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Abstract 

Synchronization Analysis of Winner-Take-All Neuronal 
 

 Networks 
 

Brandon Bernard Jennings, PhD 

University of Pittsburgh, 2019 
 
 
 
 

With the physical limitations of current CMOS technology, it becomes necessary to design 

and develop new methods to perform simple and complex computations. Nature is efficient, so 

many in the scientific community attempt to mimic it when optimizing or creating new systems 

and devices. The human brain is looked to as an efficient computing device, inspiring strong 

interest in developing powerful computer systems that resemble its architecture and behavior such 

as neural networks. There is much research focusing on both circuit designs that behave like 

neurons and arrangement of these electromechanical neurons to compute complex operations.  

It has been shown previously that the synchronization characteristics of neural oscillators 

can be used not only for primitive computation functions such as convolution but for complex non-

Boolean computations. With strong interest in the research community to develop biologically 

representative neural networks, this dissertation analyzes and simulates biologically plausible 

networks, the four-dimensional Hodgkin-Huxley and the simpler two-dimensional Fitzhugh-

Nagumo neural models, fashioned in winner-take-all neuronal networks. The synchronization 

behavior of these neurons coupled together is studied in detail. Different neural network topologies 

are considered including lateral inhibition and inhibition via a global interneuron. Then, this 

dissertation analyzes the winner-take-all behaviors, in terms of both firing rates and phases, of 

neuronal networks with different topologies. A technique based on phase response curve is 

suggested for the analysis of synchronization phase characteristics of winner-take-all networks. 



 v 

Simulations are performed to validate the analytical results. This study promotes the understanding 

of winner-take-all operations in biological neuronal networks and provides a fundamental basis 

for applications of winner-take-all networks in modern computing systems. 
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1.0 Introduction 

Physical limitations of current integrated circuit design using complementary metal-oxide-

semiconductor (CMOS) have motivated research into viable new technology for computing. 

Despite the vast amount of work improving CMOS, there are still major key factors impeding the 

progression of Boolean based computing. Transistor size can only be so small before the physical 

characteristics can no longer function properly. Efficient heat dissipation is still a major concern, 

especially as devices become smaller and more powerful. Clock speed and computation power is 

also limited by the physical characteristics of CMOS. 

Nano-oscillators have shown promise as an alternative to CMOS. Instead of using many 

logic gates for computations, the intrinsic physical properties of the oscillators can be used to 

perform non-Boolean computations. Arranged in different architectures, oscillators can be used 

for various computations such as edge detection, associative memory, and neurocomputing [1] [2] 

[3]. Simpler than entire processes, fundamental primitive computations can be performed, for 

example convolution. Weakly coupled oscillators have been shown to be capable of approximating 

convolution [4], and later shown to compute an exact convolution [5], by using the characteristics 

of their synchronization behavior. Oscillatory designs could then be extended to be used in 

convolution-based computations such as discrete cosine transforms, discrete Fourier transforms, 

Gabor filtering, and image processing [6]. This is just one example of how oscillators can impact 

hardware design, as their utility can be expanded beyond convolution. 

The oscillatory characteristic of the behavior of oscillators is reminiscent of the oscillatory 

behavior of brain neurons. This makes them particularly useful in neuronal-based computations 

and applications such as artificial intelligence and neuronal networks [84] [86]. Some of these 
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oscillators are biologically inspired but not necessarily biologically plausible. The neuronal 

networks emulate the brain but are not modeled after its neuronal units, such as ionic channels. 

With a need for developing efficient and accurate neuronal networks, there is a strong interest 

among the research community in developing creative biological and biologically inspired 

neuronal network models. A very useful and prevalent concept of neural networks is winner-take-

all [86], which is a mechanism used to make a selection out of group of neurons. It is a fundamental 

basis in many neural network applications such as decision-making and motor function selection 

[31] [72]. 

1.1 Motivation 

Christian Huygens [7] is considered the first person to observe the phenomena of 

synchronizing coupled pendulums. He noted that pendulums connected on the same platform will 

synchronize with one another, despite initial frequencies and phases. This observation has inspired 

many studies about coupled oscillators. Oscillators have shown useful in a broad array of fields of 

non-Boolean computations in different domains such as magnetic, electric, and biological [1] [2] 

[3].  

CMOS is the current standard technology used in designing integrated circuits, composed 

of tiny devices known as transistors. These transistors dictate the flow of electricity through 

circuits. This current control property of the transistors enables the design of logic gates such as 

AND, OR, and inverter gates to perform Boolean algebra. In Boolean algebra, the values are 

denoted by 1’s and 0’s representing the on (1) and off (0) switching of the transistors. A wide 
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variety of multiple logic gates can be arranged in different architectures to perform different types 

of operations. This is essentially the framework of modern computers.  

Although there has been a vast amount of research into improving CMOS technology and 

computer architecture to make more powerful and efficient systems, the trends of decreasing sizes 

and energy while increasing power and speed are plateauing. Major roadblocks hindering the 

progression of Boolean logic-based computing are transistor size, heat dissipation, clock speed, 

and computation power. 

Rairigh [8] reviews some of the challenges in scaling CMOS technologies. One of the 

problems with smaller transistor sizes is the hard limit set by the size atoms of molecules, as 

devices could not possibly be fabricated at dimensions smaller than a single molecule and there 

are rising costs of equipment to scale at that level. There is also an issue of maintaining 

performance with devices at that scale, in particular the mobility of electrons and holes in 

transistors. The negative impact on the physical properties of transistors will diminish the returns 

on newer devices to the extent that they will no longer be significantly better than previous 

versions. More specifically, issues such as junction leakage, gate induced drain leakage, and sub-

threshold channel current, significantly increase the problem of off-state power consumption as 

transistor dimensions decrease.  

This has inspired investigation into new methods for performing complex operations not 

based on logic gates, also called non-Boolean computations. One such method is coupled oscillator 

arrays. Instead of a logic gates to compute complex functions, the intrinsic physical properties of 

the coupled oscillators can be used for computation. 

Horvath [1] models the interaction of spin torque coupled oscillators via their magnetic 

field and demonstrate the use of this dynamic in an edge detection application. By passing current 
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through a ferromagnetic material, spin-polarized current can be generated which can switch the 

magnetization of the current. Under certain conditions, this current induces steady precession of 

the magnetization at various frequencies which are used for detection. Shibata [2] emulated the 

behavior of oscillators using CMOS ring oscillators and supporting CMOS circuitry to produce 

associative memory function. This work demonstrated how the emerging technology of oscillators 

can be integrated in current architectures by developing supportive circuitries. The associative 

memory function was implemented in image recognition via HSPICE simulation. Hoppensteadt 

[3] proposed that coupled microelectromechanical oscillators can be useful to efficiently process 

analog information and theorize that they can function as a neurocomputer having oscillatory 

autocorrelative associative memory. 

Nikonov [4] proposed using weakly coupled voltage-controlled oscillators to approximate 

convolution. They demonstrate the use of oscillators through Gabor filtering, using a phase-shift 

keying scheme. Chiarulli [5] improved on this work and demonstrated using oscillators to perform 

an exact convolution based on a coupled oscillator degree of match (DOM) metric. Simulation of 

the DOM circuit showed that the behavior of the coupled oscillators was similar to that of a squared 

Euclidean distance metric (L22), which can be a computational primitive for template matching 

and distance metrics, like the ones used in image processing pipelines such as HMAX 

[21]. Jennings [6] took the work of Chiarulli and analyzed the effects of parameters on the output 

of convolution using the oscillators and demonstrated their application in convolution-based image 

processing computations. This work showed that oscillators are a viable technology to perform 

complex computations and with mitigation against the effects of the parameters, yield as accurate 

results as current technologies. 
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Studies have been done to model and characterize neurons, which generally can be 

considered as oscillators [93]. Different types of oscillators have different behavioral 

characteristics which may make some better for certain purposes than others. This dissertation 

strives to examine how the behavior of neurons configured in different architectures might be 

characterized and offer insight into better architectural design. More specifically, this work will 

simulate the winner-take-all behavior via neuronal networks based on the Hodgkin-Huxley and 

Fitzhugh-Nagumo neuron models [94] [14]. This dissertation will observe and analyze winner-

take-all by synchronization behavior of the neurons in terms of phase, using different architectures 

of both models and different topologies of feedback. In addition, it will also analyze winner-take-

all in terms of firing rate, using a simplified model [37]. The analysis could provide further 

understanding of how winner-take-all works in biological neuronal networks and insight into better 

circuit design.  

1.2 Neuron Models 

The work in this dissertation focuses particularly on the Hodgkin-Huxley model Fitzhugh-

Nagumo neuron models, though it also examines a simplified neuronal network model that uses a 

function of firing rate to achieve winner-take-all as opposed to action potential. The Hodgkin-

Huxley neuron is a renowned biological model that quantitatively represents experimental data of 

a real neuron and, as such, it is a complex four-dimensional model [15]. The Fitzhugh-Nagumo 

model is a simplified version of the Hodgkin-Huxley model with half the dimensionality making 

it a commonly used model because of its reduced complexity and ease of simulation [9] [18]. The 

firing rate model will be discussed in a later chapter. 
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1.2.1  Hodgkin-Huxley 

Alan Hodgkin and Andrew Huxley [11] [92] came up with first known model of action 

potential of an axon in a squid neuron. The two scientists conducted series of experiments in the 

late 1940s and 1950s on the neuron of a squid. Specifically, they examined the squid’s giant axon. 

This is an axon of the squid that is specialized for conducting action potentials fast. This allows 

for quickly controlling the water jet propulsion that allows the squid to escape from predators.  

What made the squid giant axon valuable was its unusually large size, typically 0.5mm 

where most axons in other nervous systems are significantly smaller [28]. This proved beneficial 

for research as it allowed them to perform experiments and manipulate the axon in ways infeasible 

on anything smaller. Electrical voltage exists between the inside and outside the membrane of all 

living cells. The difference between these two voltages is referred to as membrane potential, which 

changes during an action potential, or spiking. An increase in membrane potential is caused by an 

inward current, which corresponds to positively charged ions such as Na+ entering the cell and 

depolarizes the cell. Conversely, outward current decreases the membrane potential and 

corresponds to positively charged ions such as K+ leaving the cell or negatively charged ions such 

as Cl- entering the cell, causing the cell to become hyperpolarized. A large enough depolarization 

will lead to an action potential. 

It is the concentrations of these ions inside and outside the cell that influence the membrane 

potential difference, which are impacted by factors such as the transport of ions across the cell 

membrane and the permeability of the membrane to these ions. Na+ and Cl- concentrations are 

typically higher outside of the cell, whereas K+ concentrations are higher inside the cell. The 

membrane of the cell itself is not a particularly strong conductor of ionic currents, however there 

are specialized proteins that behave as channels through which the ions can enter and exit the cell. 
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The channels can be gated or nongated. Gated channels are usually ion specific, opening and 

closing with a probability dependent on the membrane potential. Nongated channels are always 

open and primarily involved in the resting potential of a cell as most of the gated channels are 

closed at rest. Channels opening and allowing ions to flow across the membrane generate action 

potential. 

What resulted from Hodgkin and Huxley was a set of differential equations that became 

their model of the action potential behavior. They realized that ionic currents in the giant axon 

could be understood by observing the changes in Na+ and K+ conductance in the axon membrane, 

leading to a mathematical model of voltage-dependent and time-dependent properties of the 

conductance. 

 

Figure 1-1: Circuit represntation of membrane voltage of the Hodgkin-Huxley model. 

 

Figure 1-1 [27] shows the circuit model based on the Hodgkin-Huxley model. The total 

current in the system is a summation of both the current contributed by membrane capacitance and 

the individual ions that pass through the membrane. 
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 𝐼𝐼(𝑑𝑑) = 𝐼𝐼𝐶𝐶 + 𝐼𝐼𝑘𝑘, (1.1) 

where 

 𝐼𝐼𝐶𝐶 = 𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (1.2) 

and 

 𝐼𝐼𝑘𝑘 = �𝑖𝑖𝑚𝑚,𝑘𝑘
𝑘𝑘

, (1.3) 

 

where 𝐼𝐼𝐶𝐶 is the membrane capacitance contribution, 𝐼𝐼𝑘𝑘 is the current from ions passing through the 

membrane, 𝐶𝐶𝑚𝑚 is membrane capacitance, and 𝑖𝑖𝑚𝑚,𝑘𝑘 is the membrane current from ion 𝑘𝑘. Using 

Ohm’s law, the currents from the individual ions can be characterized using 

 

 𝑖𝑖𝑚𝑚,𝑘𝑘 = 𝐺𝐺𝑘𝑘(𝑑𝑑 − 𝐸𝐸𝑘𝑘), (1.4) 

 

where 𝐺𝐺𝑘𝑘 is the ionic membrane conductance for a particular ion 𝑘𝑘 and 𝐸𝐸𝑘𝑘 is the Nernst equilibrium 

potential for a particular ion 𝑘𝑘. Kirchoff’s current law states that the current flowing into a junction 

or node has to be equal to the current flowing out of it, or in other words the net current at a junction 

or node in a circuit is zero, 𝐼𝐼(𝑑𝑑) = 0. From this we can obtain the membrane voltage equation 

 

 𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −�𝐺𝐺𝑘𝑘(𝑑𝑑 − 𝐸𝐸𝑘𝑘)
𝑘𝑘

. (1.5) 
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Experimental observations from Hodgkin and Huxley showed that there are three channels, 

one for sodium current, one for potassium current, and one for leakage current contributed by all 

other ions. 

 

 
�𝑖𝑖𝑚𝑚,𝑘𝑘
𝑘𝑘

= 𝐼𝐼𝑁𝑁𝑁𝑁 + 𝐼𝐼𝐾𝐾 + 𝐼𝐼𝐿𝐿 

= �̅�𝐺𝑁𝑁𝑁𝑁𝑣𝑣3ℎ(𝑑𝑑 − 𝐸𝐸𝑁𝑁𝑁𝑁) + �̅�𝐺𝐾𝐾𝑛𝑛4(𝑑𝑑 − 𝐸𝐸𝐾𝐾) + �̅�𝐺𝐿𝐿(𝑑𝑑 − 𝐸𝐸𝐿𝐿), 

(1.6) 

 

where 𝐼𝐼𝑁𝑁𝑁𝑁  is sodium current, 𝐼𝐼𝐾𝐾  is potassium current, 𝐼𝐼𝐿𝐿 is leakage current from all other ions, 

𝑣𝑣,𝑛𝑛, and ℎ are all variables bounded by 0 and 1 and each have their own differential equation of 

the forms 

 

 
𝑑𝑑𝑛𝑛
𝑑𝑑𝑑𝑑

= α𝑛𝑛(𝑑𝑑)(1− 𝑛𝑛) − β𝑛𝑛(𝑑𝑑)𝑛𝑛 =
𝑛𝑛∞(𝑑𝑑) − 𝑛𝑛
𝜏𝜏𝑛𝑛(𝑑𝑑)

, 
 

 

 𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑

= α𝑚𝑚(𝑑𝑑)(1−𝑣𝑣) − β𝑚𝑚(𝑑𝑑)𝑣𝑣 =
𝑣𝑣∞(𝑑𝑑) −𝑣𝑣
𝜏𝜏𝑚𝑚(𝑑𝑑)

, 
(1.7) 

 

 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= αℎ(𝑑𝑑)(1 − ℎ) − βℎ(𝑑𝑑)ℎ =
ℎ∞(𝑑𝑑) − ℎ
𝜏𝜏ℎ(𝑑𝑑)

, 
 

 

 

where the gating functions are defined as [92] 
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𝛼𝛼𝑛𝑛 = 0.01

𝑑𝑑 + 55

1 − 𝑒𝑒−
𝑑𝑑+55

10

, 
 

 

 
𝛼𝛼𝑚𝑚 = 0.1

𝑑𝑑 + 40

1 − 𝑒𝑒−
𝑑𝑑+40

10

, 
 

 
𝛼𝛼ℎ = 0.07𝑒𝑒−

𝑑𝑑+65
20 , 

 

 𝛽𝛽𝑛𝑛 = 0.125𝑒𝑒−
𝑑𝑑+65

80 , 
 

 𝛽𝛽𝑚𝑚 = 4𝑒𝑒−
𝑑𝑑+65

18 , 
 

 
𝛽𝛽ℎ =

1

1 + 𝑒𝑒−
𝑑𝑑+35

10

. 
 

 

More generally, if 𝑋𝑋 = 𝑛𝑛,𝑣𝑣, or ℎ, then the equations of (1.7) can be written as 

  

 
𝑑𝑑𝑋𝑋
𝑑𝑑𝑑𝑑

= α𝑋𝑋(𝑑𝑑)(1− 𝑋𝑋) − β𝑋𝑋(𝑑𝑑)𝑋𝑋 =
𝑋𝑋∞(𝑑𝑑) − 𝑋𝑋
𝜏𝜏𝑋𝑋(𝑑𝑑)

, 
(1.8) 

 

where 

 𝑥𝑥∞(𝑣𝑣) =
α𝑥𝑥𝑑𝑑

α𝑥𝑥𝑑𝑑 + β𝑥𝑥𝑑𝑑
 

(1.9) 

 

and 

 
𝜏𝜏𝑋𝑋 =

1
α𝑋𝑋(𝑑𝑑) + β𝑋𝑋(𝑑𝑑)

. 

 

(1.10) 
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Variable 𝑣𝑣 drives the activation of the sodium current, ℎ drives the inactivation of the 

sodium current, and 𝑛𝑛 drives the activation of the potassium current. The transition rates between 

open and closed states of the individual gates of each ionic channel is described by α𝑋𝑋(𝑑𝑑) and 

𝛽𝛽𝑋𝑋(𝑑𝑑). 𝑋𝑋∞ is a steady state variable and τ𝑥𝑥 is a time-constant. 

At this point, the model has not taken into account the impact of injecting some external 

current into the model. Neurons in any nervous system are not simply self-excited. In the real 

world there is usually some sort of stimulating injection that triggers and activates neural spike. 

In consideration of current contributed by some external entity, the observed equation becomes 

 

 
𝐶𝐶𝑚𝑚

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −�𝑖𝑖𝑚𝑚,𝑘𝑘 + 𝐼𝐼𝑒𝑒
𝑘𝑘

 

= −[�̅�𝐺𝑁𝑁𝑁𝑁𝑣𝑣3ℎ(𝑑𝑑 − 𝐸𝐸𝑁𝑁𝑁𝑁) + �̅�𝐺𝐾𝐾𝑛𝑛4(𝑑𝑑 − 𝐸𝐸𝐾𝐾) + �̅�𝐺𝐿𝐿(𝑑𝑑 − 𝐸𝐸𝐿𝐿)] + 𝐼𝐼𝑒𝑒 , 

 

(1.11) 

 

 

where 𝐼𝐼𝑒𝑒 is some externally produced current that is injected into the system. When 𝐼𝐼𝑒𝑒 = 0, the 

neural state is said to be at rest, however excitable if the perturbation from the steady state is 

sufficiently large. For 𝐼𝐼𝑒𝑒≠ 0, there is a range of 𝐼𝐼𝑒𝑒 values that will stimulate periodic neural firing. 

1.2.2  Fitzhugh-Nagumo 

It is noted that because 𝑑𝑑(𝑑𝑑) and 𝑣𝑣(𝑑𝑑) change similarly during an action potential and 

ℎ(𝑑𝑑) and 𝑛𝑛(𝑑𝑑) change slower during an action potential, 𝑑𝑑 and 𝑣𝑣 can be combined into a single 

variable that will represent activation of the neuron, potential 𝑑𝑑. In fact, 𝑛𝑛 and ℎ can be 

combined as well (really 𝑛𝑛 and 1 − ℎ) into a single variable refractoriness ω, thus drastically 
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reducing the complexity of the neural model from four dimensions to two. This results in the 

mathematical representation of the Fitzhugh-Nagumo model, which has the general form [91] 

 

 ��̇�𝑣 = 𝑓𝑓(𝑑𝑑)−ω + 𝐼𝐼
ω̇ = 𝐼𝐼(β𝑣𝑣 − γω) , 

(1.12) 

 

 

where 𝛼𝛼,𝛽𝛽,𝐼𝐼𝑛𝑛𝑑𝑑 𝛾𝛾 are chosen positive values, 𝑣𝑣 models membrane potential, ω is 

accommodation and refractoriness, and 𝐼𝐼 is external stimulating current. There are two common 

versions of 𝑓𝑓(𝑑𝑑), one where 𝑓𝑓(𝑑𝑑)  =  𝑣𝑣(α− 𝑣𝑣)(𝑣𝑣 − 1) [90] and one where 𝑓𝑓(𝑑𝑑)  =  𝑣𝑣 – 𝑣𝑣
3

3
 

[10]. In this dissertation, we will use the latter because there are less terms and will make future 

computations simpler 

 

 ��̇�𝑣 = 𝑣𝑣 −
𝑣𝑣3

3
−ω + 𝐼𝐼

ω̇ = β𝑣𝑣 − γω
, 

(1.13) 

 

 

where 𝛼𝛼 is set to 1. 

