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Abstract— Swarm search and service (SSS) missions require
large swarms to simultaneously search an area while servicing
jobs as they are encountered. Jobs must be immediately serviced
and can be one of several different job types — each requiring
a different service time and number of vehicles to complete
its service successfully. After jobs are serviced, vehicles are
returned to the swarm and become available for reallocation. As
part of SSS mission planning, human operators must determine
the number of vehicles needed to achieve this balance. The
complexities associated with balancing vehicle allocation to
multiple as yet unknown tasks with returning vehicles makes
this extremely difficult for humans. Previous work assumes
that all system jobs are known ahead of time or that vehicles
move independently of each other in a multi-agent framework.
We present a dynamic vehicle routing (DVR) framework
whose policies optimally allocate vehicles as jobs arrive. By
incorporating time constraints into the DVR framework, an
M/M/k/k queuing model can be used to evaluate overall steady
state system performance for a given swarm size. Using these
estimates, operators can rapidly compare system performance
across different configurations, leading to more effective choices
for swarm size. A sensitivity analysis is performed and its results
are compared with the model, illustrating the appropriateness
of our method to problems of plausible scale and complexity.

I. INTRODUCTION

Many envisioned applications of robotic swarms require
that jobs be immediately serviced by swarm members. In
forest fire applications, a swarm may be tasked with search-
ing a section of the forest during a wildfire for brush fires
that have sparked due to embers carried by the wind. Those
discovering a new fire must act immediately to put it out
rather than waiting for assistance and risk losing the current
wildfire containment level. Similarly, in military applications,
a swarm on patrol may come across a Scud missile preparing
to launch, where any action not taken immediately has little
value. Less extreme examples, such as breaking small teams
off to maintain surveillance of a newly detected suspicious
site, follow a similar pattern. We call this type of application
in which members of a searching swarm, upon detection of a
job, are immediately dispatched to service it a Swarm Search
and Service (SSS) mission. Once a job is serviced vehicles
return to the swarm for reallocation elsewhere.

When planning SSS missions one of the main challenges
human operators face is determining the number of vehicles
needed to effectively handle the expected jobs (and their
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Fig. 1: Example SSS mission with three different job types
(top) and timeline of each job’s arrival time (bottom).

varying job types). Knowing only the expected numbers
of jobs of each job type and the size of the search area,
predicting the number of vehicles needed to handle a variety
of load conditions is extremely difficult for humans. Mission
planning analysis tools will need to be developed to guide
operators in effectively selecting the required swarm size if
robotic swarms are to be fielded for practical applications.

In SSS missions vehicles use local control laws (i.e., direct
neighbor communication only) to search large areas and
simultaneously service jobs. As the swarm moves with some
predefined search pattern (red dashed line) jobs “arrive” as
they enter the sensing range of a swarm member (Figure 1).
Each job requires a vehicle or group of vehicles to break
off from the main swarm for a specified amount of time
to successfully service it. Once the job is serviced, vehicles
return to the swarm and become available for reallocation.
Multiple job types (e.g., fire, trapped people, etc.) with
varying vehicle requirements may be present. For example,
Figure 1 shows a swarm tasked with finding survivors after a
natural disaster where survivors are both buried under fallen
debris as well as inside crumbling buildings. In addition, any
fires must be put out. Each rescue activity might require a
different number of vehicles and service time. The schedule
of each job’s arrival is shown in Figure 1 (right). When too
many jobs arrive at the same time, one or more may be
dropped.

