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Abstract 

Unsupervised methods for pattern discovery in high-throughput genomic data 
 

Kristina Lynn Buschur, PhD 
 

University of Pittsburgh, 2019 
 
 

Large –omics experiment datasets are being generated at an increasingly fast pace. They 

present bountiful opportunities for insight into complex diseases and systems but also new 

challenges in analysis. Novel approaches are needed to make sense of these high-throuput data and 

especially to consider them jointly for a more complete picture of the system’s biology. In this 

dissertation, we have focused on improving clustering in high-throughput biological datasets by 

developing a variety of new features that are specifically tailored to reflect the biological properties 

of the systems we are trying to understand. We started by proposing new features for representing 

transcription factor binding sites that capture both the DNA sequence composition of the binding 

region and the TF-DNA binding strength. We observed that these new features aided clustering 

for improved DNA binding motif discovery. Next, we presented a new method, single sample 

network perturbation assessment (ssNPA), and demonstrated how causal network learning 

algorithms could be used to build features that capture the complex interactions of variables within 

biological systems such as gene regulatory networks and cluster samples based on how these 

networks are deregulated in different subtypes. We validated this method in a murine liver cell 

development dataset and with transcriptomic datasets comparing breast cancer and lung 

adenocarcinoma tumor samples to normal tissue. Then we used ssNPA to describe new subtypes 

of chronic obstructive pulmonary disease (COPD) that were based on their relative gene network 

deregulation compared to normal samples. Finally, we applied causal network modeling 

techniques to two datasets of chronic lung diseases, exploring the systems biology of lung function 
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decline in COPD at the body systems level and cell type interactions in idiopathic pulmonary 

fibrosis (IPF) at the scale of the gene expression in single cells. 
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1.0 Introduction 

Large genomic datasets are becoming increasingly abundant. High-throughput sequencing 

cost is significantly decreasing and the answers to questions related to the entire human genome, 

transcription, and regulome and their connections to development and disease are more accessible 

than ever before. The speed and ease with which we can collect these datasets have now far 

exceeded our ability to analyze and interpret them. New methods are needed for us to make the 

most out this treasure trove of data, and there are a huge variety of machine learning methods being 

developed to fill the gap. This dissertation aims to contribute to that work through taking a careful 

consideration of the biology of particular system and developing approaches that are specifically 

targeted to important applications and questions regarding systems biology and disease.  

The majority of this work focuses on unsupervised learning with the goal of clustering 

biological objects, ranging from single transcription factor genomic binding sites all the way up to 

subjects diagnosed with chronic lung disease. One of the main goals of clustering is subtype 

identification. Subtyping is useful in a number of ways. For experiments in which we are trying 

find a signal that is too weak to detect in a heterogeneous collection of samples, separating the 

samples into several smaller groups with more consistent characteristics can strengthen the signal 

of interest and make downstream analyses easier and more productive. Given a set of samples that 

have been grouped together in a cluster, patterns can often emerge that would not have otherwise 

been obvious. 

A significant challenge in designing a successful clustering experiment is choosing the 

right feature space in which to represent the objects for clustering. Without careful attention to 

feature selection, there is no guarantee that objects will be grouped together into clusters in a way 
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that is relevant to the questions one is trying to answer or even meaningful in any way. We 

developed a number of new features that are specifically tailored to reflect the biological properties 

of a given object. For example, in Chapter 2 we propose new features for representing and 

partitioning whole-genome transcription factor occupancy datasets (e.g. ChIP-seq, ChIP-exo, and 

ChIP-nexus). We have found that features that capture both the DNA sequence composition of the 

binding region and the TF-DNA binding strength improve clustering performance with the goals 

of DNA-binding motif discovery and understanding genomic organization.  

In Chapter 3, we used sophisticated causal network learning algorithms to devise features 

that reflect how complicated systems of variables (e.g. gene expression measurements) interact 

and how those interactions change among control samples and case subtypes. With objects 

represented in this feature space we could group them together into clusters in ways that directly 

corresponded to the deregulation of their gene regulatory networks. We call our new method Single 

Sample Network Perturbation Assessment (ssNPA). While the examples we have provided here 

are limited to gene expression variables, this method is flexible and can consider the interactions 

among a huge variety of variables generated by high-throughput experiments such as genetic 

variant, methylation, or protein expression data. Even clinical measurements could be incorporated 

into the networks used for feature calculation.  We validated this method in a variety of 

transcriptomic datasets, including single cell RNA-seq measurements of liver cell development in 

mice, RNA-seq studies of human breast cancer and lung adenocarcinoma.  

Then, in Chapter 4, we explored an application of ssNPA for discovering subtypes of 

chronic obstructive pulmonary disease (COPD) based on gene expression, which, in the literature, 

has proven to be a particularly difficult problem. Finally, in Chapter 5, we further explore causal 
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network modeling and how these methods can be applied to the study of chronic lung diseases and 

adapted to make use of large, multi-modal biological data. 
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2.0 Quantitative k-mer transcription factor peak clustering 

Transcription factor (TF)-DNA in vivo binding is a complex procedure, which depends on 

the cell type and pathways the target genes are involved. A TF can have altered binding 

specificities, depending on the context, which may include chromatin status and interacting TFs. 

This is expected to affect the peak properties in the chromatin immunoprecipitation experiments.  

In this article, we investigate whether these contextual differences are truly reflected in and can be 

recovered from genome-wide occupancy data (ChIP-seq/nexus). We systematically evaluate 

various peak features, including peak shape and sequencing depth, and pre-clustering strategies, 

using simulated and experimental data (publicly available and new datasets).  Comparison of peak 

shape and quantitative k-mer frequencies shows that the latter can capture more properties of TF 

binding and are thus more useful in identifying TF binding sites and motifs by reducing false 

binding site prediction.  We conclude that quantitative k-mer peak clustering can aid a variety of 

downstream analyses for motif discovery and genomic annotation.  We show that it outperforms 

previously described aggregation plot shape features on synthetic and real ChIP-seq datasets, and 

we provide examples of the use of our method to explore real ChIP-seq and ChIP-nexus data from 

human cell lines and Drosophila embryos, where biologically meaningful patterns are discovered.  

The new approach we propose leads to the identification of motif subclasses (co-binding TFs) and 

discovery of new biological knowledge. 



 5 

2.1 Background 

Transcription factors (TF) recognize short DNA signals at the open chromatin regions (e.g. 

promoters, enhancers) and regulate gene expression.  A powerful technique to identify the genomic 

regions bound by a certain TF is chromatin immunoprecipitation (ChIP) with TF-specific antibody, 

followed by sequencing of the precipitated regions. ChIP-seq has provided useful insights in the 

regulatory circuits of many organisms (1-3).  For a more general assessment of open chromatin 

regions, DNase-seq (4, 5), FAIRE-seq (6), and ATAC-seq (7) are used.   

Classical ChIP-seq and open chromatin assessment methods do not identify the exact 

location of transcription factor binding sites (TFBS), but rather an extended region where binding 

may have occurred. This problem of resolution has been dramatically improved with the 

introduction of ChIP-exo (8) and our more recent variant ChIP-nexus (9), which pinpoint more 

accurately the exact DNA position where the immunoprecipitated protein is cross-linked to DNA.  

However, since protein-protein crosslinks are also frequent during formaldehyde fixation, indirect 

binding through other TFs could still be detected with this method, so motif detection remains a 

more complex problem.  

Once the genomic regions that are assessed by a given experiment have been identified, 

we are still faced with the task of interpreting and finding meaningful patterns in these large 

biological datasets.  Previous work on ChIP-seq data has sought to partition peaks into clusters to 

identify different patterns within them (10-12).  However, these efforts have focused almost 

exclusively on histone modification datasets with peaks aligned to the nearest transcription start 

site (TSS).  These histone datasets typically have broad peaks that can have various shapes, so the 

read densities in bins over the length of the peak interval (aggregation plots) were used as features 

to cluster the peaks.  Sequence specific TF binding sites, however, present a unique problem that, 
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for a number of reasons, cannot be adequately addressed by making use of these aggregation plots.  

First, a TFBS can occur nearly anywhere in the genome, in genic or intergenic regions.  Therefore, 

aligning them based on their nearest TSS binding site is not very practical.  Typically, we analyze 

a TF ChIP-seq dataset by aligning them according to the TF DNA motif or the peak summit.  

Assuming the TF motif can be found near the summit of the peak, this results in all the peaks being 

co-localized after alignment.  Furthermore, sequence specific TFs tend to produce much narrower 

and Gaussian-shaped peaks than those found in histone modification datasets.  Thus, the shape of 

the peaks may not vary tremendously within a dataset (or datasets), so peak shape is not a 

promising feature for partitioning these samples.  Instead, we have decided to explore sequence-

based features for partitioning TF ChIP-seq/nexus datasets for pattern discovery. MuMoD is 

another method that relies on sequence information to partition TF ChIP-seq datasets, but it is 

specifically focused on motif discovery for partitioning and is limited to a single motif (mode of 

binding) per cluster (13). 

In this paper, we investigate whether the characteristics of the ChIP peaks can be used to 

address the problem of multiple TF binding and the related problem of TF submotif identification 

in ChIP-seq/exo/nexus data.  Specifically, we compare the peak shape features, the sequence 

features and combinations of these as well as different peak clustering methods to assess which 

can better partition the different classes of TF binding. Using the best performing methods, we 

analyze ChIP-seq and ChIP-nexus data from human cell lines and Drosophila embryos, where 

meaningful associations are discovered.  Used for partitioning high-throughput TF occupancy 

datasets, our results show promise for identifying new DNA-binding motifs and co-binding factors 

in future analytic strategies. 
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2.2 Materials and Methods 

We sought to identify a method for optimal partitioning of TF ChIP-seq peaks in a way 

that captures the differences in DNA binding, either in sequence composition or in peak shape or 

both.  To this end, we compared a number of feature space representations and clustering methods 

of the peaks in both synthetic and real (ChIP-seq, ChIP-nexus) datasets. 

2.2.1  Feature extraction 

We represent each ChIP-seq peak by a feature vector.  This feature vector includes both 

peak shape and peak sequence features. We compared various feature vectors to determine the best 

performing ones for TF ChIP-seq datasets. 

2.2.1.1 Shape 

Shape features capture the shape and height of each peak from the ChIP-seq data. The 

number of extracted features is equal to the number of bins that span the length of the genomic 

interval the peak covers.  These features are known as aggregation plots (APs), and previous work 

using these types of features has applied bins of various sizes (11). For our purposes, we used a 

bin size of 1 because of the relatively short peak lengths, especially in the ChIP-nexus data. Bin 

size of 1 corresponds each feature to a single base pair.  For example, for a set of peaks of length 

100, each peak is represented in ℤ≥0100feature space. The value of each feature is the number of 

mapped reads covering that position. If we had long peak lengths and were to use bins that span 

more than one base as features, then the value of each feature would be the average number of 

reads that cover each position in that bin. 
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2.2.1.2 Sequence 

Sequence features were calculated to reflect the sequence composition of the peaks.  For 

this purpose, we calculate the k-mer frequencies over the peak. For each k-mer, we counted the 

number of times it appears in the peak sequence using a sliding window of length k. We considered 

only canonical k-mers, i.e. each k-mer and its reverse complement were treated as one, to account 

for TF binding on either strand of the DNA. So, for each k there are 1
2
�4𝑘𝑘 + 4

𝑘𝑘
2� k-mer features 

when k is even and 4
𝑘𝑘

2
 features when k is odd.  Then, we divided each k-mer count by the expected 

count for that k-mer.  We calculated the expected count by using Jellyfish (14) to calculate the k-

mer frequencies for a set of background sequences. Then, we multiplied the sum of k-mers present 

in the sequence by the background k-mer frequencies to get the expected value for each k-mer.  By 

dividing by the expected number of each k-mer, we aim to amplify the functionally relevant 

differences among sequences. For our synthetic and human datasets, the background sequences 

were the 1 kb regions upstream of the hg19 transcription start sites.  For the Drosophila ChIP-

nexus datasets, we took the 1 kb regions upstream of the dm3 transcription start sites as 

background.  

These sequence features do not contain any information about the shape or height of the 

peak. During our performance comparisons we used a range of values for k from 3 to 6, since TF 

binding sites are typically 6-12 bases long. 

2.2.1.3 Scaled sequence 

Scaled sequence features were also k-mer features that account for both the binding 

strength and the sequence content of the peaks. In this case, the number of times the k-mer appears 

in the peak sequence was multiplied by the peak height (number of peak reads containing that k-
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mer) at that position. Assuming that the differences between various classes of peaks are more 

likely to occur at or near the summit of a peak, these features will amplify that signal and the 

clustering step should be able to separate the classes more easily.  Like the sequence features, we 

only used canonical k-mers, resulting in the same number of total features for a given value of k.  

Additionally, as with the sequence features, we divided each feature entry by the expected number 

of each k-mer for that peak.  In this case, the total number of k-mers for a given peak is the sum of 

all the k-mers in the peak, where each k-mer present in the sequence has been multiplied by the 

height of the peak at that position.  We used the same sets of sequences to calculate background k-

mer frequencies as described for the sequence features. We tested all values of k from 3 to 6. 

2.2.2  Feature clustering 

We tested a variety of standard and more recently developed clustering methods to 

determine which resulted in the best partitioning of the ChIP-seq peaks. 

