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Application of Bayesian networks to risk assessment

Jidapa Kraisangka, PhD

University of Pittsburgh, 2019

Various approaches are used to estimate and predict risks. One of the most prevalent

methods for risk assessment is the Cox’s proportional hazard (CPH) model (Cox, 1972), a

popular statistical technique used in risk estimation and survival analysis. The weaknesses

of this approach are: (1) the underlying model can be only learned from data and is not

readily amenable to refinement based on expert knowledge (2) the CPH model rests on

several assumptions simplifying the interactions between the risk factors and the predicted

outcome. While these assumptions are reasonable and the CPH model has been successfully

used for decades, it is interesting to question them with a possible benefit in terms of model

accuracy.

This dissertation focuses on theoretical and practical aspects of risk assessment based

on Bayesian networks (Pearl, 1988) as an alternative approach to the CPH model. The

dissertation makes three contributions: (1) I propose a Bayesian network interpretation of

the CPH (BN-Cox) model, a process of using existing CPH models as data sources for

parameter estimation in Bayesian networks when original data are not available, and discuss

methods for modeling such model computationally tractable (2) I empirically demonstrate in

both context-sensitivity of the strength of influences of individual risk factors on the outcome

variables in both Bayesian network model and the CPH model, and finally, (3) I propose and

evaluate methods for enhancing the quality of Bayesian network parameters learned from

small data sets, by means of priors.
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1.0 Introduction

Risk is often referred to the probability of occurrence for an undesirable outcome, such

as the probability of patients developing a disease, the probability of patients dying from a

disease, or the probability of patients being hospitalized in the next six months, etc. The

process of describing and quantifying risks is called risk assessment (Covello and Merkhoher,

2013), and it often involves prediction of an outcome based on a set of risk factors.

Various approaches are used to estimate and predict risks including statistical methods,

such as., survival analysis. One of the most prevalent methods for risk assessment is the

Cox’s proportional hazard (CPH) model (Cox, 1972), a popular statistical technique used in

risk estimation and survival analysis. While CPH models are widely used, their weaknesses

are: (1) the underlying model can be only learned from data and is not readily amenable

to refinement based on expert knowledge (2) the CPH model rests on several assumptions

simplifying the interactions between the risk factors and the predicted outcome. While these

assumptions are reasonable and the CPH model has been successfully used for decades, it is

interesting to question them with a possible benefit in terms of model accuracy.

In the scope of this dissertation, I propose an alternative approach to risk assessment

based on Bayesian network (BN) (Pearl, 1988) models. Bayesian networks are acyclic di-

rected graphs in which vertices represent random variables and directed edges between pairs

of vertices capture direct influences between the variables represented by the vertices. The

network captures the joint probability distribution among a set of variables both intuitively

and efficiently, modeling explicitly independencies among them. A representation of the joint

probability distribution allows for calculation of probability distributions that are conditional

on a subset of variables. This typically amounts to calculating the probability distributions

over variables of interest given observations of other variables (e.g., probability of one-year

survival given a set of observed risk factors). There is also a well developed theory expressing

the relationship between causality and probability and often the structure of a Bayesian net-

work is given a causal interpretation. This is utmost convenient in terms of user interfaces,

notably knowledge acquisition and explanation of results.
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The structure of the dissertation is as follows. Chapter 2 introduces terms and concepts

that are necessary for the remaining chapters. Chapter 3 focuses on my first attempt to risk

assessment with Bayesian networks: a Bayesian network interpretation of the CPH (BN-Cox)

model (Kraisangka and Druzdzel, 2014, 2018). I describe the use the CPH models as data

sources in the process of parameter estimation for Bayesian networks. I successfully replaced

the use of the CPH model in the REVEAL risk score calculator (Benza et al., 2010) with

an BN-Cox-based risk score calculator (Kraisangka et al., 2016; Kraisangka and Druzdzel,

2018). The BN-based calculator reproduces the results of the REVEAL risk score calculator

exactly. However, one of the challenges to applying the BN-Cox model is an exponential

growth of the conditional probability tables (CPT) corresponding to the survival variables, as

the number of risk factors increases (Kraisangka and Druzdzel, 2016, 2018). I evaluated two

approaches to mitigate this problem: (1) decomposition of the underlying Bayesian network

known as parent divorcing, and (2) simplifying the network structure by removing least

influential risk factors. The BN-Cox model seems to be not decomposable and approximating

of decomposition leads to high loss of accuracy. Hence, simplifying the network structure

by removing the least influential risk factors by any statistical variable selection methods is

recommenced when we have a data set to refit the simplified model. However, when data are

not available, we can simplify the model by removing least influential risk factors based on

both the value of β coefficients and the statistical significance. When removing risk factors,

we suggest marginalization, as it leads to smallest error on the average.

In Chapter 4, I demonstrate that the assumptions of context invariance of hazard ratios

in the CPH model is unrealistic. Bayesian networks model correctly varying magnitude of

influence of risk factors as other factors are observed. I empirically compare the influence of

risk factors in two models.

Chapter 5 discusses methods for enhancing the quality of Bayesian network parameters,

as learned from small data sets, by means of different priors: priors from experts knowledge

and priors from simplified probabilistic models, such as Tree-Augmented Näıve Bayes. I

discuss and provide empirical evaluation of the proposed methods, which are useful in prac-

tice when we need to improvement model accuracy for Bayesian network in risk assessment.

Finally, Chapter 6 summarizes the dissertation, limitations, and directions of future work.
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2.0 Background

This chapter introduces concepts that are necessary for my dissertation: (1) survival

analysis techniques (Section 2.1) including Kaplan-Meier estimates and Cox’s proportional

hazard model and (2) Bayesian networks (Section 2.2).

2.1 Survival analysis

Survival analysis is a set of statistical methods that aim at modeling the relationship

between a set of predictor variables and an outcome variable and, in particular, prediction

of the time when an event occurs (Allison, 2010). For example, researchers may focus on

time-to-death of patients with a specific disease, failure time of machines, or time to rearrest

of prisoners who have been released. Survival analysis can be used to estimate time-to-event

for a group, to compare risks among study groups, or to study the relationship between

variables to the predicted events.

The probability of an individual surviving beyond a given time t, i.e., the survivor func-

tion, is defined as

S (t) = Pr (T > t) . (2.1)

T is a variable denoting the time of occurrence of an event of interest. The survival prob-

ability at the beginning, i.e., t0, may be equal to 1 or to some baseline survival probability,

which will drop down to zero over time. While survivor function represents the probability

of survival, the hazard function represents the risk of event occurrence at time t. The hazard

is a measure of risk at a small time interval 4t which can be considered as a rate (Allison,

2010). The hazard function is given by

λ (t) = lim
4t→0

Pr (t ≤ T < t+4t | T ≥ t)

4t
, (2.2)

3



where T is also a time variable. The relationship between the hazard function and the

survivor function is described as

λ (t) = − d

dt
logS(t) (2.3)

or as

S (t) = exp

∫ t

0

λ (u) du . (2.4)

Hence, we can estimate the survival probability from the hazard function, and vice versa.

Several techniques has been used to estimate the hazard function or the survivor function

which are broadly classified into parametric regression model, non-parametric model, or semi-

parametric models. Parametric regression model assume certain distribution underlying

the hazard function. The distributions can follow normal, uniform, exponential, Weibull,

or log-normal distributions. On the other hand, a non-parametric model does not have

any assumptions for distribution, however, the model, such as Kaplan-Meier estimates, is

widely used to depict the structure of survival data. Semi-parametric models restricts partial

assumptions about the models, for example, Cox’s proportional hazard model assume the

ratio between the baseline hazard and the hazard with a specific risk factor is constant over

time.

The focus of this dissertation is to investigate the application of Bayesian network in

risk assessment against traditional survival analysis techniques which is Cox’s proportional

hazard model. However, I also use Kaplan-Meier estimates to depict a survival data in the

experiment. Both survival analysis methods are widely used particularly in medicine which

I will provide more details in the following sections.

2.1.1 Cox’s proportional hazard model

The Cox’s proportional hazard model (Cox, 1972) is a set of regression methods used

in the assessment of survival based on its risk factors or explanatory variables. The risk

factors can be time-independent (e.g., race or sex) or time-dependent, which can change

throughout the study (e.g., blood pressure at different points of study time). In the scope of

this dissertation, I focus only on the CPH model with time-independent risk factors. This

4



model allows researchers to evaluate and control factors that affects the time to event (Klein

and Moeschberger, 2003).

As defined originally by Cox (1972), the hazard function is expressed as

λ (t) = λ0 (t) exp(β′ ·X) . (2.5)

The function is composed of two main parts: the baseline hazard function, λ0 (t), and

the set of risk factors, β′ ·X = β1X1 + β2X2 + ... + βnXn . The baseline hazard function

determines the risks at an underlying level of explanatory variables, i.e., when all risk factors

are absent. According to Cox (1972), this λ0 (t) can be unspecified or follow any distribution,

which makes the CPH model semi-parametric. The βs are coefficients corresponding to the

risk factors, Xi. The coefficient represents the effect of the risk factor in the model.

CPH models can handle both continuous and discrete variables (Allison, 2010). The

CPH model treats these risk factors as numerical variables, so that the model can estimate

the parameter coefficients, β. Researchers can treat risk factors as they are defined in the

data set or do some data preprocessing. For example, in case of categorical variables with

n categories, researchers need to create a set of dummy binary variables capturing n − 1

categories, e.g., we can code a variable color having values as red, green, blue, as two binary

variables (e.g., color-red and color-green). Some continuous variables, e.g., number of days in

a hospital, can also be discretized. Once all risk factors have been established, β parameters

are estimated by means of the Maximum Partial Likelihood technique.

Application of the CPH model relies on the assumption that the hazard ratio of two

observations is constant over time (Cox, 1972). The hazard ratio is defined as γ:

γ =
λ2 (t)

λ1 (t)
=

exp (β′X2)

exp (β′X1)
. (2.6)

In the most situation, hazard ratio is used to define the effect of an interested group to

the baseline group. For example, in the study of patients with pulmonary arterial hyperten-

sion (PAH) (Benza et al., 2010), the hazard ratio of a group of PAH patients having renal

insufficiency to a group of patients without renal insufficiency (baseline group) is reported

as 1.90. This means that those patients with renal insufficiency have a 90% higher risk of

5



dying from PAH disease than patients without renal insufficiency. The ratio represents the

relative risk of these two observations with different state of risk factors at time t.

Once we know the hazard ratio, we can estimate their survival probability at time t of

the group of interest relative to baseline group from

S (t) = S0 (t)γ = S0 (t)exp (β′·X) . (2.7)

S0 (t) is the baseline survival probability estimated from data, i.e., when all risk factor

are absent or at their baseline value (X = 0) at any time t, while γ is the hazard ratio of the

group of interest to the baseline group.

