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Abstract 

DUSTING OFF THE ARCHIVES: WHAT ARCHIVES CAN TELL US ABOUT 

CHANGES IN WATER STORAGE AND STREAMFLOW DUE TO URBAN 

DEVELOPMENT 

Sarah Beth Cook, M.S. 

University of Pittsburgh, 2019 

Land-surface alteration that accompanies urbanization influences hydrologic changes 

within watersheds. The urbanization of a watershed can profoundly impact groundwater and 

surface water interaction presented as decrease in watershed storage, variability in discharge, 

fluctuations in low flow magnitude, increased low flow duration, and more. Although 

urbanization’s effects on watershed hydrology have been explored in recent decades through land-

use modeling, hydrological modeling, remote sensing, and empirical approaches, clarification of 

urbanization’s effects remains a challenge due to limited availability and accessibility of high 

temporal resolution data. Historical streamflow records for Abers Creek in Allegheny County, 

Pennsylvania, provide a unique opportunity to study the effects of urbanization on watershed 

functions, such as storage and discharge. The discharge record (1948-1993) spans the complete 

residential development of the watershed as reconstructed from property records, this providing 

the timing and intensity of watershed development. Recession analysis was used to evaluate altered 

hydrologic response, particularly relationships between watershed storage and streamflow that 

may occur during urbanization.  Sub-daily USGS stage data from archival records were converted 

to hourly or bihourly streamflow in Abers Creek to permit various hydrograph recession analyses 

on this unique streamflow record. Results relate build out to changes in hydrograph patterns 

identified through recession methods. Analysis of daily and sub-daily streamflow records suggest 
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groundwater-surface water interactions driven by urbanization, previously only observed through 

modeled data or smaller datasets. Refined connections between development history and changes 

in hydrology allow improved mitigation of stream impacts in urban areas. 
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1.0 INTRODUCTION 

In hydrology, the dynamic relation between watershed storage and discharge is essential to 

understand the intertwined connection between groundwater and surface water. The factors which 

control this association are at the center of catchment science (Sophocleous, 2002; Kalbus et al., 

2006; Fleckenstein et al., 2010). Investigating streamflow hydrograph recession analysis allows 

for a conjectural evaluation of the streamflow and surface water changes, assuming that the 

dynamic is defined in large part by aquifer characteristics and groundwater interaction (Ghosh, 

2015; Thomas et al. 2015). In most studies, including this one, hydrological recessions are 

conceptualized as continually decreasing flows that result from drainage of catchment storages 

(i.e. baseflow (Hall, 1968)) during periods of little or no precipitation.  

Many previous studies have evaluated hydrograph recessions to further our understanding 

of watershed function and processes controlled by watershed storage.  Werner and Sundquist 

(1951) introduced a concept whereby the recession curve can be approximated by the sum of three 

exponential functions with different coefficients. A defined set of conceivable equations of 

recession curves including the simple exponential, double exponential, and hyperbolic (Toebes 

and Strang, 1964; Toebes et al., 1969) conveyed conditions under which a certain type of curve 

could be anticipated. A breakthrough in recession research was presented by Brutsaert and Nieber 

(1977) that related discharge, Q, and storage, S, in attempt to analyze river discharge behavior at 

the watershed scale by estimating hydrograph recession parameters from a log–log plot of the time 

derivative of streamflow (dQ/dt) versus Q, known as a recession plot. Wide application of the 

recession approach advanced by Brutsaert and Nieber (1977), termed the constant time step (CTS) 

method, estimates dQ/dt using a backwards difference estimator (Thomas et al., 2015).  This 
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technique for analyzing streamflow recession behavior has been extensively used to characterize 

hydrological properties within watersheds through analyses of multiple recession events (Brutsaert 

and Nieber 1977, Troch et al. 2013). Analyses of single recession events have grown in popularity 

due to extreme variability in responses within a watershed (Rupp and Selker 2006b, Dralle et al., 

2017, Thomas et al., 2015).  

Figure 1 - Illustration of conceptual hydrograph recession behavior. Movement of the recession cloud along 

the x-axis "(log) Q" suggests increased or decreased watershed storage. Movement along the y-axis ("(log) -

dQ/dt") indicates change in the time derivative. 

While the CTS method is commonly applied in traditional recession analyses, it has been 

shown to introduce error and biases within the recession data cloud, especially in late-time 

recessions, where artifacts tend to be introduced (Rupp and Selker, 2006). An artifact refers to any 

anomaly within the perception or representation of data and can be introduced via processing 
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techniques. Rupp and Selker (2006) suggest that the use of a constant time step is an insufficient 

representation of data, a result further supported by Thomas et al. (2015), given that the linear 

artifacts may influence parameter estimations. With hopes of alleviating this issue, Rupp and 

Selker (2006) introduced a novel method proposing Δt for each observation in time may be scaled 

to the observed change in discharge ΔQ, termed here as the variable time step method (VTS). 

