the control system performance [Wang et al., 2016; Li et al., 2015], to the best of our

knowledge there is still no model that builds the relationship between network performance

(i.e. network delay and message loss) and control system performance (i.e. network-induced

error). We define the delay induced into the control system by the wireless network as

Tused − Tsensed, where Tused is the time the measurement signal is used by the controller and

Tsensed is the time the sensor sends out the sensor measurement. The total delay induced into
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Figure 26: Network reconfiguration framework for the control system with dynamic

network interference

Figure 27: Network delay and delivery ratio trade-off illustration, when network delay is

greater than control sampling period (p = 0.1s and Dnetwork = 0.2s)
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D = (

⌈
Dnetwork

p

⌉
+ nloss)p (6.1)

the control system is calculated dynamically every time it is needed, shown in Equation 6.1,

where Dnetwork is a variable of current end-to-end network delay, p is the control sampling

period, nloss is the number of consecutive packet losses. For example, as shown in Figure 27,

the control sampling period is 0.1s, but when the network delay is 0.2s and measurement M2

gets lost, the induced delay D2 is 0.3s and the controller will use measurement M1 instead.

When the measurement M3 also gets lost, the induced delay D3 is 0.4s and the controller will

(re-)use measurement M1. Note that nloss is computed from the control system perspective,

that is, if a message is received by the controller every control sampling period, nloss = 0.

D is related to both network delay and the number of consecutive packet losses. nloss

is estimated by the expected value of the network loss ratio (1-DR), as shown in Equation

6.2 where (1 − DR)iDR is the probability of i consecutive losses. We assume message

losses follow the uniform distribution, since DR can be viewed as the probability a message

received by the controller. When the probability is less than a threshold (c), we assume

that the probability can be ignored to avoid long-running computations. For example, for

DR = 0.9 and c = 0.0009, the probability of getting 1, 2 and 3 consecutive losses are 0.09,

0.009, and 0.0009, respectively. Therefore, the expected number of consecutive losses is

1× (1− 0.9)× 0.9 + 2× (1− 0.9)2 × 0.9 + 3× (1− 0.9)3 × 0.9 = 0.1107. The situations of 4

or more consecutive losses are ignored, since the probability of 4 consecutive message losses

is (1− 0.9)4 × 0.9 = 0.00009 < c.

6.2.2 Estimated Optimal Network Configuration Determination

The goal of the offline algorithm is to minimize the network impact (network delay and

packet loss) on the control system, using the network imperfection model above. By applying
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nloss =
n∑
i=1

i(1−DR)iDR, (1−DR)iDR ≥ c (6.2)

the worst-case network delay (Dworst
network) calculation in Equation (4.5) and DR calculation

in Equation (4.4) (so that nloss can be estimated from Equation (6.2)), we are able to

estimate the total induced delay D for the network topology set for different LSR values.

For each LSR value, our algorithm searches all the network topologies and finds the one with

minimum estimated induced delay, D (the topology is called estimated optimal topology

given a LSR value. We define the estimated optimal network topology/configuration as

the optimal topology/configuration based on the estimated value (i.e., estimated induced

delay D)). Thus, we find a set of estimated optimal network topologies with minimum total

induced delay D for each LSR value and store them in a look-up table indexed by LSR value.

Therefore, our offline algorithm discovers the set of estimated optimal network topologies

that will be saved and used later during the online portion.

6.3 Online Network Reconfiguration

Wireless networks, especially in radiation-prone locations, suffer from varying electro-

magnetic interference, which causes some links, some of the time, to fail. Clearly, static

configurations do not adapt to the time-varying noise and interference that can cause time-

varying link failures, that is, the average LSR remains constant over a period of time (i.e.,

each link fails independently from other links but with the same probability during that pe-

riod. We do not consider space-correlated link failures 1). We devised an online dynamic

1

Space correlated failures is where one link fails, the links physically close to it have high probability to
fail, typically due to a common source of interference.
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network reconfiguration to improve the control system performance by reducing the total

induced delay D.

The controller carries out both the control and network reconfiguration algorithms, given

that it has all the information needed to decide the new configuration (i.e., network topology).

The controller detects a reconfiguration is needed (for example, due to interference/noise),

and computes and propagates a new network configuration to all the nodes by broadcasting

reconfiguration messages. To deal with packet re-ordering, we discard old messages (i.e., the

time stamps of the messages are older than the received messages) at the remote controller.

In this dissertation, we restrict network configuration to the network topology, even though

our offline algorithm (Section 6.2) is general and the offline algorithm can be designed to deal

with network configuration variables like data link layer schedule, network routing, etc. We

first introduce the network reconfiguration process. Since our online network reconfiguration

is based on the offline look-up table given the current LSR, we then propose an algorithm to

estimate the average LSR at run time. Finally, we propose six online network reconfiguration

algorithms, that is, three original algorithms with two variations each, namely considering

or not consecutive packet losses.

6.3.1 Network Reconfiguration Process

Recall that the network topology set is generated following the process discussed in

Section 4.2.3. When we do network reconfiguration, that is, changing the network topology

from topology A to topology B, there are two cases: (a) topology B has more active nodes

than topology A; and (b) topology A has more active nodes than topology B.

For the first case, we need to activate the sleep nodes to be active to get topology B

by activating backup nodes in the relay region or/and the backup paths in the k-connected

region. For the relay region, we activate the backup nodes from the lowest level to the highest

level starting with the line of inactive backup nodes that is close to the primary line of relay

nodes, then from the lowest level to the highest level in the second line of inactive backup

nodes that is close to the primary line of relay nodes and so on. For the k-connected region,

we activate the backup paths in the order of the shortest inactive path, then the second
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shortest inactive path and so on. For the second case, opposite behaviors occur to put the

active nodes to sleep to get topology B: deactivating the active nodes from the highest level

to the lowest level in the relay region starting with the last line of active backup nodes;

or/and deactivating the backup paths from the longest active backup path. The speed and

how many nodes to activate/deactivate at a time will be explained later in Section 6.3.3 and

Section 6.3.4.

6.3.2 Network Average Link Success Ratio Estimation

Since our online network reconfiguration is based on the offline look-up table for each

LSR value, we need a way to estimate the average LSR when the reconfiguration algorithm

is executed. To estimate the LSR at run time, we propose a jumping window in-network

aggregation method. During a certain amount of time, that is, the LSR estimation interval

(LSRI), each node counts the number of messages it receives (NMR), nrev and the number

of messages it should receive (NMS), nshould (knowing the period of message arrival). At the

end of the LSRI, each node concatenates the two numbers, nrev and nshould to its message,

and sends the message to its parent nodes. Then, the parent nodes will sum their own NMR

and NMS with their children’s NMRs and NMSs, respectively; this repeats until getting

to the controller. Eventually, the remote controller will compute the final overall network

average LSR by its received nrev and nshould as nrev

nshould
. Algorithm 1 shows the LSR estimation

algorithm running on one relay node in more detail.

6.3.3 Reconfiguration Not Considering Consecutive Losses

The intuition behind the online algorithm is to find the estimated optimal topology ac-

cording to the current estimated LSR calculated by the remote controller, and then adjust

the current network topology to the estimated optimal topology. We explore three options

to reach the estimated optimal topology, given that the reconfiguration depends on the LSR,

which cannot be computed instantaneously. We first discuss three algorithms not considering

consecutive message losses, which are DirectJump to Optimal (DO), Multiplicative Increase

and Conservative Decrease (MICD), and Adaptive Control (AC). The inputs to these algo-
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Initialization: nshould = 0, nrev = 0, LSRCounter=0;

while true do

if LSRCounter == LSRI then

if it is time to receive a message then

get the nirev and nishould from the received message mi ;

nrev = nrev + nirev ;

nshould = nshould + nishould ;

end

if it is time to transmit a message then

Attach nshould and nrev to its message that is going to send;

Send out the message;

nrev = 0 ;

nshould = 0 ;

end

LSRCounter=0;

else

if it is time to receive a message then

nshould++;

if receive a message then

nrev++;

end

end

LSRCounter++;

end

end

Algorithm 1: LSR estimation algorithm running on one active relay node
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rithms are the offline look-up table and the LSR computed in Section 6.2 and Section 6.3.2,

respectively.

DO (Direct Jump) The controller sends out a message to all participating nodes

to adjust the network topology to instantaneously have the estimated network topology

whenever the LSR estimation value changes according to the offline look-up table. Algorithm

2 shows the detail.