Winner-take-all neuronal networks using both the Hodgkin-Huxley and Fitzhugh-

Nagumo models will be simulated and analyzed. 
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1.3 Contributions 

This dissertation models winner-take-all networks of different neuronal models, in addition 

to different inhibition and feedback topologies. Our simulations use the complex Hodgkin-Huxley 

and simpler Fitzhugh-Nagumo neuronal models, each of which is simulated as via lateral inhibition 

and global interneuron networks with weighted feedback and low-pass filter feedback. In addition, 

unlike traditional inhibition in which signals are suppressed, the behavior of these model variations 

was studied in terms of phase. We analyzed how winner-take-all can be achieved by comparing 

the phase shift of coupled neurons. We also simulated and analyzed an even simpler winner-take-

all model previously studied, modeled instead by the postsynaptic membrane potential. This model 

was also studied comparing lateral inhibition and global interneuron. Though it is not a true 

biological network since the output is a function of firing rate as opposed to membrane potential, 

simulations show how it relates to the biological networks and represents an even simpler model 

than the Fitzhugh-Nagumo. Since the feedback is a function of the firing rate, there is no oscillatory 

behavior to experience any phase shifts. This dissertation provides a more exhaustive study of 

these neuronal networks and further insight into how they behave. 
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2.0 Winner-Take-All Networks 

Lateral inhibition is an important phenomenon found in nature. In many neural processes 

the action potential of an excited neuron will promote stimulation in neighboring neuron, 

increasing sensory perception. Lateral inhibition however does the opposite; the action potential 

of an excited neuron suppresses, or inhibits, the action potentials of its neighbors. It is a key 

mechanism in many neural systems for fundamental computations for different tasks. Commonly 

used in visual processes, lateral inhibition can also be used in neural processes for sense of hearing, 

smell, sight, and touch [38][46][48]. Because of its commonplace in natural processes and 

importance in fundamental biological and neural computations, this has inspired the realization of 

circuits and devices [39] [40]. 

In fact, it is the characteristic of lateral inhibition that makes it an ideal to compute winner-

take-all. Winner-take-all is a particular principle usually applied in neural networks in which the 

neurons compete against each other to be chosen as a winner. This is a principle that is commonly 

fundamental to artificial neural networks for learning algorithms and computational models of the 

brain for simulating fast human processes such as decision making, pattern recognition, and 

competitive learning. 

2.1 Biological Lateral Inhibition 

Lateral inhibition is a concept that has been around for a long time, as far back as the 1600s 

[41]. However, Hartline et al. [42] progressed the research in lateral inhibition by experimenting 
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on and studying the ommatidia, or photoreceptor cells, in the compound eyes of Limulus 

Polyphemus, known as the horseshoe crab. The photoreceptors of theses compound eyes behave 

like those of a human eye and are similar in anatomy, though larger and histologically simpler. 

Like the squid axon Hodgkin and Huxley used, the larger size makes them easy to experiment on 

and observe. They observed lateral inhibition by illuminating regions of the Limulus compound 

eye. What they discovered was that when a region of the compound eye was illuminated, any 

ommatidium within a close enough range of the region had its ability to respond to the light 

reduced. In fact, the illumination increased the threshold by which the photoreceptors reacted was 

increased. Furthermore, the surrounding ommatidium experienced a reduction in the number of 

impulses discharged in response to flashes of light and in the discharging frequency during steady 

illumination. It was also noted that the discharge of photoreceptors during inhibition was similar 

to the discharge of a photoreceptor operating at a comparable frequency from a weaker stimulus, 

with no inhibition taking place. 

Since then, there have been more discoveries of lateral inhibition in other biological and 

neurological systems. Arthur et al. [45] examined inhibition in the auditory system of mammals. 

More specifically they looked at a phenomenon known as two-tone inhibition in cats. Two-tone 

inhibition is when the discharge rate for a particular auditory neuron activated by a continuous 

tone is reduced by the stimulus of a tone burst. What they found was that, under the right 

conditions, inhibitory areas were observed on both sides of the best frequency of a neuron when a 

tone burst was present with a continuous tone. In a sense, it is similar to a saliency map in that an 

important or interesting section of a larger field can be identified among background noise which 

is critical for the advanced hearing that many animals have in order to identify prey and predators. 



 16 

It also the reason why many alarm systems vary multiple tones as oppose to a single monotonous 

tone that can easily be drowned out in white noise or become too passive to notice. 

Lateral inhibition is also present in the hippocampus, which is heavily responsible for 

important functions such as short-term, long-term, and spatial memory. Sayer e al. [47] studied 

synaptic plasticity between neurons in the hippocampus. Although their work focused on the 

excitory postsynaptic potential connection between neurons in the hippocampus as it pertains to 

synaptic plasticity, they reference the importance of not blocking synaptic inhibition in order to 

preserve any inhibitory postsynaptic potential that may arise as that inhibition is relevant in the 

study of the strength of synapses. Lateral inhibition is also very prevalent in a section of the 

somatosensory system in vertebrate known as the somatosensory cortex, which processes 

information related to tactile feedback such as temperature, touch, and even the perception of the 

movement of one’s body [44]. 

An extremely important neurological system that utilizes lateral inhibition is the basal 

ganglia [50] [77] [74]. The basal ganglia are located in the in the middle of the brain and 

responsible for many cognitive abilities. However, they have a particularly pivotal role in motor 

control [51] [52]. Movement is extremely complex and in any given motion, there are many other 

mechanisms that can become active that could potentially interfere with the intended action. 

Imagine a person dropped a pencil and wanted to pick it up. There are not only movements that 

need to happen (bending down, opening hand), but also movements that should not happen 

(shaking of the hands, bending too far to one side). The basal ganglia aid in this suppression of 

these other actions to allow maximum efficiency of the desired motion [50]. This explains why  
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there has been a strong relationship between the neurological diseases such as Huntington’s disease 

(procedural learning), schizophrenia (emotional behavior), and Parkinson’s disease (tremors) [54] 

[55] [53].  

2.2 Nonbiological Lateral Inhibition 

With the inspiration from the discovery of lateral inhibition, the concept has been applied 

to many real-world applications. Lyon [43] proposed a mechanism for designing a high-reliable 

digital mouse that utilized lateral inhibition in two ways. First, lateral inhibiting light sensors on a 

circuit are used to produce a bitmap, or digital image, of bright features in a dark field. This map 

is used by the mouse to track its location relative to itself, making it reliable regardless of 

orientation. Then an inhibition network that matches the bitmap pattern, in conjunction with the 

bitmap and detector array, was used to develop a tracking algorithm. This mechanism proved to 

be efficient and reliable.  

Of course, one of the bigger applications of lateral inhibition is neural networks [40]. In 

fact, neuromorphic engineering is an important and growing research area in which lateral 

inhibition can serve as a vital basis in developing biologically inspired devices to perform complex 

computations. There are a couple different learning paradigms used in neural networks, namely 

supervised and unsupervised training [89]. Supervised learning is a commonly used and researched 

method in which a network is trained on specific data with known outputs. The network is tasked 

with producing results as close to the real response as possible. However, the more interesting and  



 18 

complex method of learning is unsupervised training. The goal of this type of learning is not to 

yield a necessarily correct answer, but to utilize the input data given to make pattern correlations 

and group or categorize these correlations.   

There are examples of lateral inhibition being used in both supervised and unsupervised 

training [88], however there is much to research about effective ways to design neural networks to 

optimally learn. For example, when at a time the algorithm with which neural networks self-

organized was unknown, Kunihiko [87] hypothesized a new method for organizing synapses 

between neurons and ultimately deduced a new algorithm to effectively organize multilayered 

neural networks. It was known that layered neural network capabilities enlarged with an increased 

number of layers and his hypothesis proposed is that the synaptic connection between some cell A 

and some cell B is reinforced under the conditions that cell A fires and no other cell about cell B 

fires stronger than B. They demonstrate this for both excitory and inhibitory synapses.  

Lateral inhibition has encouraged the development of complex circuitries such as vision 

chips, integrated circuits designed such that the circuitry for image processing and image sensing 

are both on the same die as opposed to their own individual circuits [39]. Cao et al. [59] further 

progressed the utilization of lateral inhibition in this area by demonstrating its use in a convolution 

neural network. It was shown that lateral inhibition can be used to aid in saliency detection and the 

development of category-specific attention maps, which contributes to many real-world 

applications such as x-ray surveillance [60]. One of the most critical parts of artificial intelligence 

is training algorithms and Gregor et al. [58] demonstrated the impact of lateral inhibition in 

learning larger sparse codes and developing faster and more efficient algorithms. 
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2.3 Winner-Take-All via Lateral Inhibition 

Because of the inherent competitive behavior of lateral inhibition, it can be easily used to 

realize winner-take-all. The concept of winner-take-all can be found in the natural world, as shown 

in the work of Bechara [31]. In their work on the impact of drug use on a person’s ability to long 

term decisions, he suggests that during the process of considering a number of decisions, a drug 

addict will experience a daunting number of affective responses triggered by all the options being 

considered. Over time, numerous and conflicting signals could be triggering but only the stronger 

ones will have precedent, regardless of whether they will positively or negatively impact the 

person. This dominating signal can then manipulate the cognitive and behavioral parts of the neural 

system. In fact, it has been proposed that lateral inhibition is the base mechanism of the competitive 

behavior of neurons like the basal ganglia, and that winner-take-all is the base mechanism for 

deciphering the correct motor function among competing programs [71][72][50]. 

Coultrip et al. [61] simulated a biologically plausible model of winner-take-all based on a 

section of the hippocampus. Specifically, the neural network studied was simulated to represent a 

naturally-occurring rhythmic activity called the hippocampal theta rhythm. They were able to 

achieve a near-ideal biologically plausible winner-take-all mechanism in which only the most 

strongly-activated cell of a neuron group responded with spiking activity. This mechanism also 

closely parallels specific physiological and anatomical features of particular cortical circuits. 

Ermentrout [62] investigated winner-take-all neural networks by examining the impact the speed 

of inhibition has on the network’s behavior. A network mimicking a small piece of cortex is 

simulated, where there is a significantly larger number of excitatory pyramidal cells than inhibitory 

interneurons. What was shown was that for faster inhibitions, which is necessary for some types 

of cortical processing (i.e. short-term memory), the network exhibited behavior that of a winner-
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take-all network. However, as the inhibition is slowed, the network begins to experience 

synchronous oscillations. Hahnloser [80] used simulations to show how global inhibition, along 

with self-excitation will give rise to multi stable winner-take-all mechanisms. 

Fukai et al. [63] offered a comparison of the strength of lateral inhibition to the strength of 

self-inhibition to observe the impact that the ratio has the network behavior. It was determined that 

the ratio of later inhibition strength to self-inhibition strength is in fact very important to the 

network in terms of steady states. Winner-take-all behavior is achieved when both strengths are 

equal. When self-inhibition is weaker, however, there is only one active neuron and there is no 

guarantee that the neuron is the neuron that is accepting the largest input. When lateral inhibition 

is weaker, the network experiences a winners-share-all behavior where there is a group of activated 

neurons. Xie et al. [64] expands upon the concept of winner-take-all by using lateral inhibition to 

realize competition between groups of neurons. Much research revolves around a single neuron 

being the winner among a group. This work instead looks at how competition among potentially 

overlapping groups can result in the coactivation of a subset of neurons given an input, which is 

useful in areas such as unsupervised learning. The selected group of neurons represents a patter, 

where each neuron is activated by a particular feature in the pattern. This encoding becomes useful 

for sparsely distributed representations.    

2.4 Nonbiological Winner-Take-All 

Of course, there have been different winner-take-all based analog circuits implemented in 

real applications [69] that demonstrate the computation can be manifested physically. But there 

has been an abundance of research into creative ways to realize and apply winner-take-all. Feldman 
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et al. [65] demonstrated the use of winner-take-all to develop building block for connectionist 

model. The main principle of connectionism is that any mental phenomenon can be represented 

by some artificial neural network. This work offers methods of developing connectionist models 

to solve general problems that appear in the intelligent behavior field, providing a framework for 

models that address problems in connectionist models such as stability and noise-sensitivity, 

distributed decision-making, time and sequence problems, and the representation of complex 

concepts. Unlike previous model proposals, the abstraction of their model makes them more 

applicable to a wide range of uses. Koch et al. [66] examine biological phenomena related to image 

processing computations within primates and humans. The visual systems in primates and humans 

have been found to have developed over time a special way of focusing on specific objects, 

however there is a process that occurs beforehand that analyzes simple features in a field of space. 

Their work studies how neural networks can be used to emulate the phenomena associated with 

these processes such as developing topographical maps that represent elements of a visual field 

(color, movement direction, orientation, density, etc.). The selection rules used to build these maps 

are implemented using winner-take-all. 

Indiveri [13] implemented a real-time model of stimulus-driven selective attention in an 

analog VLSI 2D architecture. This work was inspired by biological systems that can discern the 

important parts of various sensory inputs, specifically images, by observing the relevant sub-

regions of the input while suppressing the noise and irrelevant sub-regions. They were able to 

mimic neural spike trains in hardware, proposing an architecture that receives inputs from synaptic 

circuits and then projects outputs to local inhibitory neurons. A chip designed specifically for the 

selective attention contains a cell designated for winner-take-all that monitors the voltage of itself 

and its neighbors to determine the winners. In competitive learning, there is much unknown about 
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the data and winner-take-all has proven to be useful in approximating the probability of a 

classification based on the activation responses of the neurons in the network. Lemmon and Kumar 

[30] used a generalized form of winner-take-all to model competitive learning paradigms and 

demonstrated how their model, can be used to design algorithms which estimate the modes of 

unknown probability density functions. 

Beyond just the standard winner-take-all network in which there is one clear winner, there 

is also a model variation in which there can be multiple winner. Majani et al. [67] thoroughly 

analyzed such a model known as the k-winner-take-all network, in which the network determines 

𝑘𝑘 winners out of 𝑛𝑛 neurons. They base their neural model from the continuous Hopfield network 

[57] and provide an extensive theoretical analysis of the k-winner-take-all network, illustrating the 

capability of the Hopfield network to solve interesting decision problems. Where their approach is 

primarily based on choosing an appropriate external input that is to be the same for all neurons, 

Wolfe et al. [81] expands upon this work by allowing external inputs to be different, among a few 

other things. 

Another variation of winner-take-all uses a slightly different form of lateral inhibition. Sum 

et al. [68] provide a thorough theoretical analysis of an algorithm called Maxnet, in which a neuron 

uses its output to not only inhibit other neurons in the network but boost its own signal. In other 

words, every neuron’s output is positively fed back into its own input and negatively fed back into 

the other neurons’ inputs. One of the problems with Maxnet however is its slow convergence rate, 

especially when values from the data are similar. Yen et al. [83] proposed an improved model 

(iMax) in which it tackles the slow convergence rate problem of Maxnet by dynamically updating 

the inhibitory strength between neurons at every iteration in the algorithm. This causes the output 

of the algorithm to decrease quicker and thus converge faster. 
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2.5 Winner-Take-All Model 

There are multiple ways to design a winner-take-all architecture, however the idea remains 

the same that the stronger signals dominate over the weaker signals. Neurons could have an 

awareness of other neural states, shown in Figure 2-1, or a central neuron could be used to decipher 

the prevailing signal, shown in Figure 2-2. This dissertation considers both models. It is also 

important to mitigate influence on the network from external noise.  Some stronger systems are 

capable of having noise drowned out by the inputs to the system whereas some weaker systems 

need to initialize with uniform output activity [17]. This work assumes more ideal conditions, in 

which there is no external noise impacting the neuronal behavior. Commonly, winner-take-all is 

represented by the suppression of weaker neurons by a stronger neuron, typically causing the 

weaker neurons to become inactive. However, it may be worthwhile to examine other possible 

representations of winner-take-all, utilizing some other reaction in the system that will differentiate 

winners from the losers.  
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Figure 2-1: Basic winner-take-all structure using a global interneuron. This example is a three-neuron network with a 

single global neuron. The three neurons receive input current and as they become active, their output is received by 

the global neuron. The global neuron uses the outputs and computes a feedback to return to the neurons in the network.  

 

Figure 2-2: Basic winner-take-all network structure using lateral inhibition. This is example is a three-neuron network 

in which all neurons receive input current and distribute their output as feedback to all other neurons in the network. 
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The dynamics of the Hodgkin-Huxley and Fitzhugh-Nagumo neurons are modified to 

reflect winner-take-all, including an additional 𝑧𝑧 term in their potential equations. In some works 

that consider models with global inhibitory neurons, 𝑧𝑧 is an inhibition current from the global 

neuron, reflecting the dynamics of its charging and discharging modes [14]. As the neurons in the 

network spike, the global inhibitory neuron enters into a charging state and after some time 

(saturation), starts to discharge until the next spike. This charging/discharging state is defined as 

 

 �̇�𝑧 = �−𝑘𝑘𝑐𝑐
(𝑧𝑧 − 𝑧𝑧0)

−𝑘𝑘𝑑𝑑𝑧𝑧
, (2.1) 

 

 

where 𝑧𝑧0 is the saturation threshold, 𝑘𝑘𝑐𝑐 is the charging rate, and 𝑘𝑘𝑑𝑑 is the discharging rate. 𝑘𝑘𝑐𝑐 is 

set to be some large value and 𝑘𝑘𝑑𝑑 is set to be some small value. As a neuron in the network spikes, 

the strength of the inhibition current increases to the saturation level quickly, such that it leaves 

little opportunity for other neurons to spike. The potential of the neurons decreases sharply, 

converging to an equilibrium point, and then the inhibition current discharges slowly as the 

neurons enter the oscillation region. The winner is determined as the neuron that enters this 

oscillation region first, as it will be the neuron with the largest input. 

For simplicity, this dissertation defines 𝑧𝑧 as a coupling function that is a summation of the 

feedbacks from the neurons in the network. Therefore, the new dynamical equations for the 

Hodgkin-Huxley and Fitzhugh-Nagumo neurons are 

 

 



 26 

 
𝐶𝐶𝑚𝑚

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −[�̅�𝐺𝑁𝑁𝑁𝑁𝑣𝑣3ℎ(𝑑𝑑 − 𝐸𝐸𝑁𝑁𝑁𝑁) + �̅�𝐺𝐾𝐾𝑛𝑛4(𝑑𝑑 − 𝐸𝐸𝐾𝐾) + �̅�𝐺𝐿𝐿(𝑑𝑑 − 𝐸𝐸𝐿𝐿)] + 𝐼𝐼𝑒𝑒 − z 
(2.2) 

 

and 

 
�̇�𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖 −

𝑣𝑣𝑖𝑖3

3
−ω𝑖𝑖 + 𝐼𝐼𝑖𝑖 − 𝑧𝑧 

(2.3) 

 

 

respectfully, where 𝑧𝑧𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘𝑛𝑛
𝑘𝑘=1 ,𝑘𝑘 ≠ 𝑖𝑖 for lateral inhibition and 𝑧𝑧𝑖𝑖 = ∑ 𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1  for global 

interneuron. 
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3.0 Analysis of Neuronal Dynamics 

Nonlinear dynamical systems are complex and can be tricky to characterize and analyze. 

There are different ways to go about this, however it is best to start by calculating the equilibrium 

(also known as critical) points of a nonlinear system and examine the behavior of the system about 

this point. True for oscillatory systems, limit cycles can be used to model behavior in that they are 

a closed solution curve in the phase space that is not a critical point [26].  