The VTS method illustrates the relationship between dQ/dt and Q where standard 

methodology, such as the CTS approach, fails in data where dQ/dt fluctuates by orders of 

magnitude during recession; hence the scaling of Δt. Small-scale hydrograph fluctuations can 

result in excluding large portions of the hydrograph from analysis, as it’s interpreted that the 

recession has ended when in fact is has not. What may be an appropriate Δt during a particular 

time increment may be too large or too small for an earlier or later time; thus, producing numerical 

artifacts derived from the estimate of dQ/dt. Rupp and Selker (2006) found data exclusion and 

numerical artifacts to be most prominent within latter hydrograph recession where Q may be 

reported as unchanging or increasing over time due to limitations of stage-discharge relations and 

coincidentally excluding corresponding dQ/dt calculations from being reported (Kirchner, 2009).  

More recently, Roques et al. (2017) have further advanced extraction of dQ/dt from recession 

hydrographs by the use of exponential curves to represent the recession, from which dQ/dt can be 

estimated as the recession proceeds.  Roques et al. (2017) systematically showed that the method, 

referred to here as the exponential time step method (ETS), eliminated artifacts within the 

recession plot and was able to more accurately retrieve recession parameters than previously 

applied methods.   

Empirical methods have been used to link observed changes in recession plot clouds to 

human interferences. Wang and Cai (2010) introduced methods to account for human water uses 
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in recession cloud plots by including groundwater pumping and return flows into equations 

proposed by Brutsaert and Nieber (1977). Wang and Cai (2010) deliberated how hydrologic factors 

affected the determination of the recession slope curve and the cloud shape of the data points in a 

recession plot. The authors assumed data cloud shapes within the recession plot may be affected 

by factors such as physical characteristics of the drainage system, data uncertainties, spatial 

heterogeneity of groundwater drainage, drainage from bodies of water, and human interferences. 

Wang and Cai (2009) introduced an empirical method allowing estimates of human water uses, 

like groundwater pumping and return flow, to be included within recession plots.  

Other studies have investigated the behavior of baseflow as a function of watershed 

characteristics, climate, and geomorphology. Brandes et al. (2005) examined connections between 

hydrologic variables (baseflow recession rates and Q7,10), finding that drainage density, landscape 

slope, bedrock geology, and soil infiltration rate exert the most influence on recessions, thus 

suggesting that baseflow is largely controlled by invariable watershed characteristics. Biswal and 

Marani (2010) linked river network morphology with recession curvature (e.g. the shape of a 

recession on a recession plot). The authors argue that the power‐law form of dQ/dt vs. Q stems 

from the underlying morphological structure of the channel network, thus directly linking 

recession shape to geomorphological recession flow models (Biswal and Kumar, 2012). Shaw et 

al. (2012) hypothesized that the change in the recession plot intercept derived from fitting lines to 

recession cloud data results from spatial heterogeneities in seasonal variations and antecedent 

conditions within the watershed.  Thomas et al. (2013) quantified the sensitivity of geology, 

geomorphology, anthropogenic factors, and topography in the influence of variations of the 

baseflow recession constant, finding that hydrograph recessions are equally sensitive to 

anthropogenic variables as geomorphic variables.   
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Urban development and associated water management schemes including low impact 

development and wastewater treatment/discharge have been shown to influence low flow 

dynamics (Sophocleous, 2002; Liu et al., 2013; Brandes et al., 2005; Meyer, 2005; Hogan et al., 

2014).  Rural and urban watershed comparative studies (Barringer et al., 1994; Schwartz and 

Smith, 2014; Hopkins et al., 2015) sought to link changes in baseflow contributions due to urban 

development.  Bhaskar et al. (2016) identified changes in hydrograph recessions attributed to low 

impact development in urban watershed.  Contrasting to urban stormflow, largely regarded to 

cause flashiness in hydrographs due to increased impervious cover, Hopkins et al. (2015) suggest 

that urban baseflow exhibits important diversity in responses, controlled by factors including 

impervious cover, infrastructure leakage, evapotranspiration, and stormwater management 

(Bhaskar et al., 2016). This suggests that the urbanization trajectory has a strong influence on the 

magnitude and timing of hydrologic changes within watersheds. 

