Establishing Design and Assembly Rules for Peptide Oligonucleotide Chimeras (POCs)

by

Teesta Dasgupta

BSc, St. Stephens College, 2014
MSc, Indian Institute of Technology, Hyderabad, 2016

Submitted to the Graduate Faculty of the
Kenneth P. Dietrich School of Arts and Science in partial fulfillment
of the requirements for the degree of

Master of Science

University of Pittsburgh

2019
This thesis was presented

by

Teesta Dasgupta

It was defended on

April 3, 2019

and approved by

Dr. Tara Meyer, Professor, Department of Chemistry

Dr. Seth Childers, Assistant Professor, Department of Chemistry

Dr. Nathaniel Rosi, Professor, Department of Chemistry

Thesis Advisor Director: Dr. Nathaniel Rosi, Professor, Department of Chemistry
Establishing Design and Assembly Rules for Peptide Oligonucleotide Chimeras (POCs)

Teesta Dasgupta, MS
University of Pittsburgh, 2019

Peptide Oligonucleotide Chimeras (POCs) are an emerging class of soft materials which offer tremendous potential in a variety of therapeutic applications owing to both the peptide and oligonucleotide components. These applications often depend upon the high selectivity, tunability and self-assembly behavior of the POCs. Therefore, a thorough understanding of the nature and self-assembling properties of POCs could allow for synthesis of POCs that meet the criteria of a specific application. The goal of this work is to probe the effects of hydrophobicity and β-sheet character on the self-assembly properties of POCs. Here, the nature of assembly and morphological changes of oligonucleotide-biphenyl-peptide conjugates (oligonucleotide = AACAATTATCTCAGCAA, AACAATTATCTCACCACAA; peptide = AAYSSGPMPFP, AAYVVAAPPMPFP, AAYVFAAPPMPFP, AA(AIB)Y(AIB)SG(AIB)PPMPFP) were studied over a range of salt concentrations (CaCl$_2$). The presence or absence of assembled structures, morphology of discrete nanostructures (spheres or fibers) and salt concentration at point of transition from spheres to fibers is probed for each analogue with respect to hydrophobicity and β-sheet character of the peptide. It was observed by transmission electron microscopy (TEM) that no ordered structures are formed in the absence of β-sheet character and higher hydrophobicity of peptides led to a shift from exclusively spheres to a combination of fibers and spheres at the same salt concentration. This study will provide the basis for the design of future POCs with programmable structures and properties.
Table of Contents

1.0 Introduction ..1

1.1 Peptide Assembly ..1

1.2 Peptide Conjugate Assembly ...3

1.3 Oligonucleotide Assembly ..5

1.4 Characterization of Self-assembled Structures ..7

1.5 Peptide Oligonucleotide Conjugates ..9

2.0 Effect of Hydrophobicity and Secondary Structure of Peptide on the Self-assembly Properties of Peptide Oligonucleotide Chimeras (POCs) ...14

2.1 Peptide Oligonucleotide Chimera (POC) ..14

2.1.1 Hypothesis and Goals ...16

2.1.2 General Methods and Instrumentation ...17

2.2 Assembly and Spectroscopic Studies of C_{14} Peptide Conjugate Family18

2.2.1 Preparation of C_{14} Conjugates ..18

2.2.2 Assembly Studies ...20

2.2.3 Spectroscopic Studies ...22

2.3 Assembly Studies on POC Family ...24

2.3.1 Synthesis ...24

2.3.1.1 Preparation of Azido-modified Oligonucleotide Conjugate (O_{18}-N_3)25

2.3.1.2 Attachment of Azido-modified Oligonucleotides to Diacetylene Biphenyl Core25
2.3.1.3 Attachment of Azido-modified Peptide on to the Biphenyl Organic Core

..26

2.3.2 Assembly Studies..28

2.4 Conclusion ..30

3.0 Appendix A: Reproduction Permissions..32

4.0 Bibliography ...38
List of Figures

Figure 1. Various structures formed from FF-based building blocks and their applications. 5 .. 2
Figure 2. Levels of peptide assembly7 ... 3
Figure 3. Nanostructures formed from peptide conjugates18 ... 5
Figure 4. DNA hybridization based origami (A) 2D patterns28 (B) 3D structures29. Nano-
template based DNA assembly (C) Different crystal structures constructed from nano-particle
building blocks of the same size and composition by changing the nature of the nucleic acid
bonds: FCC lattice (Top), BCC lattice (Middle), AIB2 type lattice (Bottom)34 6
Figure 5. Chemical approaches for peptide oligonucleotide synthesis46 10
Figure 6. Anatomy of the POC structure: a doubly bio-conjugated entity, where a single
stranded DNA sequence and a peptide sequence are connected to either side of an organic core.
.. 14
Figure 7. (a) The charge ratio value is the ratio of positive to negative charges of the assembly
solution (N = number of oligonucleotide bases; the ‘+2’ results from the azido-functionalized
T residue and the deprotonated COO- terminus of the peptide). (b) The charge ratio of the
assembly solution as a function of CaCl2 concentration and oligonucleotide length. TEM
images of PO18C vesicles (c) before and (d) after concentrated CaCl2 addition. 15
Figure 8. Family of C14 peptide conjugates with mutated regions highlighted 19
Figure 9. MALDI data for C14 peptide conjugates .. 20
Figure 10. TEM images of C14 peptide conjugate assemblies .. 21
Figure 11. Circular dichroism (CD) studies of C14 conjugate assemblies 23
Figure 12. Fourier transform infrared spectroscopy (FTIR) studies of C14 conjugate assemblies.
.. 23
Figure 13. Procedure for POC synthesis...24

Figure 14. MALDI data of peptide oligonucleotide chimera.28

Figure 15. TEM images of POC assemblies at varying salt concentrations (Scale bar: 1 μm)
DNA-BP-AAAYSSGAPPMPF at (a) 50 mM CaCl₂ (b) 100 mM CaCl₂ (c) 200 mM CaCl₂
(d) 300 mM CaCl₂; DNA-BP-AAAYVVAPPMPF at (e) 50 mM CaCl₂ (f) 100 mM CaCl₂ (g)
200 mM CaCl₂ (h) 300 mM CaCl₂; DNA-BP-AAAYVFAPPMPF at (i) 50 mM CaCl₂ (j) 100
mM CaCl₂ (k) 200 mM CaCl₂ (l) 300 mM CaCl₂ ..30
1.0 Introduction

