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Investigation into the Anti-Inflammatory Properties of Metformin as a Potential 
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Rahul Ramanathan, BS 
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Intervertebral disc degeneration (IDD) is closely related to heightened inflammation in the 

annulus fibrosis (AF) and nucleus pulposus (NP) cells in the intervertebral disc. Gene expression 

and enzymatic activity of catabolic factors that degrade the extracellular matrix, such as matrix 

metalloproteinase 13 (MMP-13), IL-1β, PGE2 and COX-2, can be triggered by inflammatory as 

well as mechanical (tensile/compressive) stresses. An imbalanced matrix homeostasis, i.e., 

enhanced catabolic and suppressed anabolic activity, has been shown to contribute to disc 

degeneration and associated discogenic low back pain. There have been multiple efforts to curtail 

this imbalance through both therapeutic and preventative measures. 

Developed in 1922, metformin has recently been the most widely used oral medication for 

type II diabetes in the United States. Traditionally, metformin has been used to decrease hepatic 

gluconeogenesis and increase insulin sensitivity by inhibiting mitochondrial pathways in diabetic 

patients. It has also been noted to exhibit anti-inflammatory properties through upregulation of the 

AMPK pathway, leading to various pro-autophagy and anti-inflammatory-related responses in 

hepatocytes. However, it is still unclear how metformin influences disc cellular response to 

inflammatory stress and the mechanism in which it enacts its effects.  Hence, the objective of this 

study is to elucidate the effects of metformin on expression of key pro-inflammatory, catabolic, 

and anabolic factors within rat AF cells in response to inflammatory stimulation and mechanical 

tensile stress.  
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Five Fischer 344 rats were sacrificed and their spines isolated. AF cells were cultured and 

plated in flexible silicone membrane-based six-well plates. Wells were split into eight groups and 

subjected to metformin, IL-1β, mechanical stretch, and combined treatments. Relative gene 

expressions of MMP-13, COX-2, iNOS, AGC, and Col1 were assessed with qRT-PCR, and 

downstream PGE2 production was quantified with ELISA.  

Metformin in the presence of the combined stress treatments (M+IL/S) significantly 

decreased COX-2 and iNOS expression, decreased PGE2 production, and increased Col1 

expression. The lack of metformin-mediated suppression of inflammatory response in the non-

stretch groups indicates that metformin may be enacting its effects through a stretch-dependent 

manner.   

These results suggest a foundation for pursuing further research into metformin’s potential 

role as an anti-inflammatory agent for curtailing intervertebral disc degeneration. 
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1.0 INTRODUCTION 

Lower (lumbar) back pain is one of the most common symptoms leading to a clinical visit. 

Previous literature has indicated an annual healthcare expenditure of $50-$100 billion for low-

back pain related conditions (Katz, 2006). The onset of chronic lumbar pain has been shown to 

interfere with workplace productivity, costing an average of 32 days’ absence per calendar year 

and $7,800 in lost productivity per employee (Joish & Brixner, 2004). Multiple risk factors have 

been identified for lumbar back pain in addition to the apparent occupational circumstances and 

lifestyle choices (e.g. smoking), age, and genetic factors - all of which have been linked to apparent 

intervertebral disc-related conditions. Particularly in the geriatric population, intervertebral disc 

degeneration has been documented to play a contributive role in the etiology of chronic lower back 

pain (Katz, 2006). 

Patients that suffer from intervertebral disc degeneration (IDD) present with discogenic 

pain typically caused by chronic damage to the intervertebral discs between vertebral bodies in the 

lumbar spine. Damage to intervertebral discs in geriatric patients occur over time, a resultant of 

the decades of compressive loading, tensile forces, increased local inflammatory profile, and 

environmental factors. IDD in patients has been linked to radiculopathy, spondylitis, disc 

herniation, and spinal stenosis in varying degrees of severity (Resorlu et al., 2015). Currently, 

treatment of IDD is geared towards improving joint mobility in the spine and regaining the ability 

to perform daily tasks with minimal pain. These treatments can take the form of surgery, 

medication, physical therapy, injections, and/or lifestyle changes. In addition to surgical 

procedures involving removal of degenerative disc components, biomedical and pharmaceutical 

treatments have been gaining much ground recently in the management of IDD. 
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There is substantial evidence indicating that chronic inflammation and catabolism of the 

intervertebral disc facilitates extracellular matrix breakdown, accelerating intervertebral disc 

degeneration (Molinos et al., 2015). Thus, research in biomedical and pharmaceutical treatments 

for IDD have been geared towards curtailing the inflammatory response and catabolism in the disc.  

