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Abstract 

Nitroalkene Repression of Homologous Recombination as a Treatment for Triple 

Negative Breast Cancer 

Alparslan Asan, PhD 

University of Pittsburgh, 2019 

Triple-negative breast cancer (TNBC) is a heterogenous disease accounting for ~20% of 

all breast cancer (BC) cases. It is characterized by high genomic instability making it an aggressive 

BC subtype with higher rates of metastatic disease compared to other BC subtypes. In ~15% of 

TNBC, genomic instability is caused by loss of function mutations in BRCA1/BRCA2 genes 

leading to homologous recombination (HR) deficiency which increases sensitivity for PARP 

inhibitor (PARPi) therapy. Therefore, there has been a great interest in extending the utility of 

PARP inhibitors to patients who are wildtype for BRCA1/BRCA2. The nitro-fatty acid (NFA) 10-

nitro-octadec-9-enoic acid (OA-NO2) was identified as an inhibitor of RAD51, an enzyme 

essential in HR.  NFAs alkylate protein cysteines via Michael addition reaction and Cys319 in 

RAD51 is a specific target of OA-NO2. Thus, to mimic a BRCA mutant phenotype in wildtype 

BRCA TNBC cells, OA-NO2 was combined with a PARPi (olaparib or talazoparib) and other 

antineoplastic DNA-damaging therapies including doxorubicin, cisplatin and ɣ-irradiation (IR). 

Talazoparib combined with OA-NO2 displayed high levels of synergistic growth inhibition of 

MM231 TNBC cells in vitro and in vivo: mice treated with talazoparib plus OA-NO2 had 

significantly decreased tumor growth rates when compared to vehicle, talazoparib or OA-NO2 

alone. Also, OA-NO2 inhibited IR-induced RAD51 foci formation and enhanced H2A histone 

family member X (H2AX) phosphorylation in TNBC cells. Additional analyses of fluorescent 

DSB reporter activity with both static-flow cytometry and kinetic live-cell studies, enabling 
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temporal resolution of recombination, revealed that OA-NO2 does not affect non-homologous end-

joining (NHEJ). Rather, OA-NO2 inhibits post-resection DNA DSB repair pathways HR, single-

strand annealing (SSA) and alternative end-joining (Alt-EJ). In conclusion, RAD51 Cys-319 is a 

functionally significant site for adduction of soft electrophiles such as OA-NO2 and suggests 

further investigation of lipid electrophile–based combinational therapies for TNBC. 
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1.0 Introduction 

1.1 DNA Repair 

1.1.1  DNA Repair Overview 

The multitude of exogenously and endogenously-stimulated DNA-damaging events 

requires that DNA damage be vigilantly detected and efficiently repaired. Several DNA repair 

mechanisms have been identified that ameliorate deleterious genomic perturbations such as direct 

reversal (DR), mismatch repair (MMR) , nucleotide excision repair (NER), base excision repair 

(BER) and double-stranded break (DSB) repair [1] (Fig. 1). 

Figure 1. DNA repair overview. 



2 

1.1.2  Direct Repair, Base Excision Repair, Mismatch Repair and Nucleotide Excision 

Repair 

DNA damaging agents that do not directly induce DSBs lead to the DNA repair pathways 

DR, BER, MMR or NER based on the kind of DNA lesion produced (Fig. 1). 

Direct repair removes alkyl groups from specific oxygen positions of methylated guanine 

and thymine bases that result from normal cellular metabolism and carcinogens [2]. The DNA 

repair protein involved in this process is called O6 -methylguanine DNA methyltransferase 

(MGMT) and its role is to transfer a methyl group from the O6 position onto itself. This then marks 

MGMT for degradation [3]. If the production of MGMT is impaired, there is an abundance of alkyl 

adducts and this leads to impaired pairing of bases during replication. 

BER is the most commonly utilized repair mechanisms in cells. In cells, most single-

stranded breaks (SSBs) result from reactive oxygen species (ROS) that are produced 

endogenously.  It corrects SSBs that result from oxidation, alkylation, and deamination of bases 

[4]. BER uses glycosylases to remove impaired bases by cleaving N-glycosidic bonds that results 

in an abasic (AP) site [5]. AP endonuclease/Redox Factor 1 (APE1) and additional proteins that it 

recruits then prepares this site for addition of new bases [4]. PARP1 [poly- (ADP ribose) 

polymerase 1] is a BER protein that is involved in detecting damage. It decondenses the chromatin 

in the damaged area and recruits additional repair proteins [6]. PARP is a nuclear enzyme that 

catalyzes the transfer of ADP-ribose from NAD+  to mark proteins involved in chromatin 

architecture and DNA metabolism [7]. If left unrepaired, SSBs can lead to DSBs. 

MMR ensures high fidelity DNA replication. It corrects errors that polymerases fail to 

identify [8]. During replication, MMR corrects the newly produced daughter strand using the 

parental strand as a template. MMR mainly repairs mismatches that occur in single nucleotides. 
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The errors occur during normal replication but can be exasperated by endogenously produced ROS 

as well as exogenous agents [9]. The main players involved in MMR are MSH2:MSH6 as well as 

MSH2:MSH3 nuclear protein complexes for recognizing damage, replication protein A (RPA) for 

stabilization and recruitment of replication factor C (RFC) and proliferating cell nuclear antigen 

(PCNA) that are important for protection of the damage site. DNA exonuclease (Exo1) removes 

the damaged area and a DNA polymerase (Pol δ) replaces it with Ligase I which ligates the new 

DNA product [8].  DSBs can occur if there is damage to the parental strand since MMR only 

accounts for the repair of the daughter strand [1]. 

NER repairs damage that is induced by UV light which leads to adjacent pyrimidine base 

crosslinking. NER also deals with damage done by mutagenic chemical compounds such as 

platinum agents which lead to crosslinks between purine bases and bases that are in different 

strands [10]. NER accounts for large adducts that are produced by such damage. Proteins involved 

in NER are transcription factor IIH (TFIIH) complex involving helicases XPB and XPD, stability 

proteins RPA and XPA, endonucleases XPG and XPF as well as DNA excision repair protein 

ERCC1 [11]. In later steps, proteins such as DNA polymerases δ and ɛ and Ligase I are also 

involved for completion of the repair [12]. NER malfunction is linked with breast cancer, with 

NER protein levels reduced in tumor samples compared to normal tissue [13]. Additionally, certain 

polymorphisms in NER genes, which are more likely to be found in African American women, 

are associated with increased risk of breast cancer [14].  
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1.1.3  Double-stranded Break (DSB) Repair 

DNA DSBs are the most pathogenic forms of DNA damage, as the loss of genomic material 

and mutations promote genomic variability and disequilibrium. In normal cells, DSBs are very 

rare, occurring about 10 times a day per cell [15]. DSBs can occur during replication fork stalls 

due to unrepaired base damage and when two separate SSB events occur in locations that are close 

to each other between two DNA strands [16]. Endogenous sources of DSBs are rare but can happen 

when the phosphate backbones of two complimentary DNA strands break at the same time due to 

cellular oxidative damage [17]. Exogenous DSB inducers include topoisomerase poisons (e.g. 

doxorubicin), ionizing radiation (IR), DNA base crosslinking agents (e.g. cisplatin) and 

radiomimetic drugs (e.g. bleomycin) [18, 19].  High doses of IR induce DSBs in addition to SSBs 

[20].  

Access to DNA broken ends is achieved by chromatin restructuring initiated by 

phosphorylation cascade by the DNA damage response (DDR) [21]. Upon damage, the Mre11-

Rad50-NBS1 (MRN) complex binds to the DSB [22]. This complex recruits a regulator of DDR, 

ataxia telangiectasia mutated (ATM), which carries out many required protein phosphorylation 

events [23]. Of interest, histone variant H2AX is phosphorylated by ATM in response to DSBs, 

which is an early event for all DSB repair pathways [24]. 

There are two main pathways that cells utilize in order to repair DSBs: non-homologous 

end joining (NHEJ) and homologous recombination (HR) (Fig. 2). While error-prone NHEJ is 

faster and more frequently used, HR repair mechanisms maintain the highest fidelity of the genome 

by carrying out repair processes via using newly synthesized homologous sister chromatid as a 

template. HR repair protects cells from the deleterious genomic instability caused by DSBs. It 

corrects for the loss of genetic material through homologous template searches that maintain the 
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genomic landscape [25]. An overview of DSB repair is summarized in Figure 2. Which pathway 

is used depends on what phase of the cell cycle the cell is in, the availability of key repair proteins, 

and whether the ends of the breaks are prone to being easily joined by NHEJ [15, 26, 27]. NHEJ 

is mostly active during G0 and G1 and HR is mostly active during G2 and S phase (Fig. 3). This 

is important when developing targeted inhibitors to prevent cancer cell DNA repair, since cancer 

cells are more frequently in phase G2/S compared to normal cells. An inhibitor of HR is more 

likely to be targeted to cancer cell DNA repair mechanisms in contrast to normal cells.  

Figure 2. Overview of double-stand break (DSB) DNA repair pathways. 
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Figure 3. Regulation of DSB repair pathways. 

1.1.3.1 Non-Homologous End Joining 

NHEJ is the main pathway of DSB repair in mammalian cells. It also plays a major role in 

the development of the immune system. It is essential to V(D)J recombination to promote antigen 

diversity in mammalian cells [28]. NHEJ does not depend on DNA end resection in contrast to 

HR. It does not use homologous template for repair and the ligation of broken DNA ends which 

can be mutagenic due to loss of information [29].  

Steps for NHEJ include detection, alignment, protection and joining of broken DNA ends. 

A protein heterodimer called Ku70/Ku80 binds to these broken ends and recruits additional 

protection components to the site [30]. 53BP1 and RIF1 are also end-protection factors. 

Ku70/Ku80 recruits DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the broken 

ends [1]. Both Ku70/Ku80 and DNA-PKcs protect DNA ends from nucleolytic degradation, 
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potentiate DNA end ligation by tethering the two ends together and recruit other NHEJ factors [31, 

32]. A protein complex involving XRCC4, Ligase IV and XLF are activated by DNA-PK 

phosphorylation which then create a bridge between the break ends for stability and ligation (Fig. 

4) [33, 34].

Figure 4. Schematic overview of non-homologous end joining repair (NHEJ). 
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1.1.3.2 Homologous Recombination 

HR is involved in essential cellular processes such as DNA repair and DNA replication. In 

addition to its role in DNA DSBs, HR is also required for resolving stalled replication forks during 

replication [35].  In contrast to NHEJ, HR requires intact homologous templates to carry out repair 

processes [36].   

DNA end resection is required to commit to HR in repairing DSBs. NHEJ initiators 53BP1 

and RIF1 are always in competition for DSBs with HR initiators CtBP-interacting protein (CtIP) 

and its binding partner product of breast cancer early onset gene 1 (BRCA1) [37]. The onset of the 

S phase favors HR (Fig 3). BRCA1 promotes the phosphatase PP4C to dephosphorylate 53BP1 

which leads to RIF1 release [38]. Together with the MRN complex, CtIP promotes end-resection 

of the 5’ DNA ends to produce 3’ single-stranded (ss) DNA overhangs, eliminating the occurrence 

of NHEJ. This occurs during S phase, where homology search is most efficacious due to the newly 

sensitized sister chromatids that are used as templates. In the process of end resection, the 

endonuclease MRE11 utilizes phosphorylated CtIP to resect DNA on the 5’ end approximately 20 

nucleotides away from the break [39]. Exonucleases Exo1 and DNA2 are then required to induce 

nicks farther away from the DSB to support unwinding of the DNA by the helicase BLM [40].  

The ssDNA 3’ overhangs generated upon nucleolytic resection quickly get coated by a 

trimeric RPA complex composed of 70-, 32- and 14-kDa subunits. Next, RPA gets displaced by 

the adenosine triphosphate (ATP)-dependent recombinase RAD51 in a process facilitated by breast 

cancer early onset gene 2 (BRCA2) [41]. RAD51 is a critical component of HR, which facilitates 

the homology search and strand-exchange to repair DSBs by forming a nucleoprotein helical 

filament [42]. There are numerous proteins that are involved in the recruitment of RAD51 to the 

site. BRCA2 is recruited to the damage site with the help of BRCA1 and partner and localizer of 
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BRCA2 (PALB2) [43]. The binding of BRCA1 and the BRCA2/PALB2 complex is oppressed due 

to ubiquitylation during G1 phase and is promoted during S phase by ubiquitin specific peptidase 

11 (USP11) [44]. BRCA2 has multiple RAD51 binding sites and 8 of these are the BRC repeats 

in addition to a separate binding site close to the C-terminal [45, 46]. RAD51-bound BRCA2 

translocates to the DSB site and facilitates the removal of trimeric RPA proteins. BRCA2 also 

functions in biasing RAD51 towards binding ssDNA as opposed to double-stranded (ds) DNA as 

well as decreasing the ATPase activity of RAD51. This further stabilizes RAD51 filament 

formation because filaments formed around dsDNA has deleterious effects and RAD51 is only 

stable on ssDNA in the ATP form, where the ADP form dissociates it from the DNA [47]. There 

are several proteins that share structural similarities to RAD51 namely XRCC2, XRCC3, 

RAD51B, RAD51C, RAD51D, DMC1 and SWSAP1. All work in concert with RAD51 to stabilize 

and assist RAD51 in DNA homology search and strand exchange [48-50]. Another protein that is 

involved in promoting HR is RAD52. Its role in human HR has been unresolved for a long time 

but recently it has been implicated to have a regulatory role in RPA displacement [51]. Of note, 

RAD52 is not required in the presence of BRCA2 [52]. 