1.1 Peptide Assembly

Certain peptides by virtue of their design can undergo spontaneous assembly into ordered nanoscale structures. One of the first reports of such self-assembling peptides AEAEAKA-KAEAEAKAK (EAK16) was made by Zhang et. al1 in 1993. The well-defined sequences of such peptides allow them to undergo ordered self-assembly, resembling in part some mechanisms found in well-studied polymer assemblies. Following this report several designer peptides were synthesized that attracted interest for their potential applications in the fields of biomedical nanotechnology, tissue cell culture and molecular electronics. One common structural motif that has been repeatedly used to guide self-assembly and construct nanomaterials is diphenylalanine (L-Phe-L-Phe). This peptide is known to be associated with the pathogenesis of Alzheimer’s disease2–4. A variety of nanostructures have been reported from FF-based building blocks namely nanotubes, spherical vesicles, nanofibrils, nanowires, and ordered molecular chains. Subsequently, these structures have been used for bioimaging, biosensors, guest encapsulation, nanofabrication as well as drug delivery5 (Figure 1).
Figure 1. Various structures formed from FF-based building blocks and their applications.\(^5\)

A key ingredient in the success of peptides as building blocks is their multitier structure (Figure 2). There are three hierarchical levels for peptides based on structure and conformation. The fourth and final structure is called a protein and is essentially a combination of peptides. The first level is the sequence of amino acids in the peptide chain. Amino acids are monomeric building units that contain terminal amine and carboxyl groups. They also have a whole spectrum of side chain structures including thiols, alcohols, aromatic groups, etc. These groups participate in chemical interactions and facilitate molecular recognition. The second-tier structure is a result of hydrogen bond formation between the highly polar amine and carbonyl groups alternating on the peptide backbone. Secondary structures include α helices, β sheets, random loops, turns, and coils. Secondary structures will vary depending on the sequence, planarity, hydrogen-bonding, steric crowding, repulsion or attraction of charged groups, and hydrophobic or hydrophilic character of substituent amino acids in the peptide. A tertiary structure is formed when a single peptide backbone has one or more secondary structures\(^6\). The interactions and bonds between side chains within a sequence determine the tertiary structure of the peptide. When several peptides come together, a protein sub-unit or the quaternary structure is formed.
N-terminal, internal and C-terminal modifications are often carried out to make peptides useful for diverse applications. For N-terminal modifications, acetylation is used to increase stability by preventing N-terminal degradation, biotin-labeling is common in immunoassays, and dansyl attachments are used in fluorescence-based assays, for example. Internal modifications include sulfide cyclization to increase enzyme stability and isotope labeling to study their chemical, physical and biological properties.

Finally, the supramolecular structures of peptides are also dynamic in that they can reassemble depending on their environment and changing non-covalent interactions. The modularity, functionality and responsiveness of peptide-based assemblies thus make peptide building blocks worthy candidates for bottom-up fabrication of complicated nanostructures.

1.2 Peptide Conjugate Assembly

Designing synthetic self-assembling peptides requires a ‘bottom-up’ instead of a ‘top-down’ approach. In the ‘peptide lego’ system of self-assembly, the peptide sequence is
designed with alternating polar and non-polar amino acid residues that promote β-sheet formation while in the ‘lipid-like peptide’ system the building blocks contain a distinct headgroup with a hydrophobic tail that promotes self-assembly12. Peptide motifs with aliphatic tails are often called peptide conjugates. In aqueous conditions, hydrophobic collapse of the aliphatic tails induces assembly of molecules into supramolecular one-dimensional nano-structures13. These nano-assemblies are comparable to proteins in structural diversity and biological functionality. They can form filaments, 2D-sheets, spheres, networks, tubes and helices (Figure 3). The Stupp group at Northwestern University is one of the pioneers of peptide amphiphilic (PA) design and assembly. Their PAs usually contain three domains: hydrophobic tail, hydrogen bonding peptide sequence and charged hydrophilic peptide sequence14. The hydrophilic portion promotes solubility, the hydrogen bonding sequence has a high propensity for β-sheet formation and the hydrophobic part promotes assembly in aqueous environments. These amphiphilic molecules can assemble into cylinders, ribbons, twisted structures, or aggregates of more than one fiber15. Peptide sequence and the nature of the alkyl tail strongly influence the β-sheet character, morphology, surface chemistry, and potential bioactivity of the PA. Other factors that induce assembly are pH, concentration and the presence of divalent ions16,17. A few of these techniques will be used in our studies to drive and regulate assembly.
1.3 Oligonucleotide Assembly

In addition to peptides, oligonucleotides are widely found in biological systems. The sequence-specific binding properties of DNA based on the Watson-Crick base-pairing interactions have been exploited to direct the assembly of materials at the nanoscale. The two widely used approaches to make highly programmable molecules are (a) hybridization-based and (b) nanoparticle-templated19. In hybridization-based techniques, specially designed oligonucleotides pair together to form intricate architectures like tiles20 and scaffolds21. DNA tiles formed by helical domains with crossover junctions have been used in atomic force microscopy (AFM) characterization as topographical markers, for protein and nanoparticle capture and organization on 2D lattices22,23 and also in nano-robotics24-27. DNA Origami, which relies on folding a multi thousand-base circular single-stranded DNA using shorter helper oligonucleotides, has become a powerful tool for generating a variety of complex and
dynamic 2D28 and 3D29 structures (Figure 4). These structures have been used to pick up nano-scale cargo for plasmonic applications and to build meta-material architectures. On the other hand, for nanoparticle-templated methods, rigid inorganic nanoparticle cores serve as the basis of the core geometry19. The molecules are designed such that the ligands attach to the nanoparticle via a head-group moiety and the oligonucleotide tail extends into the solution controlling thereby controlling stability and reactivity30. The spatial confinement of the DNA strands leads to sharper melting transitions31, enhanced binding constants32 and elevated thermal stability33. Using short DNAs with sticky ends that match the strands on the inorganic core, families of different superlattice symmetries have been constructed34 (Figure 4).