Research in robotic swarms typically concludes after a
swarm has traversed a given area or each robot has moved
to its assigned monitoring location but takes full credit for
the subsequent activities that actually achieve the swarm’s
objective. The aim of the work presented in this paper is to
develop a mission planning tool to assist human operators in
determining effective swarm sizes required to successfully
complete an SSS mission’s objective. We adopt a dynamic
vehicle routing (DVR) framework that leverages connected
swarm communication networks to prescribe optimal policies



for routing vehicle(s) to service dynamically arising jobs. We
then model the SSS system as a variant of the DVR problem
with time constraints presented by Bullo et al. in [1], which
aims to determine the minimum number of vehicles needed
to service the jobs of all the job types in the system at a
prescribed steady state level of success. This problem adds
the consideration of a patience time — the amount of time
after a job appears that it can wait to be serviced before
it is dropped. Jobs that are not serviced cannot re-enter the
queue. In SSS missions routing is solved by setting patience
time to the time for a vehicle to travel to the edge of its
sensing radius, thus dropping any job that cannot be serviced
immediately. An M/M/k/k queuing method is presented for
determining the number of vehicles needed to achieve a
prescribed level of success, where we equate the probability
of successfully servicing jobs within patience time to its
complement, the probability of dropping a job. An SSS
mission is simulated and a numerical sensitivity analysis is
presented.

The contributions of this work are: (1) optimal swarm
vehicle routing policies for SSS missions, (2) treatment of
time between jobs sensed by a searching swarm as an arrival
rate for a queuing model and (3) the development of an
M/M/k/k model for the prediction of optimal swarm size
adapting results from CPU resource allocation literature.

The remainder of the paper is organized as follows.
Section II reviews current work on vehicle routing problems.
Section III outlines a vehicle routing framework for SSS
missions and introduces optimal policies for selecting service
vehicle(s). Section IV presents an M/M/k/k model for solving
the DVR problem with time constraints applied to an SSS
mission. Section V compares the performance of a simulated
swarm system with that of the M/M/k/k model. A discussion
of how the presented method can be used to plan swarm
missions is given in Section VI. Lastly, Section VII provides
concluding remarks and directions for future work.

II. RELATED WORK

Past work has modeled the assignment of vehicles to jobs
as a multi-agent static vehicle routing problem (SVR) where
all system jobs are fixed and known ahead of time. Vehicles
service jobs by visiting job locations. No new jobs appear
and the locations of all the jobs are known [2], [3]. This work
aims to determine the assignment and schedule of servicing
jobs while minimizing cost. Centralized solutions that utilize
a multiple travelling salesmen problem formulation have
been presented [4]. Moore and Passino provide a distributed
method solving the mobile agent task allocation problem [5].

Unlike the multi-agent SVR problem where we know all
jobs and their locations ahead of time, a dynamic vehicle
routing (DVR) framework assumes that jobs arrive during
mission execution [1] and are known to all agents. Rather
than finding routes as in SVR, DVR solutions involve finding
policies for selecting the best vehicle(s) to service an incom-
ing job to achieve desired objectives such as minimizing
waiting times and travel distance [1]. Bertsimas and Van
Ryzin introduced queuing methods to solve DVR problems

where vehicles move in straight lines to visit jobs whose
locations and arrivals are stochastic [6], [7], [8]. By analyzing
a DVR problem from an algorithmic queuing theory per-
spective, traditional queuing techniques have been leveraged
to develop effective policies that account for system-level
constraints to optimize system performance in a general
steady state case rather than tailoring performance to a single
set of system service demands. Various constraints have been
studied: time constraints [9], [10], service priorities [11],
vehicle dynamics [12], [13], limited sensing range [14] and
team formation [15]. This paper uses time constraints to
model the necessary number of vehicles required in SSS
missions to achieve a given performance (Section IV)

III. DVR FRAMEWORK FOR SWARMS

The SSS problem can be framed as a variant of the DVR
problem. Unlike the work presented in [1], jobs are identified
as they are sensed by a swarm member as opposed to being
sensed at the time they appear in the environment (whether
vehicles can sense them or not) by an omniscient observer
and relayed to the vehicles.

Therefore, the arrival rate of jobs in an SSS mission
corresponds to the time required for a swarm to travel within
sensing range of the next job. Since new jobs arrive as
vehicles sense them, the steady state performance can be
analyzed using algorithmic queuing theory. Let m € S be a
stable routing policy, T, be the system time of a policy, D,
be the total distance traveled for system, and C; be the total
system cost for a given policy. The SSS problem can then
be defined as finding an optimal policy 7* € S such that

C* = Cp- = inf Cy (1)
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where « is the job type, Z is the set of all robots in the
swarm, t,(j, ) is the time to service each job j of type «
in the set J, and d. () is the distance each robot i travels.
The optimal policy 7* is one that minimizes the total system
time required to service each job as it arrives and minimizes
the total distance traveled by the servicing vehicle(s).

