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SYNTHARCH: INTERACTIVE IMAGE SEARCH WITH

ATTRIBUTE-CONDITIONED SYNTHESIS

Zac Yu, BPhil

University of Pittsburgh, 2019

The use of interactive systems has been proposed and found to be a promising approach

for content-based image retrieval, the task of retrieving a specific image from a database based

on its content. These systems allow the user to refine the set of results iteratively until the

target is reached. In order to proceed with the search efficiently, conventional methods rely on

some shared knowledge between the user and the system, such as semantic visual attributes of

the images. Those approaches demand the images to be semantically labeled and introduce

a new semantic gap between the two parties’ understanding. In my thesis, I explore an

alternative approach to interactive image search where feedback is elicited exclusively in

visual forms, therefore eliminating the semantic gap and allowing for a generalized version

of the method to operate on unlabeled databases.

Thanks to the recent advancements in generative adversarial networks, we can now gener-

ate realistic images of certain controlled characteristics and use a multidimensional attribute

space learned from an image database to condition image synthesis. I present Syntharch, a

novel interactive image search approach which uses synthesized images as options instead of

textual questions to gain information on the relative attribute values of the target image.

For each iteration of the search, rather than asking the user to make an attribute-value com-

parison in words, Syntharch generates a pair of options (synthesized images) which varies

only in one attribute and let the user select the option that is more visually similar to the

target.

I then demonstrate that using synthesized images rather than real images retrieved from
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the database as feedback options, Syntharch causes less confusion to the user. Further, I

establish that the specific search method I propose performs similarly or better in comparison

to the conventional approach.

Overall, my thesis presents a new approach of interactive image search, proposes a specific

implementation following that approach, and validates the hypotheses that guided the search

approach as well as the implementation choices.

Keywords: Content-Based Image Retrieval (CBIR), Interactive Image Search, Generative

Adversarial Network (GAN), Image Synthesis, Image Editing, Computer Vision, Human-

Computer Interaction.
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1.0 INTRODUCTION

In recent years, the rapidly growing volume of searchable images calls for more and

more efficient methods to retrieve one target image from a large pool of images. The task

has been formalized as content-based image retrieval (CBIR) and the techniques have been

implemented as applications across multiple domains, including web image search [18, 3], e-

commerce [31, 44], health care [10, 43], etc. The search focuses on the visual content rather

than textual metadata such as labels, description, or the context; however, the search query

generated by the user usually takes a textual form. Therefore, the challenge of the task is

to establish a mapping between the user’s high-level concept and the machine’s low-level

representation of the image.

On the other hand, when a large number of similar images are present in the database,

more fine-grained queries are needed in order to reach the target image. A classical approach

for this refining process is to allow the user to interact with the retrieval system in order to

gain additional information regarding the target image iteratively [35]. For each iteration of

the interactive search, the system needs to accept some form of feedback, and its efficiency

is still hindered by the challenge of the CBIR task discussed in the previous paragraph.

Relative attributes can help solve this challenge by transforming the machine’s low-level

image representation to high-level semantic attributes which can be expressed in textual form

and understood easily by the user [23, 15, 16]. In particular, the user can provide feedback

on how some attribute of an image differs from that of the target image. However, this

approach introduces the burden for the system to understand high-level semantic attributes

known to the user. The two immediate drawbacks are that (1) in order for the system to

distinguish between semantic attributes, we will need to manually pick the attributes and

let the system learn to classify them under some form of supervision ahead of time, and that
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I want to find
something
like this ...

Search User Syntharch System

(start search)

Is it more like                or                ?

 (select)

Is it more like                or                ?

Initialize

Synthesize
     changing y1

I need to
refine the
attribute
space Y.

Re-rank
Update space

Synthesize
     changing y1

Search continues...

Figure 1: Syntharch elicits attribute feedback by synthesizing pairs of options and then uses

user responses to re-rank images in the database and to refine the search space.

(2) the verbal representations of the attributes (e.g. how “ornamental” and “formal” a piece

of apparel is) can be ambiguous and might vary among users and cause confusions.

1.1 PROPOSED SYSTEM

To address these challenges of interactive image search, I propose Syntharch, a new way

to close the semantic gap using visual-only feedback on high-level attributes. In Syntharch,

given a database of images with relative attributes, we can learn a ranker to produce decor-

related and normalized attribute vectors in a multidimensional space Y. Then, using a

generator learned during the same session, each attribute vector, along with a latent noise

vector, can be transformed into an image which preserves all the visual features of the origi-

nal image. Once the attribute space and the generator are learned, we will be able to proceed

with the interactive search and use synthesized images produced by the generator as options

to gain relevance feedback and to approach to the target image in the attribute space. As
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shown in Figure 1, synthesized images that differ in attribute values are presented to the

user as options. When the user makes a selection that one option is closer to their target

than another, the system can then incorporate that feedback, re-rank the images, and pos-

sibly continue with more questions. Syntharch allows universal image search independent

of the user’s understanding of the attributes. It further opens the potential for this inter-

active image search approach to operate on unlabeled databases, given a method to learn

discriminative relative attributes in an unsupervised fashion.

1.2 THESIS STATEMENT

This thesis explores the usage of visual feedback options for interactive image search and

evaluates the hypothesis that image synthesis and range searching can be used to improve

the search accuracy.

1.3 OUTLINE

This chapter discusses the status quo of interactive search approach for the CBIR task,

highlights the major challenges, and offers an overview of the thesis.

Chapter 2 provides a more comprehensive review of various tasks and methods relevant

to this work and previous literature that contribute to the proposed approach.

Chapter 3 presents Syntharch, a novel interactive image search approach, expounds on

the design of its system, and illustrates its changes over previous systems.

Chapter 4 details the experiments to evaluate the changes introduced in Syntharch and

to validate if they indeed facilitate the search process.