2.2.2.1 k-means 

k-means was performed using the MATLAB function kmeans with 10 replicates and c 

clusters.  When the number of true classes was known, we used that value for c. Estimating the 

number of true classes when it is not already known is an open and well-documented problem that 

is beyond the scope of this work. Thus, we chose to use either c=2 or c=3 to begin to investigate 

datasets in which the underlying classes were not already characterized.  However, this is a 

parameter the user should vary based on the dataset he is using or the questions she wants to 

explore.  We tested k-means clustering using both the squared Euclidean distance (subsequently 

referred to as Euclidean) and 1 minus the sample correlation (correlation) as distance metrics. 
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2.2.2.2 k-medoids 

k-medoids was performed with the MATLAB function kmediods, using the same 

parameters as k-means. We tested this clustering method using both Euclidean and correlation 

distance metrics. 

2.2.2.3 Probabilistic partitioning 

We implemented the probabilistic partitioning method described by Nair et al. (11) in 

MATLAB.  Their approach uses expectation maximization (EM) to optimize a mixture model. 

With this method, each peak has a probability for being a member of each cluster, and the highest 

probability at the end of the optimization is used for cluster assignment.  We tested both the basic 

implementation of this method, which we refer to as “Partition,” and the modified version that 

only takes into account the “shape” of the features, which we call “Partition (Shape).”  Because 

we were representing our peaks with features that included sequence information in addition to 

shape, this method does not exactly correspond to peak shape, but we still refer to it in this way 

for consistency with previous work. Clusters were seeded randomly as previously described (11), 

and a fixed number of 30 EM iterations were carried out. When we test this method on the synthetic 

datasets, where the true number of clusters is known, we provide the true number of clusters as a 

parameter to the algorithm. 

2.2.3  Clustering performance measures 

In the cases where the true underlying classes were known (i.e., the synthetic data and the 

combined ENCODE datasets), we assessed clustering performance by calculating the percent 

classification error.  With a small number of classes (e.g. <10), it was straightforward to test all 
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combinations of class to cluster mappings and choose the labeling that minimized percent 

classification error.  Classification error was calculated by the number of peaks that were assigned 

to the wrong cluster divided by the total number of peaks. 

2.2.4  Synthetic data generation 

We first used a collection of synthetic datasets to evaluate the various peak representations 

and clustering methods. We simulated the ChIP-seq peaks in terms of both shape and TF binding 

strength, the latter as proportional to the sequence reads in each peak.  Thus, the synthetic data 

were generated in two steps. 

1. First we simulated the shape of the peaks. Similarly to (11), we generated Gaussian peak 

shapes with mean m, standard deviation s, and coverage f.  This was achieved by sampling from 

Poisson distributions to generate 100 bin counts, covering the entire length of the peak. The 

parameters of the Poisson distribution could vary among classes and along the length of the peak.  

We tested different combination of parameters with m varying from 35 to 50, s from 10 to 25, and 

f from 5 to 1,000. 

2. Next, we simulated the peak sequences.  Each sequence was 100 bp long, and the 

background was generated from a 3rd order Markov model of human promoter sequences (1 kb 

upstream of the transcription start site). A transcription factor target site derived from a synthetic 

motif was inserted into the sequence, centered at the peak mean.  Synthetic motifs were generated 

by randomly selecting columns of high information content (IC > 1.8 bits), medium information 

content (1.6 bits ≤ IC ≤ 1.8 bits), or low information content (0.8 bits ≤ IC ≤ 1.2 bits) from motifs 

in the JASPAR database (15).  The length of the synthetic DNA motifs was between 8 and 12 

bases long, depending on the experiment. 
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For each simulated dataset, we generated 1,000 peaks (samples). To simulate a ChIP-seq 

experiment for a TF that can bind with altered specificity depending on cellular or genomic 

context, we used the primary motif for class 1.  Then for the rest of the classes, we shuffled the 

nucleotide labels of a subset of the columns to create derivative motifs.  We guaranteed that the 

nucleotide with the highest frequency in each column was changed in the derivative motif.  This 

preserves the information content of the column, but changes the base preference at that position.  

Which motif column labels are shuffled greatly impacts the k-mer composition of the resulting 

sequences, so we exhaustively tested all combinations of columns.  For example, with a motif of 

length 10, we performed experiments with 210 different combinations of columns changed in the 

derivative motif.  This ranged from changing 0 columns (the motifs for each class were the 

original) all the way to shuffling labels for all 10 columns.  Thus, we were able to observe the full 

distribution of the effect of altered TF binding specificity on clustering performance. In further 

experiments, we set k=5 and only shuffled columns 1 and 6 of the motif of length 10, which results 

in all k-mers spanning the motif to differ between classes. 

We did not simulate sequencing reads directly, so we needed to slightly modify how the 

scaled sequence features were calculated in the synthetic datasets.  For each k-mer in the peak 

sequence, we added the height of its first base (proportional to a theoretical number of reads at that 

base) to the frequency of this k-mer feature. 

We generated a collection of synthetic datasets to explore the effects of a variety of 

parameters including the number of classes, peak means and standard deviations of each class, 

coverage, TF motif length, TF motif information content, and the number of columns that differed 

between the TF motifs of different classes.  All running times presented are wall-clock times 

calculated on a computer with a 2.7 GHz Intel Core i5 processor and 16 GB of memory. 



 13 

2.2.5  ENCODE ChIP-seq data 

We used three human ChIP-seq datasets from ENCODE to test whether the different 

feature calculation methods, including our scaled sequence method, can distinguish among 

different TF ChIP-seq peaks from the same cell line. Alignments were downloaded for GABPA, 

GATA2, and YY1, as well as the corresponding controls. All ChIP-seq experiments were done in 

erythroleukemia cells (K562).  Full accession information is provided in Table S1. 

 

Table 1 GEO accession information for ENCODE datasets 

 

 

Peaks were called for the alignment files with MACS (16) using default parameters, and 

the top 5,000 peaks with lowest FDR for each TF were used for feature calculation and clustering.  

For use in calculating the scaled sequence features, aligned reads were extended in the 3’ direction 

by length d, where d is the distance between the summits of the forward and reverse strand reads, 

as calculated by MACS.  This helps to ensure that any TF binding signals are covered by the short 

sequencing reads, and will, we expect, improve clustering performance. 

To determine if the clustering step could distinguish among different transcription factors’ 

binding sites, peak features from the different datasets were pooled together, and the concatenated 

feature sets were clustered. To account for different levels of sequencing coverage among peaks, 

read counts were scaled such that each experiment had a total of 20 million reads. 
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2.2.6  Drosophila ChIP-nexus data 

ChIP-nexus experiments were performed in duplicates as previously described (9) with 10 

μg of rabbit polyclonal antibodies against the C-term region (aa 168-345) of Drosophila Scute, 

which were raised and affinity-purified by Genescript. The chromatin extracts were prepared from 

2-4h AEL Drosophila embryos from mothers with the genotype Tlrm9/Tlrm10. 

ChIP-nexus produces the same kind of data as ChIP-exo (17), but the library preparation 

is more efficient and includes a random barcode to correct amplification bias (9). For both 

methods, the output data are the first bases of each read, which corresponds to the beginning of 

the protected DNA region due to TF binding.  

ChIP-nexus data are in the form of chromosome:position:orientation, which denotes the 

first protected base in each unique read. In order to call the peaks of these reads, reads were 

extended in the 3’ direction to a length of 50 bp. This corresponds to ~5 turns of the DNA and 

would cover the length of the TF binding site as well as any co-bound binding motifs.  Increasing 

this threshold did not improve the results (data not shown).  Peaks were called with GEM using 

the suggested settings for ChIP-exo data (17).  We used the following parameters: k_min=6 and 

k_max=13 (range for k-mer length), smooth=3 (the width in bp over which to smooth the read 

distribution), and no duplicate read filtering because of the barcoding used in the ChIP-nexus 

technique.  Additionally, we used the ChIP-exo starting read distribution file provided with the 

GEM software.  The algorithm identified single base pair loci for binding events, which we 

extended 50 bp in both directions to capture the entire peak region.  For each replicate, we analyze 

the top 5,000 peaks, according to largest –log(q-value), as calculated by GEM. Through this 

preprocessing, we take advantage of the increased accuracy of the ChIP-nexus technique for 
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discovering binding sites, while providing a suitable input for our feature calculation and 

partitioning methods. 

2.2.7  Drosophila CTCF ChIP-seq data 

Drosophila CTCF-GFP ChIP-seq data from whole organism embryo (0-16 hrs) were 

downloaded from ENCODE: https://www.encodeproject.org/experiments/ENCSR661BEZ/. The 

data are derived from the modERN Project (Kevin White, University of Chicago).  To make them 

comparable to ChIP-nexus data, the optimal IDR thresholded peaks were centered and trimmed to 

100 bp. 

2.2.8  Motif discovery and peak annotation 

Motif detection was performed on the peak clusters using HOMER (18).  Default 

parameters were used except for the following: size=entire peak length; len=6, 8, 10,12 to increase 

the search space to include motifs of length 6, 8, 10, or 12; and finally S=10 to optimize 10 motifs.  

HOMER was also used for peak annotation. 

2.3 Results and Discussion 

2.3.1  k-mer length selection considerations 

In order to determine the optimal k-mer length to use for calculating the sequence-related 

features, we tested lengths ranging from 3 to 6.  We did not consider k=1 (GC content) or k=2 (too 
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few possible features).  There are several points to consider when deciding which k-mer length to 

use:  

1. The number of possible k-mer features, z, increases exponentially with increasing k.   

This results in a significant increase in the time and memory required for feature calculation and 

clustering.  

2. The maximum possible number of non-zero features for a sequence of length s is given 

by s-k+1. So, for example, using k=6, a sequence of length s=100 could have a maximum of 95 

different k-mers represented.  This is only a very small fraction of the 2,080 k-mer features 

possible.  

3. DNA sequences are often not represented well by a simple multinomial model, so we 

need to find a value for k that is large enough that any motif signals are distinguishable from 

sequence background.  Indeed, we used a third-order Markov model to generate the background 

sequences in our synthetic datasets, so we would not expect k=3 to be sufficient to distinguish 

between classes. 

We compared the classification performance for k in the range of 3 to 6 in distinguishing 

between two classes of sequences that differed in the PWMs used to generate the motif sequence 

signal (Figure 1A).  We tested this with PWMs of 8, 10, and 12 columns and exhaustively shuffled 

every possible combination of columns to differ between the PWMs for each class (for example, 

for a PWM with 10 columns, we created 210=1,024 datasets). Scaled k-mer features were calculated 

for each peak, and k-means with Euclidean distance was used to partition the peaks into two 

clusters. In general, we observed that increasing the length of the PWM led to lower classification 

error for all values of k. In other words, a longer motif would produce a stronger signal, which is 

expected and in turn, it improves clustering performance. For k=3, there is a very large spread of 
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classification error across all motif lengths, with the bulk of the datasets falling in the range of 0-

15% classification error.  We observe a steep drop in errors at k=4, with much tighter distributions.  

At k=5, classification error is near 0% for almost all datasets, particularly when the PWM length 

is 8 or greater.  Finally, k=6 shows a very minimal improvement that is really not enough to justify 

the significant increases in memory and runtime we experienced for these datasets.  We excluded 

the case where the k-mer length and motif length were both equal to 6 because this would 

correspond to the full difference between classes being captured in a single feature.  

Increasing from k=5 to k=6 corresponded to a very large increase in the average time 

required to both calculate the features and perform k-means clustering (Figure 1B).  The feature 

calculation time was measured for our simplified data simulation process, but the increased 

demands at k=6 are exacerbated in real data sets for which we need to process large numbers of 

sequencing reads. Thus, we decided to proceed using k-mers of length k=5, although this remains 

a parameter the user can set according to his or her particular needs. 
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Figure 1 (A) Percent classification error decreases with both increasing k-mer length and TF motif length. For each 

dataset, two classes were constructed, each with 1000 samples. Each sample is a synthetic peak of length 100 bp, 

simulated with mean 50, standard deviation 10, and coverage 1000. These samples were represented with our scaled 

sequence features and clustered with k-means with Euclidean distance. Each distribution shown represented 2l 

datasets, where l is equal to the motif length. The distribution covers all possible combinations of the columns that 

can differ between the motifs of the two classes. The case where the k-mer length and motif length were both equal to 

6 is excluded. (B) The mean time required for both feature calculation and k-means clustering increases exponentially 

with the length of the k-mer used to calculated the scaled sequence features. Error bars show the standard error of the 

mean. 

  

2.3.2  Scaled k-mer features improve separation of co-localized peaks over peak shape or 

sequence alone 

We compared several types of features in their ability to separate simulated peaks 

according to their motif class.  First, we considered shape features for which there is a feature for 

every genomic position along the length of the peak and its value is the number of mapped reads 
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covering that position (also known as an aggregation plot).  These features were used previously 

for partitioning histone peaks. In their case, they binned the read counts into 20-50 bp (11), 

compared to our single base bins, because they did not consider sequence features. Next, we 

calculated sequence features.  For each k-mer of length 5 (treating a k-mer and its reverse 

complement as one), we counted the number of times it appears in the peak sequence using a 

sliding window. Finally, we considered scaled sequence features.  These are similar to sequence 

features, but, for every k-mer, the number of times the k-mer appears in the peak sequence was 

multiplied by the peak height (number of reads containing that k-mer) at that position. This way 

we are capturing information about both the shape (binding strength) and the sequence of the peak.   

 

Table 2 Average percent classification error (standard error of the mean) with different combinations of features and 

clustering methods. 

 

 

We calculated each type of features for the simulated datasets.  Each dataset contained two 

motif classes and 1,000 samples (peaks) of each class. The simulated binding sites were of length 

10, and we created one dataset for each possible subset of the 10 columns for which the nucleotide 

labels were shuffled in the TF motifs that generated the sites that differed between the two classes. 

