
Enabling Reliable, Efficient, and Secure Computing for

Energy Harvesting Powered IoT Devices

by

Mimi Xie

B.E., Chongqing University, 2010

M.S., Chongqing University, 2013

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Mimi Xie

It was defended on

May 30, 2019

and approved by

Jingtong Hu, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Samuel Dickerson, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Feng Xiong, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Jun Yang, Ph.D., Professor

Department of Electrical and Computer Engineering

Youtao Zhang, Ph.D., Associate Professor

Department of Computer Science

Dissertation Director: Jingtong Hu, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

ii

Copyright c© by Mimi Xie

2019

iii

Enabling Reliable, Efficient, and Secure Computing for Energy Harvesting

Powered IoT Devices

Mimi Xie, PhD

University of Pittsburgh, 2019

Energy harvesting is one of the most promising techniques to power devices for future

generation IoT. While energy harvesting does not have longevity, safety, and recharging

concerns like traditional batteries, its instability brings a new challenge to the embedded

systems: the energy harvested from environment is usually weak and intermittent. With

traditional CMOS based technology, whenever the power is off, the computation has to start

from the very beginning. Compared with existing CMOS based memory devices, emerging

non-volatile memory devices such as PCM and STT-RAM, have the benefits of sustaining

the data even when there is no power. By checkpointing the processor’s volatile state to

non-volatile memory, a program can resume its execution immediately after power comes

back on again instead of restarting from the very beginning with checkpointing techniques.

However, checkpointing is not sufficient for energy harvesting systems. First, the pro-

gram execution resumed from the last checkpoint might not execute correctly and causes

inconsistency problem to the system. This problem is due to the inconsistency between

volatile system state and non-volatile system state during checkpointing. Second, the pro-

cess of checkpointing consumes a considerable amount of energy and time due to the slow and

energy-consuming write operation of non-volatile memory. Finally, connecting to the inter-

net poses many security issues to energy harvesting IoT devices. Traditional data encryption

methods are both energy and time consuming which do not fit the resource constrained IoT

devices. Therefore, a light-weight encryption method is in urgent need for securing IoT

devices.

Targeting those three challenges, this dissertation proposes three techniques to enable re-

liable, efficient, and secure computing in energy harvesting IoT devices. First, a consistency-

aware checkpointing technique is proposed to avoid inconsistency errors generated from the

inconsistency between volatile state and non-volatile state. Second, checkpoint aware hybrid

iv

cache architecture is proposed to guarantee reliable checkpointing while maintaining a low

checkpointing overhead from cache. Finally, to ensure the security of energy harvesting IoT

devices, an energy-efficient in-memory encryption implementation for protecting the IoT de-

vice is proposed which can quickly encrypts the data in non-volatile memory and protect

the embedded system physical and on-line attacks.

v

Table of Contents

Acknowledgement . xiii

1.0 Introduction . 1

1.1 Challenges in Energy Harvesting Powered IoT devices 2

1.2 Research Contributions . 4

1.3 Dissertation Organization . 5

2.0 Energy Harvesting Embedded System . 7

2.1 System Architecture . 7

2.2 Non-volatile Processor . 8

2.2.1 Non-volatile Register File . 8

2.2.2 Non-volatile On-chip Memory . 9

2.3 Related work . 10

2.3.1 Energy Harvesting . 10

2.3.2 Non-volatile memory . 10

2.3.3 Non-volatile Processor . 11

2.3.4 Non-volatile Cache . 12

2.3.5 Secure Non-volatile Main Memory . 13

3.0 Inconsistency-aware Checkpointing for Energy Harvesting Embedded

System . 15

3.1 Background . 15

3.1.1 Energy harvesting . 15

3.1.2 Checkpointing . 18

3.1.3 Inconsistency . 19

3.2 Motivation . 20

3.3 Methodology . 22

3.3.1 Potential Error Locating . 24

3.3.2 Consistency-aware checkpoints inserting 25

vi

3.4 Experiment . 31

3.4.1 Setup . 31

3.4.2 Experimental Results and Analysis . 32

3.4.2.1 Error Locating . 32

3.4.2.2 Inserting Checkpoints . 33

3.5 Summary . 34

4.0 Checkpointing-aware Hybrid Cache for Intermittently Powered IoT De-

vices . 35

4.1 Background . 35

4.2 Motivation and Overview . 37

4.2.1 Motivation . 38

4.2.2 Overview . 40

4.2.2.1 Self-checkpointing Cache . 40

4.2.2.2 Challenges . 41

4.3 Basic Placement and Migration policies for one-level hybrid Cache 42

4.3.1 Access Pattern Predictor . 42

4.3.1.1 Updating the pattern access predictor 45

4.3.1.2 Making Prediction . 45

4.3.2 Cache Placement and Migration Policy 46

4.4 Checkpointing Aware Cache Policies . 48

4.4.1 New restrictions Imposed by Intermittent Computing 48

4.4.2 Dirty Block Control . 49

4.4.3 Proactive Early Write Back . 51

4.4.4 Reliable and Energy-efficient Checkpointing Aware Cache Policies . . 52

4.5 Checkpointing Policy . 55

4.5.1 Selecting Volatile Blocks for Checkpointing 55

4.5.2 Selecting Non-volatile Blocks . 56

4.6 Experimental Evaluation . 57

4.6.1 Experiment Setup . 58

4.6.2 Results . 60

vii

4.6.3 Execution Frequently Interrupted Under Harvested Power 62

4.7 Summary . 64

5.0 Securing Non-volatile IoT Devices With Fast and Energy-Efficient AES

In-Memory Implementation . 66

5.1 Introduction . 66

5.2 Background . 69

5.2.1 Non-volatile Main Memory . 69

5.2.2 Pinatubo: PIM in NVM . 69

5.2.3 Advanced Encryption Standard . 70

5.3 Overview . 72

5.3.1 NVMM’s Vulnerability Challenge . 72

5.3.2 PIM: A Potential Solution . 73

5.3.3 Design Overview . 73

5.4 AES In-Memory Implementation . 75

5.4.1 Data Organization . 75

5.4.2 AddRoundKey . 76

5.4.3 SubBytes . 78

5.4.4 ShiftRows . 79

5.4.5 MixColumns . 80

5.4.6 Discussion . 83

5.5 Cipher Modes . 84

5.5.1 Cipher Modes . 84

5.5.1.1 Electronic Codebook (ECB) 84

5.5.1.2 Cipher Block Chaining (CBC) 84

5.5.1.3 Cipher Feedback (CFB) . 85

5.5.1.4 Output Feedback (OFB) . 85

5.5.1.5 Counter (CTR) . 85

5.5.2 CTR-CFB Encryption . 86

5.5.3 CTR-CFB Decryption . 88

5.6 Key generation and storage . 88

viii

5.6.1 Master Key Generation and Storage 88

5.6.2 Round Key Generation - Rijndael Key Schedule 90

5.7 Experimental Evaluation . 90

5.7.1 Experiment Setup . 90

5.7.2 Performance and Energy Evaluation 92

5.7.2.1 Latency . 92

5.7.2.2 Power . 93

5.7.2.3 Energy Efficiency . 93

5.7.2.4 Overhead Evaluation . 95

5.7.2.5 Further Improvement . 96

5.7.3 Evaluation of Different Cipher Modes 97

5.7.3.1 Latency . 97

5.7.3.2 Energy Efficiency . 97

5.7.3.3 Overhead . 98

5.7.3.4 Discussion . 100

5.8 Summary . 101

6.0 Conclusion . 102

Bibliography . 103

ix

List of Tables

1 Comparison of different cache architectures 38

2 Notations of cache blocks . 49

3 System configuration . 58

4 Characteristics of SRAM and STT-RAM Caches (22nm, temperature=350K) 59

5 Characteristics of benchmarks . 59

6 Comparison of different cipher modes . 86

7 PCM and MRAM parameters at bit level . 91

x

List of Figures

1 Energy harvesting system architecture . 7

2 Ferroelectric Flip-Flop [77] . 9

3 Block diagram of energy harvesting systems 16

4 Power traces: a) Wifi RF, b) Light . 17

5 Computation progress. 18

6 Example of inconsistency problem. 21

7 a) Inconsistency error. b) Inserting a checkpoint properly can eliminate incon-

sistency. 23

8 An example of error locating and checkpoint insertion: (a) Potential error pairs

located with PEL algorithm, and (b) Checkpoints inserted with CATI algorithm 26

9 Paths between all load-store pairs. 26

10 Block diagram for Algorithm 2. 30

11 Instruction traces example. 31

12 Number of potential error pairs given different checkpointing frequencies. . . 32

13 Number of inserted checkpoints given different checkpointing frequencies. . . 33

14 Performance of SRAM cache and NVM cache 39

15 Percentage of dirty blocks during lifetime . 39

16 Hybrid cache architecture . 41

17 System structure of predictor . 43

18 An example of sampling the cache set with pattern sampler and updating the

prediction table. 46

19 Clean block selecting policy . 56

20 Checkpointing policy . 58

21 Comparison of execution progress under different cache architectures 61

22 Comparison of energy consumption . 61

23 Execution time under frequent power failures 62

xi

24 Comparison of energy consumption under frequent power failures 63

25 Left: Pinatubo’s architecture computes vector bitwise operations inside NVM-

s. Right: SA modification in Pinatubo to perform in-memory XOR opera-

tions [40]. 70

26 AES Flow Chart. 71

27 Memory encryption architecture: a) Traditional encryption approach imple-

mented an cryptographic engine outside main memory, b) The proposed AIM

design: in-memory computing with NVM’s intrinsic features. 74

28 Distributed data organization for AES encryption. 75

29 Addroundkey stage with xor operation. 77

30 SubBytes transformation with LUT and ShiftRows transformation with ad-

dressing logic. 78

31 MixColumn substep: M-2 LUT. 80

32 Example of MixColumns substep: Calculate Tj for each column (Eq. (4)). . 82

33 Example of MixColumns substep: Calculate S ′
0.j. 83

34 Encryption of CTR+CFB cipher mode. 87

35 Decryption of CTR+CFB cipher mode. 89

36 Comparison of latency among different baselines and different AIM designs. 94

37 Left: Energy for encrypting 128-bit block. Right: Energy for accessing and

encrypting 1GB main memory. 94

38 Different AIM designs area overhead. 95

39 Breakdown of encryption overhead. 95

40 Breakdown of latency and energy consumption. 96

41 Comparison of latency among different cipher modes. 98

42 Comparison of energy for encrypting 128-bit block among different cipher

modes. 98

43 Different AIM design area overhead with the CTR+CFB mode. 100

44 Breakdown of encryption overhead with the CTR+CFB mode. 100

xii

Acknowledgement

First of all, I want to thank my Ph.D. advisor Prof. Jingtong Hu for the continuous

support of my Ph.D. study and research. I appreciate all his ideas, patience, enthusiasm,

and perseverance in academic pursuits. He provided me immense hands-on help when I was

in my early years of PhD study. He helped revise my first paper word by word. I appreciate

his constructive advice on my career plan and job hunting and his encouragement when I

was not confident of my research ideas.

I am especially grateful to Prof. Youtao Zhang, for being my dissertation committee

member, and for his recommendation and help in my job hunting. I also reserve my sincere

gratitude to Prof. Jun Yang, Prof. Samuel Dickerson, and Prof. Feng Xiong, for serving

on my PhD committee and providing insightful advice and instructions to my research and

dissertation.

Moreover, I thank all my coauthors Prof. Chengmo Yang, Prof. Yiran Chen, Prof.

Mengying Zhao, Prof. Chun Jason Xue, Prof. Yongpan Liu, Dr. Shuangchen Li, and all the

others around the world for their generous contributions to the works in this dissertation.

I have been fortunate to work with my group comrades, Chen Pan, Xinyi Zhang, Zhenge

Jia, Yawen Wu, and Zhenpeng Wang, who are always generous with their time and knowl-

edge. They have made my life vivid and beautiful during the past years.

Last but not least, I would also like to thank my parents for their continuous support

and unconditional love to me. I dedicate this dissertation to them!

xiii

1.0 Introduction

The vision of Internet of things is to connect everything with modern technologies to

improve the wellbeing of whole society. Thanks to the development of integrated circuits,

the size of computer systems has shrinked from a mainframe to a coin size little small sen-

sor. While the vision is promising and exciting, there are several challenges in achieving this

goal. One of the imminent challenges is how to power all these small devices. For all these

devices, a battery is no longer a favorable solution. First of all, it is difficult to shrink the

size of battery while maintaining the required power supply. Second, closely wearing many

batteries will pose safety and health concerns for users. What is more, charging all these

batteries every one or two days will give users bad experiences. Therefore, researchers are

actively pursuing power alternatives and trying to replace battery completely. Out of all

possible solutions, energy harvesting is one of the most promising techniques to meet both

the size and power requirements of IoT devices.

Energy harvesting technologies generate electric energy by harvesting energy from am-

bient environment using direct energy conversion techniques. Examples of power sources

include kinetic, electromagnetic radiation (including light and RF), and thermal energy.

The obtained energy can be used to recharge a capacitor or, in some cases, to directly power

the electronics. However, there is an intrinsic drawback with harvested energy. They are all

unstable. Its instability brings a new challenge to the embedded systems: the energy har-

vested from environment is usually weak and intermittent. With traditional CMOS based

technology, whenever the power is off, all computation state is lost and the computation has

to start from the very beginning. With frequent power outages, the processor execution will

be interrupted frequently. Frequent turning-off and booting-up will place an extra burden

on a limited power budget.

To address this challenge, researchers have employed non-volatile memory in energy har-

vesting embedded systems. Compared with existing CMOS based memory devices, emerging

non-volatile memory devices such as FRAM, PCM, and STT-RAM, have the benefits of sus-

taining the data even when there is no power. Their non-volatility allows fast recovery from

1

power failures, thus enabling long running computations even with unreliable power sources.

When there is a power failure, the processor’s volatile state is backed up into non-volatile

memory, which is called checkpointing. When power comes back again, the state will be

copied back from the closest checkpoint next time. In this way, a program can resume

its execution from the last checkpoint instead of restarting from the very beginning with

checkpointing techniques.

These distinctive advantages, along with their great market potential, are driving the

use of NVMs in embedded systems across various layers on the memory hierarchy. With

non-volatile memory, we can turn off the processor and resume from where was left. In this

way, we can either turn off processor on purpose to save energy or passively survive unstable

power. For example, FRAM has been widely used to deploy scratchpad memory taking ad-

vantage of its non-volatility characteristic for intermittently powered embedded systems. In

this kind of system, the on-chip non-volatile scratchpad memory is used for backing up the

volatile system state upon power failure, which is critical for running long computation tasks.

STT-RAM has been widely used to deploy energy-efficient on-chip cache with small size for

embedded system due to its high density, low leak power dissipation, and high read speed.

PCM has been widely researched as a replacement for DRAM as off-chip main memory.

Despite these great benefits over SRAM and DRAM, deploying NVMs in different levels

of memory hierarchy is faced with different challenges originating from the more expensive

writes compared to read operation and the feature of non-volatility itself.

1.1 Challenges in Energy Harvesting Powered IoT devices

Energy harvesting powered IoT devices are faced with reliability, efficiency, and security

issues. This dissertation considers three main challenges in enabling the efficient working of

energy harvesting powered embedded systems.

First, the correctness of the program execution must be preserved across power interrup-

tions. Our initial investigation shows that existing programs could cause data inconsistency

and therefore a wrong result due to checkpointing and resuming. While the employment

2

of non-volatile memory as on-chip memory enables continuous computation by backing up

(checkpointing) the volatile system state in energy harvesting embedded systems, it creates

inconsistency between volatile system state and non-volatile system state can bring serious

system errors in battery-less embedded system. This problem results from partly finished

checkpoint and rollback recovery from last successful checkpoint if the current checkpoint

fails. Besides, process of checkpointing consumes a considerable amount of energy and time

due to the slow and energy-consuming write operation of non-volatile memory. Therefore,

how to efficiently save the program execution state in terms of both time and energy is vital

for practical application of energy harvesting embedded systems.

Second, although non-volatile cache is preferable as a solution for energy harvesting

embedded systems to achieve low energy, high density, and instant resumption when power

recovers. Its slow write severely degrades the system performance because of the slow and

energy consuming write to non-volatile memory. The solution of volatile cache, however,

requires frequent checkpointing a large amount of volatile system data which consumes a

massive amount of energy and time. Therefore, how to efficiently save the program execu-

tion state in terms of both time and energy is vital for practical application of non-volatile

processors. Existing approach that simply saves all the volatile system state is not a desired

solution. This will place severe burden on already constrained energy supply.

Third, there is no light-weight encryption method for securing the energy harvesting

powered IoT devices. Although the integration technology allows processor vendors to in-

tegrate the encryption engine into the embedded processor/microcontroller to make the

embedded system more secure, existing engines are energy and time consuming for resource

and energy limited energy havesting IoT devices. An light-weight encryption method is in

urgent need.

In this dissertation, these challenges are addressed through software and hardware op-

timization and designs. The goal is to enable reliable, efficient, and secure computing for

energy harvesting powered IoT devices.

3

1.2 Research Contributions

Research contributions for this dissertation can be concluded as:

• To eliminate inconsistency errors in non-volatile memory based intermittently powered

embedded system, a systematic consistency-aware checkpointing mechanism is proposed

for energy harvesting powered non-volatile processor with low checkpointing overhead.

Specifically, the proposed checkpointing mechanism makes the following contributions:

– A consistency-related error locating mechanism is proposed to find all the potential

error pairs and all the program paths between each error pair;

– A consistency-aware checkpointing algorithm is designed to eliminate all error pairs

and it generates the minimal number of checkpoints;

– Detailed experimental evaluation is implemented to demonstrate the efficiency of the

proposed consistency-aware checkpointing mechanism.

• A checkpoint aware hybrid cache architecture to guarantee reliable checkpointing while

maintaining a low checkpointing overhead from cache.

– A hybrid cache architecture built with SRAM and STT-RAM is proposed , and

STT-RAM is fully utilized not only for normal cache access but also for volatile

SRAM checkpoint.

– A write intensive and dead block predictor is proposed for directing the cache line

placement policies.

– Replacement and migration policies are designed to balance the usage of STT-RAM

space between normal access and checkpoint. Proactive write back policy is also

designed to guarantee successful and efficient checkpointing.

– An efficient checkpointing policy is proposed to save all necessary volatile blocks to

STT-RAM before capacitor energy is depleted upon a power failure.

• AIM, a novel AES In-Memory encryption architecture is proposed for fast and energy

efficient data encryption. Embracing the benefit of the processing-in-memory (PIM) ar-

chitecture, the proposed encryption architecture takes advantage of large internal memo-

ry bandwidth, vast bitline-level parallelism, and low in-situ computing latency. Besides,

by eliminating data movement between memory and host, higher energy efficiency is

4

achieved. To this end, the non-destructive read in NVMs is leveraged for performing

efficient XOR operations, which dominate AES. The sense amplifier circuit is modified

so that the vector XOR operations can be calculated by performing a memory-read-like

operation. After adding lightweight logic gates to the memory peripherals circuitry, we

can perform the entire AES procedure in-place.

The major contribution is summarized as follows:

– Different levels (chip, bank, and subarray) of parallelism are explored to provide d-

ifferent design choices in order to satisfy different performance and energy efficiency

requirement.

– A novel combined cipher modes is proposed for AIM in order to maintain high par-

allelism with best performance and reduced area overhead.

– The proposed encryption architecture is evaluated and compared with the state-

of-the-art encryption engine. The experimental results show that, compared with

state-of-the-art AES encryption engine, AIM can speed up the encryption process

by 80× while reducing the energy by 10×. .

1.3 Dissertation Organization

This dissertation proposal is organized as follows:

Chapter 2.0 introduces the architecture of energy harvesting embedded system for this

dissertation and presents the related work of non-volatile memory-based energy harvesting

embedded systems.

Chapter 3.0 explores the consistency problem in both on-demand and periodical check-

pointing schemes and proposed inconsistency aware checkpointing technique to eliminate

inconsistency errors. Besides, live variable reduction and adaptive on-line checkpointing

techniques are proposed to reduce checkpointing overhead.

Chapter 4.0 proposes checkpoint aware hybrid cache architecture to guarantee reliable

checkpointing while maintaining a low checkpointing overhead from cache.

5

Chapter 5.0 proposes a light-weight in-memory encryption implementation technique

that encrypts the data on non-volatile main memory to protect the embedded system from

physical attack or on-line attack.

Chapter 6.0 summarizes this dissertation.

6

2.0 Energy Harvesting Embedded System

In this chapter, the system architecture of energy harvesting embedded system will be p-

resented and the design of the energy harvesting embedded systems will be explored followed

with the related work.