Initialization;

LSRCounter=0;

while true do

if LSRCounter == LSRI then

estimate current LSR, currLSR;

look up the offline table and get the new network topology, T based on currLSR;

change the current network topology to T;

LSRCounter=0;

end

LSRCounter++;

end

Algorithm 2: Direct jump to optimum (DO)

MICD (Multiplicative Increase Conservative Decrease) Inspired by [Sankara-

subramaniam et al., 2003], with a focus on network reliability, the number of sleep nodes

is multiplicatively (i.e., very quickly) activated when the number of active nodes in cur-

rent topology is less than the number of active nodes in the estimated topology based on a

changed LSR value (converse of TCP/IP protocols window reduction [Chiu and Jain, 1989]).

When the number of active nodes in current topology (currnode) is more than the number of

active nodes in the estimated topology (estnode), the number of active nodes is conservatively

deactivated (in our case, we deactivate one active node at a time). Algorithm 3 shows more

detail: every LSRI, a certain number of nodes (changenodes) is activated or deactivated on

top of the current topology to achieve reconfiguration.

AC (Adaptive Control) Inspired by adaptive control theory [Hovakimyan and Cao,

2010], the larger the difference between the number of active nodes in estimated topology
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Initialization;

LSRCounter=0, estnode=0, increment = 1;

while true do

if LSRCounter == LSRI then

get the number of active nodes in current topology, currnode;

estimate current LSR, currLSR;

look up the offline table and get the new network topology, T based on currLSR;

estnode=T.node;

if currnode < estnode then

changenode = increment;

increment = increment×2;

else if currnode > estnode then

changenode = 1;

else

increment=0;

end

Activate or deactivate changenode nodes on the current network topology to get

a new topology;

LSRCounter=0;

end

LSRCounter++;

end

Algorithm 3: Multiplicative increase and conservative decrease (MICD)
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(getting from the offline table based on the estimated LSR) and the number of active nodes

in current topology, the faster we activate or deactivate number of nodes in the network.

That is, currnode = α×currnode+(1−α)×estnode. Parameter α guides the speed of activation

or deactivation of the relay nodes in the network (0 < α < 1). When α = 0, AC behaves

like DO and the speed of activating or deactivating nodes is maximum. When α = 1, the

current number of nodes does not change, that is, it is a static network. In essence, smaller

α implies higher speed to change the current number of active nodes. Algorithm 4 shows

more detail.

Initialization;

LSRCounter=0, estnode=0, currnode = minnode;

while true do

if LSRCounter == LSRI then

get the number of active nodes in current topology, currnode;

estimate current LSR, currLSR;

look up the offline table and get the new network topology, T based on currLSR;

estnode=T.node;

newnode = α× currnode + (1− α)× estnode;

Activate or deactivate |currnode-newnode| nodes on the current network topology

to get a new topology;

LSRCounter=0;

end

LSRCounter++;

end

Algorithm 4: Adaptive control (AC)

6.3.4 Reconfiguration Considering Consecutive Losses

From Equation (6.1), the total induced delay is proportional to the number of consecutive

losses nloss. However, in the algorithms above, we did not consider nloss. Since the LSR

estimation is not completely accurate, it takes time to reconfigure and the network conditions

72



vary over time, there could be consecutive message losses, which will degrade the control

system performance. In other words, when there are consecutive message losses, we need to

make the network more robust (we choose to activate more nodes). As a first experimental

step, whenever nloss ≥ q, we add g more nodes in the network. g and q are user-selected

parameters.

Considering consecutive losses, we devise three more online algorithms: CL-DO, CL-

MICD, and CL-AC.

6.4 Case Study

We conducted a case study to show and experiment with our wireless network recon-

figuration framework for one PHX of one-way wireless transmission. We deploy the same

network in the case study as the one in Chapter 4, that is, a network with 12-hop and up to

50 nodes. We use a state-of-the-art cyber-physical system simulator (WCPS 2.0 [Li et al.,

2015]) to combine TOSSIM network simulator [Levis et al., 2003] and the PHX simulink

model together. The ridesharing protocol is implemented in the TOSSIM simulator with

wireless noise traces from a 21-node subset of the WUSTL Testbed [tes, 2017] to more re-

alistically simulate real-life scenario. The online reconfiguration algorithms mentioned in

Section 6.3 are implemented on the controller. Note that our simulation of online LSR is

done by CPM model [Lee et al., 2007] (embedded in the TOSSIM simulator to simulate

realistic scenarios, involving the space correlated link failures), which has the discrepancy

with the offline LSR estimation.

To simulate time-varying link failures, we propose a network fault model as follows. We

hold RSSI constant for a period of time and change RSSI to another value for the next period

of time (the duration is based on the noise traces mentioned above). We adjust each relay

node’s RSSI to change LSR within the range (0.5, 1.0), depending on the following three

quantities: RSSI duration: the time interval at which the RSSI is fixed (after that, the RSSI

may be changed); RSSI range and time range: the value and time range the RSSI duration

is chosen from. We randomly choose RSSI from RSSI range with a uniform distribution and
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Figure 28: Time-varying RSSI variation example

randomly choose RSSI duration from time range also with a uniform distribution. Figure 28

shows an example of the generated RSSI over time using our fault model with RSSI range

of (-60 dBm, -85 dBm) and time range of (0, 20s).

To evaluate the performance of the control system (in this case the PHX), we adopted

two metrics: Integral Absolute Error (IAE) [Li et al., 2016] and Root Mean Square Error

(RMSE), which is the RMS error measured between the closed-loop responses using wired

control and wireless control under consideration. These metrics quantify the quality of the

WCS: the less (error), the better. We also measure three more metrics, the total induced

delay D (to analyze IAE and RMSE) of the network imperfection model, the number of

active nodes that are used in the network, and the network lifetime. Table 5 shows our

simulation parameters and values.

6.5 Case Study Results

6.5.1 Offline Optimal Network Configuration Results

By applying the algorithm in Section 6.2.2, we can get the look-up table containing

the estimated optimal topology for each LSR value. Figure 29(a) shows the number of

active nodes of the estimated optimal topology for different LSR values. The higher the

LSR, the higher the percentage of packets that get delivered, and the more robust the
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Table 5: Parameters and values

Parameters Values

Control sampling period (p) 0.1s

TDMA time slot (∆t) 0.01s

Simulation time 300s

RSSI range (-60 dBm, -85 dBm)

time range (0, 20s)

LSRI values 2s, 4s, 8s, 12, 16s, 20s

Reference functions ramp30, ramp60, ramp90, ramp120

α value 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
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Figure 29: (a) The number of active nodes of the offline estimated optimal topology with

different LSR values; (b) total induced delay result for RSSI values of -64, -70, -76, -82 and

-84 that correspond to average LSR values of 0.93, 0.88, 0.82, 0.77, and 0.72, respectively;

(c) power output RMSE for different number of active nodes in the network.
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network will be, and therefore the fewer relay nodes needed. The optimal number is always

a multiple of 10 due to the ceiling operation in our network imperfection model (see Equation

(6.1)). In details, Dworst
network = nactive∆t (from Equation (4.5)) is multiple of time slot duration

∆t = 0.01s; when nactive = 10x (x ≥ 1), where x is an integer, the network is more reliable

(less nloss) than the network of nactive = 10(x−1)+y (y = 1, .., 9) but with the same value of

the term
⌈
Dworst

network

p

⌉
(p = 0.1). For example, a network with 25 active nodes (network delay

is 0.25s, but is considered as 0.3s due to the ceiling operation) will definitely have more total

delay D than the network with 30 active nodes (network delay is also 0.3s), since 30 nodes

is more reliable and has fewer nloss than 25.

To see the correlation of the network imperfection model from Section 6.2.1 and the

control system performance, we run the simulation with static RSSI values. Figure 29(b)

shows the total induced delay for different number of nodes and different RSSI values. Note

that when the number of nodes is 20, the network is not robust (delivery ratio is less than

0.6 when RSSI = −64 and less than 0.1 when RSSI = −84 according to the results in

Figure 12(a)) and has more consecutive message losses, thus has more induced delay even

though the actual network delay is the lowest (for the messages that are actually delivered),

since it has the smallest number of nodes. When the number of nodes is 50, the network

is the most robust and almost does not have consecutive message losses (DR is above 0.9

when RSSI = −84 according to Figure 12(a)), but still has induced delay due to the highest

network delay.

Figure 29(c) shows the power output RMSE of the PHX. Comparing Figure 29(b) and

Figure 29(c), we can see that our network imperfection model is accurate visually and sta-

tistically (Pearson correlation r = 0.993, p < 0.001) correlating well to the power output

RMSE.