Thus, we tested 1,024 datasets. All generated peaks were 100 bp long, with a shape of mean m=50, 

standard deviation s=10, and coverage f=1000.  We partitioned the peaks using six different 

methods: k-means with either Euclidean or correlation distance, k-medoids with either Euclidean 
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or correlation distance, and the probabilistic partitioning method proposed by Nair et al. (11) with 

either the basic or shape-only implementation (Table 2).  We could not use the correlation-based 

methods on the shape or scaled sequence features because the standard deviation across the 

features for the peaks was too small.  For the other clustering methods, the scaled sequence features 

resulted in the lowest average percent classification error: 0.98% for k-means (Euclidean) and 

0.92% for k-medoids (Euclidean).  Both probabilistic partitioning methods performed very poorly 

for all features, but in different ways.  In the case of the shape features, the two clusters were 

typically of approximately equal size, but the classes were randomly distributed between them.  

For the sequence and scaled sequence features, all peaks in both classes were assigned to a single 

cluster.   Overall, these results make sense considering that all the peaks were co-localized and had 

the same shape, similar to what we might expect to see in real ChIP-seq datasets in which the peaks 

are centered around their summits (presumably containing the TF binding site).  This differs from 

the aggregation plots (our shape features) often used for analyzing histone ChIP-seq datasets, in 

which peaks are commonly aligned by their distance to the nearest transcription start site or some 

other external locus and, thus, you would not necessarily expect all the peaks to be co-localized.  

These results agree with those found by Nair et al. (11), where co-localized peaks proved to be a 

much more difficult task for their probabilistic partitioning method.  Furthermore, it is not 

surprising that the scaled sequence features outperformed the sequence features because the 

differences between the peak classes occur at the peak summits, and this signal is amplified in the 

scaled sequence features. 
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Table 3 Percent classification error decreases with increasing difference between the peak means for the two classes. 

m1=50 and m2 varies between 35 and 50. The peak standard deviation for both classes is set to 10. 

 

 

We also tested the various features and clustering methods in cases where the peaks in the 

two classes had different shapes- either different means or different standard deviations. We 

compared the percent classification errors for these cases (Table 3 and Table 4).  As the differences 

between the shapes of the peaks in the two classes were increased, the shape features began to 

perform very well across all methods.  However, the sequence and scaled sequence features also 

performed well and more reliably across all shape differences when paired with k-means or k-

medoids. 
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Table 4 Percent classification error decreases with increasing difference between the peak standard deviations for the 

two classes. s1=10 and s2 varies between 10 and 25. The peak mean for both classes is set to 50. 

 

2.3.3  Clustering performance improves with increasing motif information content 

To investigate how the information content (IC) of the TF binding motif impacts clustering 

performance, we generated three synthetic datasets. The first had low IC, that is, each column of 

the motif had IC that was between 0.8 bits and 1.2 bits.  Medium IC motifs had columns whose IC 

was between 1.6 bits and 1.8 bits.  Finally, high IC was a column with IC greater than 1.8 bits. As 

we would expect, higher IC in the motif led to lower percent classification error when we used 

both sequence and scaled sequence features (Table 5).  Higher IC in the motif used to generate the 

sequence resulted in the two classes being more reliably different from each other and were easier 

to partition correctly.  Classification performance was invariably poor over all levels of motif IC 

when we used the shape features because the motif used has no effect on these. 
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Table 5 Percent classification error decreases with motif information content (low, medium, or high) in simulated 

datasets with two classes. 

 

 

We also investigated how clustering performance changed with sequencing coverage in 

simulated datasets of co-localized peaks (Table 6).  Generally, there was higher classification error 

in the low coverage datasets, particularly for the scaled sequence features, underscoring the need 

to for sufficient coverage for these approaches to be useful in analyzing a dataset. Overall, k-means 

with Euclidean distance is fast and performed well, so we used it with scaled sequence features 

(with a k-mer length of 5) for all subsequent experiments. 
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Table 6 Percent classification error decreases with increasing peak coverage. 

 

2.3.4  Scaled sequence features are sufficient to distinguish among different transcription 

factor binding sites 

Next, we wanted to test how our scaled sequence features performed in partitioning real 

human ChIP-seq peaks for different transcription factors that had been artificially pooled together.  

This is a much more difficult problem because an in vivo ChIP-seq experiment will typically 

produce a mixed sample of peaks, including those where the precipitated DNA was directly bound 

to the targeted transcription factor, indirectly bound through a co-binding transcription factor or 

complex of proteins, or even connected to the primary binding site through a DNA loop.  We 

downloaded human ENCODE ChIP-seq datasets for GABPA, GATA2, and YY1 in K562 cells.  

These represent a diverse sample of TF families, each with different canonical DNA-binding 



 25 

motifs (Figure 2).  These TFs were selected so that they have motifs with different degrees of 

similarity.  All share the short pattern AAG, but the similarity of YY1 and GABPA motifs extends 

further to the TGGC motif with one base insertion (“A”) in the YY1 motif.  For the purposes of 

combining datasets from different experiments, we scaled all read counts such that each dataset 

would have a total of 20 million reads. 

 

Figure 2 JASPAR motifs for GABPA, GATA2, and YY1 transcription factors. 

 

First, we tested how well scaled sequence features with a k-mer length of 5 and k-means 

clustering were able to partition pairs of these peak datasets into their true classes (Figure 3A, 

Columns 1-3).  The number of clusters was set to the true number of classes.  For the GABPA and 

YY1 datatsets, cluster 1 contained a majority of the YY1 peaks and cluster 2 was mostly GABPA 

peaks.  Still, each cluster contained a fair number of the other TF’s peaks.  This is probably due to 

the more extended similarity of the canonical binding motifs for these two proteins, which makes 

it more difficult to distinguish between these TFs.  The other two pair separated much more 

cleanly.  Between GABPA and GATA2, Cluster 1 contained a majority of the GABPA peaks, plus 

very few GATA2 peaks.  Cluster 2 was almost exclusively GATA2 peaks, with some GABPA 

peaks included as well.  Finally, GATA2 and YY1 peaks separated almost exactly according to 

TF.  For these data we would not expect to see a perfect partitioning because each TF class likely 
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starts off as a mix of different types of peaks.  Therefore, these results show that the scaled k-mer 

features are able to capture differences between the sequences and shapes of the ChIP-seq peaks 

of two different transcription factors, and are likely useful in exploratory analysis of ChIP-seq 

datasets that contain two classes of peaks. 

 

Figure 3  (A) Scaled sequence features and k-means clustering can separate artificially pooled ChIP-seq peaks 

according to transcription factor. The method performed well in separating pairs of datasets, including GABPA and 

YY1 (column 1), GABPA and GATA2 (column 2), and GATA2 and YY1 (column 3). It was also able to distinguish 

among TFs when all three of GABPA, GATA2, and YY1 were pooled together (column 4), although less cleanly. 

This combination of features and clustering method far outperformed (B) shape features with k-means clustering, (C) 

the partition method, and (D) partition with shape only method, which could not distinguish between or among TFs. 

 

To further probe the usefulness of this approach, we wanted to see if our method could 

separate three classes of TF ChIP-seq peaks when they were all pooled together.  We combined 
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all the GABPA, GATA2, and YY1 peaks resulting in a dataset of 15,000 peaks that we partitioned 

into three clusters (Figure 3A, Column 4).  The results showed some interesting relationships 

between the transcription factor peaks.  As we saw when only looking at the pairs, GABPA and 

YY1 were the most difficult to separate.  They were mostly grouped together into cluster 1. The 

GATA2 peaks were grouped almost exclusively into cluster 2, and shared that cluster with only a 

few peaks from the other two transcription factors.  Cluster 3 contained only a few peaks from 

each TF.  Overall, these results confirm that the scaled sequence features with k-means clustering 

are not just separating the peaks randomly; rather, they are being grouped together in biologically 

meaningful ways. 

We additionally wanted to compare our scaled sequence features to shape features in these 

real ChIP-seq datasets.  We calculated shape features for the ENCODE datasets and artificially 

pooled the peaks for the different TFs as before.  Then we clustered the shape features with k-

means (Figure 3B), the partition method (Figure 3C), and the partition method with shape only 

(Figure 3D).  In all cases the shape features were not adequate to distinguish between the different 

TFs.  In almost all cases, the peaks for both or all three TFs were assigned to a single cluster.  k-

means with shape features created two or three clusters, but one cluster contained nearly all the 

peaks and the other(s) contained very few peaks and represented all the TFs.  Shape features with 

the shape only partition method did find two evenly sized clusters in the case of GABPA and YY1, 

but peaks for the two TFs were distributed nearly randomly between the two clusters.  These results 

further confirm that shape information alone is not adequate to separate ChIP-seq peaks with 

different TF-binding motifs. 
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2.3.5  Peak partitioning in a Drosophila Scute ChIP-nexus dataset enriches for E-box 

motifs 

We were able to show that our approach is able to separate ChIP-seq datasets that have 

been artificially pooled together.  However, this is obviously not very useful for real-world 

situations in which we do not already understand the subclasses present in a sample.  Thus, we 

wanted apply our partitioning approach to a high-resolution ChIP sequencing data, so we 

performed experiments on Drosophila embryos with the ChIP-nexus protocol (9). Since basic-

helix-loop-helix (bHLH) transcription factors bind as heterodimers with different partners and 

have remarkable binding specificity (9, 19), we analyzed the occupancy of the bHLH transcription 

factor Scute. Together with achaete, Scute is a highly conserved transcription factor that confers 

neural identity from Drosophila to mammals (20). To obtain a large homogenous population of 

suitable cells, we collected Drosophila embryos from maternal mutants that consist entirely of 

neuronal precursors (Tlrm9/Tlrm10) (21).  

When we applied our scaled sequence feature partitioning method on the Scute ChIP-nexus 

dataset, 5,000 ChIP-nexus peaks were partitioned into 2 clusters. The analysis of both replicates 

showed similar results. The peaks were split nearly evenly into clusters for both replicates (52.3% 

of peaks in cluster 1 for replicate 1 and 53.2% in cluster 1 for replicate 2).  When we used HOMER 

to search for enriched motifs in each cluster for both replicates, we found a very close agreement 

in the motifs identified in the corresponding clusters across replicates (Figure 4).  There were four 

motifs (red, green, blue, and pink) that were found in all clusters in both replicates.  The DREF 

motif is frequently associated with promoters, where it is bound by DNA-replication factor 

(DREF) (22). But the same motif is also bound by BEAF-32, an insulator or architectural protein 

(blue). A motif that closely matches CTCF (maroon) was found in cluster 1 but not cluster 2, which 
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suggests that these peaks might have some functional connection to insulators.  Interestingly, an 

E-box motif (red), consistent with the known binding specificities of Scute or related bHLH factors 

in mammals CAGCTG (23), was identified in all clusters, but the motifs differed slightly in the 

middle two positions (the dinucleotide sequence between CA and TG). Cluster 2 had a GC in these 

positions with high information content (for both replicates).  Cluster 1, however, had lower 

information content at these positions with almost equal probability of either G or C at each, 

indicating that they may be low-affinity binding sites.   

 

Figure 4 Similar motifs were found in the same clusters for each Scute ChIP-nexus replicate. Matching motifs are 

grouped by color. If there was a close match for a known TF, the motif is labeled. 
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Figure 5 Number of Drosophila Scute ChIP-nexus peaks (replicate 1) that contain E-box-related motifs for each 

cluster. 

When we checked the actual sequences at the peaks in each cluster, we found that there 

were 403 peaks that contained the string CACCTG (or its reverse complement CAGGTG) in 

cluster 1 compared to only 68 peaks in cluster 2 (Figure 5). There were very similar results for 

replicate 2 (Figure 6).  Additionally, cluster 1 contained more than twice as many peaks with the 

string CAGCTG compared to cluster 2 (481 peaks versus 213).  Thus, cluster 2 appears to contain 

more high-affinity binding sites, while cluster 1 contains additional binding motifs such as CTCF. 

Interestingly, the canonical motif CACGTG appears in the least number of peaks in both replicas 

(68 and 34, respectively) compared to the non-canonical ones. 

 

Figure 6 Number of Drosophila Scute ChIP-nexus peaks (replicate 2) that contain E-box-related motifs for each 

cluster. 
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Finally, we looked at the genomic annotations of the peaks in each cluster.  The majority 

of the Scute peaks covered promoter and TSS regions (Figure 7).  However, cluster 1 contained 

the majority of peaks that mapped to introns (377 peaks in cluster 1 compared to 56 in cluster 2 

for replicate 1 and, for replicate 2, 306 peaks in cluster 1 and 89 peaks in cluster 2.)  Taken together, 

these results suggest that there could be biologically meaningful differences in function between 

the Scute binding sites in each of the clusters we discovered. 

 

Figure 7 Scute peak annotation by cluster 

2.3.6  Non-canonical Scute sites coincide with insulator protein CTCF binding sites in 

cluster 1 but not in cluster 2 

Given that CTCF motifs were only found in cluster 1 of the Scute ChIP-nexus data, we 

further investigated the potential interactions between CTCF and Scute. We tested whether the 

predicted CTCF motifs were real and whether they co-occur in the proximity of the Scute E-boxes. 

For this reason, we analyzed a CTCF-GFP ChIP-seq dataset from the modERN project (see 

Materials and Methods). We found that CTCF ChIP-seq peaks are overrepresented in the ChIP-
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nexus peaks of cluster 1 (Fisher’s exact test p-value=10-34), but not in cluster 2. Furthermore, the 

CTCF peaks are co-occurring with Scute bound peaks in cluster-1 that contain the non-canonical 

E-box motifs CAGCTG (p-value=10-26) and CACCTG (p-value=10-8), but not with the other 

canonical motif CACGTG (p-value=0.4).  Co-occurrence of CTCF binding with E-box motifs in 

cluster 2 was non-significant (p-values 0.1 to 0.9).  