Figure 4. DNA hybridization based origami (A) 2D patterns28 (B) 3D structures29. Nano-template based DNA assembly (C) Different crystal structures constructed from nano-particle building blocks of the same size and composition by changing the nature of the nucleic acid bonds: FCC lattice (Top), BCC lattice (Middle), AIB\textsubscript{2} type lattice (Bottom).34
1.4 Characterization of Self-assembled Structures

Transmission Electron Microscopy (TEM). Analysis of peptide nanostructures with high resolution (0.2 to 0.5 nm for conventional TEM and 1 Å for HR-TEM) at a scale of a few nanometers or lower can be accomplished by TEM. This technique involves passing an electron beam through the specimen to form an image. Images are formed from the interaction of the electrons in the beam with the sample. The most common method of sample preparation involves applying the diluted solution onto the copper TEM grid and either letting it dry or wicking away the solvent. In case salt is being used, additional washes with water might be necessary. This is followed by either positive (uranyl acetate)35 or negative (phosphotungstic acid)36 staining. Another method of sample preparation is by embedding nano-fiber gels into epoxy resin, sectioning the prepared sample with microtome and then visualizing with TEM13. Cryo-TEM is also used to image assembled structures17. This involves snap freezing in liquid ethane to preserve morphology and avoid the drying effect. EF-TEM is an improved electron microscopy technique which filters electrons in a specimen according to energy besides scatter angle. This allows for greater contrast without staining37.

Atomic Force Microscopy (AFM). AFM involves scanning the surface with a tip attached to a cantilever whose deflections are recorded and then used to generate an image. Usually, for peptide-based nanostructures, silicon wafers or freshly cleaved and cleaned mica surface is used as a substrate. The sample is drop-cast on the substrate and non-contact tapping mode is used to probe the structures. Zhou et al. visualized Fmoc-based peptide hydrogels by diluting and dropping onto mica surface38. AFM imaging provides topological information for different nanostructures.
For DNA based superstructures, a variety of different AFM scanning modes can be used to provide more information about the structures. For example, phase contrast images provide information about mechanical properties of the sample\(^ {35} \). Height differences below 1 nm can easily be detected, depending on tip size and quality. Furthermore, sub-structural features of origami assemblies can also be visualized\(^ {35} \).

Circular Dichroism Spectroscopy (CD). CD is widely used to determine the secondary structure of proteins and peptides. \(\alpha \)-helix, \(\beta \)-sheet, and random coil structures each give rise to a characteristic signal in the far-UV region (180 to 250 nm) of the CD spectrum. \(\alpha \)-helices have a positive peak at 196 nm and negative peaks at 209 nm and 223 nm. \(\beta \)-sheets peak around 202 nm and have a characteristic dip at 219 nm. Negative peaks around 210 nm usually indicate polyproline (PPII) structure.

Fourier-transform Infrared Resonance Spectroscopy (FTIR). FTIR is used to determine the secondary structure of peptides from the strong amide I band. The amide I band position for the \(\alpha \)-helical conformation is located at 1638 cm\(^{-1} \). The \(\beta \)-sheet band frequency is located at a wavelength of 1610 cm\(^{-1} \) and a weaker band associated with high-frequency vibration of antiparallel \(\beta \)-sheet structure is seen at 1680 cm\(^{-1} \).\(^ {8} \)

Optical Microscopy Techniques. Polarizing, fluorescence, and confocal microscopy, despite their lower resolution and magnification, provide a large amount of information about peptide nanostructures. In polarizing microscopy, polarized light interacts with the sample and generates a contrast between the anisotropic parts and the rest of the sample. Birefringency, a property of anisotropic domains of an assembly, helped Hatgerlink et al. show orientation of liquid crystalline phase of peptide amphiphile gels\(^ {16} \). Another method involves staining the
peptide structures with dyes such as Congo Red that bind to β-sheet domains. Due to birefringence, these areas show up as yellow-green and are used to detect amyloid structures39. Fluorescent dyes such as Alexa and Thioflavin T are also used to stain nanostructures, which are then observed by fluorescence and confocal microscopy. The FRET (fluorescence resonance energy transfer) method can be used for real-time imaging of dynamic processes40.

1.5 Peptide Oligonucleotide Conjugates

In the late 1970s, the observation that synthetic oligonucleotides could modulate gene function41,42 through antisense technology captured the imagination of the scientific community and gave rise to tremendous advancement in methods for oligonucleotide synthesis. Simultaneously, synthetic peptides were emerging due to the solid phase peptide synthesis protocol (SPPS) developed by Robert Bruce Merrifield43. Solid phase methods for manufacturing two of the most commonly found building blocks in biological systems—synthetic oligonucleotides from phosphoramidite monomers and synthetic peptides from protected amino acids—set the stage for the design of novel materials with interesting structural and functional properties.

Nature is replete with examples of supramolecular association between oligonucleotides and polypeptides (ribosomes, chromatin etc.) but instances of covalent conjugates between the two species are few and far between. In the rare cases that they are found, they are confined to specific biological systems and are difficult to adapt synthetically44. For a long time, the research in this field has been limited to developing new methods to build these molecules45. The two prominent methods of peptide oligonucleotide conjugate synthesis
are: (1) on-resin synthesis of entire peptide oligonucleotide conjugate molecule, and (2) separate synthesis and purification of peptide and oligonucleotide followed by coupling in solution (Figure 5).

![Figure 5. Chemical approaches for peptide oligonucleotide synthesis.](image)

Despite fewer steps in the first process, the second approach is preferred because the conditions required for the solid phase synthesis of peptides and oligonucleotides are incompatible with one another. For example, the cleavage of peptide from resin is accomplished under highly acidic conditions (95% trifluoroacetic acid) that will depurinate oligonucleotides. To circumvent this issue, one could use peptide nucleic acids (PNA), but PNAs are very expensive compared to phosphoramidites and may introduce unwanted flexibility for certain applications. Additionally, the lack of charge on the PNA backbone creates solubility issues. For the second method, peptides and oligonucleotides are synthesized separately and linked together with or without a homo or hetero bi-functional linker. The common methods of purification are chromatography (e.g. reverse phase, anion exchange) and precipitation with ethanol, for example. Since oligonucleotides do not generally contain
reactive moieties that could be used for conjugation reactions, specially modified nucleobases are employed. These bases contain amines, thiols, azides, alkynes, iodides, alkoxyamines and aldehydes46. For peptides, amines (lysine), carboxylic acids (glutamic acid, aspartic acid), thiols (cysteines) are often used for conjugation. If two or more of these group are present, non-canonical amino acids (NCAA) containing side chains such as azides and alkynes could be used to ensure specificity. Recently, oxidative coupling has also been used to synthesize peptide oligonucleotide conjugates48.

