
SELF-CONFIDENCE MEASURES OF A DECISION

SUPPORT SYSTEM BASED ON BAYESIAN

NETWORKS

by

Marcin Kozniewski

M.Sc. Bialystok University of Technology,

Faculty of Computer Science, 2013

Submitted to the Graduate Faculty of

the School of Computing and Information

in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019



UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Marcin Kozniewski

It was defended on

April 11, 2019

and approved by

Marek J. Druzdzel, School of Computing and Information, University of Pittsburgh

Stephen C. Hirtle, School of Computing and Information, University of Pittsburgh

Paul W. Munro, School of Computing and Information, University of Pittsburgh

James F. Antaki, School of Biomedical Engineering, Cornell University

Dissertation Director: Marek J. Druzdzel, School of Computing and Information,

University of Pittsburgh

ii



Copyright © by Marcin Kozniewski

2019

iii



SELF-CONFIDENCE MEASURES OF A DECISION SUPPORT SYSTEM

BASED ON BAYESIAN NETWORKS

Marcin Kozniewski, PhD

University of Pittsburgh, 2019

A prominent formalism used in decision support is decision theory, which relies on probability

theory to model uncertainty about unknown information. A decision support system relying

on decision theory produces conditional probability as a response. The quality of a decision

support system’s response depends on three key factors: the amount of data available to

train the model, the amount of information about the case at hand, and the adequacy of the

system’s model to the case at hand.

In this dissertation, I investigate different approaches to measuring the confidence of

decision support systems based on Bayesian networks, addressing the three key factors men-

tioned above. Some of such confidence measures of the system response have been already

proposed. I propose and discuss other measures based on analysis of joint probability distri-

bution encoded by a Bayesian network.

The main contribution of this dissertation is the analysis of the discussed measures

whether they provide useful information about the performance of a Bayesian network model.

I start the analysis with an investigation of interactions among these measures. Then, I inves-

tigate whether confidence measures help us predict an erroneous response of a classifier based

on Bayesian networks when applied to a particular case. Further, I conduct an experiment

to check how confidence measures perform in combining the models’ output in the ensemble

of classifiers by weighting. Based on the findings, I conclude that the confidence measures

may enrich the decision support system’s output to serve as indicators for applicability of

the model and its advice to a given case.
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1.0 INTRODUCTION

Decision support systems (DSS) are used across many fields, such as, military, medicine,

or health care. To enhance and support human judgment and decision making, different

techniques and models have been applied. A prominent formalism used in decision support

is decision theory, which relies on probability theory to model uncertainty about unknown

information and utility to model user preferences. A key element of a probabilistic DSS is a

model of the domain. To predict events based on observations and the model, probabilistic

DSSs usually report posterior probability distributions conditional on these observations.

1.1 MOTIVATION

It is important to know how confident a system is about its analysis of a single instantiation

of a problem (case). The confidence of a system relates to quality of its response advice for

a specific case and depends on three key factors: (1) the amount of data available to train

the model, (2) the amount of information about the case at hand, and (3) the adequacy of

the system’s model to the case at hand.

As we analyze the first factor, the amount of data used for training the model is always

limited. This limitation has implications on the quality of the model. For example, there

may be no or just a few records in the data that represent situations similar to the case at

hand. Probability distribution learned from such dataset will be deficient.

The second factor plays a role when there is little information about the case at hand.

When more information appears, the prediction can be more precise. For example, a physi-

cian may have problems to provide a specific diagnosis for a patient with just an information
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about patient’s complaint and physical examination. After the physician orders medical

tests and obtains their results, the prediction becomes more specific. Regardless of the case,

providing more information will change and typically improve the prediction.

The third factor in the quality of the system advice is its competence in handling the

case at hand. It may happen, that the model has been created for a different purpose or with

different specialization. For example, a patient suffering from a heart problem is unlikely to

get a good advice and help from a dentist.

To address the problem of uncertainty about the quality of a system’s advice, proba-

bilistic DSSs could provide some measure of confidence along with the posterior probability

that they normally produce. I have encountered confusion about such measure and how it

differs from the conditional probability distribution calculated by the system. The posterior

probability of an outcome represents how well the given information lets us assert the truth

of the outcome, assuming perfect correctness of the model and proper definition of the case

query. However, the model is never perfect, due to, for example, the factors described above.

Confidence measure will allow the user to quantify, how much he/she can trust the system’s

output. For example, when the system asserts that the probability of a cancer for a given

patient is 6.83%, we would like to know the system’s confidence in this probability. Con-

fidence measures could be used to warn the user to take more action or to use the output

of the system with caution. Such measures could be calculated for any case query at hand

given the model.

1.2 CONTRIBUTIONS

In this dissertation, I focus on deriving measures of confidence that are calculated using the

information already encoded in a Bayesian network model and possibly the data on which

the model is based. I review existing measures of confidence about the output of a DSS. I

propose an approach for describing the confidence about posterior probability distribution

in anticipation of future observations and investigate two methods for obtaining it based on

the joint probability distribution.
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The research question that I focus on is:

Are the confidence measures helpful in predicting the performance of a Bayesian network
model?

By predicting the performance of a Bayesian network model, I mean predicting whether

applying the model to a particular case may lead to a false answer. In case of success it will

mean that the information carried by the measures is significant from the point of view of

classification and we may consider it in applications.

To answer the question posed, I check how the proposed measures relate to each other.

The values obtained for these measures may be dependent. If they are, it may indicate that

some of the measures are redundant with respect to each other.

As the confidence measure is applied in practice, it is interesting whether the proposed

measures carry predictive information about performance of the classifier based on a Bayesian

network. I attempt to predict for which records in the testing dataset the classifier will make

wrong predictions.

In the final part, I investigate whether confidence measures are applicable to ensemble

of Bayesian network classifiers. Since we can capture the competence of the model/system,

we may try to use that ability to integrate models that are hard to merge due to different

definitions of variables. While building large DSSs, it may be easier to split the domain into

pieces – separate models. Integration of multiple models into one reliable model is known to

be a hard problem. Instead of merging multiple models, we may try to apply smaller models

to the case at hand and use them in ensemble by integrating their outputs. The simplest

approach to integrating outputs of a collection of models is to treat them equally. I propose

to consider confidence measures over outputs of the individual models to derive the weights

of each model.

Marcot (2012) provided quite extensive review of different metrics for evaluating uncer-

tainty of Bayesian network models. He covered measures of models sensitivity, influence,

complexity, prediction performance, and fitness to the data as general metrics of the model

a priori to model application. He also paid some attention to the metrics of uncertainty in

posterior probability distributions in model application. Van Allen et al. (2008) and Don-

ald and Mengersen (2014) developed different techniques for obtaining error bars/confidence

3



intervals for posterior probabilities based on data and the model.

Measures of conflict among observations, which also relate to rarity of the observations

given the model, have been already introduced by: Habbema (1976), Jensen et al. (1990),

and Laskey (1991). Most attention in the literature has been given to those measures that

are computationally feasible, although some of intractable measures can be approximated.

1.3 OVERVIEW OF THE DISSERTATION

The remainder of this document is structured as follows. Chapter 2 introduces necessary

notation and definitions. As the general performance of a Bayesian network is a subject

of study in evaluation process, Chapter 3 overviews techniques for validation of Bayesian

networks. Chapter 4 describes existing measures of confidence for particular case given the

model. Chapter 5 elaborates on the surprise index (Habbema, 1976) and its approximation.

Chapter 6 describes some methods for deriving variation intervals over posterior probabilities.

Chapter 7 describes simulation of possible cases based on existing Bayesian network models

and studies the relationships among the confidence measures calculated for those cases.

Chapter 8 elaborates on predicting the erroneous response of a classifier based on a Bayesian

network. Chapter 9 describes deployment of confidence measures in ensemble of classifiers

based on Bayesian networks. Chapter 10 summarizes the work presented in this dissertation

and outlines possible directions for future work.
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2.0 PROBABILITY AND PROBABILISTIC DECISION SUPPORT

SYSTEMS

In this Chapter, I present necessary definitions and notation in Section 2.1. In Section 2.2,

I present concepts and definitions related to Bayesian networks, which are used to model

uncertainty and decisions under uncertainty. In Section 2.3, I introduce useful terms that I

will use throughout the document.

2.1 PRELIMINARIES

Throughout this document, I will use capital letters, e.g., X, to denote random variables. I

will use bold font-face letters, e.g., V, to denote sets. Let Val(X) be a set of possible assign-

ments of a random variable X. If the variable X is discrete, then Val(X) = {x1, . . . , xni
}.

An observation of a variable X is an assignment out of its possible values X = xi, which we

will shorten to xi.

Let V = {V1, . . . , VN} be a set of variables, then the set of possible joint observations

of variables in V is Val(V) = {{vi1 , . . . , viN} : vik ∈ Val(Vik)}. I will introduce some more

specific sets of observations in Section 2.3.

Let G(V,E) be an acyclic directed graph, where V is a set of vertices (nodes) and E is

a set of pairs (V,W ) representing directed edges between nodes V,W ∈ V. Let Pa(V ) be a

set of nodes that are immediate predecessors (parents) of V . Let Ch(V ) be a set of vertices

that are immediate successors (children) of V .

5



2.2 BAYESIAN NETWORK

Even though random variables may be continuous, I will focus on models employing discrete

random variables.

Definition 2.1. A discrete Bayesian network (BN) (Pearl, 1988) is a pair (G,Θ), where

G(V,E) consists of

• V = {V1, . . . , Vn} representing a set of random variables, each with a finite set of mutually

exclusive states Val(Vi) and

• a set of edges E that jointly model independencies among variables V;

Θ is a set of parameters {θvi,j |ck , vi,j ∈ Val(Vi) ∧ ck ∈ Val(Pa(Vi))}, which define conditional

probability distributions Pr(Vi|Pa(Vi)) for each Vi.

Parameters θvi,•|• of the conditional probability distribution of a variable Vi can be or-

ganized in a conditional probability table (CPT) that describes conditional probability dis-

tributions over Vi for all combinations of assignments to Pa(Vi). Figure 1 shows the Asia

model (Lauritzen and Spiegelhalter, 1988), which models the situation of a patient appearing

in a clinic with dyspnea (shortness of breath). It consists of eight discrete random variables

representing conditions (Tuberculosis, Lung Cancer, Bronchitis), historical data (Visit to

Asia, Smoking), auxiliary variables (Tuberculosis or Lung Cancer), symptoms (Dyspnea)

and examinations (X-Ray Result) that physician can perform. An edge between two vari-

ables (e.g., Smoking and Lung Cancer) denotes a direct influence between the two, usually

interpreted as causal influence. Absence of an edge (e.g., between Smoking and Visit to

Asia) means that there in no direct influence between variables, which does not exclude

other, indirect, associations.

Compact definition of a BN allows us to retrieve the probability of any combination of

assignments to all variables by its factorization

Pr(V) =
N∏
j=1

Pr(Vi|Pa(Vi)) , (2.1)
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Figure 1: The Asia Bayesian network graph

which for a particular set of assignments turns into

Pr({vj1 , . . . , vjN}) =
n∏
i=1

θvij |ck . (2.2)

2.3 TARGET VARIABLES, EVIDENCE, AND MARKOV BLANKETS

Let T ⊂ V be a set of variables of interest (targets). Let the S ⊂ V be all observable

phenomena modeled by a BN, e.g., symptoms or patient history data in a medical decision

support system. An evidence set E is a set of observations (assignments) ({vi1,j1 , . . . , vik,jk},

where {Vi1 , . . . , Vik} = SO ⊂ S). A scenario E∗ ⊃ E is an evidence set that assigns out-

comes to all variables in S. A full scenario EV ⊃ E is a set of assignments of outcomes

to all variables V modeled in the BN. We will denote by SU the set of variables without

associated assignment in E i.e., SU = S \ SO. For example, in the Asia model, variables

Tuberculosis, Lung Cancer, and Bronchitis compose the set of target variables T. Variables

Visit to Asia, X-Ray Result , Dyspnea and Smoking belong to the set S of observable phe-

nomena. If we consider a patient with dyspnea, we have an evidence set consisting of one
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assignment E = {dyspnea = present}. Based on this evidence set E, we can calculate the

posterior probability of the patient having tuberculosis Pr(Tuberculosis = present|E). Usu-

ally term probabilistic inference refers to calculations of posterior probabilities (Lauritzen

and Spiegelhalter, 1988).

Information about conditional independence of observable variable and target variable

helps us to simplify the computation of the posterior probability distribution. To simplify

the algorithm presented later in Chapter 6, we will need to specify the necessary set of

observable variables required to provide information about posterior marginal probability

distribution, which is usually referred to as the Markov blanket.

Definition 2.2. The Markov blanket of a variable Vi ∈ V is the set M(Vi) ⊂ V consist-

ing of variables that are parents Pa(Vi), children Ch(Vi), and other parents of its children

Pa(Ch(Vi)), i.e.,

M(Vi) = (Pa(Vi) ∪ Ch(Vi) ∪ Pa(Ch(Vi))) \ {Vi} .

M(Vi) represents all variables such that, when observed, make Vi independent of the re-

mainder of the variables in the network. For example, in Figure 1, M(Smoking) = {Lung

Cancer, Bronchitis}, as variables Lung Cancer and Bronchitis make Smoking independent

of the rest of the network.

We can extend the definition of Markov blanket to sets of variables A ⊂ V. M(A) is

a union of Markov blankets M(Vi) of each variable Vi ∈ A excluding Vi, i.e.,

M(A) =

( ⋃
Vi∈A

M(Vi)

)
\A .

A Markov blanket M(Vi) may contain a variable Vj that is not observable (i.e., Vj ∈

V \ S), in which case Vj cannot be observed and, hence, cannot be used to screen Vi from

the rest of the network. We extend the definition of Markov blanket M(Vi) to an extended

Markov blanket.

Definition 2.3. An extended Markov blanket M∗(Vi) is a set of observable variables that

makes Vi independent from all the other observable variables.
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M∗(Vi) can be calculated recursively in the following way. We start with a set C = {Vi}.

We add all non-observable variables Vj ∈ M(C) ∩ (V \ S) to C. We repeat this procedure

as long as M(C) ∩ (V \ S) 6= ∅, in which case M∗(Vi) = M(C).
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3.0 METHODS FOR EVALUATION OF BAYESIAN NETWORK MODELS

In this chapter, I describe some of the methods used to validate probabilistic DSS models.

Most of these methods are well known in data mining, machine learning, and artificial

intelligence community, as they are widely used for validation of models in supervised learning

tasks. Methods presented in the following sections are performed to evaluate a model before

its application. Remaining chapters of this dissertation focus on assessing the model’s quality

of prediction on individual cases.

3.1 DATA-BASED EVALUATION

Bayesian networks can be build from data or can be based on experts’ knowledge of a

domain. When using data, we infer both the structure and the parameters of the model in

the learning process (Cooper and Herskovits, 1992). When building a model employing the

expert’s knowledge, we construct the graph by modeling known causal independencies and

elicit the parameters from experts (Druzdzel and Van Der Gaag, 2000). We can also combine

these two approaches by defining the structure of the model with the expert and populating

the parameters using data, e.g., by means of the Expectation-Maximization (EM) algorithm

(Dempster et al., 1977).

If we create a model just employing experts’ knowledge, we want to check how accurate

it is. To assess the accuracy of a model with a dataset, we apply the model to all the records

in the dataset and compare the output against correct predictions specified along with other

observations in the record of the dataset. As a result, we can report the number of times

when the model correctly predicted the outcome. I will elaborate more on measures that
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can be reported within validation process later on in following subsections.

3.1.1 Validation and cross-validation

If we create any part of the model with records from the dataset, we want to check its

performance on a different set of records. For that, we separate the dataset into two subsets:

training and testing. We use the training part to learn the model (or just its parameters)

and testing part for validation. We refer to this method as holdout validation.

The main drawback of holdout method is that it does not use all the records in the

dataset for training. It is a major concern when we have just a handful of records in the

dataset. If we can assume that all the records come from the same probability distribution,

i.e., they are independent and identically distributed (i.i.d.), we can repeat the holdout

method for different partitions of the dataset. In this situation we may use k-fold cross-

validation method, which divides randomly the dataset into k mutually exclusive subsets

(folds). Now we run holdout validation procedure k times using each fold for testing the

model learned using the remainder of the dataset. We accumulate the results from different

folds and report the summary. We may use different values of k. In literature, the term

leave-one-out cross-validation (LOOCV) refers to the situation when k = N , where N is the

number of records in the dataset.