6.5.2 Online Network Reconfiguration Results

To simulate time-varying link quality models, we varied the RSSI range and time range

to get different representative network fault models (Section 6.4) with different average RSSI

values over the simulation time. We simulate our system on five fault models with average
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Figure 30: Control system power reference functions
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Figure 31: Power output IAE for different reference functions (average RSSI: -82dBm;

LSRI: 2s (20 samples))
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RSSI values (in dBm) of -65, -70, -74, -78 and -82. In this section, we present results of

control system performance (RMSE and IAE) and network lifetime; and the number of

nodes, total induced delay and RMSE changing over time for different online reconfiguration

algorithms.

Heat exchanger system power reference function To study the behavior of the

PHX, we consider the case when an operator changes the power output for the reactor. We

set the power reference function (i.e., the required power output of a nuclear reactor), to

reduce power from 42 MW to 37.8 MW (typical values for NPPs) as shown in Figure 30

(sample time is time/p). Ramp30 means that it takes 30 seconds to reduce the power from

42 MW to 37.8 MW. We consider four reference functions in this chapter: ramp30, ramp60,

ramp90 and ramp120. As shown in Figure 31, the steeper the reference function, the larger

the IAE. This is because when the reference function is steep, it requires the control system

to reduce its power output more aggressively, and thus it will have more transient response,

causing larger IAE. In the figure, “best-static” is the best fixed number of active nodes in the

network, as follows. For each reference function, we tested the number of nodes 20 to 50 for

each fault model and chose the static scheme with minimum average IAE over all the fault

models (in our case it is the static scheme with 40 active nodes). As shown in Figure 31,

online algorithms all perform better than the best-static with the average improvement of

16%, 23%, 19% and 20% for ramp30, ramp60, ramp90 and ramp120, respectively. Note that

the online network reconfiguration algorithms have similar trends for all reference functions

as shown in Figure 31. We only present the results for ramp30 in the following sections.

Comparison of Online Reconfiguration Algorithms Figure 32(a) shows the power

output IAE of the PHX for different average values of RSSI and different online network

reconfiguration algorithms; RMSE results are similar to the IAE results and are thus omitted.

For the first study, in this case study, we add 3 more nodes (g = 3) in the CL-* algorithms

when 3 consecutive message losses (q = 3) happen. As the average RSSI value decreases,

the power output IAE increases, since the network has more interference. As expected, our

dynamic algorithms perform typically better than the static scheme for all fault models.

CL-DO and CL-AC algorithms perform better than the other dynamic algorithms, because

they add more nodes only when needed, that is, when the network has consecutive message
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Figure 32: (a) Power output IAE and (b) network lifetime (c) network lifetime / IAE

results for different RSSI values (LSRI: 2s; α: 0.1)
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Figure 33: (a) Average number of nodes in the network, (b) average induced delay and (c)

average RMSE over 20 experiments changing over time (LSRI: 2s; average RSSI: -82dBm;

α: 0.1)
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(a)

(b)

Figure 34: (a) Network delivery ratio; (b) network delay for different average RSSI values

(LSRI: 2s; α: 0.1)
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losses. But CL-MICD always perform worse than CL-DO and CL-AC on average by 7.8%

and 7.4% over five fault models, respectively. Figure 33 shows the comparison of CL-MICD

and CL-AC on 20 experiments over 3,000 samples. The reason CL-MICD always performs

the worst among CL-* algorithms is because the speed of reducing the number of nodes is

slow (reduce one at a time) and the speed of adding nodes is fast (exponential increase),

which often overshoots the number of actually needed nodes and thus causes more induced

delay (induced delay of CL-MICD is always higher than CL-AC) and degrades the control

system performance.

We calculate the average network lifetime to measure the network energy consumption.

We define our network lifetime as the average relay node lifetime, and calculate the average

network energy consumption over different topologies experiencing in the online schemes for

one round of measurement transmissions from the measurement sensors to the controller.

For simplicity, we assume a general battery capacity is 8640J, which is the typical capacity

of two AA batteries. Figure 32(b) shows the network lifetime for different reconfiguration

algorithms. Algorithms considering consecutive message losses (CL-DO, CL-AC and CL-

MICD) consume more energy than their counterparts not considering consecutive message

losses (DO, AC and MICD). This is because CL-* algorithms are more aggressive activating

additional nodes when there are consecutive losses. In addition, from Figure 32(b), we found

that when there is more interference in the network, the network consumes more energy, since

the network needs more backup nodes to handle link failures. For network performance

results, see Figure 34(a) and Figure 34(b). As the average RSSI value decreases, indicating

more interference in the network environment, the DR decreases, but the network delay

increases since more active nodes are reconfigured participating.

To consider both control system performance and network energy consumption together,

we normalize network lifetime by IAE (i.e., network lifetime / IAE; the more normalized

value, the better) in Figure 32(c) for different average RSSI values. The static scheme is

significantly worse than the dynamic algorithms, because it consumes the most network

energy consumption, and it causes the most power output IAE, demonstrating that our

reconfiguration algorithms are necessary and work well. Note that we selected the best-

static scheme to be conservative in our evaluation, but in reality it would be hard to select
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a good static configuration a priori, since the network interference is unpredictable.

Sensitivity Analysis of LSR Estimation Interval Since LSR is estimated periodi-

cally, the length of the LSR estimation interval (LSRI) will affect the control system perfor-

mance. Figure 35(a) shows the results of the power output IAE for different LSRI values.

When the LSRI increases, the IAE of algorithms DO, MICD and AC increases because our

estimation is less accurate at high LSRI values. Figure 35(b) and Figure 35(c) show the

network lifetime and network lifetime normalized by IAE, respectively. In Figure 36, the

green line is the real LSR; the black line (LSRI of 2s) in Figure 36(a) tracks the real LSR

better than the LSRI of 8s in Figure 36(b) and the LSRI of 16s in Figure 36(c). Therefore,

the control system performance has less error when the LSR estimation is accurate. Figure

37 shows the comparison of the DO with LSRI of 2s and 20s (AC and MICD have similar

results). From sample 600 to 800, the DO with LSRI of 20s runs with 30 nodes in the

network because the LSR is estimated high averaged over the last 200 samples (from 400 to

600). However, from sample 600 to 800, the LSR is low (network has more interference) and

30 nodes cannot handle the link failures, which makes the consecutive message losses happen

(induced delay D is high) and negatively affects the control system performance. The IAEs

of the CL-* algorithms are not affected by the LSRI values because, even though the LSR

estimation may not be accurate, CL-* algorithms activate additional nodes to compensate

to make the network robust. However, the side-effect is that CL-* algorithms consume more

energy (see Figure 35(b)). For network performance (DR and delay), see Figure 38(a) and

Figure 38(b).

Adaptive control algorithm with different α values

Recall that the AC algorithm has a variable α (0 < α < 1), which determines the speed to

activate or deactivate nodes in the network (small α, fast node activating/deactivating). The

α value can also affect the control system performance. Figure 39 shows the IAE of AC and

CL-AC algorithms for different α values. First, looking at the results without consecutive

losses, when α > 0.5, the control system performs worse. This is because the speed of adding

or removing nodes is slow that it cannot react to the LSR variation on time. Figure 40 shows

the reason more clearly. From sample 600 to 800, when the network has more interference,

the speed of activating nodes in AC with α = 0.9 is slower than α=0.1, causing consecutive
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Figure 35: (a) Power output IAE and (b) network lifetime (c) network lifetime / IAE

results for different LSRIs (average RSSI: -82dBm; α: 0.1)
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(a)

(b)

(c)

Figure 36: Comparison of estimated and real LSRs (a) LSRI is 2s (b) LSRI is 8s (c) LSRI

is 16s (average RSSI: -82dBm)
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Figure 37: (a) Average number of nodes in the network, (b) average induced delay and (c)

average RMSE over 20 experiments changing over time (average RSSI: -82dBm)
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(b)

Figure 38: (a) Network delivery ratio; (b) network delay for different LSRIs (the average

RSSI value: 82dBm; α: 0.1)
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Figure 39: Power output IAE result comparison of AC and CL-AC for different alpha

values (average RSSI: -82dBm; LSRI: 2s)

message losses and more induced delay. From sample 800 to 1300, when the network has

less interference, the speed of AC (α=0.9) of deactivating nodes is also slow and induce more

delay (network delay is high) into the control system.