Metformin, typically used in the treatment of type II diabetes, has been gaining ground as 

a potential therapeutic agent for its anti-inflammatory properties. Chen et al. have demonstrated 

that metformin inhibits the expression of pro-inflammatory factors such as the MMPs and 

cyclooxygenase-2 (COX-2) in nucleus pulposus (NP) cells within the disc in response to tert-Butyl 

hydroperoxide, an inflammatory response-inducing oxidant (Chen et al., 2016). However, this 

oxidant very loosely mimics inflammatory progression in the disc and does not consider 

mechanical loading, which has been shown to contribute to the inflammatory process (Miyamoto 

et al., 2006). Thus, this dissertation will address the gaps in literature regarding the effect of 

metformin on the inflammatory profile of the intervertebral disc in response to both inflammatory 

and mechanical stimulus in a manner that is more representative of causative factors of disc 

degeneration in vivo.   
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2.0 BIOLOGICAL AND MECHANOLOGICAL CONTRIBUTIONS TO 

INTERVERTEBRAL DISC DEGENERATION 

2.1 Anatomy and Physiology of the Intervertebral Disc 

To understand the mechanisms of IDD, we must explore how the structure of the 

intervertebral discs and the surrounding vertebral constituents relate to the function of the spine as 

a whole. The intervertebral disc consists of three major types of connective tissue: Nucleus 

pulposus (NP), annulus fibrosus (AF), and cartilaginous end plate (EP) (Fig. 1). While the NP and 

AF constitute much of the intervertebral disc volume, the EP is the comparatively thin connective 

tissue that juxtaposes each adjacent vertebral body to the intervertebral disc.  

 

 

Figure 1 - Anatomy of the intervertebral disc and associated structures in the lumbar spine. Image courtesy of 

University of Pecs. 
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The intervertebral disc region is hypoxic, lacking vascularity and access to active blood 

supply, aside from the few vessels that innervate the posterior longitudinal ligament and the 

outermost AF (Yao et al., 2017). Thus, the cells of all three tissues have evolved unique 

mechanisms to maintain function in the hypoxic environment; albeit, EP provides certain essential 

nutrients in low concentrations to the AF and NP through simple diffusion. With time, chronic 

mechanical stressing of the EP tissue can lead to ossification, acting as a catalyst for IDD by 

reducing nutrient supply to the AF and NP cells of the disc (Moore, 2006). Composing 40-50% of 

the total disc volume, the NP is the gelatinous interior of the intervertebral disc, circumscribed by 

the AF. Healthy NP maintains dynamic hydrostatic pressure within the disc due to its high water 

content, which can be attributed to the localized concentration of hydrophilic proteoglycans. With 

age, decreased water content within the NP has been linked with the loss of proteoglycans (Newell 

et al., 2017). A normal range of in vivo pressures in the NP was recorded to be between 460 and 

1330 kPa, with the highest pressure recorded during forward flexion with a 20 kg mass at 2300 

kPa (Newell et al., 2017). High pressures inside the NP can radially disperse stress onto the AF.  

The AF is composed of concentric lamellae surrounding the NP, largely consisting of 

collagen I and II fibrils. Collagen functions to radially distribute tensile and shear forces within 

the disc. A rupture of this lamellar collagen matrix from chronic mechanical stress can cause NP 

to leak out, resulting in disc herniation and various IDD-associated conditions (Fig. 2, Fig. 3).   
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Figure 2 – Schematic of disc herniation caused by AF rupture. Image courtesy of Mayfield Clinic. 

 

 

 

Figure 3 – Lumbar MRI of three swimmers reporting severe lower back pain highlighting the compromising 

effect of herniated NP on the spinal canal. Image courtesy of Dr. John Mullen, Training COR. 
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2.2 Chronic Inflammation and its Contributive Role in Intervertebral Disc Degeneration 

With age, chronic inflammatory responses localized to the disc have been shown to 

accelerate degeneration. Current literature supports the hypothesis that immune response is 

triggered through disc by-products and waste of matrix production. Intermediate compounds of 

collagen and proteoglycan production, such as fibronectin and hyaluronan, have been shown to 

increase protease activity and cytokine presence within the disc, such as the upregulation of 

interleukin-1β (IL-1β) (Molinos et al., 2015). Nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB), a protein complex that plays an important role in cytokine production 

and mechanical signaling, may be activated by genotoxic stresses, cytokines, mechanical 

stimulation, and/or infection (Fig. 4). Laminin, fibronectin, and other ECM fragments are shown 

to bind to Toll-like Receptor 2/4 and activate a secondary messenger system that facilitates the 

nuclear translocation of NF-κB, (Molinos et al., 2015).  

 

Figure 4 – Schematic of NF-κB interactions as a secondary messenger, highlighting its effect on cell death, 

proliferation, and survival. Image Courtesy of Cold Spring Harbor Perspectives in Biology. 
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Upon activation, NF-κB is responsible for a variety of cellular responses, with a steadfast 

contribution to immune/inflammatory response via the IL-family, as well as cell proliferation, 

death, and survival (Lawrence, 2009). The numerous functions of NF-κB have prompted recent 

research to be directed towards its role in disc degeneration. As noted by Tisherman et al., 

inhibiting NF-κB dampens the inflammatory response and catabolic factor production in the disc 

(Tisherman et al., 2016). At the RNA level, NF-κB upregulates the gene expression of pro-

inflammatory factors IL-1β, iNOS, COX-2, and catabolic factor MMP-13, facilitating breakdown 

of collagen and proteoglycan. Therefore, an understanding of the underlying mechanisms of 

inflammation and its associated factors is crucial to assessing the role of inflammation in disc 

degeneration.  