2.1 System Architecture

This dissertation targets on embedded systems that are powered directly by energy har-

vesting [72] technologies. Since the power supply is intermittent, to defend against frequent

power interruptions, the states in volatile memory need to be checkpointed periodically or

on-demand when detecting a low voltage. The targeting energy harvesting based embedded

Ambient Energy Energy Harvesting and Management

Energy
Storage

Peripheral Devices Nonvolatile Processor

Register File

IcacheNVP

Cache

RF Signal

Piezoelectric Thermal

Solar

Transceivers

NV Memory

Sensors

I2C

UART

SPI

IO Operations Computing Operations

Voltage
Detector

Voltage
Regulator

I2C

UART

SPI

B
u

s

B
u

s

Figure 1: Energy harvesting system architecture

system is shown in Figure 1. This is a typical system architecture with non-volatile mem-

ory for energy harvesting powered embedded systems. In this architecture, the system is

powered with energy harvested from ambient sources, such as solar energy, thermal energy,

7

piezoelectric, or radio frequency (RF). Besides the energy harvesting module, there is also

a energy management module where there is an energy storage, a voltage regulator, and a

voltage detector. The energy storage is powering the whole system including the processor

and the peripheral devices. Whenever the voltage detector detects the voltage bellow a cer-

tain threshold, it will send a interrupt to the non-volatile processor. Then the non-volatile

processor will save the content to the non-volatile memory.

The non-volatile processor (NVP) consists of the processing unit, non-volatile register

file, and non-volatile cache as on-chip memory. Besides the on-chip memory, there is also a

non-volatile off-chip memory as main memory. The execution state can be preserved when

there is a power interrupt under unstable power supply. After power returns, the NVP will

restore the execution state and resume execution from the interrupted point.

The small storage capacitor enables accumulating execution states by supporting check-

pointing. It is notable that, the energy stored in this capacitor enables a successful check-

pointing whenever there is a power failure supported with the proposed cache architecture.

Besides, checkpointing is always necessary. This is because without checkpointing, although

the states in SRAM can retain for a while powered with the capacitor, everything in SRAM

will be lost if power does not come back right after the energy in the capacitor depletes.

2.2 Non-volatile Processor

2.2.1 Non-volatile Register File

Due to frequent usage, the register file goes through massive accesses, hence a volatile

register file cannot be made with pure non-volatile memory considering energy efficiency.

To achieve high efficiency, researchers designed FRAM based nonvolatile flip-flops (NVFF-

s) [78]. The NVFF structure is shown in Figure 2. In this NV register, the left side is a

standard two-stage flip-flop. A ferroelectric memory based non-volatile storage is attached

to the standard flip-flop. The content of the standard flip-flop can be copied to the fer-

roelectric memory to save the state. This register file enables the processor’s registers to

8

Figure 2: Ferroelectric Flip-Flop [77]

be non-volatile and the execution can be quickly recovered from power failure. When the

content of the volatile register is lost due to power failure, the content in the NV storage

can be copied back into the volatile register. Besides this hardware solution, the values in

the volatile register file can be moved to a non-volatile memory upon power outages to save

volatile state.

2.2.2 Non-volatile On-chip Memory

There are different ways to integrate non-volatile memory into the processor. For exam-

ple, Texas instrument MSP 430 microcontroller already have FRAM integrated into their

on chip memory as a scratch pad memory. TI’s MSP430FRxx series microcontrollers [27]

is an existing microprocessors with similar architecture. Or we can integrate non-volatile

memory as a cache to checkpoint the content [47]. The on-chip cache can be deployed with

STT-RAM, which has fast access speed and long lifetime. Since the on-chip memory is

non-volatile, the content does not need to be checkpointed. This dissertation targets on the

system that integrateds cache as on-chip memory.

9

2.3 Related work

2.3.1 Energy Harvesting

Energy harvesting technologies are promising long-lasting replacements for batteries in

embedded systems. Ambient sources such as solar [69], motion [64], radio-frequency (RF)

electromagnetic radiation, and thermal gradients [35, 37] can provide enough energy for em-

bedded system to be completely self-sustainable. For ultra low power devices, the sources

of low power densities, such as micro-solar [69] and body heat (2.4∼4.8W), should be able

to provide sufficient power to drive the devices at low duty cycles [35]. For example, [69]

designs a micro-solar power sensor network, [73] proposes a non-volatile microprocessor pow-

ered with a solar energy harvesting system even under low solar irradiance, and [59] designs

a self-powered pushbutton controller which functions with a piezoelectric conversion mech-

anism. Even though the harvested power is lower than the power required by the complete

system, it is still possible to operate the system with proper energy management.

2.3.2 Non-volatile memory

Energy harvesting power sources can lead to frequent power failure and state loss, which

impedes wide adoption of large software in energy harvesting powered embedded system.

This problem have attracted a great deal of interest from both academic institution and

industry. Researchers have deployed non-volatile (NV) memory into energy-harvesting de-

vices to store the execution states [101, 60, 62, 43] because of their features of non-volatility.

Non-volatile memory based embedded systems bring promising opportunities to the com-

puting paradigm since they have extremely low leakage power and better scaling than C-

MOS technology. A lot of promising candidates such as Phase Change Memory (PCM)

[31, 30, 54], Spin-Transfer Torque RAM (STT-RAM) [25, 100, 39] and Ferroelectric RAM

(FRAM) [66, 92, 5] are currently under active research and development. These NVMs

have several significant advantages over traditional static and dynamic RAMs such as high

density, lower leakage power, low-cost, high-scalability, and non-volatility properties. The

potential high density of NVMs allows a further reduction in chip size and cost for embedded

10

systems. NVMs consume less standby power than SRAM or DRAM by orders of magnitude,

significantly prolonging the battery usage.

2.3.3 Non-volatile Processor

Non-volatile memory based on-volatile processor appears as a promising solution to

bridge intermittent program execution under unstable power. There are two kinds of N-

V processor. The first kind of NV processor attaches a nonvolatile memory cell to each

volatile element and therefore allows fast local backup of intermediate results and fast re-

covery. FRAM based processors [101, 53, 89], present great potential to be deployed in

energy-harvesting devices. They show many desirable characteristics of energy-harvesting

systems, such as no battery, zero stand-by power, and fast access. FRAM also has a superior

endurance as long as 1014 write cycles. For example, Yu et al. [34] propose a non-volatile

processor architecture which integrates non-volatile elements into volatile memory at bit

granularity. Wang et al. [77] design a FRAM based processor, which attaches a NV FRAM

cell to each volatile standard flip-flop. The flip-flops are accessed for normal execution while

the FRAM cells are used to checkpoint the states in flip-flops at power failure. To reduce the

backup overhead and energy, different technologies have been proposed including instruction

scheduling [87], register reduction [98], compare-and-write [75], and instruction selection [86].

The second kind of NV processor employs non-volatile memory as a piece of independent

scratchpad memory. The non-volatile memory is used to reserve the system state by backing

up all volatile system state upon power failure. After the system comes back from a power

failure, the execution states are copied back and thus the program can be resumed efficiently.

Zwerg et al. [101] present an ultra-low-power micro controller unit which embedded FRAM

as on-chip memory for fast write capability. When power runs out, a charge reserve in a

2nF capacitor is used to complete memory access to FRAM. In this work, a special circuit

was also designed to detect power-drop. Checkpointing has been shown to be an efficient

methodology for saving the runtime state [60]. The work of Ransford et al. [62] presented

a software system for transiently powered RFID-scale devices in which energy-aware state

checkpointing is utilized against frequent power losses. This system deployed flash to back

11

up the regions in use at the checkpoint, while flash has a limited write endurance in the order

of 105 [33] and the access to flash is quite slow. Mirhoseini et al. [52] also proposed a frame-

work for small-scale battery-less devices with discontinuous energy-harvesting supplies. This

work partitions an application into smaller computational blocks and inserts checkpoints at

the end of functions and loops to reduce the cost and overhead. The checkpointed data are

also stored on on-chip memory in this work.

There have been work on efficiency optimizations for NVP [86] aiming at improving the

lifetime and efficiency of NV registers by generating NV register friendly code to reduce

writes to NVM. Wang et al. explores hybrid register architecture with both volatile and

non-volatile registers to improve checkpoint efficiency through register allocations [76]. In

order to reduce the necessary NVM size for checkpointing, data compression based hardware

design is proposed to reduce the content to back up [65]. Even though the previous works

can improve the checkpointing efficiency, they have potential risk of errors, which severely

degrades the functionality and service quality of the energy harvesting powered devices.

2.3.4 Non-volatile Cache

In addition to register contents, cache contents in NVPs should also be saved to ensure

correctness and fast resuming. Among all existed cache designs, two options can be adopted

in energy harvesting systems. One is pure NVM based cache which replaces SRAM with

NVMs totally [47]. However, this design incurs large write overhead and degrades the system

performance, which is especially true when the cache is part of a pipeline stage. Another

option is adopting NVSRAM [44] which integrates a SRAM cell and a non-volatile element

in cell level, forming a direct bit-to-bit connection. In this design, the NVM part is underuti-

lized because the NV elements are idle most of time and the area size is unnecessarily large.

There are some other designs based on both SRAM and NVM to achieve energy efficiency

and high performance [80, 83]. However, all existing hybrid cache architectures and policies

are designed for energy efficiency and performance purposes. None of them consider the

scenario of intermittent power supply and thus are not resistant to power failure. In this

project, a checkpointing aware cache architecture is designed for energy harvesting systems.

12

2.3.5 Secure Non-volatile Main Memory

Memory Encryption: Encryption has been widely suggested as a solution to secure both

DRAM [24] and NVM-based main memory [12, 93]. These implementations perform encryp-

tion/decryption when writing/reading a cache line to/from main memory. Though encryp-

tion techniques base on Pad-based or Stream cipher encryption where memory access could

be overlapped with the Pad or Keystream generation reduces the decryption overhead, the

system still suffers, since that overhead is on the critical path (memory read access). Differ-

ent from them, [14] proposes to perform one-time encryption for smartphones and tablets

only when the device is screen-locked. AIM performs a one-time encryption to the main

memory system before there is a possible attack (e.g., before power-off). Other than that, it

runs as normal main memory without any latency overhead. Furthermore, existing encryp-

tion methods rely on a dedicated encryption engine on the processor or in the main memory.

AIM takes advantage of in-memory computing, hence achieves better throughput with less

energy consumption.

NVM Encryption: There are several work that are particularly optimized for encryption

on NVM [12, 68, 93, 41, 26]. I-NVMM [12] proposes to encrypt main memory incremental-

ly. However, our method taking advantage of the PIM architecture outperforms i-NVMM,

because i-NVMM relies on the dedicated AES engine on the processor side and limited by

its small bandwidth and parallelism. DEUCE [93] and SECRET [68] propose techniques to

reduce the bit flips during data encryption, which helps NVM reliability since encryption

involves significant amount of expensive writes. Silent Shredder[6] proposes techniques to

obviate the writing of zeros to memory pages. Their techniques are orthogonal to AIM, and

their method can be applied to AIM to further reduce the encryption energy.

In-Memory Encryption: In-memory encryption is a promising solution for non-volatile

memory encryption which has limited research. [17] explores different spintronic devices

based memory that could be leveraged to implement logic functions with AES algorithm as

a case study. [4] demonstrates the efficiency of AES algorithm on a proposed in-memory pro-

cessing platform with novel spin Hall effect-driven domain wall motion devices that support

both nonvolatile memory cell and in-memory logic design. A recent work, Recryptor [96],

13

proposes a reconfigurable cryptographic processor using in-memory computing. By replacing

a standard SRAM bank with a custom bank with in-memory and near-memory computing,

Recryptor provides an IoT platform that accelerates primitive cryptographic operations.

Domain wall memory (DWM) is also utilized to perform in-memory encryption [79, 46, 94],

where inherent DWM device functions were used to perform the operations for encryption.

14

3.0 Inconsistency-aware Checkpointing for Energy Harvesting Embedded

System

This chapter presents a project that eliminates inconsistency errors in non-volatile mem-

ory based energy harvesting embedded system [90]. It is organized as follows. First, the

background of this project is introduced, and then the motivation is presented. Next,

the details of the proposed techniques are presented including potential error locating and

consistency-aware checkpoints insertion. Finally, the experimental results are presented be-

fore this project is summarized.

3.1 Background

3.1.1 Energy harvesting

In energy harvesting system, ambient energy is harvested to provide energy for embedded

systems through energy harvesters. The harvested power is then regulated to maintain a

constant voltage level for the microcontroller. In energy harvesting systems, there is often

a small storage capacitor to deal with power failures caused by intermittent power supply.

At run time, the energy remaining in this energy buffer can be estimated by measuring its

voltage. All components of an energy harvesting system are shown with a block diagram in

Figure 3.

The storage capacitor is connected in parallel to the MCU. Therefore, when the storage

voltage VSTORE is above the input voltage VCC of MCU, the capacitor will begin to provide

energy for the MCU. When VSTORE drops below a threshold, there is a high probability

that there will be a power outage soon. Inspecting the voltage of this capacitor provides

important information of transient condition of the harvested energy. In order to preven-

t against state loss, the states of all volatile registers will be checkpointed to non-volatile

memory with the remaining energy in the capacitor. Therefore, the storage should be large

15

Energy
Harvester

Regulator MCU
VINEnergy Source

(Solar, Piezo, RF, etc)

ADC

Storage
Cap

VCC

VSTORE

Figure 3: Block diagram of energy harvesting systems

enough to support a complete checkpointing operation that stores all volatile register states

to non-volatile memory. For example, if RC is the time constant of the capacitor, Vr is the

smallest operational input voltage for the regulator, and Vc is the current voltage across the

capacitor, this capacitor is able to provide E∆ energy for checkpointing.

E∆ =
1

2
CVc

2 − 1

2
CVr

2 (3.1)

The unstable nature of energy sources leads to frequent power failures and interrupts the

program execution in MCU almost every tens to hundreds of milliseconds. Figure 4 gives

two different power trace examples of two different energy sources that have different magni-

tudes and intermittencies. Radio frequency can generate power of several microwatts which

varies frequently as shown in Figure 4 (a), while in-door lights can generate power of up to

several milliwatts which is more stable than radio frequency as shown in Figure 4 (b). The

unstable power can result in power failures almost every tens to hundreds of milliseconds.

Therefore, existed energy harvesting systems enable continuous computation across power

failures by saving all volatile intermediate results into non-volatile memory and restore them

when power recovers. The backing up and recovering processes of the system state have

a large influence on the overall performance. However, it is difficult to predict the ener-

gy harvesting behavior at run time which makes it difficult to determine when to initiate

a checkpoint. Existed checkpointing schemes estimate the harvested energy by measuring

16

0

5

10

15

20

25

0 10 20 30 40 50 60

Po
w

er
 (u

W
)

Time (s)

------- RF Power

0

5

10

15

20

25

0 10 20 30 40 50 60

Po
w

er
 (

1
0

0
u

W
/c

m
2

)

Time (s)

-------In-door Light Power

Figure 4: Power traces: a) Wifi RF, b) Light

the voltage level in the storage capacitor, which can be classified into two groups including

on-demand checkpointing and dynamic checkpointing.

With existed checkpointing strategies, it is highly possible that the current energy supply

is not able to complete one checkpoint leaving the system state partly checkpointed. Besides,

power loss can also happen between two adjacent checkpoints. In both two occasions, roll

back is needed while inconsistency issues reside in execution without further improvement to

the checkpointing strategy. Figure 5 shows these two occasions in the computation progress.

In this figure, the supply voltage level is represented with the blue line and the threshold is

represented with dashed red line. At each trigger point (green dot), the system will check

the voltage level in energy buffer to predict an imminent power failure. If the current voltage

is below the threshold, a checkpoint will be initiated.

As shown in this figure, the voltage level is below the threshold at four checkpoints (23s,

32s, 46s, 63s). Therefore, four checkpoints are initiated at these four checkpoints. All four

checkpoints succeed except for the checkpoint at 32s because of insufficient energy. Dur-

ing the computation process, there are two rollbacks. One rollback happens because the

checkpoint fails at 32s. The other rollback happens because power fails before the trigger

point at 83s. Both of the two rollbacks can cause inconsistency error in the computation

program and the detailed reason will be discussed in the next section. Besides, setting a

17

fixed threshold for all checkpoints is of low efficiency, since the amount of modified volatile

states keeps changing as the computation continues. Actually, smartly setting trigger points

provides an opportunity to analyze the program state and reduce the overhead for each

checkpoint [87, 98].
C

o
m

p
u

ta
ti

o
n

 P
ro

gr
es

s

Time (s)

Trigger
Point

Su
p

p
ly

 V
o

lt
ag

e
Le

ve
l

High

Low
Supply Voltage

Computation

T

100 20 30 40 50 60 70 80 90 100

Power fails

C
o

m
p

u
ta

ti
o

n
 P

ro
gr

es
s

Time (s)

Trigger
Point

Su
p

p
ly

 V
o

lt
ag

e
Le

ve
l

High

Low
Supply Voltage

Computation

T

100 20 30 40 50 60 70 80 90 100

Power fails

Checkpoint failsCheckpoint fails

Figure 5: Computation progress.

3.1.2 Checkpointing

The nature of intermittence of harvested energy impedes wide adoption of large soft-

ware in energy harvesting powered embedded systems. To enable continuous execution of

programs across different power cycles, researchers have deployed non-volatile memory into

energy-harvesting devices to save the volatile work state [28, 43, 51, 60, 62]. For example,

Mementos [62] is a software system for transiently powered RFID-scale devices. This sys-

tem deploys flash memory to save an snapshot of the volatile state. However, flash memory

18

has a limited write endurance in the order of 105 [33] and access to flash memory is quite

slow. Quickrecall [28] deploys pure FRAM to increase the checkpointing efficiency. The

access efficiency of FRAM can even catch up with that of SRAM [66], and it has a superior

endurance, as long as 1014 write cycles. There are mainly two categories of checkpointing

schemes including dynamic checkpointing [28, 62] and on-demand checkpointing [7, 8].

3.1.3 Inconsistency

The problem of inconsistency in intermittently powered systems was first discussed

in [61]. This work explains that checkpointing is not sufficient in intermittently powered

systems and new programming models and system support are needed to address correct-

ness and programmability. DINO [45] was proposed to maintain memory consistency across

continuous checkpoints. DINO ensures that non-volatile data remain consistent across re-

boots with data versioning mechanism. Before checkpointing, DINO makes a volatile copy of

each non-volatile variable that is potentially inconsistent at task boundary. [45] decomposes

programs down to a series of re-executable sections and glues them together with checkpoints

of volatile state. The proposed technique in this dissertation decomposes the program on

the instruction level and initiates a checkpoint with more fine-grain analysis which allows

optimizations to reduce the runtime overhead. Another potential solution to solve incon-

sistency problem is to increase the threshold that triggers a checkpoint for architectures

like [28] and then put the system to hibernation state. If the threshold is large enough to

always guarantee a successful checkpoint and then the system hibernates, there will be no

rollback and thus no inconsistency problem. However, this also means that the computation

is triggered only with high voltage supply. As a result, the normal system working time

is largely reduced and every time the system has to wait for a long time to build up the

voltage. If these architectures continue execution instead of hibernating after checkpointing,

the inconsistency problem also happens.

19

3.2 Motivation

For illustration purpose, part of the code from dijkstra’s algorithm is used. The assembly

code generated by gcc-arm cross-compiler is shown in the left column of Figure 6. In this

code, there are three basic blocks of code whose names are enqueue, .L11 and .L13, respec-

tively. The relation of these three basic blocks of code is enqueue→.L11→.L13. Under stable

power supply, these three basic blocks of code will be executed sequentially without being

interrupted. However, intermittent power supply could interrupt the execution frequently.

The right column of Figure 6 shows the execution status with checkpointing to enable com-

putation across different power cycles. In this figure, checkpointing is triggered online when

low voltage below threshold is detected, which means there is a high chance of power failure

and the system state needs to be saved. However, incorrect checkpointing positions may

result in vital memory inconsistency errors both inside a basic block and across multiple

basic blocks.

First, let’s take basic block .L13 as an example to show that an error may occur inside a

basic block if there is a power failure. After executing the first instruction of .L13, a check-

point is initiated and all volatile system state in volatile registers is successfully backed up

to non-volatile memory. Then instruction 2 of .L13 loads the value in non-volatile memory

address Mem[r3+0] to register r2. Instruction 3 increases the value in r2 by 1. After that,

instruction 4 stores the new value in r2 to the same address Mem[r3+0]. Suddenly, power

fails before a checkpoint. Therefore, after power returns, the execution rolls back to the pre-

vious successful checkpoint after instruction 1 in basic block .L3 and resumes the execution

from instruction 2. The same three instructions are executed again which will first load the

value in non-volatile memory address Mem[r3+0] to register r2, then increases r2 by 1, and

finally store value of r2 to Mem[r3+0]. Before the power failure, the value at Mem[r3+0] is

already increased by 1. However, rollback results in twice the increase. What’s worse, all

subsequent computations that depend on this value will no longer be correct. Consequently,

inconsistency errors occur inside basic block .L13.