We assume a uniform spatial density function in which
jobs are randomly and uniformly distributed. A non-uniform
spatial density would arise if some regions were more
populated or job locations were imprecisely known ahead
of time. We will not consider this more complex situation
at this time, although the base case we address provides a
lower bound on performance [1].

Lemma 1: Jobs that are randomly and uniformly dis-
tributed will approximate a Poisson arrival rate.

Proof: Let us assume that our environment can be
decomposed into a uniform grid where the probability of
a job being present in any given grid cell is uniform, equal
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Therefore, the limit reaches a Poisson distribution. The
commonly used rule of thumb for good approximation of
large n (>20), number of jobs, and small p (<0.05), rate at
which jobs are dropped, is met by our application. [ ]

If we assume that the job detecting vehicle is always the
nearest vehicle, the SSS policy can be prescribed according
to the geometric relationship between the new job and the
vehicle. By leveraging swarm communication networks the
swarm can distinguish between free and allocated vehicles.
We prove that assigning the job detecting vehicle (or next
nearest vehicle, if we stipulate the detecting vehicle cannot
be assigned) to service the new job is an optimal policy with
respect to wait time and travel distance.

Consider m vehicles moving at speed v within R2. Jobs
arrive within a bounded convex set H according to a Poisson
process with arrival rate A\,, where o corresponds to a spe-
cific job type. Their locations are independent and identically
distributed (i.i.d.) according to a density whose support is H.
A job’s location is only known (sensed) at its arrival time. At
each job location, we assume that vehicle(s) spend a given
amount of time so that the job can be completed. After
vehicle(s) have completed the service the job is removed
from the queue and vehicles return to the swarm.

Let us assume that vehicles in our swarm are in one of two
modes: navigation/search mode or job servicing mode. Only
vehicles that are in navigation/search mode (i.e., not allocated
to a job yet and are still part of the main swarm) are able to
sense new jobs that need to be serviced. In situations where
jobs only require one vehicle to service them, there are no
conflicts and all vehicles are homogeneous, we define the
following policy:

Closest Vehicle Policy — The vehicle that sensed the new
job is assigned to service the job.

Lemma 2: The Closest Vehicle Policy is the optimal
policy in all load conditions.

Proof: Since the sensing robot is the closest to the
job when it arrives, ds < d; for i # s,i € {1,...,m},s €
{1,...,m} where d is the distance between the sensing robot
and the job and d; is the distance between another robot in
the swarm and the job. The time required to finish servicing
a job can be written as t, = t, + [, Where ¢, is the time
required for the vehicle to reach the job and p, is the time
required for a vehicle to spend at the given job location
to complete the job. pu, is the same for all vehicles. The
time required to travel to the job location can be written

as % and % for the sensing vehicle and all other vehicles

respectively. Therefore, the vehicle that senses the job (and
therefore closest to it) will be able to service the job the
quickest. If cost is scaled based on the distance a vehicle is
required to travel to complete the service, the sensing vehicle
also performs the service with the lowest cost. [ ]

The Closest Vehicle Policy implies that vehicles that are
left within the swarm are the ones that should be assigned
to service new jobs as they arrive. If the sensing vehicle is
chosen to service the job, both the time to service the job
and the cost are minimized.

In cases where a vehicle in the swarm has conflicts (i.e.,
senses two jobs simultaneously), then the following policy
can be defined:

Next Closest Neighbor Vehicle Policy — A vehicle
senses more than one job simultaneously. The sensing
vehicle services the closest job, or picks one randomly if
they are both equal distance away. For each additional job
that needs to be serviced, the sensing vehicle then asks
their neighbor closest to the job to perform the service.