2.3 Arachidonic Acid Pathway and Role of Prostaglandins in Inflammatory Response 

The Arachidonic Acid pathway is a highly researched and established mediator of 

inflammatory response across various cell and tissue systems in the body. Arachidonic acid is 

native to the phospholipid membrane, and is released by phospholipase A2, or less commonly via 

a two-step process involving phospholipase C and DAG lipase. Downstream, it becomes the 

substrate of cyclooxygenase-2 (COX-2) and is converted into a variety of prostaglandins. This is 

a control step for non-steroidal anti-inflammatory drugs (NSAIDs), which target and inhibit COX-

2, COX-1, or both to downregulate inflammatory response downstream (Litalien & Beaulieu, 

2011). Thus, many prostaglandins are known to be causative agents of inflammation. 

Prostaglandin E2 is one of the main downstream products of COX-2, and is of particular interest 

in the study of disc degeneration. Previous groups have shown that mechanical tensile strain and 



 16 

inflammatory factors such as IL-1β and TNF-α synergistically increase PGE2 concentration many-

fold within AF cells (Miyamoto et al., 2006). Inflammatory cells have also been shown to co-

express both isoforms of COX (1 and 2), and inhibition of either isoforms have been shown to 

decrease PGE2 production (Ricciotti & Fitzgerald, 2011). Despite the complexity of inflammation 

and its underlying mechanisms, there is overwhelming evidence to suggest that suppression of 

PGE2 and COX-2 reduces inflammatory response via the arachidonic acid pathway. As 

inflammation plays a large role in intervertebral disc degeneration, anti-inflammatory agents are 

currently gaining ground in becoming therapeutic precursors for treating IDD-induced low-back 

pain.        

 

Figure 5 – Arachidonic Acid pathway highlighting key downstream prostaglandin products. Image courtesy 

of Emanuela Ricciotti, Arterioscler Thromb Vasc Biol 2011 May; 31(5): 986-1000. 
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2.4 Biomechanical and Mechanobiological Contributions to Disc Function 

Cells of the AF and NP act in conjunction to constitutively produce extracellular matrix 

(ECM) to maintain disc health and stress distribution properties. While the AF and NP produce 

collagen type I and proteoglycans respectively in response to deformation, the overall maintenance 

of the ECM is governed by both biochemical and biomechanical changes. Aging and its associated 

chronic inflammation in the intervertebral disc bring about biomechanical changes within the AF 

and NP cells. Annulus fibrosus tissue becomes fibrillated and roughened over time, resulting in a 

decreased ability to withstand shear force and radially distribute tension (Nguyen, Jacobsen, & 

Chahine, 2017). The aging nucleus has been shown to exhibit lower hydrostatic pressure and 

volume. These changes manifest in fibrotic formations in place of the functional nucleus pulposus, 

ultimately decreasing the ability of the disc to withstand compressive loading. As suggested by 

Adams, degenerated discs transfer load from the nucleus pulposus to the posterior annulus (Adams, 

1996). The increase in load experienced by the annulus weakens it further and heightens the 

compressive stress peaks in the biomechanical response profile of the functional spine unit up to 

160% (Adams, 1996). These areas of high stress within the annulus are hypothesized to be 

contributors towards lower back pain and disc herniation. While the effect of mechanical stretch 

on the tissue level is important in the clinic, where stages of disc degeneration are used to 

characterize age-related diseases, there are notable changes occurring at the cellular level that 

largely dictate and influence degeneration of the disc tissue. Miyamoto’s group has found 

mechanical stretch-mediated upregulation of PGE2 and key pro-inflammatory agents, including 

COX-2 (Miyamoto et al., 2006). Increased expression of proteases such as MMPs in response to 

tensile stretch has also been implicated in degenerative discs and noted in elderly patients with 

advanced disc degeneration (Nemoto, Yamagishi, Yamada, Kikuchi, & Takaishi, 2006). It was 
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also found that mechanical stretch, in conjunction with IL-1β treatment, synergistically increases 

PGE2 synthesis beyond either treatment alone in AF cells (Miyamoto et al., 2006). This 

combination of stimuli forms a positive feedback loop, where mechanical and cytotoxic 

(inflammatory) stresses exacerbate the local inflammatory response and accelerate the rate of disc 

degeneration. 