Recession analysis was used to evaluate altered hydrologic response, particularly 

relationships between watershed storage and streamflow that may occur during urbanization, 

whereby shifts in the recession cloud (Figure 1) are attributed to recorded urban development in 

Abers Creek. Shifts in the recession cloud can indicate either an increase or decrease in discharge 

along the X-axis, as well as an increase or decrease in the time derivative of discharge along the 

Y-axis. In this study, I evaluate change in watershed storage as a function of discharge (Q=ƒ(S))

with the use of post-urbanization stage data by applying various recession methodologies to a 

small, urbanized watershed that underwent documented development concurrent with discharge 

records. For this study, an increased discharge (Q) is assumed to indicate increased watershed 

storage (S). A shift in the recession cloud towards an increased dQ/dt implies an increased amount 

of human alteration within the watershed. The overarching hypothesis of this study is that build-
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out of Abers Creek has led to hydrologic alterations observable through hydrograph recessions. I 

hypothesize that different recession methodologies (e.g. CTS, VTS and ETS) extract different 

information from hydrograph recessions, thus providing insight into urban recessions and changes 

in recessions as a result of urban development. 
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2.0 DATA AND SITE DESCRIPTION 

2.1 ABERS CREEK WATERSHED 

Abers Creek watershed is a relatively small sub-watershed (11.4 km2) of the larger Turtle 

Creek – Brush Creek watershed located just northeast of Pittsburgh in Plum Borough of Allegheny 

County, Pennsylvania (Figure 2). Abers Creek lies within the estern Allegheny Plateau and is 

characterized by hilly terrain dissected by perennial streams within valleys that tend to be underlain 

by horizontally bedded sedimentary rock (Wagner, 1970).  

Figure 2 - Abers Creek watershed. 
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Streamflow records for Abers Creek provide a unique opportunity to study the influence 

of urbanization on watershed processes, particularly changes in watershed storage and baseflow 

contributions which are known to vary in urbanized watersheds (Hopkins et al., 2015).  The 

discharge record (1948-1993) spans the complete residential development of the watershed 

(Section 2.2). Daily streamflow records from 1948 - 1993 are currently available via the USGS 

Waterdata portal. In this analysis, I wish to apply hydrograph recession methods that require 

temporal data at resolutions below a daily time step (Section 3).  Sub-daily stage data, however, is 

only accessible at the U.S. Geological Survey as archived files of tabular and drum records, thus 

requiring data extraction methods as discussed in Section 2.3.  

2.2 WATERSHED DEVELOPMENT 

Build-out of the watershed was reconstructed in a study by Hopkins et al. (2015) using 

building density records, property tax records, and basin area to provide the timing and intensity 

of watershed development (Figure 3). Property tax-assessment records were only available for 

about 82% of Abers Creek and basin area in Allegheny County was used to approximation building 

densities. Hopkins et al. (2015) assumed each parcel contained one building. As stated in Hopkins 

et al. (2015), these assumptions could be underestimated in earlier years due to substitution of 

historical houses during redevelopment, therefore, leading to the possibility of error in Figure 4. 

The study deemed the estimates acceptable for evaluating general growth trends and also verified 

the consistency of building density records by cross-checking building density data with U.S. 

Census records. 
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Figure 3 - Development of Abers Creek watershed. Snapshots show the build out in the catchment. Properties 

are colored solid black once the structure in the property is completed. Only data from Allegheny County is 

depicted. 

Abers Creek watershed experienced a large increase in population density and building 

density between 1955 and 1970 (Figure 4, Hopkins et al. 2015). Development growth rates 

plateaued after 1970 and were followed by a decline in population density starting in 1980. In 

Abers Creek, the majority of building density (70%) occurred during the peak growth period, with 

slow but limited growth following the peak growth period (Hopkins et al. 2015). The sudden 

change in development patterns and changes in flow, both observed in Hopkins et al. (2015) study, 

suggest that human and hydrologic systems can be strongly linked, especially when development 

is extremely rapid and concentrated, as observed in Abers Creek. Hopkins et al. results validated 

that rapid urbanization can lead to significant shifts in the flow regime like increased flashiness, 

reduced baseflow, infiltration and evapotranspiration.  
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Figure 4 - Abers Creek population density per km2 (Left), Abers Creek building density per km2 (Right). 

2.3 DATA DESCRIPTION 

Technology for measuring and recording data for streamflow has significantly improved 

over the years (USGS n.d.). In the early 1900’s, stage recorders used a float that moved up and 

down with the water surface height. The float’s movements traced the stage record onto graph 

paper taped to a revolving drum and then manually interpreted. Electronic data compilation began 

in the early 1960s, when recorders were developed that punched stage readings into paper. tapes 

(USGS n.d.).  

1940 1950 1960 1970 1980 1990 2000 2010
Year

0

100

200

300

400

500

600

700

800

900

1000
Po

pu
la

tio
n 

De
ns

ity
 (p

pl
/k

m
2 )

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

0

50

100

150

200

250

300

Bu
ild

in
g 

D
en

si
ty

 (b
ld

/k
m

2 )



11 

Figure 5 - Example of sub-daily stage height data for Abers Creek. 

These tapes were able to be read by a computer such that data could be stored in electronic 

files. During the 1970s, data recorders with satellite-telemetry equipment were initiated which 

allows data transmission to a satellite and transfers to the USGS (USGS n.d.).  