Peptide oligonucleotide hybrid materials opened a whole new range of possibilities. The sequence-specific base-pairing interactions of nucleic acids would allow for complex architectures like DNA Origami19,28,29,49–55 and spherical nucleic acid based assemblies19,56–58. Similarly, the rich diversity of amino acids would endow these hybrid biomolecules with highly tunable assembly and substrate recognition capabilities59–69. Other useful properties of these conjugates was sensitivity to ionic strength, temperature induced size variation70, pH change triggered release of an encapsulated compound71 and biological stimuli-promoted morphological transitions72. In the 1990s, cellular uptake of synthetic oligonucleotides was one of the final barriers to widespread adoption of antisense technology. The development of peptide oligonucleotide conjugates showed promise at overcoming this barrier. It was shown that oligonucleotides conjugated to peptides like CPP\textsubscript{s}73–75, arginine-rich MTS76, TAT77 and some histidine-rich peptides78 enhanced cellular permeability in cultured cells. Various aspects of peptide oligonucleotide conjugates were therefore studied, including their synthesis79,80, cellular uptake81, and use as fluorescent probes, PCR (polymerase chain reaction) primers, and molecular tags82.

11
However, peptide oligonucleotide conjugates are often overlooked as programmable building blocks for the construction of soft materials, and only a handful of such studies which probe their assembly have been conducted in the last 10 years71,83–86. Abraham et. al. showed that spherical structures synthesized from peptide-DNA hybrid materials under ambient conditions and low concentrations aggregate to form fibers at higher temperatures and concentrations83. Gour et. al. demonstrated that nucleotide conjugation to the dipeptide FF results in a shift from fibrous to spherical morphology in the resulting structures. Further, they showed that encapsulated dye could be released from the structures upon a decrease in pH from 6.5 to 4.5, indicating that such materials could be useful in drug delivery applications. They then characterized the π-π and hydrogen bonding interactions using fluorescence spectroscopy71,84. Zhang et. al. synthesized a micelle-forming brush-block copolymer using polycaprolactone. The material allowed for high surface density of nucleic acids. They also demonstrated target gene knockdown in vitro using this biodegradable material87. Wengel and Jensen et al. simultaneously exploited the Watson-Crick base pairing of oligonucleotides and coiled coil protein domain formation of peptides to create protein like structures85. Lim et al. took advantage of the hybridization of DNA, β-sheet formation of peptides and control of molecular degrees of freedom to create complex and controllable aggregates86.

Efforts aimed at studying the nature and self-assembly of DNA-peptide conjugates, though novel, are few and far between. Studies that systematically examine the molecular factors that influence the assembly of DNA-peptide conjugates are required in order to further the field. Our vision is to create a class of highly modular and programmable peptide oligonucleotide conjugates comprising a peptide unit and an oligonucleotide unit bridged together by an organic linker. Each unit – peptide, oligonucleotide, and organic linker of the conjugate – can be individually modified, and the effect of changes introduced can be
independently studied. We call these modular tri-unit molecules peptide-oligonucleotide chimeras (POCs), and they are the subject of the research presented herein.
2.0 Effect of Hydrophobicity and Secondary Structure of Peptide on the Self-assembly Properties of Peptide Oligonucleotide Chimeras (POCs)

2.1 Peptide Oligonucleotide Chimera (POC)

Connecting peptides and oligonucleotides together via an organic linker yields a new class of molecule which we term peptide oligonucleotide chimera (POC). The peptide and oligonucleotide are attached to an organic core by CuAAC (copper catalyzed alkyl-azide coupling) ‘click’ chemistry (Figure 6). The Rosi group has demonstrated that these crosslinked biomolecules can assemble into new materials that have unique features and programmable assembly properties\(^8\).

![Figure 6. Anatomy of the POC structure: a doubly bio-conjugated entity, where a single stranded DNA sequence and a peptide sequence are connected to either side of an organic core.](image)

Salt-based assembly studies showed that POCs formed morphologically precise structures: spheres or fibers depending on salt concentration and oligonucleotide length\(^8\). Two distinct POCs were synthesized: PO\(_{18}C\) with an 18-mer oligonucleotide and PO\(_6C\) having a shorter 6mer chain. The use of salt was crucial because in the absence of charge-shielding
cations, POCs resisted assembling in aqueous media due to their negatively charged oligonucleotide backbones.

Figure 7. (a) The charge ratio value is the ratio of positive to negative charges of the assembly solution (N = number of oligonucleotide bases; the ‘+2’ results from the azido-functionalized T residue and the deprotonated COO− terminus of the peptide). (b) The charge ratio of the assembly solution as a function of CaCl$_2$ concentration and oligonucleotide length. TEM images of PO$_{18}$C vesicles (c) before and (d) after concentrated CaCl$_2$ addition.

[POC] screenings revealed that assemblies were readily formed at 500 µM. Solutions of 500 µM POC were prepared in aqueous CaCl$_2$ solutions (10, 50, 150, and 300 mM). These solutions were heated to 80 °C to denature any non-specific aggregation states and then cooled to room temperature to arrive at preferred assembled structures. Transmission electron microscopy (TEM) was used to image the resulting assemblies. For PO$_{18}$C, defined circular structures were observed in 50 mM CaCl$_2$; fibers were exclusively observed in 300 mM CaCl$_2$. At 150 mM CaCl$_2$, a mixture of products was observed including circular/pseudo circular structures and fibers. Few ill-defined assemblies were observed at 10 mM CaCl$_2$. For PO$_6$C, fibers and spheres were observed at 10 mM CaCl$_2$, while at higher concentrations mostly twisted fibers and fiber conjugates were formed. This experiment demonstrated that by varying the charge ratio (Figure 7) the morphology of assemblies could be controlled. Decreasing the concentration of negative charge by shortening the oligonucleotide length and holding the calcium ion concentration constant caused an increase in charge ratio and a subsequent shift...
from spheres to fibers, while increasing the positive charge by increasing the salt concentration and holding the oligonucleotide length constant caused a decrease in charge ratio and a subsequent shift from fibers to spheres. These results confirm the hypothesis that altering the charge ratio should induce a morphological change, which can serve as a design rule for future exploration of POC-based assembly.