SsDNA with bound RAD51 filament is called the presynaptic complex, and this complex 

searches for DNA sequence homology for a repair template. This search is biased by proximity. 

Since the sister chromatid is located very close to the damage site, it is most often used as the 

template [53]. This triggers strand invasion from the presynaptic complex to the DNA template. 

The 3’ end of the invading strand is then used as a prime for DNA synthesis [54] (Fig. 5). RAD51 

dissociation from ssDNA is facilitated by the PCNA-associated recombination inhibitor (PARI) 

and helicase RECQ5. 
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Figure 5. Schematic overview of homologous recombination (HR) repair. 



11 

1.1.3.3 Other Post-resection DSB repair pathways: Single-strand annealing (SSA) and 

Alternative End Joining (alt-EJ) 

Resected DSB ends can also be repaired by SSA and alt-EJ. These pathways are rather 

mutagenic compared to HR [26, 55].  

Upon end resection, SSA anneals homologous repeat sequences at the DSB site. Like HR, 

SSA requires bound RPA proteins. However, SSA doesn’t require RAD51 to carry out repair and 

does not utilize strand invasion [56]. It relies on RAD52 to carry out annealing complementary 

sequences and uses ERCC1 to remove nonhomologous 3’ overhangs via nucleolytic cleavage. 

ERCC1 performs this function through forming a complex with XPF and the nucleolytic function 

of this complex is enhanced by RAD52 [57]. This cleavage results in a deletion between 

homologous repeats, which is what makes this pathway potentially mutagenic. In addition to 

RAD52, RAD1-RAD10 (ERCC4-ERCC10) are involved in SSA in mammalian cells [58]. 

Additional components of this pathway in humans are unknown, including which specific 

polymerases and ligases are required for the completion of an SSA event. RAD52 has a more 

limited function in humans due to the presence of BRCA2 [59]. There is evidence that RAD52 

impairment is synthetically lethal in cells with deficiencies in BRCA1, PALB2 and BRCA2 [60]. 

This suggests RAD52 can act as a compensatory protein to RAD51-dependent homology search 

which makes it a potential therapeutic target. 

Alt-EJ was viewed as  a compensatory pathway for NHEJ [61] until recently, when it was 

shown that alt-EJ competes with HR in post-resection DSB DNA repair [62]. Alt-EJ diverges from 

HR post-resection where DNA ends are processed by RAD51 in HR, whereas PARP1 has been 

identified to be processing resected ends in alt-EJ [63]. Exactly how PARP1 helps perform this 

function is unknown. Like SSA, alt-EJ is a backup pathway for DSB repair in the absence of 
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functional HR [62, 64]. The studies that identify SSA and alt-EJ as being compensatory 

mechanisms for HR highlight the necessity to target these pathways in therapeutic strategies 

prioritizing HR inhibition.  

1.1.4  Homologous Recombination and Cancer 

Cancer broadly represents uncontrolled cell growth and division. The hallmarks of cancer 

are increasing proliferation, prevention of growth suppression, evasion of cell death, acquired 

infinite replication capability, evasion of immune responses, acquired angiogenesis, and invasion 

of other sites through metastasis [65]. Cancerous cells acquire these features through increasing 

numbers of mutations and epigenetic changes. Thus, genome instability is an important factor for 

cancer cells to acquire uncontrolled cell growth and division. Mutations in DNA repair pathways 

can have such implication in cells.  

Homologous recombination genes BRCA1 and BRCA2 are important tumor-suppressor 

genes implicated in breast and ovarian cancers [66, 67]. Approximately 15% of all  familial breast 

cancers are associated with mutations in these two genes [68]. Rare mutations in other HR proteins 

such as PALB2, RAD51C, RAD51D have been implicated in familial breast and ovarian cancer 

[69-71].  
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1.1.5   Poly (ADP-ribose) polymerase (PARP) 

There are 17 PARP proteins in humans [72], representing a family of multidomain enzymes 

that have functions related to cellular stress responses. PARP1 is the most studied PARP enzyme 

and has a role in DNA repair. PARP-2 and PARP-3 also have overlapping DNA repair roles but 

are studied to a lesser extent [73]. PARP1 binds SSBs and using its catalytic domain, it PARylates 

[process of adding poly (ADP-ribose) chains] itself and surrounding proteins. This modification 

then recruits additional SSB repair components such as XRCC1 to the site of damage to induce 

chromatin remodeling to facilitate DNA repair processes. Although PARP is best described by its 

role in BER and thus in the repair of SSBs, it is also involved in DSB repair via the alt-EJ pathway. 

1.1.6  Targeting DNA Damage Response (DDR) Components in Cancer 

DDR has evolved to signal presence of DNA damage and induce downstream repair 

processes including cell cycle checkpoint activation and DNA repair processes, as well as cell 

senescence and apoptosis upon extensive DNA damage [74]. DDR signaling proteins DNA-PKcs, 

ATM and ATR play critical roles in DNA DSB repair. Therefore, targeting key DDR proteins have 

been sought after in the cancer setting.  

DNA-PKcs is critical for NHEJ repair as described earlier. Inhibition of DNA-PKcs have 

shown to chemosensitize cancer cells to IR and topoisomerase II poisons such as etoposide in 

combination therapies [75]. There are various inhibitors of DNA-PKcs being investigated in Phase 

I trials as monotherapies as well as in combination with topoisomerase II inhibitors for Chronic 

Lymphocytic Leukemia (CLL) (NCT02316197) and advanced solid tumors (NCT02644278). 
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ATM activates downstream DNA DSB repair processes and is the kinase that 

phosphorylates histone H2AX on serine 139 (γH2AX). Another important protein that ATM 

modulates is CHK2, which is involved in G1-S phase checkpoint activation [76]. A specific 

inhibitor of ATM, KU59493, sensitizes cancer cells to IR therapy and the DNA DSB initiating 

chemotherapeutic agents camptothecin, doxorubicin and etoposide [77]. Another ATM inhibitor 

AZD0156 (AstraZeneca) is being investigated in a Phase I clinical trial as a monotherapy as well 

as in combination with olaparib and other cytotoxic chemotherapies in patients with advanced 

malignancies (NCT02588105). 

Ataxia telangiectasia and Rad3-related (ATR), a key protein involved in sensing DNA 

SSBs, is also associated with DSBs through its interactions with RPA [78, 79]. Among many other 

substrates, ATR activates CHK1 which an important regulator of the G2-M and S cycle 

checkpoints [80]. An ATR inhibitor, VX-970, demonstrated promising pre-clinical data showing 

sensitization of lung cancer cells to chemotherapeutics such as cisplatin both in vitro and in vivo 

[81]. A phase II clinical trial is ongoing investigating it as a potential treatment for advanced solid 

tumor (NCT03718091). Additionally, possible targeted therapies are being pursued to treat ATM-

deficient tumors with ATR inhibitors in combination with cisplatin treatments in lung cancer. 

Preclinical studies show that ATM deficiency could be a predictive biomarker for ATR targeting 

therapies [82]. Lastly, the ATR inhibitor AZD6738 induces CD8+ T cell activity in KRAS-mutant 

mice models receiving IR therapy implicating immunotherapeutic potential of ATR inhibition 

[83]. 
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1.1.7  Targeting Homologous Recombination in Cancer 

Although it is implied that HR deficiency leads to genomic instability and the development 

of cancer, it is important to emphasize that the lack of HR can also halt cancer cell progression 

[84]. Since HR has major roles in DNA repair and replication, cancer cells heavily rely on HR to 

resist DNA targeted cancer therapeutics. The anti-neoplastic platinum agent cisplatin is commonly 

used as a cancer therapeutic. It causes DNA crosslinks which require cancer cells to correct by 

relying on DNA repair. In response, cancer cells upregulate HR pathway in order to prevent death 

from platinum agents [85]. Furthermore, ovarian cancer patients with HR deficiencies benefit from 

platinum therapy at a greater extent and have increased survival rates compared to patients 

proficient in HR [86]. Therefore, it is important to identify patients who are HR-deficient. In 

addition to platinum therapies, HR-deficient patients can benefit from treatments involving PARP 

inhibition (PARPi). PARPi induce DSBs in replicating cells [87]. In HR-proficient cells, DSBs 

caused by PARPi are subsequently repaired. However, in cells with HR defects, strand breaks 

caused by PARPi are not repaired, leading to cell death. This phenomenon is referred as ‘synthetic 

lethality’. Beyond BRCA1 and BRCA2 deficiencies, cells that have defects in other HR repair 

proteins also benefit from PARPi. Collectively, cells with HR defects are said to have a 

‘BRCAness’ phenotype. Induction of synthetic lethality by PARPi in cells with the BRCAness 

phenotype suggest an effective treatment alternative to chemotherapy approaches in patients with 

HR defects.  

In addition to the strategy of treating HR-deficient cells with PARPi, another strategy 

involving DNA repair is targeting HR components of HR-proficient cancer cells to induce a 

BRCAness phenotype. Targeting proteins in the DNA DSB repair pathways can lead to cancer cell 

killing if combined with DNA damaging agents such as topoisomerase posions, DNA crosslinking 
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agents, ionizing radiation and PARPi. One downside to this approach is that the induced 

BRCAness is not cancer cell specific. However, there are differences between cancer cells and 

normal cells that are both HR-proficient. For example, cancer cells have increased replication 

stress due to the downregulation of aberrant cell cycle checkpoints [35]. This leads to an increased 

need for intact HR function. Additionally, cancer cells, due to their replicating nature, are more 

likely to be in G2/S phase compared to normal cells which makes HR inhibition more toxic to 

cancer cells in contrast to normal cells. Therefore, potentiating DNA-targeted therapies with HR 

inhibitors represents a viable treatment strategy for HR-proficient patient populations. Efforts have 

been made to target the MRN complex, BRCA1/2, RAD51, ATR/CHK1 and ATM/CHK2 

pathways. Targeting the MRN complex sensitizes cancer cells to IR and cisplatin [88, 89]. 

Although not through small molecule inhibition, repression of BRCA1/2 have been achieved 

through PI3K inhibition (BKM120) by inducing transcriptional repression of BRCA1/2 [90]. This 

led to the initiation of a phase-I clinical trial of BKM120 and olaparib (PARPi) studying patients 

with recurrent triple negative breast cancer (TNBC) and high-grade serous ovarian cancer 

(NCT01623349). 

RAD51 inhibition is being extensively studied as a promising HR repression strategy [91]. 

While RAD51 is essential for high fidelity repair of DSBs to maintain genomic homeostasis, 

overexpression of RAD51 in cancer can have detrimental consequences. RAD51 overexpression 

correlates positively with breast cancer tumor grade and triple negative breast cancer (TNBC) 

metastatic patient samples [92, 93]. Overexpression of RAD51 inhibits chemotherapeutic efficacy 

in cancer patients by rendering cancer cells more resistant to DNA damaging agents. Responses to 

neoadjuvant chemotherapy are inversely correlated with BRCA1-, ɣH2AX- and RAD51-foci 

before treatment as well as RAD51-foci numbers following treatment [94, 95]. Efforts have been 
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made to develop viable RAD51 inhibitors, but no safe small molecule Rad51 inhibitors have 

progressed through preclinical toxicology and pharmacokinetics evaluation prior to Phase 1/2 

trials. B02, a small molecule that inhibits DNA strand exchange activity of RAD51, sensitized 

MDA-MB-231 TNBC human cell line to cisplatin in a mouse xenograft model [96, 97]. RI-1, 

another RAD51 inhibitor, binds cysteine 319 residue of RAD51 irreversibly which blocked its 

filament formation on ssDNA. However, this irreversible covalent interaction can have toxic side 

effects and although the compound was later upgraded to a reversible interactor with better 

pharmacologic properties, its progression came to a halt due to the high IC50 needed for RAD51 

inactivation [98]. Lastly, IBR120, another RAD51 inhibitor which disrupts RAD51 

multimerization, has been shown to be highly toxic to TNBC cancer cells but is going through 

additionally chemical refinements to lower its IC50 before moving past preclinical studies [99].  

1.2 Breast Cancer 

1.2.1  Breast Cancer Overview 

In 2018, there was an estimated 266,120 new cases of invasive breast cancer diagnoses and 

41,400 breast cancer deaths in the US [100].  This makes breast cancer the leading cause of death 

among all types of cancers in women [101]. Although early detection and advances in therapies 

have resulted in an increase in survival rates, an urgent need for novel therapies exists for the 

treatment of metastatic breast cancer, which remains largely incurable [102].  

Breast cancer is a heterogenous disease with multiple biological subtypes (Table 1). 