This inconsistency error may also occur across several basic blocks. In Figure 6, this

error occurs across enqueue and .L11 as well. In this code, .L11 is executed sequentially

20

 Execution Status

Detect low power

Power Failure

Checkpoint

Detect low power

Detect low power

enqueue:
 . . .
 ldr r3, .L17
 ldr r3, [r3, #4]
 cmp r0, #0
 bne .L11
.L11:
 str r5, [r0, #0]
 stmib r0, [r4 r6]
 mov r2, #0
 str r2, [r0, #12]
 cmp r3, r2
 ldreq r3, .L17
 streq r0, [r3, #4]
 beq .L13
.L13:
 ldr r3, .L17
 ldr r2, [r3, #0]
 add r2, r2, #1
 str r2, [r3, #0]
 . . .

1

2

3

4

1
2

3
4
5

6
7

8 Checkpoint failed

Checkpoint 1

2

3

4

Figure 6: Example of inconsistency problem.

21

after enqueue. Instruction 2 of enqueue loads the value stored in Mem[r3+4] into register

r3, and instruction 7 of .L11 stores another value in register r0 into the same non-volatile

memory address Mem[r3+4]. This pair of load and store operations is able to change the

value stored at the same address in non-volatile memory. When the processor is executing

the first instruction of basic block enqueue, the system detects a low power status. There-

fore, after finishing this instruction, all system state is checkpointed to non-volatile memory.

After completing this checkpoint, the processor continues execution and begins to execute

the second instruction which loads the value in Mem[r3+4] to register r3. After all instruc-

tions in this basic block are finished, the processor begins to execute instructions in basic

block .L11. When the processor is executing instruction 7, which stores value in register

r0 to Mem[r3+4], the system detects another low power status and triggers a checkpointing

operation after this instruction is finished. However, checkpointing is only partly finished

because of too low power supply. Therefore, after power returns, the execution rolls back

to the checkpoint after instruction 1 in basic block enqueue and resumes the execution from

instruction 2 which loads the value in Mem[r3+4] to register r3. Unfortunately, the value in

Mem[r3+4] has been modified by last execution of instruction 7 in basic block .L11 and an

inconsistency error occurs across two basic blocks enqueue and .L11.

3.3 Methodology

Inconsistency aware checkpointing technique is proposed that eliminates errors from in-

consistency between volatile and non-volatile system state. I explore the underlying reason

for inconsistency error. In Fig. 7(a), there is a checkpoint before the first ldr instruction.

Assume the initial value in Mem[r3+0] is 17. After executing the three instructions, the

content in non-volatile memory address Mem[r3+0] is updated from 17 to 18. When pow-

er failure happens after the str instruction, the execution has to roll back to the previous

checkpoint and resume execution from the ldr instruction again which loads the updated

value in address Mem[r3+0]. In this case, the value in address Mem[r3+0] is updated again

which is 19 now. Crucially, this deviates from normal execution.

22

 ldr R2, [R3, #0]

add R2, R2, #1

 str R2, [R3, #0]

17[R3, #0]

18[R3, #0]

18

19

Before
rollback

After
rollback

17[R3, #0] 18

Inconsistency Error

R2

R2

R2

17

18

18

18

19

19

 ldr R2, [R3, #0]

add R2, R2, #1

 str R2, [R3, #0]

18

Consistent execution

Before
rollback

After
rollback

17[R3, #0]

17

17[R3, #0]

R2 18

18[R3, #0] 18
R2 18 18

18

R2

17R2

Figure 7: a) Inconsistency error. b) Inserting a checkpoint properly can eliminate inconsis-

tency.

To eliminate this error, a checkpoint is set after the ldr instruction which initiates a

checkpoint as shown in Fig. 7(b). Therefore, when power fails after the str instruction, the

execution rolls back to the last checkpoint and all states of registers are restored to volatile

registers. Then the value in register r2 is added by 1 and stored to Mem[r3+0]. Although

the value in Mem[r3+0] is already updated before power fails, this updated value is not

loaded again after rollback like in Figure 7(a), because the checkpoint is after ldr instruction

instead of before ldr instruction.

Carefully rearranging the positions of the checkpoints can eliminate inconsistency errors.

This type of errors are due to inconsistency between volatile registers and non-volatile memo-

ry. In order to ensure correct execution, these code sections where inconsistency may happen

are searched. Next, the checkpoint positions to eliminate these potential inconsistency are

found. Based on previous analysis, the “load” and “store” pairs to the same address are

potential error regions when rollback recovery is needed. Such an instruction pair can reside

both in a single basic block or across multiple basic blocks. If this pair of instructions exists

inside a block, it is relatively easy to be found. However, if a pair of instructions exists across

multiple blocks, all possible execution paths of the program should be traversed.

23

In this chapter, I propose an error locating algorithm to find out all potential error pairs

considering all possible execution paths. These error pairs are load and store operations on

the same nonvolatile memory address. After this, an algorithm is designed to insert check-

pointing instructions in the code during off-line for eliminating inconsistency errors. During

run time, the system will initiate checkpointing by running the instructions.

3.3.1 Potential Error Locating

In this subsection, the Potential Error Locating (PEL) algorithm is presented, which

can identify all potential error-prone load-store pairs as well as corresponding paths between

each pair.

The first challenge in eliminating inconsistency errors lies in how to locate error pairs.

Since a program consists of many branches and loops, inconsistency errors both inside the

same basic block and across different basic blocks need to be located. An algorithm is

designed to locate the potential load-store error pairs and search for all the acyclic paths

between the load instruction and the store instruction. This error locating algorithm will

find out all the load-store pairs that could lead to inconsistency errors.

Based on previous analysis, the “load” and “store” pairs to the same address in non-

volatile memory are potential error regions when rollback recovery is needed. Such an in-

struction pair can reside both in a single basic block or across multiple basic blocks. If this

pair of instructions exists inside a basic block, it is relatively easy to be found. However, if a

pair of instructions exists across multiple basic blocks, it is a nontrivial task since we need to

traverse all possible execution paths of the program. In this subsection, the Potential Error

Locating (PEL) algorithm is presented to identify all potential error-prone load-store pairs

as well as corresponding paths from “load” to “store” instruction.

24

Algorithm 1 Potential Error Locating (PEL)

Require: Basic block based CFG, the instruction sequence of each basic block;
Ensure: All pairs of memory modification instructions and all acyclic paths for each pair;

Derive basic block list S based on the depth-first search on CFG ;
n← 0;
for each basic block BBi in S do

for each instruction k from 1 to Len(BBi) do
if k loads a value from the memory address Mem then

for each basic block BBj in S do
for each instruction l from 1 to Len(BBj) do

if l stores a different value to the same memory position Mem then
Record all the acyclic paths from BBi and BBj to the set PATHn;
Record instruction index k and l to the set INDEXn;
n← n + 1;

end if
end for

end for
end if

end for
end for

Algorithm 1 shows the procedure of the PEL algorithm. The input is a control flow

graph (CFG) and the instructions in each basic block. To identify load-store pairs, all basic

blocks in CFG are examined in the depth-first order to locate “load” instructions (Line 5).

All pairs of “load” and“store” instructions targeting to store a different value at the same

memory address are searched, and all possible acyclic paths from the “load” to “store” in a

pair are stored (Line 6-14).

An example is shown in Figure 8(a) to illustrate the algorithms. There are five basic

blocks in this example, containing 6, 8, 8, 5, and 2 instructions, respectively. Based on

Algorithms 1, 4 “load” instructions will be found: ldr a at position (BB0, ins1), ldr c at

position (BB0, ins4), ldr b at position (BB1, ins2) and ldr a at position (BB4, ins0). Figure

9 shows paths for each pair.

3.3.2 Consistency-aware checkpoints inserting

In this section, an algorithms for inserting consistency-aware checkpoints is proposed to

eliminate inconsistency errors. These checkpoints are positions where the volatile system

state will be saved to the non-volatile memory.

25

(b)

BB0

BB1 BB2

ldr b

str a

BB3

BB4

ldr a

str c

str b

ldr a

ldr c

Checkpoint

BB0

BB1 BB2

BB3

BB4

ldr a

ldr b

str b

str a

ldr c

ldr a

str c

 Other instructions

a, b, c Memory address

(a)

Figure 8: An example of error locating and checkpoint insertion: (a) Potential error pairs

located with PEL algorithm, and (b) Checkpoints inserted with CATI algorithm

.

BB0

BB1 BB2

BB3

BB4

ldr a

ldr b

str b

str a

ldr c

ldr a

str c

BB0

BB1 BB2

BB3

BB4

ldr a

ldr b

str b

str a

ldr c

ldr a

str c

BB0

BB1 BB2

BB3

BB4

ldr a

ldr b

str b

str a

ldr c

ldr a

str c

BB0

BB1 BB2

BB3

BB4

ldr a

ldr b

str b

str a

ldr c

ldr a

str c

BB0

BB1 BB2

BB3

BB4

ldr a

ldr b

str b

str a

ldr c

ldr a

str c

path 1 path 2 path 3 path 4 path 5

Figure 9: Paths between all load-store pairs.

26

After deriving all the potential error locations, we are ready to insert consistency-aware

checkpoints to avoid the occurrence of this kind of errors. Besides these checkpoints to ensure

correctness, extra checkpoints are set at proper positions to maintain a small rollback dis-

tance. In this way, when power fails before a checkpoint, the execution does not need a long

rollback. There are two goals by inserting checkpoints: 1) all the inconsistency errors can

be eliminated; 2) rollback recovery distance is within requirement. The former guarantees

the correctness of the program while the latter maintains a low recovery overhead.

The distance between adjacent checkpoints to be up-bounded by a constant Lmax. This

constant is named as checkpointing distance and its unit is number of clock cycles to ensure

that the processor can resume execution as fast as required without wasting too much energy

and time for rollback. Therefore, a checkpoint should be inserted at every Lmax checkpointing

distance. Meanwhile, the inserted checkpoints should eliminate the errors. This problem is

NP-Complete, which can be proved by reducing from the set cover problem [32]. Therefore,

an efficient two-step heuristic algorithm is proposed to solve this problem.

The main challenges lie in the following aspects. First, to reduce all inconsistency errors,

there should be at least one checkpoint between each load-store pair. Simply inserting a

checkpoint between each pair is not feasible due to the high overhead. Therefore, effective

approaches are necessary to reduce the number of checkpoints. Second, since the runtime

path is not available during the offline analysis, all possible paths need to be taken into con-

sideration to reduce the checkpointing overhead. Third, the checkpoint locations in various

basic blocks may affect each other. Therefore, a global optimal solution is needed.

I propose a polynomial time heuristic approach, consistency-aware checkpoints inserting

(CATI) algorithm shown in Algorithm 2. The input is a CFG and all the paths between

load-store pairs. Positions for checkpoints inside a basic block are highly dependent on those

in its predecessors. At the same time, they also affect those in its successors. To record this

kind of relation, two arrays are employed: E1 to represent the distance between the first

instruction and the first checkpoint in the current basic block, if any; E2 to represent the

distance between the last checkpoint in this basic block and the last instruction of this basic

block (Line 1-2).

27

Algorithm 2 Consistency-aware checkpoints inserting algorithm (CATI)

Require: Basic block based CFG, INDEX, PATH;
Ensure: Consistency-aware checkpoints;

E1i ← 0, i = 1, 2, ..., N ; //N is the number of all basic blocks.
E2i ← 0, i = 1, 2, ..., N ;
for each BBi, BBi ∈ breadth-first traversal array S do

Search INDEX and PATH to find all the load-store pairs (li, si), single load indices lli
and single store indices ssi in BBi, and store them separately into sets LS, L and S;

Energy ← 0; start← 1; Ki ← Len(BBi);
Find all the predecessors of BBi, which are BBp1, BBp2,..., BBpn;
Energy ← Energy + max(E2p1, ..., E2pn);
for k = start to Ki do

Energy ← Energy + enk; //enk is the energy consumption of instruction k.
if (Energy > Lmax) or (k == Ki) then

ckp← min(k, sj , ssj)− 1, sj ∈ LS, ssj ∈ S;
Insert a checkpoint after instruction ckp;
ReduceErrors(ckp, LS, L, S);

end if
start← ckp + 1;
Energy ← 0;

end for
Find all the descendants of BBi, which are BBd1, ..., BBdn;
if sum(enckplast , ..., enKi) + max(E1d1, ..., E1dn) > Lmax then

Insert a checkpoint after instruction Ki;
end if
if BBi has no checkpoint then

E1i ← sum(en1, ..., enKi) + max(E1d1, ..., E1dn);
E2i ← sum(en1, ..., enKi) + max(E2p1, ..., E2pn);

else
E1i ← sum(en1, ..., enckpfirst);
E2i ← sum(enckplast , ..., enKi);

end if
end for

Each basic block is processed in the breadth-first order in CFG. For each basic block,

first the Energy, which represents the distance between this basic block and previous check-

point, is initialized as the maximum value of its predecessors (Line 7). This initialization

guarantees the Lmax principle whichever path is taken at runtime. Inside the process of a

basic block, Energy is updated by going through each instruction.

There are two cases to insert a checkpoint (Line 10). First, once Energy reaches Lmax, a

checkpoint will be inserted. Second, a checkpoint will be inserted to eliminate errors. Two

sets, (li, si) and ssi, are constructed to guide the error detection. (li, si) includes all the

28

Algorithm 3 ReduceErrors(ckp, LS, L, S)

1: for each load-store pair (li, si), (li, si) ∈ LS do
2: if ckp ≥ li and ckp < si then
3: Remove (li, si) from LS and renew LS; Remove (li, si) from INDEX;
4: end if
5: end for
6: for each single load lli, lli ∈ L do
7: if ckp ≥ lli then
8: Remove lli from L and renew L; Remove lli from INDEX and its corresponding paths

from PATH;
9: end if

10: end for
11: for each single store ssi, ssi ∈ S do
12: if ckp < ssi then
13: Remove ssi from S and renew S; Remove ssi from INDEX and its corresponding paths

from PATH;
14: end if
15: end for

load-store pairs inside BBi and ssi records all the single stores inside BBi. If both sets are

not empty, one checkpoint will be inserted before the first store instruction (Line 11-12).

Take Figure 8(a) as an example. Assume ldr/str instructions consume 2-unit amount of

energy while others consume 1 unit. Assume Lmax = 10. The five basic blocks will be visited

in the order: BB0, BB1, BB2, BB3, BB4. Starting with BB0, since there is no load-store

pair, it is processed with no checkpoint inside and E20=8. Then for BB1, (l1, s1)={(ldr b,

str b)} and ss1={str a}. Energy is initialized to be max{E20, E24}=8. Although Energy

is 9 before str a which is less than Lmax, a checkpoint is inserted here to avoid consistency

error. After this, Algorithm 3 is called to update the potential error location and all the

paths passing the error location after each checkpoint insertion (Line 13). Note that the

inserted checkpoint could be able to avoid errors for one or more paths between load-store

pair(s). In this example, this checkpoint can eliminate the error for both path 1 and path 2

shown in Figure 9. Then the process of this basic block starts from the instruction after the

checkpoint (Line 15-16). In this example, the processing will start from str a in BB1, with

current ss1 being empty and (l1, s1)={(ldr b, str b)}. The next checkpoint will be inserted

before str b, followed by the update of E11=1 and E21=4. As a result, path 1 and 2 in

Figure 9 are removed from the error set.

29

Different from BB1, (l2, s2) and ss2 are empty. After going through the first two instruc-

tions, Energy is increased to Lmax because E20+2=10. Thus, a checkpoint is inserted after

the second instruction in BB2. The left instructions cost 6 energy units. Therefore, E12=2

and E22=6. After processing BB3, one checkpoint is inserted before str c. Thus, E13=2 and

E23=2. This checkpoint eliminates the error for both path 4 and path 5 shown in Figure

9. There will be no checkpoint in BB4 and E14=5 and E24=5. At the end of processing

BB4, the loop to BB1 is examined to guarantee the distance between two checkpoints is less

than Lmax (Line 18-21). The final set of checkpoints is shown in 8(b). There are totally 4

checkpoints. For better understanding of the details of CATI algorithm, a block diagram is

employed to illustrate the major idea of processing different basic blocks in input CFG as

shown in Figure 10.

CFG

Error pairs
set and paths

Find a BBi

Breadth-first
search

Find error
pairs in BBi

Find BBi’s
predecessor BBs

Calculate
energy E2

Scan BBi and insert
checkpoints

Renew

Find BBi’s
descendant BBs

Calculate energy
E1 and E2

Figure 10: Block diagram for Algorithm 2.

After Algorithm 2, all loops in the CFG will be checked to see whether it contains a

checkpoint. If not, a checkpoint is inserted at the end of the loop. This insertion only

happens when the energy consumption of a loop iteration is less than Lmax. In a nutshell,

the proposed scheme achieves an error-free checkpoint set by assigning a checkpoint either

before store or at the distance of Lmax from the previous checkpoint.

30

3.4 Experiment

3.4.1 Setup

The experiments are conducted with a custom simulator. The input of the simulator is

1million instruction traces generated with gem5 simulator [10] . An example of the instruc-

tion traces is shown in Figure 11. The collected instruction has the function names, the

detailed instruction, and the memory addresses if the instruction is a ldr or a str instruc-

tion. Assume that ldr and str takes two cycles and other instructions take one cycle. Based

on this trace, the CFG of basic blocks can be generated. With the memory access traces,

the ldr and str instruction pairs are found that access the same memory addresses given

different checkpointing frequencies including 50, 100, 500, 1000, 2000 cycles. After this, the

corresponding instructions are labeled.

Figure 11: Instruction traces example.

The experiments are conducted on a set of benchmarks including basicmath, dijkstra,

and fft, etc. These benchmarks are from the Mibench [18] benchmark suite. The proposed

algorithms are run on the implemented simulator first. The simulator analyzes potential

error regions and outputs assembly code labeled with checkpoints. Therefore, they can be

31

easily incorporated into any existing compiler. Besides, the instruction trace is generated

with gem5 [10] for each benchmark and used these traces to evaluate the on-line running

techniques by applying real power traces.

3.4.2 Experimental Results and Analysis

Figure 12: Number of potential error pairs given different checkpointing frequencies.

3.4.2.1 Error Locating In this section, the programs are analyzed and the proposed

algorithms are applied to locate the potential error regions. The results of collected errors

are shown in Figure 12. This figure shows the number of potential errors when the check-

pointing energy distance is set to be 50, 100, 500, 1000, and 2000 cycles, separately. From

this figure, we can see that as the checkpointing distance increases, the number of error pairs

increases. This is because as checkpointing distance increases, those error pairs that have

longer paths will be located. The proposed PEL algorithm can find all the potential error

pairs and eliminate them. From the table, we can see that the number of errors varies in

32

different benchmarks. However, even a single error can cause the program to have a fatal re-

sult. Therefore, the proposed error aware algorithm is of significant importance. The results

of error locating will vary depending on different compiling methods.

Figure 13: Number of inserted checkpoints given different checkpointing frequencies.

3.4.2.2 Inserting Checkpoints Selecting checkpoint positions is important for the w-

hole embedded system, since it can help eliminate consistency errors. Meanwhile, unneces-

sary checkpoint should be avoided to reduce analyzing effort and checkpointing overhead. In

the experiments, a checkpoint is inserted at a fixed energy distance and also inside each error

pair. Figure 13 shows the comparison of checkpoints for the proposed error aware algorithm

when the checkpointing distance is 50, 100, 500, 1000, and 2000 cycles. From this figure,

we can see that as the checkpointing distance increases, the number of checkpoints also in-

creases. The energy distance is set to avoid a long rollback distance. Therefore, it should

be determined considering both the energy traces and the rollback overhead. In conclusion,

33

the proposed CATI algorithm can dynamically modify the number of checkpoints, and thus

the checkpointing overhead, by setting different energy distances.

3.5 Summary

In this chapter, an inconsistency-aware checkpointing scheme is proposed for energy

harvesting powered non-volatile processors. To guarantee the correct execution and reduce

checkpoint overhead, an approach to determine the most appropriate checkpointing positions

for each basic block by considering all execution paths that have an influence on the correct-

ness and the overhead. The evaluation results show that all the inconsistency errors can be

located, and the overhead of the extra checkpoints for eliminating the errors is acceptable

given the importance of execution correctness.

34

4.0 Checkpointing-aware Hybrid Cache for Intermittently Powered IoT

Devices

This chapter presents a hybrid cache architecture for intermittently powered IoT de-

vices [88, 91]. The remainder of this chapter is organized as follows. Section 4.1 presents the

background of this project. Section 4.2 describes the motivation of this project. Section 4.3

and Section 4.4 presents the basic placement and migration policies and the checkpointing

aware cache policies under the new restrictions imposed by intermittent computing. Sec-

tion 4.5 presents the new cache architecture checkpointing policy. Experimental evaluation

is provided in Section 4.6. Finally, Section 4.7 concludes this project.