The main drawback of the k-fold cross-validation is that it requires k runs of learning

procedure. Increasing k sacrifices computation time for reliability of the validation result, if

the learning procedure is computationally complex. k-fold cross-validation can not be used

when the i.i.d. assumption is violated, e.g., when we deal with time-series data.

There are other methodologies of organizing the work-flow of the validation with the data,

but they are beyond the scope of this document. The next section will pay some attention to

combining expert-based and data-based validation. The remainder of this section describes

some of the possible ways of summarizing the results of validation.
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3.1.2 Prediction accuracy and other confusion matrix-based measures

Confusion matrix, as a report of performance of classification, represents how cases of each

class were classified by the model. Let us consider a classification task with class variable

that consists of k labels. A k×k confusion matrix A consist of elements aij, which represent

how many records of class cj were classified as the class ci. Table 1 shows an example of a

confusion matrix of a model. The summarized model classified 30 records associated with

Table 1: An example of a confusion matrix of a classifier

records of class

c1 c2 c3

cl
as

si
fi
ed

as c1 30 12 0

c2 8 44 15

c3 5 10 76

class c1 correctly. Meanwhile, the model classified 10 records associated with class c2 as class

c3.

From the confusion matrix, we can determine the accuracy of the classifier by calculating

a fraction of a sum of elements on the diagonal and number of records in the testing dataset

n (which is a sum of all elements in the matrix), i.e.,

accuracy =
1

n

k∑
i=1

aii .

Error rate is complementary to accuracy, i.e., error = 1− accuracy.

When we focus on one ci class label (e.g., c1), based on a confusion matrix, we can

calculate precision, recall (also referred to as sensitivity or true positive rate), and specificity

(true negative rate). Precision of classifying ci is the proportion of records correctly classified

as ci (true positive) to all records classified as ci, which is

precision(ci) =
aii∑k
j=1 aij

.
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Recall is a fraction of records correctly classified as ci to all records associated with class ci,

i.e.,

recall(ci) =
aii∑k
j=1 aji

.

Specificity is a fraction of records correctly classified as cj 6= ci to all records associated with

other classes than ci, i.e.,

specificity(ci) =

∑k
j,l=1,j,l 6=i ajl∑k

j=1,j 6=i
∑k

l=1 alj
.

Using precision and recall values, we can calculate F1 score (F-score or F-measure) of a

classifier, which is

F1(ci) = 2× precision(ci) ∗ recall(ci)
precision(ci) + recall(ci)

.

F1 score is used to asses models for information retrieval task and classification tasks with

class imbalance. For such problems, accuracy does not assess the performance of the model

well, by advocating for models that favor the majority class.

There are other measures that can be reported for a classifier based on confusion matrix,

but they are beyond the scope of this document.
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3.1.3 ROC curve, area under the ROC curve

In a classification task, the main objective of a model is to discriminate records associated

with each class. Many models produce a criterion value, which is used to determine the class

for the case, e.g., in a probabilistic model the marginal probability of the class is used to

determine how likely it is that the analyzed record belongs to a particular class. One way to

present the ability of the model to discriminate the records of particular a class is the Receiver

Operating Characteristic (ROC) curve (Bradley, 1997; Egan, 1975; Fawcett, 2006; Spackman,

1989). ROC curve is a plot of points (x, y) ∈ [0, 1] × [0, 1] in a Cartesian coordinate sys-

tem representing pairs of (1− specificity, sensitivity) or (false positive rate, true positive rate)

obtained with all possible values of criterion threshold for the model. Figure 2 shows an

example of an ROC curve. An error of a classifier is associated both with its false positive

rate and its true positive rate. Thus, the closer the ROC curve passes near the point (0, 1)

(perfect sensitivity and specificity), the better the model is in discriminating the class. Sim-

ilarly, the closer the curve passes near the diagonal line from (0, 0) to (1, 1), the weaker the

classifier.

Figure 2: An example of an ROC curve generated with GeNIe software
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Usually researchers report the area under the ROC curve (AUC) as a summary of the

performance of the classifier in discriminating records associated with a chosen class. For a

good classifier, the value of AUC will be close to one. One of the drawbacks of the AUC is

that it does not describe the actual accuracy of the classifier.

If the analyzed class is underrepresented in the data, ROC and AUC give an insight scaled

to the problem. Sometimes classes are strongly unbalanced (there are just several records

in the testing dataset associated with the class compared to a few thousands for remaining

classes). In such situations, AUC re-scales the problem too much, and may be considered

biased (Davis and Goadrich, 2006). Some researchers suggest the use of a precision-recall

(PR) curve (e.g., Raghavan et al., 1989) instead. The construction procedure is similar,

but instead of using pairs of (1 − specificity, sensitivity), we use pairs of (recall, precision).

Figure 3 shows an example of PR curve. A curve usually starts at point (0, 1) – a poor recall

and perfect precision – and ends around (1, 0) – a perfect recall and poor precision. The

closer the curve approaches (1, 1), the better the model. PR curve for a perfect model will

connect points (0, 1), (1, 1), and (1, 0) with straight lines.

3.1.4 Measures of precision of posterior probabilities: calibration curve and

scoring rules

As the marginal posterior probability distribution is the vital part of a probabilistic graphical

model, the creator of the model pays a lot of attention to precision of its estimates. To express

the precision of the posterior probability of a class, we can use a plot of calibration curve or

a scoring rule.

A calibration curve (also called a reliability diagram (DeGroot and Fienberg, 1983; Mur-

phy and Winkler, 1977)) compares the marginal posterior probability estimates of a class

calculated by the model against class’ empirical frequency in the test dataset. Researchers

in machine learning domain use these plots to show how well the model is calibrated to

output the probabilities (e.g., obtaining probability estimates based on an SVM model out-

put (e.g., Niculescu-Mizil and Caruana, 2005), calibration of probabilities of a naive Bayes

classifier (e.g., Naeini et al., 2015)). “Calibration curve” as a term seems to be more broad
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Figure 3: An example of a PR curve

and refers also to plots showing association between quantities that are not necessarily prob-

abilities. The term “reliability diagram” seems to be more popular in terms of forecasting

and probabilistic prediction, although researchers use the term “calibration curve” in this

context as well (e.g., Dawid, 1982; Gould et al., 2007)). I encountered also terms “probability

calibration curve,” “reliability plot,” and “confidence plot” referring to the same plot.

The calibration curve is a plot in a Cartesian coordinate system. The calibration curve

is constructed with points representing posterior probabilities (horizontal axis) and the ob-

served frequencies (vertical axis) in the data set. For each record in the testing dataset, we

calculate the posterior probability estimate of the class by the model. Then we divide these

records into bins using the calculated estimates. For each bin, we calculate the frequency of

the true analyzed class value in the data. Then we create the plot using points (probability,

frequency) corresponding to each bin. Another method for constructing a calibration curve is

based on a moving average over a window instead of bins, which typically leads to a smoother

plot. After calculating the posterior probability for each record in the testing dataset, we

16



Figure 4: An example of a calibration curve generated with GeNIe software

use a window of fixed size which includes 2k+ 1 records. We “slide” this window over sorted

records and calculate the frequency of that class within the window. The calibration curve

of a perfect model is a diagonal line connecting the points (0, 0) and (1, 1). Figure 4 shows

an example of a calibration curve.

To express the overall error in estimates of posterior probability distribution obtained by

the model we can use scoring functions, e.g., Brier score (Brier, 1950). Brier score has been

originally defined as

BS =
1

n

n∑
i=1

m∑
j=1

(Pr(cj|Ei)− oicj)2 ,

where n is a number of records in the testing dataset, m is a number of classes, Pr(cj|Ei) is

a conditional probability of class cj calculated by the model, and

oicj =

1, if ith record belongs to class cj,

0, otherwise.
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If we focus on just one class, the Brier score can be reduced to

BS(cj) =
1

n

n∑
i=1

(Pr(cj|Ei)− oicj)2 .

3.1.5 Measures of precision in modeling joint probability distributions

BN approximates the joint probability distribution over a set of variables. We would like to

know how well the network reflect this distribution based on the data. One way of doing that

is calculating likelihood of the data. To obtain likelihood of a BN model given the dataset,

we need to calculate the probability of a case described by each record in the dataset. Then,

the product of these probabilities is likelihood of the data given the BN model.

There are other scores usually applied in score-based methods for learning BNs (Cooper

and Herskovits, 1992). Additionally to favoring well fitted models, these scores penalize

models that are of a complex structure. Daly et al. (2011) provide an overview of most

commonly used scoring functions for BN structure learning.

3.1.6 Confidence in model assessment

As the number of records in the dataset is always limited, we may want to express the uncer-

tainty about the model assessment measures by constructing bootstrap confidence intervals

(Efron and Tibshirani, 1993). To construct such (1−α) confidence intervals, we pick multi-

ple times a sample of N records from a dataset of N records without replacement. For each

sample, we calculate the desired measure, e.g., accuracy. We sort obtained values ascending,

then the confidence interval bounds are values of the indices N × α
2

and N × (1− α
2
).

We can perform similar calculations for plots generated in validation process (ROC curve

and calibration curve). Instead of calculating one value for each sample, we derive an ap-

propriate curve. Than we iterate over x values along X axis within the range [0, 1]. For

each value x we have a corresponding set of values related to derived curves, which we use

to construct a confidence interval. By integrating all of the intervals, we obtain a confidence

region. For the ROC curve, we can perform the same procedure along Y axis.
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Confidence intervals over assessment of a model may be an indicator of lack of signifi-

cantly large testing dataset. Although it may be costly or time-consuming to obtain more

data. In such situation we may look at the dynamics of change the confidence intervals

and or regions as we apply gradually more data records in validation procedure (Kozniewski

et al., 2016).

3.1.7 Validation with a self-sampled dataset

One of the concerns of a modeler may be misclassification of cases. Przytula et al. (2003)

proposed to apply a simulation method, to obtain a confusion matrix. For each class (which

can be modeled by separate variables) a sample of examples are generated from the model

by means of Monte Carlo simulation (from conditional probability distribution Pr(S|ci)).

Next step is to classify each case in each sample. We may present the results as a confusion

matrix in the form of a table, a 3-dimensional histogram plot, or a heat map. In this way

we may identify problematic cases and try to improve the model.

3.2 EXPERT-BASED EVALUATION

When building a model with experts’ knowledge, after initial model creation by an expert,

the modeler typically performs several iterations of model adjustment, refinement, and cal-

ibration (e.g., Cypko et al., 2017; Druzdzel et al., 1999; Onísko et al., 2000). After each

iteration, experts evaluate the model or the modeler validates the model with a dataset.

The techniques described above rely on the dataset. There are several techniques that can

be used to evaluate the model with just the experts’ help.

One of key methods that can be ran by experts is a clarity test (Howard, 1988). The

main purpose of a clarity test is to answer the question whether all the variables (their names

and outcomes) are well defined and describe clearly the phenomena that they are modeling.

Another method of validation of the model with an expert is scenario analysis. It involves

analysis of either cases described by records in the dataset or assigning different outcomes to
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the variables and analyzing conditional probabilities of the remaining variables. As Druzdzel

et al. (1999) point out, the conflicts between the model output and experts does not neces-

sarily mean that there is a fault in the model.

Sensitivity analysis (Clemen, 1996; Coupé and Van Der Gaag, 2002; Kjærulff and van der

Gaag, 2000; Laskey, 1995; Morgan et al., 1992, Chapter 5) focus on determining which

parameters in the model influence the posterior probability distribution the most. The

procedure employs small modification of parameters to determine the change in conditional

probabilities of target variables. We are looking for these parameters that lead to largest

changes in the output. Modeler has to pay more attention to eliciting these parameters to

improve precision of the probability distributions over the target variables.
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4.0 EXISTING MEASURES OF CONFIDENCE OF A SYSTEM FOR THE

CASE AT HAND

In the previous chapter, I described some of the metrics that help to quantify the uncertainty

about general model performance before its application in practice. As the model is applied,

we want to know how certain the model is about the case at hand. In this chapter, I provide

some of the existing metrics used to quantify this kind of confidence. Marcot (2012) reviewed

some of such metrics.

4.1 CONFIDENCE MEASURES BASED ON POSTERIOR MARGINAL

PROBABILITY DISTRIBUTION

A posterior marginal probability distribution Pr(V |E) expresses the uncertainty about the

events modeled with variable V due to general uncertainty in the domain, i.e., uncertainty

that is inherent to the problem. For example, if Pr(V |E1) consists of values (0.25, 0.25, 0.25,

0.25) and Pr(V |E2) consists of values (0.01, 0.04, 0.8, 0.15), it is clear that case E2 includes

less uncertainty in V . Intuitively, the more asymmetry among the probabilities in a posterior

distribution, the more information the distribution carries and less uncertain the output is.

Researchers use entropy of a distribution as a measure of uncertainty carried by the

distribution. For a distribution Pr(V |E) = (p1, . . . , pN), entropy is defined as

HV |E = −
N∑

i=0,pi 6=0

pi ln pi . (4.1)
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However, entropy is relative to the number of values in probability distribution. H gets its

maximum value for uniform distribution of V , which is

max
Pr(V )

HV = lnN .

H is zero as its minimum value for the distribution with one certain outcome (i.e., ∃i, pi = 1).

Marcot (2012) proposes to quantify unevenness in posterior probability with posterior prob-

ability certainty index (PPCI), which relates to complement of normalized entropy and is

defined as follows.

Definition 4.1 (PPCI). Posterior probability certainty index is a complement of normalized

entropy in the marginal posterior probability Pr(V |E) = (p1, . . . , pN) and can be expressed by

PPCIV |E = (1−
HV |E

lnN
) , (4.2)

where pi is the probability of the ith outcome of V in Pr(V |E).

Thanks to taking complement of normalized entropy, PPCI ranges from zero to one, with

zero representing the lowest certainty and one representing the highest certainty.

Another measure of unevenness can be Gini impurity index applied in decision tree

learning.

Definition 4.2 (Gini impurity index). Gini impurity index can be calculated as

IG = 1−
N∑
i=0

p2i .

As IG gives the lowest value for the distribution representing the most certain situation and

the highest value is (N − 1)/N , I will refer to its normalized complement

I ′G = 1− IG(N − 1)

N
. (4.3)

Marcot (2012) proposes to use also Gini coefficient (Atkinson, 1970; Gastwirth, 1972)

which is used to measure inequality in a distribution (e.g., in economics or ecology) and

associated with the Lorenz curve, usually calculated for discretized continuous variables. He

also proposes a certainty envelope to describe uncertainty about PPCI given the information

about a subset of fixed values in the posterior distribution.
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4.2 CONFIDENCE DUE TO IMPRECISE PARAMETERS

If the model has been build with a domain expert, the parameters elicited from the expert

or learned from a small dataset may be imprecise. The precision of the model’s parameters

contribute to the precision of estimated posterior probability distribution. Sensitivity anal-

ysis (e.g., Kjærulff and van der Gaag, 2000; Laskey, 1995) focuses on studying the impact

of the precision of parameters on the response of a DSS in the model building phase. I am

more interested in the imprecision of posterior probabilities for a specific case query.

One way of expressing the imprecision of a system’s response due to possible inaccuracy in

the parameters are error bars (or confidence intervals) over values in the posterior probability

distribution. Donald and Mengersen (2014) provided an overview of methods for constructing

error bars. Some of the methods focus on estimating the parameters of the distribution over

posterior probabilities (Van Allen et al., 2008). It is common to model uncertainty about

parameters by Dirichlet prior distribution over parameters of the BN.

One way of deriving error bars for a query response based on Dirichlet distribution is a

simulation based technique. Parameters of the prior distributions may be provided by the

expert. Also, the prior distribution may be derived either form a training dataset or from a

simulated dataset.