The degree of mechanical strain has also been shown to affect the gene expression profile 

of the disc cells. Sowa et al. show that at a physiological range of strain (6%) actually exerts a 

positive and protective effect on AF cells by suppressing pro-inflammatory and catabolic genes 

such as iNOS, TNF-α, MMP-13 and -3. Conversely, high levels of strain (18%) exhibited the 

greatest catabolic response, including upregulation of MMPs, iNOS, and COX-2 under 

inflammatory conditions (Sowa et al., 2011). 

2.5 Metformin: Overview and Mechanism of Action 

Metformin, synthetically developed in 1922, has been the most widely used oral 

medication for type II diabetes in the United States since the early 21st century. It is chemically 

synthesized with organic reactions involving dimethylamine hydrochloride and 2-cyanoguanidine. 

Traditionally, metformin has been used to decrease hepatic gluconeogenesis and increase insulin 

sensitivity by inhibiting pathways that promote gluconeogenesis in the liver. Although the exact 

mechanism in which metformin acts is still largely unknown, Zhou et al. demonstrated that 

metformin is correlated with increased activation of the AMP-activated protein kinase (AMPK) 

pathway in primary hepatocytes (Zhou et al., 2001). While the AMPK pathway is largely a 

homeostatic pathway upregulating glucose and fatty acid uptake when cellular energy is low, it 
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has also been shown to modulate multiple different aspects of cellular metabolism including 

autophagy, redox regulation, aging, and inflammatory response (Fig. 6) (Jeon, 2016). In the 

context of IDD, metformin has been found to increase AMPK activation, which has multiple 

downstream benefits. Namely, AMPK inhibits NF-κB translocation into the nucleus via 

SIRT1/FOXO/PGC1α (Fig. 6), downregulating the transcription of pro-inflammatory genes such 

as COX-2 and iNOS. Metformin’s role in increasing AMPK activation has led to various studies 

exploring its potential anti-inflammatory and pro-autophagy (cellular recycling) effects on various 

cell lines (Gu, Ye, Wang, Sun, & Hu, 2014; Isoda et al., 2006). However, there is sparse literature 

investigating the potential anti-inflammatory properties of metformin in relation to the 

intervertebral disc to combat disc degeneration.    
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Figure 6 – Schematic highlighting various discovered pathways associated with AMPK activation. Image 

courtesy of Sang-Min Jeon, Experimental & Molecular Medicine 48, e245 (2016). 
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3.0 OBJECTIVE 

The objective of this dissertation is to investigate the effects of metformin on AF cells 

under in vitro conditions that most closely mimic biological and mechanical contributions to disc 

degeneration. Cells will be subject to metformin under induced inflammation, traumatic 

mechanical stretch, and both in conjunction to identify the pathways in which metformin interacts 

with cellular processes, with a particular focus on changes in the inflammatory response and ECM-

associated gene expression of AF cells. Investigation of metformin’s anti-inflammatory properties 

relating to the intervertebral disc may provide a foundation for further research on metformin’s 

potential therapeutic uses in treating low-back pain resulting from intervertebral disc degeneration. 
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4.0 METHODS 

4.1 Specimen Procurement 

Five Fischer 344 rats (Mean age: 9±2.5 months) were obtained under IACUC protocol 

18022330. All rats were visually examined prior to sacrifice to note any abnormalities. 

4.2 Spine Isolation  

All rats were euthanized with carbon dioxide as stated in the IACUC protocol. A secondary 

method of euthanasia (cervical dislocation), was used to ascertain cardiac and respiratory arrest. 

After sacrifice, rats were incised posteriorly from cervical to sacral spine. Rat spines were extracted 

along with the tail for cell culture. Ligaments, connective tissue, and muscle from the lumbar spine 

and tail were removed prior to cell isolation to facilitate discectomy.  

4.3 AF Cell Isolation and Culture 

Annulus fibrosus was collected from as many disc levels as possible and placed in a tube 

with F-12 media (10% fetal bovine serum (FBS), 1% Penicillin-Streptomycin (PS)). This tissue 

was then exposed to the proteolytic enzyme pronase, which has been shown to be a rapid and 

efficient dispersing agent for fibroblastic cell lines (Foley & Aftonomos, 1970). Pronase was 

diluted in 10% FBS/1% PS to form 0.2% pronase solution. After slow-stir incubation of AF tissue 
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in 0.2% pronase for 1 hour, cells were washed with Hank’s Balanced Salt Solution (HBSS) twice. 

AF tissue was then transferred to a .02% collagenase solution (diluted in 10% FBS/1% PS) for 

further digestion of native collagen fibrils. Tissue was subsequently slow-stir incubated for 3.5 

hours with intermittent monitoring. Depending on the amount of tissue, the incubation was halted 

when little to no macroscopic AF tissue was left visible. AF cells were then washed with HBSS 

and spun down for 5 minutes at 2000 rpm. Finally, cells were resuspended in F-12 (10% FBS/1% 

PS) and plated onto T-75 flasks. Cells were stored in a hypoxic chamber (5% CO2, 5% O2, 37.5°C) 

to simulate the intervertebral disc environment. Cell media was changed every few days to 

facilitate rapid growth. Once cells had grown to ~85% confluence, they were passaged with 

Trypsin and plated onto six-well FlexCell (FlexCell International Corp., Hillsborough, NC) plates 

for subsequent treatment (Fig. 7).  