In the case of a job that requires multiple vehicles simulta-
neously to service it successfully, the Closest Group Policy
can be defined:

Closest Group Policy — A vehicle senses a new job that
requires multiple vehicles to service it simultaneously.
The sensing vehicle assigns itself as group leader. If
more than one job is sensed, the sensing vehicle chooses
the closest job to service (or picks one randomly in the
case of equidistant jobs). It assigns itself as group leader
for that chosen job. For each remaining job, the sensing
vehicle asks a free neighbor that is closest to the job
to be the leader. Each group leader then gathers enough
neighbors to service the job. If the vehicle has fewer
neighbors than the required number, its neighbors ask
their neighbors until enough vehicles have been assigned.

Similar to what is shown above, the Next Closest Neigh-
bor Vehicle Policy and the Closest Group Policy will
service the job in the minimum time with the lowest cost.

IV. DVR WITH TIME CONSTRAINTS

We additionally consider the problem of DVR with time
constraints. In this context we exclude priorities and vehicle
motion constraints. As defined by Bullo et al. in [1], the
aim is to: Find the minimum number of vehicles needed
to ensure that the steady-state probability that a job is
successfully serviced is larger than a desired value. This
problem would be seen in swarm mission planning where
human operators are tasked with determining the number of
vehicles to deploy given expected numbers of various job
types. This is represented by the following:

min ||, subject to lim Pr[W, < Go] > da (4
™ a— 00

where « is a system job type, W, is the wait time of job type
a, G, is the given accepted patience time (amount of time
a job can wait to be serviced) of job type a and ¢4 is the
threshold for system performance. In general, patience times
are job type dependent, but in SSS we assume they are all the



same and equal to the time for a vehicle to travel to the edge
of its sensing radius (i.e., jobs are serviced immediately).

Within the DVR framework, since many SSS missions
require new jobs to be immediately serviced, the steady state
system performance can be modeled as an infinite horizon
M/M/k/k queue system where jobs enter the queue as they
come within sensing range of a swarm member. The length
of the queue is dependent on whether there are enough
vehicles to service the new job at its time of arrival. If
there are not enough vehicles, the job is dropped. We equate
the probability of a job being serviced within its accepted
patience time (G, = time to travel to a vehicle’s sensing
radius) to the probability of a job being dropped:

min | 7|, subject to 1Lm R, <94 5)

where R, represents the probability of the system dropping
a job upon its arrival due to lack of available resources and
¢ is the accepted drop rate.

A. M/M/k/k Prediction Model

In an M/M/k/k queuing system jobs arrive according to
a Poisson arrival rate and service times are exponentially
distributed. There are k servers (or IN vehicles in the SSS
mission context) in the system that are able to service in-
coming jobs. Unlike more traditional M/M/k systems where
queues have an infinite size, M/M/k/k systems have a limited
size queue equal to the number of total servers in the
system. Using the M/M/k/k framework the SSS system is
one with k servers where arriving jobs are parallel (i.e.,
they require the use of multiple servers simultaneously). Jobs
arrive according to a Poisson process with rate ), where « is
the job type. Type « jobs require 7, servers simultaneously
(i.e., i, vehicles). Each job type is serviced for Exp(uq)
time, where p,, is the service rate. After the job is completed,
all used servers are free once again.

Within computer applications M/M/k/k systems are used
to model multiple users competing for a limited number of
shared resources. Let s = (ng,...,ng) be the state of the
system where n, is the number of jobs in the system of
type «. The probability of a system being in a particular
state (i.e., probability that a particular number of each job
type are present in the system) can be defined [17], [18]:

k N
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where Py (s) is the probability the system is in a given state s,
C is a normalizing constant, and p,, is the utilization factor. S
is the set of all possible system states. The set of states, S, is
composed of states where various combinations of job types
lead to the system being as fully utilized as possible. Since

jobs in our queue are those that are sensed as the swarm
searches the given area, the limited number of resource (or
servers) are the vehicles in our swarm. If no jobs of type
o exist in our system, all states with n, > 0 are ignored
and not included in §. Using the probability of the system
being in a certain fully utilized state s, we can determine the
probability that the system will not have enough vehicles to
service a new job that arrives, resulting in a dropped job.
The rate of dropping a job for each state is calculated by

ra(s) = Pr(s) - Y Aals). 9)
deD
where D is the set of job types for which the system will be
forced to drop the job given its current system state, s. Ag is
the arrival rate of a job type that would cause the system to
drop the job given the current system state, s. The total drop
rate for a given swarm size can be calculated as follows:

R, = Z rr($)

seS

(10)

B. Grid World Example

For the remainder of the paper we will use a grid world
example. In this example, a swarm travels at a constant
velocity through a 100 x 100 grid. For convenience we will
express time in terms of grid cells the swarm has traversed.
The swarm traverses the cells in a boustrophedon (i.e., lawn
mower) pattern. If a job is located at the cell the swarm has
reached, the required number of vehicles to service it will be
allocated and designated as “busy.” They return to the swarm
and are designated as “free” after a given number of cells
have been traversed. If not enough vehicles are available to
service the new job, then the job is dropped. Jobs are spread
across the grid randomly from a uniform spatial distribution.

TABLE I: Grid World Job Service Rates

Job Type | Required No. of Veh. | o (jobs/cell)
1 15 1/2500
2 5 1/5000
3 10 1/3000

TABLE II: Grid World Configurations

Configuration | Type 1 Veh. | Type 2 Veh. | Type 3 Veh.
1 5 5 5
2 5 10 15

We assume there are three different job types. Type 1
requires 15 vehicles for servicing, type 2 and 3 require 5
and 10 vehicles respectively. The service rates for each job
type, [tq, are shown in Table I. Two job configurations will
be explored (Table II). In Configuration 1 there are 5 jobs
of each job type. Configuration 2 has 5 jobs of type 1, 10
jobs of type 2 and 15 jobs of type 3 present. The remainder
of this section will use the M/M/k/k model to determine the
minimum required swarm size to achieve a desired drop rate
in the context of the grid world example.
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Fig. 2: Predicted drop rate versus swarm size.

TABLE II: Arrival Rates for Each Configuration

Configuration | Aj (jobs/cell) | Az (jobs/cell) | As (jobs/cell)
1 0.0005 0.0005 0.0005
2 0.0005 0.0010 0.0015

1) M/M/k/k Model Results: The arrival rate A, of each
of the three job types, «, in the grid world is assumed to be
the expected value of that job type over the grid:

_ Mo
9]

where n,, is the expected number of jobs that will be seen
of job type « over the grid and |G| is the total number of
cells in the grid (10,000 in this example). The arrival rates
for both, Configuration 1 and 2 are shown in Table III. All
values are expressed in jobs/cell traversed .

Using the job type parameters and their associated arrival
rates shown in Table III, both configurations were run with
the M/M/k/k model. The results are shown in Figure 2. For
both configurations an exponential curve (red line) captures
the data (blue *) well. The goodness of fit measures are
shown in Table IV. Overall, Configuration 1 — where the
number of expected jobs of each job type is the same —
results in a lower drop rate (Figure 2 (left)). Each exponential
curve can be used to estimate the dropped job rate for a
particular swarm size given expected arrival rates for each
job type.

Ao = E[Ad] (11)

TABLE IV: Goodness of Fit Measures

Measure Configuration 1 | Configuration 2
SSE 6.5673 21.9382
R? 0.9682 0.9761
Adjusted R? 0.9637 0.9727
RMS 0.9686 1.7703

V. SIMULATION
A grid world SSS mission was simulated in MATLAB.
The three job types shown in Table I were used. Both
configurations (Table IT) were simulated. In each simulated
mission the location of jobs was randomly distributed from a

uniform spatial distribution. No two job types were allowed
to occupy the same grid cell. Service rates for each job type
were specified as either: 1) a fixed rate (expected arrival rates
shown in Table I) or 2) a sampled value from an exponential
distribution with mean \,. Each configuration was run with
a swarm size of 30, 50 and 70. For each swarm size, 500
different missions were run.