Throughout this document, I will use a simulation based method for deriving error bars

over Pr(vi|E). According to this method, we draw m times an assignment of parameters

Θj from the prior distribution. For each Θj, we calculate the posterior probability pj =

Pr(vi|E,Θj). We sort pj values in the ascending order to get the ordered values p′j. Than

1− α error bar bounds of Pr(vi|E) are values of the indices jL = mα
2

and jH = m(1− α
2
).

As a measure of confidence of the query response due to parameter imprecision, we can

provide the complement of the error bar width (CEBL), i.e.,

CEBL = 1− EBL, (4.4)

EBL = pjH − pjL . (4.5)
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4.3 RARITY-BASED CONFIDENCE MEASURES

The underlying motivation for measures presented in this sections is the problem of a model’s

self-awareness of its competence. Let us consider a patient who comes to a otolaryngologist

and complains about headache. The otolaryngologist orders an X-ray to check paranasal

sinuses for an inflammation and finds out that the sinuses are clear. She realizes that the

problem may derive from outside of the domain of her expertise and refers the patient to

a dentist to check his wisdom teeth instead. Just for the sake of argument, let us consider

a decision support system that replaces the otolaryngologist’s knowledge. As in case of the

otolaryngologist, the model of system’s knowledge is limited. The question of much interest

is whether the system can realize by itself that the case at hand is outside of its domain of

expertise.

One possible method to determine how the case fits the modeled domain is looking at

the probability of observations of that case. Some cases have a low probability (e.g., less

then 1010) given the model, which means that they are atypical. In other words, knowledge

represented by a Bayesian network may not cover the case – we deal with a very unlikely

combination of observations, possibly even a conflict in the observations given the model

(Jensen et al., 1990). A very low probability of a case suggests that the model is not suitable

to perform a reasoning or the case at hand consists of noisy observations.

The probability of a case has one major disadvantage: it is relative to its domain. There

may be many cases of the same probability in the same domain as the case at hand. Let us

consider a sequence of 20 independent tosses of a coin. The probability of each sequence is

the same and equal to p = 2−20. For example, a result of 20 heads in a row has the same

probability as the one of ten consecutive heads and then ten consecutive tails. There is no

sequence of heads and tails that is less probable, which leads to the conclusion that all the

sequences are common and none of them can be considered as rare.

As the probability of a case does not represent the confidence reliably, we need to in-

troduce a measure of confidence that will take the joint probability distribution over the

domain variables into account. There were several proposals of measures for conflict in the

data.
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We can use the joint probability of a case outcomes Pr(E) as a rarity measure. The

problem is that the joint probability of case is relative to the set of variables that case is

describing.

Laskey (1991) and Jensen et al. (1990) focus on determining conflicts among observations

related to just one case, and propose conflict measures. One of the indicators of a conflict

among observations is a very low probability of the case. They point out that the probability

of observations may be associated with rarity of a case at hand, but may also indicate possible

flaws in the model.

Another measure that refers to rarity of a case is the surprise index (Habbema, 1976),

which can be defined as

Definition 4.3 (surprise index). Surprise index of a case E is the sum of probabilities of all

cases less probable then E that are instantiations of Val(E), i.e.,

SI(E) =
∑

Ei : Pr(Ei)<Pr(E)

Pr(Ei) . (4.6)

Surprise index measures how typical the case is within its domain. If less probable cases

cover just a small part of the probability space, our case is rare.

Exact calculation of the surprise index is intractable in practice, as it requires multi-

ple calculations of Pr(Ei). I will show two methods for approximating surprise index in

Chapter 5.

Jensen et al. (1990) proposed an indicator of conflict in the observation set, which can

be considered as a measure of confidence. The indicator of conflict compares the probability

of case observations E = {e1, e2, . . . , ek} to the product of marginal probabilities of these

observations, i.e.,

cJ(E) = log

∏
ei

Pr(ei)

Pr(E)
. (4.7)

As proposed by Jensen et al. (1990), the cJ(E) has a positive value when the case E is rare.

Krüger and Hirschhäuser (2009) proposed measures of conflict in the set of observations

from different sources of information. They propose to use a distance measure between,
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so called, likelihood vectors, which consist of conditional probabilities of events given the

outcome of a class variable.
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5.0 AN APPROXIMATION OF THE SURPRISE INDEX

In this chapter, I will focus on the concept of surprise index (mentioned in Section 4.3) along

with its approximation.

Druzdzel (1994) proposed to analyze the distribution of logarithms of probabilities in

JPD encoded by BN. Each value in JPD encoded by BN (G(V,E),Θ) refers to a probability

of a full scenario. Let us consider an evidence set E0 which assigns values to subset VE ⊂ V.

Let us consider a variable Xp log p that assigns a probability Pr(E) to outcome log Pr(E), for

all E ∈ Val(VE). It may happen that there are m cases of the same probability in JPD of VE,

then Prp log p(log Pr(E)) = mPr(E). If we know the distribution of Xp log p, the computation

of the surprise index of E0 becomes straightforward. The surprise index of E0 reduces to

calculation of the value of cumulative distribution function of Xp log p. It is possible due to

the fact that the logarithmic mapping is monotonic, thus it maintains the < relation between

values. For the case E0, we have

SI(E0) = FXp log p
(log(Pr(E0))) .

In the following sections, I will show how JPD can be analyzed to approximate the

FXp log p
(x).

5.1 DISTRIBUTION OF PROBABILITIES IN JOINT PROBABILITY

DISTRIBUTION

Druzdzel (1994) analyzed the distribution of logarithms of probabilities in JPD regardless of

their relevance. Let us consider a random variable Xlog p with logarithms of probabilities of
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full scenarios (log Pr(EV)) as outcomes and associated equal probabilities Prlog p(log Pr(EV))

= 1
M

, where EV ∈ Val(V) and M = |Val(V)|. It may happen that there are m full scenarios

of the same probability in JPD, then Prlog p(log Pr(EV)) = m
M

.

Using factorization of probability (2.2), log Pr(EV) becomes a sum of logarithms of con-

ditional probabilities, i.e.,

log Pr(EV) = log
n∏
i=1

θvij |ck =
n∑
i=1

log θvij |ck =
n∑
i=1

qijk , (5.1)

where qijk = log θvij |ck is a logarithm of a conditional probability Pr(vji |ck), where ck is kth

joint assignment to parent variables of Vi. Druzdzel (1994) makes an argument that for a

sufficiently sparse and sufficiently large BN we can apply central limit theorem to conclude

that Xlog p follows the normal distribution. Figure 5 shows a histogram of a sample of

1,000,000 values drawn from Xlog p associated with Hepar II model1 for supporting diagnosis

of liver disorders (Onísko et al., 2001) consisting of 70 variables. We can see that the

probabilities at the sample follow the normal distribution, at least approximately.

5.2 PARAMETERS OF THE LOGNORMAL DISTRIBUTION OF

PROBABILITIES

It is possible to calculate the expected value and the variance of Xlog p distribution for a given

BN. Bouckaert et al. (1996) gave a set of formulas for calculating the exact values of µlog p

and σlog p, which have some limitations. Due to commutativity of addition, the derivation of

µlog p reduces to

µlog p =
1

M

M∑
y=1

n∑
i=1

qijyky (5.2)

=
1

M

n∑
i=1

M

wi

wi∑
z=1

qijzkz

=
n∑
i=1

1

wi

wi∑
z=1

qijzkz , (5.3)

1Available through several public Bayesian network repositories.
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Figure 5: Histogram of a sample of 1,000,000 values from Xlog p associated with the Hepar II
model
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where wi is the size of the conditional probability table of variable Vi. Computation of

variance is more complicated and is obtained based on the property Var(X) = E(X2) −

E2(X).

σ2
log p =

1

M

M∑
y=1

(log Pr(EV))2 − µ2
log p

=
1

M

M∑
y=1

(
n∑
i=1

qijyky

)2

− µ2
log p

=
1

M

M∑
y=1

n∑
i=1

q2ijyky +
2

M

M∑
y=1

(
n−1∑
i=1

qijyky

n∑
r=i+1

qrsyty

)
− µ2

log p . (5.4)

We can simplify the first term in formula (5.4) using the same approach as in (5.2). The

second term can be simplified to

σ′ =
2

M

M∑
y=1

(
n−1∑
i=1

qijyky

n∑
r=i+1

qrsyty

)

=
n−1∑
i=1

n∑
r=i+1

2

M

M∑
y=1

qijykyqrsyty

=
n−1∑
i=1

n∑
r=i+1

2

M

w∗
ir∑

y=1

M

w∗ir
qijykyqrsyty

=
n−1∑
i=1

n∑
r=i+1

2

w∗ir

w∗
ir∑

y=1

qijykyqrsyty , (5.5)

where w∗ir is a number of distinct qi•• and qr•• pairs appearing together in the factorizations

of a probability in JPD. If Vi and Vr have common parents or one is a parent of the other,

which can be expressed as

(Vi ∪ Pa(Vi)) ∩ (Vr ∪ Pa(Vr)) 6= ∅ ,
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the inner sum in (5.5) can be simplified to

σ′(i, r) =
2

wiwr

wiwr∑
y=1

qijykyqrsyty

=
2

wiwr

wi∑
y1=1

qijy1ky1

wr∑
y2=1

qrsy2 ty2

= 2

(
1

wi

wi∑
y1=1

qijy1ky1

)(
1

wr

wr∑
y2=1

qrsy2 ty2

)

= 2µiµr ,

where µi is the average of logarithms of θvi,•|• parameters associated with CPT of variable

Vi.

Computational complexity of calculating µlog p is O(nw), where n is number of variables

in the BN and w is the size of the largest CPT in the BN. σlog p can be computed in O((nw)2)

time.

A major limitation of the formulas presented in this section is that we need to assume

that none of the parameters Θ is zero (i.e., ∀θvij |ck 6= 0). When the number of zeros among

parameters Θ is small, we need to omit appropriate qijzkz expressions and propagate nec-

essary information to create a weight for expressions qijzkz in other CPTs. Such solution

complicates the calculation significantly.

One of the conclusions that Druzdzel (1994) makes is that the distribution of Xlog p may

get skewed as there is some skewness in some of the CPTs – some portion of the values are

much lower then others, e.g., 0.000001.

If probabilities of full scenarios of a given BN are distributed lognormally, the same

applies to cases E that consist of assignments of a sufficiently large subset of V associated

with that BN. To calculate parameters of the distribution Xlog p related to VE, we need to

obtain a new network by marginalizing out unnecessary variables. It may happen that by

marginalizing out a variable we introduce additional edges to maintain original dependencies.

In this case, additional edges do not influence the conditions of the central limit theorem. The

argument here is that by dropping a variable (taking the same network with one marginalized

variable) we are preserving the dependencies among the remaining variables, which were
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weak enough to remove these edges from the initial network. Unfortunately, adding more

edges leads to an exponential growth of CPTs, which may lead to intractable computation

of parameters µlog p and σlog p.

5.3 DISTRIBUTION OF RELEVANT PROBABILITIES

Most of the individual probabilities in the JPD contribute just a little to probability mass

of JPD. To express how much each probability value contributes to probability mass, we

consider a variable Xp log p which assigns a probability Pr(E) to outcome log(Pr(E)).

Druzdzel (1994) showed that if Xlog p follows the normal distribution N (µlog p, σlog p), then

Xp log p relates to the normal distribution N (µlog p + σ2
log p, σlog p). Because probabilities are

fractions between zero and one, their logarithms cannot be larger than zero and we need to

“cut” the right side of the distribution and normalize the remaining part that remains below

zero.

Bouckaert et al. (1996) pointed out that the approximation with shifted distribution

may become unreliable when 2σ2
log p > −µlog p. They do not provide any explanation of the

formula. The problem lies in violation of at least two conditions. The first problem is that

Xlog p is discrete in its nature and has a finite number of outcomes. The second problem is

that the distribution of Xp log p is an amplified tail of Xlog p. Xp log p represents the probabilities

that are important and modeled with BN. It may happen that the largest probabilities in

JPD are still very small due to characteristics of the modeled domain.

Zagorecki et al. (2015) proposed to calculate the exact values of µp log p and σp log p of

Xp log p directly from the BN. For many BNs, Xp log p is quite close to the normal distribution,

despite violations of conditions mentioned above. This approximation does not necessarily

have to be accurate especially for evidence sets of extremely small probabilities, e.g., P (E) <

µp log p − 3σp log p.
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5.4 SURPRISE INDEX APPROXIMATION BY MEANS OF SAMPLING

Mathematically speaking, the surprise index of a case is just a value of the cumulative

distribution function (CDF) over values of probabilities of cases given the model. We can

sample the values from Xp log p associated with the BN. Then we can approximate the surprise

index by taking a fraction of cases that are less probable than E0.

When the value of the surprise index is small, we can improve the approximation employ-

ing an approximated tail of the normal distribution or by means of the extreme value theory.

Castillo et al. (1998) presented one of the methods of approximating the left tail of Xp log p

distribution by means of generalized Pareto distribution. Castillo et al. (2005) elaborates on

methods for approximating the tails of distributions with generalized Pareto distribution.

If the surprise index is considered to be applied as a measure of confidence of a DSS,

there may be no need to approximate accurately its small values. Small differences may be

irrelevant for the end user of the system.
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6.0 CONFIDENCE INTERVALS FOR POSTERIOR PROBABILITIES IN

ANTICIPATION OF FUTURE OBSERVATIONS

The posterior probability distributions over variables of interest change as we gather obser-

vations about a case at hand. Each new observation introduces information that usually

makes the probability estimate more case-specific and, hence, more precise. A user applying

the model may want to know, how future observations will impact the model’s result. For

example, a physician investigating a case of a patient with a chest pain may consider running

some clinical tests after gathering information about patient’s medical history and listening

to patient’s lungs. A question of much interest is whether the probability of pneumonia can

go up or down and by how much as we obtain the results of the clinical tests. In other words,

how will the posterior probability of pneumonia change when we feed the model with more

observations about the patient case at hand.

One way of representing the uncertainty about a calculated quantity (this is, in case of

a BN model, a posterior probability) is a confidence interval, which utilizes the probability

distribution over the predicted value. Given that a BN is a complete specification of the joint

probability distribution over its variables, we have all the necessary information to derive

such intervals.

Most of the literature on uncertainty in results of Bayesian network inference focuses

on the impact of possible imprecision in parameters of the network. Such uncertainty can

be captured by means of error bars or uncertainty intervals (e.g., work by Donald and

Mengersen (2014) or Van Allen et al. (2008)). If the imprecision in parameters can be

expressed by intervals, it can be propagated over the model to derive uncertainty intervals

over results (Cano et al., 1993; Fagiuoli and Zaffalon, 1998). Uncertainty over results has

also been a focus of sensitivity analysis, which amounts to studying the impact of small
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changes in individual model parameters on the result. For example, Laskey (1995) describes

the derivation of error bars for probability assessment. Even though the question posed in

this paper is useful and asked by users of probabilistic decision support systems, we have

not found any literature analyzing the uncertainty intervals for posterior probabilities in

anticipation of future observations.

In this chapter I present a method for deriving uncertainty (variation) intervals over

posterior probabilities due to unknown observations about the case. The starting point

for this work is a BN model, and we assume that both its structure and its parameters are

correct. Because the distribution over possible values of posterior probabilities given different

observations is not necessarily parametric, I propose to use an empirical distribution. The

number of possible combinations of observations is typically too large to analyze. In such

situation, we simulate the observations by means of a stochastic sampling method based on

posterior probability distributions over unobserved variables.

The remainder of the chapter is structured as follows. Section 6.1 introduces notation and

necessary definitions. Section 6.2 describes two simulation methods for deriving the variation

intervals over posterior probabilities. demonstrates the behaviour of variation intervals and

compares methods for obtaining them. Section 6.4 concludes the section with final remarks

and discussion.

6.1 VARIATION INTERVALS OVER FUTURE PROBABILITIES

We are interested in anticipated changes in the posterior probability of a target variable

due to possible future observations consistent with the evidence E at hand. Determining all

possible future observations would require analyzing all possible scenarios E∗ ⊃ E. Analyzing

all these scenarios for a large model may be daunting. For example, the Hepar II model1

for supporting diagnosis of liver disorders (Onísko et al., 2001) consists of 70 variables of

which 61 are observable. The size of the complete set of scenarios for Hepar II is over

3.78215× 1021.