 

 

 

4.4 Metformin, IL-1β, and Stretch Treatment 

After two days of incubation in FlexCell plates, the cells were checked for sufficient 

confluence for treatment (~85%). Wells were split into eight groups (Table 1, Fig. 7) for treatment.  
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Figure 7 - FlexCell plate layout for group treatment conditions. 

 

Table 1 - Names and Abbreviations for Treatment Groups. 

Group Name Abbreviation Treatment Details 

Control C No treatment 

IL-1β treatment IL 1 ng/mL IL-1β 

Metformin treatment M 100µM Metformin 

Metformin + IL-1β treatment M+IL 100µM Metformin + 1 ng/mL IL-1β 

Control + Stretch S 18% strain, 24h 

IL-1β/Stretch IL/S 1 ng/mL IL-1β + 18% strain, 24h 

Metformin + Stretch M+S 100µM Metformin + 18% strain, 24h 

Metformin + IL-1β + Stretch M+IL/S 100µM Metformin + 18% strain, 24h +  

1 ng/mL IL-1β 
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Metformin HCl (Sigma-Aldrich; 1,1- Dimethylbiguanide hydrochloride -- CAS 1115-70-

4) was dissolved in F-12 (1% FBS/1% PS) to achieve a 100µM solution. All wells indicating 

metformin treatment received 2mL of the 100µM solution each after suctioning out old media. In 

all the other wells, old media was suctioned and replaced with 2mL of F-12 (1% FBS/1% PS) each. 

All the plates were then pre-incubated in a hypoxic chamber (5% CO2, 5% O2, 37.5°C) for four 

hours prior to inflammatory and stretch treatments. At t=4 hours (Fig. 14, Appendix A), stock IL-

1β was diluted to achieve 1ng/mL solution. At the end of the metformin pre-incubation period, 

20µL of this solution was added to each well with a group indicating IL-1β treatment. Right after 

IL-1β treatment, plates with stretch conditions were placed on a FlexCell baseplate (FX-4000; 

Flexcell International Corp.) with airtight gaskets and subjected to 24 hours of mechanical 

stretching at 0.5 Hz and 18% strain in the incubator. The FlexCell system consists of compressor 

and vacuum modules that apply desired strain to a flexible silicone membrane upon which cells 

are plated (Fig. 8). At t=28 hours, all plates were removed from incubator and treatment media 

was collected. Cells were then lysed with 10:1 solution of RLT Plus:BME. Cell lysate and 

treatment media were collected and stored in -80°C freezers for RNA isolation. 
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Figure 8 – FlexCell plate design emphasizing unit strain mechanism. Amount of vacuum applied corresponds 

to percentage strain experienced by plated cells on the flexible bottom (Flex I plate).  

 

4.5 RNA Isolation and qRT-PCR 

Within a week of collecting lysate from treated cells, all groups underwent mRNA isolation 

to establish gene expression profiles. The QIAGEN RNeasy Plus Mini Kit (QIAGEN, catalog no. 

74134) was used to isolate mRNA from cell lysate for all groups. Cell lysates were passed through 

a DNAse step to filter out genomic DNA and increase RNA quality. A nano-spectrophotometer 

was used to assess RNA concentration and quality. Average RNA concentration was 84.54	 ±

35.37ng/µL, with a minimum standard of quality set at a ratio of 1.8 (RNA:protein). qRT-PCR 

was used to measure gene expression with custom-designed rat primers for MMP-13 (collagenase), 

COX-2 (cyclooxygenase-2), iNOS (inducible nitric oxide synthase), Col1, and AGC (Table 4, 

Appendix A). SYBR-green protocol (Applied Biosystems, Carlsbad, CA) detection system was 

used for thermocycling, with annealing temperature set at 62°C and melting temperature at 95°C. 
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PCR data was analyzed using the 2-ΔΔCt method for calculating relative gene expression. This 

particular method of measuring relative gene expression utilizes an internal control/housekeeping 

gene to normalize the amount of RNA added to the reverse transcriptase reactions. Glyceraldehyde 

phosphate dehydrogenase (GAPDH) is a constitutively expressed gene shown to be an appropriate 

housekeeping gene for disc cell mechanobiology testing (Sowa et al., 2011) and was used as such 

in all samples. Additionally, a calibrator (usually the untreated group) is chosen for direct 

comparison of gene expression. For example, to observe the effect of IL-1β treatment on non-

treated cells, relative gene expression of the control group (C) was set to 1, while the expression 

of a particular gene in the IL-1β group was presented as a fold-change relative to the control group. 