The evolution in USGS stream gaging was captured at Abers Creek, thus opening the 

possibility of using streamflow stage records to identify additional information in sub-daily 

hydrographs in urbanizing watersheds. Sub-daily data for Abers Creek watershed was acquired 

from historical documents stored at the USGS office in Pittsburgh, PA. Hard copies from 1948-

1993 encompass stage height in continuous, bihourly, and hourly increments depending upon the 

year it was collected (Figure 5). While some large outliers occurred within sub-daily data, these 

values do not affect recession analyses and is likely attributed to error in data extraction or tabular 

records from the USGS. Due to large variability in the record condition and record type, data 

compilation and extraction was time intensive; as much of the older data consists of graphical, 

continuous, drum records rather than tabular (Figure 6). 5-year incremental of tabular, sub-daily 
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data from 1970 to 1990 was used for this study. The sub-daily data consisted of, on average, 30 to 

40 scans per record year (Figure 5). Once each year was scanned, the process of extracting 

information from the scans could commence. Scanned stage height data for 5-year increments of 

tabular data from 1970 was extracted using open source, online OCR (optical character 

recognition) technology, which allows scanned documents to be useable in data analysis.  

Figure 6 - Example of early drum data for Abers Creek. The line drawn indicates the rise and fall of stream 

stage in the channel. 

In order to determine the applicability of sub-daily data to that of daily data, daily averages 

for sub-daily discharge were taken and plotted against daily discharge data (See Appendix). Large 

spikes in discharge occur in sub-daily data, while low flow measurements are rather similar. These 

spikes are likely attributed to error in data extraction and since recession analyses are only 

concerned with low flow data, these spikes can be disregarded.  
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2.4 RATING CURVE 

In order for water or stage height to be converted to a discharge volume, a relationship 

must be established between them by constructing a rating curve (USGS n.d.). A rating curve was 

constructed using field data measurements from the USGS Waterdata portal for Abers Creek. The 

field data includes all necessary information to construct a rating curve, including measured 

streamflow, gage height, measurement rating (how accurate a measurement is), and control (e.g. 

the amount of debris present).  

Figure 7 - Rating curve for Abers Creek.

The rating curve depends on the hydraulic characteristics of the stream channel and 

floodplain and can be influenced by subtle changes to a stream channel, like vegetation growth, 

shifting of sediment or erosion, extreme changes due to flooding, or man-made changes (USGS 

n.d.). These variables can be explored and manipulated from the field data measurements to find

a best fit curve for a particular data set. The final rating curve (Figure 7) relates discharge versus 
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stage height and yields an equation that allows for the conversion of stage height into a volume of 

water discharged.  

When applying recession methodologies to sub-daily data for Abers Creek, daily gage 

height data with corresponding dates and times was imported into Excel for five year increments. 

Gage height was converted to discharge, Q, for sub-daily data using the equation produced from 

the constructed rating curve. 
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3.0 METHODS 

3.1 METHODS INTRODUCTION 

Recession analysis was used to evaluate altered hydrologic responses in Abers Creek, 

particularly relationships between watershed storage and streamflow that may occur during 

urbanization. Application of various methodologies to estimate the time derivative of streamflow 

(CTS, VTS, ETS) were applied to daily and sub-daily records for 1970, 1975, 1980, 1985 and 

1990 for months between April and September. Yearly records generally stemmed from October 

to September of the following year, however, some years missed data – leading to using data from 

April to September. For this study, I hypothesized that varied approaches would produce 

identifiable and discrete patterns within recession plots (Figure 1) which could be attributed to 

urbanization intensity established by Hopkins et al (2015) for Abers Creek (Figure 3).   

For each of the following methods, a three-day moving average of Q was calculated to 

negate streamflow measurement error and fluctuations as well as to isolate suitable recession 

hydrographs for analysis (Vogel and Kroll, 1996). Recessions were isolated by defining an 

increase in Q as the end of the recession. Therefore, the beginning of a recession is identified as 

when a 3-day moving average begins to decrease and ends when a 3-day moving average begins 

to increase. Nearly all recession studies set a minimum duration for recession events. Explanations 

for this choice contrast, such as the removal of noise, the need for capturing late time flow 

processes, and data quality concerns (Dralle et al., 2017). Recessions with lengths greater than or 

equal to 2 days were used for this study. The first 3 points of the recession were discarded for 

estimation of the baseflow recession parameters to reduce the influence of additional runoff 
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processes (Thomas et al., 2015). The time derivative of streamflow, dQ/dt, was calculated using 

different recession analysis approaches as described in Sections 3.2-3.5. Data are then plotted as -

dQ/dt vs. Q in log scale to observe recession behaviors for any given period. To qualitatively 

compare shifts in the data cloud between years, a reference line was implemented for each 

recession plot.  

3.2 CONSTANT TIME STEP 

Figure 8 - CTS illustration where time increment remains constant. 

The constant time step approach (Brutsaert and Nieber, 1977) is a widely adopted 

method in recession analysis. The original intent of the CTS approach was to remove 

uncertainty when implementing an appropriate time reference for a hydrograph recession 

(Figure 8). The relation between Q and S may then be amalgamated with the groundwater 

continuity equation yielding  



𝑑𝑄/𝑑𝑡 = −𝑎𝑄𝑏 Equation 1 

To calculate dQ/dt , a backwards difference estimator is used following Brutsaert and 

Nieber (1977).   