Immunohistochemistry and gene expression profiling are mainly used to classify different 
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subtypes. Clinical decisions are made based on these subtypes, despite the advancement of omics 

technologies such as whole genome sequencing and transcriptomics that can better resolve the 

heterogeneity of this disease by providing more specific targets for therapy [103].  Using gene 

expression profiling, breast cancer is broadly sub-classified into luminal ER positive (luminal A 

and luminal B), HER2 enriched and basal-like [104, 105]. Additionally, breast cancer can be sub-

classified based on surface receptor expression. These receptors are estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). 

Approximately 70% of breast cancer patients express estrogen receptor-α (ERα). Mortality rates 

in this subset has been dramatically decreased since the advent of endocrine therapies such as 

Tamoxifen and aromatase inhibitors. Additionally, around 15% of patients have cancers with 

overexpression in human epidermal growth factor receptor-2 (HER2). These patients are 

candidates for HER2-targeted treatments such as Trastuzumab (Herceptin), and others [106]. In 

contrast, triple-negative breast cancer (TNBC) patients lack these surface receptors and are 

unresponsive to endocrine and HER2-targeting treatments.  

Table 1. Breast cancer molecular subtypes and correlations with surface receptor expression. 
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1.2.2  Triple-Negative Breast Cancer 

TNBC lacks the ER and PR receptors with no amplification of HER2. It is highly 

heterogenous and is found in about 15-20% of all breast cancers [107]. There has been little 

therapeutic progress since the advent of chemotherapy in TNBC. Conventional chemotherapy is 

the first-line therapy for all TNBC patients and lacks targeted therapies such as hormone or anti-

HER2 treatments available to other subtypes. TNBC generally shows the worst prognosis among 

all subtypes of breast cancer patients [108]. It demonstrates a peak of recurrence during the first 

three years and the majority of deaths occur within the first 5 years [109].  

1.2.3  Current Therapies for TNBC 

Systemic chemotherapy remains the first line treatment for TNBC. Among all breast 

cancers, TNBC has the highest response rate to DNA damaging chemotherapy due to high genomic 

instability [110]. Taxanes and anthracyclines are among the most effective chemotherapy options 

for TNBC patients [111]. However, TNBC is the most aggressive subtype and relapses within 3 to 

5 years after chemotherapy [112]. TNBC also has a higher predisposition to metastasize to lung, 

liver and brain, leading to significantly shorter overall survival compared to other subtypes [113]. 

Less than 30% of patients with metastatic disease live past 5 years [114]. 
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1.2.4  BRCAness in TNBC 

BRCA1/2 deleterious mutations are found in 10-20% of TNBC patients according to The 

Cancer Genome Atlas (TCGA) and other registries [115]. The presence of mutations in BRCA1 

and BRCA2 genes increase the risk of breast cancer to up to 70% and is closely associated with 

TNBC [116]. Conversely, 80% of patients who have a BRCA1 mutation are diagnosed with TNBC 

[117]. In addition to BRCA mutant tumors that are defined by having homologous recombination 

deficiencies, recently, a wider subclassification of TNBC tumors is made by defining tumors that 

share phenotypic similarities with BRCA mutant tumors.  This is referred as the BRCAness 

phenotype [117].   

TNBC tumors with wild-type (WT) BRCA genes that exhibit the BRCAness phenotype 

also have deficiencies in the HR pathway. Tumors with the BRCAness phenotype share common 

mutational signatures in their DNA with BRCA mutant tumors [118]. Specifically, having a pattern 

of genome-wide mutation called ‘signature 3’ is closely associated with having the BRCAness 

phenotype in ~1000 different breast cancer tumors [119]. Mutations (either germline or somatic) 

in breast cancer tumor samples with BRCAness phenotype includes DSB repair pathway 

components such as ATM, ATR, PALB2, RAD51C, RAD51D, and CHK2 [120]. Lastly, BRCA1 

promoter methylation in TNBC tumor samples also exhibit BRCAness [121]. 

1.2.5  Evaluation of BRCAness in TNBC 

In order to identify tumors with HR deficiency, various predictive biomarker assays have 

been developed. One of the most widely recognized biomarkers for HR defects measures the cells’ 

ability to form nuclear RAD51 foci. In this assay, freshly acquired breast tumors are irradiated and 
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their ability to form RAD51 foci is quantified. It was shown that tumors with HR deficiency could 

be diagnosed irrespective of whether they have germline BRCA mutations or not. By using RAD51 

foci as an assessment of HR functionality, 50% more HR-defective tumors were identified that 

could benefit from specific DNA repair targeting therapies [122, 123].  A requirement to this 

approach is the need for performing this assay on fresh tumor tissue. Other assays include 

sequencing-based methods. The HRD assay, developed by Myriad Genetics, uses a single-

nucleotide polymorphism (SNP) based profiling system where a high HRD score correlates to 

having a HR defect. Interestingly, in a 2014 study, high HRD scores were seen in tumor samples 

regardless of breast cancer subtype suggesting DNA repair targeting therapies can extend beyond 

the TNBC subtype [121]. Another assay is called HRDetect which is a whole-genome sequencing 

based platform that detects BRCA1 and BRCA2 mutations up to 98.7% accuracy [124]. 

Additionally, a diagnostic test developed by Myriad Genetics called the BRCAnalysis CDx, is the 

first FDA approved approach for metastatic breast cancer patients to identify their BRCA status. 

It uses sequencing and deletion/duplication analyzing methods to determine mutation status of 

BRCA1 and BRCA2 genes. Lastly, a diagnostic test called FoundationOne CDx developed by 

Foundation Medicine is the first of its kind to carry out genomic profiling for all solid tumors. It 

is capable of identifying gene mutations, copy number alterations, structural rearrangements and 

promoter mutations evaluating a total of 341 genes that are associated with cancer [125]. These 

developments in the field of precision medicine open new venues for identifying breast cancer 

patients with deficiencies in specific DNA repair pathways, thus better facilitating the development 

and use of novel small molecule inhibitors that can target the pathways cancer cells use to evade 

conventional therapies (Fig. 7).   
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Figure 6. Potential clinical utility of using biomarkers in triple negative breast cancer (TNBC). 
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1.2.6  PARP inhibitors 

PARPi has been viewed to be a vital strategy for a subset of TNBC patients, ones with HR 

deficiency (HRD). By inhibiting PARP in patients with BRCAness phenotype, DSBs that cannot 

be repaired are anticipated to induce synthetic lethality [126]. A phase III clinical trial called 

OlympiAD tested this idea in metastatic breast cancer [127]. In this study, olaparib, a PARP 

inhibitor, was used as monotherapy and compared with the physician’s choice of chemotherapeutic 

agent in metastatic HER2-negative breast cancer with germline BRCA1/2 mutations. Patients who 

were treated with olaparib had a 2-fold increase in response rate and a longer progression free 

survival (PFS) of ~7 months, as well as lower toxicity. In addition to the OlympiAD study, another 

phase III trial, EMBRACA, compares PARPi (talazoparib) monotherapy with the physician’s 

choice of chemotherapy in metastatic TNBC. This study revealed talazoparib monotherapy to be 

significantly superior in PFS (3 months longer) and overall response rates (ORR) [128]. After these 

results, PARPi was approved for breast cancer patients with BRCA1/2 mutations. 
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(A) Chemical structures of PARP inhibitors currently being pursued in clinical development. (B)

Differences between PARP inhibitors and their mechanisms of actions. T: talazoparib, O: olaparib, 

R: rucaparib, N: niraparib. “>”: more potent, “=”: equally potent. 

Other PARP inhibitors are presently being studied for breast cancer therapy. These are 

veliparib, talazoparib, rucaparib and niraparib. The mechanisms by which they inhibit PARP 

activity and their overall cytotoxicity differ due to their structural differences (Fig. 8). Two 

different mechanisms of action for PARP inhibition exist. One is the catalytic inhibition, via 

inhibitor binding with the catalytic subunit of PARP, thus blocking the transfer ADP-ribose 

moieties to acceptor proteins. The second mode of inhibition stems from trapping PARP on the 

DNA damage site thus preventing the recruitment of essential repair proteins [129]. Talazoparib 

is described as the most specific PARP1 inhibitor in contrast to olaparib which inhibits both 

Figure 7. PARP inhibitors in clinical development. 
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PARP1 and PARP2. Additionally, Talazoparib has the most potent PARP trapping activity, when 

compared with other PARP inhibitors [130].  

Currently, PARPi is also being explored in combination with other treatments for breast 

cancer therapy in clinical trials. These include platinums, taxanes, and DNA repair inhibitors 

(ATM and ATR). The rationale behind this is that by targeting two repair pathways 

simultaneously, otherwise resistant cancer cells with high genomic instability will die. A phase I 

study investigates olaparib in combination with an ATR inhibitor AZD6738 in breast cancer 

patients with BRCA mutations (NCT02264678). This study includes a subset of TNBC patients 

who don’t have BRCA mutations. A phase II study is investigating olaparib in combination with 

a WEE1 (a key regulator of cell cycle progression) inhibitor AZD1775 in TNBC patients 

(NCT03330847). 

1.3 Electrophilic Fatty Acids 

An electrophile is an ion or a molecule that can accept electrons from electron-rich donor 

molecules (nucleophiles) to make a covalent bond. The reaction that takes place to form this 

covalent bond is termed Michael Addition [131].  

The N and N’ are substituents of the nucleophile and R’ is a substituent of the electrophile. R’ is 

usually a ketone but it can also be a nitro group. 

Figure 8. The Michael Addition reaction. 
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In addition to post-translational modifications (PTM) such as phosphorylation, acetylation, 

ubiquitinylation and SUMOylation, electrophiles can react with nucleophiles to induce PTMs. 

Electrophilic fatty acids are such electrophiles. 

1.3.1  Interaction of Electrophiles with Nucleophiles 

Covalent bonds that occur between electrophiles and nucleophiles can be irreversible or 

reversible. These two conditions are based on the Pearson concept of hard and soft acids and bases 

[132]. Hard electrophiles such as formaldehyde react with hard nucleophiles such as amino groups. 

In contrast, soft electrophiles such as electrophilic fatty acids react with soft electrophiles such as 

protein thiols [133]. A soft electrophile is defined by the electrophile having a more diffuse charge 

density. Therefore, the soft-soft interaction of nitroalkenes and protein thiols are reversible in 

nature [134].  

By virtue of their electrophilic nature, fatty acid nitroalkenes mediate PTMs of hyper-

reactive nucleophilic cysteine thiols in proteins as well as other nucleophiles such as glutathione 

(GSH) and imidazolyl (His) residues. These reaction occur via the Michael Addition reaction [135] 

(Fig. 10). 
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The asterisk indicates the carbon that has reduced electron density due to the electron-withdrawing 

nitro group.  

1.3.2  Electrophilic Fatty Acid Formation 

Fatty acids (FAs) are typically 16-22 carbon long hydrocarbon chains with a terminal 

carboxyl group. FAs can be either saturated or unsaturated. Saturated FAs have no double bonds 

whereas unsaturated FAs have at least one double bond. FAs with at least two unsaturated bonds 

are called poly-unsaturated FAs (PUFAs). The most distal carbon in FAs is called the omega (ω) 

carbon. PUFAs are named according to how far away their double bond is from the ω carbon. For 

example, essential PUFAs linoleic acid (LA) and α-linolenic acid (ALA) are omega-6 and omega 

3 PUFAs respectively [136]. These FAs are essential because they cannot be produced within the 

body and must be acquired through diet [136]. PUFAs are oxidized or nitrated through enzymatic 

or non-enzymatic reactions. Fatty acid nitroalkenes or electrophilic fatty acids are endogenously-

detectable products of nitric oxide and nitrite-dependent metabolic and inflammatory reactions 

with unsaturated fatty acids. Nitration of PUFAs result in FAs with double bonds that have high 

electrophilic nature due to the strong electron-withdrawing activity of the nitro group. The 

resulting FA-NO2 in electrophile capable of reacting with nucleophiles to induce PTMs [137]. Of 

Figure 9. Post-translational modification of a protein (nucleophile) by a nitroalkene (electrophile). 
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note, FA-NO2 containing triacylglycerides can be formed via FA-NO2 incorporation into 

triacylglycerides as well as via the direct nitration of esterified unsaturated fatty acids [138]. 

1.3.3  Electrophilic Fatty Acids as Signaling Mediators 

Nitroalkenes have many protein targets in the cell including NF-κB, Keap1/Nrf2, PPARɣ 

and HSF-1, thus modulating protein structure and function and mediating pleiotropic 

cytoprotective and anti-inflammatory signaling responses [139, 140].  

NF-κB is important for proliferation and survival of cells as well as mediating 

inflammatory responses [141]. Nitroalkenes repress NF-κB signaling by inhibiting its DNA 

binding. Nitroalkene 10-nitrooctadec-9-enoic acid (OA-NO2) binds the p65 subunit of NF-κB 

[142]. Keap1/Nrf2 pathway regulates cytoprotective responses to oxidative and electrophilic stress 

[143]. Nitroalkenes react with Keap1 cysteines to regulate this pathway [144]. The nuclear receptor 

PPARɣ regulates lipid homeostasis and adipocyte differentiation [145]. Nitroalkenes bind a 

PPARɣ cysteine residue in the ligand binding domain and act as a nuclear receptor ligand [146]. 