Thus, relative gene expression as a fold-change and as a percent-change between groups were 

compared based on treatment of interest. To explore the effect of induced inflammation under non-

mechanical and mechanical conditions, the IL-1β group was compared to control and IL-

1β/Stretch was compared to Stretch alone, respectively (i.e. IL vs. C and IL/S vs. S). The effect of 

mechanical stimulation was investigated by comparing stretch conditions with their analog in the 

non-stretch group (i.e. IL/S vs. IL). Similarly, the effect of metformin was explored by comparing 

metformin conditions to their analogs in the non-metformin groups (i.e. M+IL/S vs. IL/S).  

4.6 PGE2 ELISA 

A Prostoglandin E2 (PGE2) enzyme-linked immunosorbent assay (ELISA) kit was obtained 

(KGE004B, R&D Systems) for investigating the presence of PGE2 among all treatment groups. 

Frozen conditioned media (1% FBS/1% PS) from all trials were thawed and diluted 3-fold with 

calibrator diluent for use. A competitive horseradish-peroxide (HRP) enzyme probe reporter was 
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used for its high turnover rate and specific enzyme activity. All absorbance values were read using 

a spectrophotometer (PerkinElmer, Waltham, MA) set to 450nm for the main reading, and 570nm 

for background noise detection. In final analysis of PGE2 concentration, background absorbance 

values were subtracted from sample and standard measurements to reflect true PGE2 

concentrations. Standard wells produced a linear absorbance curve with logarithmic equation 𝑦 =

0.622 ln(𝑥) − 2.2747 and a correlation coefficient of 0.9402 (Fig. 9). PGE2 concentrations of the 

samples were calculated by inputting absorbance values into the standard curve line of best fit. 

 

Figure 9 – Standard curve for PGE2 ELISA with line of best fit equation and correlation coefficient. 
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4.7 Statistical Analysis 

For statistical analysis of relative gene expression from qRT-PCR, two-way ANOVA was 

used to compare treatment groups within each gene with Type I error set at α=0.05. Main column 

effects were calculated with Dunnett’s multiple comparisons test.  

Statistical analysis of PGE2 concentrations among groups was conducted with one-way 

ANOVA, with Type I error set at α=0.05. Inter-group averages were compared using Tukey’s 

multiple comparisons test. 

All statistical analyses were performed in the statistical software Prism 8.0 (GraphPad 

Software, San Diego, CA).  
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5.0 RESULTS 

5.1 Gene Expression – Inflammatory Conditions 

Treatment groups were split into inflammatory (IL-1β treatment) and non-inflammatory 

(without IL-1β treatment) conditions for analysis. In the inflammatory profile, all relative gene 

expression was normalized to the IL-1β group. Figure 10 presents the inflammatory gene 

expression profile for AGC, COX-2, MMP-13, Col1, and iNOS. All bars depict relative percent 

change in gene expression compared to the IL-1β group. For example, the addition of mechanical 

stretch (IL/S) increased COX-2 expression 64.5% compared to IL-1β treatment alone. In all trials, 

the addition of IL-1β to untreated cells substantially increased gene expression of pro-

inflammatory genes MMP-13, COX-2, and iNOS, indicating successful inflammatory stimulation.  

During combined inflammatory and mechanical stretch treatments (IL/S), AGC gene 

expression was upregulated by 155.8%. Col1 production was downregulated -26%. COX-2 was 

the only pro-inflammatory gene showing substantial upregulation under combined 

inflammatory/stretch conditions (64.5%). MMP-13 and iNOS were downregulated by -70.3% and 

-66.3%, respectively (Fig. 10).  

Metformin added to IL-1β stimulated cells (M+IL) increased AGC and Col1 expression by 

135.5% and 26.5% respectively compared to IL-1β alone. Additionally, only COX-2 was 

upregulated with the addition of metformin to IL-1β treatment (10%), while both MMP-13 and 

iNOS were downregulated (-28.8% and -30.5% respectively).   

The addition of metformin to combined treatment (M+IL/S) upregulated AGC by 163.5%, 

a 7.7% increase from combined treatment alone (IL/S, 155.8%). Metformin also significantly 



 31 

upregulated Col1 expression under combined treatment (99%, p < .0001) compared to the IL/S 

group (-26%). COX-2 and MMP-13 showed upregulation in M+IL/S conditions (35.8% and 20% 

respectively). However, metformin decreased COX-2 expression by 28.7% in the presence of 

combined treatment (M+IL/S) compared to IL/S alone (Fig. 10).  

Table 2 provides an executive summary of gene expression modulation under each 

inflammatory condition.  

 

 

 

Figure 10 - Inflammatory gene expression profile, with all groups normalized to IL group. For example, in the 

M+IL group, gene expression of AGC was 135.5% greater than IL alone. 
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Table 2 - Inflammatory conditions highlighting modulation of gene expression with various treatment groups. 