3.3 VARIABLE TIME STEP 

Figure 9 - Numerical artifacts in a recession plot. The linear points circled near the lower portion of the plot 

are caused by data processing. 

Rupp and Selker (2006) introduced a variable time step (VTS) method that estimates dQ/

dt based upon the derivation of recession segments at varying durations and appropriately scaled 

to the recorded drop in discharge ΔQ, rather than applying constant time steps as used in 

Brutsaert and Nieber (1977) (Figure 10). A plus to this method is the reduction of artifacts in 

data, whereas streamflow recession data presented using constant ∆t can lead to 

misconstructions of the underlying relationships in the streamflow data where Q = f(S).
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Artifacts are anomalies in the perception or representation of data and can be introduced 

via processing techniques (Figure 9). In recession plots, artifacts tend to present as clustered, 

usually horizontal, lines of points within the recession plot and can lead to issues when 

interpreting results. What may be an appropriate Δt at one point in time for dQ/dt, may be too 

small or too large at other points in a recession. Therefore, constant Δt leads to upper and lower 

data boundaries in plots of –dQ/dt and Q that are merely numerical artifacts (Rupp and Selker, 

2006).  

Figure 10 - VTS illustration. 

Therefore, with the VTS method, where 'Q is high, there is a lot of data regarding 

hydrograph changes, and hence 't can be low. When 'Q is low, we need longer portions of the 

hydrograph to get information, thus 't must be higher. Artifacts can be generalized as errors in 

the information extracted from the hydrograph. Using the CTS methods, we get artifacts in 

the southwest quadrant of the recession plot since this is where information is missing.  

However, while artifacts are greatly reduced with the use of VTS methodology from that of CTS, 

they are still present in recession plots. 
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Rupp and Selker (2006) suggested that, preferably, Δt would be selected such that the data 

points remain within upper and lower envelopes. Envelopes are defined as the upper and lower 

boundaries of data once plotted. The approach introduces a time increment Δt that is correctly 

scaled to the detected drop in discharge ΔQ. To do this, the rate of change in time of discharge 

along with the corresponding discharge can be calculated by: 

𝑑𝑄
𝑑𝑡 =

𝑄𝑖 − 𝑄𝑖−𝑗

𝑡𝑖 − 𝑡𝑖−𝑗
,  𝑖 = 2,3,4, … . , 𝑛 𝑎𝑛𝑑 0 < 𝑗 < 𝑖 Equation 2 

𝑄 =  
1

(𝑗 + 1) ∑ 𝑄𝑘

𝑖

𝑘=𝑖−𝑗
 Equation 3 

Here, i is representative of data recorded at certain time increments, while j is the number 

of time increments over which dQ/dt is calculated. The time interval ti – ti-j corresponds to 

difference in Q values Qi-j - Qi. Operationally, a step backwards in time from the ith value of steps 

j to reach Eq. (6) with C being a constant  t 1;  

𝑄𝑖−𝑗 − 𝑄𝑖  ≥ 𝐶[𝑄(𝐻𝑖 +  𝜀) −  𝑄𝑖] Equation 4 

Where ε is a function of the measurement precision, H is stage height at ith observation, 

and 𝑄𝑖 is discharge at ith observation in a recession. 

For this study C = 10 as it provided the best results with this particular dataset as well as 

to remain consistent with recent applications of the ETS method (Roques et al., 2017). While C = 

25 looks visually viable as it reduces scatter, it is desirable that C is large enough to resolve the 
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signal without overwhelming it. The selected C value minimized artifacts while including the 

majority of recession data. Smaller values introduced significant artifacts, while larger values 

excluded recessions from plots. Values for C were tested using 5, 10, 25, 50, and 100 (see 

appendix). 

3.4 EXPONENTIAL TIME STEP  

A recently introduced approach that advances upon the previously discussed methods is 

the exponential time step (ETS) approach. Roques et al. (2017) introduced the exponential time 

step method which constitutes the exponential-like decay of hydrograph recessions by 

incrementing ∆t exponentially to estimate dQ/dt (Figure 11). In this method, Qt is the baseflow at 

any time t, Q0 is the initial baseflow and k = exponential constant. The exponential constant can 

be expressed in a number of ways. A practical definition is that k is the ratio of the baseflow at 

time t0 to the baseflow one day prior.  

Figure 11 - ETS illustration where the time increment increases exponentially along a recession. 
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Resolution of the devices used to measure stream stage can affect the integrity of the data 

being collected. This can lead to periods of time where no change in flow is reported, or the flow 

“jumps”. This “jump” or lack of change in record can cause artifacts when computing time-

derivatives of flow. The ETS method sought to solve these issues by implementing increments in 

the time step exponentially alongside the recession and enumerates the dQ/dt value from a linear 

regression fit after exponentially incrementing the first approximation of the hydrograph recession. 