In medicines, CPH models is commonly used for evaluating treatment effect and predict-

ing patient prognosis . For example, the Seattle Heart Failure Model (Levy et al., 2006) uses

a CPH model to predict 1-, 2-, and 3-year survival of heart failure patients. The Registry

to Evaluate Early and Long-Term Pulmonary Arterial Hypertension (PAH) Disease Man-

agement (REVEAL) (Benza et al., 2010) uses also a CPH model at the foundation of to its

Risk Score Calculator, that determines the probability of a PAH patient survival.

Example 1. A classical example application of the CPH model is an experimental study

of recidivism of prisoners by Rossi et al. (1980). The data set was collected in the course

of an experimental study of 432 male prisoners, who were under one year observation after

being released from prison. The event of interest in this analysis is arrest, i.e., whether the

prisoner is re-arrested during the period of study or not. The Recidivism data set is quite

likely the most widely used example data set for survival analysis (Allison, 2010; Fox, 2002),

especially for the CPH model.

The original data set consists of 62 variables (Rossi et al., 1980), including:

• week: the week when a prisoner was rearrested after having been released from prison.

• arrest: the rearrest status of a prisoner (rearrested = 1, never-rearrested = 0).

• fin: financial aid status after being released (no-financial-ai or has-financial-aid).

• age: the age in year at the time of being released.

• race: prisoner’s race (others or black).

• wexp: status of having prior full-time working experience (yes or no).

6



Table 1: A list of risk factors with their parameters estimated for the CPH model

Variables β exp(β) lower .95 upper .95 p-value

fin -0.3899 0.6771 0.4664 0.9829 0.0403

race 0.2591 1.2958 0.7110 2.3617 0.3974

wexp 0.5249 0.5916 0.4038 0.8667 0.0071

prio 0.3330 1.3951 0.8462 2.3001 0.1918

• mar: marital status at the time of being released (single or married).

• paro: status of being released on parole (yes or no).

• prio: number of prior convictions.

• educ: level of education.

• emp1− emp52: a list of variables indicating employment status of each week.

For the sake of simplicity, I selected only four risk factors (highlighted in bold) from the

seven risk factors in the original Recidivism data set and preprocessed them into binary vari-

ables. The selected variables included the financial aid status fin (no=0, yes=1), prisoner’s

race (other=0, black=1), having prior full-time work experience wexp (yes=0, no=1), and

number of prior convictions prio (five and below=0, more than five=1). The time variable in

this data set is week, which is the week when a prisoner was rearrested during the observation

period of one year (52 weeks). The survival variable is arrest indicating the rearrest status

of a prisoner (rearrested=1, never-rearrested=0). I used R with the package survival and

package survminer to create a CPH model and visualize survival curves. The function coxph

was used to model the survival variable arrest with the selected risk factors based on each

week. Table 1 shows the parameters of the constructed CPH model.

The β of each variable represents the coefficient in the model while the exp(β) is the

multiplicative effect of the hazard (Fox, 2002), i.e., hazard ratio. The lower and upper

bounds of the 95% confidence interval are in the third and fourth columns respectively. The

fifth column indicates statistical significance of the β coefficient of the risk factor. From

7



the model estimation, fin and wexp are significant (p < 0.05), while race and prio are not

(p > 0.05). However, the overall test of the model are significant including likelihood ratio

test (p = 0.00313), the Wald test (p = 0.002736), and the logrank test (p = 0.002313). Based

on these parameters, the survivor function can be written as:

S (t) = S0(t)
exp (−0.3899fin+0.2591race+0.5249wexp+0.3330prio) , (2.8)

where S0(t) is a vector of baseline probabilities estimated from the data set from the begin-

ning of the observation period until the end of the 52nd week. The baseline survival prob-

ability, S0(t), is the probability measured when all risk factors are absent (fin = 0, race =

0, wexp = 0, and prio = 0) at time t. For example, the baseline survival probabilities for the

first five weeks are S0(1), S0(2), S0(3), S0(4), S0(5) = 0.9984, 0.9968, 0.9951, 0.9935, 0.9919.

Examples of the survival curves along with their 95% confidence interval estimated from

the CPH model are shown in Figure 1. The grey line represents the baseline survival curve

which is a vector of baseline survival probabilities, S0(t), measured when all risk factors

are absent (fin = 0, race = 0, wexp = 0, andprio = 0) at time t. When other cases than

the baseline are analyzed, the survival probability can be estimated based on this baseline

and respective hazard ratios. For example, the survival probability of a prisoner group with

fin = 0, race = 1, wexp = 1, and prio = 0 relative to the baseline group at any time t can

be calculated from

S (t) = S0(t)
exp (−0.3899(0)+0.2591(1)+0.5249(1)+0.3330(0)) = S0(t)

exp(0.784) . (2.9)

The baseline survival probability at the first week, S0(1), is 0.9984. If we want to assess

the survival probability of the selected prisoner group with fin = 0, race = 1, wexp = 1,

andprio = 0 in the first week, we can compute the survival probability of the first week

as S(1) = 0.9984exp(0.784) = 0.9965. By repeating the same steps, we can obtain survival

probabilities for each week relative to the baseline. As a result, we have a vector of survival

probabilities of the selected group shown as the blue line in Figure 1. �
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Figure 1: Survival curves along with their 95% confidence intervals from the CPH model

reported in Table 1: baseline vs. selected group
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2.1.2 Kaplan-Meier estimates

The Kaplan-Meier (K-M) estimator (Kaplan and Meier, 1958) is an alternative method

of depicting the survival curve. It amounts simply to calculating the survival probability for

each time interval t based on the event occurrences at that time. From the data, the survival

probabilities are estimated as follows,

S (t) =
∏
ti≤t

(1− di
ni

) , (2.10)

where ni is the number of subjects at risk at the beginning of the time interval ti and di is

the number of subjects who have not survived during the time interval ti.

Unlike the CPH model, K-M does not include any risk factors and parameter estimation

in the model, which make the K-M estimate a non-parametric method. The K-M method

is learned directly from the observed survival data without the assumption of an underlying

probability distribution. The observed survival data means the sub-group in the survival

data given by a combination of risk factors. When there are enough data records to learn

from, the K-M estimates provide good predicted survival curve. However, there could be few

data records for each combination of risk factors. When there are not enough data records

to learn from, the K-M estimates provide poor quality of survival curve.

Example 2. In this example, I also used the Recidivism data set (Rossi et al., 1980) to

demonstrate the K-M model. Four risk factors (fin, race, wexp, and prio were selected and

discretized in the same way as in Example 1. Similarly, I used the R survival package to

create the K-M model. The result of the model is a set of 16 survival curves estimated from

the data, each for one combination of risk factors, e.g., fin = 0, race = 1, wexp = 1,and

prio = 0 shown in Figure 2.

�
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Figure 2: The survival curve along with its 95% confidence interval from the K-M model of

the selected prisoner groups, i.e., when fin = 0, race = 1, wexp = 1,and prio = 0
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2.2 Bayesian networks

Bayesian networks Pearl (1988) are probabilistic graphical models capable of modeling

the joint probability distribution over a finite set of random variables. The structure of

a BN is an acyclic directed graph in which each node corresponds to a single variable and

directed arcs denote direct dependencies between pairs of variables. A conditional probability

table (CPT) of a variable X contains probability distributions over the states of X for all

combinations of states of X’s parents. The joint probability distribution over all variables of

the network can be calculated by taking the product of all prior and conditional probability

distributions, i.e.,

Pr(X) = Pr(X1, . . . , Xn) =
n∏
i=1

Pr(Xi|Pa(Xi)) . (2.11)

BNs have been used in numerous practical applications and because they are capable

of deriving the posterior marginal probability distribution over a variable of interest, given

values of other variables in the model, it is quite natural to apply them to survival analysis.

BNs are compact and intuitive, while also being theoretically sound Husmeier et al. (2005).

They can be based purely on literature or expert knowledge, can be learned from data, or a

combination of the two. Calculation in BNs, which worst case NP-hard, is very efficient for

most practical models known.

There are two general approaches to building Bayesian networks for the purpose of risk

assessment. Researchers can implement static models that predict risk or survival at a

snap-shot of time. For example, Kanwar et al. (2018) developed an application of Bayesian

networks to survival analysis include risk assessment models for patient data with the left

ventricular assist devices (LVADs) from the INTERMACS data set Kirklin et al. (2017).

Bayesian networks estimate the risk of mortalit at specific points in time including 1, 3, and

12 months with high accuracy. A more complex approach uses dynamic Bayesian networks

(DBNs). van Gerven et al. (2008) implemented a DBN for prognosis of patients that suffer

from low-grade midgut carcinoid tumor. Instead of analyzing each time point separately, the

DBN model calculates how the state of the patient changes over time under the influence of

therapy choices. This allows for modelling temporal nature of medical problems throughout
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the course of care, and provides detailed prognostic predictions. However, it requires signif-

icantly more effort more during model construction, i.e., require expertise to define causal

structure and temporal interaction, large amount of data, and is generally time-consuming.

In the scope of this dissertation, I will focus on the first approach which is a discrete Bayesian

network to predict outcome at a snap-shot of time.
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3.0 Bayesian network interpretation of Cox’s proportional hazard model

Cox’s proportional hazards (CPH) model is quite likely the most popular modeling tech-

nique in survival analysis. While the CPH model is able to represent a relationship between

a collection of risks and their common effect, Bayesian networks have become an attrac-

tive alternative with an increased modeling power and far broader applications. However,

building Bayesian networks based purely on expert knowledge can be a time-consuming and

costly task. Luckily, many CPH models can be found in the literature. They are typically

published as a set of numerical coefficients along with their significance levels. No origi-

nal data are usually available. To use the knowledge encoded in these CPH models, an

interpretation of the CPH parameters is needed. In this chapter, I provide such a method

of encoding knowledge from existing CPH models in the process of knowledge engineering

for Bayesian networks (Section 3.1) along with its empirical evaluation (Section 3.2). Sec-

tion 3.3 provides an example of the use of BN-Cox to risk assessment. Finally, Section 3.4

discusses two approaches for simplifying the BN-Cox model for the sake of representational

and computational efficiency

3.1 Definition

As I mentioned earlier, the process of building Bayesian networks can take a significant

effort, especially when little or no data are available. In this section, I discuss how to use

parameters from existing CPH models to create Bayesian networks (we will call it the BN-

Cox model). This approach is especially useful when very little or no data are available. I

assume that the CPH model’s assumptions are not violated and the risk factors or random

variables X are time-independent discrete/binary variables (Kraisangka and Druzdzel, 2018).

To create a Bayesian network, I create its structure by designating the random variables

representing risk factors as parents (X) of the outcome or survival node (S). The number

of states of each random variable is the same as in the CPH model.
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Figure 3: A structure of BN-Cox model representing interactions among variables

Unlike the CPH model, static Bayesian networks capture a snapshot of a system at a

certain time. I need, thus, to represent time explicitly by adding an indexing variable (T )

for time, capturing each discrete point in time that is of interest, e.g., every day, every two

weeks, etc. This time variable can be omitted if we are interested in the prediction at one

point in time, e.g., at one year. CPH models represent their relationship between individual

risk factors to the outcome in the form of a multiple linear regression (in the logarithmic

scale). Thus, the structure of the BN-Cox model can be interpreted as the structure of a

Na ive Bayes model. Figure 4 show an example of such a model, showing the relationship

between risk factors (X), the time variable (T ), and the survival node (S).