Inflammatory Conditions (IL-1β) AGC Col1 COX-2 MMP-13 iNOS 

Metformin ↑ ↓ ↑ ↓ ↓ 

Mechanical stretch ↑ ↓ ↑ ↓ ↓ 

Metformin + Stretch ↑ ↑ ↑ ↑ ↓ 

5.2 Gene Expression – Non-inflammatory Conditions 

In the non-inflammatory conditions, all relative gene expression was normalized to the 

control group. Figure 11 presents the non-inflammatory gene expression results for AGC, COX-

2, MMP-13, Col1, and iNOS. All bars depict relative percent change in gene expression compared 

to the control group. For example, the introduction of metformin to untreated cells (M) increased 

AGC expression by 14.5% relative to the control group (C).  

The addition of mechanical stretch to untreated cells (S) increased AGC expression by 

15.8% and downregulated Col1 expression by -52.8%. Mechanical stretch (S) also increased 

baseline levels of COX-2 by 40.3%. MMP-13 expression was suppressed by -28.3% (Fig. 11).  

Metformin added to untreated cells (M) upregulated AGC (14.5%) and pro-inflammatory 

genes COX-2 and MMP-13 (7.4% and 25.3%, respectively). Col1 expression decreased 31.3% 

with the addition of metformin to untreated cells (M), in contrast to the analogous inflammatory 

group (M+IL) which exhibited Col1 upregulation.  

Metformin in the presence of stretch stimulus (M+S) increased AGC expression 

significantly (27.5%, p < .05) compared to metformin alone (M). A large degree of Col1 expression 

was observed in the M+S group compared to metformin alone (87.8%, p < .0001). Metformin and 
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stretch stimulus in conjunction upregulated COX-2 expression (63.3%) further than either 

condition alone. While metformin alone (M) increased MMP-13 expression by 25.3%, the 

contribution of stretch stimulus (M+S) decreased expression to -6.7% relative to control.  

iNOS expression was infinitely small or undetectable in all non-inflammatory conditions, 

as expected. Percent changes in relative gene expression of iNOS are not representative of true 

gene expression, as PCR threshold counts (Ct) were very high or nonexistent, and thus small 

changes in Ct registered as large percentages.    

Table 3 provides an executive summary of gene expression modulation under each non-

inflammatory condition.  

 

 

 

Figure 11 - Non-inflammatory gene expression profile, with all groups normalized to C group. For example, 

in the S group, gene expression of AGC was 15.8% greater than C alone. 
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Table 3 - Non-inflammatory conditions highlighting modulation of gene expression with various treatment 

groups. 

Non-Inflammatory Conditions AGC Col1 COX-2 MMP-13 iNOS 

Metformin ↑ ↓ ↑ ↑ ↓ 

Mechanical Stretch ↑ ↓ ↑ ↓ ↓ 

Metformin + Stretch ↑ ↑ ↑ ↓ ↓ 

5.3 Prostaglandin E2 Detection and Quantification 

PGE2 ELISA was used to identify and quantify the amount of PGE2 synthesized in each 

treatment group. PGE2 concentration was lowest in the control group (1941 pg/mL) and peaked 

during IL/S treatment group (4481 pg/mL). All stretch conditions, with the exception of the 

M+IL/S group, exhibited overall greater concentrations of PGE2 compared to non-stretch groups. 

Combined stress treatments (IL/S) significantly increased PGE2 expression (p < .0001). The 

presence of metformin under combined stress treatments (M+IL/S), however, significantly 

decreased PGE2 expression to 2714 pg/mL from the 4481 pg/mL observed in the IL/S group (Fig. 

12). This trend was not observed under non-inflammatory conditions, where the addition of 

metformin to mechanical stretch (M+S) increased PGE2 expression from 3898 pg/mL to 4341 

pg/mL.   
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Figure 12 - PGE2 concentration of all groups in pg/mL.   
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6.0 DISCUSSION 

6.1 Metformin acts through Mechanical Stretch-Mediated Inhibitory Action 

The difference in gene expression profiles between non-inflammatory and inflammatory 

conditions highlights key differences that may provide insight into metformin’s mechanism of 

action. Metformin in the combined presence of mechanical stretch and IL-1β (M+IL/S) suppressed 

COX-2 (Fig. 10), but substantially increased COX-2 mRNA transcripts in the non-inflammatory 

(M+S) group (Fig. 11). Thus, metformin may not be acting to enzymatically inhibit COX-2, unlike 

traditional NSAIDs.  

As previously described, NF-κB is a prominent mediator in mechanical and inflammatory 

signaling pathways. Mechanical stimulation upregulates nuclear translocation of NF-κB, resulting 

in transcription of a range of inflammatory cytokines, including the production of IL-1β 

(Tisherman et al., 2016). AMPK is a well-known inhibitor of NF-κB and downregulates its 

translocation into the nucleus. Since AMPK shows increased activity in the presence of metformin, 

it is possible that metformin is acting to downregulate NF-κB translocation via AMPK. However, 

this phenomenon only seems to occur during stretch conditions, as the M+IL group does not show 

any significant downregulation of pro-inflammatory genes explored in this study, while the 

M+IL/S group does. This may be in part due to the greater hypothesized NF-κB translocation 

associated with the stretch conditions compared to the non-stretch groups, although an 

immunofluorescence assay is necessary to confirm this hypothesis.  