1Available through several public Bayesian network repositories.
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In such a case, we can derive a sample of scenarios as described below. For a given

evidence set E, we obtain possible future observations by stochastic simulation, i.e., we draw

outcomes from the posterior probability distribution of each observable variable in S to

obtain a possible scenario of observations E∗. We can repeat the simulation to get a sample

of possible scenarios {E∗1, . . . ,E∗s, . . . ,E∗N}. If we calculate the posterior probabilities of an

outcome of a target variable given each scenario (e.g., Pr(Bronchitis = present|E∗s)), we

will obtain a sample of possible future probabilities of that outcome.

Figure 6 shows two histograms of posterior probability of assignments to two target vari-

ables in the Hepar II model, Pr(Carcinoma = present|E∗) (a) and Pr(ChronicHepatitis =

active|E∗) (b). Both histograms were generated by sampling (as described above) with the

evidence set E = {HepatitisB Antigen = absent}.

Histograms such as those pictured in Figure 6 show typically a wide spread. For example,

the values in the histogram (b) cover the entire range (0, 1). It seems that reporting the

range of possible values is, therefore, quite useless. Because both histograms show some

central tendency, a trimmed range (for example, one showing 95% of all values) will be more

informative. To this effect, we can trim the extreme 2.5% of sampled values at each end.

The precise cut-off points can be interpreted as a numerical estimate of the 95% confidence

interval over the current value of the target probability calculated by the model in the light

of future observations.

6.2 CALCULATION OF THE VARIATION INTERVAL OVER FUTURE

POSTERIOR PROBABILITIES

In this section, I formalize the procedure described in Section 6.1 by proposing two methods

for sampling the possible posterior probabilities in anticipation of possible observations. The

first method (Algorithm 1) is based on exhaustive instantiating of all observable variables.

I follow this by an improved approach (Algorithm 2) that narrows down the number of

sampled variables to the extended Markov blanket of a target variable.

Algorithm 1 iterates through the set of all observable variables to assign a value to each
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(a) Pr(Carcinoma = present|E∗)

(b) Pr(ChronicHepatitis = active|E∗)

Figure 6: Histograms representing samples of posterior probabilities values given one assignment
to a variable in Hepar II model
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unobserved variable (line 4). To draw an outcome for a variable, it calculates the posterior

probability distribution over its outcomes given the evidence (line 5). Then, it samples an

outcome from the calculated posterior probability distribution (line 6). Having outcomes

assigned to all the observable variables, the algorithm calculates the posterior probability of

the pursued outcome of the target variable, which amounts to one sample (lines 9-10). Based

on the sample we derive a confidence interval over the posterior probability of the pursued

outcome (line 12).

VISampleAllObservable

Input : BN (G,Θ), target variable Vt, target assignment vt,j, evidence E,

unobserved variables SU , number of samples N , confidence level 1− α

Output: Sample H of possible probabilities Pr(vt,j|E∗), variation interval (pL, pU)

1 H ← ∅

2 for k = 1, . . . , N do

3 E∗ ← E

4 foreach Vi ∈ SU do

5 Calculate Pr(Vi|E∗)

6 Draw vi,k ∼ Pr(Vi|E∗)

7 E∗ ← E∗ ∪ {vi,k}

8 end

9 Calculate Pr(Vt|E∗)

10 H ← (H,Pr(vt,j|E∗))

11 end

12 Construct 1− α variation interval (pL, pU) using sample H

Algorithm 1: The algorithm for deriving the variation interval for posterior probability

values by sampling the space of assignments of all unobserved variables

Each calculation of the marginal posterior probability distribution of a variable involves

a call to a Bayesian network inference algorithm. Each derivation of the variation interval

involves O(N × (|S| − |E|)) calls of the inference algorithm, where N describes the number

of samples, |S| is the number of observable variables, and |E| is the number of observations.

Probabilistic inference is worst-case NP-hard (Cooper, 1990) and even with the fastest algo-
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rithm available may turn out to be too slow for interactive systems.

Generation of samples in Algorithm 1 can be improved by exploring independence be-

tween the target variable and other variables conditional on the target variable’s Markov

blanket. Because in practice not all model variables are observable, we use the concept of

the extended Markov blanket, introduced in Chapter 2. Extended Markov blanket screens off

the target variable given a minimal set of those variables that are observable. This mitigates

the problem of multiple calls to Bayesian network inference algorithm by reducing the set of

sampled variables to those in the extended Markov blanket of the target variable.

Algorithm 2 starts with determining the extended Markov blanket of the target vari-

able (lines 1-10). In particular, we create two sets to store unprocessed (A) and processed

(AD) non-observable variables. After initialization (lines 1-3), we are recursively collecting

variables from Markov blanket M(Vi) (lines 8-9) of a variable Vi ∈ A and moving Vi to the

set AD (lines 6-7). The remainder of the algorithm (lines 11-22) is similar to Algorithm 1,

except for line 14, where we replaced SU by M∗(Vt) \ SO. As a result, Algorithm 2 involves

O(N × (|M∗(Vt) \ SO|)) calls to the inference algorithm.

6.3 DEMONSTRATION AND EVALUATION OF THE PROPOSED

METHOD

I applied our algorithms for calculating the 95% variation intervals over the posterior marginal

probability of a target outcome to three practical Bayesian network models described below.

Hepar II is a Bayesian network model for diagnosis of liver disorders (Onísko et al.,

2001), available from several public Bayesian network repositories. Hepar II consists of 70

variables, arranged in three groups: patient history and risk factors (18 variables), diseases

(9 target variables), and symptoms or test results (43 variables). Hepar II’s graph models

the causal structure of the domain. For our tests, we picked various target variables from

among the nine disease variables.

Mortality90d is a Bayesian network model for forecasting mortality of patients 90 days

after heart transplant (Kanwar et al., 2017). The structure of Mortality90d follows a Tree-
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VISampleExtendedMarkovBlanket

Input : BN (G,Θ), target variable Vt, target assignment vt,j, evidence E, observable

variables S, number of samples N , confidence level 1− α

Output: Sample H of possible probabilities Pr(vt,j|E∗), variation interval (pL, pU)

1 M∗(Vt)←M(Vt) ∩ S

2 A←M(Vt) \ S

3 AD ← ∅

4 while A 6= ∅ do

5 pick any Vi from A

6 A← A \ {Vi}

7 AD ← AD ∪ {Vi}

8 A← A ∪ (M(Vi) \ (S ∪AD))

9 M∗(Vt)←M∗(Vt) ∪ (M(Vi) ∩ S)

10 end

11 H ← ∅

12 for k = 1, . . . , N do

13 E∗ ← E

14 foreach Vi ∈M∗(Vt) \ SO do

15 Calculate Pr(Vi|E∗)

16 Draw vi,k ∼ Pr(Vi|E∗)

17 E∗ ← E∗ ∪ {vi,k}

18 end

19 Calculate Pr(Vt|E∗)

20 H ← (H,Pr(vt,j|E∗))

21 end

22 Construct 1− α variation interval (pL, pU) using sample H

Algorithm 2: The Algorithm for deriving the variation interval for posterior probability

values by instantiating variables of the extended Markov blanket of the target variable.
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augmented Näıve Bayes (TAN) model with one class variable representing mortality and 27

predictor variables. The TAN structure forces two types of edges: connecting mortality with

all predictor variables and those forming a tree structure among all predictor variables. The

Markov blanket of mortality consists of all predictor variables.

CPCS179 is a Bayesian network model created from the knowledge base of Computer-

based Patient Case Simulation (CPCS) system (Pradhan et al., 1994). CPCS179 consists

of 179 variables connected by 239 edges and, similarly to Hepar II, its graph follows the

causal structure of the domain. We treat this model as an example of a sizable Bayesian

network. We chose the following two variables as targets for our tests: Alcoholic Hepatitis,

with one parent variable and 26 children variables, and Cholestasis, with one parent variable

and 14 children variables. We treated the remaining variables as observable.

6.3.1 Examples of the derived variation intervals

To demonstrate the usefulness and practical behavior of the variation intervals over future

observations, we performed several simulations of a diagnostic process using the Hepar II

model (we used a handful of real patient cases from a data set used for learning the parameters

of the Hepar II model). For each target variable Vt and an evidence set Ei, we followed the

following procedure:

1. From the set of unobserved variables, choose the variable that carries the most informa-

tion measured by cross-entropy for target Vt given already observed values. This gave

us a realistic order of observations during the diagnostic process: from the most to the

least informative evidence.

2. Enter the observation from the evidence set Ei for the chosen variable into the model.

3. Calculate the posterior marginal probability distributions of the target variables.

4. Derive variation intervals for those probabilities.

5. Repeat all these steps until all observations belonging to evidence set Ei have been made.

Figure 7 shows eight examples of 95% variation intervals over the posterior probability of

Chronic Hepatitis being persistent (a), Chronic Hepatitis being active for two different cases

(b-c), PBC (primary biliary cirrhosis) (d) being present, Toxic Hepatitis being present (d),
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Cirrhosis being compensated for three different cases (f-h). There are 61 possible observa-

tions (referring to risk factors, symptoms, and test results in the Hepar II model) for each

case and they are made individually from left to right. We used a fixed number of N = 1, 000

samples in each experiment. The solid line running from left to right demonstrates the de-

velopment of the probability of the target event in question as new observations are made.

The area around the probability line shows the variation interval over the probability at

each point in time. Please note that the variation intervals start by being very wide in the

beginning, which corresponds to the situation when nothing about the patient is known.

As more and more evidence is accumulated, the variation intervals narrow, to the point of

becoming either a point probability (when all possible 61 observations have been made) or

a fixed interval, when some of the observations have never been made in a patient’s case.

6.3.2 Computation time

To compare the computation time of the two proposed algorithms, for each of the three

models we generated 100 test records containing values of the observable variables. We used

a version of probabilistic logic sampling (Henrion, 1988), making sure that 50% of all values

are missing at random. For each record in the generated data sets, we derived 95% confidence

interval of posterior probability of one target variable (randomly chosen among targets in

the model), using both Algorithm 1 and Algorithm 2. We ran our tests on a computer with

Intel® Core™ i5-5200U CPU @ 2.20GHz processor, 8GiB memory, 32KiB/256KiB/3MiB

processor cache, running Ubuntu Linux 16.04.1 LTS x86-64 distribution. The implementa-

tion used SMILE (BayesFusion, LLC, 2019) Bayesian network software library.

Figure 8 shows box plots representing time spent by each of the algorithms. For the

Mortality90d model (tree augmented näıve Bayes), derivation of confidence intervals

takes similar amount of time. This is understandable given that the Markov blanket of the

target variable in a TAN model consists of all remaining variables and Algorithm 2 practically

deteriorates into Algorithm 1. For both, the Hepar II and CPCS179 models, Algorithm 2

is much faster (p < 10−57 for Hepar II model and p < 10−115 for CPCS179 model), as it

takes advantage of the extended Markov blankets of the target variables. In all three cases,
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Figure 7: Examples of 95% variation intervals over the posterior probability of Chronic Hepatitis
being persistent (a), Chronic Hepatitis being active (b-c), PBC (primary biliary cirrhosis) be-
ing present (d), Toxic Hepatitis being present (e), end Cirrhosis being compensated (f-h) in the
Hepar II model
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Figure 8: Box plots comparing computation times of confidence intervals for posterior probabilities
with both versions of the algorithm (measured in seconds).
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the absolute computation time seems acceptable from the point of view of an interactive

user interface.

6.4 CONFIDENCE MEASURE IN ANTICIPATION OF FUTURE

OBSERVATIONS

Similarly to error bars, we can take the length of the constructed variation interval and treat

it as a measure of confidence for a given case.

As we apply the model to cases in classification, we use a decision rule that typically

assigns a particular class to a case, when its posterior probability exceeds some threshold

p0. In such situation, we can perform similar analysis of possible future values of posterior

probability and determine the probability of changing the decision (fraction of sampled

posterior probabilities on the same side of threshold p0 as current posterior probability).
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7.0 HOW DIFFERENT CONFIDENCE MEASURES RELATE TO EACH

OTHER

Different measures of confidence may provide similar information about the case at hand,

even though they are attributed to different sources of uncertainty. For example, while

dealing with a rare case, our model may not be well defined for that case. In such situation,

the posterior probability distribution may be vaguely defined, which can be observed in the

form of wide error bars.

In this chapter, I look into the relationships among the measures presented in this dis-

sertation. For several models I run a simulation of many possible cases, for which I calculate

the confidence measures. I present the results in form of scatter plots involving various

confidence measures.

This chapter is organized as follows. Section 7.1 introduces the models used and describes

the simulation procedure. Section 7.2 presents the most interesting observations about the

measures. I conclude this chapter with Section 7.3, where I summarize and make additional

comments on the observations I made in Section 7.2.

7.1 SIMULATION SETUP

In the simulation, I used seven BN models: five models from BayesFusion Model Repository,1

one model (Mortality90d) used in prediction of mortality in CORA system (Kanwar et al.,

2017), and one model (HV) created based on the dataset containing information about votes

in United States House of Representatives (Schlimmer, 1987). For each model, I identified

1https://repo.bayesfusion.com/
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variables of interest (target variables). Models Hepar II, HV, and Mortality90d include

each only one target variable. The node associated with target variable variable in the

structure of these models is a predecessor for each of the other nodes as the model follows

augmented näıve Bayes (ANB) structure. Table 2 presents all models used in this simulation

with some statistics and target variables identified for the purpose of the simulation.

For each model, I generated a set of 8,000 cases by means of probabilistic logic sampling

(Henrion, 1988). For each case, I removed the information about variables at various rates

m ∈ {0.0, 0.2, 0.4, 0.6} to simulate missing values in the data. I also distorted observations

randomly at various rates w ∈ {0.0, 0.1, 0.2, 0.4} to simulate erroneous information in the

data. As a result, I obtained 500 cases for each pair of m and w values.

For each case E, the target variable (associated with the model) Vi and its value vij,

I calculated the surprise index SI(E), the posterior probability p = Pr(Vi = vij|E), the

length of the error bar over the posterior probability Pr(Vi = vij|E), and the length of the

variation interval over the posterior probability Pr(Vi = vij|E).

7.2 OBSERVATIONS

Figures 9 through 13 show the results of the experiment. The first observation that I made

based on the plot presenting the length of intervals against the posterior probability p. Both,

variation intervals and error bars tend to get tighter as p approaches the values of zero or

one. I present an example of this pattern in Figure 9. In some of the plots, I got a similar

pattern, but truncated, which is a result of the fact that a posterior probability of an event

may not get the value close enough to either of the ends of the interval [0, 1], which is the

feature of the modeled variable. Thus, I produced scatter plots of the length of variation

interval and error bar against d(p), where

d(p) = min(p, 1− p) ,

which is the distance between the value p = Pr(Vi = vij|E) and the closer end of the interval

[0, 1]. Figure 10 presents several examples in logarithmic scale. Reviewing these plots, we
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Table 2: Models used in the simulations

Model # nodes # arcs # targets target variables

Alarm (Beinlich et al.,

1989)

37 46 8 Anaphylaxis, Intubation,

KinkedTube, Disconnect,

Hypovolemia, LVFailure,

InsuffAnesth,

PulmEmbolus

BarleyFungalDisease

(Kristensen and

Rasmussen, 2002)

15 19 3 gt25, lt22, udbrsv

BarleyMain (Kristensen

and Rasmussen, 2002)

48 84 6 bgbyg, tkv, ksort, spndx,

udb, protein

BarleyWeed

(Kristensen and

Rasmussen, 2002)

15 24 2 weed, udbr

Hepar II (Onísko et al.,

2000)
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Figure 9: An example of two scatter plots showing how the interval length depends on the posterior
probability p = Pr(PBC = present|E). The left plot shows the relationship between p and the
length of the error bars over the value of p. The right plot shows the relationship between p and
the length of the variation interval over the value of p

can observe an exponential relationship between these values d(p) and the lengths of the

intervals. The length of the error bar seems to depend exponentially on d(p) as well. The

first of these patterns seem to be stronger. For some target values in some models, I observed

that d(p) interacts in this way with both length of the variation interval and length of the

error bar, there was also same relationship between two latter values as well (as exponential

relationship is transitive).