Chapter 5 reviews the limitations of the system, offers potential future improvements,

and summarizes the thesis work.
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2.0 RELATED WORK

2.1 INTERACTIVE IMAGE SEARCH

The image search system I propose is an interactive system, meaning that instead of

providing one fixed set of results given a search query, the system allows for user interactions

to refine the results, improving the accuracy of the search and correcting faulty assumptions

over time. This idea has been studied for over two decades and is a popular approach for

the content-based image retrieval task [34, 4, 35]. Early approaches, most notably those

adopted by web image search engines, utilize low-level features such as color, dimension, and

shape as cues for the image content [34, 32, 18]. In recent years, relevance feedback has been

shown to be more effective and accommodating to high-level concepts [29, 4, 5, 2, 16, 42].

By incorporating relevance feedback, search systems can iteratively gain information on the

target image and approach to it.

2.2 ATTRIBUTE-BASED SEARCH

Relative attributes are used to initialize the search with a random distribution and to

facilitate the interactive search by allowing comparative feedback [33]. For example, instead

of providing binary feedback of whether some given reference is relevant or not, one can

express their target image as being “more ornamental” or “less formal” than that reference

[16]. In Attribute Pivots [15], Kovashka and Grauman proposed searching with a binary

search tree for each relative attribute. Recently, there have also been explorations with

a larger variety of feedback forms. Murrugarra-Llerena and Kovashka explored free-form
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attribute feedback which allows the user to pick both the attribute and the reference image

when making a comparison [21]. They also experimented with a visual form of feedback,

specifically, requesting the user to draw a sketch of the target. However, this visual feedback

form does not use the image attribute data, and can only be used as a supplemental method.

Guo, et al. proposed converting the search interactions into a dialog between the user and

the search system, accepting feedback in natural language [7]. While using relative attributes

to elicit user feedback has been a popular approach, all previous work relying on semantic

visual attributes uses some textual form of feedback, in closed-form, free-form, or natural

language. My approach with Syntharch expresses relative attributes solely in visual forms.

2.3 CONDITIONAL IMAGE SYNTHESIS

Recently, synthesis of realistic images has been greatly empowered by deep generative

models including variational autoencoders (VAE) [17, 36], introduced by Kingma and Welling

in 2013 [13], and generative adversarial networks (GAN) [20, 9, 30], proposed by Goodfellow,

et al. in 2014 [6]. In 2015, Radford et al. introduced the class of deep convolutional generative

adversarial networks (DCGAN) [27], which are capable of synthesizing highly compelling and

detailed images. Meanwhile, conditional generative networks (CGAN) enable modulation of

the output image based on parameters including text [20], images [9, 11], and attribute val-

ues [36, 19, 12, 30, 40]. In 2016, Yan et al. presented Attribute2Image [36] which formulates

the conditional image generation problem and suggests the approach of using a variational

auto-encoder to estimate the posterior distributions of the disentangled foreground and back-

ground image to generate the composite full image. Then in 2017, Lample et al. presented the

Fader network [19], incorporating an attribute encoder at training time to allow generating

variances of an image with controlled attribute values. Other approaches such as CFGAN [12]

and RankCGAN [30] rely on training adversarial networks and using a conditional vector as

an additional input of the generator to control the attributes. In Syntharch, the conditional

image synthesis module based on RankCGAN is integrated into a preprocessing module to

construct a multidimensional attribute space for image synthesis.

5



2.4 IMAGE EDITING

The task of image editing is an extension to conditional image synthesis with the capa-

bility to “invert” the synthesis process. VAE naturally comes with an encoder (a variational

inference network) that can be used to estimate the noise vector in some latent representation

space. To control the synthesis result, we can simply modulate the noise vector accordingly.

GAN, as proposed originally [6] by Goodfellow et al. lacks the capability to project real im-

ages onto the latent space for reconstruction despite having advantages in generating clearer

and more realistic images. To enable GAN for image editing, researchers have built encoders

on top of the GAN architecture for tasks such as disentangling latent factors of 3D view

synthesis [37] and text to image synthesis [28]. In 2016, Perarnau et al. presented Invertible

Conditional GAN (IcGAN) [25], an in-depth analysis of using encoders to inverse the map-

ping of deep CGANs. Building on top of a conditional DCGAN, they introduced encoder

networks that convert images to latent variables, trained by random datasets created with

the generator. The encoders therefore allow reconstruction and modification of real images.

In Syntharch, the encoder I built for recovering the latent noise vector and manipulating

image attribute values is based on the network proposed in IcGAN.
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3.0 APPROACH

I introduce Syntharch (Synthesis + Search), an interactive image search system which

leverages conditional image synthesis for collecting more informative feedback. As shown

in Figure 2, the system comprises two modules: a preprocessing module that performs a

two-stage training for every image database, and a search module that interacts with a user

who wants to retrieve an image from a preprocessed database. In Section 3.1, I explain my

method to train the generator as the first stage of the preprocessing module. In Section 3.2,

I present the second stage of the module, training an encoder which maps every given image

to an estimated representation in the latent space. Section 3.3 introduces the search module

and explains how it produces the questions. And finally, I talk about how the search module

ranks the images and outputs the search results in Section 3.4.

Train

Image
Database

Preprocessing
Module Search Module

Generator
Ranker

Discriminator

Training 
Stage 1

Training 
Stage 2 Encoder

Produce questions

Re-ranking Images

Syntharch
Users

Questions
(Image Options)

Relevance 
Feedback

Figure 2: Syntharch preprocesses each image database with a two-stage training, which

enables the interactive search.
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3.1 GENERATOR NETWORKS

The generator networks used in this thesis is adopted from RankCGAN [30], which is a

combination of a conditional GAN (CGAN) and a RankNet [1]. In this design, the genera-

tor, the ranker, and the discriminator are trained simultaneously, and they become crucial

components of the Syntharch system.

3.1.1 Conditional GAN

The CGAN of the preprocessing module is composed of two neural networks, a generator

G(z, y) which takes in a latent noise vector z with an attribute vector y and outputs a

synthesized image, and a discriminator D(x) which takes in an image x and outputs the

likelihood of the image x being real (i.e. not artificially synthesized).