In the next step, I create the conditional probability table for the survival node (S).

Recall that we can obtain the survival probabilities from Equation 2.7 in the CPH model.

For each time snapshot captured by the variable T , we assess a set of survival probabilities,

S(t) from the CPH model. A set of survival probabilities here means that we configure the

hazard ratio γ according to the combination of the parent states. γ is equal to hazard ratio

of the conditioning case Xi to the baseline case Xb, i.e., case in which all risk variables are

absent, i.e.,

γ =
exp(β′Xi)

exp(β′Xb)
= β1Xi1 + β2Xi2 + . . .+ βnXin . (3.1)

Equation 3.1 allows us to assess the survival probabilities directly from the parameters of
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the CPH model. First, I configure all risk factor cases in Equation 3.1 to find all hazard ratio

values. Then I obtain the baseline survival probability at the first point in time from the

CPH model (S0(t = 1)) and use Equation 2.7 to find the survival probability. The survival

probability calculated for each combination of risk factors corresponds to the conditional

probability of survival. Hence, the conditional probability to be encoded in the CPT can be

estimated by

Pr(s | X, T = t) = S0(t)
exp(β′X) , (3.2)

where s corresponds to the state survived in the survival node S, X are risk factors, and T

is the time point. This allowed us to reproduce fully the CPH model by means of a Bayesian

network.

Example 3. For this example, I will use the CPH model from Example 1 as a source to

create a BN-Cox model. I used GeNIe1 to implement its structure, and obtained survival

probabilities. To create a structure of the BN-Cox model, each of the risk factors and the

survival variable are converted into a random variable (fin, race, wexp, prio, and arrest).

These random variables representing risk factors are parents of the survival node, arrest.

For the purpose of simplicity, I reduced the number of states for the time variable week from

52 to 13, which amounts to analyzing the system at 4-week steps. Other random variables

(risk factors) have the same states as in the CPH model from Example 1. The resulting

structure of the Bayesian network are shown in Figure 4.

For each time snapshot captured in the variable week, a set of survival probabilities,

S(t), can be assessed from the CPH model, in this case, at 4-week steps. A set of survival

probabilities here means that the hazard ratio γ has to be configured according to the

combination of the parent states. γ is equal to the ratio of hazard of the conditioning case

Xi to the baseline case Xb. Selected probabilities of survival for all combinations of states

of the risk variables are shown in Table 2.
�

1

Available at http://www.bayesfusion.com/.
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Figure 4: The structure of a BN-Cox model for the CPH model from Example 1.

3.2 Empirical evaluation

In this section, I provide an empirical evaluation of the BN-Cox model by comparing

its predictive precision to the baseline survival analysis models like the CPH model and the

Kaplan-Meier (K-M) estimator (Kaplan and Meier, 1958) and to Bayesian networks learned

from data. I used the Recidivism data set as shown in the previous examples. I will explain

how to build the models and show the result of the predictive comparison in the following

sections.

3.2.1 Model construction

I constructed seven models for the purpose of the empirical evaluation. I used the BN-

Cox model constructed in Example 3 I used the K-M model from Example 2and the CPH

model from Example 1 as representatives from survival analysis approach. The K-M and

the CPH models were created by uing the R programming environment with the Survival

library Fox (2002).

For Bayesian network approach, I created four Bayesian networks including a Bayesian

network model learning from the data set (BN-Learn) using Expectation-Maximization (EM)

algorithm (Dempster et al., 1977; Lauritzen, 1995), a Bayesian network model using Näıve
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Table 2: Conditional probabilities of survival for all cases at each snapshot of time. γ is

calculated from Equation 3.1 and S(1), S(2), . . . , S(13) are calculated from Equation 3.2 at

4-week steps. s is the survival variable arrest.

Pr(s | Xi) γ S(1) S(2) . . . S(12) S(13)

Pr(s | f = 0, r = 0, w = 0, p = 0) 0.0000 0.998 0.992 . . . 0.830 0.804

Pr(s | f = 0, r = 0, w = 0, p = 1) 0.3330 0.998 0.989 . . . 0.771 0.738

Pr(s | f = 0, r = 0, w = 1, p = 0) 0.5249 0.997 0.986 . . . 0.729 0.692

Pr(s | f = 0, r = 0, w = 1, p = 1) 0.8579 0.996 0.981 . . . 0.644 0.599

Pr(s | f = 0, r = 1, w = 0, p = 0) 0.2591 0.998 0.990 . . . 0.785 0.754

Pr(s | f = 0, r = 1, w = 0, p = 1) 0.5921 0.997 0.986 . . . 0.714 0.675

Pr(s | f = 0, r = 1, w = 1, p = 0) 0.7840 0.997 0.983 . . . 0.665 0.621

Pr(s | f = 0, r = 1, w = 1, p = 1) 1.1117 0.995 0.976 . . . 0.565 0.514

Pr(s | f = 1, r = 0, w = 0, p = 0) -0.3899 0.999 0.995 . . . 0.881 0.863

Pr(s | f = 1, r = 0, w = 0, p = 1) -0.0569 0.998 0.992 . . . 0.838 0.814

Pr(s | f = 1, r = 0, w = 1, p = 0) 0.1350 0.998 0.991 . . . 0.808 0.779

Pr(s | f = 1, r = 0, w = 1, p = 1) 0.4680 0.997 0.987 . . . 0.742 0.706

Pr(s | f = 1, r = 1, w = 0, p = 0) -0.1308 0.999 0.993 . . . 0.849 0.826

Pr(s | f = 1, r = 1, w = 0, p = 1) 0.2022 0.998 0.990 . . . 0.796 0.766

Pr(s | f = 1, r = 1, w = 1, p = 0) 0.3941 0.998 0.988 . . . 0.758 0.724

Pr(s | f = 1, r = 1, w = 1, p = 1) 0.7271 0.997 0.983 . . . 0.680 0.637
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Bayes (BN-NB) learning algorithm, a BN model with Tree Augmented Näıve Bayes (BN-

TAN) learning algorithm (Friedman et al., 1997), and a BN model with Noisy-Max (BN-

NoisyMax) gates (Nowak and Druzdzel, 2014). For the BN-Learn model, I built the model

in GeNIe using the same structure as in the BN-Cox model (Figure 4). The BN-Learn model

was learned only the numerical parameters from data using the EM algorithm. The BN-NB

model and BN-TAN were learned both structure and parameters directly from data, while

BN-NoisyMax was learned using the method published in Nowak and Druzdzel (2014).

In summary, there are seven models (K-M, CPH, BN-Cox, BN-Learn, BN-TAN, BN-NB

and BN-NoisyMax ) with four risk factors: fin, race, wexp and prio. These four risk factors

are binary variables resulting in 24 = 16 combinations of risk factors. We compare the

prediction accuracy of each model in the following section.

3.2.2 Prediction comparison

With four binary risk factors, there are 16 combinations of risk factors. I plotted the

distribution of the number of records corresponding to these 16 cases in Figure 5, sorted

in descending order. For the purpose of comparison, I selected four cases as candidates,

including one with the highest number of records (102 records), one with a medium-to-high

number of records (61 records), one with a medium-to-small number of records (9 records),

and one with a small number of records (2 records). The dark grey color indicates the

selected cases in Figure 5.

Figure 6 shows the survival probabilities predicted by each of the seven models: K-M

model (round-dotted line), CPH model (square-dotted line), BN-Cox (diamond), BN-Learn

(triangle), BN-TAN (red dash), BN-NB (dark blue dash), and BN-NoisyMax (orange dash).

We observe an almost perfect match between the CPH and the BN-Cox model in all 16

cases. Both BN-TAN and BN-NB models are close for every case, while the BN-NoisyMax

model falls in-between. The K-M and BN-Learn model are also close, although they both

depart from the CPH model significantly as the number of records gets smaller (Figure 6c

and Figure 6d).

BN-Cox, BN-Learn, BN-TAN, BN-NB, and BN-NoisyMax models are simplified and
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Figure 5: Distribution of the number of records in the Recidivism data set with four risk

factors for each of the 16 combinations of risk factors (sorted in descending order).

produce 13 survival probabilities for each case while the K-M and CPH model produced 52

survival probabilities. We found that when we have enough data to learn, e.g., more than a

hundred records, there is a remarkable agreement among all seven models. However, when

there are fewer data points, we found that the curves produced by the K-M estimate and

the Bayesian network learned from data (BN-Learn), while in agreement with one another,

depart from the CPH model significantly. The BN-Cox model and the CPH model, which

again agree perfectly, produce smoother curves. We also observed agreement between the

BN-TAN and the BN-NB models producing smoother curves for cases with few or no data

records. The BN-NoisyMax model predicts probabilities in-between but not so similar to

the remaining models.

With these complete Recidivism models, there are 512 combinations of risk factors. I

found that the distribution of the cases in terms of the number of records is extremely

skewed. As shown in Figure 7, the case best represented in the data has only 32 records,

while more than 70 percent of cases (392 cases of the total of 512 cases) have zero records.
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(a) Predicted survival curves of the selected group with 102 records

(b) Predicted survivals of the selected group with 61 records
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(c) Predicted survival curves of the selected group with 9 records

(d) Predicted survival curves of the selected group with 2 records

Figure 6: Comparison of the predicted survival curves in the four-risk-factor models
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Figure 7: Distribution of the number of records in the Recidivism data set with all risk

factors for each of the 512 combinations of risk factors (sorted in descending order).

Hence, I selected four cases, with 32, 27, 5, and 0 records respectively, for the purpose of the

comparison.

The results were similar to those of the simplified models. The survival probabilities

predicted by the BN-Cox model were identical to those of the CPH model. The BN-Learn,

the K-M model, the BN-TAN, and the BN-NB models produced similar trends, but the

BN-Learn had an overall lower predicted survival probability. We can see larger differences

in the predicted probability when there are few data records to learn from. The K-M model,

BN-Learn, and BN-TAN produce different results only when the number of data records is

small or zero. In this case, the CPH and the BN-Cox models agree perfectly.

In addition to the simplified, four-risk-factor model, I also created a complete Recidivism

model with all eight risk factors using the same techniques for the four-risk-factor model.