4.1 Background

The applications of Internet of Things (IoT), such as smart manufacturing, smart city

and transportation, and smart energy, have been and will continue to transform the way we

live in a positive way. In IoT applications, small sensors and systems are used to collect

information of interest to support optimal decision making. It is predicted that IoT will

consist of 50 billion objects by 2020 [1]. While the vision is promising and exciting, there

are several challenges in achieving this goal. One of the most important challenges is how to

power these 50 billion embedded devices. While battery power has been the energy source

for most embedded systems these days, it is not a favorable solution in the long run due to

size, longevity, safety, and recharging concerns. Therefore, researchers are actively pursuing

power alternatives. Among all solutions, energy harvesting is one of the most promising

techniques to meet the requirements of large scale embedded devices.

Energy harvesters generate electric energy from their ambient environment using direct

energy conversion techniques. Examples of power sources include kinetic, light, RF, and ther-

mal energy. The obtained energy can be used to charge a capacitor to power the electronics.

However, there is an intrinsic drawback with harvested energy. They are all unstable. With

35

an unstable power supply, the whole computer system will be interrupted frequently, which

will cause severe performance degradation. What is worse, large tasks may never finish since

the intermediate results cannot be saved.

In order to bridge the intermittent execution under unstable energy supply, non-volatile

memories (NVMs) [55, 77, 57] based non-volatile processors (NVPs) [53, 77, 101] were pro-

posed. Upon a power failure, the program status, including registers and caches are saved in

NVMs. When the power comes back on, the saved contents are loaded back to the registers

and caches so that the execution can continue from where was interrupted. Since NVMs can

retain the data even when the power is off, it can successfully preserve computation status

across different power cycles.

In existing NVPs, ferroelectric memory (FRAM) based NV register was adopted where a

FRAM cell is attached to each standard flip-flop. The standard flip-flops are accessed during

normal execution and the FRAM cell is used to save the state during a power failure. The

same design strategy could be adopted for caches in NVPs. Li et al. [38] integrates a SRAM

cell and a non-volatile element in cell level, forming a direct bit-to-bit connection. In this de-

sign, the NVM part is underutilized because the NV elements are idle most of time, and the

area size is unnecessarily large. Therefore, it is not always desirable. Another possible design

is adopting pure NVMs-based cache [47]. However, since NVMs such as STT-RAM [29] and

PCM [56, 58] typically have high write latency and energy overhead, pure NVM based cache

will become the major performance bottleneck.

Different from two designs mentioned above, hybrid cache architecture, which consists

of both SRAM and NVM (e.g. STT-RAM), was proposed to achieve energy efficiency and

high performance [80, 74, 83, 97]. It also serves as a promising cache architecture for energy

harvesting systems since it promises both high efficiency and non-volatility. However, all

existing hybrid cache architecture and policies are designed for energy efficiency and perfor-

mance purposes. None of them considered checkpointing efficiency. Therefore, this chapter

aims to develop checkpointing aware hybrid cache architecture and policies to achieve the

following goals: 1) high performance; 2) full utilization; 3) reliable and efficient checkpoint

during a power failure. The proposed cache is specifically tailored for intermittently powered

embedded systems.

36

The complexity lies in the following aspects. First, during a power failure, the avail-

able energy for checkpointing is limited by the capacitance of the capacitor. Second, NVM

is both used for normal cache access and for preservation of the volatile blocks at power

failure. The usage of its space between these two purposes should be balanced to achieve

the best performance. Third, it is also challenging to identify data that is unnecessary to

checkpoint. Consequently, the cache architecture and cache management policies must be

carefully investigated for energy harvesting powered systems.

Currently there are two designs for cache in NVP. Li et al. [38] integrates a SRAM cell

and a non-volatile element in cell level, forming a direct bit-to-bit connection. In this design,

the NVM part is underutilized because the NV elements are idle most of time. Another

possible design is adopting pure NVMs-based cache [47]. However, since NVMs typically

have high write latency, pure NVM based cache will become the performance bottleneck. To

solve this problem, a checkpointing aware hybrid cache will be proposed which consists of

both SRAM and STT-RAM. Hybrid cache architecture is not new. However, most existing

designs are aiming for high performance and low power consumption. [80, 83] are two rep-

resentative works on hybrid cache which build last level cache with a small region of SRAM

for fast access and a large region of NVM for large capacity. However, these hybrid caches

are not specifically designed for energy harvesting embedded systems where only one level

L1 cache is often implemented. Therefore, if this kind of bybrid cache is directly used as first

level cache, the performance will be largely degraded and important states in SRAM will be

lost when there is a power failure. Instead, the cache proposed in this project aims for high

performance, reliable checkpointing, instant resumption, and low energy consumption.

4.2 Motivation and Overview

In this section, the motivation of this project will be presented followed with an overview

of the self-checkpointing aware cache architecture which will have both high performance

and checkpointing efficiency.

37

Table 1: Comparison of different cache architectures

Properties STT-RAM cache NVSRAM cache [44] Proposed hybrid cache

Performance Low High High

Energy Medium Low Medium

Size Small Large Small

Resistant to power loss Yes Yes Yes

Resumption speed Instant Fast Instant

Checkpointing energy — High Low

4.2.1 Motivation

The existing cache design for intermittently powered embedded system is either based on

pure non-volatile memory or NVSRAM. The first design suffers from long write latency and

energy overhead, while the latter suffers from high inrush current and large memory size.

Energy harvesting powered processor built with non-volatile cache is able to overcome

data loss problem caused by frequent interrupts. However, purely non-volatile cache will

degrade the performance due to its expensive access time. Among all NVMs, STT-RAM is

considered as one of the most promising candidate for building non-volatile cache because

of its fast access time and high density. However, its write latency is 10 times large as its

read latency [29]. Two processors with pure SRAM cache and pure STT-RAM cache are

configured in gem5 [10] and compared their performances. The SRAM cache and the STT-

RAM cache are of the same size and their features are shown in Table 4. Figure 14 shows

the performance comparison of these two systems. This figure shows that STT-RAM based

cache increases system execution time by 50% on average when compared with SRAM based

cache.

Compared with pure STT-RAM solution for energy harvesting NVP, NVSRAM based

cache architecture is a better solution in terms of performance. However, during power

38

Figure 14: Performance of SRAM cache and NVM cache

Figure 15: Percentage of dirty blocks during lifetime

39

failure, all dirty blocks in SRAM need to be checkpointed to the NVM cells since they are

modified which leads to high inrush current and checkpointing overhead. Figure 15 shows

the percentage of dirty blocks for four different benchmarks through their execution time.

From the figure, we can see that the percentage of dirty blocks is high for most benchmarks

except sperand. Without any optimization, the checkpoint process is both time and energy

consuming due to large amount of data to write. Even worse, checkpoint may fail because

of the limited energy provided by capacitor.

In this chapter, a one-level hybrid cache is designed which is specifically tailored for low

intermittently-powered embedded system with small size and high energy efficiency. Table 1

compares the hybrid cache with the existed cache designs. This cache architecture is in-

spired by [81] which proposes a STT-RAM based hybrid L2 cache, taking advantage of the

fast access speed of SRAM for write operations and high-density of STT-RAM for the read

operations. This one-level cache further enables checkpointing capability with non-volatile

STT-RAM, so that STT-RAM is not only used for normal cache access but also for check-

pointing important cache blocks upon power outages. From Figure 15, if NVM blocks are

reserved for possible checkpointing, there might be extra clean NVM blocks available after

saving all dirty SRAM blocks to NVM blocks for benchmarks with low dirty data such as

sperand. In such cases, additional clean blocks can be checkpointed during a power failure

to improve system performance after resuming. The proposed cache architecture will take

the utilization of NVM, checkpoint efficiency, and system performance after resuming into

consideration.

4.2.2 Overview

4.2.2.1 Self-checkpointing Cache In a typical processor for embedded systems, there

is often only one level cache and the size of the cache is not large. Besides, it takes a longer

time to access a second level cache than the first level. Therefore, in this project, a hybrid

one level cache architecture is designed. The proposed hybrid cache architecture is shown

in Figure 16. In each cache set, there are both SRAM cache blocks and STT-RAM cache

blocks. For the SRAM portion, there is a counter, DBCounter, to record the current number

40

VB DB Tag Data

SRAM based
cache Block array

STT-RAM based cache
Block array

STT-RAM based cache
Block array

MCounter

MCounter

MCounter

LB

DBCounter

CPU

RestoreBackup

SRAM based
cache Block array

One Mcounter
per set

Migrate

MCounter

VB DB Tag Data

SRAM based
cache Block array

STT-RAM based cache
Block array

STT-RAM based cache
Block array

MCounter

MCounter

MCounter

LB

DBCounter

CPU

RestoreBackup

SRAM based
cache Block array

One Mcounter
per set

Migrate

MCounter

Figure 16: Hybrid cache architecture

of dirty SRAM cache blocks. For each cache set, there is a SRAM based migration counter,

MCounter, for checkpointing purposes. Besides, each cache block has three state bits: valid

bit (VB), dirty bit (DB), and live bit (LB). These three bits are used for directing the cache

placement. This figure shows a four way set-associative cache with two SRAM blocks and

two STT-RAM in each set for illustration purposes. However, this cache can have other

associativity settings with flexible ratios of SRAM and STT-RAM. When power failure is

detected, the most important SRAM cache blocks will be backed up to STT-RAM replacing

the less important clean cache blocks in STT-RAM while the important STT-RAM blocks

still stay there. When power returns, no restoration process is needed to restart execution.

4.2.2.2 Challenges There are many challenges in designing the self-checkpointing

energy-efficient cache. Only checkpoiting the most important cache blocks means a part

of cache blocks in each cache set will be lost upon power outages. If those lost cache blocks

will not be accessed in the near future after power recovers, the miss rate will not be influ-

enced by storing all the left cache blocks in STT-RAM; Otherwise the miss rate will increase,

41

thus lowering the overall performance. On the other hand, the ratio of STT-RAM influences

the miss rate by determining how many cache blocks in a set can be checkpointed: larger

ratio of STT-RAM means that more important cache blocks can be stored for future access.

However, if the ratio of STT-RAM is too large, there might not be enough space for placing

write-intensive cache blocks in SRAM. Therefore, we need intelligent prediction method to

identify the blocks that will not be accessed in the near future. Besides, we also should be

careful about choosing the ratio between SRAM based blocks and STT-RAM based cache

blocks. Besides, for dirty cache blocks in SRAM, even they will not be accessed in the fu-

ture of high possibility, they still need to be checkpointed into the STT-RAM. Therefore,

another challenge lies in how to guarantee there is always enough space for checkpointing

dirty volatile cache blocks.

4.3 Basic Placement and Migration policies for one-level hybrid Cache

In this section, an access pattern based predictor will be proposed for directing the cache

policies. The access pattern predictor is able to predict dead blocks and write-intensive cache

blocks. After this, cache policies will be proposed including the placement, migration, and

write policies for the one-level cache. The goal of these polices is to reduce the long write

latency and energy overhead of non-volatile memory by placing the write-intensive cache

blocks in SRAM.

4.3.1 Access Pattern Predictor

Three patterns of memory access are the most important for designing high-performance

and energy-efficient hybrid L1 cache for the energy harvesting system, which are: write in-

tensive, dead hit, dead-on-write fill, and dead-on-read fill. Write intensive blocks are the

cache blocks that will be written may times before their eviction. Predicting the write in-

tensive pattern helps designing policies for placing the write intensive cache blocks in SRAM

to reduce the large latency and energy overhead of write in STT-RAM. Dead hit blocks are

42

the cache blocks that will not be accessed again after being moved out of the MRU postion.

Dead-on-write fill blocks are the cache blocks that are filled into the cache for write miss

which will not be accessed again before they are evicted. Dead-on-read fill blocks are the

cache blocks that are filled into the cache for read miss which will not be accessed again

before they are evicted.

The baseline is the access pattern predictor for the last level STT-RAM-based hybrid

cache [81]. This predictor targets on predicting write burst and dead blocks in LLC consider-

ing all types of LLC accesses. It is based on PC and correlates different access patterns in the

LLC with instruction addresses. The intuition is that if a given memory access instruction

PC leads to an access pattern, then the same instruction PC will lead to the similar access

pattern. Similar to its baseline [42], it samples only a small group of sets from the LLC and

only updates the pattern sampler when there is an access request to these sets. To predict

both write burst and dead block, it separates read and write access with a read PC field and

a write PC field as well as the corresponding LRU bits for the read and write, respectively.

For making prediction, the pattern sampler updates the prediction table indexed by the

signatures generated with PC. Each entry in the prediction table has two counters which

generates the prediction results if they reach the thresholds.

Prediction
Table

Pattern Sampler

WC DC

CPU

SRAM/STT-RAM
Hybrid L1 Cache

Predict

Update

V LRU Tag PC M

WC:

DC:

W-PC

V:

LRU:

Tag:

PC:

W-PC:

M:

Valid bit

LRU recency

Partial tag

Partial access PC

Partial Write PC

Miss bit

V:

LRU:

Tag:

PC:

W-PC:

M:

Valid bit

LRU recency

Partial tag

Partial access PC

Partial Write PC

Miss bit

Write counter

Dead counter

Figure 17: System structure of predictor

43

To predict the access pattern for the one-level cache while maintaining a small storage

and energy overhead, the baseline predictor is tailored specifically for the one-level cache.

The baseline learns the dead behavior only with the read PC. However, a write PC can

also leads to the dead behaviour of a block. Therefore, different from baseline, our pattern

sampler learns the dead behavior with both read PC and write PC. A miss indication field

is added at the end for identifying miss or hit for the last access. Besides, the update policy

for the prediction table is also different. The baseline is dedicated for the last level cache

and therefore updates the dead counter upon almost every access to the cache. Unlike the

baseline, we update the dead counter based on bursts of accesses to a cache block, since

predicting dead block based on bursts of accesses to a cache block is proved to have a higher

accuracy for its hiding the irregularity of individual references for L1 cache [42].

The pattern access predictor for one-level cache is shown in Figure 17. The predictor

is composed of a pattern sampler and a combined prediction table making predictions for

both write intensive blocks and dead blocks. Each entry in the general access sampler cor-

responds to a sampled set which has six fields for each block in the set, including valid bit

(V), LRU recency (LRU), lower 16 bits of the tag (Tag), lower 16 bits of the most recent PC

that accesses the block (PC), lower 16 bits of the most recent PC that writes to the block

(W-PC), and miss bit (M). The PC field is for learning dead behavior while the W-PC field

is for learning the write intensive behavior. The M field has one bit for indicating a miss

(0) or hit (1) of the last access. Each entry of the prediction table has two 2-bit saturating

counters which are the write counter for predicting write intensive behavior and the dead

block counter for predicting dead behavior.

For each memory access request with a PC to the sampled sets, the pattern sampler

simulates the block placement for the corresponding set by modifying the six fields for the

requested cache block and LRU fields of the other cache blocks in the same set. After this,

the related entry indexed by the hashed PC is updated according to the results of the pat-

tern sampler. Meanwhile, the counter values of the prediction table predict the behavior of

the requested cache block which is further used to direct the cache placement policy. The

detailed policies for updating the predictor and predicting the cache block behavior will be

described in the following sections.

44

4.3.1.1 Updating the pattern access predictor The write counter in the prediction

table is updated upon every write access or eviction of a cache block in the sampled sets.

The read access does not influence the write behavior and therefore will not update the

write counter value. The dead counter in the prediction table is updated upon every cache

burst or eviction of a cache block. The set sampling process of the pattern sampler and the

prediction table update are illustrated in Figure 18.

On each write hit request, the pattern simulator updates the write prediction towards

“write intensive” by increasing the counter value indexed with the related write PC. On each

write miss request, the write counter value will not be updated. This is because there is

no relating write PC, since there is also no matching block in the pattern sampler. When

a block is evicted, the simulator updates the write prediction towards ”not write intensive”

by decreasing the counter value indexed with the related write PC.

The dead counter update is based on cache burst history of each block. The continuous

accesses of a cache block starting from its being moved to the MRU position and ending

after its being moved out of the MRU position are called a cache burst. On each read hit or

write hit request from CPU to a sampled set, the LRU recency of the requested cache block

will be checked. If this block is not at the LRU position, the dead counter in the prediction

table indexed with the previous related PC of this block will be decreased towards “Live”.

When a block is evicted from the pattern simulator, the dead counter in the prediction table

indexed with the previous related PC of this block will be increased towards “Dead”.

One each read miss or write miss request, if the M field for this block indicates a miss,

then the dead counter in the prediction table indexed with the previous related PC of this

block will be decreased. If the last access is also a miss, this means this block is not filled

to the cache because of a wrong dead prediction. Note that although the the dead read

and dead write requests will not place cache blocks in the corresponding set, it will still be

recorded in the pattern sampler. This is necessary for updating the prediction table if the

dead prediction is later proved to be wrong.

4.3.1.2 Making Prediction The prediction table is capable of predicting dead access

and write intensive access by thresholding the counter values in the table entry indexed by

45

F

B

B

E

A

B

E

E

A

B

E

A

A

B

C

A

C

C

C

D

Pw5

Pr6

Pr6

Pr5

Pr1

Pw5

Pw4

Pw1

Pr6

Pr5

Pr5

Pr1

Pr2

Pw4

Pw1

Pr5

Pr1

Pr1

Pr2

Pr3

Pw1

Pw2

Pr1

Pr3

Pr3

Pr3

Pw3

Pw2

Pw2

Pw2

Pw3

Partial Tag Partial access PC

Initial status

Read E (miss)

Read B (hit)

Write B (hit)

Write F (miss)

MRU LRUMRU LRUMRU LRUMRU LRU

Inc DC Pw3

Dec DC Pr2

Inc WC Pw1

Inc DC Pr3

Dec WC Pw2

Inc/Dec DC Pr/w: Increase/decrease the write counter in the prediction table indexed by Pr/w.
Inc/Dec WC Pr/w: Increase/decrease the dead counter in the prediction table indexed by Pr/w.

Figure 18: An example of sampling the cache set with pattern sampler and updating the

prediction table.

the hashed instruction PC. Upon a read request from the CPU, the dead counter in the

prediction table will be accessed to predict whether it is a dead block. Upon a write request

from the CPU, both the dead counter and the write-intensive counter in the prediction table

will be accessed to predict write-intensive and dead behavior. Note that a predicted dead

block becomes dead after being moved out of the MRU position. On write/read hit, the

requested cache block will be marked dead by setting its live bit (LB) to 0. This block later

becomes a predicted dead block after being moved out of the MRU position.

4.3.2 Cache Placement and Migration Policy

The cache placement and migration policy is guided by the prediction results. The dead

prediction is used to guide the bypassing of dead-on-write fill and dead-on-read fill cache

blocks and victim block placement. The write intensive prediction is used to guide the mi-

gration of write intensive blocks from STT-RAM to SRAM to reduce the write overhead of

cache blocks in STT-RAM.

On a read hit request, the requested data will be sent to the CPU directly. On a read

miss, the entry of the prediction table indexed with the hashed requesting PC will be checked

to predict dead behavior. If it is predicted live, the missing cache block will be filled to cache

46

and then the data is served; if it is predicted live, the requested data will be returned to

the CPU directly without filling in the missing cache block. On a write hit request, if the

requested data is in SRAM, the data will be written to its original memory block. If the

requested cache block is in STT-RAM, the write intensive behavior will be predicted by

checking the write counter entry of the prediction table indexed with the hashed requesting

PC. If the requested block is predicted write intensive, then this block will be migrated to

SRAM; otherwise, the new data will be written to the original cache block.

The best destination for migration is V victim, which is the LRU dead block or a live

LRU block in SRAM if there is no dead block. Meanwhile, the victim block in the SRAM

should be checked for its live bit. If Vvictim is predicted dead, this block will be evicted; If

Vvictim is predicted live, it will be migrated to the STT-RAM. This is because, although

it is selected in the SRAM as a victim to place new block, there is still a high probability

that it will be used in the future. If it is written back to the main memory, it will take a

long time to reload it from the main memory for the future request. Therefore, rather than

evicting it, it is migrated to the STT-RAM, since this takes less time and energy. The new

destination for Vvictim will be the original position of the write intensive block. On a write

miss request, the dead behavior will be predicted by checking the dead counter entry of the

prediction table indexed with the hashed requesting PC. If the requested block is predicted

dead, this data will be written to the main memory without filling the missing block into

cache; otherwise, the new data is written to the cache block after it is filled into cache.