At training time, the goal of the generator is to approximate the distribution of the image

dataset pdataset in order to pass the discriminator whereas the goal of the discriminator is to

distinguish between images from the dataset distribution (i.e. real images) and those that

are not (i.e. fake, or synthesized images). The objective of the training of a conventional

CGAN is to minimize the binary cross-entropy (BCE) loss, and can be formulated as

min
G

max
D

Ex,yvpdataset [logD(x, y)] + Ezvpz ,y′vpy [log(1−D(G(z, y′)), y′)]. (3.1)

Note that in the RankCGAN network, the attribute vector y is not an input of the discrim-

inator. Instead, the ordering of y is regulated by a separate ranker network, which will be

expounded in Section 3.1.2.

As shown in Figure 3, for the generator network G, the latent vector z v N (0, I) has a

length of 100 and the length of the attribute vector y v U(−1, 1) equals to the number of

attributes in the image database. In practice, the concatenation of the two vectors serves as

the input of the network. G has four hidden layers in total, each formed by a full convolution

(transposed convolution) followed by batch normalization and the ReLU. The output layer,

a three-channel image of dimension 64 by 64, is formed by tanh after a full convolution.

Figure 4 shows the discriminator network which instead takes in an image and makes a

prediction indicating if the input image is real. Similar to the generator, D also has four

8



z

y

100

# of
attri-
butes

4

4

4 x 4 x 512
(BN, ReLu)

Full conv 1

Full conv 2
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4

4

16 x 16 x 128
(BN, ReLu)

Full conv 3

32 x 32 x 64
(BN, ReLu)

4

4

Full conv 4

4
4

64 x 64 x 3
(tanh)

Full conv 5

Figure 3: The architecture of the generator network.

4
4

64 x 64 x 3

4

4

4 x 4 x 512
(BN, LeakyReLu)

Conv 1

Conv 2
8 x 8 x 256

(BN, LeakyReLu)

Conv 3 Conv 4

32 x 32 x 64
(BN, LeakyReLu)

4

4

4

4

16 x 16 x 128
(BN, LeakyReLu)

1
(Sigmoid)

Conv 5

Figure 4: The architecture of the discriminator network.
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hidden layers. However, they are results of regular convolutions applied with leaky ReLU.

The output layer of D is a single scalar in (0, 1) produced by a convolution followed by a

sigmoid function. It captures the likelihood of input image x being real. As noted above, y is

not an input of the discriminator in the RankCGAN architecture. Consequently, this network

differs from the discriminator in a conventional CGAN in that the first hidden convolutional

layer is not concatenated with the attribute vector y.

3.1.2 RankNet

RankNet [1] uses gradient descent methods for learning ranking functions, which can be

then used to estimate pairwise comparisons of image attributes and to help in decorrelating

the attributes. In order to achieve that, we need binary labels representing pairwise attribute

comparisons of images in the database. The requirement of these labels introduces a limi-

tation which will be discussed in details in Section 5.1. On the other hand, we benefit from

using pairwise comparisons as opposed to exact values when regulating the ranker because

it allows us to formulate the combined optimization problem more easily. This is because

with binary (greater than v.s. less than1) pairwise comparison results, we can formulate the

RankNet loss as a BCE loss, similar to that of the discriminator. Specifically,

LR(x
(1)
i , x

(2)
i , ci) = −ci log (pi)− (1− yi) log (1− pi) , (3.2)

where pi is the posterior probability based on the estimated ranking score

pi = sigmoid
(
R
(
x
(1)
i

)
−R

(
x
(2)
i

))
, (3.3)

and ci is the binary comparison result either given as a sample label or inferred from the y

values used for synthesis.

The particular RankNet we use for the ranker shares the same structure as the discrim-

inator as illustrated in Figure 4, except for the output layer. For the ranker, the sigmoid

function is not applied to the output (ranking layer) because we only care about the pairwise

1The equal case, which rarely occurs, can be combined with either inequality of the dichotomy.
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ranking orders. A dedicated ranking layer is appended to the last hidden layer in parallel

for each attribute (affecting only the output layer; all prior layers are shared).

In summary, the RankCGAN networks give us the capability of learning a multidimen-

sional attribute space for image synthesis. With a fixed z, by modifying the y in the attribute

space, we can generate images with different degrees of attribute expression. However, the

real images from the search database are not yet be mapped onto this space. In particu-

lar, Although the ranker does provide a form of attribute-value representation, because the

training only optimizes the ranking order of the prediction in pairs, its output cannot be

directly mapped onto the distribution of y v U(−1, 1).

3.2 ENCODER FOR IMAGE EDITING

Given an image, the encoder proposed in IcGAN [25] can be used to approximate the

latent noise vector z and the attribute vector y. Specifically, we learn two encoders Ez and

Ey, for estimating z and y respectively. At training time, we use the generator to create a

dataset of synthesized images with uniformly distributed z and y labels. Then, we learn a

network to minimize the mean squared error (MSE) loss of

LEz(x) = Ezvpz ,y′vpy ||z − Ez(G(z, y′))||22 (3.4)

and

LEy(x) = Ez′vpz ,yvpy ||y − Ey(G(z′, y))||22. (3.5)

The architecture of the encoder network is shown in Figure 5. It has four hidden con-

volutional layers, each applied with batch normalization and ReLU. The last convolutional

layer is then flattened, followed by two linear transformations which finally outputs an es-

timated vector of either y or z. The hidden linear layer before the output is applied with

one-dimensional batch normalization and ReLU.

The learned encoders, together with its generator counterpart, allow us to reconstruct

images. Figure 6 showcases some of the reconstruction results trained on the UT-Zap50K

dataset [38, 39]. I observe that while not all the details (e.g. colors and fine patterns) are

11



5
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5
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Figure 5: The architecture of the encoder network.

Figure 6: Reconstruction results: in each pair of two, the image on the left is a real image

from the database and the one on the right is reconstructed by the generator with inputs

estimated by the encoders.
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fully preserved in the reconstructed image, the general shape and the style, as dictated by

the labeled attributes of the dataset, are similar in every pair.