The complete Recidivism model consists of seven binary and one categorical variable (see

all variable details in Example 1). However, I only created six models: K-M, CPH, BN-Cox,

BN-Learn, BN-TAN, and BN-NB, since the Noisy-Max algorithm cannot handle non-binary

variables.
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(a) Predicted survival curves of the selected group with 32 records

(b) Predicted survivals of the selected group with 27 records
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(c) Predicted survival curves of the selected group with 5 records

(d) Predicted survival curves of the selected group with no record

Figure 8: Comparison of the predicted survival curves in the all-risk-factor models
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Table 3: Performance of Bayesian network models with four risk factors and all risk factors

Performance BN-Cox BN-Learn BN-TAN BN-NB NoisyMax

(Four-risk-factors models)

Accuracy (ACC) 0.8759 0.8769 0.8769 0.8761 0.8769

Area under ROC (AUC) 0.7605 0.7609 0.7536 0.7514 0.7421

(All-risk-factors models)

Accuracy (ACC) 0.8797 0.8803 0.8764 0.8748 0.8769

Area under ROC (AUC) 0.8322 0.8345 0.7926 0.7635 0.5646

I also compared the accuracy (ACC) and the area under the receiver operating charac-

teristic (ROC) curve (AUC) for the BN-Cox, the BN-Learn, the BN-TAN, the BN-NB, and

the BN-NoisyMax models (for four-variable models and all-variables models) using 10-fold

cross validation (Table 3). For the four-risk-factor models, each model produced very similar

accuracy (ACC) and the area under ROC (AUC). Both BN-Cox and BN-Learn performed

similarly. BN-TAN and BN-NoisyMax are unable to correctly predict the re-arrest. We also

observed similar performance for all-variables model. BN-Learn offered the best accuracy

among all methods for the four-variables and all-variables models, while BN-NoisyMax was

the least accurate. However, the differences in accuracy among the models are not significant

(McNemar’s test p > 0.05).

In summary, our results show that when we do not have any data to learn from but only

have an existing model, i.e., the CPH model, we can create a BN-Cox model to get similar

performance. The BN-Cox model will relax the assumption of the multiplicative character

of interactions between the risk factors and the survival variable.
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3.3 Application of BN-Cox to risk assessment

In this section, I provide an example of the use of BN-Cox in risk assessment for pul-

monary arterial hypertension. Pulmonary arterial hypertension (PAH) is a chronic and life-

changing disease originating from an increase in pulmonary vascular resistance, and leading

to high blood pressure in the lung. One of the most widely used tools in prognosis and man-

agement of PAH is the REVEAL risk score calculator Benza et al. (2010), which assesses the

risk of death of a PAH patient based on various risk factors. With no access to the REVEAL

Registry data, I replaced the CPH model by a BN-Cox model constructed from the CPH

parameters reported in Benza et al. (2010).

The core of the REVEAL risk score calculator by Benza et al. (2012) was based on the

multivariate CPH model. The model is comprised of 19 demographic, functional, labora-

tory, and hemodynamic parameters (reproduced from the original paper in Table 4. The

risk factors X includes PAH associated with portal hypertension (APAH-PoPH), PAH asso-

ciated with connective tissue disease (APAH-CTD), family history of PAH (FPAH), being

male aged over 60 years, having renal insufficiency, modified New York Heart Association

(NYHA)/World Health Organization (WHO) functional class I, III, and IV, systolic blood

pressure (SBP), heart rate, 6-minute walking distance (6MWD), brain natriuretic peptide

(BNP), presence of pericardial effusion on echocardiogram, percentage predicted diffusing

capacity of lung for carbon monoxide (Dlco), mean right atrial pressure (mRAP) and pul-

monary vascular resistance (PVR). Most of the risk factors were associated with increasing

mortality rate (indicated by positive sign in β), while only four factors were associated with

increased one-year survival (indicated by negative sign in β). The baseline probability of

survival was reported as S0(1) = 0.9698.

By following the method outlined in Section 3.1, I created a BN-Cox model shown in

Figure 9. In this case, we omitted the time variable, as the purpose of the REVEAL risk

score calculator is to capture the risk at one point in time (one year). This by itself offers

no advantages over a CPH model-based calculator but it was the first step toward a bet-

ter calculator that relaxes some of the CPH assumptions and is capable of representing a

generalized structure of interactions between risk factors and the survival variables.
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Table 4: A list of 19 binary risk factors, their corresponding coefficients β, hazard ratios

exp(β) and p-values reported for the CPH model from Benza et al. (2010).

Risk factors Xi β exp(β) p-value

APAH-CTD 0.7737 1.59 <0.001

FPAH 1.2801 3.60 <0.001

APAH-PoPH 0.4624 2.17 0.012

Male aged >60 years 0.7779 2.18 <0.001

Renal insufficiency 0.6422 1.90 <0.001

NYHA/WHO FC I -0.8740 0.42 0.039

NYHA/WHO FC III 0.3454 1.41 0.008

NYHA/WHO FC IV 1.1402 3.13 <0.001

SBP <110 mmHg 0.5128 1.67 <0.001

Heart Rate >92bpm 0.3322 1.39 0.005

6MWD ≥440 m -0.5455 0.58 0.006

6MWD <165 m 0.5210 1.68 <0.001

BNP <50 pg/ML -0.6922 0.50 0.003

BNP >180 pg/ML 0.6791 1.97 <0.001

Pericardial effusion 0.3014 1.35 0.014

% DLCO ≥80% -0.5317 0.59 0.031

% DLCO ≤32% 0.3756 1.46 0.018

mRAP >20 mmHg 0.5816 1.79 0.043

PVR >32 Wood units 1.4062 4.08 <0.001
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Figure 9: A BN-Cox model representing the interaction among variables for the CPH model

in the REVEAL risk score calculator.

I applied the same approach from Benza et al. (2012) to create a simplified risk score

calculator. Equation 3.2 captures the survival probabilities s given the states of risk factors.

We can extract a hidden hazard ratio of each variable by configuring states of other risk

factors to be absent. For example, the hazard ratio of a risk factor xj can be estimated from

γ =
log(Pr(s |x̄1, . . . , x̄j−1,xj, x̄j+1, . . . , x̄n))

log(Pr(s |x̄1, . . . , x̄j−1, x̄j, x̄j+1, . . . , x̄n))
. (3.3)

The term log(Pr(s |x̄1, . . . , x̄j−1, x̄j, x̄j+1, . . . , x̄n)) is similar to the baseline survival prob-

ability in the CPH model (S0(1) = 0.9698). Hence, with this equation, we can track back all

hazard ratios. Then, we use the same criteria as the original REVEAL risk score calculator

to convert the hazard rate to a score. Score of 2, for example, indicates at least two-fold

increase in risk of mortality compared to the baseline risk.

Figure 10 shows a screen shot of the graphical user interface (GUI) of our prototype of the

BN-Cox risk score calculator. The left-hand side pane allows for entering risk factors for a

given patient. The right-hand side pane shows the calculated score and survival probabilities.

Currently, the numerical risks produced by the BN-Cox calculator are identical to those of

the original CPH-based REVEAL risk score calculator (Benza et al., 2012). However, the

BN-Cox model makes CPH’s assumptions explicit and will allow to relax them in the future.
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Figure 10: A prototype GUI for our BN-Cox risk score calculator for a 1-year PAH prognosis

model. The left-hand pane allows for entering risk factors for a given patient case. The right-

hand pane shows the calculated score and the survival probability.
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One immediate advantage of the BN-Cox representation is that BNs make it possible to

refine the parameters with additional data records.

3.4 Making BN-Cox tractable

One of the challenges to applying the BN-Cox model is an exponential growth of the

conditional probability tables (CPT) corresponding to the survival variables, as the number

of risk factors increases (Kraisangka and Druzdzel, 2016, 2018). When the number of risk

factors is high, this table becomes intractable. I evaluated two approaches to mitigate this

problem: (1) decomposition of the underlying Bayesian network known as parent divorcing,

and (2) simplifying the network structure by removing least influential risk factors.

3.4.1 BN-Cox decomposition

In Bayesian networks, one way of reducing the complexity when the CPT of a node

becomes too complex is through decomposition. This process can lead to substantial effi-

ciency improvements in Bayesian updating (Zagorecki et al., 2006). In case of the noisy-OR

gates (Dı́ez and Druzdzel, 2006), for example, the combination function can be decomposed

into a series of binary OR functions. For example, the OR(X1, . . . , Xn) function is equiv-

alent to OR(X1, OR(X2, OR(. . . OR(Xn1, Xn) . . .))). Other functions, such as AND, MIN,

and MAX can be decomposed similarly.

Decomposition of the CPH model amounts to finding a function f that is capable of

expressing the survival function S(t) in the following way:

S (t) = f
(
S1 (t)e

(β1X1+β2X2)

, S2 (t)e
(β3X3+β3X3)

)
. (3.4)

However, the survivor function describes an interaction between states of risk factors

(PRESENT and ABSENT) and the probability of survival. This is different from the OR

function, which describes interaction between states of variables. The following theorem,
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with an elegant proof offered by Jirka Vomlel, states that there is no universal decomposition

function for the BN-Cox model.

Theorem 1. There exists no universal decomposition function for parent-divorcing a BN-

Cox model.

Proof. By contradiction for the simplest case with two binary risk factors X and Y , parents

of the survival node S. The probability of survival is in this case expressed by the following

function:

P (S = 1) = S
exp(βXX+βY Y )
0 . (3.5)

We will attempt decomposition of the survival function into P (AX = 1) = S
exp(βXX)
0 , the

survival probability considering X as the only risk factor, and P (AY = 1) = S
exp(βY Y )
0 ,

the survival probability considering Y as the only risk factor. Decomposition using parent

divorcing requires two auxiliary nodes, AX and AY , parents of S, with the conditional

probabilities P (S|AX , AY )

c1 = P (S = 1|AX = 0, AY = 0)

c2 = P (S = 1|AX = 0, AY = 1)

c3 = P (S = 1|AX = 1, AY = 0)

c4 = P (S = 1|AX = 1, AY = 1) .

In order to decompose the BN-Cox model using the parent divorcing method, the following

must hold for all values of X ∈ [0, 1] and Y ∈ [0, 1]

S
exp(βXX+βY Y )
0 = c1(1− Sexp(βXX)

0 )(1− Sexp(βY Y )
0 ) + c2(1− Sexp(βXX)

0 )S
exp(βY Y )
0

+c3S
exp(βXX)
0 (1− Sexp(βY Y )

0 ) + c4S
exp(βXX)
0 S

exp(βY Y )
0 . (3.6)

By substituting (X, Y ) = (0, 0) we get

S0 = c1(1− S0)(1− S0) + c2(1− S0)S0 + c3S0(1− S0) + c4S0S0 . (3.7)
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For the function to be universal, i.e., independent of the actual values of S0, βX , and βY ,

it must hold that c1 = 0, c2 + c3 = 1, and c4 = 1. If we substitute c1 = 0 and c4 = 1 into

Equation 3.6 for (X, Y ) = (0, 1), we get:

S
exp(βY )
0 = c2(1− S0)S

exp(βY )
0 + c3S0(1− Sexp(βY )

0 ) + S0S
exp(βY )
0

= c2S
exp(βY )
0 − c2S1+exp(βY )

0 + c3S0 − c3S1+exp(βY )
0 + S

1+exp(βY )
0

= (1− c2 − c3)S
1+exp(βY )
0 + c2S

exp(βY )
0 + c3S0 .