This shows that using the quantitative k-mer method we can partition the ChIP-nexus peaks 

into subsets with distinct biological functions. Furthermore, given that the peaks were ~100 bp 

long, our findings indicate a possible physical interaction between Scute binding to non-canonical 

E-boxes and the CTCF insulator protein. 

2.4 Conclusions 

Identifying the TF binding subclasses on different regulatory regions and the corresponding 

binding preferences is a very important step in understanding gene regulation in a cell. In this 

paper, we evaluated various methods for partitioning peaks of TF chromatin bound regions using 

peak shape and sequencing depth features.  We found that quantitative k-mer sequence features 

improve separation of co-localized peaks on the basis of the TFs that bind to them. As expected, 

clustering performance increases with the information content of the motifs of the corresponding 

TFs.  

We applied this method to two genome-wide occupancy Drosophila datasets: a ChIP-nexus 

dataset for Scute. In the ChIP-nexus dataset, we identified two clusters, both containing the 

expected E-boxes (but with slightly different submotifs). In both clusters, we found the non-

canonical motif CAGCTG to be predominant. Non-canonical motif CACCTG was also found in 
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large number of peaks in cluster 1 but not cluster 2. Finally, the canonical E-box motif CACGTG 

was also present but only in 8-11% of all peaks. This shows that non-canonical E-boxes may play 

a more significant role than previously thought in Drosophila development. Another interesting 

finding is the low number of co-occurrence of these three motifs in the same peak.  

Besides E-boxes, we also noted motifs that match other TF proteins. In both clusters, for 

example, DREF motif was present. DREF regulates cell cycle through p53. Cluster 1 also 

contained a number of other motifs including CTCF, which were not present in cluster 2. Further 

analysis of published CTCF ChIP-seq data showed that there is a significant number of co-

occurrences of non-canonical E-box motifs and CTCF binding in cluster 1, but not cluster 2.  Given 

the short size of ChIP-nexus peaks (we extended them by 100 bp), it is highly likely that the motif 

co-occurrence imply physical interaction between Scute and CTCF.  There was not significance 

co-occurrence of the canonical E-box motif and CTCF binding in either cluster.  
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3.0 Single sample network perturbation assessment 

Complex diseases involve perturbation in multiple pathways and a major challenge in 

clinical genomics is characterizing the heterogeneity of disease samples with respect to the 

molecular networks involved. The aim is to identify in each patient sample the underlying 

mechanism of disease thereby improving diagnosis and personalizing treatment. Thus far, the 

methods that have been developed to address this challenge have a common theme of relying on 

external databases of pathways to quantify pathway activity scores. The drawback of this approach 

is that it ignores the dependencies present in the data and that pathways are incomplete and may 

not accurately represent the specific tissue and disease under study. 

We present a new approach, Single Sample Network Perturbation Assessment (ssNPA), 

for subtyping samples based on deregulation of their gene expression networks.  Instead of relying 

on pathway prior knowledge, our method proceeds by learning a causal graphical model directly 

from control data. Network neighborhood deregulation of an individual sample can then be 

quantified via the error incurred in predicting the expression of each gene from its Markov blanket.  

We evaluate the performance of ssNPA by assessing class assignment of single samples in 

several datasets for which the true classes are known. Using a single-cell RNAseq dataset of liver 

cell development we demonstrate that ssNPA can partition the cells according to embryonic stage 

and differentiated cell type.  We further validate ssNPA on two cancer datasets where we 

demonstrate that ssNPA-derived clusters show significantly different survival outcomes and 

correlate with known molecular subtypes. In all analyses ssNPA consistently outperforms 

alternative approaches, including competing methods that estimate pathway activity from prior 

information, highlighting the advantage of our network-based approach. 
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3.1 Background 

Gene expression profiling by RNA-sequencing has become routine tool in biomedical 

research.   Similarly, on the clinical side, RNA-seq has now been introduced as a cost-effective 

diagnostic tool (24, 25). Moreover, recent technological advances have made the assessment of 

gene expression at single cell level (scRNA-seq) feasible, opening new avenues to developmental 

biology and the study of dynamic networks (26-28). Consequently, the number of large RNAseq 

datasets keeps growing with hundreds or thousands of samples representing a single clinical or 

cellular condition. As a result, the scientific questions have shifted away from simple differential 

expression to characterizing the molecular heterogeneity of disease phenotypes.  One simple way 

to characterize sample heterogeneity is via clustering and/or dimensionality reduction. This 

approach will often reveal distinct sample groups within the population but it treats all genes 

equivalently, ignoring the fact that genes are organized in regulatory networks.  On the other end 

of the spectrum there has been considerable development in methods that quantify pathway 

activation on a single sample level (ssGSEA (29), PLAGE (30), GSVA (31), Pathifier (32)). 

However, these methods rely heavily on existing pathway information (e.g., from KEGG, 

BioCarta, The Nature Pathway Interaction Database), which may be incomplete, not well 

annotated or irrelevant to the studied phenotype or condition. Other methods (e.g. (33)) quantify a 

sample-to-sample similarity with the aim of identifying similarities and differences between cell 

functions. 

In this paper, we present a different approach for assessing, qualitatively and quantitatively, 

how the gene network from a set of control samples is perturbed in a newly presented single 

sample. Our approach, Single Sample Network Perturbation Assessment (ssNPA), uses causal 

modelling to first learn the gene expression interaction network from a set of reference samples. 
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For each new sample the method then assesses which parts of the “reference sample network” are 

deregulated.  

Causal graphs have been used in the past to learn gene networks from expression data (34-

36) or gene features that are highly predictive of certain phenotypes (37-41).  Our ssNPA approach 

learns a causal graph from expression data and for every gene it builds a predictive model based 

on its Markov blanket. Applying the model to a new sample produces a vector of residuals which 

quantifies the network level gene deregulation (NLGD).  The NLGD vectors can then be used to 

cluster samples into groups and assess their group characteristics (e.g. developmental time, 

survival, molecular mechanisms of phenotype, etc.) or to assign an individual patient to a disease 

subcluster.  We use this property to evaluate ssNPA on existing datasets, for which the ground 

truth is known. Specifically, we show that ssNPA separates well the developmental trajectory and 

the differentiated cell type in a mouse liver cell development scRNA-seq dataset (42).  We also 

use RNA-seq data from The Cancer Genome Atlas (TCGA) (lung and breast cancer datasets) (43, 

44) to demonstrate ssNPA can separate the samples in the corresponding datasets according to 

patient survival and molecular subtypes with better accuracy than alternative approaches. 

3.2 Materials and Methods 

3.2.1  Liver Cell Development Data 

A murine liver cell development scRNA-seq dataset was obtained from (42) 

(GEO:GSE90047).  The experiment measured the gene expression of 447 cells over the course of 

embryonic days E10.5-E17.5.  Cells were first sorted with fluorescence-activated cell sorting 
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(FACS) according to the cell surface markers Delta-like (DLK) to identify hepatocytes and 

epithelial cell adhesion molecule (EpCAM) to distinguish cholangiocytes. 

3.2.2  TCGA Data 

Breast invasive carcinoma (BRCA) and lung adenocarcinoma (LUAD) RNA-seq data from 

The Cancer Genome Atlas (TCGA) project were downloaded from the Broad Firehose (Broad 

Institute TCGA Genome Data Analysis Center, 2016). The BRCA dataset consists of 1,100 cancer 

samples and 112 normal samples (43).  The LUAD dataset consists of 517 cancer samples and 59 

normal samples (44). 

3.2.3  Sample clustering 

In order to better evaluate the efficiency of the various methods for single sample 

subtyping, we performed sample clustering using Seurat (45) and we examined various external 

characteristics of the clusters. Samples were clustered in their feature space.  First, the samples are 

projected into principal component space. The number of principal components to retain in the 

projection is determined heuristically by identifying the elbow of the scree plot. Then clustering is 

performed with a graph-based clustering that constructs the shared nearest neighbour graph and 

then optimizes the modularity function (46).  Finally, the clusters are visualized with a nonlinear 

dimensionality reduction (t-SNE) (47). 
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3.2.4  Comparison to other methods 

ssNPA methods were compared to the commonly used gene expression-based clustering 

and to two other comparable algorithms: Pathifier (32) and single-sample gene set enrichment 

analysis (ssGSEA) (29).  All methods were tested on the same input data and reference sample 

selections.  For Pathifier, we provided gene lists for all KEGG pathways and used the R 

implementation with the quantify_pathways_deregulation() function and default parameters. For 

ssGSEA we used the gene sets from the C2 collection of the Molecular Signatures Database 

version 3.0 (48) provided in the GSVAdata R package and the implementation of ssGSEA 

provided within the GSVA() function of the GSVA R package with default parameters. For 

fairness, we use an equal number of principal components for clustering with each method. The 

number of principal components is set to the maximum number of principal components identified 

by the elbow of the scree plot for any single method. 

 

3.2.5  Software availability 

An R software package has been developed and will be freely available upon the 

publication of the paper. 
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3.3 Results 

3.3.1  ssNPA algorithm description 

ssNPA learns the global gene expression network as a directed (causal) graph from a set of 

reference samples using FGES (49). FGES calculates a directed acyclic graph (DAG) over all data 

by maximizing the Bayesian Information Criterion (BIC) score of the data given the model 

(network). The BIC score is given by the formula: 

𝐵𝐵𝐵𝐵𝐵𝐵 = −2 ∙ ℒ(𝒟𝒟) + 𝑃𝑃𝑃𝑃 ⋅ 𝑑𝑑𝑑𝑑 ⋅ ln𝑛𝑛 

where ℒ(𝒟𝒟) = ln𝑃𝑃(𝒟𝒟|𝜃𝜃,ℳ) is the maximum log-likelihood of the data given the model and its 

parameters; PD is a penalty value (“penalty discount”) that controls sparsity (PD=1 in the standard 

BIC definition); df is the degrees of freedom; and n is the sample size. This score is decomposable, 

and the total BIC of the graph is the sum of the BIC of its nodes and their parents. 

FGES starts with an empty graph then adds single edges while the BIC score increases. Next, 

the algorithm removes single edges while the BIC score increases.  

The Markov blanket of a gene Gi, MB(Gi), consists of the parents, children and spouses of 

Gi in the graph. Once the graph has been learned from the reference (control) samples, then ssNPA 

uses the Markov blanket around each gene, Gi, to build a predictor of its expression. This is because 

in a directed graph: 

𝐵𝐵𝑛𝑛𝑑𝑑(𝐺𝐺𝑖𝑖,𝑋𝑋|𝑀𝑀𝐵𝐵(𝐺𝐺𝑖𝑖)), for every 𝑋𝑋 ∉ 𝑀𝑀𝐵𝐵(𝐺𝐺𝑖𝑖). 

Therefore, a highly predictive regression model can be learned for each gene: 

𝐺𝐺𝑖𝑖 = 𝛽𝛽0,𝑖𝑖 + � 𝛽𝛽𝑘𝑘,𝑖𝑖 ∙ 𝐺𝐺𝑘𝑘 + 𝜀𝜀
𝐺𝐺𝑘𝑘∈𝑀𝑀𝑀𝑀(𝐺𝐺𝑖𝑖)
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Then for each new sample this model can be used to calculate the deviation of the expression of 

Gi in this sample compared to the reference samples. So, the new sample can be represented as a 

vector of deviations of expression of every gene from the reference samples. Given that genes are 

connected through the network of interactions, in this way, we assess both the topology and the 

magnitude of network perturbations. This procedure is summarized in Figure 8. 

 

Figure 8 Overview of the single-sample network perturbation assessment through causal network (ssNPA) algorithm. 

 

For comparison purposes, we also implemented ssNPA-LR, in which causal learning is 

substituted by lasso regression, resulting in an undirected graph. The ssNPA analysis procedure 

has the following steps: 

1. Data preparation. For speed and accuracy, in this paper we selected the top 3,000 most variant 

genes for scRNA-seq or RNA-seq data. The RNA-seq counts were transformed to log2 counts per 

million through mean-variance modeling by the voom function (Limma v. 3.32.10) (50). 
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2. Reference samples. For disease data, we used the controls as reference sample set. For the liver 

scRNA-seq, we tested each stage (as determined by external cell markers) as potential reference 

group. 

3. Gene network learning (ssNPA). A directed graph was learned on the expression data for the 

reference group of samples (FGES algorithm) (49). For this work, we scan over a number of PD 

values in the range [4, 12] and we choose a PD for each dataset that balances grouping the reference 

samples together while not overfitting. The Markov blanket around every gene in this network is 

used for predicting its expression on any given sample; and deviation from the observed value is 

a measure of network perturbation. 

4. Feature selection (ssNPA-LR). In this case, we used the glmnet package in R (v. 2.0.16) to learn 

a lasso regression prediction model for every gene across the reference samples (51). 

We chose each sparsity parameter (λ) with 10-fold cross validation, selecting the value of λ 

corresponding to minimum mean cross-validated error. 