In practice, to edit the attribute values of an image x, we can first obtain the estimated

vectors y = Ey(x), z = Ez(x) from the encoder. Then, while fixing z, we can modify y to y′2

of some desired attribute and obtain the edited image x′ = G(z, y′). Figure 7 shows some of

the editing results. Each row is a group that shows the original image xori, the reconstructed

image xrec = G(Ez(xori), Ey(xori)), followed by four edited images, each of which has the

attribute value y′(m) (dimension m of y′) incremented by 0.5 from Ey(xori)
(m). As an example,

in the first group, Ey approximated the attribute value y = [0.1536,−0.0565, 0.7329, 0.0863].

Recall that each dimension corresponds to an attribute: for UT-Zap50K, they are open,

pointy, sporty, and comfort. The attribute vector used for generating the first edited image

labeled “open +0.5” is therefore y′ = [0.6536,−0.0565, 0.7329, 0.0863].

3.3 RANGE-BASED SEARCH

During the search, we maintain a search range rm ⊆ [−1, 1] for each dimension m of the

attribute vector y. Initially, all ranges are set to [−1, 1] since y v U(−1, 1). As the user

provides relevance feedback, the ranges are updated and they are used to determine the y′

vector for synthesizing the feedback options. As shown in Figure 1, each question asked by

Syntharch comprises two generated images. For each question, we want to elicit information

regarding a specific attribute, an idea inspired by Attribute Pivots [15]. In each pair of

images, all attributes except for the attribute n we are querying are set to the center values

of their corresponding ranges, i.e. y
′(m)
1 = y

′(m)
2 r

(1)
m /2 + r

(2)
m /2. For the attribute n, we divide

the range to four equally-spaced segments and set the attribute value of one of the images

to be at the 1/4 of the range, i.e. y
′(n)
1 = 3r

(1)
n /4 + r

(2)
n /4, while that of the other to be at the

3/4 of the range, i.e. y
′(n)
2 = r

(1)
n /4 + 3r

(2)
n /4. I pick 1/4 and 3/4 here because they are the

centers of the two evenly divided portions of the original range.

For example, at some stage of the search of a database with three attributes, if the

2We use the prime symbol (′) to denote modified values.
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Figure 7: Image editing using the encoders and the generator.

14



ranges are r1 = [−0.5, 0.7], r2 = [0, 0.6], and r3 = [0.2, 0.6], and that if we want to

collect relevance feedback regarding the second attribute, then the attribute vectors are

y′1 = (0.1, 0.15, 0.4), y′2 = (0.1, 0.45, 0.4). Notice that the attribute values for the first and

the third dimensions are intentionally kept the same; at the same time, for the second di-

mension, the values are precisely at 1/4 and 3/4 of the range.

To generate an image, we also need the noise vector z. To ensure that the synthesized

results are realistic, we search for the image xref from our database whose estimated attribute

vector yref = Ey(xref) is the closest (with the least Euclidean distance) to (y′1 + y′2)/2. We

then use zref = Ez(xref) as the latent noise vector to synthesize both images. An alternative

approach would be to find xref1 and xref2 where their estimated attribute vectors are the

closest to y′1 and y′2 respectively, and then use their estimated z-vectors for the synthesis.

However, because we want to control the options visually so that they only differ in the

attribute expression, we need to fix the noise vector. Therefore the two image feedback

options are x1 = G(zref, y
′
1) and x2 = G(zref, y

′
2).

Whenever the user answers a question, we can infer from their choice the possible range

of some attribute of the target image. Using the y′1 and y′2 values from the example above,

if the user chooses x1 over x2, then we know that for the second attribute, the target value

is likely closer to r
(1)
2 = 0.15 than r

(2)
2 = 0.45, and therefore the range can be reduced from

[0, 0.6] to [0, 0.3]. If we reduce the search range in this fashion, we are essentially performing

a binary search on the attribute value range. However, the performance would then be

heavily affected by any mistakes in the selection process. To remedy that, we need to add

in some tolerance: in the example above, instead of lowering the upper bound to the middle

point (i.e. center of the range, r
(1)
m /2 + r

(2)
m /2), we want to pick a value between 1/2 and 3/4

of the range. For Syntharch, I decided to use the value 2/3 (i.e. 2r
(1)
m /3+r

(2)
m /3). Conversely,

in the event of choosing x2 over x1, we raise the lower bound to be at 1/3 of the range (i.e.

r
(1)
m /3 + 2r

(2)
m /3). In the example, we would lower the upper bound to 0.4, i.e. reducing the

search range for attribute 2 from [0, 0.6] to [0, 0.4].

In order to elicit feedback from different attributes, we use the round-robin approach,

suggested by [15], to request feedback responses for each attribute one-by-one and to reduce

the search range in all the dimensions iteratively.
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3.4 RELEVANCE PREDICTION

The objective of Syntharch, an image search system, is to retrieve the most relevant

results based on the query. For the set of relevance feedback F = {(rm, f)k}Tk=1 collected

during T search iterations, where rm is the search range of attribute m and f ∈ {1, 2} denotes

either x1 or x2 was selected to be more similar to the target image, we want to produce a

ranking of the database images xi according to their relevance.

Since we modeled the iterative search problem as a range search problem, as discussed

in the previous section, a naive solution would be to rank each image xi by its Euclidean

distance to the center of the search range. This ranking approach, while plausible, does not

account for the specific choices. During early-stage experiments, I found its performance

inferior to the probabilistic approach used in the [15] and decided to opt for the latter.

The probabilistic-based relevance prediction model, modified from that in [15], can be

formulated as the following. Given the set F , for each image xi, we want to compute its

probability of relevance P (relevant | xi,F).

Now, consider the choices, let Sk,i ∈ {0, 1} represent whether image xi satisfies the

binary search constraint (we use the constraint with tolerance, i.e. reducing 1/3 of the range

each time) in the k-th feedback. Specifically, if f = 1, then Sk,i = 1 if and only if y
(m)
i <

2r
(1)
m,k/3 + r

(2)
m,k/3. Similarly, if f = 2 then Sk,i = 1 if and only if y

(m)
i > r

(1)
m,k/3 + 2r

(2)
m,k/3.