From Equation 3.7, we know that c2 + c3 = 1 therefore (1− c2 − c3) = 0. Hence, we get:

S
exp(βY )
0 = c2S

exp(βY )
0 + c3S0 . (3.8)

For the function to be universal, it requires c2 = 1 and c3 = 0. If we substitute c1 = 0 and

c4 = 1 into Equation 3.6 for (X, Y ) = (1, 0), we get:

S
exp(βX)
0 = c2(1− Sexp(βX)

0 )S0 + c3S
exp(βX)
0 (1− S0) + S

exp(βX)
0 S0

= c2S0 − c2S1+exp(βX)
0 + c3S

exp(βX)
0 − c3S1+exp(βX)

0 + S
1+exp(βX)
0

= (1− c2 − c3)S
1+exp(βX)
0 + c2S0 + c3S

exp(βX)
0 .

From Equation 3.7, we know that c2 + c3 = 1 therefore (1− c2 − c3) = 0. Hence, we get:

S
exp(βX)
0 = c2S0 + c3S

exp(βX)
0 . (3.9)

For the function to be universal, it requires c2 = 0 and c3 = 1. This contradicts c2 = 1

and c3 = 0 from Equation 3.8 and concludes the proof.
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Figure 11: An example of a BN-Cox model decomposition of the a BN-Cox model from

Figure 9

While BN-Cox model cannot be decomposed by means of the parent divorcing method,

one suggestion offered by Jirka Vomlel was studying other decompositions. Complexity of

such decompositions requires studying the rank of the CPH model along the lines of analysis

for several popular canonical models (Dı́ez and Galan, 2003; Savicky and Vomlel, 2007;

Vomlel and Tichavsky, 2014). While I leave the search for other possible decomposition

methods outside of this scope of my dissertation, I offered an experimental analysis of the

possible approximate decompositions.

To check the quality of possible approximate decompositions, I performed a series of

experiments that consisted of manually decomposing the BN-Cox model and refitting its

probabilities from data. Figure 11 shows an example of the structured decomposition of the

original BN-Cox model shown in Figure 9. After creating the decomposed BN-Cox model, I

generated a data set from the distribution of the original BN-Cox model (at least 5 records

for each combination of risk factors). Then, the decomposed BN-Cox model learned from

the generated data set using the EM algorithm with intermediate nodes being unobserved

(i.e., absent in the data file). Unfortunately, all of the attempts resulted in poor numerical

fit and models of clearly inferior quality than the original BN-Cox model.

Figure 12 illustrates the poor quality of approximation of the decomposed model. We

used the scatterplot (Figure 12a) of the survival probabilities from the decomposed BN-Cox
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model against the ones produced by the original BN-Cox model. In case of perfect fit, the plot

would be a perfect diagonal line from (0, 0) to (1, 1). Figure 12b shows the same scatterplot

transformed by hexagon binning techniques (Lewin-Koh, 2018). Each hexagon is color-coded

according to the number of points falling in that region. While many probabilities are similar,

we see a large off-diagonal cloud that indicates poor fit.

Figure 13 shows the histogram of Euclidean distances between the survival probabilities

calculated by the original CPH and the decomposed model for all possible combinations of

values of risk factors sorted from the smallest to the largest distance. We clearly see an

overall poor fit between the decomposed and the original model.

Although, we have not tested all versions of network decomposition, we tried other

decompositions with different number of groups including 4 groups, 6 groups, and 9 groups.

All these decompositions confirmed poor approximation of the original model.

3.4.2 BN-Cox simplication by removing least influential variables

Another method of reducing the complexity of the BN-Cox model is to simplify the CPH

model itself by removing the least influential risk factors. It can be expected that some of the

risk factors will have minimal effect on the result and omitting them altogether will not lead

to much loss of precision. On the other hand, removing each of these least influential factors

will cut the size of the survival node’s CPT by at least half. In practice, there are several

techniques of variable selection in survival analysis (Fan and Li, 2002). We started out by

evaluating the effect of removing the weakest variable. The weakest means the variable with

the highest p value and possibly the smallest value of the β coefficient. The larger the value

of p, the less certain we are that the risk factor is really affecting survival, the smaller the

value of β, the weaker the effect, even if there is any.

I performed simplification experiments on the Recidivism CPH model consisting of seven

binary risk factors listed in Table 5. First, I compared the effect of removing the least

significant variable against the effect of removing the most significant one. The

weakest variable in Table 5 seems paro with β = −0.06721 and p = 0.7288, while the

strongest variable seems wexp with β = 0.41055 and p = 0.0403. To create a simplified model,
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(a) Scatterplot

(b) Scatterplot with Hexagonal Binning

Figure 12: Survival probabilities produced by the decomposed model against survival prob-

abilities produced by the original CPH model.
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Figure 13: The histogram showing the Euclidean distance between the survival probabilities

produced by the original BN-Cox model and the decomposed model sorted from the smallest

to largest distance.

Risk factor (Xi) β exp(β) p-value

X1: fin -0.40415 0.6675 0.0339

X2: race 0.22931 1.2577 0.4549

X3: wexp 0.41055 1.5076 0.0403

X4: mar -0.49926 0.6070 0.1874

X5: paro -0.06721 0.9350 0.7288

X6: prio 0.28708 1.3325 0.2654

X7: educ -0.80736 0.4460 0.0557

Table 5: A list of seven binary risk factors, their corresponding coefficients β, hazard ratio

exp(β), and p-value estimated from the Recidivism data set.

37



I removed the selected variables from the data set and refit the CPH model. Hence, we have

two refitted models: (1) one with the variable paro (weakest) removed, and (2) one with the

variable wexp (strongest) removed. I compared the predicted survival probabilities against

the original CPH model shown in Figure 14. The original CPH model consisted of seven

binary risk factors resulting in 27 = 128 predicted survival probabilities. Since we removed

one variable from the original CPH model, the total number of predicted probabilities in the

simplified model is 26 = 64. Two survival probabilities in the original CPH model correspond

to one probability in the modified models. For example, the survival probabilities produced

by the original model when fin=0, race=0, wexp=0, mar=0, prio=0, educ=0, paro=0 and

when fin=0, race=0, wexp=0, mar=0, prio=0, educ=0, paro=1 are mapped to the survival

probability produced by the paro-removed model when fin=0, race=0, wexp=0, mar=0,

prio=0, educ=0.

The results obtained by removing the least significant variable (Figure 14a) are closer to

the original model than the results obtained by removing the strongest variable (Figure 14b).

In this experiment, we identified the least/most significant variables by their β and p-values

in the original CPH model. However, one can use any variable selection method here (Fan

and Li, 2002).

Removing a weak variable and refitting works only when we have the original data set. In

practice, however, we often have only the CPH parameters and not the data from which they

were obtained. For those variables with small influences, it can be expected that setting those

variables to be absent will be similar to removing those variables in the simplified refitted

model. In a follow-up experiment, I evaluated the effect of fixing state of the weakest

variable (paro) to absent against the simplified refitted model. I used the original

CPH model (Table 5) and simplified the model by fixing the state of paro. As a result, we

have two sets of predicted probabilities from the fixed-state model: cases when paro is fixed

to absent (paro = 0) and cases when paro is fixed to present (paro = 1). Then, we compared

those results to the original CPH models and the model with paro removed (Figure 15).

Figure 15a shows the predicted probabilities of all cases with paro = 0. The diagonal

grey-dotted line shows ideal probabilities with all paro = 0 cases as produced from the

original CPH model. It can be expected that all probabilities produced from the model fixing
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(a) Weak variable (paro) removed

(b) Strong variable (wexp) removed

Figure 14: The scatterplot of the survival probability produced by the simplified models

against the survival probability produced by the original CPH model.
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(a) Cases when paro = 0

(b) Cases when paro = 1

Figure 15: The scatterplots shows probabilities produced by two fixed-variable models (paro-

absent and paro-present) against one variable-removed model (paro-removed model).
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paro to absent are perfectly on the diagonal line, while, setting paro to present produced

some errors. We observed that fixing paro to absent produced results very close to the results

from the paro-removed model. For those cases with paro = 1 in the original CPH model, we

also observed similar trends in Figure 15b. All probabilities from the model fixing paro to

present lie perfectly on the diagonal grey-dotted line, which shows ideal probabilities with all

paro = 1 cases as produced from the original CPH model. In this case, setting paro to absent

produced errors. In summary, we could approximate the simplified model by setting state of

a risk factor to absent in the original model without refitting the model from the data set.

However, fixing state of the variable to absent still produces errors for those original cases

with the risk factor present, and vise versa.

To verify this observation, I also created four models with one, two, three, and four

least significant variables absent. I refitted corresponding four models by removing the least

influential risk factors. Figure 16 shows the results for the simplified models with both fixed

to be absent and refitted models against the original CPH model for different numbers of

risk factors. We can see that removal of multiple variables, especially when their influence

is larger, can lead to departure from the ideal precision (the diagonal line in the plots). We

should add that removing four of the seven Recidivism variables was expected to make a

large impact on the quality of the resulting model. We believe that the loss of precision will

be much smaller when the number of variables removed is small.

As shown in the previous experiment, fixing the small-influence risk factors to absent is

similar to removing those risk factors from the model but still produces error when the risk

factors are present. In Bayesian networks, we can use marginalization to simplify a model.

Marginalization amounts to removing a risk factor Xi from consideration while preserving the

joint probability distribution among the remaining variables and the effect of the remaining

risk factor on the survival probability, s. Marginalization of a risk factor, Xi, amounts to:

Pr(s | ξ) =
n∑
i=1

Pr(s | ξ, xi) · Pr(xi) , (3.10)

where xi are states of, Xi, Pr(s) is the survival probability, and ξ are all other risk factors.

I performed an experiment on the use of marginalization and compared the results against

the results from previous experiments. I created a BN-Cox model from all CPH parameters in
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(a) One risk factors absent vs. removed

(b) Two risk factors absent vs. removed
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(c) Three risk factors absent vs. removed

(d) Four risk factors absent vs. removed

Figure 16: Effect of absent and removed risk factors in the simplified models against the

original CPH model. The predicted probabilities from the simplified models are compared

only for the cases when those selected risk factors in the original CPH model are absent.
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Table 5, then marginalized the variables paro and wexp out. Hence, I collected the predicted

probabilities from each marginalized model and compared the results to the original CPH

model, the model with variable removed, and the fixing-state model, case-by-case (Figure 17).

Figure 17a shows the result of the paro-marginalized model (the grey square markers)

against the results from previous experiments, including the results from the no-paro refitted

model (the yellow circle markers), the result from fixing-state model with absent paro (the

red cross markers), the result from fixing-state model with present paro (the green plus

markers), and the result from the original model when paro=0 (the diagonal grey-dotted

line). As we expected, the marginalized model produced probabilities in-between the results

from the absent- and present-fixed model, and also closer to the present-fixed model, since 68

percents of inmates in the Recidivism data set have been on parole before being released. We

observed the same trends in other figures: The marginalized model produced the results by

weighing out the effect of each state by its prior probability. We believe that marginalization

is the correct way to remove the selected variable since it still preserves the effect of the risk

variables.