3.3.2  ssNPA correctly identifies embryonic stage and cell type in murine liver cells from 

single cell RNA-seq data 

We used a recently published liver development scRNA-seq dataset to test ssNPA and 

compare it to other methods. This dataset is composed of multiple types of liver cells samples at a 

series of developmental timepoints. The early hepatoblast cell differentiates into two lineages 

(hepatoblasts and cholangiocytes). In this dataset the time point and cell-identity is experimentally 

controlled and thus can serve as the ground truth. We hypothesize that information regarding the 

cell-type and developmental stage is reflected in the gene expression data. 
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Figure 9 Cluster assignments with (A) gene expression, (B) ssNPA, (C) Pathifier, and (D) ssGSEA of murine liver 

cell scRNA-seq samples. ssNPA was used with PD=5 and the E14.5 cells were provided as the reference set to both 

ssNPA and Pathifier. Clustering for all methods was performed with the first 10 principal components. 

 

When gene expression data used directly for clustering (46) we identified six clusters 

(Figure 9A), which separated well the extreme developmental time points: cells measured at day 

E10.5 and hepatocytes from day E17.5 (Figure 10A). However, all of the differentiated 

cholangiocytes were grouped together in a single cluster and although they were somewhat 

stratified within the cluster, their embryonic stage was not distinguishable. The remaining clusters 
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contained a mix of intermediate timepoints (days), and hence they did not accurately represent the 

developmental trajectory. 

 

Figure 10 Comparison of how well (A) gene expression, (B) ssNPA, (C) Pathifier, and (D) ssGSEA separate murine 

liver cell scRNA-seq samples by developmental stage and cell type. ssNPA was used with the E14.5 cells as the 

reference set and PD=5. Pathifier was also applied with the E14.5 cells as the reference set. Clustering for every 

method was performed with the first ten principal components. 

 

By contrast, the six identified clusters based on the network perturbation features of ssNPA 

(Figure 9B) separated well all stages (Figure 10B). In particular, hepatoblasts from days E10.5 and 

E11.5 as well as mature cholangiocytes and E17.5 hepatocytes were separated into four distinct 
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clusters. Since there was not an obvious reference set of samples in this dataset, we examined the 

utility of each group as a potential reference. We additionally evaluated a range of PD (penalty 

discount) parameter values for FGES [4,12]. We found the late intermediate stages (E14.5 or 

E15.5) to show better performance than the extremes, when they were used as reference set, while 

the choice of PD had less impact on clustering performance (Figure 11).  

 

Figure 11 ssNPA clustering performance assessed by normalized mutual information measures how well murine liver 

cells are separated by their developmental stage and cell type and is a function of both the penalty discount (PD) 

parameter chosen for learning the reference causal network with FGES and the cells chosen as the reference set on 

which to learn the reference network. Clustering for all methods was performed with the first ten principal components. 

Time point E14.5 with PD=5 was chosen for learning the reference network in all subsequent ssNPA analyses of this 

dataset. 

 

Next, we compared ssNPA to Pathifier and ssGSEA. Both methods quantify gene 

interactions, but require pathway information from an external database. For Pathifier we used the 

KEGG pathway database (52). It also identified six distinct clusters (Figure 9C), but with the 

exception of E10.5, it did not separate the developmental stages very well (Figure 10C). All of the 

intermediate stage hepatocytes were mixed together and distributed in three clusters. Furthermore, 

the runtime of Pathifier was very long compared to ssNPA (on the order of hours compared to 
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minutes), Finally, we tested ssGSEA which calculates a gene set enrichment score for every 

sample. We used ssGSEA with default parameters and the default gene sets from the C2 collection 

of the Molecular Signatures Database version 3.0 (48). ssGSEA does not require the user to 

provide a reference set. Clustering with the ssGSEA produced five clusters (Figure 9D), but in 

general, these were not well separated according to developmental time point (Figure 10D). The 

cholangiocytes were grouped into one cluster but the largest cluster contained the hepatoblasts 

from E10.5 and E11.5. The hepatocytes from E17.5 were grouped together well in another, but the 

remaining hepatoblasts/hepatocytes spanning E12.5-E15.5 were mixed together and divided 

between two clusters. 

 

Figure 12 (A) Developmental stage and cell type separation and (B) cluster assignment with ssNPA-LR on a murine 

liver cell scRNA-seq dataset. We chose E14.5 was the reference group of cells to facilitate comparison with ssNPA. 

Sparsity parameters (λ) for the lasso regression models were chosen with 10-fold cross validation, selecting the value 

of λ corresponding to the minimum cross-validated error. Clustering was performed with the first ten principal 

components. 

 

We additionally developed and tested a variation of ssNPA, the ssNPA-LR algorithm, 

which uses lasso regression instead of causal learning to choose the features predicting the 

expression of a gene (Figure 12A). We found five clusters (Figure 12B), which separated well the 
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early and late developmental stages, but most of the intermediate stage hepatocytes were grouped 

together in one cluster. The exception to this is the group of E14.5 hepatocyte and cholangiocyte 

cells, which are grouped tightly together at a large distance from the rest of the developmental 

trajectory. This suggests that the lasso regression approach might be overfitting to the reference 

group of cells despite the fact that its optimum parameter was selected through cross-validation to 

minimize mean error. 

 

Table 7 Comparison of different feature calculation methods. Clustering for every method was performed with the 

first ten principal components. E14.5 were used as the reference cells for Pathifier, ssNPA, and ssNPA-LR. PD=5 for 

ssNPA. MI: mutual information; ARI: adjusted Rand index. 

 

 

To quantitatively compare the clustering performances of all methods we used the 

normalized mutual information (NMI) and the adjusted Rand index (ARI) (Table 7). We found 

that ssNPA and ssNPA-LR clearly outperform Pathifier, ssGSEA, and gene expression (with either 

the top 3,000 most highly variant genes or all genes) by maximizing NMI (0.693 and 0.687, 

respectively). ssNPA also returned the highest ARI of these methods (0.5). However, we note a 

strong advantage to ssNPA over ssNPA-LR when we consider how many genes they utilized. On 

average, ssNPA used only 2.5 predictors for every gene, while ssNPA-LR needed 23.1 genes. 
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Thus, we see that using directed graphs to jointly model the expression of all 3,000 genes offers a 

clear advantage. 

3.3.3  ssNPA separates breast cancer samples according to molecular subtype and shows 

significant differences in survival 

We also applied various methods on breast cancer RNA-seq data from tissues of known 

subtype. ssNPA-based clustering placed the majority of the basal tumor samples (93.1%) in two 

clusters along with most of the HER2+ samples (89.2%) (Figure 13A and Figure 14A), while 

Luminal A and B subtypes were not resolved that well. The other methods produced a similar 

result with respect to molecular subtype clustering (Figure 13B-Figure 13D and Figure 14B-Figure 

14D). The identified clusters of patients differ significantly in terms of survival for all methods 

(Figure 15), although ssNPA-derived clusters had more significant p-value. 
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Figure 13 Separation of breast cancer RNA-seq samples according to tumor molecular subtype by (A) ssNPA, (B) 

gene expression, (C) Pathifier, and (D) ssGSEA. ssNPA was used with PD=8. Clustering for all methods was 

performed with the first three principal components. Molecular subtype was assigned according to estrogen receptor 

(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status. We define ER-

negative, PR-negative, and HER2-negative as basal (triple-negative); ER-negative, PR-negative, and HER2-positive 

as HER2+; ER-positive, PR-positive, and HER2-negative as luminal A; and ER-positive, PR-positive, and HER2-

positive as luminal B. 
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Figure 14 Cluster assignments with (A) ssNPA, (B) gene expression, (C) Pathifier, and (D) ssGSEA of breast cancer 

RNA-seq samples. ssNPA was used with PD=8. Clustering for all methods was performed with the first three principal 

components. 

 

 

Figure 15 Full breast cancer subject survival analysis by cluster as assigned with (A) ssNPA, (B) gene expression, 

(C) Pathifier, and (D) ssGSEA. ssNPA was used with PD=8. Clustering for all methods was performed with the first 

three principal components. 
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3.3.4  ssNPA identifies two triple negative subclusters with different survival rates 

We have demonstrated that ssNPA is able to use relative gene network deregulation 

separate BRCA tumor samples in a clinically meaningful way. We next investigated if ssNPA can 

provide further biological insight by inspecting the ssNPA-derived subclusters of the most severe, 

triple-negative tumors. To this end, we used ssNPA to cluster the 116 triple negative tumor 

samples, using the 37 HER2+ samples as the reference group. The algorithm identified two distinct 

subclusters of triple negative patients (63 in clusters 0 and 53 in cluster 1), which we found to 

differ in terms of survival (p=0.056). In particular, cluster 1 has substantially better survival up to 

2.5 years than cluster 0 (Figure 16).  

 

Figure 16 (A) Basal breast cancer patient subclusters. (B) Basal breast cancer patient survival by subcluster. Patients 

were clustered with ssNPA with the HER2+ patients provided as the reference group and PD=8. The first ten principal 

components were used for clustering. (B) Survival plot of the patients in the two ssNPA clusters (x-axis: time in days). 

 

In order to investigate which genes contributed to cluster identification we used the 

magnitude of the PCA loadings for the principal components used in clustering (Table 8). These 
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genes with the highest loadings are the ones whose network is most deregulated when compared 

to HER2+ samples (Figure 17A). Many of these genes have well-documented roles in breast cancer 

malignancy and progression.  

 

Table 8 The genes with the top 5 loadings of the first ten PCs in the BRCA triple-negative dataset. ssNPA was used 

with PD=8. 
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Figure 17 (A) Expression heatmap of the top PCA loading genes that separate the two triple-negative BRCA 

subclusters. Genes were included if they were among the top five genes for at least three of the first ten principal 

components that were used for ssNPA clustering. Samples are sorted by subcluster. (B) Relationship among several 

top PCA loading genes in the subcluster 0 network. The boxplots show the relative expression across subclusters of 

genes (C) MUCL1, (D) ACSM1, and (E) PIP. 

 

Mesothelin (MSLN) separates the clusters along the first, second, fourth, sixth, and seventh 

principal components (Table 8). Expression of this gene is positively associated with triple 

negative breast cancer, and in one study, the triple negative breast cancer patients that express 

MSLN were older, had more distant metastases, and experienced worse survival outcomes (53). 

Another study linked overexpression of MSLN to increased ERK1/2 and MMP-9 protein levels 

and invasive capability in MCF-7 cells, a triple negative breast cancer cell line (54). Mucin-like 1 

(MUCL1) had the largest PCA loading for the first principal component, plus strong effects with 
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the fifth, eighth, and tenth principal components. The expression of MUCL1 is decreased with the 

inhibition of HER2 activity, and it is proposed to regulate both the 

phosphorylation of FAK and cell cycle progression through the FAK-JNK pathway (55). In our 

networks, MUCL1 had no connections in either the HER2+ network or the network with better 

prognosis, but had a single connection to acyl-CoA synthetase medium-chain family member 1 

(ACSM1) in the network of worse prognosis (Figure 17B). ACSM1 expression, in combination 

with 15-prostaglandin dehydrogenase, has been described as a marker for the molecular apocrine 

subtype of ER- breast cancer (56). We observed that both MUCL1 and ACSM1 were more highly 

expressed in the cluster with worse prognosis (Figure 17C and Figure 17D). ACSM1 also did not 

have any connections in the networks for HER2+ or cluster 1, although in cluster 0, in addition to 

MUCL1, it was connected to both serine hydrolase-like 2 (SERHL2) and prolactin-induced protein 

(PIP) (Figure 17B). Interestingly, PIP was another protein with a strong role in separating the 

clusters along the first, third, and ninth principal components. PIP is known to be the most 

regulated gene by AR and ERK inhibition in the molecular apocrine subtype and plays an 

important role in cell invasion and viability for these cells (57). Additionally, PIP has been 

proposed as a biomarker for early stage breast cancer as it is highly downregulated in these cancer 

samples compared to normal tissues (58). We observed that PIP was more highly expressed in the 

triple negative samples from cluster 0 than in those from cluster 1 (Figure 17E). In general, we 

found that the network for cluster with the worst prognosis (cluster 0) was more densely connected 

compared to the other cluster (cluster 1) or the HER2+ reference (2,137 edges compared to 1,730 

edges and 1,213 edges, respectively). 
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3.3.5  ssNPA identifies patient subclusters with different survival rates in lung 

adenocarcinoma 

We also tested ssNPA in subtyping patients in the context of lung adenocarcinoma, a 

disease for which there is no subtyping ground truth. The normal samples were used as reference 

dataset when needed (ssNPA, Pathifier), but they were omitted during clustering in order to better 

facilitate the discovery of new disease subtypes. ssNPA features resulted in four clusters with 

significantly different survival rates (p=3.6e-04, Figure 18A and Figure 19A). Subjects who 

maintain the greatest survival probability through the first 1,500 days were clustered together in 

cluster 2. Similarly, subjects with the worst survival are all clustered together in cluster 3. The 

other two clusters comprised of subjects with an intermediate survival phenotype. While we 

observe large differences in the survival curves at later time points (after 1,000 days) these have 

very few subjects and thus contribute little to reported p-value. The only other method that 

produced significantly different clusters in terms of survival was gene expression alone (five 

clusters; p=7.1e-04, Figure 18B and Figure 19B). Survival differences in Pathifier and ssGSEA 

clusters (Figure 18C-D and Figure 19C-D) were not significant (p=0.07 and p=0.08, respectively). 
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Figure 18 Lung adenocarcinoma RNA-seq sample clusters as discovered with (A) ssNPA, (B) gene expression, (C) 

Pathifier, and (D) ssGSEA. ssNPA was used with PD=6. Clustering for all methods was performed with the first six 

principal components. 