We can now express the probability of relevance for each image xi as a sum of log

probabilities,

P (relevant | xi,F) =
T∑
k=1

logP (Sk,i = 1 | xi). (3.6)

Then we can use Platt’s method [26] to estimate the probabilities with the following trans-

form,

logP (Sk,i = 1 | xi) =


1− 1

exp(αm)
(
y
(m)
i −

(
2r

(1)
m,k/3+r

(2)
m,k/3

)
+βm

) if f = 1

1

exp(αm)
(
y
(m)
i −

(
r
(1)
m,k/3+2r

(2)
m,k/3

)
+βm

) if f = 2

, (3.7)

where αm and βm are learned from the pairwise comparison labels as well as the output of

Ey on all images of the database.
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As pointed out in [15], the probabilistic model further allows for some mistakes in rele-

vance feedback in addition to our relaxed binary search constraint.

We run the relevance prediction model on all images after each iteration and sort the

images by their probability of relevance to get our search results.
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4.0 EXPERIMENTAL VALIDATION

To evaluate to what extent Syntharch’s addition to the conventional approach contributes

to the accuracy of the task of interactive image search, I set up a quantitative user study. In

Section 4.1, I introduce the overall design of the experiment. Section 4.2 and Section 4.3 de-

tail two hypotheses regarding Syntharch’s contributions and how they are validated through

the experiment. Finally, I present and analyze the experiment results in Section 4.4 and

Section 4.5.

4.1 DESIGN

4.1.1 Dataset

I evaluate Syntharch with the UT-Zap50K dataset [38, 39], a public image dataset consist-

ing of 50,025 catalog images of shoes with 4 relative attributes labels: open, pointy, sporty,

and comfort. The attribute labels are provided in the form of 6,751 fine-grained ordered

pairs. Each label contains two image indices i, j for an attribute dimension m, indicating

that xi has a stronger strength in attribute m compared to xj.

4.1.2 Metric

Similar to previous work [15, 16, 21, 7], I quantify the search performance (accuracy) by

the percentile rank of the target image’s probability of relevance, as given by the method

described in Section 3.4, over time. The percentile rank is defined as the percentage of

images in the search database that are ranked lower than the target image in the search
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Figure 8: The search experiment UI showing the target image and two options.

results. Therefore, the higher the percentile rank, the closer we are to the target image at

that iteration of the search session, and the more accurate the search results are.

After each iteration of every search session, the current target percentile rank is recorded.

By the end of all search sessions, the average percentile rank is aggregated for each search

iteration for each search method.

4.1.3 Protocol

For each experiment session, we run 30 search sessions in total. 10 of the search sessions

will use the Syntharch method, 10 of them using the alternative (baseline) method described

in Section 4.2 and the rest 10 using the method described in Section 4.3. There are 10

random search targets in total, and each appears precisely one time for each method. The

order of the 30 search sessions (and consequently, that of the targets) are randomized. All

experiment participants are instructed to perform the same task: for each search iteration,

given a target image and two option images, select the option between the two that is closer

to the target. Figure 8 shows the search experiment user interface (UI) with one target image

and two option images labeled as 1 and 2 where the user is prompted to make a selection
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between them. Note that the two options do not directly correspond to x1 and x2 as their

order is also randomized.

For each search session, the search system asks 12 questions and collects 12 relevance

feedback responses. Each question and answer count as one search iteration. If at some

stage of the search, the target image is ranked within the top 20 results of the dataset (i.e.

with a percentile rank of 99.96% for UT-Zap50K), the search session will terminate early to

move forward to the next session (if any remaining). When that happens, we consider the

missing iterations as having a percentile rank of 100% when computing the average later.

4.1.4 Implementation

The preprocessing module used for the user study is implemented in Python with the

PyTorch [24] deep learning framework. As discussed in Section 3.1, the CGAN (G,D) and

RankNet (R) architecture are built upon RankCGAN [30] and are largely modified from

their open-source repository1. In particular, I modified their RankCGAN implementation to

support more than two attributes. The encoders (Ey and Ez) are implemented according

to the IcGAN [25] architecture based on the original Torch implementation from their open-

source repository2. For training, I used the recommended configuration with a mini-batch

size of 64 and trained the Adam optimizer [14] with β1 = 0.5, β2 = 0.999, and a learning

rate η = 0.0002.

I trained the RankCGAN networks for 200 epochs. Because the networks did not converge

(as shown in Figure 9), I handpicked the checkpoint from the epoch that seemed to produce

the best synthesis and ranking results (epoch #176).

I then used the learned generator to synthesize 100,000 (x, y, z) tuples and trained the

encoder networks for 500 epochs. The networks converged (as shown in Figure 10) and I

determined that the checkpoint after 500 epochs is sufficient for the image editing task.

The search module is also implemented in Python, with command line interaction and

Matplotlib [8] for displaying the questions (see Figure 8).

1Repository available at https://github.com/saquil/RankCGAN
2https://github.com/Guim3/IcGAN
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Figure 9: The training loss of RankCGAN networks over time.
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Figure 10: The training loss of the encoder networks over time.
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4.2 HYPOTHESIS: BENEFITS OF IMAGE EDITING

One major difference between my proposed search approach and conventional interactive

image search approaches is the use of exclusive visual feedback questions. This change itself

does not warrant the use of image editing and synthesis. In particular, one can design

a similar search method that uses retrieved images instead of generated ones as feedback

options. The modified search method can still use the range-based search and relevance

prediction for ranking, and the only difference would be that rather than generating x1 =

G(zref, y
′
1) and x2 = G(zref, y

′
2), we simply find x1 and x2 from the database such that Ey(x1)

is the nearest to y′1 and Ey(x2) is the nearest to y′2. Note that although we are still using

the y-encoder Ey to estimate the attribute vectors, it does not necessarily have to be learned

after the generator as it is in the Syntharch design (Section 3.2). Instead, we can train a

ranking function using only images from the database and their comparison labels.

Note that this method is similar to an alternative discussed in Section 3.3 of using z-

vectors of images in the database that has the nearest attribute vectors to y′1 and y′2 for the

synthesis. Moreover, we have the same concern that the images of each pair might differ in

not only their attribute expression, but also other details that might confuse the user and

the system. For example, unlike the image editing results in Figure 7, the retrieved images

might have different detailed patterns unrelated to the attributes yet causing the user to

choose one option over another. Additionally, the distribution of the images might be sparse

in certain regions of the attribute space, that the images with the nearest attribute vectors

to y′1 and y′2 might be the same, rendering the question ineffective.