In summary, I have studied two ways of making the BN-Cox model computationally

efficient. Our main challenge to making BN-Cox more practical is an exponential growth

of the conditional probability tables of the survival variable node. Two approaches were

tested: (1) parent divorcing, and (2) removing least influential risk factors. The BN-Cox

model turns out to be not decomposable and approximating of decomposition leads to high

loss of accuracy. Hence, we suggest to simplify the network structure by removing the least

influential risk factors.

We can use any statistical variable selection method Fan and Li (2002) to simplify or

reduce the number of risk factors in the CPH models when we have a data set to refit

the simplified model. However, when data are not available, we can simplify the model

by removing least influential risk factors based on both the value of β coefficients and the

statistical significance by marginalization, as it leads to smallest error on the average.
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(a) Marginalized paro

(b) Marginalized wexp
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(c) Marginalized race

(d) Marginalized educ

Figure 17: Effect of marginalized risk factors in the simplified models against the original

CPH model, the refitted model, and the fixed-state models. The diagonal gray line shows

the ideal probability as produced from the original CPH model.
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4.0 Bayesian network vs CPH model: context sensitivity

This chapter examines the character of influence of risk factors to a given outcome in

Bayesian network model vs. CPH models. I show another point of departure of the CPH

model from data, notably influence of individual risk factors, as expressed by CPH hazard

ratios, against dynamic and flexible entropy-based measure of influence.

I discuss static and dynamic character of influences in Section 4.1. Section 4.2 provides

more details in entropy-based measurement of influence. Finally, Section 4.3 empirically

demonstrates for simplifying the BN-Cox model for the sake of representational and compu-

tational efficiency

4.1 Static vs. dynamic influence

In CPH models, influence of each individual risk factor to the outcome is expressed by

a number called hazard ratio. The hazard ratio is defined as a ratio of the hazard in the

corresponding risk group to the hazard in the baseline group (i.e., a hypothetical group in

which none of the risk factors are present). This ratio is, by one of the proportional hazard

assumptions of the CPH model, constant over time. For example, Table 4 reports the hazard

ratio for pericardial effusion as 1.35. This means that patients with pericardial effusion have

a 35% higher risk of dying from PAH than patients at the baseline state (i.e., patient with no

pericardial effusion). When performing prediction for estimating the outcome probability,

this influence still do not change regardless of the context of other risk factors, i.e., the

presence or absence of other risk factors. The hazard ratio is fixed as it can be considered

as a static influence of the risk factor to the outcome.

Unlike CPH models, Bayesian networks do not explicitly define the influence of individual

risk factor to the outcome. The structure of the network defines interaction between risk

factors. As some of the risk factors are observed, the role of other risks, expressed by their

potential to change their influence on the outcome variable, changes. I define this impact as
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Figure 18: An example Bayesian network predicting survival of patients with partial obser-

vations: only 6 Minute Walking Distance is observed.

dynamic influence.

4.2 Entropy-based measurement of influence

In Bayesian networks and information theory (Shannon, 1948), entropy measures the

degree of uncertainty of a given random variable, X; defined as

H(X) = −
n∑
i=1

P (xi)log2P (xi) , (4.1)

where P (xi) is a probability of an individual state, xi in a random variable X.

In this section, we apply the concept of change in entropy to measure an influence of

a risk factor to an outcome. Suppose we have a Bayesian network predicting survival of

patients given their list of risk factors (Figure 18). Our outcome variable is S: Survival in

1 year. To estimate an influence of each state in a given risk factor, we first measure an

entropy of S before observed any risk factors, i.e., H(S)o. Then, we observed a risk factor

(X), such as, 6 Minute Walking Distance (6MWD) with a state xi, and measure the entropy

of S, i.e, H(S|X = xi). Change in entropy at the S node (H(S|X = xi)−H(S)o), therefore,

defines influence of the observed state of risk factor to the outcome variable.
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Figure 19: The TAN Bayesian network learned from the REVEAL registry data.The node

Survival at 12 months is the predicted outcome variable, connected to every risk factor.

4.3 Failure of the CPH model to capture dynamic character of influence

As I mentioned above, one of the important assumptions of the CPH model is that the

individual hazard ratios are constant over time and do not change with presence or absence

of other risk factors. This assumption did not seem realistic, so I performed the following

experiment to probe it.

4.3.1 Methods

For the purpose of this experiment, I use an existing Bayesian network model for PAH

risk assessment. Figure 19 shows the Bayesian network which is one of the Bayesian network

model for Pulmonary Arterial Hypertension Outcomes Risk Assessment (PHORA) project,

The model was learned from a data set of 2,456 patient records from the REVEAL registry

data by using a Tree Augmented Näıve (TAN) learning algorithm.

The list of variables was preserved from the REVEAL risk score calculator with the

same discretization levels. It is clear that some of the variables in the table have been

artificially created for the purpose of CPH modeling. For example, the three WHO variables

are mutually exclusive states of a single variable. The same holds for the NYHA class, Six-
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Table 6: A list of 19 binary risk factors from the REVEAL risk score calculator Benza et al.

(2010) along with their counterparts in the Bayesian network. The baseline states are shown

in bold.

Risk factors Random Variable States

APAH-CTD WHO Group APAH-CTD
FPAH FPAH
APAH-PoPH APAH-PoPH

Other

Renal insufficiency Renal insufficiency Yes
No

Male >60 years age Male >60 years Yes
No

NYHA/WHO FC I NYHA/WHO FC I
II

NYHA/WHO FC III III
NYHA/WHO FC IV IV

SBP <110 mmHg Systolic BP <110
≥110

Heart Rate >92bpm Heart rate >92
≤92

6MWD <165 m 6 Min Walking Distance <165
165-<440

6MWD ≥440 m ≥440

BNP <50 pg/ML BNP <50
50-180

BNP >180 pg/ML >180

Pericardial effusion Pericardial effusion Yes
No

% DLCO ≤32% % DLCO ≤32
>32-<80

% DLCO ≥80% ≥80

Mean RAP > 20 mmHg Mean RAP >20
≤20

PVR >32 WU PVR >32
≤32
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Min Walking Distance, BNP and % DLCO variables. The CPH model required them to be

risk factors, modeled as states of binary variables. These states were combined back into

single variables, as the laws of probability require. For all numerical variables, which we had

to discretize in order to include them into the Bayesian network model, we applied the cut

points used by the REVEAL risk score calculator. We also added a baseline state, wherever

needed but not explicitly defined in the calculator. Table 6 shows the list of risk factors from

the REVEAL risk score calculator along with their counterparts in the Bayesian network.

The TAN learning algorithm is one of the most popular learning methods for Bayesian

network classification. TAN extends the Näıve Bayes structure by adding most important

interdependencies between feature variables. At the same time, the algorithm constraints

the maximum number of incoming arcs to two and, by this, keeps the conditional probability

tables (CPTs) in individual nodes small. Small CPTs mean a small number of parameters,

which can be learned reliably even when the learning data set is small. Effectively, when the

learning data set is small, the quality of the parameters remains high and the entire TAN

model typically matches well the joint probability distribution that generated the data.

Hence, statistical properties of a data set generated from the TAN network will not depart

too far from the statistical properties of the original data set.

Given a 30,000 record data set, I was able to simulate situations in which some of the

risk factors have been observed (this amounted to selecting a subset of the data) and to learn

a new CPH model from the resulting data. Our goal was to check whether the hazard ratios

for those variables that have not been observed yet are indeed constant, i.e., the same in the

selected subset of records.

4.3.2 Discussion

Figure 20 shows the result of this experiment. Figure 20a shows the hazard ratios (HRs)

calculated for subsets in which a single risk factor (listed in the header of the table) has

been observed. All columns differ from the first column, which contains the original CPH

parameters that was learned from the generated data. Figure 20b shows differences between
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(a) Hazard ratios of each observed group

(b) Percent relative change of the hazard ratio from the baseline

Figure 20: Effect of observing one of the risk factors on the hazard ratios of the remaining variables
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Figure 21: Percent relative change of hazard ratios when we observed NYHA-I

the hazard ratios calculated for each of the cases relative to the original parameters and

expressed as a percentage of change. Colors give a visual indication of where the largest

differences are. Some of the hazard ratios in the table have changed as much as 700%.

Figure 21 shows NYHA-I column of Figure 20b in graphical format. We can see that

these risk factors, e.g., SIXMWD 165, MRAP, become very important once we observe that

the patient belongs to NYHA Functional Class I. HRs are static and are not capturing this

context-induced change.

Modeling with Bayesian networks does not require us to make such assumptions. In fact,

varying degree of influence of risk factors is a natural consequence of varying context. As

some of the risk factors are observed, the role of other risks, expressed by their potential to

impact of the survival variable, changes.

Figure 22 shows a scatterplot of hazard ratios and entropy for the NYHA Functional

Class I case. The plot shows the baseline situation, i.e., when no risk factors are observed

(triangle marks) and a change in context, when NYHA-I is observed (circles). The two

measures are correlated with each other at the baseline. However, the entropy changes with

context, while the hazard ratios stay the same by definition.

Bayesian networks offer more flexibility and result in more intuitive models. As shown

in Figure 22, the assumptions of the CPH model may be unrealistic in practice. Bayesian

networks model naturally varying magnitude of influence of risk factors as other factors are

observed.
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Figure 22: An example of the movement of the entropy when we observed NYHA-I. The

entropy change or the influence of the risk factors is clearly context-dependent
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5.0 Enhancing learning of Bayesian network parameters by means of priors

When building a Bayesian network form a small data set, it is common that some com-

binations of conditions in conditional probability tables are represented by few or no data

records. As a result, the quality of parameters of the resulting Bayesian network is poor,

which is usually manifested by uniform distributions (Onísko et al., 2001). Uniform distribu-

tion are essentially based on uninformed uniform priors. The process of learning parameters

can be improved by having better priors than uniform distribution. In this chapter, I discuss

and provide empirical evaluation on approaches to enhance learning of Bayesian networks

by different sources of priors, including prior from experts knowledge in Section 5.2, and

simplified probabilistic models such as a Tree-Augmented Näıve Bayes in Section 5.3. The

objective of these approaches is to improve the quality of learned parameters and, hence,

model accuracy, especially when we deal with small data sets.

5.1 Data sets used in experiments reported in this chapter

For the purpose of all experiments in this chapter, I used the data sets listed in Table 7, all

selected from the UCI Machine Learning Repository data sets (Dua and Karra Taniskidou,

2019). I used the following selection criteria for the sets:

• The data set must include a discrete class variable for the purpose of model evaluation.

• The data set should have a wide range in the number of records.

• The selected data sets have a wide range in the number of variables, e.g., 8-30, for the

purpose of evaluation.