 

 

Figure 19 Full lung adenocarcinoma subject survival analysis by cluster as assigned with (A) ssNPA, (B) gene 

expression, (C) Pathifier, and (D) ssGSEA. ssNPA was used with PD=6. Clustering for all methods was performed 

with the first six principal components. 
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3.3.6  ssNPA identifies patient subclusters with differentially deregulated genes previously 

linked to lung cancer 

Similarly to our analysis of breast cancer, ssNPA features can be used not only to separate 

patients into groups with coherent clinical phenotypes but also investigate the specific network 

perturbations that underlying differences among clusters. Table 9 lists the top five genes based on 

their factor loadings for the first six principal components of the ssNPA features.  

 

Table 9 The genes with the top 5 loadings for the first 6 PCs in the LUAD dataset. ssNPA was used with PD=6. 
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Notably, many of these genes have well-documented connections to lung physiology and 

cancer biology. Carbonic anhydrase IX (CA9) was one of the top genes whose deregulation 

separated the clusters along the first principal component. CA9 is known to be overexpressed in 

several types of tumors under hypoxic conditions and, in non-small cell lung cancer, has been 

linked to worse survival outcomes (59). Trefoil factor 1, 2, and 3 (TFF1, TFF2, and TFF3) were 

all also found to be important for separating the clusters. In particular, TFF1 was found to be more 

highly expressed in cluster 1 compared to the other clusters, and its expression was predicted more 

poorly by the gene network from the normal samples (Figure 20). Patients in cluster 1 have the 

best prognosis, which is consistent with previous observations that TFF1 deficiency is linked to 

higher tumor incidence in breast cancer and TFF1-KO mice exhibit increased tumor development 

in the mammary gland, ovary, and lung (60). 
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Figure 20 Expression heatmap of the top PCA loading genes that separate the four lung adenocarcinoma clusters. 

Samples are sorted by cluster. 

 

We further sought to understand how the deregulation of these genes differs among the 

four subclusters, as well as between normal and cancer samples. Thus, we learned the causal 

network of every subcluster and compared them to each other as well as the network learned from 

normal samples. Figure 21 shows selected subnetworks from each of the four clusters, centered 

around the top genes whose deregulation separates the clusters, and compares them to this 

subnetwork in the normals. Interestingly, we observed that cluster 3, whose patients experienced 

the worst survival outcomes, produced the least dense network (3,003 edges compared to 4,518 

edges in the normal network). However, each of the other three clusters had additional edges in 

their graphs compared to the normal network (with 5,303, 5,632, and 5,548 edges, respectively). 
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Figure 21 Comparison of lung cancer gene subnetworks of the normal (gray), cluster 0 (red), cluster 1 (green), cluster 

2 (blue), and cluster 3 (purple) subjects. Subnetworks highlight the top PCA loading genes (darker color, square nodes) 

and their first neighbors (lighter color, rounded nodes). Genes with no adjacent edges are not included. 

3.4 Discussion 

We presented ssNPA, a new method to assess gene network perturbations in each sample. 

The method first infers the global network from a set of reference samples using causal graph 

learning. In the following step given a new sample the method calculates its deviation from the 

reference network at every gene, thus providing information about both the topology and the 

magnitude of network perturbations. The perturbation feature vector can been used to cluster 

samples into cell or disease subtypes. We demonstrated the performance of ssNPA by using it to 

evaluate cluster memberships of datasets with known ground truth; specifically, liver development 
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cells (time course scRNA-seq data) and TCGA breast and lung cancer data. In the first case, we 

showed that ssNPA performs better than currently used methods and from simple gene-based 

clustering on finding the true developmental stage and type of the cell. This showed that network 

perturbation features can recapitulate the time course data. In this dataset, we found that using one 

of the middle developmental stages (which are equidistant from both progenitor and fully 

differentiated extremes) as reference point allows for better results 

In the cancer data we identified clusters of patients either with good agreement with known 

histologically-determined cancer subtypes (breast cancer) or with significant differences in 

survival (lung adenocarcinoma). Further analysis of the adenocarcinoma clusters gave us some 

insights on the molecular mechanisms that may affect survival. Both these cases demonstrate the 

ability of ssNPA to identify disease subtypes, which is the most significant problem in developing 

personalized medicine strategies, especially in complex diseases. 

In all cases, we compared ssNPA to a classification scheme that uses the gene expression 

values directly and with ssGSEA and Pathfinder, two known methods for single sample analysis. 

ssNPA performed better than these methods in all cases, as is evidenced by the greater agreement 

of the ssNPA-identified clusters to the ground truth and the more significant differences in survival 

rates in the cancer cases. The difference between using network deregulation features (ssNPA) 

versus simple gene expression differences is that the former captures not only the gene expression 

differences but also differences in the topology of the network from the reference samples. The 

better performance of ssNPA versus ssGSEA and Pathfinder might reflect the fact that the latter 

depend on prior knowledge that might not be very accurate or might not reflect the particular 

conditions in the studied dataset.  Having said that, we need to emphasize the importance of the 

selection of the reference group.  If the gene networks in the reference group are very different 
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than those in the sample subgroups (e.g., disease subphenotypes), then ssNPA will not have the 

power to detect the subgroups because they will all be “equidistant” from the reference set. 

In summary, ssNPA is a new method for characterizing single samples of gene expression 

and offers significant advantages over existing methods. Unlike ssGSEA and Pathifier, it does not 

require prior pathway knowledge; it is substantially faster than Pathifier; and can be used to 

produce high quality sample clusters that reflect the underlying mechanisms of the disease 

condition or phenotype. In the future, ssNPA can be used for analyzing disease data to identify 

disease subphenotypes and develop personalized intervention strategies. 
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4.0 Gene expression network-based subtyping according to COPD phenotype predicts 

genetic mechanism of disease  

4.1 Background 

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease related to the 

narrowing of small airways and emphysema (61, 62). It is the third leading cause of death in the 

United States (63). Diagnosis of the disease is defined solely by spirometric measures reflecting 

reduced airflow, specifically a ratio of forced expiratory volume in 1 second (FEV1) over forced 

vital capacity (FVC) less than 0.70 (64), but the underlying disease mechanism is not well 

understood, and this definition does nothing to account for the vast heterogeneity observed in 

COPD cases. The main risk factor of COPD is smoking, but one study still showed that only 50% 

of even lifelong smokers developed COPD (65). This suggests there is an important genetic 

component to the disease that is independent of smoking and other environmental exposure 

impacts. Among people who do develop COPD, there is a lot of variability in the rate of 

progression of the disease (66), response to treatment (67-69), symptom presentation (70), 

inflammatory response (71), and changes to lung physiology (72). Therefore, there has been 

tremendous interest in discovering subtypes of the disease that reflect differences along these axes. 

Well-characterized subtypes with easily measurable biomarkers would allow for the selection of 

high-risk COPD populations for potential treatment, patient stratification leading to more highly-

powered clinical trials, and enriched signals of rare genetic variants and molecular phenotypes that 

are risk factors for development of the disease (73). 



 63 

This type of approach has been relatively successful in asthma (74), but efforts in COPD 

have proven more difficult.  Many previous attempts to subtype COPD have been limited by 

complications of reproducibility, with the number of subtypes identified largely ranging from 2 to 

5, and study design, with cohorts in which women and subjects with mild disease were 

underrepresented (75). Another study applied a consistent clustering analysis to 10 independent 

cohorts and found only modest reproducibility across cohorts, but had more success with a 

continuous PCA-based projection of the subjects (76). The authors suggest that the disease is best 

represented as a COPD continuum instead of separate and mutually exclusive subtypes. However, 

this interpretation does not account for the suspected varying genetic basis of COPD and, without 

clear cut-off points along the continuum, does not offer much utility in practice.  

Another limitation to efforts to subtype COPD is that there is a frustrating barrier to 

validating and interpreting COPD subtypes clustered based on their clinical characteristics, such 

as spirometric variables and body mass index. Some studies have tried to circumvent this problem 

by withholding a pre-defined subset of clinical characteristics out at the clustering step and then 

using those to asses the resulting clusters (77). While it can be possible to find distinct groups of 

subjects that do separate according to these types of clinical variables, these classifications tell us 

little to nothing new about how the disease works. Instead, the incorporation of genomic and 

transcriptomic information can greatly enhance the relevance of COPD subtypes. One previous 

study identified four COPD clusters based on blood gene expression with a network-based 

approach (78). Peripheral blood gene expression features are attractive candidates for biomarkers 

because they are so easily accessible. These clusters of subjects promisingly varied in the severity 

of their disease, but, because the study relied on microarray gene expression data, discovery was 

limited to the genes included on those platforms. However, the cost of sequencing is going down, 
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and the availability of large transcriptomic datasets is increasing, making this approach much more 

accessible and practical for clinical use. 

We hypothesized that our ssNPA method for clustering (described in Chapter 3) would be 

a useful approach to COPD subtyping based on gene expression data and would improve on 

previous work in several ways. ssNPA models gene regulatory networks directly with a 

sophisticated causal algorithm, and the features used for clustering are built intentionally to capture 

the expression and regulatory differences in the subtypes compared to a reference group, which in 

this case was a carefully chosen group of former smokers who do not have COPD. This framework 

contributes to ease of interpretability, even allowing for the identification of specific genes whose 

deregulation changes among clusters, and can capture information from a complex network of 

interactions.  

4.2 Materials and Methods 

4.2.1  COPDGene dataset 

COPDGene is a large ongoing longitudinal study that aims to investigate the genetic basis 

of COPD susceptibility and progression through the observation of over 10,000 subjects over the 

course of 10 years and counting. The dataset is comprised of a variety of genetic and phenotypic 

measurements, including genotype, gene expression, protein expression, and a huge array of 

clinical variables. The study has been previously been described in detail (79). For our analysis, 

we used a subset of the study consisting of 1,211 subjects for whom peripheral blood mononuclear 

cell raw count RNA-seq gene expression data were available. These data were collected during 
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Phase 2 of the study, roughly 5 years after each subject’s initial visit. Thus, we restrict our analysis 

to clinical variable measurements from Phase 2, except for those variables that measure the change 

between Phase 1 and Phase 2. 

4.2.2  Data preprocessing 

Several steps were used to process the raw count RNA-seq data in preparation for use with 

ssNPA. First, the data were filtered with Biomart to keep only the 19,457 protein coding genes 

(80). Then, the RNA-seq counts were transformed to log2 counts per million through mean-

variance modeling by the voom function (Limma v. 3.32.10) (50). Because COPDGene is a large 

study across multiple centers, the samples were measured in 17 batches. We used the batchdetect 

function in R (gPCA, v. 1.0) to detect batch effects with guided principal component analysis (81). 

Before correction, we observed strong batch effects (p<0.001), with clear differences among 

several groups of batches when visualized with the first two principal components of the guided 

PCA (Figure 22A). In order to correct for these effects, we applied the removeBatchEffect function 

in R (Limma v 3.32.10) (50). After correction, the guided principal component analysis no longer 

detected any batch effects (p=0.545, Figure 22B). Next, we filtered the data to keep only top 3,000 

most variant genes. Finally, because of the overwhelming effects of smoking on gene expression 

profile (82, 83), we considered only those subjects who were reported as former smokers in both 

visits. This left us with 617 former smokers with expression measured over 3,000 genes for 

analysis. 
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Figure 22 COPDGene RNA-seq data visualized with guided PCA (PC1 and PC2) and colored according to batch (A) 

before and (B) after batch correction. 

4.2.3  Reference subject selection 

A reference group of samples that do not have COPD were chosen very conservatively for 

use with ssNPA. These subjects were selected based on the following criteria: (a) subject was 

included in Phase 1 and Phase 2 data; (b) there was no missing data for either forced expiratory 

volume in one second (FEV1) or FEV1/forced vital capacity (FVC); (c) subject was GOLD0 in 

both visits; (d) subject had percent emphysema (Thirona) less than 5% in both visits; (e) the change 

in subject’s percent predicted FEV1 (FEV1pp) between Phase 1 and Phase 2 visits was greater 

than -5. After applying these filtering criteria, we were left with 128 reference subjects and 489 

COPD subjects. 

4.2.4  Single sample network perturbation assessment 

We analyzed this COPDGene gene expression dataset with single sample network 

perturbation assessment (ssNPA), as described in Chapter 3. Briefly, we learned a gene expression 
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network on the reference subjects who did not have COPD using FGES with a penalty discount 

PD=4. We trained linear regression models on the reference subjects for every gene to predict its 

expression based on the expression of the genes in its Markov blanket in the reference network. 

Next, we calculated the ssNPA features for all the COPD case subjects, where for every gene we 

recorded the magnitude of the difference between the predicted expression of the gene based on 

the reference sample network and its actual expression in that sample. Finally, with the COPD 

subjects represented in this new feature space as our dataset, we clustered them using the first six 

principal components of the data and visualized the results with a t-SNE plot (47). We expected 

the ssNPA features would lead to clusters of COPD subjects separated by their relative gene 

expression network deregulation compared to the reference subjects who do not have COPD. 

4.2.5  Cluster annotation 

To investigate the clinically relevant differences among the clusters of COPD patients, we 

compared the values of many clinical variables across the clusters. These included spirometry, 

radiographic, symptom questionnaire, and peripheral blood cell composition measurements, as 

well as medical history and comorbidity information. For continuous and ordinal variables, we 

applied the Kruskal-Wallis test. For discrete and binary variables, a Chi-squared test was used. 

Multiple comparisons were controlled for with false discovery rate (FDR).  

To better understand how the clusters were separated, we considered the magnitude of the 

PCA loading for each feature. Gene features with the highest loading values in the top principal 

components correspond to the genes whose deregulation relative to the controls contributes the 

most to separating the clusters. 
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4.3 Results and Discussion 

We used ssNPA to cluster the COPD subjects. The resulting clusters exhibited different 

degrees of disease severity and symptom presentation. We sought to understand these differences 

by investigating the underlying changes in the gene regulatory networks of these subjects and how 

they can be implicated in the mechanism of the disease. 