By implementing a linear regression function, the derivative can be estimated such that dQ/dt 

accounts for all data points in the considered Q and corresponding t intervals.  

The ETS method (Roques et al., 2017) applies an increment for an integer m, 

𝑚(𝑡) = 1 + [ 𝑛 𝑒(− 1
𝛾𝑡)] Equation 5 

where m is the number of data values included within an interval Δti = ti + m − ti, and n is determined 

by the user of the method which sets the maximum interval permitted to compute the derivative, 

such that: 

−
𝑑𝑄
𝑑𝑡 =  

𝑄𝑖 − 𝑄𝑖+𝑚

𝑡𝑖+𝑚 − 𝑡𝑖
= 𝑓 (𝑄) Equation 6 

The variable Q(t) can be found by fitting an exponential function to the recession where: 

𝑄(𝑡) = 𝑄𝑜𝑒−𝛾𝑡 
Equation 7 
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The variable J determines how quickly a time step will increase along a specific recession 

and is associated with the baseflow recession constant Kb (Roques et al. 2017). For this method, 

optimization of dQ/dt is found by accounting for all data points within the considered discharge 

and time intervals. To do this, the derivative is estimated by implementing least-squared linear 

regression function.  

𝑄(𝑡) =  𝛼𝑡 +  𝛽 Equation 8 

Taking the time derivative of Equation 10 results in values for: 

𝑑�̅�
𝑑𝑡 =  𝛼 Equation 9  

�̅� =  
∑ 𝑄𝑖+𝑚

𝑖
𝑚 + 1

Equation 10 

𝑅2 = 1 − 
∑ (𝑄𝑖 −  𝑄�̂�)2𝑖+𝑚

𝑖

∑ (𝑄𝑖 −  𝑄�̅�)2𝑖+𝑚
𝑖

 Equation 11 

The R2 factor is used to describe the goodness of fit of the derivative dQ/dt. Of the 

previously mentioned methods, ETS is shown to be robust in regard to eliminating artifacts in 

recession plots. In the initial study by Roques et al. (2017), ETS methodology is also shown to 

allow the best representation of entire recessions and coherent results over the entire n parameter 

due to providing the most robust and consistent estimates for interpreting recession as compared 

to other studies. ETS did not produce patterns of scatter or large deviations from true recessions 

and provided the most accurate estimations of a and b parameters as compared to other methods. 

One drawback found in the original study by Roques et al. (2017) was that while ETS produced 
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the most robust results, it was also found to be most sensitive to the considered time step, n that 

the CTS method held constant. For applying this method to Abers Creek, n was defined as 0.20, 

or 20% of the duration of any individual recession.  
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4.0 RESULTS 

As previously discussed, Abers Creek experienced a large increase in population density 

and building density. With this development, one can expect change to occur in watershed 

hydrology due to increase in impervious surface and buildout. For this study, extracted daily and 

sub-daily data (Section 2) was fed into various recession approaches (Section 3) to produce 5-year 

recession plots depicting recession dynamics over the April – Sept period.  The conceptual model 

(Figure 1) links observed changes in the recession plot to expected physical responses that are 

commonly associated with urban hydrology (i.e. flashy streamflow, lower baseflow). This study 

sought to observe changes within the watershed as a result of urbanization through hydrograph 

recessions with historical data. It was assumed that regardless of the recession methodology used, 

an observable relationship between discharge and storage would occur in recessions through time. 

It was also assumed that a shift in recession clouds would occur through time to reflect antecedent 

conditions. As there was uncertainty as to which method would apply best to this particular dataset, 

it was imperative to apply more than one for this study.  

4.1 DAILY DATA ANALYSIS 

Daily data for Abers Creek is readily available via USGS Water Data portal for surface 

water discharge from 1948-1993. Application of recession analysis to daily data is common, and 

applied here to identify the utility of daily data to discern changes in urbanizing watersheds. 
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When analyzing the daily streamflow data for Abers Creek, the constant time step approach 

produced recession plot data that shifts minimally towards a decreased discharge until 1990. When 

applying constant time step methodology to daily data a few noticeable results occur (Figure 12). 

First, a noticeable shift indicating a decrease in watershed storage directly after peak development 

occurs. This is particularly evident in Figure 12c where 1985 data indicates the lowest discharge 

values. In 1990, however, a shift towards higher baseflow and storage is apparent. This shift is 

possibly due to effluent from Plum Borough via the Holiday Park treatment plant. This plant 

discharges treated effluent into Abers Creek.   

Variable time step analysis revealed a reduction in data artifacts as compared to CTS 

methodology (Figure 13). VTS revealed rather similar results between each year. Recessions are 

slightly more constrained in 1990 data suggesting increased antecedent conditions.  