• The majority of variables (i.e., at least 1/2 of variables) should be discrete variables to

minimize the need of discretization. The remaining numerical variables are excluded

from model learning when there are enough discrete variables (at least 6 variables) to

create a Bayesian network model.
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Table 7: A list of data sets

Data set # Class # Records % Missing # Attribute
(Discrete/Cont./Constant)

Adult 2 32561 7.37 14 ( 8/ 6/ 0)
Breast Cancer 2 288 3.82 9 ( 9/ 0/ 0)
Credit Approval 2 690 5.36 15 ( 9/ 6/ 0)
Flag 6 194 0.00 28 (18/10/ 0)
German Credit 2 1000 0.00 20 (13/ 7/ 0)
Lymphography 4 148 0.00 18 (18/ 0/ 0)
Mushroom 4 8124 30.53 22 (21/ 0/ 1)
Nursery 5 12960 0.00 8 (8 / 0/ 0)
Artificial REVEAL 2 2500 0.00 14 (14/ 0/ 0)

• The data set must have at least 2/3 records with no missing values to prevent learning

a poor quality of a Bayesian network. Those records that contain missing values will be

removed for Bayesian network structure learning.

The remaining data set, Artificial REVEAL, is an artificial data set of 2,500 records

generated from a TAN REVEAL 2.0 network. The TAN REVEAL 2.0 network is one of

Bayesian networks developed for the PHORA project which was learned from the REVEAL

registry data set using the REVEAL risk score calculator 2.0 (Benza et al., 2019) cut points.

The artificial REVEAL data set matches the above criteria. It also represents the practical

problem for Bayesian networks in the PAH risk assessment.

5.2 Priors obtained from experts

This section discuss a method of using priors from experts for enhancing parameters

in Bayesian networks. I provide a background on obtaining priors from experts and its

alternative (Section 5.2.1 and 5.2.2.) Finally, Section 5.2.3 describe an experiment that tests

the proposed methods
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5.2.1 Elicitation of probabilities from experts

When building a Bayesian network, the most common sources of priors are statistical

data, literature, human experts, or a combination of these (Druzdzel and van der Gaag, 2000).

Given the structure of a Bayesian network, the numerical probabilities in the conditional

probability table (CPT) of each variable are needed. Elicitation of probabilities requires a

good design of knowledge engineering process with a combination of tools.The simplest tools

focus on single probabilities and are, therefore, extremely laborious. There are methods that

ease the elicitation burden. For example, van der Gaag et al. (1999) developed an elicitation

method including transcribed texts for explaining conditional probability to be assessed

along with a scale of verbal probability expression mapping to their numerical probability

(e.g., probable = 0.85, improbable = 0.15 ). Although there are many proposed elicitation

methods, this process still requires a lot of time and effort (Lucas et al., 2004).

5.2.2 Canonical gates as an aid to obtain priors

Another technique to facilitate the process of eliciting probability from experts is to

use canonical gates to reduce the number of parameters of conditional probability distribu-

tion. The conditional probability distribution are stored in the conditional probability table

(CPT). The CPT of a node with n binary parents will need by 2n parameters, which poses

substantial difficulties for knowledge engineering. For a sufficiently large 10, obtaining nu-

merical parameters from an expert is becomes practically impossible. Zagorecki and Druzdzel

(2013) found that typically over half of probability distributions in practical Bayesian net-

works can be reasonably approximated by canonical gates. Models based on canonical gates

require fewer parameters (2n instead of 2n in binary case). This increase the quality of pa-

rameter learning (Onísko et al., 2001) and reduces time and efforts in parameter elicitation

from experts.
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5.2.3 An experiment testing priors from experts

An ideal experiment testing this approach would require elicitation of parameters from

experts for a handful of networks. This would prove highly labor intensive and possibly

beyond the scope of time expected for completing a doctoral dissertation. I am, therefore,

proposing a simpler experiment that simulates this situation. This can be achieved by

using the Bayesian Search algorithm (Cooper and Herskovits, 1992) to create a structure

of a Bayesian network and the EM algorithm for parameter learning. To simulate that

the qualification of this network may be coming from an expert, I make the numerical

probabilities less precise, which one might expect from a human expert. To that effect,

I apply a generic stationary rounding algorithm (Heinrich et al., 2005) to each numerical

parameter of the network. I describe the details of this procedure in Part I in Experiment 1.

Experiment 1. Testing priors from experts in enhancing parameter learning

Part I: Creating an expert-simulated Bayesian network

The experiment consisted of the following steps:

1. From the preprocessed data set Di with the total number of non-missing records n, learn

a Bayesian network, NBS using the Bayesian Search algorithm (with 200 iterations) for

structure learning and the EM algorithm for parameter learning. n must be at least

5,000 records to ensure good quality structures of a Bayesian network.

2. From the same data set Di, learn a Bayesian network NTAN using the TAN algorithm.

3. Use NTAN to create a 10-time larger data set DL.

4. Relearn parameters of NBS using the EM algorithm using data set DL with randomized

initial parameters. As a result, we have a Bayesian network with parameters learned

from the larger datasets, Np
BS.

5. Use a generic stationary rounding algorithm to round all probabilities of the Bayesian

network Np
BS: stationary parameter q = 0.5, accuracy n = 5, and a global multiplier

v = n = 5. As a result, we have a Bayesian network with less precise parameters, Nexpert.

Steps 2-3 help preventing uniform distribution in a Bayesian network resulting from

Step 1, while the rounding algorithm in Step 5 makes probabilities less precise, which one
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might expect from a human expert. Then, I used the resulting simulated expert Bayesian

networks, Nexpert, in Part II to investigate the effect of priors.

Part II: Applying an expert-based Bayesian network as priors for parameter learning

The experiment for testing priors from experts consisted of the following steps:

1. From the preprocessed data set Di with the total number of non-missing records n,

randomly select subsets of data sets with a small number of records (300, 500, and 1000

records) as training sets: Tr(Di300), Tr(Di500) and Tr(Di1000). The remaining data of

each subset are used for testing sets: Tt(Di300), Tt(Di500) and Tt(Di1000) respectively.

2. Relearn parameters of Nexpert from Part I using the EM algorithm using each training

data set (Tr(Di300), Tr(Di500) and Tr(Di1000)) with uniform initial parameter, i.e., dis-

regarding existing parameters and learn new parameters from given data sets. As a

result, we have three Bayesian network learned from different small data sets: Nexpert300,

Nexpert500 and Nexpert1000.

3. Validate Nexpert300, Nexpert500 and Nexpert1000 on their corresponding testing set and record

their accuracy.

4. Relearn parameters of Nexpert from Part I using the EM algorithm using each training

data set (Tr(Di300), Tr(Di500) and Tr(Di1000)) with the original parameters as priors

from experts. As a result, we have another set of three Bayesian networks: Np
expert300,

Np
expert500 and Np

expert1000.

5. Validate Np
expert300, N

p
expert500 and Np

expert1000 on their corresponding testing set and record

their accuracy.

6. Compare accuracies obtained from Step 3 against Step 5.

In this experiment, I used three large data sets (with more than 5,000 records) from

Table 7: Adult, Mushroom and Nursery. Table 8 shows the result from Experiment 1. For

the Adult and Nursery data sets, all Bayesian network models show accuracy improvement

between 0.4% and 8% after enhancing with priors from experts, while Bayesian networks

learning from the Mushroom data sets show almost no improvement. However, the accuracy

of the Mushroom Bayesian network models is very high (99%) and it is quite a challenge to

further improve it.
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Table 8: Accuracy improvement of Bayesian networks with priors from experts

ACC Difference on ACC

Model #Records
learned

from data
After enhanced

parameter learning
Absolute Relative

Adult 300 71.0 78.7 7.7 10.8%
500 78.2 80.9 2.7 3.5%

1000 79.9 81.5 1.6 2.0%

Mushroom 300 98.8 99.8 1.0 1.0%
500 99.6 99.7 0.1 0.1%

1000 99.7 99.7 0.0 0.0%

Nursery 300 82.8 90.9 8.1 9.8%
500 87.4 91.5 4.1 4.7%

1000 92.7 93.1 0.4 0.4%

5.3 Simplified probabilistic model as the sources of priors

Another way to enhance Bayesian network parameters in to use a simplified probabilistic

model, e.g., Tree-Augmented Näıve Bayes model, as the source of priors. The TAN algo-

rithm constraints the maximum number of incoming arcs to two and, by this, keeps the

conditional probability tables (CPTs) in individual nodes small. Small CPTs mean a small

number of parameters, which can be learned reliably even when the learning data set is

small. Effectively, when the learning data set is small, the quality of the parameters remains

high and the entire TAN model may match reasonably well the joint probability distribution

that generated the data, even though TAN models does not mimic the causal structure of

interactions among the model variables. In this section, I proposed the way of using such

simplified models to obtain priors for parameter learning in a Bayesian network.

5.3.1 Methodology

In this experiment, I use all data sets listed in Table 7. For the UCI data sets, I created

initial Bayesian network models using the Bayesian Search learning algorithm: one network

per one data set. The Bayesian Search algorithm does not handle missing values and con-
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tinuous variables. Hence, I preprocessed each data set in the same way by removing all

records with missing values and excluding continuous variables. With the criteria mentioned

in the previous section, Bayesian network models still have good quality structures. For the

sources of priors, I used Bayesian network models learning from a Tree-Augmented Näıve

Bayes (TAN) learning algorithm. The parameters captured in the TAN model will serve

to generate a larger data set. This larger data set will serve to enhance the quality of the

parameters in the initial Bayesian network model.

Experiment 2. Using a simplified probabilistic model to generate priors for

parameter learning

For the UCI data sets, the experiment consisted of the following steps:

1. From the preprocessed data set Di with the total number of non-missing records n, learn

a Bayesian network, NBS using the Bayesian Search algorithm (with 200 iterations) for

structure learning and the EM algorithm for parameter learning.

2. Validate NBS with Di using 10-fold cross validation. Record ACC(NBS).

3. From the preprocessed data set Di in Step 1, learn a Bayesian network NTAN using the

TAN algorithm.

4. Validate NTAN with Di using 10-fold cross validation. Record ACC(NTAN).

5. Use NTAN to create a 10-time larger data set DL.

6. Relearn parameters of NBS using the EM algorithm using data set DL with randomized

initial parameters. As a result, we have a Bayesian network with parameters learned

from the larger dataset, Np
BS.

7. Validate Np
BS with Di using 10-fold cross validation with different confidence level: 1, 10

and 100. Record ACC(Np
BS). Compare ACC(NBS) and ACC(Np

BS).

I applied a similar approach to the Artificial REVEAL data set. In this case, we obtained

six Bayesian network structure (labeled as E01:REVEAL to E06:REVEAL) from medical

experts. The structure of these networks represent causal relationship between variables in

the data set. I used the EM algorithm for parameter learning and used the TAN REVEAL

2.0 model created from the original REVEAL data set as a source of priors. I generated a
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larger data set,i.e., 25,000 records, from the TAN model, and relearned parameters of each

expert-based Bayesian network from the generated data set.