In conclusion, the basic dead block prediction and write intensive prediction based cache

replacement and migration policies maximize the performance of the hybrid first level cache

by placing the most write-intensive cache blocks in the SRAM, migrating the evicted live

SRAM block into the STT-RAM, and bypassing the dead-read-fill and dead-write-fill cache

blocks. However, the cache replacement and migration policies do not work under inter-

mittently powered scenarios. The next section will propose the problems and checkpointing

aware policies for intermittently powered scenarios.

47

4.4 Checkpointing Aware Cache Policies

The checkpointing aware cache will fully take advantage of the fast access speed and the

large density of STT-RAM, while it is checkpointing aware. The STT-RAM portion will not

only be used for normal cache access but also for backing up the necessary cache blocks in

SRAM upon a power failure. Therefore, checkpointing aware cache policies will be proposed

to adapt to this cache architecture.

4.4.1 New restrictions Imposed by Intermittent Computing

For self-powered embedded systems, when there is a power failure, all the dirty cache

blocks in the volatile SRAM should be checkpointed to the non-volatile STT-RAM. Besides

these dirty blocks, it’s better to keep as many as live clean blocks in the STT-RAM for

accelerating future access. Moreover, there are a large percentage of dead blocks in the

cache. Among these dead blocks, the blocks that are dirty will be written back when they

are evicted. However, from the research, those dirty dead blocks stay in the cache for a long

time after they become dead. Therefore, if these blocks are written back early when the

harvested is sufficient, they will not need to be checkpointed to the STT-RAM upon power

failure. For these live dirty blocks, we need to guarantee that there is always enough space

for checkpointing them. Otherwise, the most recent data modification will be lost result-

ing computation errors. Furthermore, we should guarantee that the limited energy in the

capacitor is capable of checkpointing all important cache blocks according to our analysis.

The basic replacement and migration policy assisted by the proposed pattern ac-

cess predictor will be further restricted by the dirty block control policies. Besides dirty

block control policies, proactive write policy is proposed to reduce checkpointing overhead.

To better explain the details of the policy, the notations for five types of cache blocks are

defined in Table 2.

48

Table 2: Notations of cache blocks

Notation Description

victim LRU dead block or live block if there is no dead block.

V victim V ictim in SRAM.

DV victim Dirty V ictim in SRAM.

DDvictim Dirty dead block in SRAM or STT-RAM.

DLvictim Dirty live block in SRAM or STT-RAM.

CNV ictim Clean Victim in STT-RAM.

4.4.2 Dirty Block Control

Suppose the cache is N -way set associative, and there are totally M sets. In each set

of the hybrid L1 cache, Nv cache blocks are volatile and Nnv cache blocks are non-volatile,

which are distributed among multiple banks. Therefore, we have:

Nv + Nnv = N (4.1)

Upon a power failure, there should be enough space for checkpointing the dirty volatile

cache blocks in the same set. Therefore, the following constraint should be satisfied:

DBi
v ≤ CBi

nv (4.2)

where DBi
v is the number of dirty volatile cache blocks in set i, and CBi

nv is the number of

clean non-volatile cache blocks in set i.

The replacement policy will be directed by the inequality (4.2). To satisfy this condi-

tion, a counter MCounter is implemented in the cache structure for each cache set. The

MCounter is used to identify whether there is enough space in the non-volatile portion for

49

checkpointing the dirty volatile cache blocks in the same set. The size of the counter de-

pends on the number of non-volatile cache blocks in each set Nnv. The number of bits for

MCounter in each cache set is set as follows:

size = dlog2 Nnve (4.3)

This counter keeps tracking the state of each cache block in the same set. Its value is

initially set to Nnv. If one cache block becomes dirty in this set, the value of MCounter

decrements by one. If one dirty cache block turns to be clean, this value increments by one.

Once this value reaches zero, it means that there is no space in STT-RAM for checkpointing

more volatile blocks in STT-RAM. Therefore, at this time, a DDvictim or DLvictim if there

is no DDvictim will be proactively written back if the number of dirty blocks increases again

in the same set.

Suppose the total available energy in storage capacitor can only support checkpointing

T cache blocks, as a result, if we want to guarantee a successful checkpointing, the total

number of dirty cache blocks in SRAM should be less than this threshold. That is

∑M

i=1
DBi

v ≤ T (4.4)

The replacement policy will be directed by the inequality (4.4). To satisfy this condition,

one counter is implemented in the cache structure: DBCounter for SRAM portion. The

DBCounter records the current total number of dirty cache blocks in the SRAM cache part.

When the DBCounter exceeds the preset threshold, a DVvictim will be proactively written

back if the number of dirty blocks increases again in the same set. By writing back a dirty

block, the total number of dirty volatile cache blocks keeps below or equal to the preset

threshold such that checkpointing can always be successful with energy in capacitor.

50

4.4.3 Proactive Early Write Back

Upon a power failure, all dirty cache blocks should be saved to the STT-RAM including

the dirty cache blocks that are checkpointed to the STT-RAM and the dirty blocks that

are placed in STT-RAM before power failure. Among those dirty blocks, many of them are

already dead a long time ago and do not need to be checkpointed upon power failure. How-

ever, because they cannot be guaranteed to be dead for the one hundred percent with the

dead prediction technique, all of them should be checkpointed to avoid computation errors.

Nevertheless, the dead dirty blocks will be evicted sooner or later after the power comes

back on again. Checkpointing them not only wastes time and energy but also takes away

the checkpointing opportunity of many live cache blocks in SRAM which will be accessed

soon in the near future. As a result, many live cache blocks have to be loaded from the main

memory again which increases the miss rate.

Proactive write method is proposed to write back those dead dirty blocks back to main

memory earlier before they are finally evicted. In this way, these dead dirty blocks will

become clean and will not need to be checkpointed upon power failure. Proactive writes are

realized incrementally instead of all at once each time. The proactive write is conducted

each time after the LRU recency of a set is updated. This is because that a cache block

may become dead only after being moved out of the MRU position. Therefore, updating

the LRU recency means that a new cache block may becomes dead. If a DDvictim or a

DLvictim if there is no DDvictim is found in the same accessed set, this cache block will

be marked clean and be written back to the main memory. In this way, if the dirty cache

block is predicted to be dead correctly, it will not affect the miss rate, since it will be evicted

and written back to main memory anyway; if the prediction is wrong, the penalty happens

only if this cache block receives a write request in the future. In this case, the penalty is

writing back this cache block again to update the main memory in the future. If this cache

block will only be read again, there is no penalty. In the proposed hybrid, a queue buffer

is employed between the cache and main memory to overlap the latency for writing back

following the state-of-the-art cache architecture.

51

4.4.4 Reliable and Energy-efficient Checkpointing Aware Cache Policies

The Checkpointing Aware Cache Policy Implementation is described in Algorithm 4. The

basic cache replacement and migration policy are assisted with the dirty cache block control

and early write back functions described at the bottom of this algorithm. The actions upon

an access request of four scenarios including read hit, read miss, write hit, and write miss

are described at the top part of this algorithm. REDUCE CTR is the control function of

actions when the number of dirty block is increased. INCREASE CTR is the control func-

tion of actions when the number of dirty block is decreased. EARLY WB is the function

for writing back the dirty dead blocks earlier before they are evicted. REDUCE CTR

and INCREASE CTR ensure that there is always enough space for checkpointing in

STT-RAM and the storage energy is capable of checkpointing all important cache block-

s. EARLY WB further reduces the checkpointing overhead without degrading the overall

performance. These three functions together makes the hybrid cache checkpointing friendly.

The REDUCE CTR function is called to modify the MCounter and DBCounter when

the number of dirty blocks is reduced by one. For example, loading a missing cache block

(clean) by evicting a dirty victim cache block will reduce the number of dirty blocks by

one (line 9-11). Besides, migrating a dirty write intensive cache block in STT-RAM to the

position of a dirty V victim will also reduce the number of dirty blocks (line19-24). The

INCREASE CTR function is called to modify the MCounter and DBCounter and con-

trol the number of dirty blocks when the number of dirty blocks is increased by one. The

number of dirty blocks is increased in four scenarios: 1) there is a write hit in a clean cache

block (line 16-17 and 32-34); 2) a clean write intensive cache block is migrated to replace

a clean V victim upon a write hit (line 25-26); 3) the live V victim is not evicted and mi-

grated to the original clean write hit cache block in STT-RAM (line 29-30); 4) loading a

new cache block upon write miss while the evicted cache block is clean. The EARLY WB

function is called only when an MRU cache block moves out of the MRU position. This is

because that a block becomes dead only after it’s moved out of the MRU position. There-

fore, EARLY WB is called in Line 4 and line 36 to write a dirty dead block back to main

memory when there is a read hit or write hit if this block just moves to the MRU position.

52

Algorithm 4 Checkpointing Aware Cache Policy Implementation

Require: An access request to set s, s.MCounter, and DBCounter.
Ensure: Serve the request while meeting the restricts.
1: if read hit then
2: Return requested data;
3: if hit block was not MRU then
4: Early WB(s);
5: end if
6: end if
7: if read miss then
8: if it is a dead fill then
9: Return data without loading the cache block;

10: else
11: Replace vctim and return data;
12: if the evicted cache block V ctim is dirty then
13: Reduce ctr(s, s.MCounter, DBCounter);
14: end if
15: Early WB(s);
16: end if
17: end if
18: if write hit then
19: if hit in SRAM then
20: Write to original cache block;
21: if original cache block is clean then
22: Increase ctr(s, s.MCounter, DBCounter);
23: end if
24: else if hit in STTRAM then
25: if write intensive then
26: Migrate to V victim in SRAM;
27: if V victim is dead then
28: if V victim is dirty and hit block is dirty then
29: Reduce ctr(s, s.MCounter, DBCounter);
30: else if V victim is clean and hit block is clean then
31: Increase ctr(s, s.MCounter, DBCounter);
32: end if
33: Evict V victim;
34: else
35: Migrate V victim to STT-RAM;
36: if hit cache block is clean then
37: Increase ctr(s, s.MCounter, DBCounter);
38: end if
39: end if
40: else
41: Write to original cache block;
42: if original cache block is clean then
43: Increase ctr(s, s.MCounter, DBCounter);
44: end if
45: end if
46: end if

53

47: if hit block was not MRU then
48: Early WB(s);
49: end if
50: end if
51: if write miss then
52: if it is a dead fill then
53: Write data to memory without loading the cache block;
54: else
55: Replace a V ictim and write data;
56: if the evicted cache block V ictim is clean then
57: Increase ctr(s, s.MCounter, DBCounter);
58: end if
59: Early WB(s);
60: end if
61: end if
62: function Reduce ctr(s, s.MCounter, DBCounter)
63: s.MCounter ← s.MCounter + 1;
64: DBCounter ← DBCounter − 1;
65: end function
66: function Increase ctr(s, s.MCounter, DBCounter)
67: if s.MCounter > 0 then
68: s.MCounter ← s.MCounter − 1;
69: if DBCounter > T then
70: Write back a DV victim;
71: else
72: DBCounter ← DBCounter + 1;
73: end if
74: else
75: Write back a DDvictim or a DLvictim;
76: end if
77: end function
78: function Early WB(s)
79: if s has a DDvictim then
80: Write DDvictim back;
81: end if
82: end function

54

Besides a hit, EARLY WB is also called when a missing cache block is loaded to cache as

shown in line 12 and 44.

In all, the main novelty of the proposed cache replacement and management mechanism

lies in two aspects: 1) Six kinds of victim blocks are defined in Table 2, and the new re-

placement policy can determine an appropriate kind of victim block for replacement or for

writing back, given the system requirements. 2) The new mechanism not only considers the

performance of cache access but also considers the checkpointing ability when there is power

outage via replacement policy and migration policy.

4.5 Checkpointing Policy

In this section, the checkpointing policy will be presented based on the proposed cache

architecture. This checkpointing policy will specify what to be checkpointed, as well as where

to store these volatile cache blocks.

When detecting a power-loss, we are facing two problems: 1) In SRAM, what need to be

backed up? Dirty blocks and part of clean blocks. Dirty blocks definitely need to be backed

up. Clean blocks that will be used most recently also can be moved to NVM to reduce miss

rate after resumption. 2) Which block in NVM should be used to store these data blocks?

Dead blocks or those clean blocks which will be used in the furthest future.

4.5.1 Selecting Volatile Blocks for Checkpointing

Checkpointing is performed within each cache set. Therefore, upon a power failure, the

necessary volatile cache blocks will be backed up to non-volatile blocks in each set. The first

problem we need to answer is what to be checkpointed. From analysis, we know that all dirty

blocks need to be backed up. However, if energy supply and STT-RAM spaces allow, clean

blocks that will be used in the near future can also be backed up to NVM to improve the

performance after power resumes. This means if the number of dirty blocks in SRAM is less

than T , then T −
∑M

i=1 DBi
v blocks will be checkpointed to improve the cache performance.

55

In this case, these most recently used live clean volatile cache blocks should be chosen first

so that they can be accessed right away after power recovers.

The selection of clean volatile blocks depends on two considerations: first, there should

be available non-volatile space in the same set for placing the selected clean volatile block;

second, the remaining energy in capacitor should be sufficient for checkpointing these selected

clean blocks.

1 5 9 11 1373 15

2 6 10 12 1484 16

ICache

DCache

MRU LRU

Figure 19: Clean block selecting policy

For the first consideration, during the selection of clean volatile cache blocks, only the

MCounter most recently used clean blocks will be selected for checkpointing. The other

blocks will be dropped. ICache does not have this consideration because it does not have

dirty blocks and there will always be enough space for checkpointing. For the second con-

sideration, age bits are maintained for ICache and DCache blocks in order to differentiate

LRU and MRU blocks. As shown in Figure 19, during the checkpointing process, the most

recently accessed cache set will be scanned first for DCache and ICache sequentially. Before

a clean block is checkpointed, its LB bit will be checked first. If it is already predicted dead,

it will be given up because dead block has high probability not to be accessed and another

live block will be selected instead. In this project, a dead data prediction policy proposed

in [42] is employed to guide the content selection, which predict dead blocks based on bursts

of accesses to a cache block.

4.5.2 Selecting Non-volatile Blocks

After deciding the SRAM blocks that need to be checkpointed, we need to decide which

blocks in STT-RAM should be used to store them. Not all non-volatile cache blocks can be

56

used to place these clean volatile cache blocks. Since non-volatile cache portion also con-

tains some dirty cache blocks. Therefore, only these non-volatile clean cache blocks can be

overwritten to place the volatile dirty cache blocks. Among all these non-volatile clean cache

blocks, dead clean blocks or LRU live clean blocks in STT-RAM will be the first choice. As

a result, for each dirty volatile cache block, the CNVvictim will be selected for checkpointing

each time. In addition, a MCounter is updated to ensure there is always enough space for

checkpointing in STT-RAM.

Figure 20 illustrates the process of checkpointing with two cache sets. Before checkpoint-

ing, there is only 1 volatile dirty block whose tag is tag2 in set 1, and there are two dirty

volatile blocks in set 2. Therefore, current DBCounter is 3. If a power failure happens,

we will first find the CNV victim in set 1, which is block tag3, and then replace block tag3

with block tag2. After that, we will find the CNV victim in set 2, which is block tag8, and

replace the content of block tag8 with the first dirty block, tag5. Then block tag6 will be

selected as the new CNV victim, and it is used to checkpoint another volatile dirty block

tag7. After that, if the threshold for DBCounter is larger than 3, then the clean block tag1

in set 1 can be further checkpointed to block tag4 for better performance, because it is the

MRU block while tag4 is the LRU.

After power failure happens, not only volatile cache blocks, the values in MCounter

and DBCounter will also disappear because they are based on SRAM for fast access speed.

Therefore, they also need to be saved to non-volatile memory.

After power returns, we do not need the process of restoration, since STT-RAM based

cache part is also used for normal access. Therefore, the execution can start quickly without

copying anything back to STT-RAM.

4.6 Experimental Evaluation

This section will first present the experiment setup in subsection 4.6.1. Then, the eval-

uation results will be presented in subsection 4.6.2.

57

tag3tag2tag1 tag4Set 1

Clean Volatile Dirty Volatile Clean Nonvolatile Dirty Nonvolatile

Before Checkpointing

Live

1 2 3 4

Live LiveDead

tag6 tag7tag5 tag8
Live

1 23 4

Live LiveLive
Set 2

tag2 tag4Set 1
1 2 3 4

Livelive

tag7 tag5
Live

1 3 2 4

Live
Set 2

After Checkpointing

MCounter=1
DBCounter=3

MCounter=0

MRU LRU

tag3tag2tag1 tag4Set 1

Clean Volatile Dirty Volatile Clean Nonvolatile Dirty Nonvolatile

Before Checkpointing

Live

1 2 3 4

Live LiveDead

tag6 tag7tag5 tag8
Live

1 23 4

Live LiveLive
Set 2

tag2 tag4Set 1
1 2 3 4

Livelive

tag7 tag5
Live

1 3 2 4

Live
Set 2

After Checkpointing

MCounter=1
DBCounter=3

MCounter=0

MRU LRU

Figure 20: Checkpointing policy

4.6.1 Experiment Setup

The experiments are carried out on gem5 simulator [10]. The proposed SRAM and

STT-RAM based hybrid cache architecture and policies are implemented in gem5 simula-

tor. Table 3 details the experimental system configuration. The hybrid cache architecture of

SRAM/STT-RAM set configuration consists of 2 SRAM cache blocks and 2 STT-RAM cache

blocks in each set. The STT-RAM and SRAM parameters are obtained with NVSim [15].

Table 3: System configuration

Component Description

Processor 480MHZ NV processor, 1 core

Cache Private L1 cache (16K hybrid I-

cache and 16K hybrid D-cache),

private, 64-byte block size, 4-way

associative, 2 cycles access time

(write to STT-RAM: 20 cycles) ,

LRU, write-back

Main Memory 30 cycles access time

58

Table 4: Characteristics of SRAM and STT-RAM Caches (22nm, temperature=350K)

Memory Type 16K SRAM 16K STT-RAM

Area(mm2) 0.076 0.028

Read Latency (ns) 1.230 1.956

Write Latency (ns) 1.210 10.500

Read Energy (nJ/access) 0.006 0.124

Write Energy (nJ/access) 0.002 0.515

leakage power (mW) 18.972 3.014

Table 5: Characteristics of benchmarks

Bench. Instr. # Mem reads # Mem writes #

qsort 469467835 73791088 60602059

susan 301988532 79999803 1045712

dijkstra 49870857 13422737 5004930

patricia 609908196 118364722 94550973

sha 111653876 24586223 10127992

rijndael 485044372 160386369 97659918

basicmath 277951743 24217872 23164606

fft 1405211413 146740685 139188555

soplex 72255874 14663565 5234462

specrand 93348662 21802840 11392014

libquantum 290069996 31977967 16944750

gobmk 20495669 1318011 3334960

59

The storage capacitor is set to be able to support checkpointing a quarter of the whole

cache. The baselines for comparison are two existing cache architectures that are proposed

for NVP: pure STT-RAM based cache architecture as proposed in [47] and SRAM based

cache architecture as proposed in [38].

Eight benchmarks from Mibench [19] and four benchmarks from the SPEC CPU2006

suite [23] are selected for evaluation and their characteristics are shown in Table 5. In

this table, the first eight rows show benchmarks from Mibench and the last four rows show

benchmarks from SPEC CPU2006. The benchmarks are chosen because Mibench is a very

representative benchmark suite for embedded system applications, while SPEC CPU2006

suite is for CPU-intensive general purpose microprocessors.

4.6.2 Results

The performance of the proposed hybrid cache architecture is evaluated in two aspects:

execution progress and energy consumption.

Execution Progress Evaluation Figure 21 shows the execution progress of 12 bench-

marks under 2 cache settings when the system is powered with energy harvesting technology.

In this figure, the performance of the proposed hybrid cache architecture is normalized based

on the non-volatile cache architecture. From this figure, we can see that the performance of

the proposed hybrid cache architectures is 31% better than the non-volatile cache architec-

ture on average.

Energy Consumption Evaluation Figure 22 shows the energy consumption compar-

ison between pure non-volatile cache and the proposed hybrid cache. For each benchmark,

there are two bars. In each bar, the solid upper part shows the dynamic energy consumption

and the textured bottom part shows the leakage energy consumption for each cache architec-

ture. From the figure, we can see that pure non-volatile cache incurs larger dynamic energy

consumption and lower leakage energy consumption. This is because the leakage power of

SRAM is more than six times of STT-RAM. We can also observe that the proposed hybrid

cache is more energy efficient than the pure nonvolatile cache combining noth leakage ener-

60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Ex

ec
u

ti
o

n
 p

ro
gr

es
s

STT-RAM
Hybrid

Figure 21: Comparison of execution progress under different cache architectures

0

20

40

60

80

100

En
e

rg
y

co
n

su
m

p
ti

io
n

 (
m

J) STT-RAM leakage

STT-RAM dynamic

Hybrid leakage

Hybrid dynamic

Figure 22: Comparison of energy consumption

61

gy and dynamic energy. the proposed hybrid cache with the pattern-predictor-based cache

placement and migration policies achieves 15% energy reduction on average compared with

the STT-RAM-based cache.