1.3.4  Electrophilic Fatty Acids in TNBC 

Emerging evidence has revealed that triple negative breast cancer cell growth, migration 

and invasion are suppressed by the electrophilic nitro-fatty acid derivative OA-NO2 through 

modulation of NF-κB signaling, while non-tumorigenic breast epithelial cells were resistant to the 

effects of OA-NO2 because of more intact mechanisms for maintaining redox homeostasis 

(increased GSH levels) and increased expression of multi-drug resistance protein-1 (MRP1), an 
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exporter of GS-NO2-OA adducts. In comparison to the nontumorigenic human breast epithelial 

cells MCF-10A and ER+ breast cancer cells MCF-7, OA-NO2 was a more potent inhibitor of 

TNBC cells MDA-MB-231 and MDA-MB-468. [147]. OA-NO2 inhibited NF-κB signaling, by 

alkylating functionally-significant thiols in a) the inhibitor of NF-κB subunit kinase β (IKK β), 

thus limiting downstream IκKα phosphorylation and (b) the NF-κB RelA protein, thus preventing 

DNA binding and promoting RelA polyubiquitination and proteasomal degradation. In addition, 

OA-NO2 inhibited TNBC cell migration and invasion as well as tumor growth in mouse xenografts 

[147]. These studies suggest that OA-NO2 treatment can be exploited therapeutically in TNBC and 

possible other cancers warranting further investigations.  
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2.0 Materials and Methods 

2.1 Reagents and Cell Lines 

HEK 293T, MDA-MB-231, MDA-MB-468, Hs578T and BT-549 cells (American Type 

Culture Collection) were cultured at 37° C with 5% CO2 in Dulbecco’s modified Eagle’s medium 

containing (DMEM) (Gibco) supplemented with 5% FBS (HyClone), 100 units/ml penicillin, 100 

mg/ml streptomycin (Gibco), non-essential amino acids (Gibco) and 2 mM l-glutamine (Gibco). 

Doxorubicin (Selleckchem), cisplatin (Sigma) or olaparib (Selleckchem) were dissolved in DMSO 

or DMF (cisplatin). Nitro-oleic acid (10-octadeca-9-enoic acid) (OA-NO2) and biotinylated OA-

NO2 were synthesized as previously described[142, 148]. Pure OA-NO2 was diluted in DMSO and 

added to cells after solvation in assay media. Relative cell numbers were compared by measuring 

the luminescent signal generated by ATP using the CellTiter-Glo (Promega) assay. Cells were 

plated in a 96-well plate at 5,000 (MDA-MB-231) or 6,600 (BT549 or Hs578T) cells per well. 

Cells were treated with doxorubicin, cisplatin, or olaparib at the indicated concentrations for 72 h 

in the presence or absence of 2 μM OA-NO2, which was replenished every 24 h. 

2.2 OA-NO2

Nitro-oleic acid (10-octadeca-9-enoic acid) (OA-NO2) was synthesized as previously 

described[149, 150]. Biotin-OA-NO2, biotin-SA-NO2, and biotin-OA were synthesized by 

conjugation of OA-NO2 or respective lipids to biotin-poly (ethylene glycol)-amine (Pierce, 
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#21346) as described. Pure OA-NO2 was diluted in DMSO and added to cells after solvation in 

assay media. 

2.3 OA-NO2 in vivo 

Animal use in this study was approved by and conducted according to the guidelines of the 

University of Pittsburgh IACUC. MDA-MB-231 cells (0.5x106) were injected into the mammary 

fat pad (left 4th gland) of 6-wk-old female nude mice in a volume of 20 μL sterile saline. When 

tumors reached an average volume of 100 mm3, mice were randomized into groups and 

administered vehicle (tricaprylin) + 15 mg/kg OA or vehicle + 15 mg/kg OA-NO2 every day by 

gavage (200 μL) for 4 wk. The surgical procedure has been previously described [151].  

2.4 Plasmids 

The direct repeat green fluorescent protein (DR-GFP) reporter and I-SceI pCAGGS 

plasmids were a kind gift from Prof. Maria Jasin [152, 153]. pLVX Neo-RAD51 was cloned by 

PCR amplification of RAD51 with PCR primers incorporating SpeI (5’) and BamHI (3’) 

restrictions sites. The PCR product was then ligated into the corresponding restrictions sites of 

pLVX-Neo (Clonetech) and transformed into DH5α Max efficiency cells (Invitrogen). pLVX Neo 

RAD51 cysteine to serine mutant plasmids (137, 312, or 319) were produced using the 

QuikChange II site-directed mutagenesis kit (Agilent) using pLVX Neo-RAD51 as a template. 
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2.5 Clonogenic Survival Assays 

Cells were trypsinized and seeded onto 6-well plates at a density of approximately 500 

cells per well and incubated at 37˚C with 5% CO2. Cells were incubated in DMEM containing 5% 

FBS with or without increasing concentrations of OA-NO2 (0.1% DMSO final solvent 

concentration) for 1 h prior to irradiation treatment. Next, cells were dosed with 0 or 2 Gy (breast 

cancer cells) or 0 to 8 Gy (MEFs). Media containing OA-NO2 was immediately replenished post-

irradiation. Then, media was exchanged every other day and the cells were fixed (PFA) after 10 

days. Colonies were stained with 1% crystal violet (Sigma) in 10% ethanol and washed with 

distilled water. Quantification of colonies was carried out using ColonyArea plugin (Daniel 

Abankwa, http://www.btk.fi/research/research-groups/abankwa/downloads/) in ImageJ. 

2.6 DSB Repair Assays 

Measurements of HR and NHEJ assays were performed as previously described [152, 154]. 

HR activity was measured by counting GFP-positive cells by flow cytometry at the MWRI flow 

cytometry core using a BD LSRII (BD Biosciences). RAD51 overexpressing cells were generated 

by stable transfection of pLVX RAD51 IRES Neo and selection with geneticin (Invitrogen). 
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2.7 Cell Cycle Analysis 

Propidium iodide (PI) stained DNA content was measured as an indication of cell cycle 

phase in PRDX1-proficient and deficient MDA-MB-231 cells as well as OA-NO2 treated breast 

cancer cells. 106 unsynchronized cells were harvested by trypsinization and following inactivation 

of trypsin, cells were pelleted and washed with ice cold 1xPBS (Gibco). Cells were fixed in 70% 

ethanol by adding ethanol dropwise with swirling and incubated for 20 min at 4˚ C. Cells were 

then centrifuged at 2000 rpm and the supernatant removed. Pellets were washed with ice cold PBS 

then treated with 500 μl RNase A (50ng RNAase/μl) for 15 min at 37˚ C. Next, propidium iodide 

(Sigma) (50 ng PI/ μl) was added and incubated for 30 min at 4˚ C in a dark chamber. Samples 

were later analyzed at the Flow Cytometry Core at MWRI utilizing a BD LSRII (BD). 

2.8 Kinetic DSB Repair Assays 

U2OS cells were prepared as above, but 5 h following compound treatment, cells were 

transferred into the Incucyte Zoom (Essen) live-cell imaging automated fluorescence microscope 

at 37° C with 5% CO2. Cell confluence and green object count per mm2 were determined using 

Incucyte Zoom software. Green object count per field was normalized to cell confluency to correct 

for OA-NO2-induced effects on cell proliferation. 
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2.9 Immunostaining and Imaging 

             To analyze RAD51 foci formation, cells were plated on CultureWell 16-well chambered 

cover glass (MIDSCI) coated with poly-L-lysine (Sigma) at a density of 10,000 cells per well and 

were incubated overnight in 5% FBS media. The next day, cells were treated with OA-NO2 for 1 

h, then irradiated with 5 Gy and then further incubated with OA-NO2 for 6 more hours. Cells were 

later fixed with 10% formalin for 20 min at 4° C and immunostained overnight at 4° C with 

antibodies for RAD51 (H-92) (Santa Cruz) at 1/100 dilution or phosphorylated ɣH2AX (JBW301) 

(EMD Biosciences) at 1/200 dilution. Secondary antibodies for RAD51 (Goat anti-Rabbit Alexa 

Fluor 488) or ɣH2AX (Goat anti-Mouse Alexa Fluor 546) were incubated at 25° C for 1 h (1/2000). 

Z-stack images were acquired using a Nikon A1R confocal microscope with 60x oil objective and

acquisition was done using NIS elements software. 

2.10 Western Blotting 

Cell lysates were prepared in 50 mM Tris, 150 mM NaCl, 1% Triton X-100, 0.5 mM 

EDTA, 0.5 mM EGTA and 10% glycerol supplemented with catalase (30 µg/ml), 100 mM N-

ethylmaleimide (NEM) and protease (Halt protease inhibitors, Fisher Scientific) and phosphatase 

inhibitors (50 mM NaF, 1 mM NaVO4 and 40 mM β-glycerophosphate). Lysates were sonicated 

for 5 min (30 sec pulse/30 sec delay) at 4˚ C, and then centrifuged to pellet insoluble material. 

Laemmli sample buffer (BioRad) supplemented with β-mercaptoethanol was added to 40 µg 

sample and incubated for 5 min at 95˚ C. Protein lysates were separated on 10% tris-glycine gels 

and transferred onto nitrocellulose.  
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2.11 Immunoprecipipation 

One million HEK 293T cells were transiently transfected with Fugene 6 (Promega) and 2 

µg pQCXIP (EV) or FLAG-RAD51 pQCXIP plasmids. After 24 hours cells were irradiated with 

between 0 and 10 Gy. Lysates were prepared as for Western blotting above. Protein concentrations 

were quantified by BCA assay kit (Fisher Scientific). 500 µg of cell lysate was incubated with 10 

µL of acid treated Anti-FLAG M2 Affinity Gel and 400 µL lysis buffer at 25˚ C for 3 h with 

rotation. Tubes containing precipitated proteins were centrifuged and washed four times in lysis 

buffer and once in 1x TBS. Laemmli sample buffer (BioRad) supplemented with β-

mercaptoethanol was added to the sample and incubated for 10 min at 95˚ C, then loaded onto a 

10% tris-glycine gel. 

2.12 Biotinylated OA-NO2 Affinity Capture of RAD51 

HEK 293T were transiently transfected with Fugene 6 (Promega) and 5 μg RAD51 

expressing vectors (wild-type, C312S, or C319S). Cells were treated 24 h later with 5 µM biotin-

OA-NO2 or biotin-SA-NO2 for 1 h in 5% FBS medium. Cells were prepared as above. 

Precipitation of biotinylated OA-NO2 was accomplished with 8 µl of streptavidin agarose beads 

with 1 mg total cell lysates incubated for 16 h at 4° C. Detection of RAD51 was accomplished by 

immunoblot with RAD51 antibody (1:2000) with actin antibody (1:3000) probed as loading 

control. 
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2.13 DNA Binding Assays 

Reactions were performed in black 96-well plates (Greiner) in 50 μL reaction volumes in 

20 mM HEPES pH 7.5, 10 mM MgCl2, 0.25 μM BSA, 2% glycerol, 30 mM NaCl and 4% DMSO. 

Purified RAD51 protein (Abcam) and OA (negative control) or OA-NO2 was pre-incubated for 5 

min at 25 °C. 2 mM ATP and 100 nM 5’-Alexa Fluor 488 ssDNA poly-dT (Integrated DNA 

technologies) were added to the reaction and incubated for 90 min at 37 °C. DNA binding was 

measured using fluorescence polarization (FP) on a Tecan Spark 20M (ex/em, 480 nm/535 nm). 

Fluorescence quenching was detected as above in the absence of RAD51 protein.   

2.14 ɣ-irradiation 

            Experiments were conducted on cells dosed with 0 to 10 Gy utilizing a Gammacell 40 

Exactor ɣ-Irradiator (Best Medical) with a dose rate of 69 R/min. 

2.15 Statistical Analysis 

Data represent the mean ± SEM from 3 independent experiments unless otherwise noted. 

A p value < 0.05 was considered statistically significant. Non-linear curves were generated in 

GraphPad Prism 7.0 (GraphPad Software, La Jolla, CA, USA) for statistical analysis. EC50 values 

and standard error were calculated from three independent experiments utilizing a non-linear dose 

response variable slope model. Significance was tested by one-way ANOVA for multiple groups 
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with Tukey posttest or by t-test when groups were less than three. RAD51 foci number was 

analyzed with ImageJ. Nuclear boundaries were individually identified in more than 50 cells per 

treatment group in three independent experiments. 
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3.0 Impact of OA-NO2 on Triple Negative Breast Cancer Cell Growth as a Single Agent 

and in Combination with DNA Targeted Therapies  

3.1 Effects of OA-NO2 on TNBC DNA Damage in vivo 

Current data indicates that OA-NO2 regulates multiple pathways in TNBC cells that 

contribute to the aggressiveness of this cancer. For example, OA-NO2 inhibits NF-κB signaling, 

by alkylating functionally-significant thiols in a) the inhibitor of NF-κB subunit kinase β (IKK β), 

thus limiting downstream IκKα phosphorylation and (b) the NF-κB RelA protein, thus preventing 

DNA binding and promoting RelA polyubiquitination and proteasomal degradation [155]. NF-κB 

is a group of transcription factors that are essential for stress response in cells. Some of the genes 

that are modulated by NF-κB are involved in the DDR. NF-κB is activated in response to DSB 

inducing cancer therapies cisplatin and IR [156, 157]. This motivated assessing whether OA-NO2 

enhances TNBC DNA damage in vivo. 