For model comparison, I used the classification accuracy (ACC) to measure model perfor-

mance of the original Bayesian network models and the Bayesian network models enhanced

with priors. I used 10-fold cross validation method implemented in GeNIe for model vali-

dation. In this case, I reported the result of 10-fold cross-validation with different level of

confidence (Conf.): 1, 10, 100. The confidence level represents an equivalent sample size

(ESS), i.e., the number of records that the parameters in the network are based on. Low

confidence, i.e., 1, means that even a small amount of data can easily change the probabil-

ity distribution in the network. This allows me to evaluate the optimal confidence for the

experiment.

5.3.2 Result

Table 9 reports the model accuracy (ACC) of the original model and the accuracy of

the model after parameter enhancement by priors. There are no significant differences in

accuracy between confidence levels of 1, 10 and 100 for 10-fold cross validation with the EM

algorithm. However, confidence equal to 100 seems to be the best of the three in terms of

the percentage of improvement in accuracy.

Figure 23 shows the percentage improvement in accuracy for each Bayesian network

after enhancing with priors. I only plotted the result of validation with confidence 100.

Table 10 reports the remaining result. Majority of the data sets show slight improvement

(between 0% and 5%.) Two data sets (E02: REVEAL and E06: REVEAL), however, show

an improvement in accuracy of 22.5% and 16.2% respectively.

5.3.3 Discussion

The approach to enhance the Bayesian network accuracy by means of priors from the

TAN model is by far most effective, especially when we are dealing with a complex Bayesian

network and a small data set. As Table 10 shows, accuracy of Bayesian networks with large

numbers of parameters benefits from the methods, while accuracy of Bayesian networks
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Table 9: Performance of Bayesian network with priors from a simplified probabilistic model

Model
Original

ACC
TAN (%)
ACC (%)

With Prior
Conf.=1 (%)

With Prior
Conf.=10 (%)

With Prior
Conf.=100 (%)

D01:Adult 81.6 82.1 81.7 81.7 81.7
D02:Breast Cancer 75.1 75.1 75.5 75.8 75.8
D03:Credit Approval 73.7 85.2 74.3 74.6 75.1
D04:Flag 69.1 62.4 69.6 70.6 71.1
D05:German Credit 73.1 72.0 73.1 73.1 73.6
D06:Lymphography 83.8 85.1 83.1 83.1 85.8
D07:Mushroom 98.5 99.8 98.7 98.7 98.7
D08:Nursery 94.3 93.4 94.4 94.4 94.6

E01:REVEAL 85.1 89.3 87.9 88.4 88.5
E02:REVEAL 71.1 89.3 93.5 93.7 93.6
E03:REVEAL 89.4 89.3 89.4 89.5 89.5
E04:REVEAL 87.3 89.3 90.3 90.5 90.5
E05:REVEAL 86.9 89.3 89.5 89.7 89.8
E06:REVEAL 76.7 89.3 92.5 92.9 92.9

Figure 23: Percentage improvement of accuracy in enhanced Bayesian network

63



Table 10: Percentage change in accuracy of Bayesian network models with parameter learning

enhanced with priors from a simplified probabilistic model

Model #Traing #Parameter
With Prior
Conf.=1 (%)

With Prior
Conf.=10 (%)

With Prior
Conf.=100 (%)

D01 30162 78 0.1 0.1 0.1
D02 277 50 0.4 0.7 0.7
D03 653 325 0.6 0.9 1.4
D04 194 1074 0.5 1.5 2.0
D05 1000 203 0.0 0.0 0.5
D06 148 282 -0.7 -0.7 2.0
D07 5644 7236 0.2 0.2 0.2
D08 12960 834 0.0 0.0 0.2

E01 2500 12582 2.8 3.3 3.4
E02 2500 786756 22.4 22.6 22.5
E03 2500 228 0.0 0.1 0.1
E04 2500 6203 3.0 3.2 12.6
E05 2500 70207 2.6 2.8 2.9
E06 2500 393360 15.8 16.2 16.2

with small number of parameters improves slightly. When the data sets are large, parameter

learning also benefits from the methods, although just slightly.

I tested different factors that could possibly allow us to a-priori predict the accuracy

improvement of the network, including number of parameters, number of independent pa-

rameters, maximum indegree of the network (maximum number of parents of a node) and

maximum number of column in a CPT. Figure 24 shows a list of scatterplots showing rela-

tionships between those factors (x-axis) against the improvement of accuracy after enhancing

parameters with priors for both, Bayesian networks (Figure 24a, 24c, 24e and 24g) and the

class node’s Markov Blanket (Figure 24b, 24d, 24f and 24h). The Markov blanket of a

random variable, Xi, consists of variables that are parents, children, and parents of its chil-

dren, such that, when observed, make Xi independent of the remainder variables in the

network (Pearl, 1988). In other words, Markov blanket of a class node is a simpler version

of a Bayesian network.

As we expected, complex network having large number of parameters/independent pa-
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(a) Log10(#Parameters): Bayesian network (b) Log10(#Parameters): Markov blanket

(c) Log10(#Indp. parameters): Bayesian network (d) Log10(#Indp. parameters): Markov blanket

(e) Max #Indegree: Bayesian network (f) Max #Indegree: Markov blanket

(g) Log10(Max#Col. CPT): Bayesian network (h) Log10(Max#Col. CPT): Markov blanket

Figure 24: Effect of each network parameter to accuracy improvement after parameter en-

hancement from priors

65



rameters, such as E02 and E06, benefit from the proposed methods most, while simple

Bayesian network show almost no improvement in accuracy after enhancement. I observed

the similar trend with maximum number of indegree and maximum number column of CPT,

which also represents the degree of complexity in a network. There are not many differences

in the results from Bayesian networks and Markov blankets. Our explanation fro this lack

of difference is that in this experiment, I excluded all records with missing values for model

building and validation, and variable in the Markov blanket were typically observed and

screened the class nodes for the rest of the variables.

5.3.4 Potential of overfitting

Because the TAN networks used for priors were trained on the same data set, it is possible

that the resulting Bayesian networks overfitted to the training data sets. I conducted an

experiment to investigate the degree of overfitting. I selected the top three Bayesian network

models with the most improvement in accuracy after enhancing with TAN networks.

Experiment 3. Testing overfitting of parameter learning

The experiment consisted of the following steps:

1. From the selected data set Di with total number of complete records n, randomly assign

each record into a training set Tr(Di) and a testing set Tt(Di). The training to testing

ratio is 80 to 20.

2. From a Bayesian network Ni created in Experiment 2, use the EM algorithm for param-

eter learning with uniform initial parameters, i.e., disregard the existing parameters and

learn new parameters from a training set Tr(Di).

3. Validate Ni with a testing set Tt(Di). Record ACC(NBS).

4. From the training set Tr(Di), learn a Bayesian network NTAN using the TAN algorithm.

5. Validate NTAN on Tt(Di). Record ACC(NTAN).

6. Use NTAN to create a 10-time larger training data set of Tr(Dix10.

7. Relearn parameters of Ni using the EM algorithm using data set Tr(Dix10. As a result,

we have a Bayesian network learned from the larger dataset, Np
i .
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Table 11: Accuracy improvement of Bayesian networks after parameter enhancement: po-

tential overfitting

Training All records Difference on Improved ACC

Model ACC
Improved

ACC
ACC

Improved
ACC

Absolute Relative

E01 85.2 88.2 85.1 88.5 -0.30 -0.34%
E02 70.6 86.6 71.1 93.6 -7.00 -8.08%
E06 74.3 76.4 76.7 92.9 -4.70 -5.33%

8. Validate Np
i on Tt(Di). Record ACC(Np

i ) and compare it to the accuracy of Bayesian

networks in Experiment 2.

Table 11 shows the result of this experiment. For the sets of Bayesian networks learning

from a training subset (80%) of data, I reported the improvement in accuracy validated on

the testing set (20%) of data sets along with their accuracy improvement of Bayesian network

models from Experiment 2 by mean of 10-fold cross validation with confidence 100. The last

two columns report the absolute and relative improvement that may stem from overfitting.

The result is conservative, as some of that improvement is due to a larger training set (100%

vs. 80% of records). Even if some overfitting is taking place, priors still enhance parameter

learning significantly.
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6.0 Discussion and future work

One of the most prevalent methods for risk assessment is the CPH model The weak-

nesses of this approach are: (1) the underlying model can be only learned from data and

is not readily amenable to refinement based on expert knowledge, and (2) the CPH model

rests on several assumptions simplifying the interactions between the risk factors and the

predicted outcome. While the CPH-based risk assessment models has been successfully

used for decades, Bayesian networks offer more modeling flexibility and possibly superior

performance.

The contributions of this dissertation demonstrate our effort to replace the CPH model

underlying risk assessment by using Bayesian networks. I proposed a Bayesian network

interpretation of the CPH (BN-Cox) model, which use the CPH models as data sources in

the process of parameter estimation for Bayesian networks. I successfully replaced the use

of the CPH model in the REVEAL risk score calculator (Benza et al., 2010) with an BN-

Cox-based risk score calculator, and hence, offered precisely the same accuracy. I studied

two approaches to mitigate an exponential growth of conditional probability table in BN-

Cox model: (1) decomposition of the underlying Bayesian network or parent divorcing, and

(2) simplifying the network structure by removing least influential risk factors. The BN-

Cox model is not decomposable and approximating of decomposition leads to high loss of

accuracy. Hence, simplifying the network structure by removing the least influential risk

factors by any statistical variable selection methods was recommenced, when we have a data

set to refit the simplified model. However, when data are not available, we can simplify the

model by removing or marginalizing least influential risk factors based on both the value of

β coefficients and the statistical significance.

I demonstrated the unrealistic assumptions of the CPH model in practice. When per-

forming prediction for estimating the outcome probability, the strength of influence of risk

factors to an outcome variable in the CPH model do not change regardless of the context of

other risk factors. I empirically demonstrated the influence of risk factors in the CPH-based

model. CPH model do not model correctly varying magnitude of influence of risk factors as
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other factors are observed.

I discussed methods for enhancing the quality of Bayesian network parameters, as learned

from small data sets, by means of different priors: priors from expert knowledge and priors

from simplified probabilistic models such as Tree-Augmented Näıve Bayes. I provided on

empirical evaluation of the proposed methods and demonstrated that they improve quality

of parameters and accuracy for Bayesian network in risk assessment on several data sets. I

investigated different factors of the network related to the improvement of accuracy. Complex

Bayesian networks, i.e., those with large numbers of parameters, max indegree and CPTs,

benefits from the proposed methods most, while simple Bayesian networks show almost little

or no improvement in accuracy. It seems that enhancing parameter learning with the TAN

networks generated some overfitting but still led to significant improvement in accuracy.

One direction of future work would be to extend the experiments for parameter en-

hancement methods in Chapter 5 to be more comprehensive. For example, (1) using a real

expert-based Bayesian networks in Section 5.2.3, (2) providing an experiment on parameter

enhancement based on canonical gates, and (3) propose a better parameter enhancement

from the TAN network that minimize overfitting.
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