I accumulated all of the cases for various possible missing information rates and possible

data corruption rates. Figure 11 shows a portion of scatter plots of surprise index against

length of error bar for various models. These plots suggest that for many variables, error

bars get wide very often, when we deal with a case that has a low surprise index. Please

note that it is not true for all of the modeled variables. For example, for the model Bar-

leyFungalDisease, we can find cases that have quite high surprise index while the error

bars over Pr(gt25 = x0 85 |E) are wide (the bottom right plot in the Figure 11).

Figure 12 shows a portion of scatter plots of surprise index against length of variation

interval for various models. I could not find a common pattern besides the observation that

there are many different cases with wide range of both values. It seems to be common that

for cases for which we get extreme lengths of variation intervals we can have various values
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of surprise index. It is worth noting that for some of the variables there are values, for which

posterior probability is within limited range tighter than [0, 1]. For example, the length

of variation intervals over p = Pr(weed = x100 150|E) in BarleyWeed model does not

exceed 0.25, which means that the posterior probability p takes values in that range.

Figure 13 shows a portion of scatter plots of length of variation interval against length

of error bar for various models. Some of the models suggest a similar pattern that I found

analyzing plots of lengths of intervals against posterior probability p – error bars seem

to be tighter as we get the length of the variation interval close to extreme values. The

situation when both values are close to zero is exactly the situation when both of them are

in relationship with p.

7.3 CONCLUSIONS

There seem to be an exponential relationship among lengths of variation intervals and error

bars, and the posterior probability (its distance from the ends of [0, 1] range). I could find

plenty of examples, where lengths of variation intervals and error bars are dependent on the

posterior probability value p = Pr(Vi = vij|E), although lengths of intervals are not perfectly

explained by probability probability p, especially when the value of p is far from the ends of

the interval [0, 1].

For some models, wide error bars yield rarity of the case at hand. We can observe it

as the error bars get wide only when the surprise index approaches zero for some models.

Small surprise index, as mentioned earlier in Chapter 4, means that either we deal with a

rare case or with inconsistent information describing the case. This phenomena is strongly

visible for models of TAN structure.

All of the measures discussed in this chapter may enhance the output of a DSS in a

useful way, also when all of them are provided to the user. Surprise index seems to be less

dependent on the other measures. It suggests that providing surprise index alongside with

the output of the model may improve the understanding of the situation that the user deals

with, even having error bars or variation intervals provided already.
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None of the relationships could be seen clearly for all of the models. It means that the

creator of a DSS may consider all of the measures, but should test them all on the model

before the deployment of the system. It may happen that the relationship between two of

the measures may be strong for some models. In such situation these measures may be

redundant.
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Figure 10: Scatter plots showing how the variation interval (left column) and the error bar (right
column) depends on the posterior probability d(p) interact in log-log scale

52



Figure 11: Scatter plots presenting the surprise index against the length of the error bar in various
models and variables
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Figure 12: Scatter plots presenting the surprise index against the length of the variation interval
in various models and variables
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Figure 13: Scatter plots showing how the surprise index relates to size of the variation interval in
various models and variables
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8.0 PREDICTING PERFORMANCE OF A CLASSIFIER BY MEANS OF

CONFIDENCE MEASURES

The purpose of using a confidence measure is to describe how much we can trust the output

of a DSS. We trust the output of a system, when it gives correct answers in particular cases.

The confidence measure should help to determine whether the output of the DSS is correct.

To evaluate the measure, we can check whether it helps to predict an erroneous output of the

DSS. In other words, we want to discriminate those cases (data points) that are problematic

for the DSS by means of the confidence measure.

One form of a DSS is a classifier that assigns a label to the case provided in the input. For

example, we can construct a classifier that is labeling patients with high risk of readmission

to the hospital. In case of classification, problematic cases are those for which classifier gives

an erroneous answer.

In this chapter, I check whether confidence measures presented in this dissertation help

with predicting the correctness of the classification of a particular case with Bayesian network

models.

This chapter is organized as follows. Section 8.1 describes the setup of the experiment,

i.e., an overview of datasets and model types I used, followed by the explanation of the

experiment. Section 8.2 shows obtained results. Section 8.3 presents conclusions from the

performed experiment.
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8.1 EXPERIMENT SETUP

8.1.1 Models used in the experiment

A BN model, in which the variable relating to the class is represented by one of its nodes,

can be used as a classifier. During the process of classification, we calculate the posterior

probability distribution over the class variable. Then we use a decision criterion applied to

that distribution to choose a label. In my experiment, I choose the label that is the most

probable given the case.

I used three types of classifiers based on Bayesian networks: näıve Bayes (NB), augmented

näıve Bayes (ANB), and tree-augmented näıve Bayes (TAN). All models were created with

the SMILE library.

Näıve Bayes is a simple model based on the assumption that all of the feature variables are

independent of each other given the class variable. It means that in presence of information

about value of the class variable, information about one feature variable does not have any

influence on the distribution of other feature variables. As a result, a näıve Bayes network

consists of the class variable, feature variables, and edges connecting the class variable with

all the feature variables. A näıve Bayes classifier, besides being simple in calculation, tends

to over-fit the data (that it was learned from) less than other models. It leads to better

generalization of the model and performs quite well when applied to new cases.

We can use the augmented näıve Bayes model, when the assumption employed in the

näıve Bayes is strongly violated. If the size of the dataset is sufficient to infer dependencies

among the feature variables, especially in the presence of the information about value of the

class variable, we can augment the näıve Bayes structure with additional edges. We can

apply the Bayesian search algorithm (Cooper and Herskovits, 1992) to determine additional

edges.

A BN with too many edges may over-fit the data. To prevent this from happening, it is

possible to add restrictions on the number of edges added to näıve Bayes structure during

the process of learning a model form data. We can augment the näıve Bayes structure with a

spanning tree of nodes associated with feature variables. As a result we have a model where
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every node associated with feature variable has at most two parents.

To learn the models from the data, I used the default settings of the SMILE library

(BayesFusion, LLC, 2019). The only exception was the augmented näıve Bayes model for

cover type dataset, which was too complex to perform the experiments (it took too much

time), when created with default settings. I put restrictions on the structure of the model.

The algorithm was trying to fit the model, where each feature variable node had at most

four (eight on default) direct predecessors (parents). I also lowered link probabilities from

default 0.1 to 0.05 and prior link probability from 0.001 to 0.0005.

8.1.2 Datasets used in the experiments

In the experiments presented in this chapter, I used a collection of datasets selected from the

UCI Machine Learning Repository (Dheeru and Karra Taniskidou, 2017). My choice was

guided by following factors:

• the dataset had to be curated for classification task,

• the dataset should be available in a form of tabular data,

• the dataset had to consist of over ten attributes,

• and the dataset had to consist of vast number of records (at least 300).

Table 3 lists the datasets selected by means of above criteria along with their characteristics

(discussed balow). I ran a simple preprocessing step for each of the dataset.

Because all of the measures described in this dissertation are meant for discrete BN

models, I discretized all attributes that could be characterized as continuous with a simple

rule into three values: low, medium, and high. I replaced all the values in the lower quartile by

low, all the values in the upper quartile by high, and the remaining values in the interquartile

range by medium. In these cases, where either the lower quartile or the upper quartile was

dominated by one value, I had to adjust the cut points for the discretization manually.

Sometimes it happened that the vast number of values were zero. In such cases, I discretized

the attribute either into two values (e.g., zero and positive) or into three values (e.g., zero,

low, and high).
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I treated missing values in three ways: (1) I removed the records with missing values, if

the number of such records for a given attribute was very small (less than eight); (2) if in the

given column of the data (for a given attribute) there was a vast number of missing values

(more than 40), I filled them with a special value missing ; (3) in all other cases I filled the

missing value with the most frequent value.

For two datasets, I modified the set of records. I created a sub-dataset of the cover type

dataset by picking 5% of the records by random. The adult merged is a dataset consisting

of both training and testing subsets available for adult dataset in the repository.

8.1.3 Procedure

For each dataset, I build a model and test it with the hold-out validation principle. I add a

column to the testing dataset which consists of the result of the comparison of the predicted

value for the class variable with the true value from the dataset. Then, I augment the test-

ing dataset with columns consisting of calculated confidence measures for each row. Then,

I consider confidence measures and the dataset with confidence measures and a column of

values indicating whether the model assigned a correct class label to the record (case). I

treat each confidence measure as a predictor of poor classifier performance. Evaluation of

the measures is based on the area under the ROC curve for classifier performance predic-

tion. Smith and Gal (2018) used a similar approach to evaluate measures of uncertainty for

predicting adversarial attacks on systems based on neural networks. Figure 14 shows the

basic procedure performed for each testing dataset.

In addition to standard settings of validation of classifiers, I wanted to check how well the

measures will perform in the presence of missing and corrupted information. We deal with

missing information when the values of some features are missing in the case. I simulated

such phenomena by dropping information from testing dataset with predefined rate, i.e.,

each value was not entered into the model with probability 0.0 (no missing information),

0.2, and 0.5.

I simulated corrupted information by changing randomly selected values with predefined

rate, i.e., each value was considered to be replaced with probability 0.0 (no corrupted in-
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Table 3: Datasets used in the experiments

Dataset # attr. # rec. Processing comments Credit

thoracic surgery 17 470 (Ziȩba et al., 2014)

messidor

(Diabetic

Retinopathy)

19 1151 (Antal and Hajdu, 2014)

wine red 12 1599 (Cortez et al., 2009)

adult merged 14 48842

original training

and testing datasets

have been combined

into one dataset

(Kohavi, 1996)

house votes 17 435 (Schlimmer, 1987)

cervical cancer 36 858 (Fernandes et al., 2017)

wine white 12 4898 (Cortez et al., 2009)

ionosphere 34 351 (Sigillito et al., 1989)

cover type 55 29050

20 times less instances

compared to original

dataset

(Blackard, 1998)

bands 34 533 (Evans and Fisher, 1994)

dermatology 35 366 (Güvenir et al., 1998)

formation), 0.2, and 0.4. When it was considered for change, I replaced it with one of the

possible values of the feature by giving all of the values an equal chance. So it could happen

that the value was not changed at all due to drawing the original value, e.g., for a binary

variable, there was 0.5 probability that the value will not change. Thus the actual corrupted

rate is lower than the predefined one.

I modified the hold-out validation procedure as described above. I divided the dataset
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Figure 14: The goal of the experiment is to check whether the measures help predicting correctness
of the classifier

into training and testing datasets at random in proportion 2:1.

I ran the whole modified hold-out validation procedure seven times for all combinations

of model types, datasets, missing rates (0.0, 0.2, and 0.5), and corrupted data rates (0.0,

0.2, and 0.4). For each run, I calculated the area under the ROC curve corresponding to the

ability of the confidence measure to discriminate mistakes in classification by the model.

8.2 RESULTS

I present the results in the form of box plots that accumulate the results over all datasets.

Each box plot represents 77 runs (11 datasets, 7 runs per each dataset) on a particular model

with a setup of missing values rate m and data corruption rate w. The green line represents

a value 0.5 of AUC score. If the AUC is greater than 0.5, it means that the measure was

helpful in predicting the correctness of classification. More detailed results for each dataset

can be found in the Appendix.
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Figure 15: Area under the ROC for predicting the correctness of classification using length of the
error bar
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Figure 16: Area under the ROC for predicting the correctness of classification using length of the
variation interval
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Figure 17: Area under the ROC for predicting the correctness classification using the surprise index
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Figure 15 shows aggregated results in form of box plots for the complement of the error

bar length (CEBL) applied to all three types of models. For the error bar length, we can

see a very good performance for all types of the model with different configurations, as in

most of the runs, AUC is greater than 0.5. Usually the AUC exceeded 0.55 (see tables

in the Appendix). The performance drops slightly as we provide less information to the

system about the case to classify (introduce more missing values). We can see slightly better

performance of the complement of the error bar length when applied to augmented näıve

Bayes in absence of missing information.

Figure 16 shows aggregated results in form of box plots for the complement of variation

interval length (CV IL) organized in the same fashion. We can observe rather poor perfor-

mance compared to the results obtained by applying the complement of the error bar length

measure. CV IL performs quite well for several datasets when all the information is provided

in the input and the data are corrupted to some degree. A very good performance can be

observed when the complement of variation interval length is applied to näıve Bayes in the

presence of corrupted information.

Figure 17 shows aggregated results in form of box plots for the surprise index (SI)

organized in the same way. In general, surprise index seems to perform better than CV IL,

but worse than CEBL. For some datasets surprise index performed very well for all different

types of settings. The more missing values were present in the cases, the better surprise index

was performing for particular datasets. Unfortunately, for some datasets, surprise index was

introducing misleading information in predicting erroneous output.

I compared the resulting AUC values for these measures with Wicoxon signed-rank test.

CEBL is better than surprise index in predicting the erroneous classification with p value less

than 10−5 (for most of the datasets and among all of the models types). In my experiment,

surprise index turns out to perform better than CV IL for most of the datasets with tree-

augmented näıve Bayes (TAN) and augmented näıve Bayes classifiers (ANB) with p value

less than 10−5. For näıve Bayes, surprise index was significantly better just for three datasets.
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8.3 DISCUSSION AND CONCLUSIONS

Complement of the error bar length helps the most in predicting erroneous output of a clas-

sifier. One of the reasons is that it is closely related to the posterior probability distribution

(as has been shown in Chapter 7).

Surprise index gave good performance, especially in the presence of missing values. It is

worth mentioning that surprise index does not depend on the posterior probability distribu-

tion of the target as much as other measures, like complement of error bars length.

The complement of variation interval length seemed to perform the worst. The best

result I obtained for näıve Bayes in presence of wrong information. It means that CV IL is

good at detecting inconsistent information when applied to näıve Bayes models. It has to

be noted that CV IL performed very well for some of the datasets when applied to models

of more complex structure than NB.

Furthermore AUC score obtained for CV IL seems to get slightly worse as we fit the

model more to the data (ANB against NB). Although, as presented earlier in this document,

variation intervals tend to get tight quite quickly in the presence of most significant infor-

mation about the case. In the experiment, the information provided to the classifier was

either full or containing missing information at random. When a DSS is applied in a way

where the user is entering information about the case piece by piece, starting from the most

significant one, the measure based on variation intervals could be more useful in predicting

performance of the system.

Both measures, complement of the error bar length and surprise index, seem to perform

well in various configurations and can be used in applications.

If any of these measures could be applied to the system using a Bayesian network model,

the modeler needs to determine the proper threshold for the measure to indicate possible

erroneous output.
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8.4 FURTHER WORK

As I showed in Chapter 7, the size of the error bar over posterior probability of a label is

dependant on the value in question. We can check how much information the error bar

introduces over the posterior probability based on already done experiments and obtained

results.

Significance of the feature value in the information about the case can be measured with

cross entropy. It could be further investigated whether for a few pieces of information about

the case chosen based on the cross entropy, the variation interval length helps to predict

erroneous output of the classifier.
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9.0 APPLYING CONFIDENCE MEASURES TO ENSEMBLES OF

CLASSIFIERS

It may happen that institutions that own data, do not want to share them due to various

reasons. For example, hospitals may not share data due to privacy protection: they need

to protect the information about the patients. As the data cannot be shared, each of the

institutions may prepare their own version of the model and share it. Other parties may use

these models separately, combine them into one model, or try to use as an ensemble.

An intuitive way of merging these models would be a combination of the available models

into one model. One of problems is that different modelers may choose a different subset

of the variables to build a model for a similar purpose. In such a situation, they may have

troubles with generalizing their models into one model applicable by all institutions. Another

problem is that there are many ways of handling continuous variables. For example, each

modeler may choose different discretization of continuous variables.

In case of Bayesian network models, even if the modelers agree to one standard of han-

dling the data and the variables used in the model, there is still a problem of determining

the structure of the network that would utilize all of the knowledge encoded in the models.

Despite some attempts to develop a method for combining Bayesian networks (e.g., Feng

et al., 2014), the problem remains difficult.

As merging of models may be problematic, an alternative approach is to use all the

created models as an ensemble. A possible approach is to take an average of outputs of these

models. We can weight the particular outputs with overall accuracy of particular models. If

the domain (e.g., a subset of variables) modeled by BNs differs, we may want to use surprise

index (or another confidence measure) to weight each of the model’s output for a given case.