MDA-MD-231 cells were implanted into the mammary gland of mice and when tumors 

reached a volume of 100 mm3, mice were treated with 15 mg/kg of the non-electrophilic fatty acid 

oleic acid (OA) or OA-NO2 by gavage for 4 weeks.  
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(A) MDA-MB-231 (MM231) cells (0.5x106) were orthotopically injected into 6-week-old mice

and gavaged with 15 mg/kg OA (black) or OA-NO2 (red) for 4 w when tumors reached a volume 

of 100 mm3. (B) Tumoral ɣH2AX was increased in OA-NO2 treated mice compared to OA control 

mice by immunoblot (n = 6-7 per group). 

Figure 10. OA-NO2 inhibits tumor growth and induces DNA damage in TNBC cells in vivo. 
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             Mice treated with OA-NO2 had significantly decreased tumor growth rates when 

compared to OA treated animals (Fig. 11A). When a DSB occurs, there is a revealing response in 

chromatin which is the phosphorylation of a histone H2A variant called H2AX [158, 159]. 

Phosphorylated H2AX (ɣH2AX) is therefore a part of the DNA damage response and increased 

ɣH2AX reflects increased DNA damage in a cell [160]. Probing tumor levels of the DNA damage 

biomarker ɣH2AX by immunoblot showed that OA-NO2 treated mice generally displayed higher 

levels of ɣH2AX (Fig. 11B) suggesting OA-NO2 treatment directly causes DNA damage in TNBC 

cells in vivo. 

3.2 Effects of OA-NO2 in Combination with Chemotherapeutic Drugs and PARP Inhibition 

on TNBC Cells in vitro 

             The TNBC growth inhibitory effects of OA-NO2 were then evaluated in combination with 

DNA damaging agents. The TNBC cell lines MDA-MB-231, BT-549 and Hs578T were treated 

with OA-NO2 daily for 3 days and relative cell numbers were quantified by measuring the ATP-

dependent luminescent signal generated using Ultra-Glo luciferase with the substrate luciferin. 

The EC50 values for growth inhibition of TNBC cells ranged from 1.98 ± 0.52 µM (Hs578T) to 

3.78 ± 0.48 µM (BT-549), with MDA-MB-231 cells displaying an EC50 value of 3.66 ± 0.14 µM 

(Fig. 12A). We next tested the DNA damaging drugs doxorubicin and cisplatin in combination 

with daily treatment with 2 µM OA-NO2. OA-NO2 enhanced growth inhibition of doxorubicin in 

MDA-MB-231 and Hs578T cells, by 7- and 5-fold, respectively (Fig. 12B). The growth of BT-

549 cells was not affected. Co-treatment of OA-NO2 with cisplatin showed a similar trend for 

MDA-MB-231 and Hs578T cells, displaying increased growth inhibition by 6- and 3-fold, 
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respectively, while growth inhibition of BT-549 cells was suppressed 1.4-fold (Fig. 12C). A subset 

of TNBC cells are sensitive to PARP inhibition and display a BRCAness phenotype in the presence 

of wild-type BRCA1 [161], so the PARP-1 inhibitor olaparib was evaluated to determine if a 

combination treatment with OA-NO2 enhanced potency. MDA-MB-231 (high RAD51 expression, 

P53 mutant, BRCA1 wild-type), Hs578T (low RAD51 expression, P53 mutant, BRCA1 wild-type) 

and BT-549 (low RAD51 expression, P53 mutant, BRCA1 wild-type) cells all displayed enhanced 

growth inhibition when olaparib was combined with OA-NO2 by 5-, 17- and 3-fold, respectively 

(Fig. 12D). Thus, standard TNBC chemotherapeutic drugs as well as targeted PARP-1 inhibition 

exhibited enhanced anti-proliferative effects when co-administered with OA-NO2 in TNBC cells.  
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Figure 11. Antiproliferative effects of OA-NO2 in combination with chemotherapeutic drugs and PARPi. 
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(A) MM231 (red), BT549 (blue) or Hs578T (green) cells were treated with increasing

concentrations of OA-NO2 and relative growth was measured by quantifying luminescent ATP 

levels (CellTiter-Glo). EC50 values indicate average + SEM, n=3. (B-D) MM231 (red), BT549 

(blue) or Hs578T (green) cells were treated with increasing concentrations of doxorubicin, 

cisplatin or olaparib ± OA-NO2 and measured as above. 

3.3 OA-NO2 Induces Heightened ɣH2AX and Sensitizes TNBC Cells to Ionizing Radiation 

(IR) 

The heightened tumor ɣH2AX levels in vivo and sensitization of TNBC cells to DNA 

damaging agents, especially in the context of olaparib-induced responses, led to further exploration 

of DNA damage repair modulation by OA-NO2. Evaluation of nuclear ɣH2AX staining to probe 

for DNA damage of MDA-MB-231 cells in the presence or absence of 5 Gy IR found OA-NO2 to 

significantly increase nuclear ɣH2AX localization in irradiated MDA-MB-231 cells compared to 

vehicle controls indicating increases in DSBs and overall DNA damage (Fig. 13A). Evaluation of 

the DNA damaging effects of OA and OA-NO2 on non-transformed MCF10A and MDA-MB-231 

cells following 5 Gy IR found nuclear ɣH2AX staining was only increased in TNBC cells treated 

with OA-NO2, not MCF10A cells (Fig 13B). 



44 

(A) OA-NO2 increased ɣH2AX (red) in MM231 cells following irradiation with 5 Gy. Merged

samples include DAPI stained nuclei (blue). Cells on 16-well coverslips were dosed with 5 Gy 

then and treated with 5 μM OA-NO2 or vehicle for 6 h prior to IF processing. The average 

percentages of cells with 5 or more foci from confocal z-stacked images are indicated from 0 or 5 

Gy samples + SEM. (B) MCF10A (black) or MDA-MB-231 (MM231) (red) cells on 16-well 

coverslips were dosed with 5 Gy, then treated with 5 μM OA (solid) or OA-NO2 (striped) for 6 h 

prior to IF processing. The ɣH2AX intensity per unit nuclear area of confocal z-stacked images 

are indicated from two experiments + range. 

Figure 12. OA-NO2 induces increased ɣH2AX in irradiated TNBC cells. 
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Increasing concentrations of OA-NO2 also enhanced breast cancer cell death in a clonogenic assay 

following irradiation with 2 Gy IR (Fig. 14A). Cell cycle analysis of MDA-MB-231 cells 

confirmed that no significant changes to the cell cycle occurred. (Fig. 14B). 

(A) Increasing concentrations of OA-NO2 decrease clonogenic survival of TNBC cells following

irradiation with 5 Gy. MM231 cells were dosed with 5 Gy (■), then treated with 0 to 5 μM OANO2 

every other day for 10 days and compared to non-irradiated cells (). EC50 values indicate average 

+ SEM, n=3. (B) OA-NO2 or vehicle treated cells displayed a similar cell cycle profile by flow

cytometric analysis of propidium iodide stained breast cancer cells. 

Figure 13. Clonogenic formation of TNBC cells following OA-NO2 and IR treatment. 
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3.4 Discussion 

It is shown that the ability of OA-NO2 to decrease cancer cell growth is partly due to its 

DNA damage inducing effect by heightening ɣH2AX responses in vivo (Fig. 11). Therefore, it was 

tested whether OA-NO2 can enhance the sensitivity of cancer cells to anti-cancer agents that induce 

DNA damage. The DNA damaging drugs cisplatin (DNA cross-linking agent), doxorubicin (DNA 

topoisomerase II inhibitor) and olaparib (PARP inhibitor) were co-treated with OA-NO2 to test 

potential sensitization of TNBC cells to these drugs [19, 162, 163]. The results indicate that OA-

NO2 inhibits growth of the TNBC cell lines MM231, BT549 and Hs578T to a greater extent when 

co-administered with the clinically-relevant DNA-directed therapeutics doxorubicin, cisplatin or 

olaparib (Fig. 12). IR therapy, a potent DNA damage inducer through DSBs and SSBs, is given to 

most breast cancer patients with stage 1 invasive cancers. It was investigated whether OA-NO2

had any beneficial effects on IR therapy. OA-NO2 amplified the induction of DSB by IR (Fig. 

13A). This suggests that OA-NO2 can be a useful adjuvant for to breast cancer patients who are 

undergoing IR therapy to potentiate cancer cell killing. Additionally, OA-NO2 amplified ɣH2AX 

staining in MM231 cells specifically compared to non-tumorigenic epithelial breast cell line MCF-

10A (Fig. 13B). This implies that such co-treatment of OA-NO2 will have minimal off target 

toxicity to normal cells. Increasing concentrations of OA-NO2 also enhanced breast cancer cell 

death in a clonogenic assay following irradiation with 2 Gy IR (Fig. 14A). This suggests that OA-

NO2 DNA effects are not short-lived and have inhibitory effects on cancer cell colony formation 

over a long period of 8 to 10 days. Combined, these results build a foundation for promising 

combinational regimens involving OA-NO2 and DNA targeting therapies. 
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4.0 Impact of OA-NO2 on Double-Strand Break Repair Pathways 

4.1 OA-NO2 Inhibits Homologous Recombination 

The heightened tumor ɣH2AX levels in vivo and in vitro as well as sensitization of TNBC 

cells to DNA damaging agents, especially in the context of olaparib-induced and IR-induced 

responses, led to further exploration of DNA damage repair modulation by OA-NO2. Cell lines 

comprising machinery to measure four different DSB repair pathway efficiencies were used. These 

fluorescence-based reporter cell lines (DR-GFP for HR, EJ5-GFP for NHEJ, SA-GFP for SSA and 

EJ2-GFP for alt-EJ) were generated by Dr. Jeremy Stark [58]. 

OA-NO2-dependent effects on HR DNA repair were investigated by utilizing a DR-GFP 

reporter assay. This analysis quantifies intracellular recombination of an integrated cDNA cassette 

of two tandem non-fluorescent GFP constructs following introduction of an I-SceI cleavage to the 

system by measuring the fluorescent GFP protein that is produced following successful 

recombination (Fig. 15A) [152]. Daily OA-NO2 treatment of human osteosarcoma U2OS cells 

harboring the DR-GFP construct revealed that after I-SceI transfection, the number of GFP 

positive cells was significantly decreased by 2-fold when compared to native OA or vehicle control 

after 48 hours (Fig. 15B). 



48 

(A) Scheme of the DR-GFP assay. (B) U2OS cells containing the HR reporter construct DR-GFP

were transfected with an I-SceI plasmid and treated with vehicle (black), 5 µM OA (green) or 5 

µM OA-NO2 (red). Negative control cells did not have I-SceI present. Values indicate average 

and error bars represent SEM, n ≥ 3. The number of GFP positive cells were detected by flow 

cytometry at 48 h.   

Figure 14. OA-NO2 inhibits HR in U2OS cells. 
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4.2 OA-NO2 has no Effect on Non-Homologous End Joining 

The impact of OA-NO2 on suppression of DSB repair through both the HR and NHEJ 

pathways was examined by utilizing the EJ5-GFP NHEJ reporter assay, which separates GFP 

cDNA from a transcriptional promoter with a puro gene flanked by two I-SceI cleavage sites (Fig. 

16A) [58]. In contrast to the effects seen by DR-GFP-mediated HR measurements, EJ5-GFP U2OS 

cells showed no effect of OA-NO2 on NHEJ. This was indicated by an absence of changes in the 

number of GFP positive cells following I-SceI cleavage after 48 h by flow cytometric analysis 

(Fig. 16B). 

A novel strategy to measure the kinetics of changes in both HR and NHEJ in live cells 

utilized automated fluorescence microscopy to track the emergence of GFP positive cells over time 

in monolayers, as opposed to making static measurements of detached cells using flow cytometry. 

To account for changes in cell density over time, cell confluency was measured following 

treatment of DR-GFP U2OS cells with vehicle, 5 µM OA or OA-NO2 every 4 hours for 3 days 

(Fig. 17A-B). The emergence of GFP positive cells subsequent to I-SceI-induced cleavage was 

quantified and normalized to cell confluency over time to compare OA-NO2 with OA and 

untreated cells. Daily administration of 5 µM OA-NO2 decreased the number of GFP-positive cells 

by 2-fold over 68 hours when compared to controls (Fig. 17C). In addition, EJ5-GFP U2OS cells 

showed no effect of OA-NO2 on NHEJ indicated by live-cell fluorescence microscopy (Fig. 17D). 
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(A) Structure of the EJ5-GFP assay. (B) U2OS cells containing the HR reporter construct DR-GFP

were transfected with an I-SceI plasmid and treated with vehicle (black), 5 µM OA (green) or 5 

µM OA-NO2 (red). Negative control cells did not have I-SceI present. Values indicate average and 

error bars represent SEM, n ≥ 3. The number of GFP positive cells were detected by flow cytometry 

at 48 hours.   

Figure 15. OA-NO2 does not inhibit NHEJ in U2OS cells. 
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Figure 16. OA-NO2 effects on HR and NHEJ in U2OS cells measured via live cell fluorescence imaging. 