Exponential time step analysis was not applicable to daily data. In order for this method to 

be applied, enough data points must remain after removing the first days of a recession in order to 

fit an exponential curve. Therefore, after these points were removed, there were no longer enough 

data points left to satisfy this argument.  For daily data application, VTS approach provided 

decreased data artifacts as compared to CTS for Abers Creek data. Limitations occurred with daily 

data for this study as results are not as clear, as that of sub-daily data, due to less information in 

daily datasets.  



26 

Figure 12 - Daily discharge data processed using constant time step approach. 1970 data was used as a 

baseline and appears in light grey. While the blue data points correspond to the year as labeled.  Artifacts can 

be observed in the lower portion of the plots. 

10-1 100 101 102

Q (cfs)

10-2

10-1

100

101

102
-d

Q
/d

t (
cf

s/
s

2 )
CTS 1975 Daily

A

10-1 100 101 102

Q (cfs)

10-2

10-1

100

101

102

-d
Q

/d
t (

cf
s/

s
2 )

CTS 1980 Daily

B

10-1 100 101 102

Q (cfs)

10-2

10-1

100

101

102

-d
Q

/d
t (

cf
s/

s
2 )

CTS 1985 Daily

C

10-1 100 101 102

Q (cfs)

10-2

10-1

100

101

102

-d
Q

/d
t (

cf
s/

s
2 )

CTS 1990 Daily

D

10-1 100 101 102

Q (cfs)

10-2

10-1

100

101

102

-d
Q

/d
t (

cf
s/

s
2 )

VTS 1975 Daily

A

10-1 100 101 102

Q (cfs)

10-2

10-1

100

101

102

-d
Q

/d
t (

cf
s/

s
2 )

VTS 1980 Daily

B



27 

Figure 13 - Daily data using variable time step approach exhibits similar regimes throughout. 1970 data was 

used as a baseline and appears in light grey (a) 1975, (b) 1980, (c) 1985, (d) 1990. 

4.2 SUB-DAILY DATA ANALYSIS 

4.2.1  CHANGE IN Q 

When applying the CTS approach to sub-daily data (Figure 14), an observable difference 

is the increase in information as compared to daily CTS plots (Figure 12). In Figure 14, a noticeable 

decrease in discharge occurs, suggesting a decrease in watershed storage. This is a noteworthy 

result as a watershed will be in a transient flux given the recorded changes in development within 

the watershed (Figures 3 and 4), and may take years to return to a steady-state condition. Results 

for 1975 show that a shift is notable, and can be linked to the timescale of changes in watersheds. 

With increased urbanization, watershed storage is expected to decrease due to the combination of 

increased impervious cover and water management schemes that route stormwater out of 

urbanized regions. Moving from 1975 to 1980, we can observe a slight shift towards increased 

storage as a function of discharge. This minor shift can possibly be attributed to the decline in 

10-1 100 101 102

Q (cfs)

10-2

10-1

100

101

102
-d

Q
/d

t (
cf

s/
s

2 )

VTS 1985 Daily

C

10-1 100 101 102

Q (cfs)

10-2

10-1

100

101

102

-d
Q

/d
t (

cf
s/

s
2 )

VTS 1990 Daily

D



28 

development as described in Hopkins et al. (2015). The largest shift in Q and dQ/dt is apparent in 

1985. Thus, suggesting that as time progressed, water storage decreased much more than observed 

in 1970.  

In the 1990 CTS recession plot, we can observe a shift in the data cloud toward a higher 

discharge, and therefore increased storage regime. While it might be expected that the lowest 

watershed storage would occur here due to the watershed being in its most urban state, 1990 

was the third wettest year on record for Pennsylvania. This significant increase in precipitation 

explains the shift towards a higher baseflow discharge as well as the development of the 

Plum Borough water treatment plant. However, it’s also important to point out the 

constraint in spacing in 1990 recession plots that occurs as compared to previous years. The 

range of Q depicted in the figures may be linked to watershed constraints.  Shaw and Riha 

(2012) suggest that reduced variability in Q is linked to uniformity of antecedent conditions. The 

results of the CTS methods identify similar behavior, which using the proposition of Shaw and 

Riha, suggests that urbanized watersheds such as Abers Creek would theoretically exhibit similar 

conditions. 
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Figure 14 - CTS Sub-daily data: (a) 1975, (b) 1980, (c) 1985, (d) 1990. Grey points correspond to 1970 data. 
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Figure 15 - VTS sub-daily recession plots: (a) 1970, (b) 1975, (c) 1980, (d) 1985, (e) 1990. 
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Figure 16 - ETS sub-daily recession plots: (a) 1970, (b) 1975, (c) 1980, (d) 1985, (e) 1990. 
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While a shift towards higher baseflow and higher storage occurs, the recession cloud is extremely 

well constrained with little spacing between individual recessions. This is a good indication of 

increased antecedent conditions from urbanization.  