Ensembles of classifiers and regression functions are well studied (Rokach, 2010). By
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averaging multiple regression functions, we decrease the variance of the output and increase

the bias (Geman et al., 1992), which contribute to the error of prediction. One method to find

an optimal bias and variance resulting in high accuracy is Bagging (Breiman, 1996). This

method uses an ensemble of classifiers learned from bootstrapped samples of the training

dataset. In the problem described above we do not have one dataset defined in a feature

space, but a set of various datasets that may cover different parts of the same feature space.

Usually, ensembles of classifiers, that employ simple aggregating methods, get the best

results when individual models in the ensemble are diverse. If the models are strongly diverse

and good in classification in their domains, we expect to get better performance when we

favor proper classifiers that are good in particular cases. If we can determine which classifier

is the best for the case at hand we can give it more credit by assigning higher weight in

the ensemble. Many methods have been developed for the aggregation of the ensemble

of classifiers (Cruz et al., 2018) that could be categorized as trainable, non-trainable, and

dynamic weighting. Usually, these methods rely on the outputs of all classifiers in the

ensemble and the level of competence induced from the accuracy of the classifier in the

region close to the case at hand (e.g., Woloszynski and Kurzynski, 2011). Some studies

utilize credal intervals (which may refer to similar imprecision of the output as error bars)

to assess the robustness of graphical probabilistic models in an ensemble (e.g., Conaty et al.,

2018). I have not found any paper that would explore using surprise index for assessing the

competence of models in ensembles. The confidence measures I present in this paper could

be applied as measures of competence. For each case and model in the ensemble, I calculate

the confidence measures and use their combination as weight in averaging of the outputs of

the models.

Another additional stage in the creation of an ensemble of classifiers is a selection of a

subset of the models. Such selection could be done either in a static (Perrone and Cooper,

1992) or in a dynamic way, dependent on the case at hand. The dynamic model selection

could be made based on the methods for describing the competence of the model as discussed

above. I omit this stage and assess the usefulness of confidence measures in weighting

classifiers in the ensemble.

In this chapter, I show the results of the experiment where I simulate the situation
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of various modelers building their own model for the purpose of classification. I simulate

the separate domains by taking different subsets of the original learning dataset, which is

a method used in an ensemble of classifiers to create diverse classifiers. I check whether

employing confidence measures in ensembles of classifiers based on Bayesian networks im-

proves classification accuracy. Section 9.1 outlines the setup of the experiment. Section 9.2

presents the results of the experiment. Section 9.3 concludes this chapter with final remarks

on improving the classification accuracy in ensembles of classifiers by means of confidence

measures.

9.1 EXPERIMENT SETUP

This experiment had three phases: learning the models, applying the models to the testing

dataset, and evaluation of different methods to combine the posterior probability distribu-

tions of the models. I used the same datasets as in the experiment presented in Chapter 8.

In the first phase, I divided each dataset into two datasets: learning dataset (consisting

of 66% of all datapoints) and testing dataset. For each learning dataset, I created 13 datasets

which where constructed by removing randomly (1 − sc) columns and dropping randomly

(1−sr) rows, for fixed sc and sr respectively. Sometimes I had to remove additional columns

that becomes constant after dropping some of the datapoints. For each of these smaller

datasets, I learned a model using the SMILE library.

I applied all of the models to cases represented by rows in the corresponding testing

dataset. For each case, I used 1−mr of values of features to simulate missing information.

For each case, I calculated the surprise index, posterior probability distribution of the class

variable, error bars, and variation intervals.

All the tests I ran were based on two types of models: näıve Bayes (NB) and tree-

augmented näıve Bayes (TAN). I ran the tests with different values of sc, sr, and mr, which

was sc ∈ {0.5, 0.6}, sr ∈ {0.7, 0.8}, and mr ∈ {0.0, 0.5}.

At the end I applied different approaches in combining outputs of models. A baseline

method I used, was an arithmetic mean of the probabilities for respective value of the class

70



variable across the posterior probability distributions of the models

pavg(i) =
1

n

n∑
j=1

Pr(C = ci|E,Bj), (9.1)

where Bj = (Gj,Θj) is the j-th model. I compared it with weighted mean

pwk
(i) =

n∑
j=1

wk(i, j) Pr(C = ci|E,Bj), (9.2)

where wk is a weight based on surprise index (SI), complement of error bar length (CEBL),

and complement of variation interval length (CV IL). I considered seven different weights

w1(i, j) =SI(E,Bj),

w2(i, j) = CEBL(C = ci|E,Bj),

w3(i, j) =SI(E,Bj) ·CEBL(C = ci|E,Bj),

w4(i, j) = CV IL(C = ci|E,Bj),

w5(i, j) =SI(E,Bj) ·CV IL(C = ci|E,Bj),

w6(i, j) = CEBL(C = ci|E,Bj) ·CV IL(C = ci|E,Bj),

w7(i, j) =SI(E,Bj) ·CEBL(C = ci|E,Bj) ·CV IL(C = ci|E,Bj).

As I had a set of 13 models, I considered 11 consecutive subsets of the models ranging from 3

models to 13 models and compared classification accuracy obtained with pwk
to simple pavg.
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9.2 RESULTS

It has to be mentioned, that usually when the ensembles of classifiers are created, the modeler

tries with different numbers of classifiers with different settings. The modeler stops building

the models when she finds a settings that gives optimal or satisfying result. Nevertheless,

in my experiments I tried the methods of combining model’s outputs on different settings

blindly.

This is why the main point of reference that I used in comparing the approaches of

combining outputs of the models was the fraction of ensembles that got better results by using

the weighting approach under consideration to simple averaging of the posterior probability

distributions with pavg.

Table 4: Aggregated results for ensembles of näıve Bayes (NB) and tree-augmented näıve Bayes
(TAN) with and without missing values in the input. Each value in the table represents the fraction
of 484 ensembles that got better accuracy in classification with respective pwk

compared to baseline
pavg

pwk
measures employed NB NB (missing) TAN TAN (missing)

pw1 SI 0.194 0.364 0.176 0.550

pw2 CEBL 0.227 0.335 0.202 0.405

pw3 SI, CEBL 0.215 0.397 0.192 0.510

pw4 CV IL 0.000 0.093 0.000 0.010

pw5 SI, CV IL 0.194 0.368 0.176 0.550

pw6 CEBL,CV IL 0.227 0.351 0.202 0.405

pw7 SI, CEBL,CV IL 0.215 0.401 0.192 0.510

Table 4 presents aggregated results for ensembles of näıve Bayes (NB) and tree-augmented

näıve Bayes (TAN) with and without missing data. We can observe that it is most likely

to obtain an improvement in accuracy utilizing confidence measures when we deal with a

case with missing information in the input of the system (50% missing values). Additionally,

when dealing with missing information it is more likely to get improvement on ensembles

based on tree-augmented näıve Bayes. When there is no missing information in the output,
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it is more likely to get improvement in ensembles based on näıve Bayes.

Utilizing complement of the variation interval length (CV IL) does not introduce any

improvement when there is no missing information in the output. It is due to the nature of

the variation intervals. They shrink to a point as we have all of the information that the

posterior probability distribution of the class variable depends on. CV IL makes it slightly

more likely to improve accuracy when building ensembles of näıve Bayes classifiers.

Table 5: Results for ensembles of näıve Bayes (NB) and tree-augmented näıve Bayes (TAN) without
missing values in the input. Each value in the table represents the fraction of 44 ensembles that
got better accuracy in classification with respective pwk

compared to baseline pavg

models NB TAN

dataset SI CEBL SI, CEBL SI CEBL SI, CEBL

adult merged 0.0227 0.0227 0.0000 0.3409 0.0000 0.0000

bands 0.2500 0.3182 0.3182 0.2727 0.2955 0.3864

cover type 0.0000 0.4091 0.0227 0.1364 0.0682 0.0000

dermatology 0.0227 0.1591 0.1818 0.0227 0.2045 0.2045

house votes 0.1364 0.0909 0.1364 0.1136 0.2500 0.1818

ionosphere 0.7727 0.0682 0.6818 0.0455 0.1136 0.1136

messidor 0.0682 0.0455 0.0682 0.2955 0.3182 0.3409

cervical cancer 0.4091 0.2955 0.4318 0.0000 0.0909 0.1364

thoracic surgery 0.0909 0.0909 0.1818 0.0227 0.1136 0.0909

wine red 0.1364 0.4318 0.1364 0.3864 0.3864 0.3864

wine white 0.2273 0.5682 0.2045 0.2955 0.3864 0.2727

Table 5 presents more detailed results with respect to datasets used in the experiments.

These results correspond to ensembles of NB and TAN without missing values in the input. I

dropped the cases in which I applied CV IL as it did not improve the classification accuracy

(no missing information means that CV IL = 1). For only three datasets for ensembles of

NB models, the integration of the measures increased the fraction of improved classification

accuracy. We can observe the same for ensembles of TAN models. For ensembles of TAN

models, CEBL improved the accuracy more often then SI individually. For ensembles of
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NB models, each measure worked better for different datasets.

Figure 18 presents histograms of improvement of classification (difference between accu-

racies) of combining model outputs with weighting and simple averaging, corresponding to

ensembles of NB and TAN without missing values in the input. We can see that usually

the improvement is close to zero. By employing surprise index we can get as much as 0.04

of improvement. For ensembles of TAN models, usually, the improvement does not exceed

0.01.

Table 6 shows more detailed results with respect to datasets used in the experiments

that correspond to ensembles of NB models with missing values in the input. We can see

that for different datasets different set of confidence measures used was most likely to lead to

an improvement. Combining the model outputs utilizing surprise index improved accuracy

frequently. For four datasets, it was among best methods (we can say the same about

the method employing just CEBL) in terms of frequency of improving classification. The

method using the product of all three measures was among the best for five datasets. In

several cases, utilizing CV IL increased frequency of improving classification.

Table 7 shows more detailed results with respect to datasets used in the experiments

that correspond to ensembles of TAN models with missing values in the input. The method

utilizing surprise index seems to be among the best for most datasets.

Figure 18 presents histograms of improvement of classification of combining models out-

puts with weighting and simple averaging, corresponding to ensembles of NB and TAN with

missing values in the input. We can see that usually the improvement is close to zero as

well. For ensembles of TAN models, the histograms look skewed. They also reveal that huge

improvements are possible (e.g., cervical cancer dataset). By employing both CEBL,CV IL

(pw6) for ensembles of TAN models, we could get an improvement as high as 0.14. For

ensembles of TAN models, usually, the improvement did not exceed 0.03.
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9.3 CONCLUSIONS AND REMARKS

The presented experiment attempted to utilize the confidence measures in just one particular

way – by constructing weights based on product of the measures. It seem to be possible to

improve the accuracy of the classification with ensemble of the models based on Bayesian

networks by adding weights to outputs of different models based on confidence measures

presented in this dissertation, although it is not the only way to utilize them in combining

model outputs. It is very easy to construct different formulas for aggregating model outputs,

which leaves plenty of room for future work.

The most advantage from confidence measures, both in frequency of improvement and

its quality, I could get when I was using them to combine models in ensemble of TAN in

presence of missing information. It may be due to the fact that TAN models seem to fit the

data better than NB and that partial information about the case at hand gives is propagated

in the structure of a TAN model.

In the results of the experiment presented in this chapter, I could observe high accuracy

of classification by taking simple average of the posterior probability distributions of the

models in the ensemble. Based on the results obtained in the experiment, this method gives

a proper stability for accuracy of the classification. The accuracy was usually close to or

exceeding the accuracy of the best single model in the ensemble.

Utilization of variation intervals in presence of all information about a case does not

make any sense. But it does not contribute that much compared to other measures when we

deal with missing information either. It still seems to be useful in combining of models in

ensemble. Poor performance of variation intervals may be due to the same fact as it was not

useful in predicting the performance of the classifier, i.e., the information missing at random

does not give a proper room for variation intervals to show their full potential as information

is not missing at random in real problems.

In future work confidence measures may be considered in dynamic model selection in the

ensemble of classifiers based on Bayesian networks.
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Figure 18: Histograms of improvements for ensembles of näıve Bayes (NB) and tree-augmented
näıve Bayes (TAN) without missing values in the input. Each value contributing to histogram
represents the improvement in accuracy of classification with respective pwk

compared to baseline
pavg. Please, note that the median is placed close to zero, so we get quite good improvements when
we observe a skewed histogram with tail on the right
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Table 6: Results for ensembles of näıve Bayes (NB) with missing values in the input. Each value
in the table represents the fraction of 44 ensembles that got better accuracy in classification with
respective pwk

compared to baseline pavg. The maximum value for each dataset is presented in bold

pw1 pw2 pw3 pw4 pw6 pw5 pw7

dataset si ebl si,ebl vil ebl,vil si,vil si,ebl,vil

adult merged 0.2955 0.5227 0.3636 0.0909 0.5000 0.2955 0.3636

bands 0.5455 0.3409 0.6364 0.3636 0.5227 0.6591 0.7045

cover type 0.8864 0.6364 0.5682 0.0909 0.6364 0.8864 0.5682

dermatology 0.0455 0.4773 0.5227 0.2045 0.5000 0.0227 0.5227

house votes 0.6136 0.1364 0.5682 0.0000 0.1364 0.5909 0.5682

ionosphere 0.5682 0.2955 0.5909 0.0227 0.2955 0.5682 0.6136

messidor 0.4091 0.4091 0.3636 0.0000 0.3864 0.4091 0.3636

cervical cancer 0.3409 0.1136 0.3864 0.0000 0.1136 0.3409 0.3864

thoracic surgery 0.0227 0.0227 0.0227 0.0000 0.0227 0.0227 0.0227

wine red 0.0000 0.3864 0.0455 0.2500 0.4091 0.0000 0.0000

wine white 0.2727 0.3409 0.2955 0.0000 0.3409 0.2500 0.2955
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Table 7: Results for ensembles of tree-augmented näıve Bayes (TAN) with missing values in the
input. Each value in the table represents the fraction of 44 ensembles that got better accuracy in
classification with respective pwk

compared to baseline pavg. The maximum value for each dataset
is presented in bold

pw1 pw2 pw3 pw4 pw6 pw5 pw7

dataset si ebl si,ebl vil ebl,vil si,vil si,ebl,vil

adult merged 0.2500 0.3182 0.1364 0.0000 0.3182 0.2500 0.1364

bands 0.5682 0.3864 0.5682 0.0000 0.3864 0.5682 0.5682

cover type 0.7727 0.3636 0.2955 0.0000 0.3636 0.7727 0.2955

dermatology 0.3636 0.5227 0.6136 0.0000 0.5227 0.3636 0.6136

house votes 0.6364 0.4091 0.7273 0.0000 0.4091 0.6364 0.7273

ionosphere 0.8636 0.3636 0.9545 0.0000 0.3636 0.8636 0.9545

messidor 0.4545 0.2727 0.4318 0.0000 0.2727 0.4545 0.4318

cervical cancer 1.0000 0.9545 1.0000 0.1136 0.9545 1.0000 1.0000

thoracic surgery 0.0909 0.0909 0.0682 0.0000 0.0909 0.0909 0.0682

wine red 0.4091 0.2500 0.2727 0.0000 0.2500 0.4091 0.2727

wine white 0.6364 0.5227 0.5455 0.0000 0.5227 0.6364 0.5455
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Figure 19: Histograms of improvements for ensembles of näıve Bayes (NB) (left) and tree-augmented
näıve Bayes (TAN) (right) without missing values in the input. Each value contributing to his-
togram represents the improvement in accuracy of classification with respective pwk

compared to
baseline pavg. Please, note that the median is placed close to zero, so we get quite good improve-
ments when we observe a skewed histogram with tail on the right
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10.0 CONCLUSIONS AND POSSIBLE DIRECTIONS FOR FURTHER

WORK

10.1 CONCLUSIONS

Many practitioners applying DSSs ask how much they may trust the output of the system

that they are using. This is why the quantification of the competence of the DSS is crucial.