(A-B) U2OS cells containing the HR reporter construct DR-GFP were transfected with an I-SceI 

plasmid and treated with vehicle (gray), 5 μM OA (green) or 5 μM OA-NO2 (red). Negative 

control cells did not have I-SceI present. Average + SEM, n ≥ 3. The number of GFP positive cells 

were detected by flow cytometry at 48 h. U2OS cell proliferation was measured by calculating cell 

confluency from brightfield images using live-cell imaging with the Incucyte Zoom over 68 hours 

at 37ºC with 5% CO2. (C-D) The emergence of GFP positive cells over 68 hours was quantified 
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using live-cell fluorescent microscopy. GFP positive cell counts were normalized to cell 

confluency and compared. Bar: 150 μm. 

4.3 OA-NO2 Inhibits Single Strand Annealing (SSA) and Alternative End Joining (Alt-EJ) 

The impact of OA-NO2 was further studied in two additional DSB repair pathways that 

also depend on DNA end resection like HR, SSA and alt- EJ. Both pathways were tested using 

GFP-based chromosomal reporter assays: SA-GFP and EJ2-GFP measured SSA and alt-EJ, 

respectively. The SA-GFP reporter assay utilizes I-SceI to generate DSBs. The reporter consists 

of the 5’ GFP and SceGFP3’ that have 266 bp homology. Repair occurs when a DNA strand of 

SceGFP3’ is annealed to the complementary strand 5’GFP’. The annealing produces a 2.7 kb 

deletion in the chromosome. HR can also repair SA-GFP but will not restore a functional GFP 

gene, so this reporter is specific to SSA. Similarly, EJ2-GFP produces GFP+ products from alt-EJ 

events. The reporter contains an N-terminal tag expression tag that is fused to a GFP sequence. 

The coding sequence between the tag and GFP is disrupted by an I-SceI site and a DSB repair 

there only produces a functional GFP molecule with an alt-EJ event. Both SSA and alt-EJ are 

inhibited by OA-NO2 in U2OS cells by ~4 fold and ~1.5 fold respectively (Fig 18. A-B). 

Comparing the amount of inhibition among SSA, alt-EJ and HR, OA-NO2 most potently represses 

SSA.  
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(A-B) U2OS cells containing the SSA reporter construct SA-GFP or alt-EJ reporter construct EJ2-

GFP were transfected with an I-SceI plasmid and treated with vehicle (black), 5 μM OA (green) 

or 5 μM OA-NO2 (red). Negative control cells did not have I-SceI present. Average + SEM, n ≥ 

3. The number of GFP positive cells were detected by flow cytometry at 48 h.

Figure 17. OA-NO2 inhibits DSB repair pathways SSA and Alt-EJ. 
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4.4 Discussion 

HR is critical for cancer cell evasion of DNA-targeting therapeutics. In addition, HR is 

more frequently used by cancer cells since it is functional in cell cycle phases S/G2 and cancer 

cells are more frequently in these phases compared to normal cells [164]. On the other hand, NHEJ, 

the other major DSB repair pathway, is mostly inactive in non-replicating cells, making it a less 

active pathway in cancer cells. In support of this, breast cancer cells have elevated HR function 

but no change in NHEJ [165]. Additionally, cisplatin induced DNA crosslinks are ultimately 

repaired by HR and not through NHEJ [166, 167]. Similarly, doxorubicin induced topoisomerase 

II inhibition and olaparib induced PARP inhibition eventually create DNA DSBs that require HR 

for repair. Therefore, complementing current cancer therapies that target DNA with a drug that 

targets the HR pathway but not NHEJ pathway is potentially a very effective strategy to eliminate 

resistant cancer cells with minimal damage to normal cells. Based on fluorescent based cell 

reporter assays evaluating DNA repair, OA-NO2 inhibits HR but not NHEJ (Fig. 15-17). In 

addition to HR inhibition, OA-NO2 also inhibits SSA and alt-EJ (Fig 18). This is particularly 

important because SSA and alt-EJ are proposed to be the backup repair pathways for HR-deficient 

basal-like breast epithelial cancer cells to rely on for the repair of DNA DSBs [168, 169]. RAD51 

inhibition has been shown to upregulate SSA activity in mammalian cells [58]. RAD52, the SSA 

pathway central protein, has been shown to compensate for lack of RAD51 function in BRCA1/2 

deficient cells [60]. Additionally, alt-EJ has also been shown to function as a backup pathway for 

HR through polymerase θ-mediated repair [64].Therefore, blocking only HR in cancer cells may 

not be sufficient as the other DNA DSB repair pathways are likely to compensate for HR 

inhibition. This identifies OA-NO2 as a unique and effective drug to specifically target replicating 

cancer cells that rely on HR, SSA, and alt-EJ to evade cancer therapy. 
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5.0 Inhibition of RAD51 by OA-NO2 

5.1 OA-NO2 Inhibits RAD51 Foci Formation in TNBC Cells 

HR efficiency inhibition of DR-GFP U2OS cells but not NHEJ efficiency led to further 

exploration of post-resection DSB DNA damage repair modulation by OA-NO2. As olaparib 

sensitivity is a hallmark of HR-deficient cells [170], it was evaluated whether OA-NO2 impacted 

DNA repair by targeting RAD51 after the identification of a reactive cysteine that might serve as 

a target of OA-NO2 [171]. To specifically probe DNA double-strand break repair, MDA-MB-231 

cells were challenged with 5 Gy IR and RAD51 foci were quantified using an ImageJ plugin 

developed by the author. IR was used in order to create DSBs in the DNA [20]. Upon IR treatment, 

the percent of cells with positive RAD51 staining went from ~8% up to ~%40. The treatment of 

breast cancer cells with 5 μM OA-NO2 inhibited RAD51 foci formation, as reflected by a) the 

number of cells with more than 5 foci and b) responses of vehicle treated cells following IR (Fig. 

19). 
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OA-NO2 diminished RAD51 foci formation (green) in MM231 cells following irradiation with 5 

Gy. Merged samples include DAPI stained nuclei (blue). Cells on 16-well coverslips were dosed 

with 5 Gy then and treated with 5 μM OA-NO2 or vehicle for 6 h prior to IF processing. The 

average percentages of cells with 5 or more foci from confocal z-stacked images are indicated 

from 0 or 5 Gy samples + SEM. Bar: 10 μm. 

Effects of OA-NO2 on RAD51 were further tested by overexpressing RAD51 in the HR 

reporter cells. HR activity, as measured by the percentage of GFP positive cells relative to OA 

control treatment, was significantly increased in U2OS DR-GFP reporter cells stably 

overexpressing RAD51 treated with 5 µM OA-NO2 in comparison to control reporter cells, 

suggesting a rescue of the HR function (Fig. 20). 

Figure 18. OA-NO2 inhibits RAD51 foci formation. 
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(A) U2OS cells containing the HR reporter construct DR-GFP were stably transfected with a

control or RAD51 overexpression plasmid and protein expression for RAD51 and actin were 

detected by immunoblot. (B) U2OS cells containing the HR reporter construct DR-GFP were 

stably transfected with a control or RAD51 overexpression plasmid and the cells were investigated 

as above with 5 µM OA-NO2 in control (red) or RAD51 overexpressing cells (red striped). 

Figure 19. Overexpression of RAD51 partially rescues HR inhibition by OA-NO2. 
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5.2 OA-NO2 Targets RAD51 Cysteine 319 

Fluorophore adduction of Cys319 disrupts RAD51 filament formation in vitro [172]. 

Moreover, protein structural data (PDB: 1N0W) shows Cys319 is a solvent-exposed nucleophile 

within the RAD51 C-Terminus (Fig. 21A) that is susceptible to reaction with RI-1, a reagent also 

having Michael acceptor qualities [173].  Due to its electrophilic nature, it was hypothesized that 

OA-NO2 would react with nucleophilic RAD51 Cys319. Indeed, biotin-OA-NO2, but not the non-

electrophilic biotin-oleic acid (OA) and biotin-10-nitro-octadecanoic acid (SA-NO2) (Table 2), 

supported affinity precipitation of RAD51 from cell lysates with streptavidin-labeled beads (Fig. 

21B). By comparing RAD51 Cys312Ser or Cys319Ser mutants for reactivity with biotin-OA-NO2, 

it was revealed that there is a preferential reaction of OA-NO2 with Cys319 (Fig. 21C). 

RAD51Cys312Ser and RAD51 WT controls were readily affinity precipitated by biotin-OA-NO2, 

as opposed to RAD51Cys319Ser expressed in mutant cells. Of note, the RAD51-Cys312Ser 

mutant displayed enhanced precipitation of OA-NO2, which may reflect interruption of a disulfide 

bond between RAD51-Cys312 and Cys319 or another intracellular protein that obscures Cys319. 

To define whether OA-NO2 alkylates endogenous RAD51 in TNBC cells, biotin-OA-NO2 was 

added to MDA-MB-231 and MDA-MB-468 cells. Biotin-OA-NO2-RAD51 complex formation 

upon streptavidin precipitation was observed in lysates of both cell lines (Fig. 21D). 
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Table 2. Chemical structures and characteristics of lipids used. 
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Figure 20. OA-NO2 binds to RAD51 at Cys319. 
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(A) The crystal structure of RAD51 (PDB: 1N0W) demonstrates that RAD51 Cys319 is solvent

exposed. (B) OA-NO2 binds RAD51 in vitro. Purified RAD51 protein was incubated with control, 

biotinylated OA, OA-NO2 or SA-NO2 for 1 h and precipitated with streptavidin coated agarose 

and then detected by immunoblot. (C) OA-NO2 binds to RAD51 Cys319 in cells expressing 

RAD51. 293T cells expressing WT or cysteine mutant RAD51 were incubated with biotinylated 

OA-NO2 for 1 h and precipitated and detected. Three independent experiments were quantified 

and analyzed by one-way ANOVA * p<0.05. (D) OA-NO2 binds RAD51 in MM231 or MM468 

cells. Cells were incubated with biotinylated OA-NO2 and then lysates were precipitated with 

streptavidin coated agarose and detected by immunoblot. 

5.3 OA-NO2 Abrogates RAD51-DNA Interaction 

In addition to RAD51 foci inhibition by OA-NO2, measured via immunofluorescence, an 

in vitro DNA binding assay was performed to test whether OA-NO2 can directly inhibit DNA 

binding capability of RAD51. The ability of OA-NO2 to specifically disrupt RAD51 binding from 

DNA was probed by quantifying changes in fluorescence polarization of an Alexa Fluor 488 

conjugated single-stranded oligonucleotide in vitro. RAD51 protein binding to Alexa Fluor 488 

conjugated ssDNA will increase the polarization of light emitted by the florescent substrate (Fig 

22A). OA-NO2, but not OA, decreased the relative polarization of RAD51 in the presence of ATP 

and DNA (Fig. 22B). The inhibition of polarization increase suggests OA-NO2 abrogates RAD51-

DNA interaction. Control experiments found OA and OA-NO2 did not cause non-specific effects 

through fluorophore quenching to decrease fluorescence polarization (Fig. 22C). 
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(A) Schematic explaining DNA binding measurement as a function of fluorescent polarization.

(B) Alexa Fluor 488 conjugated DNA was incubated with purified RAD51, ATP and 5 μM OA

Figure 21. OA-NO2 inhibits RAD51-DNA interaction in an in vitro fluorescent polarization (FP) 

based DNA binding assay. 
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(black), 5 μM OA-NO2 (gray) or 10 μM OA-NO2 (white) and fluorescence polarization was 

quantified and normalized to a control lacking ATP. (C) Alexa Fluor 488 conjugated DNA was 

incubated with ATP and 5 μM OA (black), 5 μM OA-NO2 (gray) or 10 μM OA-NO2 (white) and 

fluorescence polarization was quantified to determine if non-specific fluorophore quenching was 

present. 

           Next, it was investigated whether DNA-bound RAD51 reacts with OA-NO2 by testing an 

ability to decrease FP. This was explored using two conditions. First, OA-NO2 (10 μM) was pre-

incubated with human RAD51 protein (27 μM) for 5 minutes prior to adding Alexa 488 ssDNA 

strand into the mix (Fig 23A). Secondly, OA-NO2 (10 μM) was added to the reaction mix 1 hour 

after RAD51 protein and Alexa 488 ssDNA incubation at 37 °C. Under these conditions, Alexa 

488 ssDNA-RAD51 binding is achieved after 1 hr, as reflected by an increase in FP (Fig 23B). 

After addition of OA-NO2, this interaction is significantly abrogated at 2 hr, as there is a decrease 

of FP (Fig 23B). This suggests that OA-NO2 can access C319 of RAD51 monomers in a filament 

and dissociate RAD51 protein from ssDNA in vitro.  

Overall, these data reveal that OA-NO2 inhibited HR by forming adducts with RAD51 and 

possibly other additional target proteins to enhance sensitivity to DNA-directed cancer therapies 

(Fig. 24).   
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(A) Schematic explaining DNA binding measurement comparing pre-treated and post-treated OA-

NO2 conditions as a function of fluorescent polarization. (B) Alexa Fluor 488 conjugated DNA 

was incubated with purified RAD51, ATP and RAD51 pre-incubated with 10 μM OA (black), 

RAD51 post-incubated with 10 μM OA (dark gray), RAD51 pre-incubated with 10 μM OA-NO2 

(light gray) or RAD51 post-incubated with 10 μM OA-NO2 (white) and fluorescence polarization 

was quantified and normalized to a control lacking ATP.  