3.1 Equilibrium Points 

An equilibrium point is a point representing a constant solution to some given differential 

equation, the point where the derivative, or partial derivatives if there are multiple variables in the 

differential equation, is zero. A good place to start analyzing nonlinear systems is examining the 

equilibrium point. This is because the behavior about the equilibrium point of some given 

nonlinear system 

 

 �̇�𝑥 = 𝑓𝑓(𝑥𝑥) (3.1) 

 

 

can be quantitatively determined by linearizing around the equilibrium point 
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 �̇̅�𝑥 = 𝐴𝐴�̅�𝑥, (3.2) 

 

where �̅�𝑥 = 𝑥𝑥 − 𝑥𝑥0. Jacobian matrix 𝐴𝐴 = 𝐷𝐷𝑓𝑓(𝑥𝑥0), a matrix of partial derivatives with respect to 

each variable in each nonlinear system. It is defined that for some point 𝑥𝑥0, that if 𝑓𝑓(𝑥𝑥0) = 0 then 

𝑥𝑥0 is an equilibrium point of (1.1). The equilibrium point is a constant solution where the nonlinear 

equations intersect and can be of various types depending on matrix A. More specifically, if none 

of the eigenvalues of the partial derivative matrix 𝐷𝐷𝑓𝑓(𝑥𝑥0) have a zero real-part, or all eigenvalues 

have a nonzero real part, then x0 is considered to be a hyperbolic equilibrium point. 

Nonhyperbolic equilibrium points have a center manifold that is a set of orbits that have a 

behavior about the equilibrium point that influenced by the stable (convergence) and unstable 

(divergence) manifolds. Hyperbolic equilibrium points, however, do not have a center manifold, 

thus the behavior of their orbits is strictly determined by the stable or unstable manifolds. In Figure 

3-1 [32], the green represents the stable manifold and the blue represents the unstable manifold. 

Figure 3-2 [33] shows a center manifold in red. The distinction between hyperbolic and 

nonhyperbolic equilibrium points is important because it has been shown that when x0 is a 

hyperbolic equilibrium point, then the local behavior of the nonlinear system about the point is 

topologically equivalent to the local behavior of the linear system. 
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Figure 3-1: Example of hyperbolic saddle point. 

 

Figure 3-2: Example of nonhyperbolic saddle point. 

 

As stated earlier, the equilibrium points of a nonlinear system can be categorized based on 

their eigenvalues determined by matrix 𝐴𝐴. If all of the eigenvalues of the Jacobian matrix 𝐷𝐷𝑓𝑓(𝑥𝑥0) 

have positive real parts, then the equilibrium point is referred to as a source. If the eigenvalues are 

all negative, then it known as a sink. The equilibrium point is known as a saddle if there are both 

positive and negative real parts and it is also hyperbolic. Figure 3-3 to Figure 3-5 [34] show the 

directional fields about these types of equilibrium points. 
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Figure 3-3: Direction fields for source equilibrium point. 

 

Figure 3-4: Direction fields for sink equilibrium point. 

 

Figure 3-5: Direction fields for saddle equilibrium point. 

3.1.1  Fitzhugh-Nagumo Model 

Using the characterization of the model in this dissertation, we can study the behavior of 

the system around the equilibrium point. Given the nonlinear system representation of the 

Fitzhugh-Nagumo neural model 
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��̇�𝑣 = 𝑣𝑣 −

𝑣𝑣3

3
− ω + 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎

ω̇ = β𝑣𝑣 − γω
, 

 

 

(3.3) 

 

where 𝛽𝛽, 𝛾𝛾 >  0, the behavior of the nonlinear system can be determined by using (3.2) to 

calculate the Jacobian matrix 𝐴𝐴 by computing the partial derivatives of �̇�𝑣 and ω̇: 

 

 𝜕𝜕�̇�𝑣
𝜕𝜕𝑣𝑣

= 1 − 𝑣𝑣02, 
(3.4) 

 

 

 𝜕𝜕�̇�𝑣
𝜕𝜕ω

= −1, 
(3.5) 

 

 

 𝜕𝜕ω̇
𝜕𝜕𝑣𝑣

= β, 
(3.6) 

 

 

 𝜕𝜕ω̇
𝜕𝜕ω

= −γ, 
(3.7) 

 

 

 

𝐴𝐴 = �

𝜕𝜕�̇�𝑣
𝜕𝜕𝑣𝑣

𝜕𝜕�̇�𝑣
𝜕𝜕ω

𝜕𝜕ω̇
𝜕𝜕𝑣𝑣

𝜕𝜕ω̇
𝜕𝜕ω

� = �1 − 𝑣𝑣02 −1
β −γ�. 

 

(3.8) 
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Now that the Jacobian matrix has been determined, it can be used to calculate the 

eigenvalues for (3.3). To compute the eigenvalues, a solution needs to be found such that the 

determinant of the summation of the eigenvalue identify matrix and the Jacobian matrix is zero, or 

𝑑𝑑𝑒𝑒𝑑𝑑(𝜆𝜆𝐼𝐼 − 𝐴𝐴) = 0: 

 

 
λ𝐼𝐼 − 𝐴𝐴 = λ �1 0

0 1� − �1 − 𝑣𝑣02 −1
β −γ� = �λ− 1 + 𝑣𝑣02 1

−β λ + γ
�,  

(3.9) 

 

where for simplicity, 𝜀𝜀 = 1 − 𝑣𝑣02, giving 

 det(λ𝐼𝐼 − 𝐴𝐴) = 𝑑𝑑𝑒𝑒𝑑𝑑 ��λ − ε 1
−β λ + γ�� = (λ− ε)(λ + γ) + β

= λ2 + (γ− ε)λ + (β− εγ). 

 

(3.10) 

 

 

The solution for λ is found to be 

 

 
λ =

(ε− γ) ± �(γ− ε)2 − 4(β− εγ)
2

 
(3.11) 

 

 

and considering that the equilibrium point represents where the two functions intersect, (3.3) can 

be manipulated algebraically represent that intersection: 
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��̇�𝑣 = 𝑣𝑣 −
𝑣𝑣3

3
−ω + 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎 = 0

ω̇ = β𝑣𝑣 − γω = 0
, 

 

 

⎩
⎨

⎧ω = 𝑣𝑣 −
𝑣𝑣3

3
+ 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎

ω =
β
γ
𝑣𝑣

. 

 

(3.12) 

 

 

Since one function is cubic and the other is linear, there are two possible cases of 

intersection: one where the linear equation intersects the cubic function along its negative slope 

and one where it intersects along the positive slope. 

 

Figure 3-6: For small 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎, the equilibrium point lies on the positive slope of the cubic function. 

 

In the first case shown in Figure 3-6, the slope of the cubic function is negative meaning 

the derivative is negative. The derivative of the cubic function in (3.12) was found in (3.8), 1 − 𝑣𝑣2 
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which we refer to as ε. With 𝜀𝜀 < 0, (𝜀𝜀 − 𝛾𝛾) is negative and |𝜀𝜀 − 𝛾𝛾| > �(𝛾𝛾 − 𝜀𝜀)2 − 4(𝛽𝛽 − 𝜀𝜀𝛾𝛾) thus 

the real component of (3.11) is strictly negative, and according to the previous definition in Section 

3.1, the equilibrium point is considered a sink and is stable. This means all neighboring orbits 

about the equilibrium point will converge to the equilibrium point. 

 

Figure 3-7: For large 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎, the equilibrium point lies on the positive slope of the cubic function. 

 

In the second case shown in Figure 3-7, the slope ε is greater than 0, but also smaller than 

the slope of the linear function, which is 𝛽𝛽
𝛾𝛾
. With 𝜀𝜀 > 0, the real part of the eigenvalue is no longer 

guaranteed to be negative, making the equilibrium point unstable. In fact, when 𝛾𝛾 > 𝜀𝜀, the 

eigenvalues are strictly positive classifying the equilibrium point as a source. As such, this source 

has a characteristic where all trajectories in the region about the equilibrium point diverge away 

from it, which will be necessary to establish a limit cycle. 
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3.2 Limit Cycles 

A limit cycle is a closed trajectory that has the property of at least one other trajectory 

converging into it at t approaches infinity. It also does not include an equilibrium point. An 

example is shown in Figure 3-8. There is some neighborhood region that separates the equilibrium 

point from the limit cycle region. It is defined by its property of having at least one other trajectory 

that converges to it, whether interior or exterior, as time approaches positive or negative infinity. 

Similar to equilibrium points, limit cycles describe solutions to nonlinear systems, but they 

correspond to period solutions, hence why they are used for oscillatory systems. 

A limit cycle is considered stable if all neighboring trajectories converge to the limit cycle 

as time approaches positive infinity. It is unstable otherwise. A limit cycle is defined as 

asymptotically stable if it is stable and the limit of all neighboring trajectories approaches zero as 

time approaches infinity. Figure 3-8 shows an example of a limit cycle [35], where two other 

trajectories converge into it. 

 

Figure 3-8: Stable limit cycle (bold) with two trajectories converging into it. 
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Limit cycles are important because they are used to describe the oscillatory behavior of 

nonlinear dynamical systems. Systems with a stable limit cycle will settle into a steady trajectory 

in the phase plane. This indicates a steady state of the nonlinear system, for example a fixed 

amplitude and period, which is important when analyzing neuronal networks. 

3.2.1  Fitzhugh-Nagumo Model 

In general, oscillatory systems have limit cycles and to demonstrate the existence of a limit 

cycle, we use the Poincarè-Bendixson Theorem [26]: 

Suppose that 𝑓𝑓 ∈  𝐶𝐶1(𝐸𝐸) where E is an open subset of 𝑅𝑅2 and that �̇�𝑥 = 𝑓𝑓(𝑥𝑥) has a 

trajectory Γ with Γ+ contained in a compact subset F of E. Then if ω(Γ) contains 

no critical point of �̇�𝑥 = 𝑓𝑓(𝑥𝑥), then ω(Γ) is a periodic orbit of �̇�𝑥 = 𝑓𝑓(𝑥𝑥). 

 

What this means is that there is some region E which contains all feasible values of x and 

that there is some trajectory that continues to be contained inside some bounded closed region F, 

which is a subset of E. If the ω-limit set, that is the set of solutions of the trajectory as t approaches 

infinity, of that trajectory does not contain an equilibrium point within it, then that ω-limit set is a 

limit cycle. A graphic example is shown in Figure 3-9. 
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Figure 3-9: Graphical example of the Poincarè-Bendixson Theorem. 

 

Using (3.3), we determine a region F using a Lyapunov function defined as 

 

 
𝑑𝑑(𝑣𝑣,ω) =

𝑗𝑗
2
𝑣𝑣2 +

𝑘𝑘
2
ω2, 

(3.13) 

 

 

where j and k are positive constant values to be chosen later. When an unstable equilibrium point 

exists, there is a neighborhood about the equilibrium point, excluding it, where trajectories diverge 

away from the equilibrium point into a surrounding closed region F. Therefore, to prove 

boundedness of region F, it needs to be shown that the region for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0 is in fact bounded; that 

there exists some outer region in which 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 implying convergence of trajectories. 



 38 

 

Figure 3-10: Regions where trajectories diverge �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0� and converge �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0�. Within the gray region, 𝑥𝑥(𝑑𝑑) could 

either diverge or converge, but beyond the gray region (𝑣𝑣𝑚𝑚 and 𝜔𝜔𝑚𝑚) 𝑥𝑥(𝑑𝑑) is guaranteed to converge into the region. 

 

Taking the derivative and using chain rule, 

 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑗𝑗𝑣𝑣)�̇�𝑣 + (𝑘𝑘ω)ω̇ 

= 𝑗𝑗𝑣𝑣 �𝑣𝑣 −
𝑣𝑣3

3
−ω + 𝐼𝐼� + 𝑘𝑘ω(β𝑣𝑣 − γω) 

= 𝑗𝑗𝑣𝑣2 −
𝑗𝑗𝑣𝑣4

3
− 𝑗𝑗𝑣𝑣ω + 𝑗𝑗𝑣𝑣𝐼𝐼 + 𝑘𝑘ωβ𝑣𝑣 − 𝑘𝑘ω2γ, 

 

 

(3.14) 

 

 

however, to help simplify the equation, j and k are chosen to be 1 and 1
𝛽𝛽

 respectfully, 
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 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣2 −
𝑣𝑣4

3
+ 𝑣𝑣𝐼𝐼 −

γ
β
ω2. 

(3.15) 

 

 

To prove the Poincarè-Bendixson Theorem, a value 𝑣𝑣𝑚𝑚 > 0 needs to be determined such 

that for any (𝑣𝑣,𝜔𝜔) where |𝑣𝑣| > 𝑣𝑣𝑚𝑚, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0. Since 𝜔𝜔 is squared, it is irrelevant whether it is positive 

or negative: 

 

 
𝑣𝑣2 −

𝑣𝑣4

3
+ 𝑣𝑣𝐼𝐼 −

γ
β
ω2 < 0. 

(3.16) 

 

 

Since the quartic portion of the equation is negative and contributes heavily to the value of 

the equation, choosing a sufficiently positive value such as 𝑣𝑣𝑚𝑚 = 5 would ensure 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is negative. 

It is not known how the region behaves inside our arbitrary 𝑣𝑣𝑚𝑚 = 5 (the gray region in Figure 

3-10) so in the case where |𝑣𝑣| < 𝑣𝑣𝑚𝑚, a 𝜔𝜔𝑚𝑚 < |𝜔𝜔| needs to be chosen such that  

 

 
𝑣𝑣𝑚𝑚2 −

𝑣𝑣𝑚𝑚4

3
+ 𝑣𝑣𝑚𝑚𝐼𝐼 <

γ
β
ω𝑚𝑚

2. 
(3.17) 
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Thus, we establish a region F as defined by |𝑣𝑣| > 𝑣𝑣𝑚𝑚 and |𝜔𝜔| < 𝜔𝜔𝑚𝑚 excluding the 

neighborhood about the equilibrium point. Any trajectory 𝑥𝑥(𝑑𝑑) starting outside of region F will 

converge into the region, and any trajectory 𝑥𝑥(𝑑𝑑) starting inside region F will remain inside the 

region. According to the Poincarè-Bendixson Theorem, there exists a limit cycle inside region F. 

This limit cycle can then be used to help characterize the synchronization behavior of the winner-

take-all neuronal network. 
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4.0 Winner-Take-All in Firing Rate Competition 

This chapter presents a study of winner-take-all in firing rate competition. The analysis is 

based on the investigation of winner-take-all behavior and dynamics of the biological networks in 

the basal ganglia [37]. The neuronal model considered in this chapter is a simplified version of 

Fitzhugh-Nagumo model with the postsynaptic firing rate as its output. The focus here is the 

intensity of neuronal firing and how this is reshaped by winner-take-all competition in a network 

with lateral inhibition, and next chapter will concentrate on winner-take-all competition in the 

aspect of timing of neuronal firing.  

4.1 Lateral Inhibition Equations 

Equations (4.1) and (4.2) represent the dynamics of a neuronal lateral inhibition network. 

It is considered to be an n-neuron network where 𝑥𝑥𝑖𝑖 represents the postsynaptic membrane 

potential, 𝑦𝑦𝑖𝑖 represents the firing rate of a particular neuron 𝑖𝑖, 𝑣𝑣𝑖𝑖 > 0 represents the synaptic 

strength of the connection between neuron 𝑖𝑖 and some neuron 𝑘𝑘 where 𝑘𝑘 ≠ 𝑖𝑖, and 𝑑𝑑𝑖𝑖 represents 

the external input to neuron 𝑖𝑖, in which 𝑖𝑖 ranges from 1 to 𝑛𝑛. 𝜏𝜏 is a time constant and 𝑓𝑓𝑖𝑖(⋅) is some 

nonnegative and continuous activation function with a continuous and nonnegative first derivative 

that describes the relationship between the membrane potential and firing rate of a particular 

neuron 𝑖𝑖. In this analysis we are assuming the synaptic strength is the same between any particular 

neuron and all others in the network. It is noted that though this analysis is on a lateral inhibition 

model, simulations later will also include an interneuron variation.  
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𝜏𝜏
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝑥𝑥𝑖𝑖 −�𝑣𝑣𝑘𝑘𝑦𝑦𝑘𝑘 + 𝑑𝑑𝑖𝑖
𝑘𝑘≠𝑖𝑖

, 
(4.1) 

 

 𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖). (4.2) 

 

 

Equation (4.1) actually can be represented in a more concise form when considering the matrix-

vector form of its variables, where 𝑥𝑥 = [𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛]Τ, 𝑦𝑦 = [𝑦𝑦1, . . . ,𝑦𝑦𝑛𝑛]Τ, 𝑑𝑑 = [𝑑𝑑1, . . . ,𝑑𝑑𝑛𝑛]Τ, and 

𝑑𝑑 = [𝑣𝑣𝑖𝑖𝑘𝑘]{𝑛𝑛×𝑛𝑛} with 𝑣𝑣𝑖𝑖𝑖𝑖 = 0 and  𝑣𝑣𝑖𝑖𝑘𝑘 = 𝑣𝑣𝑘𝑘 for 𝑖𝑖 ≠ 𝑘𝑘. 

 

 
𝜏𝜏
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝑥𝑥 − 𝑑𝑑𝑦𝑦 + 𝑑𝑑. 
(4.3) 

 

If the topology was that of a global interneuron instead of lateral inhibition, the model 

would instead be defined as 

 

 
𝜏𝜏
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝑥𝑥𝑖𝑖 − 𝑧𝑧 + 𝑑𝑑𝑖𝑖, 
(4.4) 

 

where 𝑧𝑧 represents the dynamics of the global interneuron. This global interneuron sends the same 

feedback to all other neurons in the network based on the input it receives from the neurons. Its 

dynamics can be expressed as  
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𝜏𝜏𝑧𝑧
𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

= −𝑧𝑧 + �𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

, 
(4.5) 

 

where 𝜏𝜏𝑧𝑧 is a time-constant for the global interneuron and 𝑦𝑦𝑖𝑖 is remains a function for firing rate 

of a particular neuron 𝑖𝑖, the notable difference that the summation is over the firing rate for all 

neurons in the work. Characteristic analysis in this chapter can similarly be done for the global 

interneuron topology. 

 

4.2 Characteristics of the Equilibrium Point 

This section will analyze some of the key characteristics of dynamic equations as they 

relate to a neuronal winner-take-all network, as opposed to the previous section that looked at the 

characteristics from an individual neuron perspective.  

4.2.1  Existence of Equilibrium Point 

As stated before, an important concept of dynamics of nonlinear systems is equilibrium 

points. An Equilibrium point 𝑥𝑥∗ is a constant solution such that any system state that begins at it 

will stay in it indefinitely. In this case, to determine the equilibrium of this model comprised of  

(4.1) and (4.2), there would need to be found a solution to −𝑥𝑥 − 𝑑𝑑𝑦𝑦 + 𝑑𝑑 = 0, i.e., 
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 𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖 − ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘),𝑘𝑘≠𝑖𝑖   𝑖𝑖 = 1, … ,𝑛𝑛, (4.6) 

 

and because 𝑓𝑓𝑖𝑖(⋅) is nonnegative as stated before, (4.6) then implies 

 

 𝑥𝑥𝑖𝑖∗ ≤ 𝑑𝑑𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛. (4.7) 

 

The existence of an equilibrium point can be shown by using the Brouwer Fixed Point 

Theorem [70], which states a continuous function 𝑓𝑓 that maps a compact convex set to itself 

contains a fixed point 𝑥𝑥0 (possibly more) such that 𝑓𝑓(𝑥𝑥0) = 𝑥𝑥0. In this case, if a function is 

defined as ℎ𝑖𝑖(𝑥𝑥) = 𝑑𝑑𝑖𝑖 − ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘)𝑘𝑘≠𝑖𝑖  and a compact convex set is defined as 𝐷𝐷 =

[𝑑𝑑1 − ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑑𝑑𝑘𝑘)𝑘𝑘≠1 ,𝑑𝑑1] × ⋯× [𝑑𝑑𝑛𝑛 − ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑑𝑑𝑘𝑘)𝑘𝑘≠𝑛𝑛 ,𝑑𝑑𝑛𝑛], then it can be shown that the 

function ℎ(𝑥𝑥) can maps to 𝐷𝐷 and there 𝑥𝑥 = ℎ(𝑥𝑥) is in 𝐷𝐷. This can be applied using any 

activation function that as long as it is continuous, nonnegative, and monotone nondecreasing.  