In this dissertation, I have reviewed and evaluated several measures of confidence of a

DSS based on Bayesian networks. I focused on three measures of confidence in the system

output that are specific to the use case of a Bayesian network model: (1) surprise index, (2)

the length of the error bar, and (3) the length of the variation interval. I investigated their

performance in indicating the erroneous output of DSS. Each of these three measures proved

to be useful and may be considered in applications of Bayesian network models.

Most widely known among these three measures of confidence in probabilistic models

used in practice is error bar. It captures the uncertainty about the posterior probability of

an event of our concern due to the imprecision of parameters in the model.

The surprise index as a confidence measure is considered to be intractable in the calcula-

tion. I proposed to use an approximation of it which is tractable. Surprise index represents

well the rarity and conflicting evidence of a specific case in applications of Bayesian network

model.

I proposed another measure based on variation intervals, which I have not found anywhere

else in the literature. In the presence of missing information, variation intervals capture how

the posterior probability of an event may change as we provide more information about the

case to the system.

I performed a series of experiments to demonstrate how these three measures work and
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how they relate to each other. The first observation that I made is that for many models

there is an exponential relationship between the posterior probability of an event and the

error bar over that probability value, although, this relationship does not explain the length

of the error bars to the full extent. I also observed such relationship for variation intervals as

well. Nevertheless, it was not that ubiquitous among all of the models that I have analyzed.

In general, low surprise index indicated rarity of the case at hand. Additionally, I observed

that for some models (especially for tree-augmented näıve Bayes classifiers) wide error bars

might indicate the rarity of the case at hand as well.

All of the measures carry a predictive information about the possible erroneous classi-

fication of a case at hand with Bayesian network models. The best measure to predict a

faulty assignment of a class label was the length of the error bar. It performed very well

across three model types and all datasets used in the experiment. The surprise index is also

a good predictor of erroneous classification, although it is worse than the length of the error

bar.

The length of the variation interval appeared to be the worst in predicting faulty assign-

ment of the class labels. I observed a good performance for näıve Bayes classifier. In the

experiments I performed, I was considering only cases with missing information at random

with models of a specific structure. In practice, information is not missing at random. Vari-

ation intervals seem to be insightful when calculated as the information about the case is

entered into the system piece by piece. Those intervals get tighter very quickly as we get

more certain about the posterior probability about the event of our concern. That is why

variation intervals are more useful in practical applications of Bayesian networks, where the

user sets up observations about the case to the model manually.

When considering a problem of inaccessibility of the data used for training several models

for predicting the same class variable, many methods for aggregation of models’ outputs

known from ensembles of classifiers are not suitable. This is why I considered confidence

measures as means of assessing the competence of each model. When applied to ensembles of

classifiers as weights of particular model’s outputs, the confidence measures help to increase

the accuracy of classification. The best results at that matter I obtained for tree-augmented

näıve Bayes in the presence of missing values. Both error bar length and surprise index
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proofed to complement each other in that task.

10.2 FUTURE WORK

In the future, I would like to check how the length of variation interval performs in predicting

erroneous output of a DSS when we provide information about the case to the system

gradually, in the order starting from the most to the least valuable information from the

point of view of class prediction. It would be a proper simulation of what a user of DSS

does with the information provided to the system about the case at hand. As presented in

examples Chapter 6, the variation intervals may get tight very quickly. The experiment that

I have presented in Chapter 8 should give better results for the measure based on variation

intervals with such setup.

To evaluate the performance of confidence measures in combining the outputs of the

models while applying them in ensembles of classifiers I used a simple product formula (i.e.,

I created the overall weight for each model based on a product of measures). When just one

of the measures gets a low value (we are not confident about the output of the system for the

specific model), the weight based on the product of confidence measures drops significantly.

I want to investigate other approaches to integrating confidence measures for a given model.

For example, we can develop the weight for the given model based on an average of the

measures. Particular measures would less influence it. Further, we may generalize that

approach and consider a linear combination of the confidence measures as weights. Another

problem arising in such situation is finding proper coefficients for the measures.

It would be beneficial to investigate why and when surprise index and error bar length

perform well in improving the accuracy of an ensemble of classifiers based on Bayesian

networks.
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APPENDIX

DETAILED RESULTS

The results are presented in tables, where each table represents a pair of the model type and

the measure. Each table presents the means and standard deviations (in the parenthesis) of

area under the ROC curve from seven runs for all the combinations of missing data rate and

corrupted data rate. The values are emphasized if at least six out of the seven runs gave

AUC over 0.5 as an output. Additionally, the values are underlined if at least six out of the

seven runs gave 0.55 as an output.

Tables with results are organized as presented in Table 8

Table 8: The organization of the tables presenting the results of the experiment

model type \ measure error bar length variation interval length surprise index

naive Bayes Table 9 Table 10 Table 11

tree-augmented naive Bayes Table 12 Table 13 Table 14

augmented naive Bayes Table 15 Table 16 Table 17
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Table 9: Area under the ROC for predicting the correctness of the naive Bayes classification using
length of the error bar

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.808 (0.002) 0.788 (0.005) 0.764 (0.004)

bands 0.729 (0.042) 0.724 (0.038) 0.710 (0.032)

cover type 0.634 (0.006) 0.607 (0.006) 0.568 (0.004)

dermatology 0.974 (0.021) 0.946 (0.038) 0.925 (0.022)

house votes 0.885 (0.026) 0.866 (0.037) 0.850 (0.030)

ionosphere 0.808 (0.031) 0.813 (0.028) 0.759 (0.057)

messidor 0.626 (0.019) 0.638 (0.016) 0.602 (0.024)

cervical cancer 0.830 (0.034) 0.799 (0.093) 0.861 (0.037)

thoracic surgery 0.762 (0.020) 0.740 (0.062) 0.675 (0.036)

wine red 0.616 (0.021) 0.620 (0.023) 0.577 (0.020)

wine white 0.559 (0.014) 0.557 (0.014) 0.538 (0.009)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.778 (0.004) 0.761 (0.006) 0.738 (0.005)

bands 0.705 (0.030) 0.699 (0.030) 0.652 (0.034)

cover type 0.637 (0.004) 0.627 (0.002) 0.597 (0.003)

dermatology 0.936 (0.026) 0.875 (0.029) 0.868 (0.035)

house votes 0.812 (0.041) 0.825 (0.047) 0.804 (0.065)

ionosphere 0.734 (0.052) 0.748 (0.042) 0.754 (0.039)

messidor 0.616 (0.021) 0.575 (0.030) 0.605 (0.038)

cervical cancer 0.834 (0.075) 0.869 (0.034) 0.909 (0.024)

thoracic surgery 0.689 (0.039) 0.664 (0.053) 0.638 (0.057)

wine red 0.608 (0.024) 0.594 (0.014) 0.565 (0.016)

wine white 0.561 (0.016) 0.559 (0.009) 0.537 (0.012)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.722 (0.004) 0.701 (0.006) 0.681 (0.004)

bands 0.640 (0.019) 0.623 (0.022) 0.634 (0.034)

cover type 0.593 (0.004) 0.583 (0.003) 0.563 (0.006)

dermatology 0.767 (0.027) 0.786 (0.040) 0.741 (0.036)

house votes 0.761 (0.071) 0.747 (0.046) 0.715 (0.039)

ionosphere 0.701 (0.038) 0.677 (0.043) 0.666 (0.049)

messidor 0.589 (0.035) 0.570 (0.028) 0.549 (0.015)

cervical cancer 0.823 (0.099) 0.838 (0.045) 0.832 (0.023)

thoracic surgery 0.605 (0.062) 0.640 (0.079) 0.640 (0.084)

wine red 0.591 (0.019) 0.562 (0.011) 0.544 (0.029)

wine white 0.547 (0.014) 0.542 (0.007) 0.529 (0.016)

84



Table 10: Area under the ROC for predicting the correctness of the naive Bayes classification using
length of the variation interval

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.501 (0.004) 0.758 (0.005) 0.774 (0.004)

bands 0.499 (0.049) 0.703 (0.048) 0.701 (0.031)

cover type 0.500 (0.006) 0.599 (0.005) 0.601 (0.008)

dermatology 0.673 (0.214) 0.942 (0.046) 0.907 (0.046)

house votes 0.505 (0.082) 0.836 (0.056) 0.862 (0.036)

ionosphere 0.516 (0.062) 0.814 (0.028) 0.751 (0.063)

messidor 0.517 (0.024) 0.624 (0.026) 0.603 (0.022)

cervical cancer 0.527 (0.089) 0.780 (0.086) 0.823 (0.051)

thoracic surgery 0.545 (0.057) 0.646 (0.052) 0.609 (0.019)

wine red 0.495 (0.028) 0.543 (0.020) 0.555 (0.013)

wine white 0.495 (0.019) 0.522 (0.015) 0.502 (0.012)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.500 (0.005) 0.732 (0.005) 0.741 (0.005)

bands 0.478 (0.020) 0.677 (0.033) 0.610 (0.027)

cover type 0.495 (0.004) 0.579 (0.008) 0.584 (0.004)

dermatology 0.496 (0.076) 0.880 (0.044) 0.854 (0.037)

house votes 0.563 (0.021) 0.820 (0.056) 0.805 (0.068)

ionosphere 0.535 (0.043) 0.728 (0.039) 0.744 (0.039)

messidor 0.488 (0.031) 0.570 (0.020) 0.591 (0.042)

cervical cancer 0.487 (0.105) 0.832 (0.038) 0.849 (0.038)

thoracic surgery 0.532 (0.041) 0.569 (0.061) 0.586 (0.064)

wine red 0.501 (0.012) 0.531 (0.017) 0.528 (0.016)

wine white 0.497 (0.011) 0.514 (0.015) 0.517 (0.014)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.501 (0.004) 0.679 (0.005) 0.685 (0.003)

bands 0.504 (0.028) 0.593 (0.028) 0.577 (0.045)

cover type 0.500 (0.004) 0.548 (0.006) 0.559 (0.004)

dermatology 0.510 (0.046) 0.766 (0.058) 0.712 (0.068)

house votes 0.470 (0.055) 0.727 (0.040) 0.714 (0.034)

ionosphere 0.494 (0.046) 0.660 (0.058) 0.632 (0.044)

messidor 0.509 (0.024) 0.554 (0.039) 0.556 (0.025)

cervical cancer 0.496 (0.095) 0.806 (0.046) 0.807 (0.023)

thoracic surgery 0.521 (0.060) 0.565 (0.074) 0.574 (0.035)

wine red 0.487 (0.023) 0.503 (0.027) 0.537 (0.023)

wine white 0.508 (0.014) 0.510 (0.014) 0.520 (0.014)
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Table 11: Area under the ROC for predicting the correctness of the naive Bayes classification using
the surprise index

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.491 (0.002) 0.484 (0.006) 0.481 (0.003)

bands 0.456 (0.026) 0.423 (0.027) 0.468 (0.034)

cover type 0.507 (0.006) 0.497 (0.003) 0.490 (0.006)

dermatology 0.395 (0.262) 0.330 (0.089) 0.359 (0.089)

house votes 0.808 (0.044) 0.782 (0.049) 0.754 (0.047)

ionosphere 0.583 (0.047) 0.558 (0.039) 0.541 (0.065)

messidor 0.438 (0.029) 0.439 (0.021) 0.424 (0.017)

cervical cancer 0.754 (0.040) 0.732 (0.046) 0.705 (0.028)

thoracic surgery 0.681 (0.067) 0.617 (0.071) 0.613 (0.069)

wine red 0.554 (0.024) 0.552 (0.018) 0.537 (0.030)

wine white 0.540 (0.006) 0.528 (0.014) 0.520 (0.012)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.494 (0.008) 0.490 (0.005) 0.485 (0.005)

bands 0.488 (0.036) 0.490 (0.043) 0.480 (0.038)

cover type 0.538 (0.006) 0.517 (0.003) 0.510 (0.007)

dermatology 0.572 (0.107) 0.561 (0.093) 0.494 (0.102)

house votes 0.753 (0.059) 0.736 (0.054) 0.679 (0.112)

ionosphere 0.530 (0.052) 0.570 (0.045) 0.535 (0.035)

messidor 0.439 (0.017) 0.428 (0.017) 0.457 (0.015)

cervical cancer 0.694 (0.044) 0.698 (0.023) 0.696 (0.048)

thoracic surgery 0.603 (0.048) 0.588 (0.063) 0.573 (0.036)

wine red 0.561 (0.020) 0.549 (0.026) 0.533 (0.025)

wine white 0.531 (0.016) 0.528 (0.010) 0.517 (0.019)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.502 (0.004) 0.498 (0.006) 0.494 (0.005)

bands 0.504 (0.031) 0.506 (0.046) 0.517 (0.026)

cover type 0.538 (0.005) 0.531 (0.007) 0.520 (0.005)

dermatology 0.587 (0.042) 0.583 (0.058) 0.540 (0.041)

house votes 0.673 (0.054) 0.672 (0.034) 0.657 (0.038)

ionosphere 0.587 (0.048) 0.593 (0.030) 0.571 (0.017)

messidor 0.475 (0.024) 0.479 (0.018) 0.458 (0.033)

cervical cancer 0.603 (0.084) 0.654 (0.044) 0.596 (0.070)

thoracic surgery 0.606 (0.048) 0.533 (0.058) 0.576 (0.069)

wine red 0.553 (0.013) 0.522 (0.018) 0.529 (0.024)

wine white 0.524 (0.010) 0.513 (0.010) 0.514 (0.008)
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Table 12: Area under the ROC for predicting the correctness of the tree-augmented naive Bayes
classification using length of the error bar

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.779 (0.003) 0.755 (0.005) 0.719 (0.004)

bands 0.743 (0.022) 0.726 (0.039) 0.718 (0.044)

cover type 0.629 (0.005) 0.604 (0.007) 0.569 (0.008)

dermatology 0.953 (0.032) 0.954 (0.016) 0.920 (0.027)

house votes 0.924 (0.022) 0.901 (0.035) 0.904 (0.029)

ionosphere 0.860 (0.044) 0.824 (0.032) 0.802 (0.039)

messidor 0.585 (0.031) 0.603 (0.016) 0.569 (0.028)

cervical cancer 0.920 (0.031) 0.944 (0.025) 0.929 (0.025)

thoracic surgery 0.663 (0.049) 0.691 (0.082) 0.660 (0.042)

wine red 0.607 (0.024) 0.594 (0.023) 0.552 (0.017)

wine white 0.538 (0.007) 0.518 (0.014) 0.495 (0.017)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.722 (0.003) 0.708 (0.007) 0.682 (0.003)

bands 0.654 (0.049) 0.678 (0.051) 0.677 (0.043)

cover type 0.637 (0.004) 0.627 (0.002) 0.597 (0.003)

dermatology 0.903 (0.041) 0.864 (0.016) 0.836 (0.026)

house votes 0.874 (0.026) 0.829 (0.037) 0.812 (0.041)

ionosphere 0.755 (0.026) 0.816 (0.020) 0.735 (0.047)

messidor 0.558 (0.039) 0.559 (0.032) 0.561 (0.018)

cervical cancer 0.628 (0.045) 0.645 (0.070) 0.711 (0.037)

thoracic surgery 0.696 (0.049) 0.653 (0.053) 0.701 (0.045)

wine red 0.619 (0.021) 0.586 (0.020) 0.560 (0.019)

wine white 0.562 (0.013) 0.538 (0.007) 0.509 (0.007)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.665 (0.010) 0.656 (0.007) 0.640 (0.004)

bands 0.612 (0.041) 0.560 (0.029) 0.575 (0.034)

cover type 0.622 (0.006) 0.623 (0.007) 0.606 (0.007)

dermatology 0.768 (0.050) 0.749 (0.047) 0.747 (0.028)

house votes 0.751 (0.025) 0.763 (0.062) 0.683 (0.043)

ionosphere 0.628 (0.070) 0.573 (0.030) 0.613 (0.054)

messidor 0.519 (0.034) 0.517 (0.043) 0.527 (0.023)

cervical cancer 0.409 (0.038) 0.509 (0.040) 0.559 (0.038)

thoracic surgery 0.622 (0.074) 0.678 (0.058) 0.670 (0.069)

wine red 0.592 (0.021) 0.597 (0.014) 0.557 (0.009)

wine white 0.582 (0.016) 0.547 (0.016) 0.537 (0.014)