4.3.1  COPD clusters exhibit different clinical phenotypes 

ssNPA separated the 489 COPD subjects into four clusters (Figure 23). The first three 

clusters were of roughly equal size (33.7% of subjects in cluster 1, 30.5% in cluster 2, and 26.0% 

in cluster 3). Cluster 4 was the smallest with only 48 subjects (9.8%) and was more clearly 

separated from the other three clusters in the t-SNE projection.  

 

Figure 23 t-SNE plot of the four COPD subject clusters identified by ssNPA. 
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In order to understand if these clusters were able to capture any meaningful biological 

differences in the subjects’ disease severity or progression, we check how the clusters varied across 

a set of features that we selected based on their clinical relevance (Table 10). In general we observe 

that cluster 4 most closely resembles the control group of subjects who do not have COPD, and 

the subjects in cluster 1 are the most symptomatically affected, with the worst exercise tolerance 

based on walk distance and lowest FEV1. Clusters 2 and 3 experience more intermediate 

phenotypes between these two. The variables that were most different among the clusters were 

largely related to quality of life and greater dyspnea with exertion. These results are significant 

because only the most basic pulmonary function and emphysema information were taken into 

account when selecting the reference subjects and the COPD subjects were clustered with their 

gene expression as the sole input into ssNPA. Thus, our method allowed us to associate 

transcriptomic signatures directly to variation in phenotypes and high-level symptomatic 

presentation of the disease. We also noted that, although the control subjects were younger and 

there were more females than males (on average), age and sex were relatively consistent across 

the COPD subject clusters and do not seem to be confounding these results.  
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Table 10 Clinical characteristics of COPD subjects vary across clusters. The variables are sorted by descending 

significance. P-values were calculated with a Kruskal-Wallis test for continuous and ordinal variables or a Chi-squared 

test for discrete and binary variables and assess if there differences in variable distribution among clusters. Variable 

means (standard deviations) are also reported for all COPD subjects overall, each COPD cluster, and all control 

subjects for comparison. Variables are included with a p < 0.05 cut-off  and < 5% FDR are shown in bold. 

 

4.3.2  ssNPA identifies a list of candidate genes deregulated in COPD 

After observing these changes in COPD severity and symptom presentation among the 

clusters we identified, we wanted to understand more about the molecular changes in each cluster 

that are contributing to these differences. ssNPA clusters subjects according to the relative 

deregulation of their gene expression networks, so we looked at the gene deregulation features that 
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had the largest PCA loadings to see which genes were contributing the most to separating the 

clusters (Table 11). We focused on the top five loadings for each of the first six PCs that were used 

to cluster the subjects and found that many of the genes came up more than once.  

 

Table 11 The genes with the top 5 loadings for the first 6 PCs used for clustering the COPD subjects. 

 

 

Several of these genes have previously been noted as having a role in COPD. Desmoplakin 

(DSP) was recently identified as one of 22 genes containing a top coding variant (rs2076295) in a 

COPD genome-wide association study (GWAS) over 15,256 COPD cases and 47,936 controls 

(84). This locus also colocalized with an expression quantitative trait locus (eQTL) from another 

lung tissue dataset that included subjects with COPD (85). DSP is a desmosomal protein that plays 

an essential role in cell-cell linkages, especially in epidermis and cardiac muscle (86, 87). DSP 

variants have also been associated with idiopathic pulmonary fibrosis (88), although these variants 

may be protective against COPD (84).  

Adhesion G Protein-Coupled Receptor G7 (ADGRG7; alias GPR128) is another gene 

whose deregulation was important for separating the clusters. ADGRG7 encodes the G protein-
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coupled receptor 128 (GPR128) protein. Differential nasal expression of this gene has been linked 

to atopic asthma in children (89), which is known to be a risk factor for later development of COPD 

(90-92). The genomic region containing GPR128 shares synteny with the homologous region of 

the mouse genome that has been implicated in cigarette smoke-induced emphysema susceptibility 

in mice (93). Fibromodulin (FMOD) is a protein involved in extracellular matrix organization and 

has been connected within a module to a large number of other extracellular matrix pathway 

components in a COPD network (94). Extacellular matrix remodeling is common in all lung 

compartments of patients with mild and moderate COPD and likely plays an important role in 

airflow obstruction (95).  

Another gene we identified, gluthathione S-transferase μ 1(GSTM1), belongs to a family 

of enzymes that are linked to lung disease, likely through their utility in detoxifying electrophilic 

compounds, such as cigarette smoke and environmental toxins (96). A homozygous GSTM1-null 

genotype has been linked to lung cancer pathogenesis (97, 98), emphysema (99, 100), and COPD 

susceptibility (101, 102). A different study found the GSTM1-null phenotype to be a risk factor 

decreased lung function in smokers living near coal mines (103), which alludes to an interesting 

interaction between the genetic underpinnings of COPD and environmental exposures. 

The list of genes we have identified provide an interesting look into the molecular 

mechanism of susceptibility, such as the role of environmental toxin processing, and progression, 

including pathways involved in extracellular matrix organization. Several of the genes on the list 

such as keratin 77 (KRT77) have not been specifically cited for an association with COPD, but 

they code for important structural proteins and could clearly play a role in airway remodeling. 



 73 

4.4 Conclusions 

We have shown that ssNPA identified clusters of COPD subjects that correspond to 

clinically relevant variations of the disease, reflecting both severity and symptoms. Furthermore, 

the feature vectors used for clustering themselves can give us mechanistic insight into the disease 

that specifically relates the COPD cases to a control group of subjects who do not have COPD. 

Additionally, we identified a set of genes whose deregulation is responsible for separating the 

clusters. Many of these genes have previously-described connections to COPD that are further 

bolstered by this work. Our results also provide strong evidence for the role of a number of novel 

genes in COPD. The network learning and gene selection were completely unbiased, using no prior 

knowledge of disease mechanism or biology pathways. Finally, ssNPA is a flexible framework 

that can handle a variety of data types. As the data become available through COPDGene and other 

studies, future work could incorporate genetic variant, epigenetic, proteomic, or metabolomic 

variables into the network learning and feature calculations that would provide a multi-layered, 

more complete picture of the molecular pathology and heterogeneity of COPD. 
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5.0 Causal network modeling applications to chronic lung disease 

5.1 Background 

Causal modeling is a powerful tool for learning networks that can improve understanding 

of complex diseases through classification and prediction. This methodology has been applied to 

wide variety of diseases-related applications, including lung cancer (104), breast cancer (105, 106), 

coronary artery disease (107), and age-related diseases (108). We focused on two specific 

applications to chronic lung diseases, modeling lung function decline in COPD and cell type-

specific gene interactions in IPF.  

COPD is a disease of airflow limitation from airway or alveolar abnormalities and typically 

caused by smoking or other environmental exposures (64). The disease produces a huge healthcare 

burden worldwide (109), but still little is understood about the mechanism of disease and the 

factors responsible for its progression. Additionally, COPD is known to interact with a variety of 

other diseases (comorbidities) that can be causally related (110-112), through the same risk factors 

contributing to both diseases or the presence of one disease worsening the effects of the other 

(113). The rate of lung function decline, typically measured by change in FEV1, varies widely 

among patients (114). Several attempts have been made to build regression models for longitudinal 

lung function decline, although these studies have relied on very few basic clinical variables (115) 

or simple logistic regression analysis to model a very short period of decline (116). Our analysis 

of the Pittsburgh SCCOR cohort, however, combined a rich dataset of well-characterized subjects 

with both baseline and 2-year follow-up measurements with a causal modeling approach that 
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improves on basic regression analysis by modeling the conditional (in)dependencies of all the 

variables directly. 

Idiopathic pulmonary fibrosis (IPF) is another chronic and progressive lung disease. 

Patients experience a mean survival time of three years after diagnosis (117). IPF is serious disease 

characterized by fibrosis of the lungs and involves the interactions of many different cell types, 

including alveolar epithelial cells (118, 119), fibroblasts (120, 121), and macrophages (122), 

among others. However, the specifics of the roles of each of these cells in IPF pathogenesis are 

poorly understood. Recently, single cell RNA-seq (scRNA-seq) experiments have made huge 

strides toward resolving some of the molecular complexities of varying cell populations and 

transcriptomes in IPF (123, 124). While these studies are contributing an incredible wealth of 

information about the molecular mechanism of IPF, much of their potential has yet to be unlocked, 

with current analyses limited mostly to standard differential gene expression and simple pathway 

enrichment. We present an analysis of a newly collected IPF scRNA-seq dataset that uses a causal 

network to focus in on the interactions among specific genes that are differently expressed in 

several important IPF cell types. 

5.2 Materials and Methods 

5.2.1  SCCOR dataset 

The Pittsburgh Specialized Center of Clinically Oriented Research (SCCOR) cohort 

consists of 747 subjects that were recruited from a larger, less characterized community-based 

tobacco-exposed cohort, enriched for subjects with visual emphysema. The dataset included 
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clinical data from 385 COPD patients that had a completed baseline and 2-year follow up visit. 

Dataset acquisition included semi-quantitative visual and quantitative MDCT chest radiographic 

analyses, pre- and post-bronchodilator lung function testing including spirometry, body 

plethysmography, impulse oscillometry and diffusing capacity, extensive symptom, demographic, 

environmental exposure and health outcome data, incremental shuttle exercise testing, and blood 

circulating proteins. There were 281 variables measured in total. We used these data to identify 

which factors measured in visit 1 are directly linked to lung function decline, as observed two 

years later at visit 2.  

5.2.2  IPF scRNA-seq dataset 

The single cell RNA-seq (scRNA-seq) dataset included cells from tissue samples collected 

in both the right upper and lower lung lobes from two lungs that were normal control lungs that 

were rejected for transplant and two IPF lungs that were removed during transplantation surgery. 

The processed gene expression dataset that we obtained contained single cell samples from the 

following cell type groups: secreted phosphoprotein 1-positive (SPP1+) macrophage (4,489 cells), 

fibroblast (2,270 cells), alveolar type I (AT1, 87 cells), club/clara and goblet (1,781 cells), keratin 

5-positive (KRT5+) basal epithelial (797 cells), and alveolar type II (AT2, 733 cells). These cells 

were characterized over the top genes that were differentially expressed between normal lungs and 

IPF lungs in each cell type (100 genes per cell type). Genes that were differentially expressed in 

more than one of these groups were excluded, resulting in 394 gene expression variables measured 

over 10,157 cells. 
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5.2.3  Causal modeling 

5.2.3.1 MGM-PCS 

 

Figure 24 StEPS results for edge sparsity parameter selection. Panel (A) illustrates the edge instablity behavior over 

all edges types. However, separate sparsity parameters were chosen for (B) continuous-continuous edges, (C) 

continuous-discrete edges, and (D) discrete-discrete edges. Error bars show standard deviation of edge instability. 

 

We applied MGM-PCS as described by (36) for the causal learning over the COPD dataset. 

Briefly, this approach first learns a mixed graphical model (MGM) over mixed data containing 

both discrete and continuous variables. The result is an undirected graph. In the next step, causal 

directions are assigned to the edges of the graph with a PC-stable, a methodology that relies on 

conditional independence testing (125). A unique feature of this implementation of MGM learning 

is the separate sparsity penalties, λ, assigned to each edge type (those that connect continuous to 

continuous variables (λCC), continuous to discrete variables (λCD), and discrete to discrete variables 

(λDD). We used the StEPS approach (36) to independently set these three parameters, choosing the 

highest value of λ for each edge type such that edge instability was greater than 0.05 (Figure 24). 
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As a result, we set λCC = 0.16, λCD = 0.2, and λDD = 0.3. PC-stable was applied with the parameter 

α = 0.25 for the conditional independence testing. 

5.2.3.2 FGES 

In order to identify the causal relationships among the expression levels of the selected 

differentially expressed genes in the different cell types of the IPF dataset, we used the fast greedy 

equivalence search (FGES) algorithm (126-128). FGES performs a greedy search in which edges 

are added between nodes until no additional edge increases the Bayesian Information Criterion 

(BIC) score, and then edges are removed until no additional removal increases the score. The 

variables in the dataset were transformed using nonparanormal (129, 130) to relax the normality 

assumption of the network learning algorithm.  

The penalty discount parameter, c, for the BIC scoring function was chosen by a method 

analogous to Stability Approach to Regularization Selection (StARS) (131) as described in (36). 

For a dataset with n samples by d variables and given c, we drew 40 random subsamples of size 

�𝑛𝑛
2
� according to complementary pairs stability selection (132). A network was constructed for each 

subsample using FGES as implemented in Tetrad (http://www.phil.cmu.edu/tetrad/). For a given 

c, 𝜃𝜃�𝑖𝑖𝑖𝑖(𝑐𝑐) was defined as the fraction of subsample networks in which an edge between node i and 

node j appeared. The edge instability was then calculated according to 𝜉𝜉𝑖𝑖𝑖𝑖(𝑐𝑐) = 2𝜃𝜃�𝑖𝑖𝑖𝑖(𝑐𝑐) �1 −

𝜃𝜃�𝑖𝑖𝑖𝑖(𝑐𝑐)�. The total instability of the network for a given penalty discount was calculated as the 

average instability over all edges, 𝑃𝑃�(𝑐𝑐) =
∑ 𝜉𝜉�𝑖𝑖𝑖𝑖(𝑐𝑐)𝑖𝑖<𝑖𝑖

�𝑑𝑑2�
. A penalty discount value of 6 was chosen 

based on the total instability and sparsity in the resulting network (Figure 25). 
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Figure 25 (A) StARS total instability versus FGES penalty discount. Error bars show standard deviation of edge 

instability. (B) Number of edges in the network versus FGES penalty discount. 