Although the inflammatory response seems synergistic and positively reinforced between 

stretch and IL-1β as previously described by Miyamoto (Miyamoto et al., 2006), the stretch 
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condition seems to be a greater contributor to inflammation compared to IL-1β alone, as evidenced 

by the PGE2 concentrations (Fig. 12). The significant increase in PGE2 concentration from IL to 

IL/S treatments suggests that IL-1β alone produces a moderate inflammatory response, which may 

be further upregulated by the NF-κB pathway through mechanical signaling in the IL/S group. 

When metformin is added to the IL/S group however, significant inhibition of PGE2 is seen. 

Strikingly lower PGE2 levels in the M+IL/S group compared to the IL/S group suggests that 

metformin may be enacting its anti-inflammatory effects in a stretch-dependent manner. As 

metformin is known to upregulate AMPK, which acts to downregulate NF-κB downstream, it is 

hypothesized that metformin blunts the stretch-mediated inflammatory response through NF-κB 

inhibition or another stretch-mediated inflammatory pathway (Fig. 13). Synergistic stretch and IL-

1β-mediated exacerbation of inflammation through upregulation of PGE2 has been shown to 

accelerate degeneration by emphasizing production of pro-inflammatory factors (Miyamoto et al., 

2006). Metformin’s significant inhibitory effect on PGE2 synthesis suggests that it may play a 

mediatory role in PGE2-related inflammation in the disc.   

 The homeostasis of disc cells is closely governed by the balance of anabolic and catabolic 

factors, and thus anabolic gene profiles were also explored. In both inflammatory and non-

inflammatory conditions, Col1 production was greatly increased through the synergistic effects of 

metformin and stretch (Fig. 10, 11). The lack of a similar effect in the metformin and stretch groups 

separately further suggests that metformin’s mechanism of action is dependent on mechanical 

signaling pathways. The immense upregulation of Col1 in combined stress and metformin 

treatments implies improved ECM production, which is crucial for balancing catabolic factors that 

simultaneously degrade the disc. Additionally, as AF cells are primarily composed of Collagen I 
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and II fibers, increased Col1 expression may be beneficial in protecting against disc herniation by 

strengthening the AF in the posterolateral plane.    

6.2 Implications 

Our findings provide evidence to suggest that metformin may be a viable anti-

inflammatory alternative to NSAIDs. From gene expression analysis and downstream PGE2 

quantification, it is possible that metformin acts at the gene transcription level through a separate 

pathway to curb inflammation compared to the currently prescribed COX-1 and -2 inhibitors, 

which act as enzymatic inhibitors. Traditional NSAIDs, and particularly COX-1 inhibitors, have 

documented side effects such as the thinning of the gastric lining. Further biochemical assays are 

necessary to identify the exact pathway in which metformin enacts its anti-inflammatory effects; 

however, the evidence suggesting its stretch-mediated inhibition of NF-κB via AMPK provides a 

basis for further studies comparing its effectiveness as an anti-inflammatory agent over traditional 

NSAIDs. Metformin’s blanket anti-inflammatory effects may prove not only useful in the 

intervertebral disc as a retardant of disc degeneration, but also as a system-wide anti-inflammatory 

agent with potential for ameliorating a plethora of inflammation-related conditions.  
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Figure 13 - Simplified schematic highlighting hypothesized mechanism of metformin and its effect on 

intervertebral disc degeneration. 
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Appendix A Miscellaneous 

 

Figure 14 – High-level timeline overview of methods. 

 

Table 4 – Rat primer sequences used in qRT-PCR assay. 

Gene Primer Sequence 

GAPDH Fwd: 5’-ATGACTCTACCCACGGCAAG-3’ 

Rev: 5’-GATCTCGCTCCTGGAAGATG-3’ 

AGC Fwd: 5’-AGACACCCCTACCCTTGCTT-3’ 

Rev: 5’-AAAGTGTCCAAGGCATCCAC-3’ 

Col-1 Fwd: 5’-TTCTGAAACCCTCCCCTCTT-3’ 

Rev: 5’-CCACCCCAGGGATAAAAACT-3’ 

iNOS 

 

Fwd: 5’-CCTGTGTTCCACCAGGAGAT-3’ 

Rev: 5’-CGCTTTCACCAAGACTGTGA-3’ 

MMP-13 Fwd: 5’-GCAGCTCCAAAGGCTACAAC-3’ 

Rev: 5’-GAAATGGCTTTTGCCAGTGT-3’ 
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