When considering consecutive losses, from Figure 39, we find that CL-AC always per-

forms better than AC. Although the speed to activate or deactivate nodes is slow for AC

with α=0.9, considering consecutive losses can compensate with 13.5% IAE reduction. Fig-

ure 40 shows more details. From sample 600 to 800, when the network has more interference

(consecutive message losses happen), CL-AC (α=0.9) activates more nodes in the network

than AC (α=0.9), which improves the control system performance. But CL-AC consumes

more network energy than AC (see Figure 39), due to activating additional nodes when there

are consecutive losses.
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Figure 40: (a) Average number of nodes in the network, (b) average induced delay and (c)

average RMSE over time for AC (α=0.1), CL-AC (α=0.9) and AC (α=0.9) (average RSSI:

-82dBm; LSRI: 2s)
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6.6 Summary

In this chapter, we focus on the objective of reducing the network-induced error (i.e.,

RMSE and IAE) of a WCS with one physical system, as the LSR changes over time. We

demonstrate that network reconfiguration is capable of achieving this goal. To assess the

performance of our proposed network reconfiguration framework with offline and online parts,

a systematic case study is conducted to see the in-depth interaction between the network

reconfiguration and the control. The simulation results show that our network imperfection

model is accurate with Pearson correlation 0.993, that network reconfiguration works better

than the static scheme showing low error and longer network lifetime. Furthermore, we

find that consecutive message losses can degrade the control system performance, but online

algorithms can compensate for them dynamically.
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7.0 Dynamic Packet Assignment for WCS with Multiple Physical Systems

In Chapter 6, we introduce the network-induced error reduction for a WCS with one

single physical system. However, the situation of multiple physical systems utilizing one

shared wireless network will be common, especially in IoT (Internet of Things) systems and

IIoT (Industrial IoT). It is necessary to study the control system performance improvement

for a WCS with multiple physical systems, which is the focus of this chapter. To the best of

our knowledge, it is the first study on dynamic packet assignment for a WCS with multiple

physical systems.

7.1 Introduction

We consider a WCS of multiple control systems with one shared wireless network, con-

trolled by a centralized remote controller by assuming all the control systems are stable (i.e.,

the stability requirement is satisfied). In a shared network, a real-time wireless network

typically has multiple network paths to transmit messages in parallel (some paths may have

redundancy). A network path is defined as the routing path, that is, the nodes along the

path transmitting the messages of a physical system from the source to the destination. Two

different paths can share common nodes to do message transmission. The network paths are

frequency separated (transmit messages in different channels). Note that in this chapter,

the number of nodes per path is fixed. Each path may have different characteristic in terms

of delay and reliability (e.g., in WirelessHart Protocol [wir, 2007], one can choose between

more reliable and higher delay and lower delay but less reliable paths, which refer to graph

routing and source routing, respectively). Also, different control systems may have different

application demands. For example, one control system has urgent demand, such as reducing

temperature by 10 °C within 10 minutes in a room while another system has less urgent

demand, such as increasing the temperature by 2 °C within one hour.

Our solution follows our intuition: to get better overall control system performance, we
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Figure 41: Control system power reference functions with control sampling period of 0.2s

should assign the messages of the control system with the urgent demand to fast and reliable

paths and assign the messages with the less urgent demand to slower or less reliable paths.

To test our intuition, we simulate a PHX system in Simulink. Figure 41 shows 8 different

reference functions (ramp functions) of a PHX when the controller decides to reduce the

output power from 42MW to 32MW within different amount of time. For example, ramp30

means to reduce the power from 42MW to 32MW within 30s. The control system application

demand urgency order of the 8 reference functions is ramp15 > ramp30 > ramp45 > ramp60

> ramp75 > ramp90 > ramp105 > ramp120.

To motivate how important packet loss and delay are to different control system appli-

cation demands, we inject packet losses and time delay into the PHX system. We assume in

this chapter the DR from measurement sensors to the remote controller (i.e., sensing) is the

same as the DR from the remote controller to the actuator (i.e., actuation), since we apply

the same network routing scheme for both sensing and actuation in this dissertation. We

inject random packet drop with the same probability of (1-DR) and inject the same delay for

both sensing and actuation. Note that the DR in this chapter refers to the half-way network

reliability (i.e., sensing or actuation), but the network delay refers to the total delay for both

sensing and actuation. We measure system performance through power RMSE (the same

metric used in the case study in Chapter 6).

Figure 42 shows the effect of network delays and power output reference functions (from
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Figure 42: Power output RMSE for different reference functions with different network

delays for a single PHX (DR=0.9; random packet drop with probability of 0.1)

Figure 41) with DR=0.9 (other values of DR show similar trends of the RMSE). Figure 43

shows the power output RMSE with different network delays and DRs when the reference

function is ramp30 (similar trends for the other reference functions). We have two obser-

vations: (1) As shown in Figure 42, for the same network delay and DR, the steeper the

reference function, the larger the RMSE. This is because when the reference function is steep,

it requires the control system to reduce its power output aggressively (in much less time),

and thus it will have a more transient response, causing larger RMSE. However, if the time

required to change the power output is longer than 60 seconds (i.e., ramp60), the control

system has approximately the same error due to the slow reaction required by the NPP. (2)

As shown in Figure 43, for the same reference function, the higher the network delay and

lower DR, the larger the RMSE. For the same control system application demand, different

network delay and delivery ratio can lead to different control system performance.

Based on the two observations above, network imperfections will impact each control

system differently, depending on the control system’s application demand (e.g., a reference

function in case of a PHX). Thus, our goal is to reduce the overall control system RMSE

caused by network-induced imperfections. We propose an approach to dynamically assign

packets of different physical systems to the appropriate network paths (with redundancy or

not). Our approach has two parts: (1) priority determination of the packets of different
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Figure 43: Power output RMSE with different network delays and DRs for a single PHX

(reference function: ramp30)

physical systems (highest priority for the most urgent physical plant and the priorities over

the physical plants could change dynamically). Each packet of the physical system transmit

packets periodically every control sampling period (2) network path selection. For the second

part, we study two cases: (2a) consider network delay only Based on the worst-case end-

to-end delay analysis in Chapter 5, we assign the highest priority packets to the fastest

network path. (2b) consider both network delay and packet loss We propose a more

general model to describe the network path quality combining the impact of network delay

and packet loss on the control systems together, based on the network imperfection model

proposed in Section 6.2.1. Quality here is from the perspective of the control system: higher

quality brings higher performance (smaller RMSE) to the control system. After all, the

highest priority packet is assigned to the highest quality path. To evaluate our approach, we

first carried out a case study on three PHXs in a modern, SMR (Small Modular Reactor)-

based NPP. Note that our approach is general and can be applied to other WCSs. The results

demonstrate that our packet assignment approach is effective and able to compensate for

delay and packet loss incurred by the network during the transition between steady states

of multiple physical systems when they vary their demands simultaneously. This approach

is able to create a WCS with the performance close to a wired network.
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RMSEi =

√√√√ 1

w

w∑
j=0

(wiredi(tj)− wirelessi(tj))2 (7.1)

7.2 Problem Formulation and Solution

7.2.1 Problem Formulation

There are N physical systems that share one wireless network. We define a series of

time steps T = {t0, t1, ..., tw}, where T is the interval of w time steps and the time be-

tween two consecutive time steps is the control sampling period. We assume all physical

systems have the same control sampling period in our dissertation. During T any physi-

cal system is in transition (the system is in non-steady state). We have a set of N ref-

erence functions R = {r1(T ), r2(T ), .., rN(T )} that define different physical system appli-

cation demands. Similar to [Saifullah et al., 2010], there are e choices of network paths

P = {path1, path2, ..., pathe} (e ≥ N), each path associated with a different delay and deliv-

ery ratio, which depends on the redundancy in the path as well as the scheduling and routing

scheme. In this chapter, each network path delivers one message with the measurements of

one physical system to the remote controller and delivers back one message with the associ-

ated control signal to the actuator periodically (for the situation of physical systems sharing

one network path is out of scope of this work). In order to quantify the network-induced error,

for each physical system i, we compute RMSEi, defined in Equation 7.1, where wiredi(tj)

and wirelessi(tj) are the wired (no losses, no delay) and proposed wireless control system

power output of physical system i at time step tj, respectively. Note that RMSEi is the

root mean square of power output of physical system i over w time steps. Our objective

is to minimize the RMSEavg, defined in Equation 7.2. Our scheme produces the network

path selection for physical systems over all time steps. PS = {[ps1(t0), ps2(t0), ..., psN(t0)],
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RMSEavg =

√√√√ 1

N

N∑
i=1

RMSE2
i (7.2)

[ps1(t1), ps2(t1), ..., psN(t1)], ..., [ps1(tw), ps2(tw), ..., psN(tw)]}, where psi(tj) is the selected

network path number for the ith physical system transmission at time tj. Note that RMSE

of each physical system can change from one time step to the next, thus necessitates recal-

culation of the path selection.