In my experiment, I want to validate the benefits of image editing by comparing the

Syntharch method to the method using retrieved images as options. I implemented the

modified search method discussed above, and perform 10 search sessions of this method in

each experiment session.
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Figure 11: Manipulation of the “open” attribute exhibited differently on the synthesized

images in different regions of the attribute space.

4.3 HYPOTHESIS: BENEFITS OF RANGE-BASED SEARCH

In Section 3.3, I illustrated the method of performing a ranged-based binary search with

relaxed constraint. The intuition of maintaining a search range despite not needing it for

ranking results (Section 3.4) is that the synthesized feedback options can, therefore, be more

realistic and that subtle differences can then better reflect the attribute value variations.

I now contrast this method with the approach in [15] which considers each attribute

independently. In their work, a binary search tree is formed for each individual attribute,

and every tree contains all images in the database. In my range-based search, I formulate

the problem as range searching in a multidimensional space of visual attributes. The main

reason to proceed with the search differently is that without textual labels of the semantic

attribute to pay attention to for each search iteration, the user is unaware of the detail to

compare against their target image. Therefore, we need the expression of the attribute to be

as close to that in the target image as possible, because some attribute manipulation might

lead to different manifestation in different regions of the attribute space. For example, as

shown in Figure 11, in the UT-Zap50K dataset, the expression of openness in sports shoes is
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different from that in high heels.

To verify this assumption and the benefits of range searching, I implemented the pivot

method based on the Attribute Pivots work. Specifically, for each pivot image xp, we take

its estimated vectors yp = Ey(xp) and zp = Ez(xp). zp is used as-is for generating both

options, and yp is added or subtracted the fixed value of 0.15 in the attribute dimension we

are modifying and becomes y′1 and y′2.

Similar to the experiment setup in Section 4.2, we perform 10 search sessions of this

method in each experiment session.

4.4 QUANTITATIVE RESULTS

I asked 9 people (mostly undergraduate and graduate students) to complete live exper-

iment sessions for my user study. From them, I collected search interactions of 270 search

sessions (90 sessions for each method), with a total of 3,236 relevance feedback responses.

Table 1 lists the means and the standard deviations of the percentile rank over search

iterations. The mean percentile rank from the table is also plotted in 12 for visualization.

We observe that by the end of 12 search iterations, the average percentile rank for the

Syntharch is the highest at 71.90%, compared to 69.77% for the baseline method of using

retrieved images as options (Section 4.2) and 56.59% for using synthesized pivot images for

the search (Section 4.3). We can conclude that the Syntharch method is more likely to

perform better than both alternative methods by the end of the 12-question search. On

the other hand, across all search iterations, the average percentile ranks across all search

iterations for the Syntharch, retrieved, and pivot methods are 68.80%, 67.10%, and 54.10%

respectively. Therefore, we also establish that the Syntharch method is more likely to perform

better than the alternative methods for most iterations.

With the quantitative results, we can perform a statistical test on the percentile ranks

after the last iteration (iteration 11) with the null hypothesis H0 that the all three methods

result in the same overall rank percentile. I decided to use the Friedman test instead of

the one-way analysis of variance (ANOVA) test because the sample are not normally dis-
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Table 1: Percentile rank means and standard deviations for each method over iterations.

Method Syntharch “Retrieved” “Pivot”

Iteration mean stdev mean stdev mean stdev

0 61.27% 0.2647 61.22% 0.2733 54.21% 0.2930

1 64.66% 0.2594 64.14% 0.2576 52.43% 0.2709

2 65.60% 0.2527 63.79% 0.2633 50.93% 0.2863

3 68.75% 0.2538 66.22% 0.2607 50.12% 0.2817

4 69.28% 0.2515 69.21% 0.2583 51.58% 0.2777

5 69.38% 0.2437 68.84% 0.2656 54.91% 0.2660

6 70.60% 0.2437 67.51% 0.2742 53.36% 0.2749

7 71.47% 0.2523 67.69% 0.2759 55.36% 0.2839

8 71.33% 0.2563 69.23% 0.2651 57.00% 0.2805

9 70.01% 0.2591 68.06% 0.2610 56.50% 0.2796

10 71.30% 0.2593 69.57% 0.2551 56.19% 0.2862

11 71.90% 0.2538 69.77% 0.2575 56.59% 0.2911

Table 2: Pairwise comparison p-values of the final percentile rank of the three methods,

using Nemenyi multiple comparison test.

Syntharch “retrieved” “pivot”

Syntharch 1.000 – –

“retrieved” 0.6907 1.000 –

“pivot” 0.0007599 0.01283 1.000

tributed, according to Table 1 and 3. The Friedman Test rejects H0 and indicates statistical

significance among the three methods with χ2(2) = 14.69 and p = 6.462×10−4 < 0.001.

To examine differences between the three methods, we then perform the Nemenyi post-

hoc test for multiple joint samples. The pair-wise p-values are shown in Table 2, where
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Figure 12: Average percentile rank over iterations grouped by the method.

darker shade indicates higher significance. In particular, we fail to reject the null hypothe-

sis that Syntharch’s final percentile rank is similar to than that of the “retrieved” method

(p = 0.6907 > 0.5), likely due to the limited number of samples from the experiment. On the

other hand, the difference between Syntharch and the “pivot” method is highly significant

(p = 7.599×10−4 < 0.001).

4.5 QUALITATIVE RESULTS

In this section, I analyze the overall search performance of the three methods, examine

some real search sessions, and suggest possible reasons for the failure cases.

As shown in Figure 12, while the rank of the target over time has the general upward trend

for all three methods, that of the Syntharch method exhibits a more consistent increasing

pattern. In each specific search session, the percentile rank decreases if and only if the user

makes a comparison contrary to the model, which we refer to as “confusing feedback3.”

3In the sense that the search system will be confused.” This name does not imply that the user making
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Table 3: Percentile rank at three quantiles for each method over iterations.