4.2.2  Isolation and Uniqueness Characteristics 

Isolation is a characteristic that describes an equilibrium point where there is a small 

neighborhood about it that does not contain any other equilibrium points. Uniqueness simply 

describes whether or not there is only one equilibrium point in the system. Both of these 

characteristics are important because they help to ensure predictability of the system, as it is critical 

to understand future states based on the current state at a given time. 

The equilibrium point 𝑥𝑥∗ can be described as an isolated equilibrium point by using the 

determinant of the Jacobian matrix 𝐴𝐴 of the network. If det(𝐴𝐴) ≠ 0, then 𝑥𝑥∗ is considered isolated. 

The Jacobian matrix can then be used to determine uniqueness of 𝑥𝑥∗. It can be shown that there 
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does exist an open set of solutions such that the determinant does not equal zero. If it was to be 

assumed that there did in fact exist another equilibrium point 𝑥𝑥′ that satisfied (4.6), an equation 

describing the relationship between those two equilibrium points can be used to make 

substitutions, i.e. 𝑢𝑢 =  𝑥𝑥′ − 𝑥𝑥∗. Using the mean value theorem [70], it can be deduced that in fact 

𝑥𝑥′ = 𝑥𝑥∗ and thus there is only one equilibrium point.  

4.2.3  Stability 

The stability of an equilibrium point is important, and we previously mentioned before the different 

ways to categorize a stable equilibrium point. It is important because a system needs to be stable 

to be observable, to provide any useful information about future predictions based on current state 

and time. Expanding a further and applying to this model, a stable equilibrium point 𝑥𝑥∗ is where 

for each 𝜖𝜖 > 0, there is 𝛿𝛿 > 0 such that 

 

 ∥ 𝑥𝑥(0) − 𝑥𝑥∗ ∥< 𝛿𝛿 ⇒∥ 𝑥𝑥(𝑑𝑑) − 𝑥𝑥∗ ∥< 𝜖𝜖 for any 𝑑𝑑 ≥ 0, (4.8) 

 

an asymptotically stable equilibrium point 𝑥𝑥∗ is where the point is stable and 𝛿𝛿 can be chosen such 

that 

 

 ∥ 𝑥𝑥(0) − 𝑥𝑥∗ ∥< 𝛿𝛿 ⇒ lim
𝑑𝑑→∞

∥ 𝑥𝑥(𝑑𝑑) − 𝑥𝑥∗ ∥ = 0, (4.9) 
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and a globally asymptotically stable equilibrium point is where the point is stable and 𝑥𝑥(𝑑𝑑) 

approaches 𝑥𝑥∗as 𝑑𝑑 → ∞ for any 𝑥𝑥(0). 

These nuances of stability can be used to characterize the strength of the stability of the 

system. An equilibrium point is stable when the trajectories of the system remain inside a bounded 

region about it. It becomes asymptotically stable when those trajectories not only remain inside 

the region but converge to the equilibrium point. Even further, an equilibrium point becomes 

globally asymptotically stable when all trajectories converge to it, not just the ones within the 

region. Similar as before we can turn to a Lyapunov function of the system to determine the 

stability of this system. What is found is that given the condition 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗) < 1, the slope of this 

Lyapunov function is strictly negative, indicating an asymptotically stable equilibrium point. In 

fact, it shown that the system as a globally asymptotically stable equilibrium point.  

4.3 Winner-Take-All Equations 

In the interest in fairness between the neurons in the network, we will now consider 𝑓𝑓𝑖𝑖(⋅) =

𝑓𝑓(⋅) and 𝑣𝑣𝑖𝑖 = 𝑣𝑣 for  𝑖𝑖 = 1, … ,𝑛𝑛. This is done so that all of the neurons in the network have the 

same synaptic strengths and activation functions. So (4.1 becomes 

 

 𝜏𝜏
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝑥𝑥𝑖𝑖 −�𝑣𝑣𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑘𝑘≠𝑖𝑖

+ 𝑑𝑑𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛, 
(4.10) 
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where 𝑓𝑓(⋅) is nonnegative and globally Lipschitz continuous, 

 

 0 ≤
𝑓𝑓(𝑢𝑢1) − 𝑓𝑓(𝑢𝑢2)

𝑢𝑢1 − 𝑢𝑢2
≤ 𝑀𝑀𝑖𝑖 

(4.11) 

 

for any two different 𝑢𝑢1, 𝑢𝑢2. 

4.3.1  Order Preserving Characteristics 

Order preservation with respect to the network input is maintained when the ordering of the 

postsynaptic membrane potential of the neurons in the network corresponds to the ordering of the 

inputs to those neurons. In other words, if a neuron receives a greater input than another it’s 

potential will be greater. It is important to maintain order in the system because it is a characteristic 

that helps drive the inhibition of the winner-take-all network. With neurons receiving feedback 

from other neurons in the network, those with greater inputs should yield greater outputs in order 

to deliver larger feedback to suppress the other neurons.  

It can be shown that as long as 𝑓𝑓(⋅) is continuous (though not necessarily Lipschitz 

continuous), nonnegative, and monotone nondecreasing, (4.10) is ensured to have an order 

preserving equilibrium. Considering the ordering of neuron inputs 𝑑𝑑1 ≤ 𝑑𝑑2 ≤ ⋯ ≤ 𝑑𝑑𝑛𝑛 and outputs 

𝑥𝑥1 ≤ ⋯ ≤  𝑥𝑥𝑛𝑛, following an analysis similar to the one in Section 4.2.1 and defining a function 

ℎ𝑖𝑖(𝑥𝑥) =  𝑑𝑑𝑖𝑖 −  ∑ 𝑣𝑣𝑓𝑓(𝑥𝑥𝑘𝑘)𝑘𝑘≠𝑖𝑖  and compact convex set 𝐷𝐷 =  { 𝑥𝑥 | 𝑑𝑑𝑖𝑖 − ∑ 𝑣𝑣𝑓𝑓(𝑑𝑑𝑘𝑘)𝑘𝑘≠𝑖𝑖 ≤  𝑥𝑥𝑖𝑖 ≤  𝑑𝑑𝑖𝑖 it 

can be shown that there is an equilibrium point 𝑥𝑥∗ such that 𝑥𝑥1∗ ≤  𝑥𝑥2∗ ≤ ⋯ ≤  𝑥𝑥𝑛𝑛∗ . In regard to 

stability of an order preserving equilibrium point, it is asymptotically stable following Section 

4.2.3 provided 𝑓𝑓(⋅) is nonnegative and continuous with a continuous and nonnegative first 
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derivative. However, if in fact 𝑓𝑓(⋅) is considered to be Lipschitz continuous, then following an 

analysis similar to Section 4.2.3 it is determined that this order-preserving equilibrium point is 

globally asymptotically stable. 

4.3.2  Increased Differences between Neuronal Activities 

 
Figure 4-1: Example of sigmoidal function. 

 

In this model, the activation function plays a critical role in the winner-take-all behavior. 

In fact, it is the very mechanism that drives it. Figure 4-1 shows an example of a continuous and 

monotonic function. Applying to your model, the x-axis is the input to the function, and the y-axis 

is the firing rate for that particular neuron, though as stated before we will consider all neurons to 

have the same activating function for fairness. It can be observed in Figure 4-1 that there becomes 

an increase in the differences between neuronal activity as the inputs increase. As stated in the 

previous section, 𝑑𝑑1 ≤ 𝑑𝑑2 ≤ ⋯ ≤ 𝑑𝑑𝑛𝑛 and 𝑥𝑥1 ≤ ⋯ ≤  𝑥𝑥𝑛𝑛. This means that since 𝑥𝑥 is the input to 
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the activation function, lower valued 𝑥𝑥 will result in significantly lower firing rates because of the 

shape of the activation function. Hence, larger inputs cause larger inhibitions to the neurons in the 

network they are connected to. 

4.4 Simulation 

 

Figure 4-2: Activation function 𝑓𝑓(𝑢𝑢) = 1/(1 + 𝑒𝑒^(−(𝑢𝑢 − 1)/(1/3)) ). 

 

Simulations were performed on reproduced versions of the model based on (4.1) and (4.2) 

from [37]. With the original based on lateral inhibition topology, a modified global interneuron 

model is simulated as well. The activation function used in these simulations is of the form 

 
𝑓𝑓(𝑢𝑢) =

1

1 + 𝑒𝑒−
𝑢𝑢−𝑏𝑏
𝑁𝑁

, 
(4.12) 
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where 𝐼𝐼 = 1/3, 𝑏𝑏 = 1, and 𝜏𝜏 = 0.1. Increasing or decreasing 𝑏𝑏 shifts the function along the x-

axis right or left, respectively, and will impact the amount of inhibition returned to the neurons in 

the network. Increasing or decreasing 𝐼𝐼 will increase or decrease, respectively, the slope the 

function. This will impact the network’s sensitivity to distinguish a winner.  

Figure 4-3 through Figure 4-6 show the simulation results of the reproduced model from 

[37] using the activation function (4.12). On the left of each figure are the results from the lateral 

inhibition model. On the right of each figure are the results from the global interneuron model. 

Over all, they are pretty similar in characteristics. Though, the winner of the global interneuron 

model has a slightly smaller value than the winner of the lateral inhibition model. This is due to 

the global interneuron model having a greater amount of inhibition in the network.  

 

 

Figure 4-3: Five-neuron winner-take-all network modeled by (4.1) and (4.2) where 𝐼𝐼 = 2. 
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Figure 4-4: Five-neuron winner-take-all network modeled by (4.1) and (4.2) where 𝐼𝐼1 = 3;  𝐼𝐼2 = 𝐼𝐼5 = 2. 

 

Figure 4-5: Five-neuron winner-take-all network modeled by (4.1) and (4.2) where 𝐼𝐼1 = 3;  𝐼𝐼2 = 𝐼𝐼4 = 𝐼𝐼5 = 2;  𝐼𝐼3 =

1. 

 

Figure 4-6: Five-neuron winner-take-all network modeled by (4.1) and (4.2) where 𝐼𝐼1 = 3;  𝐼𝐼2 = 1.3;  𝐼𝐼3 = 1.9;  𝐼𝐼4 =

2.5;  𝐼𝐼5 = 1. 
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Even though this postsynaptic membrane potential model is a simplified representation of 

a true biological network (i.e. Hodgkin-Huxley), we can observe a connection between the two in 

terms of activation functions. Figure 4-7 shows the results from a single Hodgkin-Huxley neuron 

that was simulated for a wide range of increasing inputs. The output frequency, or firing rate, was 

determined for each input value resulting in a plot that appears similar to the continuous and 

monotonically increasing activation function used for the postsynaptic membrane potential model. 

 

 

Figure 4-7: Freqency of Hodgkin-Huxley neuron as the input increases. As the input increases, so does the frequency 

in a way that resembles the continuous and monotic activation function used in the simplified postsynaptic membrane 

winnner-take-all model.  
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5.0 Winner-Take-All in Phase Competition 

In this section, the architectures of the neural networks are defined. The parameters of both 

the Hodgkin-Huxley and the Fitzhugh-Nagumo models are established as well as the simulation 

parameters. Next, the synchronization characteristics are discussed. Amplitude and frequency are 

relevant; however, this dissertation focuses on phase. Finally, the models are simulated, and the 

results are discussed. Simulations were first run on the neurons without feedback to demonstrate 

the neurons' individual behavior before coupling. Simulations were then run on the neurons 

coupled in networks of five. In addition to observing the impact of the neurons' input current on 

the output of the network, other parameters such as feedback weights and filter time constants are 

also studied. When analyzing the behavior of winner-take-all, it is more informative to examine 

models using input values that are relatively close together. It is important to observe how sensitive 

a system to similar inputs and its ability to distinguish a winner.  

5.1 Simulation Model 

To model and simulate Hodgkin-Huxley and Fitzhugh-Nagumo neuron based winner-take-

all networks, Simulink is used to create block diagrams of both the neurons and neural network, 

as depicted in Appendix A. MATLAB is also used to provide simulation settings and control logic. 

A modification has been made to the original coupling term for the winner-take-all model.  

The Hodgkin-Huxley neuron simulated is based on (2.2) and the Fitzhugh-Nagumo neuron 

is simulated using (2.3). Each neuron takes two inputs, input voltage and voltage from the coupling 
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related to winner-take-all. The global neuron essentially computes the coupling function z, 

receiving the voltages from coupled neurons and summing them to return as feedback input to the 

neurons in the network. Since neuron voltages oscillate in the model, negative voltage values have 

been eliminated by setting the lower bound of voltages used for coupling to 0, further simplifying 

the model. Figure 6-6 and Figure 6-7 show how the coupling voltage are summed and supplied to 

the neurons. 

5.2 Synchronization Analysis 

In this section we discuss some characteristics involved with analyzing phase 

synchronization of neurons. Different types of analyses have been done to mathematical express 

and characterize neural behavior, especially oscillatory synchronization. The three common 

attributes used to describe synchronization, or wave forms in general, are frequency, amplitude, 

and phase. Although mentioned here, a more thorough analysis using frequency and amplitude 

characteristics can be done in the future. A technique based on phase response curve is suggested 

for the analysis of synchronization phase characteristics of winner-take-all networks. 

 

5.2.1  Frequency and Amplitude Analysis 

Frequency is a common and popular method to characterize synchronization, as many 

systems studied show that neuronal devices oscillating at different frequency will tend to agree on 

a common frequency at which to resonate. Chiarulli [5] used the behavior of the frequency to 
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develop a mathematical model of clustered oscillators. Specifically, their work was able to show 

that given the frequency synchronization behavior of their generic oscillator model, the oscillators 

act as a degree of match circuit when coupled together. They were then able to make implications 

about the types of computations could be done. Extending the previous work, Jennings [6] used 

frequency synchronization to compute convolutions, and therefore convolution-based operations. 

These computations were modeled in applications in image processing. 

A neural spike in a network could impact the frequency of an individual neuron or across 

the entire network. Neurons that individually resonate at different frequencies might find that when 

coupled together, and with the right parameters, will synchronized to a new common frequency. 

Conversely, it is possible that the neurons coupled together could be synchronized at a particular 

frequency and any neural spike would cause them to them to become unsynchronized or change 

the synchronous frequency value. 

Amplitude, although not directly related to synchronization, is a useful characteristic, 

especially when considering biologically plausible neural networks where the amplitude of the 

true output can influence the feedback propagated in the network. There may be some useful 

information provided by the amplitudes of the neural responses, or at least some correlation 

between the amplitudes and frequency or phase. 

 Sase [19] analyzed a type of synchronization that combines both phase and amplitude, 

phase-amplitude coupling. This is where the phase of the lower frequency oscillation drives the 

power of the coupled higher frequency oscillation. This synchronizes the amplitude of faster 

rhythms with the phase of slower rhythms. Gambuzza [22] conducted an analysis comparison 

between amplitude and phase dynamics to show that in fact, phase synchronization may be 

enhanced when amplitude dynamics is no negligible. They find that regardless of network 
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topology, synchronization in random complex networks is enhanced by the amplitude dynamics. 

Urazhdim [25] examined the synchronization behavior of spin torque nano-oscillators. These 

particular oscillators are one of the smallest and also have a complex nonlinear dynamical system 

whose frequency depends on the amplitude of the oscillation. 

5.2.2  Phase Analysis 

Phase is another characteristic to describe synchronization and the focus. Phase is a 

particularly interesting form of inhibition because it is not necessarily a traditional inhibition where 

one neuron becomes active while others are not. Instead winner-take-all can be represented by 

phase shifts. Shuai and Durand [20] presented a flexible definition of phase of a chaotic neuron 

and considers the application of phase synchronization in the brain. This work specifically 

analyzes the phase of a Hindmarsh-Rose neuron model, reconsidering its chaotic dynamics. Yang 

et. al. [23] developed a simplified phase model to perform phase and frequency synchronization 

prediction, in order to speed up the simulation of coupled oscillator systems. Their work showed 

that a new model can be provided that simplifies the analysis of larger system. Syrjala et. al. [24] 

analyzed the impact of phase noise on self-interference cancellation capabilities of radio 

transceivers. In this regard, their work looks at the fluctuations in the phase of the radio wave  

forms and analyzing how that impacts the communication abilities of full-duplex direct-conversion 

radio transceivers, which transmit and receive signals simultaneously at the same center-

frequency. 

A spike from one neuron in a network could cause a phase shift in its own oscillatory 

pattern or in others, impacting the entire system. Depending on the fashion in which the neurons 

in the network are coupled together, the phase shift may be more drastic in some neural responses 
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than others. It could be that after a neural spike, phase differences among neural responses will 

increase or decrease depending on the spike. Though it is possible that phase differences will 

remain uniform for any spike, and thus is worth investigating. The following sections further 

describe the characteristics of phase synchronization [95]. 

5.2.2.1 Determining Amount of Phase Change 

Typically, when a neuron receives some amount of current (𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎 in (3.3)), for example a 

pulse, its membrane potential increases and spiking occurs. However, sometimes this perturbation 

will not necessarily result in a spike immediately after being injected. Instead, this burst of current 

can influence when the spiking occurs. That is, there is a difference in the timing of subsequent 

spikes, or the phase of the spiking behavior has shifted. Figure 5-1 shows an example of a phase-

shift, where if a neuron were to receive some sort of perturbation, the resulting phase-shift would 

cause the spiking of the neuron to occur earlier.  
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Figure 5-1: Phase-shift example. Two sin waves stat at the same point but over time, a phase shift develops. 

The phase after the perturbation 𝜗𝜗𝑃𝑃 is said to be greater than the phase of the original spike 

𝜗𝜗, the magnitude of which is determined by the timing of the current pulse (or other stimuli) 

relative to the phase experienced by the spike. The phase response curve can be used to measure 

these phase-shifts and is represented as a function described by 𝑃𝑃𝑅𝑅𝐶𝐶(𝜗𝜗) = {𝜗𝜗𝑃𝑃 − 𝜗𝜗}, where 𝜗𝜗𝑃𝑃 >

𝜗𝜗 correspond to phase advances and 𝜗𝜗𝑃𝑃 < 𝜗𝜗 correspond to phase delays, in terms of the timing of 

the following spikes. Not only can the phase response curve be measured for a brief or weak 

stimulus such as a pulse, but it can be measured for any type of stimulus. The spiking behavior 

simply needs to occur long enough such that the transients from the stimulus subside and the 

spiking becomes stable enough to observe. This is particularly important for more biologically 

plausible neuronal networks because, as seen later, certain models need time for the phase shift to 

occur. 
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In addition to phase response curves, there is another type of phase measurement that can 

be used called the phase transition curve [96] defined as 𝜗𝜗𝑃𝑃 = 𝑃𝑃𝑃𝑃𝐶𝐶(𝜗𝜗). Although the two methods 

of measurements are equivalent, because 𝑃𝑃𝑃𝑃𝐶𝐶(𝜗𝜗) = {𝜗𝜗 + 𝑃𝑃𝑅𝑅𝐶𝐶(𝜗𝜗)} mod 𝑃𝑃, PRCs are typically 

used when there are smaller phase shifts occurring and phase transition curves are usually used 

when the phase shifts become so large they can be compared with the period 𝑃𝑃 of the oscillatory 

behavior. Such large phase shifts will be shown later in the simulation results. 

5.2.2.2 Types of Phase Responses and the Poincare Phase Map 

There are two types of phase responses for both the phase response curve and phase 

transition curve. The first is Type 0 (strong), where the response results in discontinuous phase 

response curves and phase transition curves with mean slope 0. The second is Type 1 (weak), 

where the response results in continuous phase response curves and phase transition curves with 

mean slope 1. In addition, there is a parametrized version of the phase response curve and phase 

transition curve that considers the amplitude, or magnitude, of the stimulus causing the 

perturbation described as 𝑃𝑃𝑅𝑅𝐶𝐶(𝜗𝜗,𝐴𝐴) and 𝑃𝑃𝑃𝑃𝐶𝐶(𝜗𝜗,𝐴𝐴), respectively.  