5.3 Results and Discussion 

5.3.1  Baseline factor prediction of lung function decline in COPD 

We applied MGM-PCS to the clinical SCCOR dataset to identify the baseline variables 

that are directly (causally) linked to the 2-year lung function decline in COPD patients. Given the 

substantial variation in longitudinal decline in lung function, identification of baseline subject 

attributes that are connected to disease progression is useful for developing prediction models and 

offers mechanistic insight and helps to identify risk factors of progression, which could be used to 

develop personalized approaches to disease management or treatment. The SCCOR dataset we 

used included 281 variables that recorded a variety of clinical, environmental, psychological, and 

patients’ history data in visit 1 (baseline). We ran MGM-PCS on this dataset, and we added a 

variable measuring the lung function decline between visit 1 and visit 2 as measured by the change 
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in FEV1 (“FEV1 progression”). The first and second neighbors around this target variable are 

shown in Figure 26. 

 

Figure 26 First and second neighbors of 2-year lung function decline, measured as FEV1 Progression. The variables 

that most influence the FEV1 progression are smoking status, creatinine and TNFα blood levels, pulmonary artery 

enlargement, history of GERD, systolic BP after exercise, and four spirometry variables (% change in FEV1 before 

and after bronchodilators, best % predicted FVC, best % predicted FRC, and PIF). 

 

This network offers face validity by identifying variables as direct connector that are 

expected to be associated with lung function decline, such as “Smoker” and bronchodilator 

reversibility, “FEV1 %ΔBD” (133, 134). Some of the other connections we observe are more 

novel. Notably, three of the first neighbors of FEV1 progression are markers of non-pulmonary 

co-morbidities.  “Creatinine” is a biomarker of renal dysfunction; “Exercise Systolic BP” is the 

systolic blood pressure at the end of 6 minute walking exercise; and “GERD” is history of 
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gastroesophageal reflux disease. While each has been previously linked with COPD or its 

exacerbations (135-138), such a dominant association with lung function decline is not well 

described. Such associations, however, are consistent with a systems biology mechanistic model 

of COPD, where activity and interaction in multiple organs rather than a single organ centric view 

better define the potential underlying mechanisms and impact on the patient (139).   

Creatinine, for example, is directly connected to FEV1 decline and is also a hub in our 

network. The connections within this hub may offer further insights into the mechanistic 

associations between renal and lung disease. Renal dysfunction and elevated creatinine levels have 

been associated with pulmonary emphysema severity, which is supported by the direct connection 

to “DLCO” (135), a marker of parenchymal emphysema or pulmonary vascular dysfunction. 

Further, recent studies propose a mechanistic link between emphysema and renal dysfunction 

through RAGE (140-143), the receptor of which (sRAGE) is a first neighbor of creatinine in our 

network. The creatinine hub is further linked to a number of other important variables and 

confounders, including the blood biomarker CCP (Clara cell protein) whose association to COPD 

has been previously reported (144). In fact, the interaction between CCP and RAGE identified in 

our network provides incentive to explore relationships between these molecular pathways. Other 

direct links to creatinine include “Cardiac issue” and “Arrhythmia”, attributes form the subjects’ 

medical history, may be indicator of a common vascular mechanistic systems link. The direct line 

of TNFα, another blood biomarker, with disease progression is of both prognostic and mechanistic 

interest. TNFα is a representative biomarker for TH1 inflammatory pathways commonly linked 

with COPD (145). In fact, TNF modulation has been tested as a therapy in COPD, but with mixed 

results (146). 
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Another direct connector to FEV1 progression, “Exercise Systolic BP” may also reflect the 

vascular/endothelial processes common to pulmonary and systemic processes. The common 

linkage of CCP between this and the other first neighbor, creatinine, is of further interest. We note, 

though, that the causal direction might be predicted incorrectly in these associations. “GERD”, the 

final comorbidity variable that is a first neighbor of lung function decline, is of potential interest 

in either causal direction, as gastroesophageal reflux has known potential impacts on lung function, 

and lung function decline associated with lung hyperinflation can alter transdiaphragmatic pressure 

gradients leading to reflux. The direct connection of “Pulmonary Artery Enlargement” with FEV1 

progression is of particular interest given the second neighbor links of this measure with indicators 

of COPD exacerbation in the past year, “Unscheduled MD or ER Visit” and “Antibiotics.” 

Previous work has connected pulmonary arterial enlargement to COPD (147). 

Finally, three other pulmonary physiology variables are linked directly to COPD 

progression: “FRC%”, functional residual capacity; “FVC%”, forced vital capacity; and “PIF”, 

peak inspiratory flow rate. All of these measures are directly or indirectly linked to air trapping 

and lung hyperinflation but are independently measured attributes. To our knowledge, the direct 

association of these measures with FEV1 decline has not previously been defined. 

These results are significant, not only because this combination of factors can determine 

and predict COPD progression, but because for the first time we are able to build a causal network 

of COD that combines heterogeneous types of information, such as measurements of lung function, 

symptoms, systemic comorbidities, and blood biomarkers, with environmental exposures, such as 

ongoing tobacco exposure. Other environmental or psychological variables, while not linked to 

COPD progression directly, were part of the larger network. A variable describing whether the 

patient has been diagnosed with depression or is on anti-depression medication, for example, was 
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linked to pack years of smoking. The associations found in this network or particularly notable in 

that they extend previous work describing the important link between non-pulmonary organ 

comorbidities and lung function impairment, supporting the systems biology paradigm in 

understanding lung disease activity (136, 139). 

5.3.2  Differentially expressed gene connectivity across cell types in IPF 

We built a causal network model observe the direct relationships between differentially 

expressed genes for SPP1 macrophages, fibroblasts, and various epithelial cell types. The resulting 

network included 394 differentially expressed genes and 3,951 edges (connections between these 

genes), and the overall relationships among the genes DE in the different cell types are summarized 

in Figure 27. SPP1 macrophages and fibroblasts were the most densely connected gene groups 

with 944 edges between them, which suggests a strong interplay between these two cell types in 

IPF. There were also relatively strong connections between clara/club/goblet cells and both AT2 

(107 edges) and AT1 cells (102 edges). Because there were a different number of unique DE genes 

for each cell type, we considered edge density out of the total number of possible edges between 

two cell type groups. We also observed that the genes for the clara/club and goblet cell type were 

especially densely connected among each other with 26.6% of all possible edges among these 

genes appearing in the network compared to SPP1 macrophage (15.3%), fibroblast (16.2%), AT1 

(10.1%), AT2 (15.4%), and KRT5 basal (15.1%). 
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Figure 27 Causal analysis of IPF and control lung gene expression. Summary nodes represent the collection of genes 

that were differentially expressed in a given cell type. Each node is labeled with the number of differentially expressed 

(DE) genes that node represents as well as the number of edges among the genes represented by that node. Lines 

connecting nodes in this figure represent the set of edges that connect pairs of genes that were differentially expressed 

in different cell types. These are labeled with the number of edges in the network that span the two cell types, and the 

line weights are proportional to the percentage of edges that appear in the network relative to the total number of 

possible edges. 

 

While the overall structure of the gene network can give us a big picture view of the 

interactions among cell types, we also explored smaller subnetworks centered around certain genes 

of interest. Specifically, we investigated the first neighbors of SPP1 and MERTK (Figure 28A), 

which were differentially expressed in marcophages and first neighbors of each other, and COMP 

(Figure 28B), which was the most highly upregulated gene in fibroblasts. Some of the first 

neighbors of SPP1 and MERTK where genes that were downregulated in IPF fibroblasts including 

complement factor D (CFD) and selenoprotein P (SEPP1), a gene also downregulated in prostatic 
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fibroblasts by TGFβ (148). The only fibroblast first neighbor of MERTK/SPP1 macrophages was 

versican (VCAN), a protein associated with early fibroblastic foci (149). VCAN was upregulated 

in IPF fibroblasts. Several epithelial cell genes were also first neighbors of MERTK/SPP1. 

Fibrinogen gamma chain (FGG) was strongly upregulated in AT2 cells from the upper but not the 

lower lobe, and serpin family A member 1 (SERPINA1) was upregulated in AT2 cells from both 

upper and lower lobes. These may represent genes involved in AT2 cell injury. 

 

Figure 28 Subnetworks highlight the first neighbors of (A) MERTK and SPP1 which are DE in SPP1 macrophages 

and (B) COMP which is DE in fibroblasts. Node colors indicate the cell type in which the gene is DE, and darker 

colored edges correspond to more stable connections. 

 

FGG is also a first neighbor of COMP and is expressed in liver as well as fetal lung. This 

suggests it might be re-expressed under AT2 stress or regeneration. Although deletion of 

SERPINE1 increased plasmin reduces lung fibrosis, deletion of fibrinogen alpha gene does not 

affect bleomycin induced pulmonary fibrosis (150). The effect of FGG deletion has not been 

explored. 
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5.4 Conclusions 

These two examples illustrate the utility of causal network modeling in understanding 

chronic lung diseases. We have shown how adaptable these methods are to two different lung 

disease datasets that vary in their scale, composition, and scope. The MGM-PCS approach is 

appropriate for mixed data types, including continuous and discrete variables, which makes it 

particularly well-suited for clinical data. For example, in the SCCOR COPD dataset we explored, 

many of the patient history and environmental exposure variables are discrete. However, we are 

able to model them jointly with other continuous variables like the spirometry measurements and 

blood biomarker concentrations. Combining these rich heterogeneous data with MGM-PCS 

allowed us to take a comprehensive clinical and systems level look at the factors underlying lung 

function decline in COPD. We were able to identify a variety of baseline factors, including a 

mixture of both strongly established and novel features, that influenced 2-year lung function 

decline in these subjects. These factors are useful both for their insight into how the disease works 

and, more directly, can be used as input for predicting lung function decline. This work highlights 

new connections that could help improve prognosis of the disease progression and hopefully lead 

to better treatments to mitigate lung function decline. 

Our approach to investigating IPF employed a similar causal modeling approach, however 

the dataset for insight on a completely different scale. In the case of COPD, we looked at the 

disease as a function of body systems, comorbidities, and environmental interactions. For IPF, on 

the other hand, we took an extremely fine-grained approach. Our data were measures on the level 

of expression of hundreds of genes in individual cells, which allowed us to better understand how 

the various cell types interact in the lung in the context of IPF. The scRNA-seq gene expression 

variables are all continuous so they were well-suited to using FGES for causal modeling.  
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Taken together, these results emphasize the promise of causal modeling methods for 

understanding complex diseases. This general approach is flexible and fast, can be adapted for a 

huge variety of data, and result in easily interpretable models that can provide real insight into 

extremely complicated systems. 
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6.0 Conclusions and Future Work 

In this dissertation, we have focused on improving clustering in high-throughput biological 

datasets by developing a variety of new features that are specifically tailored to reflect the 

biological properties of the systems we are trying to understand. We started by proposing new 

features for representing transcription factor binding sites that capture both the DNA sequence 

composition of the binding region and the TF-DNA binding strength and observed that these new 

scaled sequence features aided clustering for improved DNA binding motif discovery. Next, we 

presented a new method, ssNPA, and demonstrated how causal network learning algorithms could 

be used to build features that capture the complex interactions of variables within biological 

systems such as gene regulatory networks and cluster samples based on how these networks are 

deregulated in different subtypes. We validated this method in a murine liver cell development 

dataset and with transcriptomic datasets comparing breast cancer and lung adenocarcinoma tumor 

samples to normal tissue. Then we used ssNPA to describe new subtypes of COPD that were based 

on their relative gene network deregulation compared to normal samples. Finally, we applied 

causal network modeling techniques to two datasets of chronic lung diseases, exploring the 

systems biology of lung function decline in COPD at the body systems level and cell type 

interactions in IPF at the scale of the gene expression in single cells. 

This work presents many opportunities for further development. Primarily, ssNPA has a 

lot of potential to be extended and applied to more complex problems. As it is designed, any type 

of continuous data can be used as input although we have focused here on gene expression 

variables. We first want to explore the inclusion of genetic variant data in addition to gene 

expression. Genotypes can reasonable be modeled as ordinal variables (0, 1, or 2 copies of the 
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variant), so we should be able to use them as input into FGES. However, with the incorporation of 

a larger variety of data and heterogeneous data types, such as methylation or clinical 

measurements, we can adapt ssNPA to use a different causal learning algorithm such as MGM-

PCS, which can appropriately handle mixed data types. As we broaden the types of variables we 

add into the network model and our dataset increase in their dimensions, especially those derived 

from high-throughput and genome-wide experiments, feature selection will become an 

increasingly important task. 

Additionally, there is still a lot of opportunity with the application of ssNPA to COPD. The 

COPDGene study has already collected an abundant compendium of -omics data on its long-term 

cohort, including full genome sequencing on all of its subjects and large-scale proteomics 

measurements. A “central dogma” analysis that combines genotype information with both RNA 

and protein expression levels in a single network is possible with ssNPA and could more fully 

elucidate the variations in disease mechanism experienced by different subtypes of subjects. The 

COPDGene research program is currently entering into its Phase 3 data collection phase, and as 

the work continues, the dataset will be increasingly enriched. Of course, COPD is not the only 

complex disease of interest. There has been a trend to highly collaborative, multi-center research 

programs that tackle a single disease from a variety of angles, and ssNPA could be easily applied 

to any number of these studies.  
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