7.2.2 Solution Overview

In essence, our solution is to determine which network path to transfer which physical

system’s measurement over T (i.e., PS) to achieve the objective of RMSEavg minimization,

at the side of the centralized remote controller. Let us first assume that the packet loss

and network delay on all network paths are predictable. We consider a brute-force way to

solve the problem. At each time step, we try all possible combinations of network paths

C(e,N) and choose the best path selection, that is, PS that has minimum RMSEavg over

w time steps. The complexity of our problem is O(C(e,N)w), which is exponential. Even

if we assume the network is predictable, it is impractical due to its high computation time

and storage costs. When we consider the realistic case that network delay and loss are

unpredictable, the optimal solution does not exist. Therefore, we need solutions to make

decisions at run time.

We propose to solve the problem in two steps. We first propose three heuristic methods

to determine which physical system has the most urgent application demand and impose

a priority order for the packets (Section 7.3). We then study two cases: (1) considering

network delay only: based on the analysis of the worst-case end-to-end network delay, we

assign the most urgent packet to the network path with the shortest delay (Section 7.4); (2)

considering both network delay and packet losses: we propose a network path quality model
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to consider both the end-to-end delay and reliability of a network path. We assign the most

urgent packet to the network path that can deliver the measurement as high reliability and

as short delay as possible (the highest quality path) to result in small RMSEavg (Section

7.4). Note that both the packet priority and the path quality calculation are done in the

remote controller.

7.3 Packet Priority Determination

The basic idea of priority determination of packets is to give high priority to the packet of

the system that would yield low performance, to avoid increasing RMSE and thus RMSEavg.

To determine the packet priority, we propose three heuristic methods with different perspec-

tives. For each heuristic method, we propose a metric to calculate the urgency of the packets,

we then sort the urgency for each packet and get the packet priority (low urgency, low pri-

ority).

7.3.1 Static RMSE

Similar to the analysis in Figure 42, we carried out a thorough offline analysis for each

physical system for all possible reference functions (e.g., different slopes of the ramp func-

tions) by injecting the same amount of time delay but no packet loss into the control system.

Thus, for each control system, we can get a list of reference functions, each with a RMSE

result over the same period of time (when the system is in non-steady state). According to

the offline analysis, we can estimate each physical system performance (meaning the RMSE

result with the same reference setting, e.g., the same ramp function). This heuristic gives

the highest priority to the packets of physical system with the highest estimated RMSE

obtained from the offline analysis. But the priority determination of packets is fixed and is

not dynamically changed at run time. Note that static RMSE is the baseline of our packet

priority determination methods.
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rRMSEi(tx) =

√√√√1

x

x∑
j=0

(ri(tj)− wirelessi(tj))2 (7.3)

7.3.2 Dynamic RMSE

Since our objective is to minimize the control system RMSEavg, the heuristic is based

on the following: the higher RMSE, the more necessary to transmit its message as soon and

reliably as possible (thus reducing the RMSE). Since we cannot get the RMSE comparing

with the wired control system output at run time, we track each system’s rRMSE (for

presentation purposes), that is, RMSE comparing with its reference function at run time.

Equation 7.3 shows the rRMSE of ith physical system, rRMSEi(tx) comparing with its

reference function ri from time step t0 to tx. At current time step tx, we calculate rRMSE of

each physical system at the remote controller (the system output wirelessi(tx) needs to sent

with the measurements to the remote controller), sort the rRMSEs of N physical systems

and assign the highest priority to the packet of the system with the highest current rRMSE,

max
1≤i≤N

rRMSEi(tx).

7.3.3 PID

Our third heuristic method is inspired by the PID feedback control loop mechanism. We

determine a proportional term (P-term) as Kpei(tx), where Kp is a constant and ei(tx) is

the difference between the ith physical system output at time tx and the desired setpoint

ri(tx), i ∈ N ; in our case, the setpoint is determined by the reference function. The P-term

describes how far the current system performance is from what it should be (i.e., the reference

function). We define the integral term (I-term) as Ki

x∑
j=0

ei(tj), where Ki is a constant and

x∑
j=0

ei(tj) is the integral error from time t0 to tx. The I-term denotes the overall system

performance from the beginning. The D-term is defined as Kd(ei(tx) − ei(tx − 1)), where
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pidi(tx) = Kp ei(tx) +Ki

x∑
j=1

ei(tj) +Kd (ei(tx)− ei(tx − 1)) (7.4)

Kd is a constant. This term approximates the trend of error in the future (e.g., if this term

is negative, it means the system error tends to reduce). The pidi(tx) function is shown in

Equation 7.4. We use pidi(tx) to describe the ith system performance and track pidi(tx), i ∈ N

for each physical system at run time. We assign the highest priority to the measurement of

the physical system with highest pidi(tx) value at time tx. As usual in control systems, since

Kp, Ki and Kd are constants, we tune these constants by manual tuning in Section 7.6.

7.4 Network Path Selection

After we determined the priority of the packets, we need to determine which path to

transmit the message of which control system. We focus on a wireless network with multiple

network paths that can transmit messages in parallel. Each network path has one line of

primary nodes and zero or more lines of backup nodes, as shown in Figure 14 in Chapter 5.

Thus, each path has different lines of relay nodes and has the different characteristic in terms

of network delay and DR. Every control sampling period, each path transmits one message

with all the measurements of one physical system up to the controller, and transmits one

message with one or more control signals associated to the same physical system back to the

actuators. We first consider network delay only for path selection. Based on the worst-case

end-to-end delay analysis of the network path in Chapter 5, we assign the highest priority

packet to the network path with the smallest worst-case delay.

Now we determine which network path to transmit messages when considering packet

losses. Based on the network imperfection model we proposed in Section 6.2.1, we propose a
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PQ = (

⌈
Dnetwork

p

⌉
+ βnloss)p (7.5)

more general network path quality model, the PQmodel, as described by Equation 7.5 where

β is a constant, that quantifies how much the network affects the control system. The value

β is static during the path selection in this dissertation. Since our PQmodel quantifies the

network imperfection impact to the control system, a smaller PQ value means better quality

of the network path. Thus, the PQ value is used to dynamically monitor the network path

quality. We use β to adjust the importance between network delay and network reliability.

When β = 1, network delay and network reliability have the same importance to the control

system performance. β is set according to different WCSs we are dealing with. When the

worst-case network delay is smaller than the control system sampling period (e.g., like the

water tank system in [Li et al., 2015]), β is set to a very large number since network reliability

is the only factor that affects the control system performance. When the control sampling

period is smaller than the network delay, a more common scenario, β is a number closer

to 1. For instance, when the control system uses kalman filter or any other technique to

compensate for message losses, we can reduce the network reliability importance and set β

to be small. β also can be adjusted under different network situations for the same control

system. We will discuss the value of β under different network situations in Section 7.6.

7.5 Case Study

As shown in Figure 44, we conduct a case study of an NPP with three SMRs (three

PHXs, each of which transmits and receives messages via a shared wireless network). Given

that there are several SMRs in an NPP, the power output of each SMR may differ and

the controller may decide to change the power output of each SMR dynamically, based on
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Figure 44: System overview: three SMRs transmit measurement messages via shared

wireless network to the remote controller, and the remote controller transmits back control

signals backup via the same network

energy requirements, efficiency, and power balance that is required to achieve a certain level

of power output. The PHXs in SMRs are identical systems except for the reference functions,

which are set by the nuclear engineer/operator based on the NPP requirement. In our case

study, a reference function is a ramp function, defined (1) power change amount (PCA) as

the amount of power required to change; (2) power change duration (PCD) as the interval of

time the power finishes changing; (3) start interval (SI) as the time duration from time 0 to

the time the power starts to change. For example, ramp30 in Figure 41 is with PCA=10MW,

PCD=30s and SI=40s. The parameters in a set of reference functions are 3 PCAs, 3 PCDs

and 3 SIs. Each reference function is randomly chosen from the range of values of PCA,

PCD and SI listed in Table 6. In order to include all the PCDs, we choose simulation time

as 300s, taking into account the system settling time (even after the PCD, the system still

needs sometime to settle down to the setpoint). Each PHX will generate one packet (with

its three measurements) and send out the packet by wireless network periodically at the

sampling period 0.2s.

101



Table 6: Parameters and values of the simulation of SMR-based NPP

Parameters Values

Control sampling period 0.2s

Simulation time 300s

TDMA time slot duration 0.01s

PCA values 2MW, 4MW, 6MW, 8MW, 10MW

PCD values 15s, 30s, 45s, 60, 75s, 90s, 105s, 120s

SI range: [20s, 300s]

β value range: [0.0 2.0]

Based on the deadline of one PHX system (0.586s [Wang et al., 2016]), we design a

wireless network with three paths, each of 6 hops: path 1 (path1) has no backups (worst-case

round-trip delay: 0.12s); path 2 (path2) has 1 line of backup nodes (worst-case round-trip

delay: 0.3s); path 3 (path3) has 2 lines of backup nodes (worst-case round-trip delay: 0.54s).