87



Table 13: Area under the ROC for predicting the correctness of the tree-augmented naive Bayes
classification using length of the variation interval

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.497 (0.005) 0.499 (0.004) 0.502 (0.002)

bands 0.537 (0.052) 0.492 (0.027) 0.511 (0.052)

cover type 0.496 (0.005) 0.498 (0.009) 0.502 (0.005)

dermatology 0.532 (0.051) 0.435 (0.061) 0.462 (0.090)

house votes 0.499 (0.073) 0.768 (0.049) 0.773 (0.062)

ionosphere 0.567 (0.093) 0.504 (0.098) 0.502 (0.045)

messidor 0.513 (0.041) 0.509 (0.012) 0.493 (0.026)

cervical cancer 0.485 (0.087) 0.708 (0.114) 0.797 (0.069)

thoracic surgery 0.505 (0.071) 0.505 (0.059) 0.519 (0.042)

wine red 0.510 (0.023) 0.504 (0.031) 0.508 (0.030)

wine white 0.502 (0.018) 0.509 (0.005) 0.499 (0.016)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.500 (0.005) 0.501 (0.006) 0.498 (0.004)

bands 0.489 (0.053) 0.502 (0.054) 0.494 (0.069)

cover type 0.497 (0.009) 0.502 (0.005) 0.497 (0.004)

dermatology 0.506 (0.072) 0.523 (0.070) 0.494 (0.048)

house votes 0.534 (0.067) 0.637 (0.038) 0.668 (0.072)

ionosphere 0.529 (0.046) 0.474 (0.058) 0.507 (0.035)

messidor 0.490 (0.033) 0.496 (0.035) 0.496 (0.025)

cervical cancer 0.508 (0.050) 0.681 (0.043) 0.638 (0.033)

thoracic surgery 0.477 (0.044) 0.560 (0.059) 0.533 (0.073)

wine red 0.501 (0.027) 0.496 (0.021) 0.490 (0.029)

wine white 0.497 (0.012) 0.496 (0.011) 0.511 (0.008)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.504 (0.005) 0.499 (0.004) 0.500 (0.004)

bands 0.523 (0.048) 0.490 (0.051) 0.499 (0.052)

cover type 0.500 (0.007) 0.502 (0.005) 0.499 (0.006)

dermatology 0.510 (0.063) 0.500 (0.039) 0.483 (0.055)

house votes 0.503 (0.042) 0.585 (0.045) 0.607 (0.068)

ionosphere 0.520 (0.046) 0.484 (0.061) 0.458 (0.041)

messidor 0.522 (0.025) 0.514 (0.023) 0.510 (0.034)

cervical cancer 0.496 (0.080) 0.641 (0.062) 0.665 (0.048)

thoracic surgery 0.475 (0.046) 0.463 (0.069) 0.518 (0.070)

wine red 0.502 (0.019) 0.507 (0.031) 0.491 (0.022)

wine white 0.499 (0.009) 0.513 (0.023) 0.502 (0.011)
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Table 14: Area under the ROC for predicting the correctness of the tree-augmented naive Bayes
classification using the surprise index

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.494 (0.005) 0.491 (0.006) 0.492 (0.004)

bands 0.568 (0.056) 0.514 (0.057) 0.516 (0.063)

cover type 0.490 (0.004) 0.489 (0.005) 0.482 (0.010)

dermatology 0.580 (0.144) 0.479 (0.140) 0.571 (0.099)

house votes 0.751 (0.027) 0.744 (0.073) 0.740 (0.044)

ionosphere 0.415 (0.039) 0.473 (0.039) 0.472 (0.038)

messidor 0.468 (0.026) 0.471 (0.023) 0.448 (0.026)

cervical cancer 0.481 (0.082) 0.702 (0.091) 0.682 (0.037)

thoracic surgery 0.670 (0.035) 0.636 (0.040) 0.614 (0.065)

wine red 0.496 (0.013) 0.501 (0.027) 0.505 (0.015)

wine white 0.501 (0.011) 0.517 (0.020) 0.495 (0.016)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.533 (0.011) 0.523 (0.010) 0.515 (0.010)

bands 0.521 (0.020) 0.552 (0.071) 0.524 (0.031)

cover type 0.595 (0.003) 0.577 (0.003) 0.552 (0.006)

dermatology 0.605 (0.085) 0.607 (0.056) 0.482 (0.061)

house votes 0.716 (0.035) 0.694 (0.066) 0.721 (0.049)

ionosphere 0.550 (0.037) 0.536 (0.076) 0.529 (0.051)

messidor 0.510 (0.037) 0.509 (0.042) 0.507 (0.029)

cervical cancer 0.854 (0.062) 0.861 (0.030) 0.843 (0.021)

thoracic surgery 0.689 (0.063) 0.615 (0.053) 0.647 (0.069)

wine red 0.549 (0.014) 0.536 (0.013) 0.525 (0.023)

wine white 0.536 (0.009) 0.537 (0.009) 0.525 (0.010)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.566 (0.012) 0.544 (0.011) 0.526 (0.007)

bands 0.559 (0.034) 0.532 (0.048) 0.502 (0.036)

cover type 0.614 (0.005) 0.602 (0.007) 0.582 (0.004)

dermatology 0.581 (0.041) 0.596 (0.049) 0.545 (0.062)

house votes 0.624 (0.071) 0.656 (0.046) 0.591 (0.065)

ionosphere 0.580 (0.058) 0.572 (0.062) 0.550 (0.060)

messidor 0.507 (0.022) 0.496 (0.018) 0.521 (0.023)

cervical cancer 0.894 (0.044) 0.901 (0.021) 0.858 (0.028)

thoracic surgery 0.609 (0.046) 0.633 (0.037) 0.592 (0.045)

wine red 0.568 (0.021) 0.561 (0.016) 0.528 (0.019)

wine white 0.571 (0.013) 0.530 (0.016) 0.527 (0.011)
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Table 15: Area under the ROC for predicting the correctness of the augmented naive Bayes classi-
fication using length of the error bar

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.790 (0.009) 0.757 (0.017) 0.721 (0.007)

bands 0.723 (0.048) 0.718 (0.034) 0.698 (0.027)

cover type 0.615 (0.004) 0.595 (0.006) 0.567 (0.001)

dermatology 0.969 (0.022) 0.943 (0.041) 0.904 (0.049)

house votes 0.903 (0.026) 0.882 (0.049) 0.841 (0.061)

ionosphere 0.864 (0.054) 0.812 (0.075) 0.809 (0.033)

messidor 0.593 (0.043) 0.582 (0.033) 0.558 (0.033)

cervical cancer 0.931 (0.037) 0.962 (0.014) 0.902 (0.064)

thoracic surgery 0.676 (0.061) 0.661 (0.045) 0.667 (0.048)

wine red 0.599 (0.015) 0.576 (0.014) 0.552 (0.018)

wine white 0.538 (0.009) 0.524 (0.009) 0.506 (0.013)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.737 (0.014) 0.720 (0.009) 0.693 (0.009)

bands 0.691 (0.034) 0.653 (0.031) 0.640 (0.051)

cover type 0.620 (0.015) 0.609 (0.008) 0.600 (0.004)

dermatology 0.888 (0.040) 0.865 (0.037) 0.846 (0.045)

house votes 0.863 (0.026) 0.823 (0.047) 0.777 (0.040)

ionosphere 0.789 (0.042) 0.731 (0.051) 0.745 (0.041)

messidor 0.549 (0.013) 0.546 (0.030) 0.559 (0.015)

cervical cancer 0.839 (0.038) 0.841 (0.051) 0.816 (0.068)

thoracic surgery 0.682 (0.054) 0.655 (0.068) 0.638 (0.032)

wine red 0.621 (0.023) 0.596 (0.018) 0.576 (0.027)

wine white 0.560 (0.009) 0.542 (0.014) 0.520 (0.008)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.671 (0.005) 0.655 (0.005) 0.639 (0.008)

bands 0.584 (0.026) 0.545 (0.043) 0.579 (0.036)

cover type 0.611 (0.012) 0.603 (0.008) 0.597 (0.004)

dermatology 0.740 (0.043) 0.737 (0.062) 0.750 (0.043)

house votes 0.746 (0.029) 0.696 (0.050) 0.707 (0.032)

ionosphere 0.577 (0.035) 0.586 (0.056) 0.629 (0.059)

messidor 0.529 (0.021) 0.544 (0.027) 0.533 (0.038)

cervical cancer 0.606 (0.098) 0.691 (0.063) 0.754 (0.049)

thoracic surgery 0.635 (0.033) 0.604 (0.057) 0.632 (0.061)

wine red 0.613 (0.029) 0.603 (0.026) 0.562 (0.026)

wine white 0.564 (0.017) 0.551 (0.011) 0.537 (0.017)
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Table 16: Area under the ROC for predicting the correctness of the augmented naive Bayes classi-
fication using length of the variation interval

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.501 (0.006) 0.498 (0.005) 0.500 (0.006)

bands 0.503 (0.079) 0.490 (0.046) 0.498 (0.032)

cover type 0.497 (0.006) 0.498 (0.004) 0.503 (0.002)

dermatology 0.596 (0.224) 0.467 (0.168) 0.517 (0.127)

house votes 0.511 (0.077) 0.613 (0.163) 0.617 (0.089)

ionosphere 0.504 (0.112) 0.501 (0.061) 0.440 (0.072)

messidor 0.509 (0.031) 0.496 (0.022) 0.525 (0.027)

cervical cancer 0.487 (0.079) 0.603 (0.146) 0.710 (0.117)

thoracic surgery 0.481 (0.055) 0.517 (0.076) 0.511 (0.047)

wine red 0.510 (0.011) 0.505 (0.022) 0.502 (0.021)

wine white 0.504 (0.018) 0.497 (0.015) 0.509 (0.015)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.502 (0.005) 0.500 (0.004) 0.501 (0.006)

bands 0.511 (0.052) 0.494 (0.055) 0.497 (0.036)

cover type 0.499 (0.005) 0.500 (0.003) 0.497 (0.002)

dermatology 0.521 (0.045) 0.513 (0.053) 0.508 (0.077)

house votes 0.501 (0.081) 0.557 (0.124) 0.633 (0.124)

ionosphere 0.479 (0.066) 0.519 (0.036) 0.465 (0.066)

messidor 0.506 (0.031) 0.506 (0.029) 0.502 (0.018)

cervical cancer 0.517 (0.018) 0.583 (0.046) 0.577 (0.034)

thoracic surgery 0.505 (0.035) 0.459 (0.071) 0.485 (0.045)

wine red 0.514 (0.013) 0.498 (0.015) 0.498 (0.028)

wine white 0.492 (0.015) 0.506 (0.019) 0.505 (0.013)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.499 (0.004) 0.500 (0.006) 0.498 (0.004)

bands 0.519 (0.018) 0.525 (0.034) 0.517 (0.037)

cover type 0.501 (0.007) 0.500 (0.005) 0.502 (0.003)

dermatology 0.542 (0.031) 0.513 (0.055) 0.495 (0.031)

house votes 0.477 (0.069) 0.559 (0.044) 0.581 (0.052)

ionosphere 0.531 (0.051) 0.497 (0.043) 0.515 (0.070)

messidor 0.505 (0.022) 0.498 (0.012) 0.504 (0.037)

cervical cancer 0.512 (0.021) 0.580 (0.043) 0.638 (0.055)

thoracic surgery 0.489 (0.056) 0.541 (0.051) 0.509 (0.076)

wine red 0.499 (0.015) 0.503 (0.024) 0.499 (0.021)

wine white 0.498 (0.010) 0.511 (0.012) 0.503 (0.014)
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Table 17: Area under the ROC for predicting the correctness of the augmented naive Bayes classi-
fication using the surprise index

Missing rate 0

Corrupted rate 0 0.2 0.4

adult merged 0.495 (0.016) 0.489 (0.008) 0.483 (0.007)

bands 0.518 (0.039) 0.522 (0.050) 0.494 (0.053)

cover type 0.495 (0.006) 0.499 (0.006) 0.492 (0.005)

dermatology 0.694 (0.226) 0.480 (0.185) 0.469 (0.059)

house votes 0.770 (0.060) 0.756 (0.094) 0.690 (0.072)

ionosphere 0.439 (0.087) 0.468 (0.053) 0.521 (0.082)

messidor 0.473 (0.031) 0.466 (0.035) 0.445 (0.023)

cervical cancer 0.498 (0.095) 0.564 (0.103) 0.691 (0.119)

thoracic surgery 0.614 (0.067) 0.633 (0.051) 0.601 (0.049)

wine red 0.485 (0.014) 0.507 (0.017) 0.503 (0.021)

wine white 0.504 (0.008) 0.507 (0.014) 0.502 (0.013)

Missing rate 0.2

Corrupted rate 0 0.2 0.4

adult merged 0.518 (0.018) 0.507 (0.012) 0.508 (0.007)

bands 0.515 (0.057) 0.511 (0.025) 0.514 (0.040)

cover type 0.602 (0.016) 0.574 (0.013) 0.546 (0.014)

dermatology 0.592 (0.092) 0.555 (0.042) 0.611 (0.031)

house votes 0.727 (0.046) 0.723 (0.022) 0.677 (0.053)

ionosphere 0.532 (0.031) 0.544 (0.088) 0.572 (0.047)

messidor 0.496 (0.016) 0.511 (0.025) 0.502 (0.029)

cervical cancer 0.755 (0.064) 0.796 (0.045) 0.814 (0.029)

thoracic surgery 0.654 (0.059) 0.642 (0.030) 0.593 (0.050)

wine red 0.555 (0.026) 0.541 (0.013) 0.545 (0.017)

wine white 0.541 (0.011) 0.534 (0.016) 0.520 (0.011)

Missing rate 0.5

Corrupted rate 0 0.2 0.4

adult merged 0.544 (0.021) 0.527 (0.017) 0.512 (0.011)

bands 0.525 (0.040) 0.516 (0.050) 0.529 (0.034)

cover type 0.632 (0.008) 0.593 (0.013) 0.578 (0.018)

dermatology 0.621 (0.041) 0.562 (0.062) 0.572 (0.050)

house votes 0.653 (0.038) 0.636 (0.017) 0.625 (0.037)

ionosphere 0.553 (0.025) 0.543 (0.052) 0.582 (0.034)

messidor 0.534 (0.027) 0.511 (0.022) 0.505 (0.018)

cervical cancer 0.860 (0.043) 0.869 (0.031) 0.836 (0.024)

thoracic surgery 0.585 (0.031) 0.573 (0.049) 0.631 (0.026)

wine red 0.573 (0.023) 0.563 (0.036) 0.547 (0.025)

wine white 0.557 (0.018) 0.545 (0.016) 0.526 (0.009)
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Krüger, M. and Hirschhäuser, D. (2009). Source conflicts in Bayesian identification. In GI

Jahrestagung, pages 2485–2490.

Laskey, K. B. (1991). Conflict and surprise: Heuristics for model revision. In Proceedings of

the Seventh conference on Uncertainty in Artificial Intelligence, pages 197–204. Morgan

Kaufmann Publishers Inc.

Laskey, K. B. (1995). Sensitivity analysis for probability assessments in Bayesian networks.

IEEE Transactions on Systems, Man, and Cybernetics, 25(6):901–909.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities

on graphical structures and their application to expert systems. Journal of the Royal

Statistical Society. Series B (Methodological), pages 157–224.

Marcot, B. G. (2012). Metrics for evaluating performance and uncertainty of Bayesian

network models. Ecological Modelling, 230:50–62.

Morgan, M. G., Henrion, M., and Small, M. (1992). Uncertainty: a guide to dealing with

uncertainty in quantitative risk and policy analysis. Cambridge University Press.

Murphy, A. H. and Winkler, R. L. (1977). Reliability of subjective probability forecasts of

precipitation and temperature. Applied Statistics, pages 41–47.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M. (2015). Obtaining well calibrated proba-

bilities using Bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intel-

ligence.

Niculescu-Mizil, A. and Caruana, R. (2005). Predicting good probabilities with supervised

learning. In Proceedings of the 22nd International Conference on Machine Learning,

pages 625–632. ACM.
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