With this design rule in place, the next logical step was to investigate how self-assembly might be affected at different charge ratios due to slight modifications of the constituent components. Potential modifications include i) changes in oligonucleotide component: length, sequence or structure; ii) alterations to the organic linker component: aromatic/aliphatic nature, length, connectivity; and iii) changes to the peptide component: length, sequence, charge, secondary structure, hydrophobicity/hydrophilicity. This exercise will provide further insight into the nature of the self-assembly of POCs and also afford us a comprehensive set of design rules for this new family of soft materials.

2.1.1 Hypothesis and Goals

In this study, we focus on the peptide segment of the POC. Two parameters of the peptide segment were selected for modification: hydrophobicity and β-sheet forming character. Hydrophobic amino acids tend to have a greater propensity for engaging in β-sheet assembly so if we substitute the amino acids in the wild-type peptide with more hydrophobic residues, we will simultaneously be increasing the hydrophobicity their β-sheet formation propensity of the peptide. Our first goal was to synthesize four ‘mutants’ of the wild-type peptide. Three mutants would have greater hydrophobicity and hence greater β-sheet propensity while the fourth would be designed with β-sheet breakers to prevent β-sheet formation and it would have
comparable hydrophobicity as the wild-type peptide. C\textsubscript{14} (alkyl chain) tails would then be appended to this family of peptides in order to probe their assembly characteristics using both microscopy and spectroscopy. The C\textsubscript{14} tails are employed to promote aggregation and assembly of the peptides. Our second goal was to synthesize peptide oligonucleotide chimeras with the wild-type and mutant peptides and study their self-assembly properties at different salt concentrations to analyse the change in assembly behaviour as a function of [salt] and peptide sequence. We hypothesized that increasing the hydrophobicity of the peptide would accelerate the self-assembly process. This would be visually manifested by a transition from spheres to fibers at lower salt concentrations than previously observed. We also hypothesized that the absence of β-sheet character for the POC synthesized with the mutant peptide containing β-sheet breakers could prevent assembly and hence the formation of discrete nano-structures.

2.1.2 General Methods and Instrumentation

All chemicals were purchased from either Aldrich or Fisher and used without further purification. \(\text{N}_3\text{C}_4\text{H}_8\text{CO-} \text{AAAYSSGAPPMPPF} \) (\(\text{N}_3\text{-A}_2\text{PEP}_\text{Au} \)), \(\text{N}_3\text{C}_4\text{H}_8\text{CO-} \text{AAAYVVAPPMPPF} \), \(\text{N}_3\text{C}_4\text{H}_8\text{CO-} \text{AAAYVFAAPPMPPF} \), \(\text{N}_3\text{C}_4\text{H}_8\text{CO-} \text{AA(AIB)Y(AIB)SG(AIB)PPMPPF} \) were synthesized by Solid Phase Peptide Synthesis (Merrifield synthesis). Peptide oligonucleotide chimeras (POCs) were purified using an Agilent 1200 Series reverse-phase high-pressure liquid chromatography (HPLC) instrument equipped with an Agilent Zorbax 300SB-C18 column. POCs were quantified based on their absorbance at 260 nm and using the total extinction coefficient of DNA (195, 100 \(\text{M}^{-1}\text{cm}^{-1} \) \(\text{PO}_{18}\text{C} \)). Spectra were collected using an Agilent 8453 UV-Vis spectrometer equipped with deuterium and tungsten lamps. Transmission electron microscopy (TEM) samples were prepared by drop-casting 4 µL of solution onto a 3-mm-diameter copper grid coated with
formvar. After 4 min., the excess solution was wicked away and the grid was washed with nanopure (NP) H₂O (4 µL) and wicked away immediately. TEM images were collected with a FEI Morgagni 268 (80 kV) equipped with an AMT side mount CCD camera system. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) data were collected using an Applied Biosystem Voyager System 6174 MALDI-TOF mass spectrometer (negative reflector mode; accelerating voltage: 20 kV) with 3-hydroxypicolinic acid (3-HPA) as the ionization matrix. NP water (H₂O, 18.2 MΩ) was obtained from a Barnstead Diamond™ water purification system. CD experiments were conducted on Olis DSM 17 CD spectrometer with a quartz cuvette (0.1 cm path length) at 25°C. ATR-FTIR spectroscopy was conducted on Thermo Nicolet iS50 FTIR with PM-IRRAS and VCD instrument. Peptide conjugates were dissolved in 0.01 M HEPES buffer to afford a 0.1 mM solution. After 1 day, the solution was dialyzed against NP water using d-tube dialyzers (Millipore catalog number: 71505–3). The solution was concentrated and was drop-cast onto the ATR-FTIR substrate before collecting spectra.

2.2 Assembly and Spectroscopic Studies of C₁₄ Peptide Conjugate Family

2.2.1 Preparation of C₁₄ Conjugates

As mentioned previously, four mutant peptide sequences with increasing hydrophobicity were synthesized for this study. However, our knowledge of how these peptides behave in aqueous solutions was still limited. There was a need to study the nature of these sequences to gather more insight into their self-assembling properties and secondary structure formations. An established way to promote self-assembly is to conjugate peptide segments to
alkyl chains, effectively creating peptide amphiphiles. A combination of two driving forces should promote assembly: the hydrophobic interactions between the alkyl tails and hydrogen bonding between the amino acids on the peptide segment. With this rationale in mind, four peptide conjugates were synthesized with C_{14} alkyl chains appended to the N-terminus of the peptide sequences (Figure 8).