Each path satisfies the schedulability condition,
⌊
ps
l

⌋
≥ 5 (ps=20 with control sampling

period 0.2 as shown in Table 6). The reliability relationship of the three paths is path1 <

path2 < path3. Each network path can transmit messages independently from the others,

that is, all 3 paths can transmit messages in parallel, without interfering with each other. We

apply the most recent message first scheme. We combined a state-of-the-art cyber-physical

system simulator (WCPS 2.0 [Li et al., 2015]) with an NPP simulator to mimic the WCS

we consider. Our simulator allows multiple wireless network paths running together with

multiple PHXs. We implement the heuristic methods proposed in Section 7.3 and the network

quality model from Section 7.4 at the remote controller. We use the TOSSIM network

simulator in WCPS with wireless noise traces from a 21-node subset of the WUSTL Testbed

[tes, 2017]. We controlled the Received Signal Strength with uniform gaps to simulate various

wireless signal strength (RSSI) values to change the LSR. As shown in Figure 11, we adjust

the RSSI values for the average LSR to be in the range (0.71, 1.0).
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7.6 Case Study Results

Based on the wireless control system for the NPP introduced above, we first compare

the reliability of the three network paths for different network conditions (Section 7.6.1).

We then evaluate our network path quality model (Section 7.6.2). Specifically, we did a

sensitivity analysis of β values and analyze the network path selection for different network

conditions. Additionally, we compare RMSEavg for both end-to-end delay approach and

PQmodel approach (Section 7.6.3). Finally, we compare the RMSEavg among the three

heuristic methods of packet priority determination (Section 7.6.4).

In order to determine the constants Kp, Ki and Kd of the PID heuristic method, we ran

100 experiments (each experiment corresponds to one set of reference functions) for each set

of constant values of Kp, Ki and Kd with no message loss (to make sure the path quality

order is fixed by the network delay. We choose the set of constant values (Kp=1, Ki = 2 Kp/t

and Kd = 0) that has the average minimum RMSEavg over all the experiments. Note that

Kp, Ki and Kd value may be different with different types of control systems (e.g., Kd=0 in

our case, but can be nonzero in other types of WCS).

7.6.1 Network Reliability Results

Figure 45 shows the DR of three network paths under different RSSI values. The DR

increases as the number of backup paths increases. Since path1 has no backup path, the

DR is only about 0.6 when the RSSI value is -64 (good network condition). At the other

extreme, the DR of path3 (two backup paths) is above 0.8 with the RSSI value -84 (poor

network conditions).

The percentage of the number of consecutive packet losses for paths path1, path2 and

path3 are presented in Figures 46, 47 and 48 respectively. As expected, for the same network

interference condition, the more backup paths in the network, the fewer number of consecu-

tive losses. For each network path, as interference in the network increases (less RSSI value),

the percentage of massive consecutive loss (nloss ≥ 6) increases (e.g., the topmost region is

much larger for -84 than for -60 in Figure 46).
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Figure 45: Delivery ratio of three network paths under different RSSI values

Figure 46: Percentage of consecutive losses (nloss) for network path 1

Figure 47: Percentage of consecutive losses (nloss) for network path 2
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Figure 48: Percentage of consecutive losses (nloss) for network path 3

7.6.2 PQmodel Approach Results

Sensitivity analysis of β value for network path quality To evaluate the network

quality model proposed in Section 7.4, we experiment with different β values from 0.1 to 2.0

for the three heuristic methods proposed in Section 7.3 over different RSSI values on 20 sets

of reference functions. We ran each set of reference function 20 times on the network paths

given the RSSI value. Figure 49 shows the value of β (i.e., best β) that makes the average

minimum RMSEavg over 20 sets of reference functions for the three heuristic methods.

For each heuristic method, the value of the best β increases first, then decreases as the

interference in the network increases. It is because that when the network has less interference

(RSSI = −60), all three network paths are very reliable and the nloss is less important than

the network delay. When the network has a lot interference (RSSI = −84), all paths lose

many messages and no path is reliable, so nloss is also not as important as the delay.

Path quality order selection Figure 50 shows the number of selected path orders

when the best β is applied in the network quality model and dynamic RMSE heuristic

method is applied for different RSSI values (we only show parts of the RSSI values for ease

of the presentation, and the trend can be easily seen from the figure; the other heuristic

methods have the similar trend). The y-axis shows 6 combinations of path orders, each one

corresponding to the descending path quality order. For example, 132 means path1 is the

highest quality path; path3 is the mid-quality path and path2 is the lowest quality path.
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Figure 49: The best β value over different RSSI values for three huristic methods

Figure 50: Path quality order selections for different RSSI values (the size of the bubble

means the number of time steps a certain path order is selected)
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Figure 51: RMSEavg comparison of end-to-end delay approach and PQmodel (best β

values) over different network conditions with dynamic RMSE heuristic method

Thus, the highest priority packet goes to path path1; mid-priority packet goes to path path3;

and the lowest priority packet goes to path path2. The size of the bubble shows the average

number of time steps that the path quality order is selected over the experiments of 20 sets

of reference functions. As the RSSI value decreases, the number of path quality order 123

decreases and path quality order 231 increases, since path1 has more packet losses and the

quality of path1 decreases. The path quality order 321 and 312 are not high, since path3

has the highest network delay and it will only be selected when the other two paths have

too many message losses (i.e., low values of RSSI). Moreover, quality order 213 is also small,

because when path2 has the highest quality, it implies the network condition is not good;

since path3 has higher reliability than path1, the chance that the quality of path1 is higher

than path3 is low.

7.6.3 End-to-end Worst-case Delay Approach and PQmodel Approach Com-

parison

We evaluate the RMSEavg (defined in Equation 7.2) for end-to-end delay approach and

PQmodel approach over 100 different sets of the reference functions for three heuristic meth-

ods. For each set of reference functions, we run 20 times on the three wireless network paths

for each RSSI value. The average RMSEavg of the dynamic RMSE heuristic method is shown
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Figure 52: RMSEavg comparison for three heuristic methods with best β value

in Figure 51 (other heuristic methods show the similar results). The PQmodel with the best

β value performs better than only considering end-to-end worst-case delay in all network

conditions by 2% (RSSI = −60) to 259% (RSSI = −84). The more interference in the

network, the more improvement we can get from the PQmodel because message losses affect

more on the control system performance and the PQmodel appropriately characterizes the

relationship between network delay and message loss under different network conditions, and

thus can more effectively assign the priority of the network paths. The results demonstrate

that both network delay and packet loss are key factors for the overall control system perfor-

mance for less than great networks. Our two-step approach (heuristic method + PQmodel)

is effective showing low RMSEavg.

7.6.4 Packet Priority Determination Method Comparison

We compare the average RMSEavg for the three heuristic methods on the best β values,

as presented in Figure 52. We did pairwise z-test on the results of the dynamic RMSE, static

RMSE and PID schemes, since the results are not obvious to compare. We found that PID

schemes always perform statistically significantly better than static RMSE scheme (with

p value < 0.001) by 5.92% (RSSI = −60) to 79.4% (RSSI = −84). This is because the

packet priority of static RMSE scheme is fixed during the simulation based on offline analysis,

which does not consider the cases of multiple systems changing power simultaneously during
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a period of time. The static RMSE scheme is not flexible enough to handle the system

dynamics, which demonstrates that dynamic packet priority determination is necessary to

reduce the overall system error. Moreover, the PID scheme performs statistically significantly

better than dynamic RMSE scheme over all network conditions when the RSSI value is

greater than -74. Specifically, PID scheme performs better than dynamic RMSE scheme by

2.0% (RSSI = −72) to 3.8% (RSSI = −60). It is because PID scheme acts like another

controller to track the errors generated by three PHXs at run time and can more precisely

reflect the priority of the physical systems’ packets.

7.7 Summary

In this chapter, we explore the interaction between dynamic packet assignment and the

control system performance in a WCS with one shared wireless network and multiple physical

systems. Motivated by the observation that network delay and packet loss have different

effects on control system performance depending on the system application demand, we

propose a dynamic packet assignment solution with the goal of minimizing the overall RMSE

(i.e., RMSEavg) caused by the network imperfections. Specifically, our solution has two

steps: packet priority determination and network path quality determination, which takes

account only the network delay first, then proposes a PQmodel considering both network

delay and message losses. To evaluate our solution, we carried out a case study on three

PHXs in an NPP with one shared wireless network. Our proposed PQmodel performs better

than only considering network delay by 2% (for good network conditions) to 259% (for really

bad network conditions), which demonstrates that both network delay and reliability play

an essential role in control system performance. The results also show that our two-step

solution is effective in lowering the total power output error of the nuclear power plant.