Phase response curves are not only limited to describing neuronal responses to single 

pulses, but they can also be used to study responses to periodic pulse trains. Consider the phase of 

the neural behavior, 𝜗𝜗𝑛𝑛, at the time the nth pulse of the train arrives. Using 𝑃𝑃𝑅𝑅𝐶𝐶(𝜗𝜗𝑛𝑛), the new 

phase following the perturbation becomes 𝜗𝜗𝑛𝑛 + 𝑃𝑃𝑅𝑅𝐶𝐶(𝜗𝜗𝑛𝑛). If we consider the period of the pulsed 

stimulation 𝑃𝑃𝑠𝑠, the phase of oscillation before the following (n+1)th pulse is 𝜗𝜗𝑛𝑛 + 𝑃𝑃𝑅𝑅𝐶𝐶(𝜗𝜗𝑛𝑛) + 𝑃𝑃𝑠𝑠. 

This results in a stroboscopic mapping of a circle to itself referred to as the Poincare phase map, 

defined as 

 𝜗𝜗𝑛𝑛+1 = (𝜗𝜗𝑛𝑛 + 𝑃𝑃𝑅𝑅𝐶𝐶(𝜗𝜗𝑛𝑛) + 𝑃𝑃𝑠𝑠) mod 𝑃𝑃. (5.1) 
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5.2.2.3 Determining Fixed Points 

Generalizing the Poincare phase map (5.1) as  

 

 𝜗𝜗𝑛𝑛+1 = 𝑓𝑓(𝜗𝜗𝑛𝑛), (5.2) 

 

the fixed points 𝜗𝜗 = 𝑓𝑓(𝜗𝜗𝑛𝑛) can be used to understand the orbits of the map, as these points are 

similar to the usual equilibria of continuous dynamical systems such as described in Section 3.1. 

Continuing the same concept, the fixed point represents the intersection of 𝑓𝑓(𝜗𝜗𝑛𝑛) and the line 

describing where 𝜗𝜗𝑛𝑛+1 = 𝜗𝜗𝑛𝑛 and the orbit 𝜗𝜗𝑛𝑛+1 = 𝑓𝑓(𝜗𝜗𝑛𝑛) = 𝜗𝜗𝑛𝑛 is fixed at that intersection. As 

mentioned previously, a fixed point is asymptotically stable when all nearby trajectories converge 

to it. Given a fixed point 𝜗𝜗, it is asymptotically stable if for all 𝜗𝜗𝑛𝑛 within a sufficiently small 

neighborhood about 𝜗𝜗, 𝜗𝜗𝑛𝑛 → 𝜗𝜗 as 𝑛𝑛 → ∞. A fixed point is unstable is any of the points 𝜗𝜗𝑛𝑛 within 

a sufficiently small neighborhood about the point 𝜗𝜗 diverges away from it. Again, we can use the 

slope 𝑣𝑣 = 𝑓𝑓′(𝜗𝜗) to determine the stability of the fixed point. 

5.2.2.4 Synchronization 

 

Figure 5-2: Synchronization examples. 

Figure 5-2 shows different types of synchronization between the input pulse train on the bottom 

and the spiking output of the neuron. This synchronization corresponds to stable fixed point on 
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the Poincare phase map, where in-phase corresponds to 𝜗𝜗 = 0, anti-phase corresponds to 𝜗𝜗 =

𝑃𝑃/2, and out-of-phase corresponds to any other value. A fixed point of (5.1) satisfies 𝑃𝑃𝑅𝑅𝐶𝐶(𝜗𝜗) =

𝑃𝑃 − 𝑃𝑃𝑠𝑠 if the stimulation period 𝑃𝑃𝑠𝑠 is close to the period of the unperturbed oscillation 𝑃𝑃. This is 

the intersection between the phase response curve and the horizontal line 𝑃𝑃 − 𝑃𝑃𝑠𝑠. Maxima and 

minima values on the phase response curve correspond to thresholds in which the oscillation 

becomes stable or unstable.  

5.2.2.5 Phase Locking and Phase Lock Regions 

 

Figure 5-3: Synchronizing phase locking 

Phase locking describes the relationship between the input perturbation and the spiking 

output. It is expressed as p:q-phase-locking, where the neuron will fire p times for every q input 

pulse as shown in Figure 5-3. 1:1-phase locking (synchronization) or any other p:1-phase-locking 

relates to the Poincare phase map (5.1) with p fired spikes per input pulse. This is important as the 

Poincare phase map provides information strictly about the phase of the neuron at a particular input 

pulse, but it does not provide information about the number of spikes between pulses.  
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Figure 5-4: Sample p:q-phase locked regions. 

We can somewhat predict the phase-lock state of a network by determining the regions of 

existences for the states based on the magnitude of the input stimuli. As the amplitude of the stimuli 

increases, it produces a stringer phase-shift. As mentioned previously, synchronization occurs 

during a 1:1-phase locked state. An input stimulus train would need a period 𝑃𝑃𝑠𝑠 sufficiently close 

to the normal period of the neuron’s oscillatory behavior 𝑃𝑃. So as the amplitude increases, this 

difference 𝑃𝑃𝑠𝑠 − 𝑃𝑃 becomes greater and phase-shift region of existence increases, as shown in 

Figure 5-4. Every state has its own region and overlapping can occur, meaning multiple states can 

coexist. The lower the locking order (𝐼𝐼 + 𝑞𝑞) the wider the phase state region is, making it easier 

to observe. We will show through simulation how the magnitude of the input stimuli, along with 

other model parameters, impact the ability of the neuronal networks to synchronize in phase. 
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5.3 Feedback Models 

There are two topologies of feedback tested in these simulations. One is a simple weight 

applied to the output of each neuron. The other topology sends the output of each neuron through 

a low-pass filter. In both cases, the results from every neuron in the network is summed, according 

to either an interneuron or inhibitory design, and then sent back as feedback input to the neurons. 

5.3.1  Applied Weights 

Applying weights to the feedback of neurons controls the strength of the signal. It is 

essentially a form of coupling strength between neurons. In any given neuronal network, 

depending on the type of neurons used and the parameter settings of the model, the connection 

between neurons can be strong (the output of the neuron contribute significantly to the network) 

or weak (the impact of neuron outputs is small). There are numerous factors that can affect this 

coupling strength, but these simulations focus on the only the feedback weights. The weights range 

between 0 and 1, with 1 representing 100% of the signal. 

5.3.2  Low-Pass Filter 

A low-pass filter attenuates high frequency signals greater than some threshold value 

controlled by the time constant 𝜏𝜏. It is defined by 

 

 
𝑑𝑑(𝑠𝑠) =

1
1 + 𝜏𝜏𝑠𝑠

, 
(5.3) 
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which can be tuned such that the output of the neuron approximates a DC signal, as shown in 

Figure 5-5. The blue line us the original signal and the red, yellow, and purple lines are the same 

signal when 𝜏𝜏 is 1, 5, and 100, respectively. Because the signal approaches a DC signal for larger 

time constants, it can be interpreted as a constant value similar to the input current and be fed back 

into the neurons. 

 

 

Figure 5-5: Low-pass filter example using a simple sine wave as the input and tuning the time constant. 

5.3.3  Lateral Inhibition vs Global interneuron 

There are two topologies of inhibition simulated in this dissertation: Lateral inhibition and 

global interneuron.  The lateral inhibition neuronal network excludes a neurons own output from 

its feedback, which gives every neuron in the network potentially different feedbacks depending 

on the input currents received by them. In a global interneuron neuronal network, every neuron in 
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the network receives feedback that considers its own output. Effectively, this means all neurons in 

the network will receive the same amount of feedback. 

 

5.4 Hodgkin-Huxley Model 

Referring to the model equations of the Hodgkin-Huxley model, more specifically 

equations (1.7) and (1.11), the following values were chosen for the parameters: 

 

Table 5-1: Hodgkin-Huxley Model Parameters [92] 

Parameter Value 
�̅�𝐺𝑁𝑁𝑁𝑁 120 

𝐸𝐸𝑁𝑁𝑁𝑁 50 

�̅�𝐺𝐾𝐾 36 

𝐸𝐸𝐾𝐾 -77 

�̅�𝐺𝐿𝐿 0.3 

𝐸𝐸𝐿𝐿 -54.4 
𝐶𝐶𝑚𝑚 1 

𝛼𝛼𝑛𝑛 0.01
𝑑𝑑 + 55

1 − 𝑒𝑒−
𝑉𝑉+55
10

 

𝛼𝛼𝑚𝑚 0.1
𝑑𝑑 + 40

1 − 𝑒𝑒−
𝑉𝑉+40
10

 

𝛼𝛼ℎ 0.07𝑒𝑒−
𝑉𝑉+65
20  

𝛽𝛽𝑛𝑛 0.125𝑒𝑒−
𝑉𝑉+65
80  

𝛽𝛽𝑚𝑚 4𝑒𝑒−
𝑉𝑉+65
18  

𝛽𝛽ℎ 1

1 + 𝑒𝑒−
𝑉𝑉+35
10
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According to simulations tested, the Hodgkin-Huxley neuron operates with an input range 

of about 10 to 150. For these experiments, the input current values used range from 25 to 30. In 

addition, weighted feedback model, the values for the weights range from 0.1 to 1. The low-pass 

filter feedback simulations have time-constant values ranging from 0.1 to 100. 

Before simulating the network, simulations were run to show how the neurons behave 

individually when uncoupled and Figure 5-6 to Figure 5-9 show the results of those simulations. 

The input current to neuron 1 is held constant while the input current to neuron 2 is incrementally 

increased. What is observed, as expected, is that as the input current to neuron 2 increases, its 

frequency also increases, while there is also a decrease in amplitude. These characteristics become 

important when coupling the neurons together depending on how they are coupled together. In 

addition to comparing simulations between different parameter values, a comparison was also 

made between the interneuron model and the inhibitory model, the key difference being that the 

output of a neuron is not contributed to its own feedback. Therefore, in the inhibitory model, the 

neurons receive potentially different amounts of feedback. Whereas in the interneuron model, all 

the neurons are receiving the same feedback.  
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Figure 5-6: Two uncoupled Hodgkin-Huxley neurons where 𝐼𝐼1 = 𝐼𝐼2 = 25. 

 

Figure 5-7: Two uncoupled Hodgkin-Huxley neurons where 𝐼𝐼1 =  25, 𝐼𝐼2 =  25.5. 
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Figure 5-8: Two uncoupled Hodgkin-Huxley neurons where 𝐼𝐼1 =  25, 𝐼𝐼2 =  27. 

 

Figure 5-9: Two uncoupled Hodgkin-Huxley neurons where 𝐼𝐼1 =  25, 𝐼𝐼2 =  30. 
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5.4.1  Lateral Inhibition Weighted Feedback Model 

Figure 5-10 through Figure 5-12 show simulation results of a 5-neuron network with a 

weighted feedback value of 1. As the input current to neuron 1 is increases, and the difference 

between input currents becomes larger, the time it takes for the neurons to lock and synchronize is 

decreased. The neurons shift phases almost by 180 degrees, however they synchronize right before 

neuron 1 passes the group. When the feedback weight is decreased to 0.5 as shown in Figure 5-14 

through Figure 5-16, for closer input values (𝐼𝐼1 = 25.5) the lower weight causes the feedback to 

have less impact, as it takes significantly longer for the neurons to synchronize. As the input current 

of neurons 1 is increased, there is a delay before synchronization compared to when the weight is 

1, however it is not as significant as for closer input values. 

Decreasing the weight even further to 0.1 as shown in Figure 5-18 through Figure 5-20, we 

observe that there is a significantly delay in synchronization for closer input currents. In fact, as 

the input current of neuron 1 increases, there is no longer synchronization and the neuron 1 

oscillates at a faster frequency than the rest of the network (Figure 5-19 would show the 

mismatched frequencies if it were viewed at a later time). Figure 5-13, Figure 5-17, and Figure 

5-21 show simulation results when they neurons in the network have varying input currents for 

feedback weights of 1, 0.5, and 0.1, respectively. These results show that unlike the other 

simulations where only one input current differed from the other, varying the feedback weights 

does not impact the output of the neurons. The neurons are not synchronized, although the 

frequency at which the neurons oscillate correspond to the order of winners and losers. The higher 

the input current, the faster the frequency.   
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Figure 5-10: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-11: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-12: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-13: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 



 72 

 

Figure 5-14: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 0.5 where 

𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-15: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 0.5 where 

𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-16: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 0.5 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-17: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 0.5 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-18: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 0.1 where 

𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-19: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 0.1 where 

𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-20: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 0.1 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-21: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with weighted feedback of 0.1 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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5.4.2  Lateral Inhibition Low-Pass Filter Feedback 

Figure 5-22 through Figure 5-24 show simulations of a 5-neuron low-pass feedback 

network with a time constant value of 0.1. Again, it is observed that as the input current to neuron 

1 is increased, the time it takes for the network to achieve synchronization is decreased. The phase 

shift between neuron 1 and the rest of the network is almost 180 degrees. However, as the time-

constant of the low-pass filter is increased to 10 (Figure 5-26 through Figure 5-28) and 100 (Figure 

5-30 through Figure 5-32) approximate a DC signal, the network no longer synchronizes. As the 

input current to neuron 1 is increased, the difference in frequencies between neuron 1 and the 

network becomes significantly greater. Similarly as with the weighted feedback model, 

  

Figure 5-25 (𝜏𝜏 = 0.1), Figure 5-29 (𝜏𝜏 = 0.1), and Figure 5-33 (𝜏𝜏 = 0.1), show that with varying 

input currents the model does not synchronize, but there is little impact that the value of the time-

constant has on the neuron outputs.  
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Figure 5-22: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1; 𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-23: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1; 𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-24: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1; 𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-25: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1; 𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-26: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10; 𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-27: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10; 𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-28: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10; 𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-29: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10; I1=30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-30: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100; 𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-31: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100; 𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-32: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100; 𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-33: Five-neuron Hodgkin-Huxley inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100; 𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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5.4.3  Global Interneuron Weighted Feedback  

Figure 5-34 through Figure 5-36 show simulations of a 5-neuron weighted feedback 

network with a weight of 1. They network achieves synchronization and a phase shift of almost 

180 degrees. As the input current to neuron 1 is increased, the faster the network is able to 

synchronize.  When the weight of the feedback is increased to 0.5 as shown in Figure 5-38 through 

Figure 5-40, for closer input current values, the network is able to synchronize, however it unable 

to for larger input current differences. Because the weight is smaller, the system takes longer to 

synchronize. Increasing the input current of neuron 1 to 0.1 (Figure 5-42 through Figure 5-44), the 

network synchronizes for close input current values. The network is unable to synchronize as the 

input current of neuron 1 gets even larger. The difference in frequencies between neuron 1 and the 

rest of the network increases as the input current of neuron 1 increases. When varying the 

frequencies, there is no difference in impact between the weights of the feedback as shown in 

Figure 5-37 (weight = 1), Figure 5-41 (weight = 0.5), and Figure 5-45 (weight = 0.1) 
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Figure 5-34: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-35: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 



 85 

 

Figure 5-36: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-37: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-38: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 0.5 where 

𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-39: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 0.5 where 

𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-40: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 0.5 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-41: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 0.5 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-42: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 0.1 where 

𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-43: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 0.1 where 

𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 



 89 

 

Figure 5-44: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 0.1 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-45: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with weighted feedback of 0.1 where 

𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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5.4.4  Global Interneuron Low-Pass Filter  

Figure 5-46 through Figure 5-48 show simulation results of a 5-neuron low-pass feedback 

network with a time constant value of 0.1. As expected, the network synchronizes with about 180-

degree phase shift and as the input current in neuron 1 increases, the time it takes to achieve 

synchronization decreases. However, when the time-constant is increased to 10 (Figure 5-50 

through Figure 5-52) and 100 (Figure 5-54 through Figure 5-56), the network cannot synchronize. 

Though as the input current to neuron 1 increases, its frequency also increases. Figure 5-49, Figure 

5-53, and Figure 5-57 again show that increasing the time constant has little impact on the network 

when the input current to the neurons vary.  

 

Figure 5-46: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1; 𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-47: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1; 𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-48: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1; 𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-49: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1; 𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

 

Figure 5-50: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10; 𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-51: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10; 𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-52: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10; 𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-53: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10; 𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

 

 

Figure 5-54: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100; 𝐼𝐼1 = 25.5, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-55: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100; 𝐼𝐼1 = 27, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 

 

Figure 5-56: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100; 𝐼𝐼1 = 30, 𝐼𝐼2 = 𝐼𝐼3 = 𝐼𝐼4 = 𝐼𝐼5 = 25. 
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Figure 5-57: Five-neuron Hodgkin-Huxley interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100; 𝐼𝐼1 = 30, 𝐼𝐼2 = 27, 𝐼𝐼3 = 25.5, 𝐼𝐼4 = 𝐼𝐼5 = 25. 

5.5 Fitzhugh-Nagumo 

Referring to the model equations of the Fitzhugh-Nagumo model, more specifically 

equation (1.13), the following values were chosen for the parameters: 

Table 5-2: Fitzhugh-Nagumo Parameters 

Parameter Value 
𝛽𝛽 0.08 

𝛾𝛾 0.064 
 

According to simulations tested, the Fitzhugh-Nagumo neuron operates within an input 

range of about 0.1 to 0.5. For these experiments, the input current values used range from 0.1 to 

0.5. Just as before with the Hodgkin-Huxley model, weights for the feedback will range from 0.1 
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to 1 and time-constant values will range from 0.1 to 100. Figure 5-58 through Figure 5-61 again 

show the behavior of the individual uncoupled neurons. The input current of neuron 2 remains 

constant while the input current to neuron 1 is increased. In this model, the frequency of neuron 1 

decreases as its input current increases.  

 

 

Figure 5-58: Two uncoupled Fitzhugh-Nagumo neurons where 𝐼𝐼1 = 𝐼𝐼2 = 0.1. 
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Figure 5-59: Two uncoupled Fitzhugh-Nagumo neurons where 𝐼𝐼1 =  0.15;  𝐼𝐼2 =  0.1. 

 

Figure 5-60: Two uncoupled Fitzhugh-Nagumo neurons where 𝐼𝐼1 =  0.3;  𝐼𝐼2 =  0.1. 
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Figure 5-61: Two uncoupled Fitzhugh-Nagumo neurons where 𝐼𝐼1 =  0.5;  𝐼𝐼2 =  0.1. 

5.5.1  Lateral Inhibition Weighted Feedback  

Figure 5-62 through Figure 5-64 show simulation results of a 5-neuron weighted feedback 

network with a weight of 1. The network synchronizes immediately with a 90-degree phase shift, 

unlike the Hodgkin-Huxley model where the phase shift is gradual. As the input current to neuron 

1 increases, its pulse width gets wider, while maintaining the phase-shift. The pulse width of the 

rest of the network remains about the same but is pushed because of the change in the behavior of 

neuron 1. Decreasing the weight of the feedback to 0.5 as in Figure 5-66 through Figure 5-68, it is 

observed that the pulse widths of the neurons are narrower since they have less impact on the 

network with a lower weight. The pulse widths still increase, however, as the input current of 

neuron 1 is increased while maintaining the phase shift. When the weights are decreased further 
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to 0.1, the neuron outputs have even less impact on the network. The wave forms for neuron 1 and 

neuron 2 are more similar, besides the jitter during the first cycle. There is still a 90-degree shift. 

Figure 5-65, Figure 5-69, and Figure 5-73 show simulations for varying input currents for 

feedback weight values of 1, 0.5, and 0.1, respectively. They show that the weight of the feedback 

does have some impact on the behavior of the network. In Figure 5-65 and Figure 5-69, neuron 1 

and neuron 2 are closely synchronized, almost indistinguishable, and spike first. However, neuron 

4 and neuron 5 appear to spike ahead of neuron 3. Figure 5-73 initially shows the corresponding 

spikes in the order of the winners. Then, neuron 2 and neuron 3 spike similarly ahead of neuron 1. 