Figure 8. Family of C_{14} peptide conjugates with mutated regions highlighted.
All four peptide conjugates were purified using high performance liquid chromatography (HPLC) and characterized using matrix assisted laser desorption/ ionization (MALDI) (Figure 9).

![MALDI data for C14 peptide conjugates.](image)

2.2.2 Assembly Studies

Solutions of 0.1 mM C14 peptide conjugates were left to stand overnight in 0.01 M HEPES Buffer. HEPES has been shown to be a useful media for peptide assembly in our previous work\(^8\) and hence was our choice of solvent for this experiment. Furthermore,
incubation experiments in water and acetonitrile had not promoted significant fiber formation. Transmission electron microscopy (TEM) was used to image the resulting structures. (Figure 10). TEM images revealed that C_{14}-AAAYSSGAPPMPPF, C_{14}-AAAYVVAAPPMPPF and C_{14}-AAAYVFAAPPMPPF formed fibers but C_{14}-AA(AIB)Y(AIB)SG(AIB)PPMPPF only formed small aggregates. This was in agreement with what we expected to observe since the β-sheet breakers in the C_{14}-AA(AIB)Y(AIB)SG(AIB)PPMPPF conjugate usually prevent the formation of hydrogen bonds and hence suppress fiber formation.

Figure 10. TEM images of C_{14} peptide conjugate assemblies.
2.2.3 Spectroscopic Studies

After preliminary visualization of the results of incubation via electron microscopy, a more thorough investigation was performed using circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR) to probe the molecular structure of the assemblies. In circular dichroism (CD) studies, a negative peak at ~205 nm is indicative of polyproline II (PPII) conformation in solution and a negative peak at ~215 nm is indicative of β-sheet conformation. Our experiments reveal that C_{14}-AAAYSSGAPPMPFF and C_{14}-AAAYVVAPPMPFF exhibit pronounced β-sheet structure. C_{14}-AAAYVFAPPMPFF has a broad signal, so we speculate that besides having PPII conformation, it might also have some β-sheet character^{92,93,94}. C_{14}-AA(AIB)Y(AIB)SG(AIB)PPMPPF however, exhibits only PPII character and has no negative peak between 210 nm and 220 nm (Figure 11). FTIR studies for C_{14}-AAAYVVAPPMPFF, C_{14}-AAAYVFAPPMPFF showed amide I bands at 1630 cm\(^{-1}\), which indicates the presence of β-sheet secondary structure^{94}. No such band was observed for C_{14}-AAAYSSGAPPMPFF or C_{14}-AA(AIB)Y(AIB)SG(AIB)PPMPPF. However, there are examples in literature^{92,95} that show that AYSSGAPPMPFF has β-sheet character (Figure 12).
Figure 11. Circular dichroism (CD) studies of C14 conjugate assemblies.

Figure 12. Fourier transform infrared spectroscopy (FTIR) studies of C14 conjugate assemblies.
2.3 Assembly Studies on POC Family

2.3.1 Synthesis

The POCs corresponding to the four peptides were synthesized using a solution phase coupling of peptides and oligonucleotides approach following a previously established procedure (Figure 13). For attaching the azide modified peptide (N₃-Peptide) and azide modified oligonucleotide (N₃-DNA) to the doubly alkyl modified biphenyl (BP) copper catalyzed azide alkyne coupling based click reaction was employed. The 18-mer oligonucleotide was first clicked onto the biphenyl core and purified using HPLC. This biphenyl oligonucleotide conjugate was then clicked on to the different peptides, desalted using a NAP-5 column, and purified by HPLC.

Figure 13. Procedure for POC synthesis.
2.3.1.1 Preparation of Azido-modified Oligonucleotide Conjugate (O\textsubscript{18-N}\textsubscript{3})

In a typical procedure, syntheses were carried out from the 3’ direction using controlled pore glass (CPG) beads possessing 1 µmol of adenine (Glen Research, dA-CPG #20-2001-10, (1000 Å, 38 µmol/g)). The CPG beads were placed in a 1 µmol synthesis column and Ultramild 3’-phosphoramidites (Glen Research, Pac-dA-CE phosphoramidite #10-1601-05, Ac-dC-CE phosphoramidite #10-1015-C5, iPr-Pac-dG-CE phosphoramidite #10-1621-05, dT-CE phosphoramidite #10-1030-C5) and 5’-Iodo-dT phosphoramidite (Glen Research, #10-1931-90) were then added using the standard 1 µmol protocol on an Expedite 8909 synthesizer. Note, a mild Cap A Mix (Glen Research, 5% Phenoxyacetic anhydride in THF, #40-4212-52) was also used for synthesis due to the lability of the iodo moiety. At the end of the synthesis, the beads were dried overnight and kept in a tightly capped vial at ambient conditions. The terminal iodo groups were substituted for azides using an established procedure96. The CPG beads were kept in the columns while a saturated mixture of sodium azide in anhydrous dimethylformamide (DMF) was prepared (approximately 30 mg per 1 mL, per 1 µmol). Upon pulling up 1 mL of the mixture in a syringe, the column was firmly attached with an empty syringe on one end and the one containing the mixture in the other. The mixture was slowly passed over the CPG beads several times before either being left at ambient conditions overnight or placed in a shaker at 60 °C for one hour. The beads were then washed thoroughly with DMF and acetone before drying with nitrogen. The solid phase coupling reactions with the organic core were performed using these dry CPG beads.
2.3.1.2 Attachment of Azido-modified Oligonucleotides to Diacetylene Biphenyl Core