4.6.3 Execution Frequently Interrupted Under Harvested Power

In this section, the checkpointing aware ability of the 4/4 cache architecture will be

evaluated in the scenario where there are frequent power failures.

The power failures are simulated by imputing two different power traces where power

failures happen at different frequencies. In the first power trace, a power failure happens

about every 500ms; in the second power trace, a power failure happens every 200ms. The

frequencies of both two power traces are set quite large to evaluate the performance. In real-

ity, power failures do not happen so frequently as the two power traces used here. Therefore,

the results are quite conservative. It takes much less time for a benchmark to run on the

hybrid cache architecture in normal energy harvesting systems.

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Nonvolatile 200ms 500ms

Figure 23: Execution time under frequent power failures

62

Figure 23 shows the performance of the proposed hybrid cache architecture when there

are frequent power failures. In this figure, the first column shows the execution time of

non-volatile cache architecture, the second and third columns show the execution time of

the hybrid cache architecture when power failures happen every 200ms and 500ms, sepa-

rately. From this figure, we can see that even facing with radical frequent power failures,

the proposed cache architecture outperforms the pure non-volatile cache architecture. In

the environment of less frequent power failures, the checkpointing aware hybrid architecture

works better than when there are more frequent power failures.

0

10

20

30

40

50

60

70

80

90

100

En
er

gy
 c

o
n

su
m

p
ti

io
n

 (
m

J)

Hybrid leakage (500ms) Hybrid dynamic (500ms) Hybrid leakage (200ms)

Hybrid dynamic (200ms) Nonvolatile leakage Nonvolatile dynamic

Figure 24: Comparison of energy consumption under frequent power failures

Figure 24 shows the energy consumption of the proposed hybrid cache architecture when

there are frequent power failures. In this figure, the first column shows the execution time

of non-volatile cache architecture, the second and third columns show the energy consump-

tion of the hybrid cache architecture when power failures happen every 200ms and 500ms,

separately. For each column, the solid upper part shows the dynamic energy consumption

63

and the textured bottom part shows the leakage energy consumption for each cache archi-

tecture. From this figure, we can see that even facing with radical frequent power failures,

the proposed cache architecture outperforms the pure non-volatile cache architecture for

most benchmarks. When power failures happen every 200ms, more energy is consumed for

hybrid cache than when power failures happen every 500ms. This is because, leakage energy

increases with execution time while dynamic energy increases with more memory accesses

generated by checkpoints.

From the experimental results, we can see that the proposed hybrid cache works efficient-

ly for energy harvesting powered systems. Compared with existed cache architecture, it has

properties of high performance, relatively low energy consumption, and instant resumption

as shown in Table 1. Besides, this hybrid cache supports reliable checkpointing because we

can control the volatile states in the SRAM to be checkpointed.

Discussion: In this project, the hybrid one-level cache is proposed instead of simply

using SRAM as L1 and STT-RAM as L2 with the write-through policy because this setup

has even worse performance than the STT-RAM based one-level cache. Although write-

through policy that keeps updating the inclusive cache block in L2 avoids the necessity of

checkpointing upon power outage, it is energy and time consuming. Write-through is like

checkpointing all the time. The overhead is much higher than write-back policy and check-

point when there is a power failure. Furthermore, compared with the hybrid cache, simply

using the STT-RAM as the L2 cache generates massive slow and energy-consuming write

operations in STT-RAM while the hybrid cache can alleviate this problem signifi-cantly by

migrating the write intensive cache blocks to the SRAM.

4.7 Summary

The proposed self-checkpointing hybrid SRAM/STT-RAM cache is a promising candi-

date to be employed in the ever-increasing self-powered embedded edge devices of IoT, due

to its fast access, high-density, and low leakage. The proactive write back policy, directed

by monitoring the state of the whole SRAM cache part and the migration state of each as-

64

sociative set, further promotes the checkpointing speed with low energy overhead. We look

forward to exploring the benefits of the proposed cache in real edge devices powered with

various energy harvesting technologies.

65

5.0 Securing Non-volatile IoT Devices With Fast and Energy-Efficient AES

In-Memory Implementation

This chapter presents an AES In-Memory Implementation method for securing IoT de-

vices embedded with non-volatile memory [84, 85]. The remainder of this chapter is organized

as follows. Section 5.2 describes the background on non-volatile main memory organization

and AES encryption. Section 5.3 describes the overview of this project. Section 5.4 presents

the complete in-memory encryption architecture. Section 5.5 and 5.6 discuss the proposed

encryption mode and key storage, respectively. Detailed experimental evaluation is provided

in Section 5.7. Finally, Section 5.8 concludes this project.

5.1 Introduction

The vision of IoT system is to connect everything that’s embedded with modern tech-

nologies. With the advancement of embedded system, IoT devices are becoming smaller,

smarter, and more powerful which keep increasing the employment of IoT devices a variety

of industries. Furthermore, combined with the benefit of closing to data, many industry

leaders are transforming the attention from cloud computing to local computing with IoT

edge devices. Instead of wasting a lot of time and energy transmitting the collected data

to the far-away cloud, processing the data in the IoT devices is much faster and more en-

ergy efficient. Despite the fast development and increasing employment of IoT devices, the

security remains as a issue to be solved.

Securing IoT devices is restricted to the limited resources in IoT devices. Because of

its nature of small size, it has limited energy storage. However, security mechanisms usu-

ally requires more computing power than IoT devices can provide. On the other hand, the

complexity of the backbone of IoT devices that consists of the communication platform, net-

works, gateways, etc. on the other hand further makes IoT device security more challenging,

because it creates multiple potential vulnerabilities and bring many attack opportunities

66

for malicious users. To protect the data in the IoT devices against eavesdropping of com-

munication message by unauthorized users, sensitive data must be encrypted before being

transmitted to a different part of the internet. A security solution for IoT devices must secure

the data stored in the device, guarantee secure communication, and protect the device from

physical attacks. Although general-purpose embedded processors can do the encryption and

decryption of the data, the compute-intensive requirements of encryption algorithms can

heavily slow down the overall transaction. The level of integration nowadays makes it pos-

sible to integrate the encryption engine into those small IoT devices, allowing the system

to handle more transactions. However, encrypting data with encryption engine is not fast

enough to match the throughput of transmitter, since encryption engine between processor

and memory takes a long time on the path to fetch and write back the data.

Non-volatile IoT devices have been undergoing extensive research. DRAM has been em-

ployed as the main memory for computers for decades. However, as technology scales down,

DRAM will suffer from prohibitively high leakage power. Consequently, researchers are ac-

tively developing promising candidates such as phase change memory (PCM) [99], resistive

random access memory (ReRAM) [82], and spin-transfer torque magnetic random access

memory (STT-MRAM) [70] to be deployed as next-generation non-volatile main memory

(NVMM). These non-volatile memories have several significant advantages over traditional

DRAM main memory. They provide promising features such as non-volatility, high density,

low leakage power, and high scalability. The nature of non-volatility avoids the need of

frequent refresh for DRAM and allows the data in NVM to be retained a long time after

power is off. Intel’s recent announcement of 3D Xpoint [3] and the JEDEC’s NVDIMM-P

specification [2] are latest efforts towards the goal of next-generation NVMM.

In spite of these advantages, NVMM suffers from a new security vulnerability. Since the

information in NVMM will not lose data after power is turned off, an attacker with physical

access to the system can readily scan the main memory content and extract all valuable

information from the main memory [20, 12]. In contrast, the security of DRAM memory

relies on its short retention time which varies from 500 ms to 50 seconds [71]. To protect the

data of the NVMM, the whole memory should be provided with a security mechanism with

comparable security level to DRAM.

67

Real-time memory encryption with pad-based or stream cipher is an effective solution for

this vulnerability, in which every cache line is encrypted or decrypted before being written to

or read from the main memory [24]. The real-time memory encryption is a strong protection,

and it can also prevent other attacks such as memory bus snooping [14]. Unfortunately, the

strong protection is at the expense of runtime performance loss, since the decryption latency

(as an overhead of read access) is on the critical path. Besides, encrypting and decrypting

every memory access also result in severe energy overhead.

Actually, such a strong real-time protection is not always necessary. For example, when

a mobile device (e.g. smart phone or laptop) is being used, the attack that requires physical

access to the NVMM can rarely happen. Only when the device is shut down or put into

sleep/screenlock mode, the memory encryption is required. i-NVMM [12] further proposes

to encrypt main memory incrementally while maintaining an unencrypted working set which

needs fast bulk encryption when necessary. Instead of the real-time encryption with perfor-

mance loss and energy cost for every cache line, encrypting the working set in bulk or the

whole memory when necessary is preferred in such mobile scenarios where strong protection

for this part of memory is not required all the time.

Even though the bulk memory encryption approach results in no performance loss at

runtime and reduces the encryption tasks hence the energy consumption, two challenges still

remains: First, it should be fast in order to lower the vulnerability window when locked and

provide instant response when unlocked. This is even more critical under the development

of multi-core processor and increasing demand of much larger main memory. Second, it

requires energy-efficient encryption considering the limited battery life.

In order to address these challenges, in this project, a novel AES In-Memory encryption

architecture, AIM, is proposed for fast and energy efficient non-volatile main memory encryp-

tion. Embracing the benefit of the processing-in-memory (PIM) architecture, the proposed

encryption architecture takes advantage of large internal memory bandwidth, vast bitline-

level parallelism, and low in-situ computing latency. Besides, by eliminating data movement

between memory and host, higher energy efficiency is achieved. Furthermore, instead of

a straightforward solution that integrates a dedicated AES on the memory side, we solve

the security problem that originally raised by NVM’s non-volatility, with the non-volatility

68

itself. To this end, we leverage the non-destructive read in NVMs for performing efficient

XOR operations, which dominate AES. We modify the sense amplifier circuit so that we can

calculate vector XOR operations by performing a memory-read-like operation. After adding

lightweight logic gates to the memory peripherals circuitry, we can perform the entire AES

procedure in-place.

5.2 Background

In this section, we introduce the basics of the NVMM, the PIM architecture in NVMM,

and the AES algorithm.

5.2.1 Non-volatile Main Memory

Main memory is logically organized as a hierarchy of channels, ranks, and banks. Chan-

nels work in parallel and share the same physical link to the processor. Each channel contains

several ranks and each rank has several physical chips. A physical chip has several banks

which contend for the same I/O in the same channel. Banks from different channels can

be accessed completely independently of each other. A memory bank has several subarrays

which share the global data line and global row buffer. Each subarray is a two-dimensional

array of memory cells which has it local row buffer. A subarray can be further divided into

different mats which has its private row buffers and write driver. Row and column address-

es are often decoded at mat level. Peripheral circuitry, such as sense amplifiers and write

drivers are shared among several columns.

5.2.2 Pinatubo: PIM in NVM

Besides recent research that leverages 3D-stacking DRAM like Hybrid Memory Cube

(HMC) to support PIM architecture, Pinatubo [40] paves another way that leverages the

emerging NVM to support PIM while incurring negligible area overheads. As shown in Fig-

ure 25, Pinatubo modifies the sense amplifier (SA) circuit of the normal emerging NVMM,

69

so that the SA not only can serve for reading, but also carry out bitwise operations such

as AND, OR, and XOR. Instead of activating one row and reading the data out, Pinatubo

activates two rows at once which correspond to the two operand vectors. The output of

the SA is then the result of the bitwise operation of these two rows (vectors). To perform

an XOR operation, Pinatubo first opens the one operand row, and stores the data in the

capacitor inside the modified SA. Then, it opens the second operand row, and the data from

this row and the previous data in the capacitor go through the simple XOR circuit inside

the modified SA, after which, the readout result of this SA is the XOR result of these two

rows. the AIM design takes advantage of this fast in-memory XOR operation offered by

Pinatubo [40].

S1

Cs
BL

Sxor

XOR/INV
EN

Ch

OUT

X
O

R

c
ir

c
u
it

Cs
REF

S1

…

Operand Row 1

Operand Row 2

Operand Row n

Result Row

Modified SA

ALU (idle)

Caches (idle)

Only CMD &
Row-ADR

NVM-based Main Memory

Figure 25: Left: Pinatubo’s architecture computes vector bitwise operations inside NVMs.

Right: SA modification in Pinatubo to perform in-memory XOR operations [40].

5.2.3 Advanced Encryption Standard

The Advanced Encryption Standard (AES) [13] is a symmetric block cipher. The AES

algorithm consists of four transformations as shown in Figure 26. The intermediate results

70

after each transformation are maintained as a state matrix of bytes. At the start of the

algorithm, a round key is added to the input by a bitwise XOR operation. After that, the

state array is transformed by implementing four basic transformations 10 times when the

key has 128 bits, while the last round does not include MixColumns. In summary, AES is

comprised of XOR, shift, and LUT operations.

SubBytes is a non-linear invertible byte substitution that replaces each byte of the state

matrix using a substitution table (S-box). As shown in Figure 26, each byte Di,j in the state

matrix is replaced with a new byte Si,j in the step of SubBytes.

D0,0 D0,1 D0,2 D0,3

D0,0

D0,0

D0,0

D0,1 D0,2 D0,3

D0,1 D0,2 D0,3

D0,1 D0,2 D0,3

Organized Data Matrix

AddRoundKey

SubBytes

N<=10

N=10

N<10

ShiftRows

S0,0 S0,1 S0,2 S0,3

S0,0

S0,0

S0,0

S0,1 S0,2 S0,3

S0,1 S0,2 S0,3

S0,1 S0,2 S0,3

Substituted Bytes

Shifted Rows

S0,0 S0,1 S0,2 S0,3

S0,1

S0,2

S0,3

S0,2 S0,3 S0,0

S0,3 S0,0 S0,1

S0,0 S0,1 S0,2

2 3 1 1

1

1

3

2 3 1

1 2 3

1 1 2

128-bit Ciphertext

AddRoundKey

MixColumns

128-bit Input

Figure 26: AES Flow Chart.

ShiftRows cyclically shifts all bytes in each row by different offsets. As shown in Fig-

ure 26, the first row is unchanged while each byte in the ith row is cyclically shifted left by

i bytes respectively.

71

MixColumns combines the four bytes of each column of the state matrix using an invert-

ible linear transformation. This transformation can be written as a matrix multiplication in

the finite field of GF(28) where the state matrix is multiplied by a constant matrix composed

of 1, 2, and 3, as shown in Figure 26.

AddRoundKey combines the state matrix with the round key by bitwise XOR operations.

Each byte in the state matrix is XORed with a byte in the same row and column of the key

matrix. These round keys are generated from the key with a key schedule which expands a

short key into a number of separate round keys.

5.3 Overview

5.3.1 NVMM’s Vulnerability Challenge

We take the case of smartphones as a motivating example. We assume NVMM have

been adapted as the replacement of DRAM, due to its advantages of low leakage and high

density. The vulnerability challenge emerges that the content in the memory is under risk if

the attacker stoles the device. Even though the device is locked, the attacker can remove the

memory, plug it in another machine, and read it. The threat is more severe in the case of

NVMM, since the retention time of NVM cells is typically much longer (a few years [63]) com-

pared with 500 ms to 50 seconds [71] in the case of DRAM. An effective solution is real-time

memory encryption with Pad-based or Stream cipher encryption, however, at an expense

of performance degradation and also energy overhead (4% reported by previous work [95]).

Instead of the real-time encryption, a smarter approach is to encrypt the memory only when

necessary. For example, when the device is being used (unlocked), the attacker can rarely

take it away. Only when the device is turned off or put into sleep/screenlock mode, we should

do bulk encryption for the memory at one time. However, even though the one-time memory

encryption approach result in no performance loss at runtime and reduces the encryption

tasks hence the energy consumption, two challenges still remains: First, it should be fast

in order to lower the vulnerability window when locked and provide instant response when

unlocked. Second, it requires energy-efficient encryption considering the limited battery life.

72

5.3.2 PIM: A Potential Solution

To address those challenges, we propose a PIM architecture for memory encryption. The

PIM offers the benefit of high internal memory bandwidth, massive parallelism (chip, bank,

and subarray-level), and most importantly, it eliminates the data movement between the

memory and processors. Meanwhile, we observe that in the one-time memory encryption

application, the memory bandwidth is a bottleneck since a dedicated AES encryption engine

provides a much larger throughput (53Gbps [49]) than the DDR throughput. Moreover, the

energy for fetching data from memory with the DDR bus is also dominant. It is shown

that 91.6% energy is spent on fetching and writing this data from the experimental results.

Considering both advantages offered by PIM and the workload characteristics of the tar-

get one-time memory encryption application, we believe the PIM can effectively address

NVMM’s vulnerability challenge.

5.3.3 Design Overview

Based on the above observations, we propose AIM, an in-memory encryption mech-

anism for NVMM, as shown in Figure 27. Different from the co-processor AES engine

(Figure 27(a)), the proposed AIM avoids the narrow DDR bus and embraces the large intra-

memory bandwidth. It also benefits from multiple memory blocks parallel encryption by

leveraging the flexible parallelism inside the memory, marked as chip-level, bank-level, and

subarray-level parallelism in the figure. To perform the AES algorithm, we build all its

required arithmetics (i.e., XOR, Shift, and LUT) inside each memory subarray. Instead of

implement all those operations with logic gates, we take the advantage of NVM’s unique

feature and implement the most time consuming operation, XOR, within the SAs them-

selves, as described in Section 5.2.2 [40]. Data buffer is added to store intermediate results,

reducing expansive write operations to NVM cells. In addition, an encryption controller is

implemented in each chip to provide control signals to direct the encryption process. In the

following sections, the details of the hardware implementation and how the AES algorithm

is mapped to the proposed AIM are described.

73

Non-volatile
Main Memory

Plaintext

Ciphertxt

CPU

(a) Cryptographic

Engine Architecture

(b) In-Memory Encryption Architecture

AES Engine
CPU

Narrow
DDR Bus

Idle CPU and Bus
during Encryption

Chip
Chip

ChipChip
Chip-level

parallelsim

e
n

cr
yp

ti
o

n

co
n

tr
ol

le
r

Bank
Bank-level
parallelism

Bank

Subarray-level
parallelism

Memory cells

Non-volatile Main Memory

SA embedded with Bitline XOR ops.

Large internal bandwidth & in-place computing

LUT for
SubBytes etc.

Shifter for
ShiftRows

Buffer for
temp. data

Figure 27: Memory encryption architecture: a) Traditional encryption approach implement-

ed an cryptographic engine outside main memory, b) The proposed AIM design: in-memory

computing with NVM’s intrinsic features.

74

5.4 AES In-Memory Implementation

In this section, the implementation of AES in-memory encryption will be presented.

5.4.1 Data Organization

AES in-memory implementation takes advantage of different levels of parallelism in the

NVMM. In this project, in-memory encryption is performed directly on the data in the mem-

ory cells. These data are read out with sense amplifiers (SAs), each of which is shared by

several adjacent columns with a MUX as shown in Figure 28. Since the unit data matrix to

be encrypted needs to be organized in a certain fashion to facilitate the encryption process,

we distribute the 8 bits of each element in the data matrix into different mats and different

columns in the same mat so that they can be used concurrently. In this way, the plaintext

data block does not have to be pre-transformed into matrix form before encryption starts.

For illustration purposes, we assume that there are M mats Mati(i = 0, 1, ...,M), the size of

each mat is N ∗N , and K columns share one SA. In total, there are N/K SAs in each mat.

MUX

SA

B2 C1 23 A7

Mat0

MUX

SA

MUX

SA

MUX

SA

MUX

SA
Mat1

Mat7

B2 C1 23 A7

38

21

D0

D0 6E A6

BE 4E 1F

59 8A 94

Data Matrix

Figure 28: Distributed data organization for AES encryption.

75

Figure 28 illustrates the memory distribution for one data matrix. In AES algorithm, the

basic processing unit is one byte of the data matrix, therefore the data matrix is distributed

into eight mats so that each mat has 1-bit level of the data matrix. In order to encrypt

each row of the data matrix in parallel, four columns of the data matrix are distributed

to different columns of memory array connecting four adjacent SAs separately. These four

columns of memory array are of the same local column address. In this way, when one row

of the subarray is activated and a local column address is selected for each MUX, every

four adjacent SAs will sense out a row of the data matrix. In total, every four rows of the

subarray contains MN/4K data blocks of 128 bits.

To enable further processing of the data matrix in different encryption stages, the in-

termediate results, which are the state matrices, need to be buffered. In this project, to

avoid extra hardware overhead and simplify the circuity, we write the intermediate results

back to the data matrix. In the proposed encryption mechanism, AES encryption generates

less than 60 writes during 10 rounds of encryption to each cell in encrypted memory block.