We also find that dynamic packet priority determination is necessary to reduce the overall

system error from the results that PID heuristic method performs statistically significantly

better than static RMSE.
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8.0 Summary, Lessons Learned and Future Work

8.1 Summary

Wireless control systems are gaining rapid adoption in industries because of its advan-

tages in lowering deployment and maintenance cost in challenging environments. While

early success of industrial WSN has been recognized, significant potentials remain in explor-

ing WCS as a unified system to address control system instability and performance issues.

We address the issues with fault-tolerance and real-time techniques by meeting the stability

requirement first, then reducing the network-induced error.

For the system instability challenge, given the control system stability requirement in

terms of network delay and packet loss, we first propose a fault-tolerant network design and a

novel model to meet the requirement with the minimum number of active nodes for one-way

wireless transmission. The evaluation results show that our model is accurate with average

4.1% difference from the simulation result. We then scale the work mentioned above to two-

way wireless transmission to meet the control system stability requirement. We derive the

worst-case end-to-end delay based on the maximum number of conflicts, which is calculated

by the conflict analysis. The simulation results show that our end-to-end delay analysis is

accurate within 4.2% of a realistic simulation result.

For the performance degradation challenge, we first propose a network reconfiguration

framework with online and offline parts to tolerate the time-varying link failure for WCS

with one physical system. In the offline part, we studied a network imperfection model to

quantify the impact of packet loss and network delay on the control system performance.

In the online part, we came up with six reconfiguration algorithms. The case study results

show that our network imperfection model is accurate with Pearson correlation 0.993 and

our network reconfiguration approach performs better than the state-of-the-art static scheme

with low network-induced error and low network energy consumption. We then studied a

dynamic packet assignment approach to reduce the overall network-induced error for the

WCS with multiple physical systems. To achieve the dynamic packet assignment, we first
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propose three heuristic methods to assign the priority of network packets; we then study two

ways to quantify the quality of network paths; finally, we assign the highest priority packet

to the network path with the highest quality. The case study results present our approach

is effective in reducing the overall network-induced error.

8.2 Lessons Learned

From this dissertation, we have the listed major lessons learned as follows.

• Our proposed network model is accurate to estimate the network delay and packet loss,

which achieves the objective of meeting the control system stability requirement.

• For two-way wireless communication, when the round trip network delay is greater than

the control sampling period (assuming control sampling period is the same as network

transmission period), message schedulability condition is
⌊
ps
l

⌋
≥ 5, which is independent

of the number of hops n.

• Under the schedulability condition, the worst-case end-to-end delay is derived as

Dnetwork = (2nl + 3l
⌊

2nl−3l
ps−3l

⌋
)∆t.

• Network reconfiguration works better than the static scheme in reducing the network-

induced error and improving the control system performance.

• Both network delay and reliability plan an essential role in the control system perfor-

mance. Consecutive message losses can degrade the control system performance, but

network reconfiguration can compensate for them dynamically.

• Dynamic packet priority determination considering both network delay and reliability is

necessary and effective to reduce overall network-induced error for the control system

with multiple physical systems.

8.3 Future Work

There are two research directions that can be explored in the future:
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In wireless control systems, interference sources can be equipment noise, electromagnetic

interference, radio frequency interference (RFI) and fading [Low et al., 2005; Fadel et al.,

2015; Chiwewe et al., 2015]. Many empirical studies of low power wireless links have been

conducted with various interference sources [Lin et al., 2009; Tang et al., 2007; Hackmann

et al., 2008; Guo et al., 2012; Srinivasan et al., 2010], showing temporal and spatial character-

istics of wireless link qualities. In this dissertation, we studied the network reconfiguration

for the time-varying link failure. It is also necessary to explore the spatial link failures.

Many research works [Lapinsky and Easty, 2006; Xu, 2007; Wei et al., 2016; Xu et al., 2006]

show that the degree of interference is related to the distance to interference sources: the

longer distance, the less interference. Spatial link failures in WCS affect the packet delivery

and can even make the network disconnected, thus can severely degrade the control system

performance, which is necessary to be explored.

The worst-case end-to-end delay analysis is an important research area in WCS with the

propose of meeting the control system deadline. In this dissertation, we studied the analysis

for periodically transmitting one measurement message in the network, when the message

deadline is possible to be greater than its period. This work can be further extended by

considering multiple messages with different periods, under the same condition that each

message deadline is possible to be greater than its period.
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Carlo Alberto Boano, and Mário Alves. Radio link quality estimation in wireless sen-

sor networks: A survey. ACM Transactions on Sensor Networks (TOSN), 8(4):34, 2012.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip

algorithms. IEEE transactions on information theory, 52(6):2508–2530, 2006.

Jonathan L Bredin, Erik D Demaine, MohammadTaghi Hajiaghayi, and Daniela Rus. De-

ploying sensor networks with guaranteed capacity and fault tolerance. In MobiHoc 2005.

Alberto Cerpa, Jennifer L Wong, Miodrag Potkonjak, and Deborah Estrin. Temporal prop-

erties of low power wireless links: modeling and implications on multi-hop routing. In

Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and

computing, pages 414–425. ACM, 2005.

Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks. Computer Networks and ISDN systems, 17(1):1–14, 1989.

Tapiwa M Chiwewe, Colman F Mbuya, and Gerhard P Hancke. Using cognitive radio for

interference-resistant industrial wireless sensor networks: An overview. IEEE Transactions

on Industrial Informatics, 11(6):1466–1481, 2015.

113

http://www.hartcomm2.org.
http://wan.cse.wustl.edu/index.php/Testbed.
https://www.tutorialspoint.com/control_systems/control_systems_introduction.htm
https://www.tutorialspoint.com/control_systems/control_systems_introduction.htm


Etimad Fadel, Vehbi C Gungor, Laila Nassef, Nadine Akkari, MG Abbas Malik, Suleiman

Almasri, and Ian F Akyildiz. A survey on wireless sensor networks for smart grid. Computer

Communications, 71:22–33, 2015.
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Reliable real-time flooding-based routing protocol for industrial wireless sensor networks.

International Journal of Distributed Sensor Networks, 10(7):936379, 2014.

Jiao Zhang, Fengyuan Ren, Shan Gao, Hongkun Yang, and Chuang Lin. Dynamic routing

for data integrity and delay differentiated services in wireless sensor networks. IEEE

Transactions on Mobile Computing, 14(2):328–343, 2015.

Lixian Zhang, Huijun Gao, and Okyay Kaynak. Network-induced constraints in networked

control systemsa survey. IEEE Transactions on Industrial Informatics, 9(1):403–416, 2013.

Tianyu Zhang, Tao Gong, Chuancai Gu, Huayi Ji, Song Han, Qingxu Deng, and Xi-

aobo Sharon Hu. Distributed dynamic packet scheduling for handling disturbances in

real-time wireless networks. In Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2017 IEEE, pages 261–272. IEEE, 2017.

Wei Zhang, Michael S Branicky, and Stephen M Phillips. Stability of networked control

systems. Control Systems, IEEE, 21(1):84–99, 2001.

121



Weiyi Zhang, Guoliang Xue, and Satyajayant Misra. Fault-tolerant relay node placement in

wireless sensor networks: Problems and algorithms. In INFOCOM 2007.

Wen-An Zhang and Li Yu. Modelling and control of networked control systems with both

network-induced delay and packet-dropout. Automatica, 44(12):3206–3210, 2008.

Bin Zhou, Lek Heng Ngoh, Bu Sung Lee, and Cheng Peng Fu. A hierarchical scheme for

data aggregation in sensor network. In Networks, 2004.(ICON 2004). Proceedings. 12th

IEEE International Conference on, volume 2, pages 525–529. IEEE, 2004.