Dry CPG beads containing azide-modified DNA were placed in an Eppendorf tube. The biphenyl core (200 mM in DMF), tris(3-hydroxypropyltriazolylmethyl)amine (THPTA, 18 mM in DMF), CuSO$_4$·5H$_2$O (18 mM in DMF), and L-ascorbic acid (100 mM in DMF) were also added. The reaction mixture was then blanketed with nitrogen before capping and shaken for 24 hours at 25°C in an Eppendorf® Thermomixer® R (Eppendorf, #022670107) at 1000 rpm. It is important that the CPG beads are constantly agitated while mixing and not sitting at the bottom of the tube. Once the reaction was complete, the CPG beads were filtered using a one-side fritted 1 µmol Expedite DNA synthesis column (Glen Research, #20-0021-01), then the beads were washed with DMF (5×1 mL) and acetone (5×1 mL) and dried with nitrogen. The beads were then placed in 1 mL of AMA (1:1 ammonia:methylamine solution) (CAUTION: Only fresh AMA solutions that are not more than two weeks old and have been kept in the refrigerator below 0°C should be used) at 65°C for 15 minutes to cleave the conjugates from the solid supports. Thereafter, the ammonia and methyl amine were removed by passing a stream of nitrogen over the solution. To the remaining material was added ultrapure deionized H$_2$O (affording roughly 1 mL at the end), and the resulting solution was filtered through 0.45 µm nylon syringe filter (Acrodisc® 13 mm syringe filter #PN 4426T). The filtered solution was purified using reverse-phase HPLC eluting with a linear gradient of CH$_3$CN and 0.1 M TEAA (5/95 to 45/55 over 32 min).
2.3.1.3 Attachment of Azido-modified Peptide on to the Biphenyl Organic Core

The POCs were prepared using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)97,98 in which N3-Peptide was reacted with the azido-modified 18-mer conjugate. The following stock solutions were prepared: A, 198.3 mM CuSO\textsubscript{4} in NP H\textsubscript{2}O; B, 37.3 mM THPTA in NP H\textsubscript{2}O; C, 2 M urea in NP H\textsubscript{2}O; and D, 60.6 mM sodium ascorbate in NP H\textsubscript{2}O. Lyophilized N3-Peptide (125 nmol) was dissolved in 70 µL of DMF and 50 µL of NP H2O and the solution was transferred to a vial containing On-N3 (100 nmol). To this vial was added a mixture of A and B (1.05 µL A mixed with 5.58 µL B), 1.5 µL of C, and 13.8 µL of D. The vial was sealed with parafilm wrap, wrapped in aluminium foil, and stirred for at least 5 hours at room temperature. DMF/NP H2O (1:1) was added to bring the total volume to 500 µL. The resulting solution was desalted using a NAP-5 desalting column (GE Healthcare Life Sciences, #17-0853-02). The eluted solution was purified using reverse-phase HPLC eluting with a linear gradient of CH\textsubscript{3}CN and 0.1 M TEAA (5/95 to 45/55 over 32 min).

The POCs thus formed were characterized using matrix assisted laser desorption/ionization (MALDI) (Figure 14).
2.3.2 Assembly Studies

In a 250 µL plastic vial, lyophilized POCs (20 nmol) were dissolved in CaCl₂ solutions to yield the desired concentration. The solutions were sonicated for 2 min. and centrifuged briefly. The vials were placed in a 1.5 mL centrifuge tube containing water that was pre-heated at 90°C in an Eppendorf® Thermomixer® R (Eppendorf, # 022670107), and the POC solutions were allowed to incubate for 15 min. at 90°C. After incubation, the temperature setting was
lowered 1°C every 5 minutes until the temperature reached 25°C. After cooling to 25°C, the POC solutions were removed from the 1.5 mL centrifuge tube and allowed to sit overnight at room temperature. TEM samples were prepared after 15 to 20 hours.

It was our experience from previous studies with DNA-BP-AAAYSSGAPPMPPF that discrete nanostructures were only formed for 500 µM solutions of POC or higher. Hence, this concentration was chosen as the starting point for our assembly studies. Solutions of 500 µM POCs were prepared in 50 mM, 100 mM, 150 mM, 200 mM, 250 mM and 300 mM CaCl₂ salt solutions. The vials were heated to 90°C and then allowed to gradually cool to room temperature. They were then left at room temperature overnight. The presence and nature of assembled structures were probed using TEM. In the case of DNA-BP-AAAYSSGAPPMPPF, spheres are formed at 50 mM CaCl₂ concentration. At 100 mM CaCl₂ concentration, similar spherical structures are seen. However, at 150 mM salt concentration there is a shift in morphology from spheres to fibers. At higher concentrations (200 mM, 250 mM, 300 mM) only fibers are observed. For DNA-BP-AAAYVVAPPMPPF, which has a more hydrophobic peptide segment that is also more prone to forming β-sheet secondary structures, spheres are observed only for the lowest salt concentration (50 mM CaCl₂). At all higher salt concentrations, only fibers are observed. Following the same trend DNA-BP-AAAYVFAPPMPPF forms fibers from 50 mM CaCl₂ and up. The nature of these fibers are very different from those observed in the two previous cases. Hence, when moving from DNA-BP-AAAYSSGAPPMPPF to DNA-BP-AAAYVFAPPMPPF there is a morphological shift from spheres to fibers at lower salt concentrations and predominantly fibers at higher ones (Figure 15). For DNA-BP-AA(AIB)Y(AIB)SG(AIB)PPMPPF, no discrete structures were observed at any salt concentration.
2.4 Conclusion

Our results show that the hydrophobic interactions are integral to the formation of discrete nanostructures and that increasing peptide hydrophobicity initiates a shift from spherical to fibrous morphology. With an increase in salt concentration, there is a transition from vesicles to fibers in all three cases due to increased charge shielding. Holding the salt concentration constant, the higher the hydrophobicity of the peptide, the greater its tendency to form fibers. This is evident from the fact that from DNA-BP-AAAYSSGAPPMPPF to DNA-BP-AAAYVFAAPPMPFF in 50 mM CaCl₂, there is a transition from spheres to a combination of spheres and fibers. For DNA-BP-AAAYSSGAPPMPPF, the transition from spheres to fibers occurs between 100 mM and 150 mM, for DNA-BP-AAAYVVAAPPMPFF this occurs between 50 mM and 100 mM, while for DNA-BP-AAAYVFAAPPMPFF both spheres and
fibers are seen in 50 mM CaCl₂. It is also observed that DNA-BP-A(AIB)Y(AIB)SG(AIB)PPMPPF, which has roughly the same hydrophobicity as AAAYSSGAPPMPFF but no β-sheet forming character, does not form assemblies in 50 mM or 300 mM CaCl₂.
3.0 Appendix A: Reproduction Permissions