Figure 22. OA-NO2 removes RAD51 from DNA in an in vitro FP-based assay. 
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Figure 23. OA-NO2 represses HR and causes genomic instability and death in TNBC cells. 
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5.4 Discussion 

Targeting HR repair pathway proteins using small molecule inhibitors is an active area of 

research. Strategies being explored include targeting the MRN complex comprising MRE11, 

RAD50 and NBS1 as well as the RAD51 protein [174, 175]. Several studies have attempted to 

harness RAD51 inhibition in order to promote killing of cancer cells. Inhibition of RAD51 with 

small molecule inhibitors [e.g., DIDS [176], B02 [96, 177], RI-1 [173] and IBR2 [178] can 

sensitize cancer cells to DNA damaging agents like chemotherapeutics or IR. However, so far, no 

safe small molecule Rad51 inhibitors have progressed to Phase 1/2 trials. For example, RI-1 was 

identified in a high-throughput screen to potentiate RAD51 filament formation and HR activity, 

fortuitously adducting Cys319 [173]. However, RI-1 has multiple electrophilic centers in a 

complex biphenolic morpholino structure, thus inducing either irreversible Michael addition or 

crosslinking leading to incompatibility for in vivo applications due to toxicity. In contrast, OA-

NO2 is a soft electrophile that reacts with soft nucleophiles such as thiols leading via a reversible 

Michael addition. 

RAD51 is a viable drug target. Overexpression of RAD51 has been reported in many types 

of cancer [179]. The elevated expression of RAD51 is positively correlated with breast cancer 

tumor grade and has been identified in several TNBC cell lines and metastatic patient samples [92, 

93]. In BRCA-1 deficient tumors, RAD51 upregulation has been shown to be a mechanism to 

bypass BRCA1 need in response to IR [180]. It was previously reported that OA-NO2 more 

selectively targets TNBC thiols, as opposed to non-tumorigenic breast epithelium, due to the more 

effective mechanisms for maintaining redox homeostasis in normal breast epithelium. The non-

tumorigenic epithelial breast cell line MCF-10A was less sensitive than TNBC cells lines to OA-

NO2 treatment due to higher rates of MRP1-mediated efflux of OA-NO2 [147]. For RAD51 
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filaments to form faithfully, the amino acids that are in parts of the protein where two RAD51 

monomers make contact are deemed to have important conformational roles. The cysteine 319 

(C319) residue in RAD51 is important for filament formation. Modesti et al. studied nucleation 

sites by synthesizing fluorescent human RAD51 proteins [172]. They conjugated Alexa 488 to 

cysteine residues in order to carry out their analyses. When they labelled RAD51 on the C319 

residue with Alexa 488, RAD51 failed to carry out its recombinase activity. This suggests that 

C319 is essential for RAD51 function. Next, another group developed RI-1, a small molecule 

inhibitor of RAD51 and showed that it covalently binds to the RAD51 C319 residue to destabilize 

RAD51 oligomerization [173]. In addition, they also show RAD51 C319S mutant fails to bind 

DNA [98, 173]. Furthermore, the recently published crystal structure of the pre-synaptic RAD51 

filament on ssDNA shows the C319 to be located between two RAD51 monomers, suggesting it 

is located in an important site for oligomerization [181]. This crystal structure also identifies C319 

to be solvent exposed, highlighting its availability for solvent macromolecule interactions. The 

C319 residue in one monomer is surrounded by two positively charged arginine residues (R197 

and R170) marking it is as a candidate to be identified as a hyperreactive cysteine due to increased 

electronegativity. Lastly, C319 is also happens to be near the RAD51 ATP binding site (~14 

angstroms). The aggregated data from the studies identify RAD51 C319 residue to be of functional 

significance. A pymol rendering of this crystal structure is shown in Figure 25. Post-translational 

thiol modification or pharmacological targeting of Cys319 may thus disrupt RAD51 function 

through multiple mechanisms. We have now identified that electrophilic nitroalkenes inhibit 

RAD51 foci formation, bind RAD51 C319 and impair RAD51 binding to ssDNA (Fig. 19-23). 

Thus, the administration of synthetic homologs of endogenously-occurring fatty acid nitroalkenes 

offers a viable option for inactivating RAD51. These results motivate further in vivo model system 
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and clinical studies to determine if endogenously-generated lipid electrophiles and exogenously-

administered synthetic homologs might play a role in modulating DNA repair and other signaling 

responses that would lead to improved treatment of drug-resistant cancers. 

 Figure 24. Crystal structure of pre-synaptic RAD51 filament on single-stranded DNA. 

C319 
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6.0 Pre-Clinical Studies Investigating Combinational Treatments of OA-NO2 and PARP 

Inhibitors in TNBC 

6.1 Talazoparib Inhibits MDA-MB-231 Cell Growth More Potently Than Olaparib in 

Combination With OA-NO2 

In pre-clinical studies, talazoparib (BMN 673) inhibited PARP both in its catalytic subunit 

as well as via PARP trapping mechanism [129, 182, 183]. Talazoparib’s PARP trapping is 100 

times more potent that other PARP inhibitors such as olaparib [184]. In addition to olaparib’s FDA 

approval for BRCA-mutated breast cancer patients after the phase III OlympiAD trial, talazoparib 

was also approved for BRCA-mutated, HER2-negative breast cancer in October 2018 after 

favorable findings that came out of the phase III EMBRACA trial where talazoparib decreased 

risk of disease progression or death by 46% compared to physician’s choice of chemotherapy in 

metastatic breast cancer patients with germline BRCA mutations [185]. Taking these results into 

consideration, synergistic outcomes were explored via in vitro combination treatments involving 

olaparib plus OA-NO2 and talazoparib plus OA-NO2 (Fig 26A, B). Increasing concentrations of 

either vehicle (OA) or OA-NO2 were tested against increasing concentrations of olaparib and 

talazoparib. Next, synergism was evaluated using a median-drug effect analysis method. 

Combination indices (CI) were calculated from growth inhibition curves. The software Calcusyn 

was used to calculate CI to find out whether a combination was synergistic, additive or 

antagonistic. Talazoparib in combination with OA-NO2 displayed greater synergistic growth 

inhibition of MM231 TNBC cells compared to olaparib (Fig 26C). 
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MM231 cells were treated with increasing concentrations of control (A) OA or (B) OA-NO2 and 

relative growth was measured by quantifying luminescent ATP levels (CellTiter-Glo). Error bars 

indicate SEM SEM, n=3. (C) Calcusyn software was used to calculate Chou-Talalay's 

Combination Indices in order to to compare synergistic outcomes of talazoparib and olaparib. Red 

indicates synergism.  

Figure 25. Synergistic growth inhibition of MDA-MB-231 (MM231) cells is obtained when talazoparib is 

combined with OA-NO2. 
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6.2 Talazoparib in Combination with OA-NO2 Reduces Relative Tumor Growth in vivo 

Next, the efficacy of talazoparib plus OA-NO2 was evaluated in vivo using a xenograft 

mouse model. In previous pre-clinical TNBC xenograft mouse models, talazoparib has been 

successfully demonstrated to be efficacious at the concentration of 0.3 mg/kg [186, 187]. This 

concentration was chosen for the combination in vivo study. 15 mg/kg OA-NO2 was chosen based 

on previous favorable tumor growth inhibition experiments with no adverse side effects. MDA-

MD-231 cells were implanted into the mammary gland of mice and when tumors reached a volume 

of 50 mm3, mice were treated with 15 mg/kg OA or 15 mg/kg OA-NO2 in tricapylin plus vehicle 

(5% DMSO, 35% PEG, 65% saline) or 0.3 mg/kg talazoparib for 4 weeks when tumors reached a 

volume of 50 mm3.  (Fig. 27A). Mice treated with talazoparib plus OA-NO2 had significantly 

decreased tumor growth rates when compared to vehicle, PARPi or OA-NO2 in vivo (Fig. 27B).  
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(A) MDA-MB-231 (MM231) cells (106) were orthotopically injected into 6-week-old mice and

gavaged with 15 mg/kg OA or 15 mg/kg OA-NO2 in tricapylin plus vehicle (5% DMSO, 35% 

PEG, 65% saline) or 0.3 mg/kg talazoparib every day for 4 weeks when tumors reached a volume 

of 50 mm3. (n = 7 per group). (B) Multi-variant comparison that uses all the data points to compare 

curves. One the right, the curves are log transform to compare the slopes.  

Figure 26. Talazoparib in combination with OA-NO2 reduces relative tumor growth compared to vehicle, 

PARPi or OA-NO2 in vivo. 
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6.3 Discussion 

PARPi as a targeted therapy is now approved for BRCA-mutated metastatic breast cancer 

with the notion that their tumors have defective HR pathways. However, there are several 

mechanisms whereby BRCA-mutant cells overcome this deficiency and acquire resistance to 

PARPi. Elevated RAD51 levels in TNBC cells lose their sensitivity to PARPi [188]. This provides 

a rationale for targeting other HR components in combination with PARPi, that may confer 

sensitivity to HR-proficient TNBC cells to PARPi. OA-NO2, a potent RAD51 inhibitor, is 

combined with PARPi to test this hypothesis.  

Due to talazoparib being more specific and potent than olaparib, OA-NO2 plus olaparib 

was compared to OA-NO2 plus talazoparib in vitro. OA-NO2 sensitized HR-proficient TNBC cell 

lines to both PARPi drugs olaparib and talazoparib (Fig 26B). This suggests that the BRCAness 

phenotype induced by OA-NO2 via inhibition of HR is a viable strategy to target HR-proficient 

TNBC cells. Additionally, talazoparib in combination with OA-NO2 displayed higher levels of 

synergistic growth inhibition of MM231 TNBC cells compared to olaparib (Fig 26C). Using 

chemicals in in vivo studies often pose toxicity risks. Biological effects seen in in vitro studies 

where tested in an in vivo setting. There were no toxicities induced by OA-NO2 treatment given to 

mice during the combinational therapy experiment involving OA-NO2 and talazoparib. Mice 

treated with talazoparib plus OA-NO2 had significantly decreased tumor growth rates when 

compared to vehicle, PARPi or OA-NO2 in vivo (Fig. 27B). These results suggest that OA-NO2 

can induce BRCAness in the in vivo setting to HR-proficient TNBC mice tumors to sensitize them 

to PARPi. Of note, the clinical administration of intravenous and oral formulations of OA-NO2 

(IV IND, 122583; oral IND, 124524) is safe, having cleared multiple Phase I and drug-drug 
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interaction studies, with an oral formulation now in multi-center Phase II trials for treating chronic 

inflammatory-related diseases.  
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7.0 Testing Other Nitro-Fatty Acid Derivatives 

7.1 Identifying Other Nitroalkenes to be Investigated 

OA-NO2 is electrophilic in nature due to the nitro group (-NO2) on its double bond that is 

between C9 and C10. Therefore, the Michael reaction that takes place between the electrophilic 

carbon and biological nucleophiles such as thiols is 10 carbons away from the carboxyl group. In 

collaboration with computational biologists from the University of Pittsburgh, the RAD51 crystal 

structure was analyzed to investigate how well the OA-NO2 fits into the pocket where C319 is 

located. It was hypothesized that a nitro-fatty acid (FA-NO2) where the double bond is positioned 

closer to the carboxylate should yield a more rigid binding to the RAD51 monomer. A library of 

22 unique alkyl nitroalkenes, where the nitroalkene substituent is positioned at varying positions 

along an acyl chain was screened, with 4 candidate derivatives were selected: 3 having double 

bonds positioned closer to the carboxylate and 1 having its double bond farther away from C10 

(Table 3). It was hypothesized that NFA12, NFA8 and NFA5 having their double bonds at C5, C7 

and C8 respectively would be more potent RAD51 inhibitors whereas NFA21 with the nitroalkene 

at C14 would be a less potent inhibitor of RAD51 as compared to OA-NO2. 
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7.2 The Effects of Nitroalkene Derivatives on TNBC Cell Growth 

The impact of nitroalkene derivatives that have the electrophilic nitroalkene at different 

positions along an acyl was investigated for an ability to inhibit cell proliferation of the TNBC cell 

line MDA-MB-231. Increasing concentrations of OA-NO2 were compared to increasing 

concentrations of NFA5, NFA8, NFA12 and NFA21 in a clonogenic assay where OA was the 

negative control. NFA5, NFA8, and NFA12 (IC50 values 0.55 μM, 0.49 μM, 0.58 μM 

respectively) enhanced breast cancer cell death more potently than OA-NO2 (IC50 value of 1.5 

μM). In contrast, there was not a significant difference in potency of cell growth inhibition between 

NFA21 (IC50 value of 1.12 μM) and OA-NO2. Compared with OA-NO2, These results suggest 

that if the electrophilic carbon is positioned vicinal to the carboxylate, nitroalkenes become more 

potent inhibitors of TNBC cell growth. 