M. Syntharch “Retrieved” “Pivot”

It. Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

0 46.19% 65.03% 82.69% 40.97% 67.00% 80.83% 31.99% 57.48% 78.61%

1 50.07% 71.39% 85.45% 42.68% 71.56% 86.37% 35.35% 54.55% 75.66%

2 50.40% 69.22% 85.18% 45.65% 64.09% 85.28% 26.78% 52.12% 74.95%

3 54.65% 75.20% 89.77% 50.00% 72.39% 85.85% 21.61% 54.37% 71.36%

4 50.07% 75.39% 88.85% 55.77% 79.24% 88.98% 29.48% 52.49% 73.64%

5 52.89% 75.09% 90.08% 50.70% 78.15% 90.38% 34.56% 55.95% 79.07%

6 53.24% 76.74% 90.75% 50.15% 76.53% 90.12% 31.15% 57.64% 78.25%

7 58.03% 79.17% 92.22% 51.43% 78.00% 88.94% 30.07% 59.34% 81.03%

8 55.48% 79.41% 93.87% 49.59% 78.61% 90.91% 33.61% 60.35% 82.41%

9 51.87% 77.74% 90.85% 50.64% 75.07% 90.43% 32.69% 59.42% 81.47%

10 58.17% 79.79% 91.18% 50.72% 75.25% 92.15% 31.49% 60.30% 84.08%

11 58.17% 79.92% 91.93% 55.45% 75.50% 91.09% 31.48% 59.45% 85.16%

On average, we expect users to make more informative feedback than confusing feedback.

However, when a large quantity of confusing feedback is made across search sessions at

certain iterations, we will observe a decline of average percentile rank (e.g. from iteration4

8 to 9 in Syntharch, from iteration 4 to 6 in the “retrieved” method and from iteration 8 to

10 in the “pivot” method).

To understand the conditions of receiving confusing feedback during the interactive search

using various methods, we look at some specific search sessions where aggressive percentile

rank declines take place.

During the search session shown in Figure 13, there is a sharp declining trend of per-

centage rank for the “retrieved” method starting from iteration 2. Moreover, the Syntharch

the comparison is at fault.
4All iteration indices in this thesis use 0-based numbering.
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Figure 13: Percentile rank over iterations by the method for one specific search target,

showing issues with the “retrieved” method.

method also experiences rank regression starting from iteration 3.

Figure 14 shows the feedback options and the user’s choices (marked by [*]) from these

three search sessions, reconstructed from the saved log. One immediate observation we

make is that during the session with the “retrieved” method, the feedback options remain

the same after iteration 3. This is due to the fact that if the previous choices lead a region

of the attribute space that is sparse with images, regardless of variations in the attribute

vector y, the nearest image will always be the same. Specifically, in iteration 3, y1 =

(−1/3,−1/3, 1/3, 0.5), y2 = (−1/3,−1/3, 1/3,−0.5), where the last attribute differs by | −

0.5 − 0.5| = 1.0, yet we still retrieved the same image due to the aforementioned reason.

When the two images in the pair are too close to distinguish, users are instructed to make

an arbitrary selection, meaning that they will provide confusing feedback half of the time.

On the other hand, while both the Syntharch and “pivot” methods exhibit more diver-

sity thanks to the use of the image generator, when crossing over the sparse region, the

synthesized images are at times less realistic. For example, during iteration 3, the quality
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Figure 14: Search session histories of the same target with three different methods.

29



0 2 4 6 8 10
Search Iteration (# of questions)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ta

rg
et

 R
an

k 
(P

er
ce

nt
ile

)

syntharch (synthesis + range)
retrived + range
synthesis + pivot

Target 35685

target

x1 x2 (*)

x1 (*) x2

Target 35685 - pivot

Figure 15: Percentile rank over iterations with iteration 3 and 4 of the “pivot” method for

one specific search target.

of the options are too bad for the user to provide informative feedback. In fact, the user

indeed responded with “confusing feedback” during that iteration. Nonetheless, methods

using image synthesis are still better at eliciting relevance feedback than plain retrieval, and

the percentile rank eventually recovered in this search session as shown in Figure 13.

I think the reason that the “pivot” method is less severely affect by the sparse region

in this example is that its attribute values in each pair differ by a smaller fixed value of

2×0.15 = 0.3, as opposed to 1.0 in the case of range searching during the first few iterations.

However, the “pivot” method has its own shortcomings which make it less effective in

more general cases for image search with visual feedback questions. In particular, during

the search session illustrated in Figure 15, the “pivot” method suffers harshly at iteration 3

and 4. The feedback questions and the user’s choices for the two iterations are shown to the

right of the percentile rank plot. At iteration 3, the attribute being considered is “comfort”

with y
(4)
1 = −0.1345 and y

(4)
2 = 0.1655 whereas for the target image, Ey(x35685)

(4) = −0.6354.

Similar to how the openness of shoes are expressed differently among sports shoes and high

heels (as shown previously in Figure 11), the expressions of “comfort” of the shoes for the
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Figure 16: Percentile rank over iterations with partial search iterations of the “retrieved”

and Syntharch method for one specific search target.

neighborhood around the target image and that around the pivot image chosen for the

iteration are quite different. In this case, increasing the attribute value actually changes

the overall shape of x2, making it more visually similar to the target despite y
(4)
2 being far

greater than Ey(x35685)
(4). The similar pattern occurred at iteration 4, possibly accounting

for the confusing feedback from the user and inferior search performance.

Finally, we look at one search session where the “retrieved” method performed the best.

As we can see in Figure 16, both the Syntharch and the “retrieved” method elicited the same

feedback information during the first three iterations, resulting in the same percentile rank

initially. Starting from iteration 4, the user made a series of informative feedback leading to

a gradually improving rank ending near 100% with the “retrieved” method. In contrast, the

user made confusing feedback during 3 out of the 8 remaining iterations with the Syntharch

method, causing a lower and unstable rank. We notice that during the Syntharch search

session, the user avoided low-quality synthesis results. Specifically, during both iteration 4
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and iteration 8, the option x1 looks less realistic than the alternative option x2, which the

user opted for. Both of the choices, however, led to confusing feedback. In comparison,

the feedback options from the “retrieved” method successfully gained informative feedback

during these two iterations. I noticed that this issue is more severe when the target image

is visually distinct among the samples. In such case, the detail of the target image is harder

for the generator to reconstruct, and the image editing results are then more likely to be

lacking.