Permission 1.
This Agreement between University of Pittsburgh – Teesta Dasgupta ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>456450978333</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Apr 08, 2019</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>Springer Nature</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Nature</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Folding DNA to create nanoscale shapes and patterns</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Paul W. K. Rothemund</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Mar 16, 2006</td>
</tr>
<tr>
<td>Type of Use</td>
<td>Thesis/Dissertation</td>
</tr>
<tr>
<td>Requestor type</td>
<td>academic/university or research institute</td>
</tr>
<tr>
<td>Format</td>
<td>print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>figures/tables/illustrations</td>
</tr>
<tr>
<td>Number of figures/tables/illustrations</td>
<td>1</td>
</tr>
<tr>
<td>High-res required</td>
<td>no</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>no</td>
</tr>
<tr>
<td>Circulation/distribution</td>
<td>501 to 1000</td>
</tr>
<tr>
<td>Author of this Springer Nature content</td>
<td>no</td>
</tr>
<tr>
<td>Title</td>
<td>Establishing design and assembly rules for Peptide Oligonucleotide Chimeras (POCs)</td>
</tr>
<tr>
<td>Institution name</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Expected presentation date</td>
<td>Apr 2019</td>
</tr>
<tr>
<td>Portions</td>
<td>Figure 2d</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>3515 Lydia Street</td>
</tr>
<tr>
<td></td>
<td>PITTSBURGH, PA 15207</td>
</tr>
<tr>
<td></td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td>Attn: University of Pittsburgh</td>
</tr>
<tr>
<td>Total</td>
<td>0.00 USD</td>
</tr>
</tbody>
</table>

Terms and Conditions

Springer Nature Terms and Conditions for RightLink Permission:

Springer Nature Customer Service Centre GmbH (the Licensor) hereby grant you a non-exclusive, world-wide license to reproduce the material and for the purpose and requirements specified in the attached copy of your order form, and for no other use, subject to the conditions below:

Permission 3.
This Agreement between University of Pittsburgh -- Teesta Dasgupta ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4564551206692</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Apr 06, 2019</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>Springer Nature</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Nature</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Self-assembly of DNA into nanoscale three-dimensional shapes</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Shawn M. Douglas, Hendrik Dietz, Tim Liedl, Björn Högbäck, Franziska Graf et al.</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>May 21, 2009</td>
</tr>
<tr>
<td>Licensed Content Volume</td>
<td>459</td>
</tr>
<tr>
<td>Licensed Content Issue</td>
<td>7245</td>
</tr>
<tr>
<td>Type of Use</td>
<td>Thesis/Dissertation</td>
</tr>
<tr>
<td>Requestor type</td>
<td>academic/university or research institute</td>
</tr>
<tr>
<td>Format</td>
<td>print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>figures/tables/illustrations</td>
</tr>
<tr>
<td>Number of figures/tables/illustrations</td>
<td>1</td>
</tr>
<tr>
<td>High-res required</td>
<td>no</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>no</td>
</tr>
<tr>
<td>Circulation/distribution</td>
<td>501 to 1000</td>
</tr>
<tr>
<td>Author of this Springer Nature content</td>
<td>no</td>
</tr>
<tr>
<td>Title</td>
<td>Establishing design and assembly rules for Peptide Oligonucleotide Chimeras (POCs)</td>
</tr>
<tr>
<td>Institution name</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Expected presentation date</td>
<td>Apr 2019</td>
</tr>
<tr>
<td>Portions</td>
<td>Figure 2</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>University of Pittsburgh 3915 Lydia Street</td>
</tr>
</tbody>
</table>

PITTSBURGH, PA 15207
United States
Attn: University of Pittsburgh

Total 0.00 USD

Permission 4.
This Agreement between University of Pittsburgh — Teesta Dasgupta ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4564560264129</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Apr 08, 2019</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>John Wiley and Sons</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Angewandte Chemie International Edition</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New "Table of Elements"</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Robert J. Macfarlane, Matthew N. O'Brien, Sarah Hurst Petrosko, et al</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>May 2, 2013</td>
</tr>
<tr>
<td>Licensed Content Volume</td>
<td>52</td>
</tr>
<tr>
<td>Licensed Content Issue</td>
<td>22</td>
</tr>
<tr>
<td>Licensed Content Pages</td>
<td>11</td>
</tr>
<tr>
<td>Type of use</td>
<td>Dissertation/Thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>University/Academic</td>
</tr>
<tr>
<td>Format</td>
<td>Print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>Figure/table</td>
</tr>
<tr>
<td>Number of figures/tables</td>
<td>1</td>
</tr>
<tr>
<td>Original Wiley figure/table number(s)</td>
<td>Figure 2</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Title of your thesis / dissertation</td>
<td>Establishing design and assembly rules for Peptide Oligonucleotide Chimeras (POCs)</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Apr 2019</td>
</tr>
<tr>
<td>Expected size (number of pages)</td>
<td>1</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>University of Pittsburgh 3915 Lydia Street</td>
</tr>
</tbody>
</table>

PITTSBURGH, PA 15207
United States
Attn: University of Pittsburgh

Publisher Tax ID | EU26007151
Total | 0.00 USD

Permission 5.
Permission 6.
4.0 Bibliography

(8) Haris, P.; Street, R. H. The Conformational Analysis of Peptides Using Fourier
Transform IR Spectroscopy. 1995, 251–263.

(14) Cui, H.; Webber, M. J.; Stupp, S. I. PeptideScience Volume 94 / Number 1 1. 94 (1), 1–18. https://doi.org/10.1002/bip.

346–352.

Wei, B.; Dai, M.; Yin, P. Complex Shapes Self-Assembled from Single-Stranded DNA

(73) Tréhin, R.; Merkle, H. P. Chances and Pitfalls of Cell Penetrating Peptides for Cellular

(80) Seitz, O. Activating Protecting Groups for the Solid Phase Synthesis and Modification of Peptides, Oligonucleotides and Oligosaccharides.

White, S. H.; Wimley, W. C. Hydrophobic Interactions of Peptides with Membrane

(97) Prof R Huisgen, B. D. Kinetics and Mechanism of 1,3-Dipolar Cycloadditions [*I. Angew. Chem. internat. Ed.* **1962**, *75* (I), 565.