Table 3. Chemical structures of additional electrophilic nitro-fatty acid derivatives tested against TNBC cells. 
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(A) Increasing concentrations of OA-NO2, NFA-5, NFA-8, NFA-12 and NFA-21 decrease

clonogenic survival of TNBC cells. MM231 cells were treated with 0 to 5 μM nitroalkenes every 

day for 10 days and compared with each other. IC50 values indicate average + SEM, n=3. 

Figure 27. Clonogenic outgrowth comparison of MM231 cells treated with increasing concentrations of nitro-

fatty acid derivaties. 



78 

7.3 The Effects of Nitroalkene Derivatives on HR Efficiency 

NO2-FA effects on HR DNA repair was investigated by utilizing a DR-GFP reporter assay. 

This analysis quantifies intracellular recombination of an integrated cDNA cassette of two tandem 

non-fluorescent GFP constructs following introduction of an I-SceI cleavage to the system by 

measuring the fluorescent GFP protein that is produced following successful recombination [152]. 

Daily 1 μM NFA8 treatment of U2OS cells harboring the DR-GFP construct revealed that after I-

SceI transfection, the number of GFP positive cells was decreased by 5-fold when compared to 1 

μM OA-NO2 after 48 hours (Fig. 29A-B). The concentration of 1 μM was picked due to the toxicity 

of the NFA8 to cells at higher concentrations. 
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(A-B) U2OS cells containing the HR reporter construct DR-GFP were transfected with an I-SceI 

plasmid and treated with vehicle (black), 5 µM OA (green) or 5 µM OA-NO2 (red). Negative 

control cells did not have I-SceI present. Values indicate average and error bars represent SEM, n 

≥ 3. The number of GFP positive cells were detected by flow cytometry at 48 h.  

Figure 28. HR inhibition by NFA-8 and NFA-5 are compared to HR inhibition by OA-NO2. 
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7.4 Discussion 

Most small molecule inhibitors that are developed pre-clinically fail in the clinic for two 

reasons. They either do not work or they are too toxic at the doses required for them to be 

administered. Therefore, it is critical to test structurally similar drugs in the pre-clinical setting to 

identify potentially more potent and specific inhibitors of druggable targets. This study shows that 

as the electrophilic carbon gets closer to the carboxyl group, the potency at which the FA-NO2

derivatives inhibit TNBC cell growth increases. This can also be described as the derivatives that 

have a longer acyl chain between the electrophilic nitroalkene and the omega terminus of the fatty 

acid are more potent inhibitors of TNBC cell growth. The clonogenic assay results correlate with 

the DR-GFP assay results where the same nitroalkenes were able to inhibit HR efficiency at greater 

potencies than the ones that had their electrophilic carbon closer to the omega end of the fatty 

acids. These favorable results could be due to the omega end acyl chains’ ability to stabilize the 

nitroalkenes’ binding on their nucleophile targets such as the RAD51 C319. These results suggest 

that the location of the electrophilic carbon on a fatty acid in respect to how far they are from the 

carboxylate as well as the omega terminus affect an ability to interact with their targets. Knowing 

the pleiotropic nature of these compounds, this opens a new venue for developing drugs to favor 

targets of interest within the cell. For example, OA-NO2 induces angiogenesis under hypoxic 

conditions via upregulation of HIF-1α [189]. This would not be a preferable off-target effect in the 

cancer setting. Therefore, it would be useful to test compound NFA-8 and other derivatives’ 

specificity on targets such as HIF-1α to test if the modifications introduced to OA-NO2 favor 

cancer treatment settings.   
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8.0 Conclusions and Future Directions 

8.1 Conclusions 

Breast cancer is the most common type of cancer in females [190]. TNBC, generally 

defined by tumors lacking expression of estrogen receptor (ER), progesterone receptor (PR) 

accounting for 15-20% of all breast cancers [109]. In contrast to other subtypes, there is a lack of 

approved targeted therapy available in TNBC treatment leaving systemic chemotherapy as the first 

line of therapy. Most TNBC patients ultimately develop resistance to chemotherapy which results 

in worse clinical outcomes and more aggressive tumor behavior compared to other subtypes [191, 

192]. There is an urgent need for novel approaches to treating TNBC. A viable option is to discover 

drugs that can confer sensitization to the currently used DNA damaging therapeutics. 

There has been recent progress in developing targeted therapies for TNBC. One such 

approach is targeting PARP1 [193]. It has been found that ~20% of TNBC tumors have either a 

germline or somatic BRCA mutation which is the subset of patients hypothesized to have 

sensitivity to PARP inhibitors [115]. In addition to BRCA mutants, tumors with defects in other 

components of the HR pathway have been described to have the “BRCAness” phenotype that can 

also respond to PARP inhibition [194]. This led to the development of the idea of a 

“pharmacologically induced” BRCAness phenotype in HR-proficient tumors using novel 

therapeutics [195].   

Fatty acid nitroalkenes are endogenously produced products of nitric oxide- and nitrite-

dependent nitration of unsaturated fatty acids. By virtue of kinetically rapid and reversible Michael 

addition, fatty acid nitroalkenes will mediate the PTM of susceptible cysteine residues of proteins, 
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in some cases modifying protein function and inducing signaling responses via pleiotropic 

mechanisms [139, 140, 148, 196]. This dissertation discusses the potential of the nitroalkene OA-

NO2 as a drug to pharmacologically induce BRCAness in HR-positive, BRCA wildtype TNBC to 

confer sensitivity to PARP inhibition.   

In Chapter 3, the impact of OA-NO2 on the proliferation of TNBC cells was evaluated as 

both a single agent and when in combination with DNA-targeted cancer therapies. In an orthotopic 

xenograft mouse model, OA-NO2 reduced tumor growth and induced ɣH2AX staining indicating 

DNA damaging capabilities. In vitro, OA-NO2 was co-administered with clinically-relevant DNA-

directed therapeutics doxorubicin, cisplatin or olaparib conferring sensitivity in three TNBC cell 

lines MM231, BT549 and Hs578T in an ATP based 3-day cell survival assay. Furthermore, OA-

NO2 sensitized MM231 cells to IR therapy that was shown by both increased ɣH2AX staining and 

by inhibiting cell proliferation in a clonogenic outgrowth assay. In aggregate, OA-NO2 displayed 

reduced TNBC tumor cell growth, induced DNA damage via ɣH2AX and inhibited cell 

proliferation in vitro of three TNBC cell lines in combination with DNA-targeting therapies 

doxorubicin, cisplatin, olaparib or IR. 

In Chapter 4, the impact of OA-NO2 on DSB repair pathways was explored. Based on 

fluorescent based cell reporter assays evaluating DNA repair, OA-NO2 was shown to inhibit post 

DNA resection DSB repair pathways HR, SSA, and alt-EJ but not NHEJ. These results reveal that 

OA-NO2 is a viable candidate for inducing BRCAness in HR-proficient TNBC cells.  

In Chapter 5, the mechanism by which OA-NO2 blocks HR was explored. RAD51, being 

the central recombinase protein for HR and having a previously identified cysteine with a 

functional role was tested. Indeed, TNBC cells that were treated with IR to induce RAD51 foci 

using RAD51 immunofluorescence. This recruitment of IR mediated RAD51 foci was inhibited 
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by co-treatment with OA-NO2. This led to DR-GFP reporter assay studies where overexpression 

of RAD51 in U2OS cells partially rescued HR inhibitory effects of OA-NO2. Next, OA-NO2

interaction with human RAD1 protein was shown via affinity-precipitation of RAD51 by biotin-

OA-NO2 in 293T cells and subsequently in TNBC cells MM231 and MM468. By showing no 

reactions of non-electrophilic control biotinylated OA or SA-NO2, it was deduced that the 

electrophilic nature of this fatty acid nitroalkene was required for RAD51 binding. This interaction 

was Cys319 specific due to abrogation of this interaction in C319S mutant RAD51 protein but not 

with C312S mutant RAD51 protein. Furthermore, the impact of OA-NO2 on RAD51 and ssDNA 

binding was evaluated using an FP based assay. With increasing concentrations of OA-NO2, 

relative polarization signal was reduced in the reaction mix containing Alexa 488 ssDNA and 

human RAD51 protein, indicating inhibitory effect of OA-NO2 on RAD51 DNA binding in vitro. 

Taken together, these results provide evidence that the inhibition of RAD51 is achieved by OA-

NO2 through direct physical interaction between RAD51 C319 residue and OA-NO2 to repress the 

HR pathway. 

In chapter 6, the effects of combination treatments of OA-NO2 with PARP inhibitors were 

explored both in vitro and in vivo. In an in vitro ATP-based cell survival assay, talazoparib in 

combination with OA-NO2 displayed higher levels of synergistic growth inhibition of MM231 

compared to olaparib. In an orthotopic mouse xenograft model where TNBC cell line MM231 was 

used, talazoparib in combination with OA-NO2 reduced relative tumor growth compared to 

vehicle, PARPi or OA-NO2 in vivo. 

In chapter 7 of this dissertation, the effects of nitroalkene substituents at different positions 

along the fatty acid chain were investigated for an ability to inhibit TNBC cell growth and HR 

efficiency. The derivatives that had the electrophilic carbon closer to the carboxylate, NFA5, 
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NFA8 and NFA12, had lower IC50 values compared to OA-NO2 whereas the nitroalkene derivate 

NFA21 that had the electrophilic carbon at the omega end of the fatty acid had an IC50 value 

comparable to the IC50 value of OA-NO2. In addition, the degree of HR efficiency inhibition by 

NFA8 was 5-fold higher compared to OA-NO2 in U2OS cells. 

Even though PARPi is a promising therapeutic approach for breast cancer patients, there 

are important limitations. First, only a small subset of patients benefit from this treatment, the ones 

that have BRCA mutations. Second, patients reportedly acquire resistant mechanisms such as 

elevated RAD51 levels, acquiring genetic reversion of BRCA1 and BRCA2, and inactivating the 

p53-binding protein 1 (53BP1). These resistance mechanisms converge on re-establishing 

functional HR, often identified with formation of RAD51 foci. Additionally, usage of high 

concentrations of PARPi as a monotherapy can be limited by toxicities and prevent maximal 

clinical benefit [197]. In summary, this dissertation provides a basis for OA-NO2 use to 

pharmacologically induce BRCAness, thus representing a viable treatment strategy for all TNBC 

patients who are HR-proficient either inherently or through resistance mechanisms.   

8.2 Future Directions 

When it comes to DSB repair, OA-NO2 does not only inhibit HR, it also inhibits SSA and 

alt-EJ but has no effect on NHEJ. Interestingly, SSA increases in cells where RAD51 is mutated 

or knocked down [198, 199]. In addition, RAD51 protein is not required for SSA pathway where 

RAD52 is the central protein [200]. This suggests that the inhibition of SSA by OA-NO2 is through 

an interaction independent of RAD51. Since OA-NO2 only inhibits post-resection DSB repair 

pathways, additional possible targets of OA-NO2 are downstream of DSB resection. Future 
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experiments should include defining DNA repair proteins targeted by nitroalkenes, via mass 

spectrometry (MS) analysis of TNBC cell protein adducts with nitroalkenes (Appendix A). 

Additionally, immunofluorescence experiments are underway to identify whether RAD51  and its 

inhibition has an impact on nuclear localization of DSB repair proteins such as 53BP1, BRCA1, 

BRCA2, CtIP, XPF and NBS1.  

For future in vivo studies, rather than only using the caliper tool to measure tumor volume, 

the IVIS Spectrum in vivo imaging system should be used to perform bioluminescence imaging 

for measuring tumor volume and monitor disease progression. TNBC cell lines with luciferase 

transfection can then be used to distinguish bioluminescence. One of the advantages of using 

bioluminescent imaging for tumor growth is that the treatment can start at an earlier time point 

therefore being potentially more effective and more clinically relevant. With caliper 

measurements, tumors must be at least 50 mm3 for precise measurements. Additionally, OA-NO2

plus PARPi should be investigated in additional in vivo mouse models with attention to dose-

response relationships. Patient-derived xenografts (PDX) can have additional and more applicable 

results for the clinic. As opposed to cell lines such as MDA-MB-231 that were utilized in the 

xenograft model, PDX models have tumors that are derived from primary human tumors and 

represent many important features of the human disease such as growth kinetics, therapy responses 

and metastatic capabilities [201, 202]. Specifically, tumors with known HR defects such as lack 

of RAD51 foci should be used in addition to HR-proficient tumors in these PDX studies and their 

sensitivity to OA-NO2 will be compared to acquire additional pre-clinical results [203].  

Finally, OA-NO2 and its combinatorial therapeutic effects with PARPi are currently being 

evaluated for ovarian cancer. PARP inhibitors olaparib and rucaparib acquired Food and Drug 

Administration (FDA) approvals for treatment of BRCA-associated ovarian cancer in 2014 and 
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2016, respectively [204-207]. Additionally, niraparib, olaparib and rucaparib have received FDA 

approval as maintenance therapy post-platinum-base chemotherapy [208-214]. Although PARPi 

is gaining significant traction for ovarian cancer therapy, about 50% of the patients are insensitive 

due to resistance mechanisms heightening the need for additional interventions [215]. OA-NO2 in 

combination with PARPi is thus a promising therapeutic solution for PARPi insensitive ovarian 

cancer patients. 
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Appendix – List of Potential OA-NO2 Targets in DNA Repair Pathways 
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