We will show that this number of writes has negligible impact on the endurance of memory.

NVMM encryption is performed before the system is powered down. We assume that we

need to encrypt the main memory 20 times every day and conservatively assume that the

deployed non-volatile memory has an endurance of 109 cycles. In five years, AES encryption

will generate 60 ∗ 20 ∗ 356 ∗ 5 = 1.1 ∗ 105 writes which is less than 0.2% of its total life cycles.

5.4.2 AddRoundKey

In this stage, the data matrix is combined with the key matrix. Each byte of the data

matrix is combined with the corresponding subkey of the key matrix using bitwise XOR

operation. AddRoundKey is implemented with the modified SA design of Pinatubo [40],

which realizes bitwise XOR operation with two micro-steps inside SA.

Figure 29 shows the process of AddRoundKey transformation for one row of data. First,

the first row of data in data matrix is read into the added capacitor in each SA by activating

the first wordline in red color and selecting a column with MUX. Second, the first row of data

in key matrix is read into the latch in each SA by activating the second wordline in red color

76

and selecting a column with MUX. After these two steps, the bitwise XOR result of the first

row is latched in each SA. Suppose it takes txor to complete XOR operation for one row of

data matrix, it takes 4txor to complete AddRoundKey transformation for a data matrix since

there are four rows in each data matrix. This AddRoundKey transformation is parallelized

because of multiple SAs. Since there are M mats and N/K SAs in each mat, (N/4K)(M/8)

data matrices are transformed simultaneously. In our design, after AddRoundKey transfor-

mation for one row of data, SubBytes is performed immediately for this row of data instead

of continuing performing AddRoundKey for all four rows.

MUX

SA

MUX

SA

MUX

SA

MUX

SA

Key matrix
3D 2E 1A 8C

25

E8

90

17 B1 73

20 32 0B

A6 9D 59

B2 C1 23 A7

38

21

D0

D0 6E A6

BE 4E 1F

59 8A 94

Data Matrix

XOR

Mati

XOR XOR XOR XOR

Figure 29: Addroundkey stage with xor operation.

The initial AddRoundKey stage is performed with the initial key. The other 10 rounds

of AddRoundKey are performed with the corresponding round key. As shown in Figure 29,

the encryption key is maintained in the non-volatile memory array and round keys overwrite

the encryption key after finishing each round of encryption.

77

5.4.3 SubBytes

In this step, each byte of the data matrix is replaced with a new byte by doing nonlinear

transformation. This transformation is realized with S-box which is used to obscure the

relationship between the key and the ciphertext. The S-box can be realized with LUT by

implementing combinational logic which has 8-bit input and 8-bit output or ROM which has

16 rows and 16 columns while each entry is a byte. In this project, S-box is realized with

combinational logic since it incurs lower overhead.

8F EF 39 2B

 1D

 C9

 40

 C7 DF D5

 9E 7C 14

 FF 17 CD

After Addroundkey

73 DF 12 F1

A4

DD

09

C6 9E 03

0B 10 FA

16 F0 BD

After SubBytes

Distributed Byte: C7

Mat0

SA
XOR

SA
XOR

SA
XOR

SA
XOR

SA
XOR

SA
XOR

SA
XOR

SA
XOR

MUX MUX

S-Box

SA
XOR

SA
XOR

SA
XOR

SA
XOR

MUX

DEMUX DEMUX DEMUX

Control
signal

Control
signal

Mat1 Mat7

Distributed Byte: C6

73 DF 12 F1

A4

DD

09

C6 9E 03

0B 10 FA

16 F0 BD

After SubBytes

BD

73 DF 12 F1

DD

09

C6 9E 03

0B10 FA

16 F0

A4

Single-bit latch

SubBytes

ShiftRows

After AddRoundkey

Figure 30: SubBytes transformation with LUT and ShiftRows transformation with address-

ing logic.

After the AddRoundKey stage of one row of state matrix, the intermediate results are

latched in the SAs. For SubBytes transformation, each byte of the data matrix is decod-

ed from eight mats and input to the S-box as shown in Figure 30. In this figure, the

78

AddRoundkey results of the second row of data matrix are latched in the SAs. SubBytes is

performing on the second byte C7. The output of S-box is the substituted byte C6. In this

figure, there is one S-box combinational logic which has 8-bit input and 8-bit output. Since

we can only input one byte each time to the S-box, the SubBytes transformation can only

be done sequentially which takes a long time. To accelerate the SubBytes transformation,

we can add more S-box combinational logics to enable parallel SubBytes performing. At the

same time, we need to consider the hardware overhead introduced by multiple S-box. We

have different designs in terms of S-box considering both encryption speed and overhead.

The experimental section will show the performance comparison of different designs.

After we obtain the 8-bit output of S-box, it will not be immediately written back.

Instead, the next stage, ShifRow, will be performed on the output.

5.4.4 ShiftRows

In this step, the bytes in each row of the data matrix are cyclically shifted by a certain

offset. Specifically, while the top row remains unchanged, each bit in the second row of the

bit-level data matrix is cyclically shifted left by 1 bit, each bit in the third row of the bit-level

data matrix is cyclically shifted left by 2 bits, and each bit in the third row of the bit-level

data matrix is cyclically shifted left by 3 bits (right by 1 bit).

The ShiftRows transformation is realized with control signal and address decoding, as

shown in the lower part of Figure 30. Originally, the 8-bit output of S-box needs to be writ-

ten back where each input bit is located. This process needs address decoding to write to

the right position. The ShiftRows transformation can leverage this address decoding process

to do shifting by address decoding. By combining an offset with the column address, the

output of S-box is shifted to another address according to the ShiftRows algorithm.

In Figure 30, the second byte C6 in the second row of state matrix after SubBytes needs

to be shifted to the left by one byte. This means each bit needs to shifted left by one bit

according to the data matrix distribution in the memory. This shifting process is down by

selecting the first column with the control signal.

After ShiftRows transformation, each bit will be buffered in the single-bit latch until

SubBytes and ShiftRows are performed on all data in the SAs. Then, the values in the row

79

buffer are transmitted to the write driver and written back to memory array. This row buffer

gathers the intermediate results of one row and avoids writing to the non-volatile memory

row multiple times.

Distributed Byte

Mat0

SA SA SA SA SA SA SA SA

MUX MUX

M2 LUT

SA SA SA SA

MUX

DEMUX DEMUX DEMUX

Column
Selection

Mat1 Mat7

Distributed Byte
Row Buffer

DEMUX DEMUX DEMUX

Read

S-box/M2

Column
Selection

1 Byte

1 Byte

Figure 31: MixColumn substep: M-2 LUT.

5.4.5 MixColumns

In MixColumns stage, the four bytes of each column of the data matrix are combined

together using an invertible linear transformation to provide diffusion in the cipher. The

MixColumns transformation multiplies the data matrix by a known matrix as shown in

Figure 26.

This matrix multiplication is done in the finite field GF(28), which can be decomposed

to modular multiplication and XOR operations. We use Si,j and S ′
i,j to indicate the byte

in row i, column j of the state matrix and the transformed state matrix respectively. The

80

MixColumns transformation is performed as follows:

S ′
0,j = 2 · S0,j ⊕ 3 · S1,j ⊕ S2,j ⊕ S3,j;

S ′
1,j = S0,j ⊕ 2 · S1,j ⊕ 3 · S2,j ⊕ S3,j;

S ′
2,j = S0,j ⊕ S1,j ⊕ 2 · S2,j ⊕ 3 · S3,j;

S ′
3,j = 3 · S0,j ⊕ S1,j ⊕ S2,j ⊕ 2 · S3,j;

(5.1)

Multiplication-by-2 (M-2) in the finite field can be realized by shifting each bit of the

operand left by 1 bit, followed by a XOR operation with 0x1B if the most significant bit is

1. A more efficient way is leveraging LUT. M-3 in the finite field GF(28) of MixColumn can

be realized with M-2 and XOR logic. This is because

3 · Si,j = 2 · Si,j ⊕ Si,j (5.2)

Therefore, MixColumns stage is decomposed into M-2 LUT and XOR operations. Mix-

Columns needs several sub steps and generates several intermediate values. To both accel-

erate this transformation and maintain a low hardware overhead, we leverage the vacant

non-volatile memory rows as buffer rows for intermediate results. The MixColumns stage is

realized with LUT and XORs as follows:

S ′
0,j = Tj ⊕ 2 · S0,j ⊕ 2 · S1,j ⊕ S0,j

S ′
1,j = Tj ⊕ 2 · S1,j ⊕ 2 · S2,j ⊕ S1,j

S ′
2,j = Tj ⊕ 2 · S2,j ⊕ 2 · S3,j ⊕ S2,j

S ′
3,j = Tj ⊕ 2 · S0,j ⊕ 2 · S3,j ⊕ S3,j

(5.3)

where

Tj = S0,j ⊕ S1,j ⊕ S2,j ⊕ S3,j; (5.4)

This first step of MixColumns is M-2 transformation with LUT. This process shares the

same address decoding logic of S-box with a MUX as shown in 31. Since we can only input

one byte each time to the LUT, this transformation can only be done sequentially which takes

a long time. To accelerate this transformation, we add multiple M-2 LUT combinational log-

ics to enable parallel performing. Like S-box design, we have different multiplication-by-2

LUT designs considering both encryption speed and overhead. After M-2 transformation,

81

S2,j

S3,j

SA

S0,j

S1,j

S2,j

S3,j

SA

WD

S0,j

SA

S0

S0,j

S1,j

S0=S0,j S1,j+

S1,j

S2,j

S3,j

S0

S1=S2,j S3,j+

S0,j

S1,j

S2,j

S3,j

SA

WD

S0,j

SA

S0

S1,j

S2,j

S3,j

S0

Tj=S0 S1+

S1 S1

S0,j

S1,j

S2,j

S3,j

SA

WD

S1

TjBuffer
rows

Data
rows

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

S2,j

S3,j

SA

S0,j

S1,j

Start

Column j

Figure 32: Example of MixColumns substep: Calculate Tj for each column (Eq. (4)).

outputs are latched in a row buffer until all bytes of the activated row finishes M-2 trans-

formation. Then data in this row buffer is written to a vacant memory row. As shown in

Figure 33, four empty non-volatile memory rows are used for storing LUT results.

The next step of MixColumns is calculating Tj following Eq. (4). Figure 32 shows the

detailed process of calculating Tj for a specific column. Every time two rows are activated

to get the XOR result of two memory cells, then next step this result is written to an empty

buffer row. From this figure, this step costs three XOR operations and three writes. In this

step, since all SAs are working simultaneously, Tj for each column is calculated in parallel.

The final step of MixColumns is calculating the result of MixColumns transformation

following Eq. (3). In this step, with M-2 LUT results stored in four rows and Tj values, we

can finish the MixColumns transformation for one row of selected columns in six steps as

shown in Figure 33. This figure shows an example of how to calculate S ′
0,j in row 0. After

three times of activating two rows, four operands are XORed together to get the final result

of S ′
0,j and then this result is written back replacing S0,j.

82

S0,j

2S0,j

2S2,j

SA

2S3,j

2S1,j

Tj

S3=S2 2S0,j+

S1

S0,j

2S0,j

2S2,j

SA

WD

2S3,j

2S1,j

S3

Tj

S0,j

2S0,j

2S2,j

SA

2S3,j

2S1,j

Tj

S4=S3 2S1,j+

S3

S0,j

2S0,j

2S2,j

SA

WD

2S3,j

2S1,j

S4

Tj

S0,j

2S0,j

2S2,j

SA

2S3,j

2S1,j

Tj

S’0,j=S4 S0,j+

S4

S’0,j

2S0,j

2S2,j

SA

WD

2S3,j

2S1,j

S4

Tj

S0,j

2S0,j

2S1,j

2S2,j

SA

2S3,j

Tj

Start Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

LUT
Results

Buffer
rows

Data
rows

Column j

Figure 33: Example of MixColumns substep: Calculate S ′
0.j.

During MixColumns, several writes are generated. In M-2 LUT step, M-2 results are

written to four rows, therefore a column of 4 memory cells takes 4 writes. In the second step

of calculating Tj, 3 writes are generated as shown in the colored memory cells of Figure 32.

In the final step, transforming one value takes 3 writes. Thus 12 writes are generated for

transforming 4 values. In total, 19 writes are generated for each column of four memory cells

which means 5 writes on average are generated for each cell in MixColumns.

5.4.6 Discussion

The AES encryption process leverages innate parallelism of main memory to accelerate

encryption. To support in-memory AES encryption, multiple S-box LUT, M-2 LUT, MUX,

and DEMUX are implemented inside the memory system. For decryption, inverse S-box

LUT needs to be added except for the available resources for encryption. When the memory

system receives an encryption signal, the original key shared among all memory chips is

83

transferred to different memory chips. When each round of encryption finishes, the initial

key is expended to get the round key. The encryption controller in each chip takes care of

the detailed encryption and decryption process.

5.5 Cipher Modes

In this section, we will first discuss different block cipher modes that can be employed

in AIM implementation for enhancing the security of encrypted NVMM. After this, we will

propose a combined cipher mode that will achieve both high parallelism and security level

for the proposed AIM implementation.

5.5.1 Cipher Modes

Encrypting two identical plaintext blocks with the same key will generate two identical

ciphertext blocks. An attacker would be able to achieve useful information and discover the

original plaintext by analyzing the identical blocks of the ciphertext. To allow block ciphers

to work with a large number of data blocks, different block cipher modes of operations are

devised to blur the ciphertext so that the ciphertext blocks of two identical plaintext are

different. Common modes of block cipher include ECB, CBC, CFB, OFB, and CTR [9].

5.5.1.1 Electronic Codebook (ECB) ECB is the simplest mode that encrypts each

data block of the input plaintext separately. Since there is no dependency in encrypting

different data blocks, this cipher mode allows different blocks to be encrypted simultane-

ously and supports high parallelism. However, if there are identical plaintext blocks in the

NVMM, encrypting bulk NVMM with the same key is vulnerable.

5.5.1.2 Cipher Block Chaining (CBC) In the CBC mode, the next plaintext is al-

ways XORed with previously produced ciphertext block before it is encrypted. Since there is

no previous ciphertext block, the first plaintext block is XORed with a random initialization

84

vector (IV) which has the same size as a plaintext block. As a result, every subsequent

ciphertext block depends on the previous one. Since the CBC mode encrypts the plaintex-

t sequentially, it will lead to high latency in the AIM encryption process. Different from

encryption, decrypting different cipher blocks can be done simultaneously.

5.5.1.3 Cipher Feedback (CFB) In the CFB mode, the previous ciphertext block is

encrypted and then XORed with the next plaintext block to generate the next ciphertext

block. Since there is no previous ciphertext block before the first plaintext block, a ran-

dom IV is encrypted and then XORed with the first plaintext. Similar to the CBC mode,

encryption in CFB mode is performed sequentially while decryption can be performed simul-

taneously. Therefore, it suffers similar drawback to the CBC mode. Compared with CBC

mode, the CFB mode only uses the encryption of the block cipher. Therefore, the CFB

mode gets rid of the required resource for implementing decryption.

5.5.1.4 Output Feedback (OFB) The OFB mode creates keystream blocks with the

original key and a random IV, which are then XORed with the plaintext blocks to get the

ciphertext blocks. Because of the continuous creation of keystream bits, both encryption

and decryption is done sequentially. Therefore, this mode has poor parallelism. Besides,

the usage of only the encryption of the block cipher gets rid of the required resource for

implementing decryption.

5.5.1.5 Counter (CTR) The CTR mode creates keystream blocks by encrypting a

nonce value added by an increasing counter. The plaintext blocks can be encrypted si-

multaneously with different counters allowing high-level parallelism. However, CTR mode

becomes vulnerable if counters repeat. This mode also gets rid of the required resource for

implementing decryption.

Besides the five cipher modes, GCM [50] is also a very interesting and powerful cipher

mode. However, the implementation of GCM requires adding more circuitry to the memory

architecture than other cipher modes because of its authenticity and confidentiality ability.

Meanwhile, GCM requires more steps to generate a tag for authenticity and thus has much

85

longer encryption time and energy consumption compared with the other cipher modes. Be-

cause of the much larger area overhead and the lower performance and energy efficiency,

GCM mode has inferior performance to the other discussed cipher modes. Therefore, GCM

mode is not considered in this project.

5.5.2 CTR-CFB Encryption

The cipher algorithm requirement and parallelism of encryption direction and decryp-

tion direction are summarized in Table 6. Among them, CTR mode has the best parallelism

based on counters. CFB, OFB and CTR only need encryption direction implementation

which saves hardware resource for implementing decryption. Compared with OFB, CFB has

better parallelism in decryption.

A direct solution to enhancing the security is deploying CTR mode which allows high

parallelism. However, CTR mode fails catastrophically when a counter value is reused, be-

cause it’s a pure xor stream cipher: XORing two ciphertext blocks that were generated with

the same key and counter values cancels out the encryption. Therefore, in this project, we

propose to combine CTR and CFB modes to enhance the AES security while maintaining

the parallelism level.

Table 6: Comparison of different cipher modes

Modes
Cipher requirement Parallelism

Encryption Decryption Encryption Decryption

ECB X X X

CBC X X X

CFB X X

OFB X

CTR X X X

The implementation is shown in Figure 34. In the vertical direction, the CFB mode can

be implemented, since each word row needs to be activated for encryption one by one in

86

sequential. In the horizontal direction, CTR mode can be implemented to allow parallelism

since several columns can now be encrypted simultaneously. The introduction of the CFB

mode to CTR mode avoids the counters for the vertical encryption direction.

Block 2 of plaintext

Block 2 of ciphertext

EncryptionKey

Nonce+Counter

Block 5 of plaintext

Block 5 of ciphertext

EncryptionKey

Block 1 of plaintext

Block 1 of ciphertext

EncryptionKey

Nonce+Counter

Block 4 of plaintext

Block 4 of ciphertext

EncryptionKey

Block 3 of plaintext

Block 3 of ciphertext

EncryptionKey

Nonce+Counter

Block 6 of plaintext

Block 6 of ciphertext

EncryptionKey

Block 8 of plaintext

Block 8 of ciphertext

EncryptionKey

Block 7 of plaintext

Block 7 of ciphertext

EncryptionKey

Block 9 of plaintext

Block 9 of ciphertext

EncryptionKey

Bitlines Bitlines Bitlines

Wordlines

Wordlines

Wordlines

Figure 34: Encryption of CTR+CFB cipher mode.

The challenges in the implementation lie in generating nonce which is a random number,

and the design of counters (different value for different blocks). For generating a nonce,

there are two ways: first, the key generator can generate a second key as the nonce; second,

the original key can be used to generate the nonce by hashing the original key. To have

different counters for different blocks, the bank id, subarray id, mat id, and column id are

concatenated together to generate different counters for the first row of plaintext blocks in

NVMM as follows:

Counter =Bankid||Subid||Matid||Columnid||Muxid

||Counter+1

(5.5)

87

where Counter+1 is the increment-by-one counter, which works by incrementing by one after

finishing one time of bulk encryption. Therefore, the encryption function for the first row of

data blocks is as follows:

C = P ⊕ Enkey(Nonce + Counter) (5.6)

This design of Counter guarantees a unique sequence for each plaintext so that different

plaintext blocks are encrypted with different key blocks. Meanwhile, the same counter se-

quence will not repeat for a long time so that the same plaintext block will not be encrypted

with the same keystream twice for a long time, thus ensuing the security of the proposed

cipher mode.

5.5.3 CTR-CFB Decryption

The decryption process of CTR+CFB cipher mode is shown in Figure 35. From this

figure, the decryption of different columns of data blocks are decrypted simultaneously while

the data blocks for the same columns are decrypted sequentially. This cipher mode only

uses the encryption algorithm of the block cipher as shown in the blue box, thus avoiding

the required resource for implementing decryption algorithm especially the inverse S-box.

5.6 Key generation and storage

The method of key generation, key storage, and key handling significantly influences the

security of the crypto-systems. In this section, we will first describe three possible master

key generation schemes. Then, we will describe the round key generation in AIM.