The values shown in Figure 3 give the average mission
drop rate across the 500 missions found from simulating
both configurations. A fixed service rate and a service rate
sampled from an exponential distribution were simulated for
each configuration. In Figure 3, the mean drop rate (solid
color line) is shown in terms of the entire size of the grid.
The standard deviation is shown by the corresponding solid
colored region. Fixed service rate results are shown in red,
while exponential service rate results are shown in blue.

VI. DISCUSSION

The results shown in Figure 3 indicate that in both config-
urations the M/M/k/k model is more effective at predicting
the swarm’s behavior if service rates are sampled from an
exponential distribution as compared to being a fixed rate,
however this leads to larger standard deviations. This can
be attributed to the fact that the model was built assuming
exponentially distributed service rates. However, the model
still does a fairly good job of predicting performance in
Configuration 1 given a fixed service rate. The results
demonstrate the appropriateness of our model for predicting
the steady state performance of job types with exponentially
distributed service rates for missions of similar scale and
complexity.

The sensitivity analysis in Section V highlights the trade-
off seen between the dropped job rate and swarm size. If
operators want to reduce the dropped job rate they must
increase their swarm size exponentially. In Configuration
1 we see that increasing the swarm size from 30 to 70
vehicles decreases the drop rate from about 42% of the total
number of jobs to about 6%. When the total number of jobs
doubles in Configuration 2 (from 15 to 30) we see that the
dropped job rate decreases from 56% to 14% as the swarm
size increases from 30 to 70 vehicles. However, as the total



Simulation Results - (5,5,5) Case

— Fixed Service Rate
=== M/M/k/k Prediction

—— Exp. Dist. Service Rate
=== M/M/k/k Prediction

drop rate (jobs/|G|)
-

drop rate (jobs/|G|)
s

30 40 50 60 70 30 40 50 60 70
number of vehicles in swarm number of vehicles in swarm

Simulation Results - (5,10,15) Case

—— Fixed Service Rate —— Exp. Dist. Service Rate
20.0 === M/M/k/k Prediction 20.0 === M/M/k/k Prediction
17.5 17.5
= 15.0 = 15.0
) 9
H H
S 12.5 2 12.5
2 100 £ 100
[ ® 10
o o
2 s 2 s
< <
5.0 5.0
2.5 25
0.0 0.0
30 40 50 60 70 30 40 50 60 70

number of vehicles in swarm number of vehicles in swarm

Fig. 3: Simulation results for both service rate specifications in each of the two configurations.

number of jobs (across all job types) increases, so does the
overall number of dropped jobs.

By incorporating the developed model into mission plan-
ning tools and interfaces, human operators can quickly and
easily compare system performance across different mission
configurations. This will lead to a reduction in planning time,
as well as an increase in the likelihood of an operator achiev-
ing the desired system performance. Lastly, by leveraging the
presented predictive model, swarm mission success will be
less dependent upon highly skilled operators, thereby making
swarm systems more accessible to a broader user base.

VII. CONCLUSION AND FUTURE WORK

The work presented in this paper explored a DVR frame-
work for SSS missions. The DVR problem with time con-
straints was explored and an M/M/k/k solution was presented
for determining the minimum number of vehicles needed
in the swarm to achieve a desired steady state system
performance. A sensitivity analysis in the context of a grid
world example was conducted to compare the predicted
results from the model to simulation results. Results indicate
that the M/M/k/k model does a good job of predicting
system performance with configurations containing equal
arrival rates across job types and configurations with varying
arrival rates. Both fixed service rates and those sampled from
an exponential distribution were evaluated.

Future work will explore spatially biased jobs. This results
in job types having different arrival rates depending on what
region the swarm is in. As mentioned in [1] the system
performance can be modeled by partitioning the environment
into regions separated by the boundaries of distinct arrival
rates. Each region would be analyzed individually. All results
would be fused to provide an accurate prediction of the
system steady state performance.
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