 

Figure 5-62: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-63: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-64: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-65: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 1 where 

𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-66: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 0.5 where 

 𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-67: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 0.5 where 

 𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-68: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 0.5 where 

 𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-69: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 0.5 where 

 𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-70: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 0.1 where 

 𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-71: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 0.1 where 

 𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-72: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 0.1 where 

 𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-73: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with weighted feedback of 0.1 where 

 𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

5.5.2  Lateral Inhibition Low-Pass Filter Feedback  

Figure 5-74 through Figure 5-76 show simulation results of a 5-neuron low-pass feedback 

network with a time constant value of 0.1. There is an immediate phase shift of 90 degrees, 

however the spiking of neuron 1, is significantly larger than the spiking of the rest of the network. 

The pulse width of neuron 1 increases as its input current is increased. The pulse width of the rest 

of the network remains the same but is shifted as the width of neuron 1 is increased. When the 

time-constant is increased to 10, as shown in Figure 5-78 through Figure 5-80, the network 

becomes unstable. In fact, after more simulations were done, the network begins to experience this 

behavior when the time-constant is between about 1 and 25. Time-constant values greater than that 
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result in stable behaviors similar to Figure 5-82 through Figure 5-84, which show simulations with 

a time constant value of 100. The network behaves similar to the Hodgkin-Huxley model in that 

the phase shift occurs gradually. In addition, the shift is not as large as for smaller time-constants. 

Figure 5-77, Figure 5-81, and Figure 5-85 show simulations for varying input currents for 

time-constant values of 0.1, 10, and 100, respectively. Similar to the simulations with the weighted 

feedback, the time-constant values impact the order of the winners. 

 

Figure 5-74: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1;  𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-75: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1;  𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-76: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1;  𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-77: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1;  𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-78: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10;  𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-79: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10;  𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-80: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10;  𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-81: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 10;  𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-82: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100;  𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 



 112 

 

Figure 5-83: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100;  𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

 

Figure 5-84: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100;  𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-85: Five-neuron Fitzhugh-Nagumo inhibition winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 100;  𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

5.5.3  Global Interneuron Weighted Feedback  

Figure 5-86 through Figure 5-88 show simulations of a 5-neuron weighted feedback 

network with a weight of 1. The network synchronizes with a 90-degree phase shift, where the 

spiking of neuron 1 is greater than the rest of the network. As the input current to neuron 1 is 

increased, the frequency of the neuron oscillations is increased proportionally, and the phase-shift 

is maintained. When the feedback weights are decreased, as in Figure 5-90 through Figure 5-92, 

the same observations can be made, with a slight difference in that the oscillation of the losers is 

increased nominally. Decreasing the weights of the feedback even further to 0.1, as shown in 

Figure 5-94 through Figure 5-96, again shows the same phase-shift and the amplitude of neuron 2 

increasing. 
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Figure 5-89, Figure 5-93, and Figure 5-97 show simulations for varying input currents for 

feedback weight values of 1, 0.5, and 0.1, respectively. They show again that for varying input 

currents, the behavior of network changes for different values of feedback weights. 

 

Figure 5-86: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 1 where 

 𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-87: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 1 where 

 𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-88: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 1 where 

 𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-89: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 1 where 

 𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-90: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 0.5 where 

 𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-91: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 0.5 where 

 𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-92: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 0.5 where 

 𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-93: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 0.5 where 

 𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-94: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 0.1 where 

 𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-95: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 0.1 where 

 𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

 

Figure 5-96: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 0.1 where 

 𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-97: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with weighted feedback of 0.1 where 

 𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

5.5.4  Global Interneuron Low-Pass Filter  

Figure 5-98 through Figure 5-100 show simulations of a 5-neuron low-pass feedback 

network with a time constant value of 0.1. It can be observed that there is not much impact 

increasing the input current of neuron 1 has on the network. There is still a 90-phase shift between 

the winner and losers. Figure 5-102 through Figure 5-104 show that after increasing the time-

constant to 10, the network has a difficult time distinguishing between winners and losers. They 

appear to be synchronized in the same phase with the same frequency. Though as the input current 

to neuron 1 is increased, it does shift slightly ahead of the rest of the network. Figure 5-106 through 

Figure 5-108 show similar results, in that for close input current values, a winner is 

indistinguishable. As the input current increases, there gradually becomes a phase-shift. Figure 
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5-101, Figure 5-105, and Figure 5-109 show simulation results for varying input currents for time-

constant values of 0.1, 10, and 100, respectively. They show that for smaller time-constants, the 

network does not synchronize, but as the time-constant increases, the network becomes more stable 

and the phase-shift of the neuron outputs corresponds to the order of the winners. 

 

Figure 5-98: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1;  𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 



 122 

 

Figure 5-99: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback where 

𝜏𝜏 = 0.1;  𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-100: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 0.1;  𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-101: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 0.1;  𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-102: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 10;  𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 



 124 

 

Figure 5-103: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 10;  𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-104: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 10;  𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-105: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 10;  𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-106: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 100;  𝐼𝐼1 =  0.15; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-107: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 100;  𝐼𝐼1 =  0.3; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 

 

Figure 5-108: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 100;  𝐼𝐼1 =  0.5; [𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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Figure 5-109: Five-neuron Fitzhugh-Nagumo interneuron winner-take-all network with low-pass filter feedback 

where 𝜏𝜏 = 100;  𝐼𝐼1 = 0.5;  𝐼𝐼2 =  0.3;  𝐼𝐼1 =  0.15; [𝐼𝐼4, 𝐼𝐼5]  =  0.1. 
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6.0 Conclusions 

As interest and importance grows in the neuronal network space, it becomes critical to 

creatively and effectively model different types of networks to understand their behavior. There is 

a very broad range of applications for neuronal networks such as associative memory, 

neuromorphic computing, artificial intelligence, and image and audio processing. Neuronal 

networks are also important in regard to biology, as being able to develop accurate biologically 

plausible neuronal networks enable for the study of various neurological diseases and conditions.  

In this dissertation multiple models of winner-take-all based on both lateral inhibition and 

interneuron have been simulated and analyzed. Previous work analyzing the dynamics of winner-

take-all based on postsynaptic membrane potential was reviewed and then reproduced to compare 

the original model based on lateral inhibition with a different model with an interneuron topology. 

What was shown was that despite the difference in the amount of feedback, or inhibition, the 

models provided, their behavior was quite similar.  

This dissertation also examined biologically plausible winner-take-all models based on two 

different types of neurons, the Hodgkin-Huxley neuron and the Fitzhugh-Nagumo neuron. The 

Hodgkin-Huxley neuronal model is valuable in that it is a model derived from an actual neuron 

from a squid. However, its dimensionality made it particularly complex to theoretically analyze 

and simulate so the Fitzhugh-Nagumo model simplified it. In this dissertation the Fitzhugh-

Nagumo neuron was theoretically analyzed to gather insight about its behavior in a winner-take-

all-network. 

Unlike other works on lateral inhibition based winner-take-all that focus on inhibition in 

the sense of the suppression of other signals in a network, both biological models were simulated 
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and analyzed in terms of their ability synchronize in phase. In addition, each biological model was 

simulated using two different types of feedback. One was a weighted feedback that essentially 

simulated the strength of neuronal connections. The other was a low-pass filter, that with a 

sufficient time-constant, behaves like a DC signal, i.e. external current. 

What was observed was using a simple summation of the feedback, similar to the firing 

rate model, both models were able to synchronize and differ by a shift in phase depending on the 

winner and the parameters of the models. There was also an observed difference between the way 

the complex Hodgkin-Huxley model synchronized and the simpler Fitzhugh-Nagumo model 

synchronized. The Hodgkin Huxley model took much more time to synchronize than the Fitzhugh- 

Nagumo. The Fitzhugh-Nagumo model was generally more definitive in terms of a winner than 

the Hodgkin-Huxley. In addition to simulating the lateral inhibition using the biological neuronal 

models, this dissertation also simulated the interneuron variant. These simulations were then 

compared to the lateral inhibition. 

Because of the simplicity of the postsynaptic model, it is clearly more capable of discerning 

a winner. Operating as a function of firing rate, it is able to compute winner-take-all without the 

complexities of a true biological model. There is some, though relatively small, difference between 

the lateral inhibition variant and the global interneuron variant. Though this provides a simple and 

functioning model of winner-take-all, it is not a biologically plausible model which could be used 

in applications that need to consider biological aspects of neurons such as neuronal membrane 

potential and ionic channels. Future work of this dissertation may include observing the impact of 

biological parameters on synchronization behavior. The models used in this work, use “normal” 

parameter settings, but do not look at how, for example, the ratio of the ionic channels in the 

Hodgkin-Huxley model would impact the network behavior. In addition, further analysis of the 
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Fitzhugh-Nagumo model could be done to address some of the anomalies in the behavior, such as 

the stability of the system for particular input currents. Considering the simplicity and low-

dimensional nonbiological models such as the postsynaptic model, it would be worth researching 

how to achieve simpler winner-take-all neuronal network that can retain the relevant biological 

attributes needed for particular applications. 
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Appendix A  

Simulink Block Diagrams 

This appendix shows diagrams of the neuron models in Simulink. 

 

Figure 6-1: Hodgkin-Huxley neuron with feedback. 

 

Figure 6-2: Fitzhugh-Nagumo neuron with feedback. 
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Figure 6-3: Low-pass filter feedback. 

 

Figure 6-4: Weighted feedback. 
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Figure 6-5: Five-neuron network 

 

Figure 6-6: Interneuron coupling. 
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Figure 6-7: Inhibitory coupling. 
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Appendix B  

Proofs and Theorems 

Condition 6.1 The neuronal activation 𝑓𝑓𝑖𝑖(𝑢𝑢), where 𝑖𝑖 = 1, … ,𝑛𝑛, is continuous and nonnegative 

for any 𝑢𝑢 ∈ (−∞, +∞). Furthermore, 𝑓𝑓𝑖𝑖(𝑢𝑢) has continuous first derivative, and 𝑓𝑓�̇�𝑖(𝑢𝑢) is 

nonnegative for any 𝑢𝑢 ∈ (−∞, +∞). 

 

Proposition 6.1 The network of (4.1) and (4.2) has at least one equilibrium. 

Proof: Denote ℎ𝑖𝑖(𝑥𝑥) = 𝑑𝑑𝑖𝑖 − ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘)𝑘𝑘≠𝑖𝑖  and ℎ(𝑥𝑥) = [ℎ1(𝑥𝑥), … ,ℎ𝑛𝑛(𝑥𝑥)]Τ. Consider a compact 

convex set 𝐷𝐷 = [𝑑𝑑1 − ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑑𝑑𝑘𝑘)𝑘𝑘≠1 ,𝑑𝑑1] × ⋯× [𝑑𝑑𝑛𝑛 − ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑑𝑑𝑘𝑘)𝑘𝑘≠𝑛𝑛 ,𝑑𝑑𝑛𝑛]. For any 𝑥𝑥 ∈

𝐷𝐷,ℎ𝑖𝑖(𝑥𝑥) is no greater than 𝑑𝑑𝑖𝑖  due to 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) ≥ 0 for any 𝑘𝑘, and ℎ𝑖𝑖(𝑥𝑥) is no less than 𝑑𝑑𝑖𝑖 −

∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑑𝑑𝑘𝑘)𝑘𝑘≠𝑖𝑖  due to 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) ≤ 𝑓𝑓𝑘𝑘(𝑑𝑑𝑘𝑘) for any 𝑘𝑘 (this is because 𝑓𝑓𝑘𝑘(⋅) is monotone nondecreasing 

and 𝑥𝑥𝑘𝑘 ≤ 𝑑𝑑𝑘𝑘). Therefore, ℎ(𝑥𝑥) ∈ 𝐷𝐷 for any 𝑥𝑥 ∈ 𝐷𝐷. According to Brouwer Fixed Point Theorem 

[70], 𝑥𝑥 = ℎ(𝑥𝑥) has a fixed point in 𝐷𝐷, which implies that the network of (4.1) and (4.2) has at least 

one equilibrium. Q.E.D. 

 

Lemma 6.1 For 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

1 𝐼𝐼2 ⋯ 𝐼𝐼𝑛𝑛−1 𝐼𝐼𝑛𝑛
𝐼𝐼1 1 ⋯ 𝐼𝐼𝑛𝑛−1 𝐼𝐼𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋮
𝐼𝐼1 𝐼𝐼2 ⋯ 1 𝐼𝐼𝑛𝑛
𝐼𝐼1 𝐼𝐼2 ⋯ 𝐼𝐼𝑛𝑛−1 1 ⎦

⎥
⎥
⎥
⎤

, 

where 𝑛𝑛 ≥ 2, the determinant of 𝐴𝐴 equals 
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det𝐴𝐴 = �(1 − 𝐼𝐼𝑘𝑘)

𝑛𝑛

𝑘𝑘=1

+ �𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�(1 − 𝐼𝐼𝑘𝑘)
𝑘𝑘≠𝑖𝑖

. 
(6.1) 

 

Proof: It can be easily verified that (6.1) holds for 𝑛𝑛 =  2 and 𝑛𝑛 =  3. In the following, 

we consider 𝑛𝑛 ≥ 4. 

Subtracting the first row from the other rows of 𝐴𝐴, we get a new matrix 

𝐴𝐴1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 𝐼𝐼2 𝐼𝐼3 ⋯ 𝐼𝐼𝑛𝑛 − 2 𝐼𝐼𝑛𝑛 − 1 𝐼𝐼𝑛𝑛
𝐼𝐼1 − 1 1 − 𝐼𝐼2 0 ⋯ 0 0 0
𝐼𝐼1 − 1 0 1 − 𝐼𝐼3 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝐼𝐼1 − 1 0 0 ⋯ 1 − 𝐼𝐼𝑛𝑛−2 0 0
𝐼𝐼1 − 1 0 0 ⋯ 0 1 − 𝐼𝐼𝑛𝑛−1 0
𝐼𝐼1 − 1 0 0 ⋯ 0 0 1 − 𝐼𝐼𝑛𝑛⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

According to the property of the determinant of a matrix [79], det𝐴𝐴 equals det𝐴𝐴1. 

Further using the Laplace expansion by minors along the first row of 𝐴𝐴1 [79], we have 

det𝐴𝐴 = det𝐴𝐴1

= (−1)1+1 �
�

1 − 𝐼𝐼2 0 ⋯ 0 0
0 1 − 𝐼𝐼3 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 − 𝐼𝐼𝑛𝑛−1 0
0 0 ⋯ 0 1 − 𝐼𝐼𝑛𝑛

�
�

+ (−1)1+2𝐼𝐼2 �
�

𝐼𝐼1 − 1 0 ⋯ 0 0
𝐼𝐼1 − 1 1 − 𝐼𝐼3 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

𝐼𝐼1 − 1 0 ⋯ 1 − 𝐼𝐼𝑛𝑛−1 0
𝐼𝐼1 − 1 0 ⋯ 0 1 − 𝐼𝐼𝑛𝑛

�
� 
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+�(−1)1+𝑖𝑖𝐼𝐼𝑖𝑖

𝑛𝑛−1

𝑖𝑖=3
�

�

�

𝐼𝐼1 − 1 1 − 𝐼𝐼2 ⋯ 0 0 0 ⋯ 0
𝐼𝐼1 − 1 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝐼𝐼1 − 1 0 ⋯ 0 1 − 𝐼𝐼𝑖𝑖−1 0 ⋯ 0
𝐼𝐼1 − 1 0 ⋯ 0 0 0 ⋯ 0
𝐼𝐼1 − 1 0 ⋯ 0 0 1 − 𝐼𝐼𝑖𝑖+1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝐼𝐼1 − 1 0 ⋯ 0 0 0 ⋯ 1 − 𝐼𝐼𝑛𝑛

�

�

�

+ (−1)1+𝑛𝑛𝐼𝐼𝑛𝑛 �
�

𝐼𝐼1 − 1 1 − 𝐼𝐼2 ⋯ 0 0
𝐼𝐼1 − 1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

𝐼𝐼1 − 1 0 ⋯ 0 1 − 𝐼𝐼𝑛𝑛−1
𝐼𝐼1 − 1 0 ⋯ 0 0

�
�. 

 

For each determinant except the first one in the above equation, we use the Laplace 

expansion by minors along the first column of the determinant. Then we have 

 

det𝐴𝐴 = �(1 − 𝐼𝐼𝑘𝑘)
𝑛𝑛

𝑘𝑘=2

+ (−1)𝐼𝐼2(𝐼𝐼1 − 1)�(1 − 𝐼𝐼𝑘𝑘)
𝑛𝑛

𝑘𝑘=3

+ �(−1)1+𝑖𝑖𝐼𝐼𝑖𝑖(−1)1+𝑖𝑖−1
𝑛𝑛−1

𝑖𝑖=3

(𝐼𝐼1 − 1)�(1 − 𝐼𝐼𝑘𝑘)
𝑖𝑖−1

𝑘𝑘=2

� (1 − 𝐼𝐼𝑘𝑘)
𝑛𝑛

𝑘𝑘=𝑖𝑖+1

+ (−1)1+𝑛𝑛𝐼𝐼𝑛𝑛(−1)1+𝑛𝑛−1(𝐼𝐼𝑖𝑖 − 1)�(1 − 𝐼𝐼𝑘𝑘)
𝑛𝑛−1

𝑘𝑘=2

= �(1 − 𝐼𝐼𝑘𝑘)
𝑛𝑛

𝑘𝑘=2

+ �𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖=2

�(1 − 𝐼𝐼𝑘𝑘)
𝑘𝑘≠𝑖𝑖

= �(1 − 𝐼𝐼𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

+ �𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�(1 − 𝐼𝐼𝑘𝑘)
𝑘𝑘≠𝑖𝑖

. 

Q.E.D. 

Proposition 6.2 Let 𝑥𝑥∗ be an equilibrium of (4.1) and (4.2). If 
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��1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘)�
𝑛𝑛

𝑘𝑘=1

+ �𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗)
𝑛𝑛

𝑖𝑖=1

��1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑖𝑖∗)�
𝑘𝑘≠𝑖𝑖

≠ 0. 
(6.2) 

 

Then 𝑥𝑥∗ is an isolated equilibrium. 

 

Proof: Since 𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖) is continuous for any 𝑖𝑖 = 1, … ,𝑛𝑛, Inequality (6.2) implies that there 

exists an 𝜖𝜖 > 0 and an open set 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖) ≡ {𝑥𝑥||𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖∗} < 𝜖𝜖 for any 𝑖𝑖 = 1, … ,𝑛𝑛 such that 

∏ �1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘)�𝑛𝑛
𝑘𝑘=1 + ∑ 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ∏ �1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘)�𝑘𝑘≠𝑖𝑖  is not equal to 0 for any 𝑥𝑥 ∈ 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖).  

Next, we prove that 𝑥𝑥∗ is the only equilibrium in 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖). Assume that there exists another 

equilibrium 𝑥𝑥′ ∈ 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖). Apparently, 𝑥𝑥′ satisfies 𝑥𝑥𝑖𝑖′ =  𝑑𝑑𝑖𝑖 −  ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘′ ){𝑘𝑘≠𝑖𝑖}  for any 𝑖𝑖 =

1, … , 𝑛𝑛. Let 𝑢𝑢 =  𝑥𝑥′ − 𝑥𝑥∗ and substitute 𝑥𝑥′ = 𝑥𝑥∗ + 𝑢𝑢 into the above equilibrium equation for 

𝑥𝑥′:  𝑥𝑥𝑖𝑖∗ + 𝑢𝑢𝑖𝑖 = 𝑑𝑑𝑖𝑖 − ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘∗ + 𝑢𝑢𝑘𝑘)𝑘𝑘≠𝑖𝑖 . According to the mean value theorem [70] and the fact 

that 𝑓𝑓̇ is continuous, there exist 𝜂𝜂𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 such that 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖∗ + 𝑢𝑢𝑖𝑖) = 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖∗) +  𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗ +

𝜂𝜂𝑖𝑖𝑢𝑢𝑖𝑖)𝑢𝑢𝑖𝑖 where 0 ≤ 𝜂𝜂𝑖𝑖 ≤ 1. Therefore, we have 𝑥𝑥𝑖𝑖∗ +  𝑢𝑢𝑖𝑖 = 𝑑𝑑𝑖𝑖 − ∑ 𝑣𝑣𝑘𝑘�𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘∗) +  𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘∗ +𝑘𝑘≠𝑖𝑖

𝜂𝜂𝑘𝑘𝑢𝑢𝑘𝑘)𝑢𝑢𝑘𝑘�, which becomes 𝑢𝑢𝑖𝑖 = −∑ 𝑣𝑣𝑘𝑘  𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘∗ + 𝜂𝜂𝑘𝑘𝑢𝑢𝑘𝑘)𝑢𝑢𝑘𝑘𝑘𝑘≠𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛. Denote 𝐼𝐼𝑖𝑖 =

𝑣𝑣𝑖𝑖  𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗ + 𝜂𝜂𝑖𝑖𝑢𝑢𝑖𝑖), and write the above equations in matrix form 𝐴𝐴𝑢𝑢 = 0 where 

 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

1 𝐼𝐼2 ⋯ 𝐼𝐼𝑛𝑛−1 𝐼𝐼𝑛𝑛
𝐼𝐼1 1 ⋯ 𝐼𝐼𝑛𝑛−1 𝐼𝐼𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋮
𝐼𝐼1 𝐼𝐼2 ⋯ 1 𝐼𝐼𝑛𝑛
𝐼𝐼1 𝐼𝐼2 ⋯ 𝐼𝐼𝑛𝑛−1 1 ⎦

⎥
⎥
⎥
⎤

. 