To summarize, the study shows that the Syntharch method outperforms both alternative

methods on average. In particular, using synthesized as opposed to retrieved images allow

Syntharch to have fine control over attributes in regions of the attribute space that do not

have sufficient image samples. At the same time, range searching leads to attribute expres-

sions that are more likely to be consistent with those near the target image. Consequently,

the combined approach in Syntharch leveraging both image synthesis and range-based search

has the best performance in all three methods tested in the user study. However, Syntharch

still suffers from low-quality synthesis results in certain individual search sessions.

32



5.0 CONCLUSIONS

Nowadays, interactive image search systems rely predominantly on attribute labels and

comparison feedback in the textual form. In contrast, I explored a novel approach using

only visual feedback to accomplish the same task. To supplement the change of feedback

form, I proposed Syntharch, which incorporates image synthesis and range searching to

achieve better accuracy, as a proof of concept for the new approach. The user study results

confirmed the hypotheses in Syntharch that (1) using image editing over retrieving real

images for feedback options and (2) performing a range-based search in a multidimensional

attribute space over searching in separate binary search trees lead to better search accuracy.

However, it is also shown in the overall percentile-rank-over-iteration plot in Figure 12 that

even the Syntharch method, with both improvements, suffers from “confusing feedback” and

experiences regression of average percentile rank in one later iteration. I will discuss some

limitations of Syntharch in Section 5.1. Next, in Section 5.2, I will suggest some directions

Syntharch can be expanded to overcome some of the limitations and to address a more

generalized problem.

5.1 LIMITATIONS

As noted in Section 4.5, the generator might produce low-quality synthesis results in

regions of the attribute space where real images are sparse, limiting the overall search ef-

ficiency. There are two factors contributing to this issue: the quality of the image editing

result, and the distribution of the attribute space which is formed during the concurrent

training of the generator and the ranker. The former can be improved with more sophis-
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ticated image editing approaches (to be discussed in Section 5.2). However, the latter is

harder to change given the same pairwise comparison labels with the goals of decorrelating

the attributes and normalizing each dimension to U(−1, 1). To construct an attribute space

where the real images distribute more uniformly within, we will need to select the attributes

ourselves.

Using relative attribute labels from the dataset not only makes it harder to learn a more

uniform attribute space, but also qualifies the generalizability of Syntharch. Most image

databases don’t have relative attribute labels for their images. In fact, because Syntharch

uses exclusively visual feedback, it does not need semantic attributes which can be under-

stood by the user in words. Conventionally, semantic attributes for each search database are

usually chosen by domain experts. However, the task of choosing nonsemantic attributes

can be possibly automated with the objective to maximize separation. This idea is similar to

converting a regression task to a dimensionality reduction task if class labels are not needed.

And if the attributes can be learned in such way, then the preprocessing module of Syntharch

can be completely unsupervised that given any database of (unlabeled) images, regardless

of the content, we can perform interactive image searches on them.

5.2 FUTURE WORK

To further increase the accuracy and the efficiency of Syntharch, we first explore options

to improve the image editing qualify in order to address issues with searching in sparse re-

gions. One way to do that is via a hybrid approach proposed by Zhu et al. in [45]. Specific,

they explored using the generator output as a constraint for image manipulation operations

through morphing. Because the resulting images are not directly generated by rather mor-

phed from real images, the manipulation outputs can be photo-realistic. Nevertheless, this

approach might not work well with images with fine details and complex backgrounds, as

image morphing will likely distort them. Other possible options include using different con-

ditioning augmentation methods for the CGAN and adding a second-stage GAN to improve

generator quality [41].
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Another approach is to search within a non-uniformly distributed attribute space with

a modified search method. Specifically, we recognize in order to proceed with the search

efficiently, we want to maximize the information gain for each search iteration. For that

purpose, when working with a non-uniformly distributed attribute space, the origin of search

should be at the center of the image samples as distributed in the attribute space. And for

each iteration, instead of reducing the search space by 1/3 of the range on some attribute m,

we can reduce the search space by a fraction so that the number of samples distributed on

the attribute dimension m is reduced by 1/3. This also means that certain dimensions should

possibly be prioritized by the search, and that the round-robin approach to loop through

all attribute dimensions would be inefficient. For each search iteration, when choosing the

dimension to elicit feedback on for the highest expected information gain, we can follow the

method proposed in [15].

There are also many ideas for automating the attribute selection process. Parikh and

Grauman have studied building a discriminative vocabulary of semantic attributes [22]. Their

approach uses discrete class labels to find attributes which can help discriminate among

classes that are the most confused, and then pass them to a nameability model and suggest

to humans for review. For our purpose, since the attributes do not necessarily have to

be nameable, we can just take the top few attributes that are the most discriminative to

start the training. This method, however, still requires binary class labels to bootstrap the

attribute selection process. Alternatively, before training the RankCGAN networks, we can

first use the images to learn a GAN which only has the latent noise vector as its image. Once

that is completed, we can perform dimensionality reduction on the latent space to build the

attribute vocabulary.

Finally, we observe that while Syntharch was proposed as a solution for the CBIR task,

it can also be applied to the image browsing task for which the user wants to retrieve a set of

images of certain characteristics that are not necessarily known beforehand rather than one

specific target image of fixed attribute values. For the image browsing task, Syntharch can

still use the relevance feedback to guide the browsing results towards certain directions. We

can also further relax the tolerance, reducing the search space by a smaller fraction in each

iteration to support the discovery and exploration of new attribute expressions. In addition,
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because some attributes might be less relevant in retrieving the set of images the user wishes

to browse (e.g. the user might care less about some attributes), we can allow the user to

initiate the search by selecting an attribute dimension (represented by a pair of contrasting

images) to refine on, similar to the mixed initiative search idea in [21].
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