Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Imaging Light with Photoelectrons on the Nano-Femto Scale

Dai, Yanan (2019) Imaging Light with Photoelectrons on the Nano-Femto Scale. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

This is the latest version of this item.

Download (4MB) | Preview


The interaction of light with solid state quasiparticles, such as excitons and plasmons, on the nanometer-femtosecond spatio-temporal scale illuminates ultrafast physical and chemical processes on surfaces. In this thesis, I report on the generation, control, and spatio-temporal evolution of 2D evanescent electromagnetic waves confined at the silver (Ag)/vacuum interface; such fields, known as surface plasmon polaritons (SPPs), have joint particle-wave nature. SPPs are generated by the interaction of light with the collective response of conduction band free-electrons of metals. I image and study the ultrafast dynamics of SPP fields by interferometric time-resolved multi-photon photoemission electron microscopy (ITR-mP-PEEM). First, I report on the generation and propagation of SPPs excited on epitaxially grown Ag nanocrystals. The PEEM images record an interference pattern between SPPs and vacuum light, defined by a mismatch in their propagation wave vectors. Next, I explore the light polarization as a control parameter for the SPP generation, where the in-plane and out-of-plane components of optical electric fields couple differently. For equilateral triangle Ag island samples, the SPP interference patterns strongly depend on both the linear and circular polarizations. For circularly polarized light, the SPP coupling depends on the matching between spin angular momenta (SAM) of light and SPPs. The SAM of evanescent waves like SPPs is transverse and points oppositely when the propagation wave vector is reversed; this is known as the photonic quantum spin Hall effect (QSHE). I demonstrate that QSHE affects the function of an SPP lens coupling structure through a vectorial superposition of longitudinally and transversely coupled SPP waves that are launched by TE waves (s-polarized) and TM waves (p-polarized), respectively. Finally, I combine my understanding of SPP generation and imaging in a normal-incidence PEEM measurement to explore SPP dynamics when formed by an Archimedean spiral coupling structure. The geometrically defined phase structure of such SPP fields generates plasmonic vortices, whose singularities and time evolution are imaged by PEEM. Based on simulations, I conclude that the SPPs SAM distribution at the vortex core has a stable topological texture of a Néel type Skyrmion, and experimentally locate it by imaging the SPP field singularities.


Social Networking:
Share |


Item Type: University of Pittsburgh ETD
Status: Unpublished
CreatorsEmailPitt UsernameORCID
Dai, Yananyad17@pitt.eduyad17
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairPetek,
Committee MemberHan,
Committee MemberKim, Hong
Committee MemberSnoke,
Committee MemberBoyanovsky,
Date: 24 September 2019
Date Type: Publication
Defense Date: 29 April 2019
Approval Date: 24 September 2019
Submission Date: 28 February 2019
Access Restriction: 1 year -- Restrict access to University of Pittsburgh for a period of 1 year.
Number of Pages: 192
Institution: University of Pittsburgh
Schools and Programs: Dietrich School of Arts and Sciences > Physics
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: Surface Plasmon Polaritons, Photoemission Electron Microscopy, Spin Angular Momentum
Date Deposited: 24 Sep 2019 16:55
Last Modified: 24 Sep 2020 05:15

Available Versions of this Item


Monthly Views for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item