 

Since 𝑥𝑥′ = 𝑥𝑥∗ + 𝑢𝑢 ∈ 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖) and 0 ≤ 𝜂𝜂𝑖𝑖 ≤ 1 for any 𝑖𝑖 = 1, … ,𝑛𝑛, we have (𝑥𝑥𝑖𝑖∗ +

𝜂𝜂1𝑢𝑢1, … , 𝑥𝑥𝑛𝑛∗ + 𝜂𝜂𝑛𝑛𝑢𝑢𝑛𝑛)Τ ∈ 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖). Thus ∏ (1 − 𝐼𝐼𝑘𝑘)𝑛𝑛
𝑘𝑘=1 + ∑ 𝐼𝐼𝑖𝑖𝑛𝑛

𝑖𝑖=1 ∏ (1 − 𝐼𝐼𝑘𝑘)𝑘𝑘≠𝑖𝑖 ≠ 0. According 
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to Lemma 6.1, 𝑑𝑑𝑒𝑒𝑑𝑑 𝐴𝐴 is not equal to 0. Hence 𝐴𝐴𝑢𝑢 = 0 has only one solution, i.e., 𝑢𝑢 = 0, which 

implies 𝑥𝑥′ = 𝑥𝑥∗. So, there is only one equilibrium in the open set 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖) containing 𝑥𝑥∗. In other 

words, 𝑥𝑥∗ is an isolated equilibrium. Q.E.D. 

 

Corollary 6.1 Let 𝑥𝑥∗ be an equilibrium of (4.1) and (4.2). If 

 

 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗) < 1 for any 𝑖𝑖 = 1, … ,𝑛𝑛, (6.3) 

or 

 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗) > 1 for any 𝑖𝑖 = 1, … ,𝑛𝑛, (6.4) 

 

then 𝑥𝑥∗is an isolated equilibrium. 

 

Proof: We only need to show that Condition (6.3) or (6.4) implies (6.2). 

If Condition (6.3) is satisfied (note that 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗)is also nonnegative for any 𝑖𝑖 = 1, … ,𝑛𝑛), 

then we have  ∏ �1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘)�𝑛𝑛
𝑘𝑘=1 + ∑ 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ∏ �1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘)�𝑘𝑘≠𝑖𝑖 , so Inequality (6.2) is 

satisfied.  

If Condition (6.4) is satisfied, then 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝐼𝐼
∗)

1−𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤�𝑥𝑥𝑖𝑖
∗�

 is less than −1 for any 𝑖𝑖 = 1, … ,𝑛𝑛. Hence 

1 +
𝑣𝑣1𝑓𝑓1̇(𝑥𝑥1∗)

1 − 𝑣𝑣1𝑓𝑓1̇(𝑥𝑥1∗)
+ ⋯+

𝑣𝑣𝑛𝑛𝑓𝑓�̇�𝑛(𝑥𝑥𝑛𝑛∗)
1 − 𝑣𝑣𝑛𝑛𝑓𝑓�̇�𝑛(𝑥𝑥𝑛𝑛∗)

< 0, 

and thus 

��1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘∗)�
𝑛𝑛

𝑘𝑘=1

+ �𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗)
𝑛𝑛

𝑖𝑖=1

��1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘∗)�
𝑘𝑘≠𝑖𝑖
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= ���1 − 𝑣𝑣𝑘𝑘𝑓𝑓�̇�𝑘(𝑥𝑥𝑘𝑘∗)�
𝑛𝑛

𝑘𝑘=1

� �1 +
𝑣𝑣1𝑓𝑓1̇(𝑥𝑥1∗)

1 − 𝑣𝑣1𝑓𝑓1̇(𝑥𝑥1∗)
+ ⋯+

𝑣𝑣𝑛𝑛𝑓𝑓�̇�𝑛(𝑥𝑥𝑛𝑛∗)
1 − 𝑣𝑣𝑛𝑛𝑓𝑓�̇�𝑛(𝑥𝑥𝑛𝑛∗)

� ≠ 0. 

So, Inequality (6.2) is also satisfied. Q.E.D. 

 

Proposition 6.3 The network of (4.1) and (4.2) has only one equilibrium if there exists 𝑀𝑀𝑖𝑖 such that 

𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖) ≤𝑀𝑀𝑖𝑖 for any  𝑥𝑥𝑖𝑖 and 

 𝑣𝑣𝑖𝑖𝑀𝑀𝑖𝑖 < 1 (6.5) 

for any 𝑖𝑖 = 1, … ,𝑛𝑛. 

 

Proof: Let 𝑥𝑥∗ be an equilibrium and assume that there exists another equilibrium  𝑥𝑥′. Then 

following similar steps as in the proof of Proposition 6.2, we may prove 𝑥𝑥′ = 𝑥𝑥∗. Q.E.D. 

It turns out, the condition provided by Proposition 6.3 actually is a sufficient condition of 

uniqueness of equilibrium for the network, as well as Proposition 6.5 later detailed. In fact, if it 

were such that 𝑣𝑣𝑖𝑖 equals 𝑣𝑣 and 𝑀𝑀𝑖𝑖 equals   𝑀𝑀 for 𝑖𝑖 = 1, … , 𝑛𝑛, the results from general recurrent 

network theory [56][57] could be used to show conservative this proposition truly is. From 

[75][73], the network of (4.1) and (4.2) has only one equilibrium if 

 

 (𝑛𝑛 − 1)𝑣𝑣𝑀𝑀 < 1. (6.6) 

 

Comparing to Proposition 6.3 (𝑣𝑣𝑀𝑀 < 1)  to (6.6), it is clear that Proposition 6.3 is significantly 

less conservative than (6.6). 
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Proposition 6.4 Let  𝑥𝑥∗ be an equilibrium of (4.1) and (4.2). If 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗) < 1 for any 𝑖𝑖 = 1, … ,𝑛𝑛, 

then  𝑥𝑥∗is an asymptotically stable equilibrium. 

Proof: Given 𝑥𝑥, denote 𝑢𝑢 = 𝑥𝑥 − 𝑥𝑥∗ and 𝑢𝑢𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖∗ for 𝑖𝑖 = 1, … ,𝑛𝑛. Furthermore, denote 

𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖) = 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) − 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖∗) = 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖∗ + 𝑢𝑢𝑖𝑖) − 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖∗) and 

 

𝑀𝑀𝑣𝑣 =
1
2

+
max
𝑖𝑖
�𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗)�

2
. 

 

Apparently, 𝑀𝑀𝑣𝑣 is strictly greater than 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗) for any 𝑖𝑖 = 1, … ,𝑛𝑛 and strictly less than 1, since 

𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗) is less than 1. Because 𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗) is continuous and 𝑀𝑀𝑣𝑣 is strictly greater than max
𝑖𝑖
�𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖∗)�, 

there exists an 𝜖𝜖 > 0 and a domain containing 𝑥𝑥∗, 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖) ≡ {𝑥𝑥| |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖∗| < 𝜖𝜖 for any 𝑖𝑖 = 1, … ,𝑛𝑛, 

such that 𝑣𝑣𝑖𝑖𝑓𝑓�̇�𝚤(𝑥𝑥𝑖𝑖) is less than 𝑀𝑀𝑣𝑣 for any 𝑥𝑥 ∈ 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖)and for any 𝑖𝑖 = 1, … ,𝑛𝑛. Correspondingly, 

denote 𝐷𝐷 = { 𝑢𝑢 |  𝑢𝑢 + 𝑥𝑥∗ ∈ 𝑆𝑆(𝑥𝑥∗, 𝜖𝜖)}. Therefore, 

 

 𝑣𝑣𝑖𝑖𝑔𝑔𝚤𝚤̇ (𝑢𝑢𝑖𝑖) < 𝑀𝑀𝑣𝑣  for any 𝑢𝑢 ∈ 𝐷𝐷. (6.7) 

 

We use a Lure-type Lyapunov function [76][73] 

 

 
𝑑𝑑(𝑢𝑢) =

1
2

 �𝑐𝑐𝑢𝑢𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ �� 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑠𝑠) 𝑑𝑑𝑠𝑠
𝑢𝑢𝑖𝑖

0

𝑛𝑛

𝑖𝑖=1

, 
(6.8) 

 

where 𝑐𝑐 is a positive constant satisfying 
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 𝑐𝑐 <
4
𝑛𝑛

(1 −𝑀𝑀𝑣𝑣). (6.9) 

 

Obviously, 𝑑𝑑(0) equals 0 and 𝑑𝑑(𝑢𝑢) is greater than 0 for any 𝑢𝑢 ∈ 𝐷𝐷 except for 𝑢𝑢 = 0.   

In the following, we want to show 𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

< 0 for any 𝑢𝑢 ∈ 𝐷𝐷 and 𝑢𝑢 ≠ 0. If this is true, then we can 

claim that 𝑢𝑢 = 0, i.e. 𝑥𝑥 = 𝑥𝑥∗, is asymptotically stable, according to [76] (Theorem 3.1, Page 100). 

Let us first calculate 𝜏𝜏 𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑑𝑑

. 𝜏𝜏 𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜏𝜏 𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝑥𝑥𝑖𝑖 −  ∑ 𝑣𝑣𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘)𝑘𝑘≠𝑖𝑖 + 𝑑𝑑𝑖𝑖 = −𝑥𝑥𝑖𝑖∗ − 𝑢𝑢𝑖𝑖 −

 ∑ 𝑣𝑣𝑘𝑘[𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘∗) + 𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)] + 𝑑𝑑𝑖𝑖𝑘𝑘≠𝑖𝑖 = −𝑢𝑢𝑖𝑖 −  ∑ 𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)𝑘𝑘≠𝑖𝑖 . Then we have 

 

 

𝜏𝜏
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝑐𝑐𝑢𝑢𝑖𝑖 �𝜏𝜏
𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑑𝑑

�
𝑛𝑛

𝑖𝑖=1

+ �𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖) �𝜏𝜏
𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑑𝑑

�
𝑛𝑛

𝑖𝑖=1

 

= �𝑐𝑐𝑢𝑢𝑖𝑖 �−𝑢𝑢𝑖𝑖 −  �𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑘𝑘≠𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

+ �𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖) �−𝑢𝑢𝑖𝑖 −�𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑘𝑘≠𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 

=  �[𝑐𝑐𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)] �−𝑢𝑢𝑖𝑖 −  �𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑘𝑘≠𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 

= �[𝑐𝑐𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)] �−[𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)] −�𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑛𝑛

𝑖𝑖=1

 

= −�[𝑐𝑐𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)][𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

−�[𝑐𝑐𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

�𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

. 

Note that 

�[𝑐𝑐𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

�𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1
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= �𝑐𝑐𝑢𝑢𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

+ ��𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
2

 

= ��𝑐𝑐𝑢𝑢𝑖𝑖�𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

+
1
𝑛𝑛
��𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
2

�
𝑛𝑛

𝑖𝑖=1

 

= ��
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2 + 𝑐𝑐𝑢𝑢𝑖𝑖 ��𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)

𝑛𝑛

𝑘𝑘=1

� +
1
𝑛𝑛
��𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
2

�
𝑛𝑛

𝑖𝑖=1

−�
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 

= ��
𝑐𝑐√𝑛𝑛

2
𝑢𝑢𝑖𝑖 +

1
√𝑛𝑛

��𝑣𝑣𝑘𝑘𝑔𝑔𝑘𝑘(𝑢𝑢𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

��
2𝑛𝑛

𝑖𝑖=1

−�
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 

≥ −�
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

. 

Therefore, 

𝜏𝜏
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≤ −�[𝑐𝑐𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)][𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

+ �
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

. 

 

According to (6.7) and the definition of 𝑀𝑀𝑣𝑣, for any 𝑢𝑢 ∈ 𝐷𝐷  we have (i) 0 ≤ 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖) ≤ 𝑀𝑀𝑣𝑣𝑢𝑢𝑖𝑖 when 

𝑢𝑢𝑖𝑖 > 0 and (ii) 𝑀𝑀𝑣𝑣𝑢𝑢𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖) ≤ 0 when 𝑢𝑢𝑖𝑖 < 0. Since 𝑀𝑀𝑣𝑣 < 1, we have 0 ≤ 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖) < 𝑢𝑢𝑖𝑖 for 

𝑢𝑢𝑖𝑖 > 0 and 𝑢𝑢𝑖𝑖 < 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖) ≤ 0 for 𝑢𝑢𝑖𝑖 < 0. Thus 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)[𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)] is no less than 0 for any 

𝑢𝑢 ∈ 𝐷𝐷. Therefore, 

 

𝜏𝜏
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≤ −�[𝑐𝑐𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)][𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

+ �
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 

= −�𝑐𝑐𝑢𝑢𝑖𝑖[𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

−�𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)[𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

+ �
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2

𝑛𝑛

𝑖𝑖=1
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≤ −�𝑐𝑐𝑢𝑢𝑖𝑖[𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

+ �
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 

≤ −�𝑐𝑐𝑢𝑢𝑖𝑖[𝑢𝑢𝑖𝑖 − 𝑀𝑀𝑣𝑣𝑢𝑢𝑖𝑖]
𝑛𝑛

𝑖𝑖=1

+ �
𝑐𝑐2𝑛𝑛

4
𝑢𝑢𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 

= −��𝑐𝑐(1 −𝑀𝑀𝑣𝑣) −
𝑐𝑐2𝑛𝑛

4
�

𝑛𝑛

𝑖𝑖=1

𝑢𝑢𝑖𝑖2. 

 

According to (6.9), 𝑐𝑐(1 −𝑀𝑀𝑣𝑣) − 𝑐𝑐2𝑛𝑛
4

 is strictly greater than 0, so 𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

  is strictly negative for any  

𝑢𝑢 ∈ 𝐷𝐷 except for 𝑢𝑢 = 0. Q.E.D. 

 

It turns out that the constraints of Condition 6.1 on the types of activation functions that can be 

used can be loosened since what was learned from the proof of Proposition 6.4 can be applied 

more generally. This gives  

 

Condition 6.2 The neuronal activation 𝑓𝑓𝑖𝑖(𝑢𝑢), where 𝑖𝑖 = 1, … ,𝑛𝑛, is nonnegative for any 𝑢𝑢 ∈

(−∞, +∞). In addition, 𝑓𝑓𝑖𝑖(𝑢𝑢) is globally Lipschitz continuous, i.e., 

 0 ≤
𝑓𝑓𝑖𝑖(𝑢𝑢1) − 𝑓𝑓𝑖𝑖(𝑢𝑢2)

𝑢𝑢1 − 𝑢𝑢2
≤ 𝑀𝑀𝑖𝑖 

(6.10) 

 

for any two different 𝑢𝑢1,𝑢𝑢2. 

 

Since it is apparent that a globally Lipschitz continuous activation function may be non-

differentiable and unbounded, this leads to: 
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Proposition 6.5 Let 𝑓𝑓𝑖𝑖(⋅) satisfy Condition 6.2 and the constant 𝑀𝑀𝑖𝑖 in (6.10) is constrained by 

𝑣𝑣𝑖𝑖𝑀𝑀𝑖𝑖 < 1 for any 𝑖𝑖 = 1, … ,𝑛𝑛. Then the network of (4.1) and (4.2) has a unique equilibrium, which 

is globally asymptotically stable. 

 

Proof: Following the proof of Condition 6.1 The neuronal activation fi(u), where i = 1, … , n, is 

continuous and nonnegative for any u ∈ (-∞, +∞). Furthermore, fi(u) has continuous first 

derivative, and ḟi(u) is nonnegative for any u ∈ (-∞, +∞). 

 

Proposition 6.1 The network of (4.1) and (4.2) with activation functions described as above has 

at least one equilibrium. Let 𝑥𝑥∗ be such an equilibrium. Denote 𝑢𝑢𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖∗ and  𝑔𝑔𝑖𝑖(𝑢𝑢𝑖𝑖) =

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) − 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖∗) = 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖∗ + 𝑢𝑢𝑖𝑖) − 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖∗) for  𝑖𝑖 = 1, … , 𝑛𝑛.  

Define an energy function 𝑑𝑑(𝑢𝑢) in the form of (6.8, where 𝑐𝑐 is a positive constant satisfying  

𝑐𝑐 < min
𝑖𝑖
�4
𝑛𝑛

(1 − 𝑣𝑣𝑖𝑖𝑀𝑀𝑖𝑖)�. Obviously, 𝑑𝑑(0) equals 0, 𝑑𝑑(𝑢𝑢) is greater than 0 for any 𝑢𝑢 ≠ 0,  and 

𝑑𝑑(𝑢𝑢) approaches positive infinity as  ∥ 𝑢𝑢 ∥ → ∞. Furthermore, following the similar steps as in 

the proof of Proposition 6.4, we may show that 𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

  is strictly negative for any 𝑢𝑢 ≠ 0. Then we can 

claim that 𝑢𝑢 = 0, i.e. 𝑥𝑥 = 𝑥𝑥∗ is globally asymptotically stable, according to [76] (Theorem 3.2, 

Page 110). Obviously, 𝑥𝑥∗ has to be the unique equilibrium of the network of (4.1) and (4.2). Q.E.D. 

 

Condition 6.3 The neuronal activation 𝑓𝑓(𝑢𝑢) is nonnegative and globally Lipschitz continuous, 

i.e., 

 0 ≤
𝑓𝑓(𝑢𝑢1) − 𝑓𝑓(𝑢𝑢2)

𝑢𝑢1 − 𝑢𝑢2
≤ 𝑀𝑀𝑖𝑖 

(6.11) 

for any two different 𝑢𝑢1,𝑢𝑢2. 
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Consider 𝑥𝑥𝑖𝑖∗ < 𝑥𝑥𝑗𝑗∗ when 𝑑𝑑𝑖𝑖 <  𝑑𝑑𝑗𝑗, where 𝑖𝑖, 𝑗𝑗 ∈ {1, . . . ,𝑛𝑛}. 

 

Proposition 6.6 The network of (4.10) always has an equilibrium 𝑥𝑥∗ that is order preserving with 

respect to the network inputs. 

 

 

 

Proof: Without loss of generality, let 𝑑𝑑1 ≤ 𝑑𝑑2 ≤ ⋯ ≤ 𝑑𝑑𝑛𝑛. 

Denote ℎ𝑖𝑖(𝑥𝑥) =  𝑑𝑑𝑖𝑖 −  ∑ 𝑣𝑣𝑓𝑓(𝑥𝑥𝑘𝑘)𝑘𝑘≠𝑖𝑖  and ℎ(𝑥𝑥)  =  [ℎ1(𝑥𝑥), . . . ,ℎ𝑛𝑛(𝑥𝑥)]Τ. Consider a compact convex 

set 𝐷𝐷 =  { 𝑥𝑥 | 𝑑𝑑𝑖𝑖 − ∑ 𝑣𝑣𝑓𝑓(𝑑𝑑𝑘𝑘)𝑘𝑘≠𝑖𝑖 ≤  𝑥𝑥𝑖𝑖 ≤  𝑑𝑑𝑖𝑖, 𝑖𝑖 = 1, . . . ,𝑛𝑛, and, 𝑥𝑥1 ≤ ⋯ ≤  𝑥𝑥𝑛𝑛}. Similar to the 

proof of Condition 6.1 The neuronal activation fi(u), where i = 1, … , n, is continuous and 

nonnegative for any u ∈ (-∞, +∞). Furthermore, fi(u) has continuous first derivative, and ḟi(u) 

is nonnegative for any u ∈ (-∞, +∞). 