Exponential time step (ETS) exhibited evident results for recession variability and 

baseflow changes. In Figure 16, high variability in baseflow discharge occurs. The high variability 

within the recession cloud is not well constrained within the plot and suggests less uniformity in 

antecedent conditions. An immense difference occurs in 1975 after peak development (Figure 16a) 

with the data cloud becoming much more constrained towards lower baseflow and storage regimes. 

This trend attributed with lower baseflow values and constrained data clouds continues through 

1980, 1985, and 1990. 

To reiterate, an important result, particularly noticeable in VTS and ETS methodology, is 

the scattering, or lack thereof, of the recession cloud. Through time, the recession cloud appears 

to become less scattered and more clustered together. This can suggest that antecedent conditions 

play a large role in the location of recession events within the plot (Shaw et al. 2012). The data 

cloud can be affected by factors such as human interference; which occurred within Abers Creek 

(Wang and Cai, 2010). With increased antecedent conditions and more impervious surface – 

clustering of recession data becomes more apparent, especially in 1990 data after major 

urbanization took place (Figure 15d and 16d).  
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4.2.2  CHANGE IN dQ/dt  

A shift towards a higher dQ/dt is indicative of higher streamflow changes. This can be 

attributed to increased human alteration factors like impervious cover and stormwater 

management schemes creating peakier flow regimes. A lower dQ/dt state relates to the hydrology 

of a more natural, less disturbed watershed. 

The results depict that there is a general decrease in watershed storage after the height of 

the development in Abers Creek (1975-1985). Results also depict that the range of discharge is 

reduced—which can be linked to uniformity in antecedent conditions. This is noticeable 

within each method, although can be most clearly observed in VTS and ETS approaches for each 

year up until 1990. Along with a shift in discharge (Q), results also portray a shift in dQ/dt, or 

the time derivative of streamflow. Recessions are shifting down and left towards a lower 

discharge, Q. This shift confirms that with increasing impervious cover as a result of 

urbanization, watershed storage decreases. In 1990, however, this changes to a shift towards a 

higher storage regime. This shift is most likely attributed to 1990 being the third wettest 

year on record (PRECIPITATION RECORDS FOR PITTSBURGH n.d.). When applying 

methodology, distinct differences in recessions occurs between upper and lower flow regimes 

and becomes more apparent with time. These results suggest that with different flow regimes, 

there is sensitivity to change in storage. 
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5.0 CONCLUSIONS 

The key goal of this research was to test the application of hydrograph recession analysis 

using daily and sub-daily data to evaluate urban impacts. This study provides insight for the 

characterization of buildout in historical stream data while providing clearer understanding of the 

behavior of streamflow hydrograph recessions. Results from this study link increased urbanization 

patterns to changes in hydrology such as shifts in storage as a function of changing baseflow and 

changes in appearance and location of the recession data cloud. Analysis of sub-daily streamflow 

records reveal hydrologic changes driven by urbanization, previously only observed over relatively 

shorter time periods. Refined connections between development history and changes in hydrology 

allow improved mitigation of stream impacts in urban areas.  

Daily data portrayed important links in watershed storage behavior but did not produce the 

significant shifts in recession clouds as compared to sub-daily results. Sub-daily data provided 

more robust recession information in terms of baseflow shifts and more noticeable shifts in the 

data cloud. Results show that through time, variations in discharge become more minimal and 

shifts in recession clouds towards a lower dQ/dt occurs. With watershed urbanization, we can see 

noticeable shifts through time in hydrograph recessions regardless of the method applied. Results 

from methodologies differ as previously assumed. The constant time step approach was least 

useful for interpreting data for Abers Creek. This negates that other methods are perhaps more 

useful when analyzing shifts in urban watersheds. Variable time step (VTS) and exponential time 

step (ETS) methods provided the most favorable results in transposing visible shifts. 

To conclude, this study highlights the importance of sub-daily data in recession analysis to 

extract hydrograph changes that may be linked to urbanization. Insufficient evidence regarding 
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hydrograph changes was noted using daily time step observations (Figures 12 and 13).  Higher 

resolution data provides clearer understanding to the relationships driving hydrograph recessions 

through time and through development (Figures 14, 15 and 16). Moving forward, this study would 

benefit from further analyses with the use of earlier drum data to provide a critical pre-development 

hydrology characterization from which to compare later hydrograph changes.  
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APPENDIX 

Figure 17 - C=5. 

Figure 18 - C=10. 
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Figure 19 - C=25. 

Figure 20 - C=50. 
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Figure 21 - C=100. 

Figure 22 - Comparison of daily (blue) and sub-daily (orange) discharge data for 1970. 
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Figure 23 - Comparison of daily (blue) and sub-daily (orange) discharge data for 1975. 

Figure 24 -  Comparison of daily (blue) and sub-daily (orange) discharge data for 1980. 
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Figure 25 - Comparison of daily (blue) and sub-daily (orange) discharge data for 1985. 

Figure 26 - Comparison of daily (blue) and sub-daily (orange) discharge data for 1990. 
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