122


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Comparison of model and simulation results 
	2. The total stalls of m0 and m1 (i.e., d0 and d1) when m0 and m1 conflict with higher priority messages (psl=5)
	3. The total stalls of m0 and m1 (i.e., d0 and d1) when m0 and m1 conflict with higher priority messages (psl=6)
	4. Simulation parameters and values
	5. Parameters and values
	6. Parameters and values of the simulation of SMR-based NPP

	List of Figures
	1. Control system
	2. Wired control system
	3. Wireless control system
	4. The relationship between the problems and solutions of this dissertation
	5. Ridesharing protocol example illustration
	6. Example of network performance region of a PHX with damping ratio threshold 0.2
	7. Fault-tolerant relay nodes placement design for a single control system (2-connected region and 3 lines of backup nodes in relay region)
	8. Three example states of level h generated from one of the states of level h-1
	9. The model of quantifying NH results
	10. Illustration of the probability of a message sent from previous level is handled by the last node of a level. Red nodes do not receive messages and green nodes handle messages
	11. The relationship between RSSI and average LSR
	12. Simulation results
	13. Histogram of LSR difference distribution for RSSI=-64, RSSI=-76 and RSSI=-84
	14. Network model with one or more lines of relay nodes
	15. Conflict situation (a) (b) (c) and no conflict situation (d)
	16. The conflicts of mi when the level difference with mi+j is 5 (a) and 4 (b)
	17. Conflict situation when *psl=4: (a) m0 starts conflicting with m1 and (b) the conflict is resolved in 7l time slots if the subsequent messages do not exist
	18. The calculation process of level separations with higher priority messages of m0 and m1, when psl=5
	19. The stall time for m0 (lower segments) and m1 (upper segments), when conflicting with m2
	20. The stall time for m0 (lower segments) and m1 (upper segments), when conflicting with m3
	21. The stall time for m0 (lower segments) and m1 (upper segments), when conflicting with mj and mj+1
	22. The calculation process of level separations with higher priority messages for m0 and m1, when psl=6
	23. The stall time for m0 (lower segments) and m1 (upper segments), when conflicting with m2
	24. The stall time for m0 (lower segments) and m1 (upper segments), when conflicting with m3
	25. Examples of (a) the most recent message first scheme and (b) the oldest message first scheme transmission process with p=0.1s, ps=10, l=2 and n=10. Note that the symmetry of the oldest message first scheduling scheme with the most recent message first scheduling scheme begins at the 275th time slots.
	26. Network reconfiguration framework for the control system with dynamic network interference
	27. Network delay and delivery ratio trade-off illustration, when network delay is greater than control sampling period (p=0.1s and Dnetwork=0.2s)
	28. Time-varying RSSI variation example
	29. (a) The number of active nodes of the offline estimated optimal topology with different LSR values; (b) total induced delay result for RSSI values of -64, -70, -76, -82 and -84 that correspond to average LSR values of 0.93, 0.88, 0.82, 0.77, and 0.72, respectively; (c) power output RMSE for different number of active nodes in the network.
	30. Control system power reference functions
	31. Power output IAE for different reference functions (average RSSI: -82dBm; LSRI: 2s (20 samples))
	32. (a) Power output IAE and (b) network lifetime (c) network lifetime / IAE results for different RSSI values (LSRI: 2s; : 0.1)
	33. (a) Average number of nodes in the network, (b) average induced delay and (c) average RMSE over 20 experiments changing over time (LSRI: 2s; average RSSI: -82dBm; : 0.1)
	34. (a) Network delivery ratio; (b) network delay for different average RSSI values (LSRI: 2s; : 0.1)
	35. (a) Power output IAE and (b) network lifetime (c) network lifetime / IAE results for different LSRIs (average RSSI: -82dBm; : 0.1)
	36. Comparison of estimated and real LSRs (a) LSRI is 2s (b) LSRI is 8s (c) LSRI is 16s (average RSSI: -82dBm)
	37. (a) Average number of nodes in the network, (b) average induced delay and (c) average RMSE over 20 experiments changing over time (average RSSI: -82dBm)
	38. (a) Network delivery ratio; (b) network delay for different LSRIs (the average RSSI value: 82dBm; : 0.1)
	39. Power output IAE result comparison of AC and CL-AC for different alpha values (average RSSI: -82dBm; LSRI: 2s) 
	40. (a) Average number of nodes in the network, (b) average induced delay and (c) average RMSE over time for AC (=0.1), CL-AC (=0.9) and AC (=0.9) (average RSSI: -82dBm; LSRI: 2s)
	41. Control system power reference functions with control sampling period of 0.2s
	42. Power output RMSE for different reference functions with different network delays for a single PHX (DR=0.9; random packet drop with probability of 0.1)
	43. Power output RMSE with different network delays and DRs for a single PHX (reference function: ramp30)
	44. System overview: three SMRs transmit measurement messages via shared wireless network to the remote controller, and the remote controller transmits back control signals backup via the same network
	45. Delivery ratio of three network paths under different RSSI values
	46. Percentage of consecutive losses (nloss) for network path 1
	47. Percentage of consecutive losses (nloss) for network path 2
	48. Percentage of consecutive losses (nloss) for network path 3
	49. The best  value over different RSSI values for three huristic methods
	50. Path quality order selections for different RSSI values (the size of the bubble means the number of time steps a certain path order is selected)
	51. RMSEavg comparison of end-to-end delay approach and PQmodel (best  values) over different network conditions with dynamic RMSE heuristic method
	52. RMSEavg comparison for three heuristic methods with best  value

	List of Equations
	4.1
	4.2
	4.3
	4.4
	4.5
	5.1
	6.1
	6.2
	7.1
	7.2
	7.3
	7.4
	7.5

	List of Algorithms
	1. LSR estimation algorithm running on one active relay node
	2. Direct jump to optimum (DO)
	3. Multiplicative increase and conservative decrease (MICD)
	4. Adaptive control (AC)

	Preface
	1.0 Introduction
	1.1 Background
	1.2 Problem Description
	1.3 Research Overview
	1.4 Contributions
	1.5 Dissertation Outline

	2.0 Related Work
	2.1 Fault Tolerance Technique
	2.1.1 Failures in WCSs
	2.1.2 Network only Solutions
	2.1.3 Control and Network Co-design Solutions

	2.2 Real-time Technique
	2.2.1 Network Delay in WCS
	2.2.2 Network only Solutions
	2.2.3 Control and Network Co-design Solutions

	2.3 Summary

	3.0 Background and Assumptions
	3.1 Background
	3.1.1 Primary Heat Exchanger System
	3.1.2 Ridesharing Protocol

	3.2 Assumptions and Definitions

	4.0 Fault-tolerant Network Design
	4.1 Introduction
	4.2 Network Node Placement Design
	4.2.1 k-connected Region
	4.2.2 Relay Region
	4.2.3 A Network Topology Set Generation
	4.2.4 TDMA Scheduling

	4.3 A Model for Quantifying NH
	4.3.1 Delivery Ratio Calculation
	4.3.2 Worst-case End-to-end Delay and NH Calculation

	4.4 Performance Evaluation
	4.4.1 The Model for Quantifying NH Result
	4.4.2 Simulation Results

	4.5 Summary

	5.0 Worst-case End-to-end Delay Analysis
	5.1 Network Model
	5.2 Conflict Analysis
	5.2.1 Conflict Analysis for Case *psl 2
	5.2.2 Conflict Analysis for Case 3 *psl 4
	5.2.3 Conflict Analysis for Case Lg

	5.3 Worst-case End-to-end Delay Determination
	5.4 Worst-case End-to-end Delay Analysis Validation
	5.5 Summary

	6.0 Dynamic Network Reconfiguration for WCS with One Physical System
	6.1 Network Reconfiguration Framework
	6.2 Offline Optimal Network Configuration
	6.2.1 Network Imperfection Model
	6.2.2 Estimated Optimal Network Configuration Determination

	6.3 Online Network Reconfiguration
	6.3.1 Network Reconfiguration Process
	6.3.2 Network Average Link Success Ratio Estimation
	6.3.3 Reconfiguration Not Considering Consecutive Losses
	6.3.4 Reconfiguration Considering Consecutive Losses

	6.4 Case Study
	6.5 Case Study Results
	6.5.1 Offline Optimal Network Configuration Results
	6.5.2 Online Network Reconfiguration Results

	6.6 Summary

	7.0 Dynamic Packet Assignment for WCS with Multiple Physical Systems
	7.1 Introduction
	7.2 Problem Formulation and Solution
	7.2.1 Problem Formulation
	7.2.2 Solution Overview

	7.3 Packet Priority Determination
	7.3.1 Static RMSE
	7.3.2 Dynamic RMSE
	7.3.3 PID

	7.4 Network Path Selection
	7.5 Case Study
	7.6 Case Study Results
	7.6.1 Network Reliability Results
	7.6.2 PQmodel Approach Results
	7.6.3 End-to-end Worst-case Delay Approach and PQmodel Approach Comparison
	7.6.4 Packet Priority Determination Method Comparison

	7.7 Summary

	8.0 Summary, Lessons Learned and Future Work
	8.1 Summary
	8.2 Lessons Learned
	8.3 Future Work

	9.0 Bibliography