 

Proposition 6.1, it can be shown that for any 𝑥𝑥 ∈  𝐷𝐷, ℎ𝑖𝑖(𝑥𝑥) is no greater than 𝑑𝑑𝑖𝑖 and no less than  

𝑑𝑑𝑖𝑖 −  ∑ 𝑣𝑣𝑓𝑓(𝑑𝑑𝑘𝑘)𝑘𝑘≠𝑖𝑖 . Furthermore, for any 𝑖𝑖 < 𝑗𝑗 (and thus 𝑑𝑑𝑖𝑖 ≤  𝑑𝑑𝑗𝑗), we have ℎ𝑖𝑖(𝑥𝑥) − ℎ𝑗𝑗(𝑥𝑥) = 𝑑𝑑𝑖𝑖  −

 𝑑𝑑𝑗𝑗  +  𝑣𝑣𝑓𝑓(𝑥𝑥𝑖𝑖) −  𝑣𝑣 𝑓𝑓�𝑥𝑥𝑗𝑗� ≤  0, because 𝑑𝑑𝑖𝑖 ≤  𝑑𝑑𝑗𝑗 and 𝑓𝑓(𝑥𝑥𝑖𝑖) ≤  𝑓𝑓(𝑥𝑥𝑗𝑗) (since 𝑓𝑓 is monotone 

nondecreasing and 𝑥𝑥𝑖𝑖 is no greater than 𝑥𝑥𝑗𝑗 due to 𝑖𝑖 < 𝑗𝑗 and 𝑥𝑥 ∈  𝐷𝐷).  Therefore, ℎ(𝑥𝑥) ∈  𝐷𝐷 for any 

𝑥𝑥 ∈  𝐷𝐷. According to Brouwer Fixed Point Theorem [70], 𝑥𝑥 = ℎ(𝑥𝑥) has a fixed point in 𝐷𝐷, which 

implies   that (6.2 has at least one equilibrium, say 𝑥𝑥∗, such that 𝑥𝑥1∗ ≤  𝑥𝑥2∗ ≤ ⋯ ≤  𝑥𝑥𝑛𝑛∗ . 
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For any 𝑑𝑑𝑖𝑖  <  𝑑𝑑𝑗𝑗, we have 𝑥𝑥𝑖𝑖∗ ≤  𝑥𝑥𝑗𝑗∗ and thus  𝑓𝑓(𝑥𝑥𝑖𝑖∗) ≤  𝑓𝑓(𝑥𝑥𝑗𝑗∗). Therefore, 𝑥𝑥𝑖𝑖∗ − 𝑥𝑥𝑗𝑗∗ = 𝑑𝑑𝑖𝑖  −

 𝑑𝑑𝑗𝑗  +  𝑣𝑣𝑓𝑓(𝑥𝑥𝑖𝑖∗) −  𝑣𝑣𝑓𝑓�𝑥𝑥𝑗𝑗∗� ≤  𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑗𝑗  <  0, so 𝑥𝑥𝑖𝑖∗ is strictly less than 𝑥𝑥𝑗𝑗∗. Hence, we proved that 𝑥𝑥∗ 

is order preserving with respect to the network inputs. Q.E.D. 

 

Proposition 6.7 The network of (4.10) has only one equilibrium, 𝑥𝑥∗, if 𝑓𝑓(⋅) satisfies Condition 6.3 

and the constant 𝑀𝑀 in (4.11) is constrained by 

 

 𝑣𝑣𝑀𝑀 < 1. (6.12) 

 

This equilibrium is globally asymptotically stable. Furthermore, 𝑥𝑥∗ is order preserving with 

respect to the network inputs, and 𝑥𝑥𝑖𝑖∗ equals 𝑥𝑥𝑗𝑗∗ whenever 𝑑𝑑𝑖𝑖 equals 𝑑𝑑𝑗𝑗. 

 

Proof: First show that an equilibrium of (4.10, say 𝑥𝑥∗, has to be order preserving. Prove this by 

contradiction. If for some 𝑑𝑑𝑖𝑖 < 𝑑𝑑𝑗𝑗 we have 𝑥𝑥𝑖𝑖∗ ≥  𝑥𝑥𝑗𝑗∗,  then we can get 0 ≤  𝑥𝑥𝑖𝑖∗ − 𝑥𝑥𝑗𝑗∗ = 𝑑𝑑𝑖𝑖  −  𝑑𝑑𝑗𝑗  +

 𝑣𝑣𝑓𝑓(𝑥𝑥𝑖𝑖∗) −  𝑣𝑣𝑓𝑓�𝑥𝑥𝑗𝑗∗� ≤  𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑗𝑗  +  𝑣𝑣𝑀𝑀(𝑥𝑥𝑖𝑖∗  −  𝑥𝑥𝑗𝑗∗), which implies  0 ≤  (1 − 𝑣𝑣 𝑀𝑀)�𝑥𝑥𝑖𝑖∗ − 𝑥𝑥𝑗𝑗∗� ≤

 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑗𝑗  <  0, causing contradiction. Therefore, 𝑥𝑥∗ has to be order preserving. Similarly, we may 

prove 𝑥𝑥𝑖𝑖∗ = 𝑥𝑥𝑗𝑗∗ if 𝑑𝑑𝑖𝑖  =  𝑑𝑑𝑗𝑗. 

Next show that (4.10) has unique equilibrium and the equilibrium is globally 

asymptotically stable. This directly follows Proposition 6.5. Here we want to show an alternative 

proof of the uniqueness of equilibrium without using the Lure-type Lyapunov function. This proof 

is via contradiction. Assume that the network has more than one equilibrium and let  𝑥𝑥(1) ≠  𝑥𝑥(2) 

be two of the equilibria. Without loss of generality, assume 𝑑𝑑1 ≤  𝑑𝑑2 ≤ ⋯ ≤  𝑑𝑑𝑛𝑛. According to the 

above argument, we have 𝑥𝑥1
(1) ≤ ⋯ ≤  𝑥𝑥𝑛𝑛

(1) and 𝑥𝑥1
(2) ≤ ⋯ ≤  𝑥𝑥𝑛𝑛

(2).  Let 𝑖𝑖 be the smallest integer 
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such that 𝑥𝑥𝑖𝑖
(1) ≠ 𝑥𝑥𝑖𝑖

(2), which implies  𝑥𝑥𝑗𝑗
(1)  =  𝑥𝑥𝑗𝑗

(2) for any 𝑗𝑗 < 𝑖𝑖 if 𝑖𝑖 > 1.  Without loss of 

generality, let 𝑥𝑥𝑖𝑖
(1)  <  𝑥𝑥𝑖𝑖

(2). Thus 𝑥𝑥𝑖𝑖
(1) = 𝑑𝑑𝑖𝑖  −  ∑ 𝑣𝑣 𝑓𝑓�𝑥𝑥𝑘𝑘

(1)�𝑘𝑘≠𝑖𝑖 < 𝑥𝑥𝑖𝑖
(2) = 𝑑𝑑𝑖𝑖  −  ∑ 𝑣𝑣 𝑓𝑓(𝑥𝑥𝑘𝑘

(2)
𝑘𝑘≠𝑖𝑖 ), 

and therefore ∑ 𝑓𝑓(𝑥𝑥𝑘𝑘
(1))𝑘𝑘≠𝑖𝑖 > ∑ 𝑓𝑓(𝑥𝑥𝑘𝑘

(2))𝑘𝑘≠𝑖𝑖 . Then there exists at least one 𝑘𝑘 > 𝑖𝑖 such that  

𝑓𝑓(𝑥𝑥𝑘𝑘
(1))  >  𝑓𝑓(𝑥𝑥𝑘𝑘

(2)).  Obviously, 𝑥𝑥𝑘𝑘
(1)  >  𝑥𝑥𝑘𝑘

(2). Now we have 𝑥𝑥𝑖𝑖
(1)  <  𝑥𝑥𝑖𝑖

(2) ≤  𝑥𝑥𝑘𝑘
(2)  <  𝑥𝑥𝑘𝑘

(1).  

Consider simple calculation as follows: 

𝑥𝑥𝑘𝑘
(1) −  𝑥𝑥𝑘𝑘

(2) + 𝑥𝑥𝑖𝑖
(2) −  𝑥𝑥𝑖𝑖

(1)

= �𝑑𝑑𝑘𝑘  −  �𝑣𝑣𝑓𝑓�𝑥𝑥𝑗𝑗
(1)�

𝑗𝑗≠𝑘𝑘

� − �𝑑𝑑𝑘𝑘  −  �𝑣𝑣𝑓𝑓�𝑥𝑥𝑗𝑗
(2)�

𝑗𝑗≠𝑘𝑘

� + �𝑑𝑑𝑖𝑖  −  �𝑣𝑣𝑓𝑓�𝑥𝑥𝑗𝑗
(2)�

𝑗𝑗≠𝑘𝑘

�

− �𝑑𝑑𝑖𝑖  −  �𝑣𝑣𝑓𝑓�𝑥𝑥𝑗𝑗
(1)�

𝑗𝑗≠𝑘𝑘

� 

= − 𝑣𝑣 𝑓𝑓�𝑥𝑥𝑖𝑖
(1)� +  𝑣𝑣 𝑓𝑓�𝑥𝑥𝑖𝑖

(2)� −  𝑣𝑣 𝑓𝑓�𝑥𝑥𝑘𝑘
(2)� +  𝑣𝑣 𝑓𝑓�𝑥𝑥𝑘𝑘

(1)� 

= 𝑣𝑣 �𝑓𝑓�𝑥𝑥𝑖𝑖
(2)� −  𝑓𝑓�𝑥𝑥𝑖𝑖

(1)�� +  𝑣𝑣 �𝑓𝑓�𝑥𝑥𝑘𝑘
(1)� −  𝑓𝑓�𝑥𝑥𝑘𝑘

(2)�� 

≤ 𝑣𝑣𝑀𝑀(𝑥𝑥𝑖𝑖
(2)  −  𝑥𝑥𝑖𝑖

(1) +  𝑣𝑣𝑀𝑀�𝑥𝑥𝑘𝑘
(1)  −  𝑥𝑥𝑘𝑘

(2)� 

< 𝑥𝑥𝑖𝑖
(2)  −  𝑥𝑥𝑖𝑖

(1) +  𝑥𝑥𝑘𝑘
(1)  −  𝑥𝑥𝑘𝑘

(2), 

 

which leads to contradiction and thus completes the proof of uniqueness. Q.E.D. 

 

Proposition 6.8 Let 𝑥𝑥∗ be an order preserving equilibrium of (4.10). If 𝑓𝑓(⋅)  is strictly monotone 

increasing, then for any 𝑑𝑑𝑖𝑖  <  𝑑𝑑𝑗𝑗 we have 
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 𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖∗  >  𝑑𝑑𝑗𝑗 − 𝑑𝑑𝑖𝑖  >  0, (6.13) 

i.e., expressed in another form, 

 𝑑𝑑𝑖𝑖 − 𝑥𝑥𝑖𝑖∗  >  𝑑𝑑𝑗𝑗 − 𝑥𝑥𝑗𝑗∗ ≥  0. (6.14) 

 

Proof: Since 𝑥𝑥∗ is an order preserving equilibrium, we have 𝑥𝑥𝑖𝑖∗  <  𝑥𝑥𝑗𝑗∗ for any 𝑑𝑑𝑖𝑖  <  𝑑𝑑𝑗𝑗 and thus  

𝑓𝑓(𝑥𝑥𝑖𝑖∗)  <  𝑓𝑓(𝑥𝑥𝑗𝑗∗) because 𝑓𝑓(⋅) is strictly monotone increasing.  Therefore, 𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖∗ = 𝑑𝑑𝑗𝑗  −  𝑑𝑑𝑖𝑖  +

 𝑣𝑣𝑓𝑓(𝑥𝑥𝑗𝑗∗)  −  𝑣𝑣𝑓𝑓(𝑥𝑥𝑖𝑖∗) >  𝑑𝑑𝑗𝑗 − 𝑑𝑑𝑖𝑖. So, we get (6.13. Expressing this inequality in another form, we 

have 𝑑𝑑𝑖𝑖 − 𝑥𝑥𝑖𝑖∗  >  𝑑𝑑𝑗𝑗 − 𝑥𝑥𝑗𝑗∗. Inequality (4.7) guarantees 𝑑𝑑𝑗𝑗 − 𝑥𝑥𝑗𝑗∗ ≥  0.  Then we get (6.14). Q.E.D. 

 

Condition 6.4 The neuronal activation 𝑓𝑓(𝑢𝑢), is continuous, nonnegative, and strictly monotone 

increasing; 𝑓𝑓̇(𝑢𝑢) is continuous; 𝑓𝑓̇(𝑢𝑢) is monotone decreasing on [𝑏𝑏,∞) and monotone increasing 

on (−∞,𝑏𝑏] – this implies that 𝑓𝑓̇(𝑢𝑢)achieves its maximum at 𝑢𝑢 = 𝑏𝑏 and that 𝑓𝑓(𝑢𝑢) is concave on 

the right side of 𝑢𝑢 = 𝑏𝑏 and convex on the left side of 𝑢𝑢 = 𝑏𝑏. 

 

Proposition 6.9 Consider a network of (4.10) with neuronal activation function satisfying 

Condition 6.4. Let 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑗𝑗 be two inputs such that 𝑏𝑏 < 𝑑𝑑𝑖𝑖 < 𝑑𝑑𝑗𝑗 , and let 𝑥𝑥∗ be an order preserving  

equilibrium of (4.10).  If neurons 𝑖𝑖 and 𝑗𝑗 are both active at 𝑥𝑥∗, i.e., 𝑏𝑏 < 𝑥𝑥𝑖𝑖∗ < 𝑥𝑥𝑗𝑗∗, then there must 

be 

 𝑣𝑣𝑓𝑓̇(𝑑𝑑𝑗𝑗)  <  1, (6.15) 

 

 
𝑥𝑥𝑗𝑗∗  −  𝑥𝑥𝑖𝑖∗ ≥

𝑑𝑑𝑗𝑗  −  𝑑𝑑𝑖𝑖
1 − 𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�

, 
(6.16) 
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and 

 
𝑓𝑓�𝑥𝑥𝑗𝑗∗� −  𝑓𝑓(𝑥𝑥𝑖𝑖∗) ≥  𝑓𝑓�𝑑𝑑𝑗𝑗� −  𝑓𝑓(𝑑𝑑𝑖𝑖) +

𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�𝑓𝑓̇(𝑑𝑑𝑖𝑖)
1 − 𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�

(𝑑𝑑_𝑗𝑗 −  𝑑𝑑_𝑖𝑖). 
(6.17) 

 

Proof: First prove (6.15) and (6.16).  Since 𝑓𝑓(⋅) is continuous, we have 

 

 𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖∗  =  𝑑𝑑𝑗𝑗  −  𝑑𝑑𝑖𝑖  +  𝑣𝑣 𝑓𝑓(𝑥𝑥𝑗𝑗∗)  −  𝑣𝑣 𝑓𝑓(𝑥𝑥𝑖𝑖∗)  

=  𝑑𝑑𝑗𝑗 − 𝑑𝑑𝑖𝑖  +  𝑣𝑣�̇�𝑓(𝜉𝜉) (𝑥𝑥𝑗𝑗∗  −  𝑥𝑥𝑖𝑖∗), 

(6.18) 

 

where  𝜉𝜉 ∈  �𝑥𝑥𝑖𝑖∗, 𝑥𝑥𝑗𝑗∗� ⊂  (𝑏𝑏,𝑑𝑑𝑗𝑗], according to the mean value theorem [70].  Hence 𝑓𝑓̇(𝜉𝜉) ≥  𝑓𝑓̇(𝑑𝑑𝑗𝑗)  

(𝑓𝑓̇(⋅) is monotone decreasing on [𝑏𝑏,∞)). Because 𝑥𝑥𝑖𝑖∗ < 𝑥𝑥𝑗𝑗∗ and 𝑑𝑑𝑖𝑖 < 𝑑𝑑𝑗𝑗,  there must be 𝑣𝑣𝑓𝑓̇(𝜉𝜉)  <

 1, otherwise we may derive 𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖∗ ≥ 𝑑𝑑𝑗𝑗 − 𝑑𝑑𝑖𝑖 + 𝑥𝑥𝑗𝑗∗  −  𝑥𝑥𝑖𝑖∗ and thus 𝑑𝑑𝑗𝑗 ≤  𝑑𝑑𝑖𝑖, causing 

contradiction. Therefore, we have  𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗� ≤  𝑣𝑣𝑓𝑓̇(𝜉𝜉)   <  1,  which leads to (6.15). Following 

(6.18, we further have 

xj∗ − xi∗  =
dj  −  di

1 −  𝑣𝑣𝑓𝑓̇(𝜉𝜉)
≥   

dj  −  di
1 −  𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�

, 

 

which leads to (6.16). 

Next prove (6.17). According to (6.16),  the fact that 𝑏𝑏 <  𝑥𝑥𝑖𝑖∗  <  𝑥𝑥𝑗𝑗∗ ≤  𝑑𝑑𝑗𝑗, and that  𝑓𝑓(⋅) is 

strictly monotone increasing and 𝑓𝑓̇(⋅)  is monotone decreasing on [𝑏𝑏,∞), we have 

 

𝑓𝑓�𝑥𝑥𝑗𝑗∗� −  𝑓𝑓(𝑥𝑥𝑖𝑖∗) ≥  𝑓𝑓(𝑑𝑑𝑗𝑗)  −  𝑓𝑓(𝑑𝑑𝑗𝑗  −  (𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖∗)) ≥  𝑓𝑓(𝑑𝑑𝑗𝑗)  −  𝑓𝑓(𝑑𝑑𝑗𝑗 −
𝑑𝑑𝑗𝑗 −  𝑑𝑑𝑖𝑖

1 −  𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�
 



 151 

=  𝑓𝑓�𝑑𝑑𝑗𝑗� −  𝑓𝑓 �𝑑𝑑𝑖𝑖 −
𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗��𝑑𝑑𝑗𝑗  −  𝑑𝑑𝑖𝑖�

1 −  𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�
� 

≥  𝑓𝑓�𝑑𝑑𝑗𝑗� −  𝑓𝑓(𝑑𝑑𝑖𝑖) +  𝑓𝑓̇(𝑑𝑑𝑖𝑖)
𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗��𝑑𝑑𝑗𝑗  −  𝑑𝑑𝑖𝑖�

1 −  𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�
 

=  𝑓𝑓(𝑑𝑑𝑗𝑗)  −  𝑓𝑓(𝑑𝑑𝑖𝑖)  +  
𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�𝑓𝑓̇(𝑑𝑑𝑖𝑖)
1 −  𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�

�𝑑𝑑𝑗𝑗  −  𝑑𝑑𝑖𝑖�, 

 

complete the proof. Q.E.D. 

 

Corollary 6.2 Consider a network of (4.10) with neuronal activation function satisfying Condition 

6.4. Let 𝑑𝑑𝑗𝑗 and 𝑑𝑑𝑖𝑖 be the largest and second largest inputs, respectively, with 𝑏𝑏 < 𝑑𝑑𝑖𝑖 < 𝑑𝑑𝑗𝑗, and 𝑥𝑥∗ 

an order preserving equilibrium of (4.10).  If 

 

 𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗� ≥  1, (6.19) 

or if 

 
𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗� <  1 and 𝑑𝑑𝑗𝑗  −  𝑏𝑏 <  

𝑑𝑑_𝑗𝑗 −  𝑑𝑑_𝑖𝑖
1 − 𝑣𝑣𝑓𝑓̇�𝑑𝑑𝑗𝑗�

, 
(6.20) 

 

then the network has at most one active neuron at 𝑥𝑥∗. 

Proof: The proof directly follows Proposition 6.9. Q.E.D. 
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