5.6.1 Master Key Generation and Storage

For the AIM encryption mechanism, there are three possible ways of generating the mas-

ter key: user input, randomizer, and physical unclonable function (PUF). The user input

88

Block 2 of plaintext

Block 2 of ciphertext

EncryptionKey

Nonce+Counter

Block 5 of plaintext

Block 5 of ciphertext

EncryptionKey

Block 1 of plaintext

Block 1 of ciphertext

EncryptionKey

Nonce+Counter

Block 4 of plaintext

Block 4 of ciphertext

EncryptionKey

Block 3 of plaintext

Block 3 of ciphertext

EncryptionKey

Nonce+Counter

Block 6 of plaintext

Block 6 of ciphertext

EncryptionKey

Block 8 of plaintext

Block 8 of ciphertext

EncryptionKey

Block 7 of plaintext

Block 7 of ciphertext

EncryptionKey

Block 9 of plaintext

Block 9 of ciphertext

EncryptionKey

Bitlines Bitlines Bitlines

Wordlines

Wordlines

Wordlines

Figure 35: Decryption of CTR+CFB cipher mode.

method allows the user of a device to input a key that the user can remember or a biometric-

based key. After inputting a key, This key is then transferred to the NVMM to start the

AES in-memory encryption. After finishing bulk encryption, this key is cleared. When the

user wants to use the device again, the same key is input to decrypt the non-volatile main

memory. In this way, there is no key storage overhead or key leakage risk. The second way

of creating the original key, randomizer, is to use a pseudo-random number generator to

create a one-time random number. Since the device might be powered down, this key should

be stored in a protected non-volatile memory for decryption. Therefore, this key should be

placed far away from the non-volatile main memory, such as in the processor, to keep the

generated key away from the attackers.

Compared with a randomizer, PUF avoids the need of key storage in non-volatile mem-

ory. The process of extracting a key from the physical intrinsic properties due to different

materials and physical variations from fabrication process of hardware is described in [48].

PUF-based key generator avoids the need of a pseudo-random number generator by harvest-

89

ing the hardware-unique randomness and processes it into a cryptographic key. Since the

randomness is already intrinsically present in the device, there is no need for a protected

non-volatile memory. Since the randomness is static throughout the lifetime of the device,

it can be harvested again to regenerate the same key for decryption. This PUF-based key

cannot be found by an attacker who opens up the device because the key is not permanently

stored and not present when the device is not active. This way of deriving keys has security

advantages compared to randomizer which needs key storage in non-volatile memory.

5.6.2 Round Key Generation - Rijndael Key Schedule

AES requires a separate round key for each round of encryption to achieve a high level

of confusion. Expanding the original key into several rounds of keys in AES is known as

the rijndael key schedule. AES key expansion consists of RotWord, SubWord, XOR opera-

tions, all of which can be realized with the previously introduced implementations of AES

encryption. Therefore, the round keys can also be generated within NVMM instead of using

a dedicated key generator. In the proposed CTR+CFB cipher mode implementation, the

key for each round is generated only once and stored in the NVMM for each time of memory

bulk encryption. After completing the encryption, these round keys are cleared to avoid key

information leakage.

5.7 Experimental Evaluation

In this section, we evaluate the proposed method and compare it with state-of-the-art

solutions.

5.7.1 Experiment Setup

AIM is evaluated on both MRAM-based and PCM-based main memory with a DDR3

interface and 65nm technology. The MRAM-based main memory has a 512-bit page size.

We conservatively assume the MRAM has 256Mb per chip with a 34F 2 cell size. The PCM-

90

based main memory’s page size is 1024 bit, and the capacity is 1Gb per chip with the cell

size of 9F 2. We modified NVSim [16] and Cacti-3DD [11] to achieve the parameters for the

NVM-based main memory. Table 7 lists the parameters of PCM and MRAM at bit level for

main memory implementation [67]. To evaluate the circuitry we added to support AIM, we

synthesize these circuits with Design Compiler with FreePDK.

We compare AIM with three different dedicated memory encryption engines (EEs) as

follows:

EE-1 [21] designs an AES encryption hardware core suited for devices with low power con-

sumption. It has a maximum frequency of 290MHz, and takes 9.9nJ and 160 cycles to

encrypt a data block.

EE-2 [49] implements an AES CMOS ASIC encryption core which has a frequency of 2.1GHz

with a total power consumption at 125mW, and takes 5 cycles to encrypt 4 data blocks with

an area of 4400um2.

DW-AES [79] implements an AES encryption core with domain-wall nanowires which has

a frequency of 30MHz and takes 1022 cycles and 2.4nJ to encrypt 1 data block.

For the proposed design, we evaluate different configurations described as follows.

AIM: is the basic configuration, where only one bank works on encryption at one time.

AIM-B: has the encryption add-on circuit for each bank. To perform a whole memory

encryption, all banks in a chip can work in parallel.

AIM-S: has the add-on circuit for each subarray. By leveraging the subarray-level paral-

lelism [36], multiple subarrays in the same bank work on the encryption/decryption task

simultaneously.

Table 7: PCM and MRAM parameters at bit level

Features PCM MRAM

Read Latency (ns) 27.17 31.97

Write Latency (ns) 146.39 41.52

Read Energy (pJ) 0.04 0.03

Write Energy (pJ) 0.12 0.06

91

5.7.2 Performance and Energy Evaluation

In this section, we evaluate AES from four aspects including encryption latency, power,

energy efficiency, and area overhead.

5.7.2.1 Latency Figure 36 shows the encryption latency of 1GB memory. We have three

observations. First, the encryption latency becomes quite large when the size of non-volatile

memory is large. For a low-frequency encryption engine DW-AES, encrypting the whole

memory can take as long as many hours or days. Second, for an encryption engine of very

high frequency, the encryption latency is very small. If the writing latency is larger than the

encryption latency, the encryption latency will be countervailed by the writing latency. EE-2

has very high encryption speed, the time it takes to encrypt the whole memory turns to the

time of reading and writing to all memory blocks sequentially. Therefore, the encryption

time of EE-2 is different for PCM and MRAM as shown in the corresponding two columns of

Figure 12. On the contrary, EE-1 has very low encryption speed and its encryption latency

is much larger than the data movement which is thus overlapped by the encryption time

that dominates the overall latency. Therefore, the encryption time of EE-1 is the same for

both PCM and MRAM as shown in the corresponding two columns of EE-1. Fourth, mul-

tiple levels of parallelism in non-volatile memory accelerate the encryption process of AIM

mechanism. When only one bank works in a chip, AIM can reach the encryption speed of 21

seconds and 1.2 seconds if the memory is implemented with PCM and MRAM, respectively.

When we enable bank-level parallelism and let banks encrypt independently, AIM-B is able

to encrypt the whole memory in 2.66 seconds and 0.15 seconds correspondingly. When the

subarray level parallelism is enabled, AIM-S is able to encrypt the whole memory in 0.33

seconds and 0.018 seconds for PCM and MRAM, respectively.

From Figure 36 we can see that EE-2 has the fastest encryption speed. When the main

memory is implemented with PCM, the AIM-B design has similar encryption performance

for 1GB main memory and AIM-S can encrypt 1GB much faster than EE-2. When the main

memory is implemented with MRAM, all three designs AIM, AIM-B, and AIM-S work faster

than EE-2. Besides, when the size of non-volatile memory scales up, the latency of EE-2 will

92

scale up accordingly. However, for AIM-B, as long as main memory power budget allows, it

can continue to leverage the parallelism and maintain a short encryption latency.

5.7.2.2 Power All three designs AIM, AIM-B, and AIM-S work within the power bud-

get [22] of main memory. Among the three designs, AIM has the smallest power which is

around 1mW and 13mW for encrypting one chip of PCM-based main memory and MRAM-

based main memory, respectively. The power of AIM-B is around 8mW and 108mW for

encrypting one chip of PCM-based main memory and MRAM-based main memory respec-

tively. AIM-S has the largest power consumption since it has the best performance among

the three designs and the power is 70mW for encrypting each chip of PCM-based main mem-

ory. When the main memory is implemented with MRAM, the power of AIM-S exceeds the

budget since the parallelism of AIM-S is the highest. Therefore, this design is not recom-

mended if the power budget is small. However, since AIM-S has the best performance, if

the system has the need for fast encryption and a large power budget, this design can still

be employed. In conclusion, when we implement the AIM encryption schematic inside the

NVMM, both power budget and encryption latency should be considered together to choose

the most suitable design.

5.7.2.3 Energy Efficiency Figure 37 compares the energy efficiency for encrypting a

128-bit block and for encrypting 1GB main memory sequentially. From Figure 37(a), EE-2

incurs smallest energy, 0.265nJ to encrypt 128-bit block while AIM ranks the third and costs

2.78nJ and 3.17nJ for 128-bit PCM and MRAM blocks, respectively. Figure 37(b) shows

the energy consumption for encrypting 1GB non-volatile PCM and MRAM. In this figure,

the lower parts of the first 6 columns show the energy spent on accessing main memory and

the upper parts show the energy spent on encrypting process with the encryption engines.

From this figure, we have two observations. First, EE-1, EE2, and DW-AES cost significant

amount of energy on memory access. This is because, for an encryption operation outside of

main memory like those of EE-1 and EE-2, the encryption processor needs to read a memory

block from the main memory and then write this memory block back to its original position

after encryption is completed. During the reading and writing periods, complex address

93

0

10-1

100

101

102

103

EE-1 EE-2 DW-AES AIM AIM-B AIM-S

Ti
m

e
(s

)
PCM MRAMDW-AES

Figure 36: Comparison of latency among different baselines and different AIM designs.

0

2

4

6

8

10

EE-1 EE-2 DW-AES AIM

En
cr

yp
ti

o
n

 E
n

er
gy

/1
2

8
-b

it
 (

n
J) PCM MRAM

0

1

2

3

4

EE-1 EE-2 DW-AES AIM

En
er

gy
 C

o
n

su
m

p
ti

o
n

/
(J

) PCM Encryption MRAM Encryption

PCM Access MRAM Access

Figure 37: Left: Energy for encrypting 128-bit block. Right: Energy for accessing and

encrypting 1GB main memory.

94

decoding and bus transfer costs a lot of energy which is much more than the energy spent

for encrypting this block. For DW-AES, the large energy comes from the large number of

shifting operations required for write to perform the AES with DWM. Second, AIM costs

the lowest energy compared with the three specific encryption engines. Since AIM encrypts

each memory block inside the main memory, it avoids a large part of reading and writing

energy consumption from outside the main memory.

5.7.2.4 Overhead Evaluation Figure 38 shows the area overhead results. As shown in

this figure, AIM and AIM-B both incur insignificant area overhead of only 0.06% and 0.45%

area overhead for PCM-based main memory, and 0.08% and 0.63% for MRAM based main

memory. Compared with AIM and AIM-B, AIM-S incurs a relatively larger area overhead

of 3.59% and 5.05%.

0%

2%

4%

6%

AIM AIM-B AIM-S

Ar
ea

 O
ve

rh
ea

d PCM
MRAM

Figure 38: Different AIM designs area

overhead.

Forward S-box

Inverse S-box

MUL2 LUT

1-bit buffer

MUX(2:1)

MUX(4:1)

Figure 39: Breakdown of encryption over-

head.

Figure 39 shows the distribution of hardware overhead. Among all added circuitry, for-

ward S-box and inverse S-box have the largest area overhead. Since we can only look up

byte by byte each time, more S-box LUTs mean more parallelism. Therefore, this overhead

is unavoidable.

95

Besides the area overhead for added circuitry, buffer rows are required for storing inter-

mediate results generated in the encryption process. As shown in Figure 32, 6 buffer rows

are required at most in the MixColumns step. For a normal memory bank that has 512 rows,

6 buffer rows is only 1.2% of the whole memory size. During the normal working time of the

main memory, these 6 buffer rows can also be used for storing working data.

0%

20%

40%

60%

80%

100%

Latency Energy Latency Energy

PCM MRAM

Pe
rc

en
ta

ge

AddRoundKey SubBytes+ShiftRows MixColumns

Figure 40: Breakdown of latency and energy consumption.

5.7.2.5 Further Improvement The breakdown of latency and energy consumption of

AIM implementations for different encryption stages is shown in Figure 40. Since SubBytes

and ShiftRows are combined together in the AIM design, we analyze the two stages together.

From Figure 40, AddRoundKey consumes the minority of both total encryption latency and

energy. This is because AddRoundKey stage only consists of parallel XOR operations based

on Pinatubo design which is fast and costs a little energy. MixColumns consumes the medi-

um latency and energy. This stage involves LUT operations of S-box. The latency of this

stage varies with the number of S-box. MixColumns consumes the majority of both total

latency and energy. This is because MixColumns generates several intermediate encryption

state matrices from sub-steps. These intermediate encryption state matrices are buffered

96

in the non-volatile memory cells in AIM design. This buffering process costs considerable

energy and latency, since write operations in NVMM are usually expensive in terms of both

energy and latency.

Writing pulse width to NVM determines the retention time of the written states. In

AIM, the encryption latency and energy can be further reduced by supporting short-latency

light writes, since the intermediate encryption states only need to stay for a short while. As

a consequence, buffering intermediate encryption states with light writes will cost less energy

and latency.

5.7.3 Evaluation of Different Cipher Modes

In this section, we evaluate the proposed CTR+CFB cipher modes from three aspects

including encryption latency, energy efficiency, and area overhead. Among the evaluated

cipher modes, CBC mode and CTR mode are used as baselines. The other kinds of cipher

modes are not evaluated since they do not support parallel encryption.

5.7.3.1 Latency Figure 41 shows the encryption latency of 1GB memory with three d-

ifferent cipher modes under AIM design. Among the three cipher modes, the CBC mode has

the shortest encryption latency. Compared with the CBC mode, the CTR mode increase the

encryption latency by 2.17% and 2.97% when the main memory is implemented with PCM

and MRAM, respectively. Compared with the CTR mode, the proposed CTR+CFB cipher

only slightly increases the encryption latency by 0.25% and 1.00% when the main memory

is implemented with PCM and MRAM, respectively.

5.7.3.2 Energy Efficiency Figure 42 shows the encryption latency of encrypting one

memory block with three different cipher modes under AIM design. Among the three ci-

pher modes, the CBC mode has the highest energy efficiency because it generates the low-

est energy overhead. Compared with the CBC mode, the CTR mode increase the energy

consumption by 2.96% and 2.68% when the main memory is implemented with PCM and

MRAM, respectively. Compared with the CTR mode, the proposed CTR+CFB cipher only

97

0

0.5

1

1.5

2

2.5

3

CBC CTR CTR+CFB CBC CTR CTR+CFB

Ti
m

e
 (

s)

PCM MRAM

Figure 41: Comparison of latency among different cipher modes.

slightly increases the energy consumption by 0.88% and 0.68% when the main memory is

implemented with PCM and MRAM, respectively.

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

CBC CTR CTR+CFB CBC CTR CTR+CFB

En
er

gy
 (

n
J)

PCM MRAM

Figure 42: Comparison of energy for encrypting 128-bit block among different cipher modes.

5.7.3.3 Overhead Figure 43 shows the area overhead results of implementing the pro-

posed CTR+CFB cipher mode. As shown in this figure, AIM and AIM-B both incur in-

98

significant area overhead of only 0.03% and 0.26% for PCM-based main memory, and 0.05%

and 0.37% area overhead for MRAM-based main memory. Compared with AIM and AIM-

B, AIM-S incurs a relatively larger area overhead of 2.10% and 2.95% for PCM-based main

memory and MRAM-based main memory. Compared with the CBC mode as shown in Fig-

ure 38, the proposed CTR+CFB mode further reduces the area overhead by 40% on average

by removing the inverse S-box.

99

Figure 44 shows the distribution of area overhead. Compared with Figure 39, the over-

head from inverse S-box is removed. Among all added circuitry, forward S-box has the largest

area overhead.

 0%

2%

4%

AIM AIM-B AIM-S

A
re

a
O

ve
rh

ea
d

PCM

MRAM

Figure 43: Different AIM design area over-

head with the CTR+CFB mode.

Forward S-box

MUL2 LUT

1-bit buffer

MUX(2:1)

MUX(4:1)

Figure 44: Breakdown of encryption over-

head with the CTR+CFB mode.

5.7.3.4 Discussion The proposed CTR+CFB cipher avoids the complex management of

large amount of counter values and the security problem of repeated counter in a short time.

Meanwhile, the whole decryption process is based on AES encryption algorithm, saving the

hardware resource for implementing AES decryption algorithm. The above experimental

results show that the proposed CTR+CFB cipher mode achieves comparable or even lower

latency and energy consumption with small hardware overhead.

The high encryption performance of AIM is owing to the high parallelism inside main

memory architecture instead of relying on a specific kind of memory technology. As long

as the memory cells are resistance-based, they can be used with the proposed architecture.

Furthermore, from our experimental evaluation, the activation latency of a memory row is

much larger than the read/write latency of a memory cell and thus dominates the overall

memory access latency. This activation latency mainly depends on the length of a memory

row and the circuit design instead of the memory type. From our research, most NVMs have

100

the properties varying between MRAM and PCM. Therefore, the proposed techniques are

good for other NVMS as well.

Although AIM requires memory architecture modification for encryption, the modifica-

tion is small, simple, and easy to implement. The three levels of encryption parallelism AIM

supports and no requirement of data movement with in-memory design bring benefits of

significantly improved encryption throughput and lowered energy overhead. Therefore, the

advantages of AIM are much more than the drawbacks AIM brings.

5.8 Summary

In this chapter, a fast and energy-efficient AES in-memory implementation is proposed

for non-volatile IoT devices, by taking advantage of the resistive nature of non-volatile mem-

ory and utilizing existing memory peripheral circuits. With AIM, the memory blocks are

encrypted simultaneously within each memory bank and the entire encryption process can

be completed within the main memory without exposing the results to the memory bus.

Compared with state-of-the-art AES engine running at 2.1 GHz, AIM can speed up the

encryption process by 80X while reducing 10X energy overhead.

101

6.0 Conclusion

In this dissertation, we have considered employing emerging non-volatile memory to en-

able reliable, efficient, and secure computing of energy harvesting powered IoT devices. With

the ever-increasing power needs of IoT devices, researchers have been ambitiously developing

substitutes of batteries due to their limited longevity, safety, and inconvenience of replacing.

Energy harvesting (EH) is one of the most promising techniques to power devices for future

generation IoT. While EH has significant potential for powering tremendous IoT devices,

the instability of harvested power brings a new challenge to the embedded systems: inter-

mittency. In order to address this challenge, researchers have been proposed to checkpoint

the intermittent processor state to non-volatile memories (NVMs) before power outage and

restore the processor state after power recovers. However, NVMs and backup are not suffi-

cient for EH systems. Without extra hardware and software support, the program execution

resumed from the last checkpoint might not execute correctly under some circumstances

and causes inconsistency problem to the system. Besides, frequent checkpointing incurs sig-

nificant overhead both in time and energy. Furthermore, there is no light-weight security

mechanism for protecting the data on energy harvesting embedded system.

Towards these challenges, this thesis propose three techniques. First, consistency-aware

checkpointing mechanism is proposed for intermittently powered embedded system with

FRAM based scratchpad memory to avoid inconsistency errors generated from the incon-

sistency between volatile memory and non-volatile memory state. Second, hybrid cache

architecture is proposed to take advantage of the high density of STT-RAM while miti-

gating the high latency of write in STT-RAM. Towards intermittently powered embedded

system, the proposed hybrid cache is further improved to be checkpoint-aware to guarantee

reliable checkpointing while maintaining a low checkpointing overhead from cache. Finally,

to ensure the IoT device and protect the data, an energy efficient in-memory encryption

implementation for AES algorithm is designed to quickly encrypt the data in non-volatile

memory and protect the embedded system from physical attacks and on-line attacks.

102

Bibliography

[1] http://www.brookings.edu/blogs/techtank/posts/2015/06/8-future-of-iot-part-1.

[2] JEDEC DDR5 & NVDIMM-P Standards Under Devel-
opment. https://www.jedec.org/news/pressreleases/

jedec-ddr5-nvdimm-p-standards-under-development.

[3] Intel: First 3D XPoint SSDs will feature up to 6GB/s of band-
width. http://www.kitguru.net/components/memory/anton-shilov/

intel-first-3d-xpoint-ssds-will-feature-up-to-6gbs-of-bandwidth, 2015.

[4] S. Angizi, Z. He, N. Bagherzadeh, and D. Fan. Design and evaluation of a spintronic
in-memory processing platform for non-volatile data encryption. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2017.

[5] K. Asari, Y. Mitsuyama, T. Onoye, I. Shirakawa, H. Hirano, T. Honda, T. Otsuki,
T. Baba, and T. Meng. Feram circuit technology for system on a chip. In Evolvable
Hardware, 1999. Proceedings of the First NASA/DoD Workshop on, pages 193–197,
1999.

[6] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne. Silent shredder: Zero-
cost shredding for secure non-volatile main memory controllers. In ACM SIGPLAN
Notices, pages 263–276, 2016.

[7] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi,
G. V. Merrett, and L. Benini. Hibernus++: a self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(12):1968–1980, 2016.

[8] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and
L. Benini. Hibernus: Sustaining computation during intermittent supply for energy-
harvesting systems. IEEE Embedded Systems Letters, 7(1):15–18, 2015.

[9] E. B. Barker and W. C. Barker. Guideline for using cryptographic standards in the
federal government: Directives, mandates and policies. Technical report, 2016.

103

https://www.jedec.org/news/pressreleases/jedec-ddr5-nvdimm-p-standards-under-development
https://www.jedec.org/news/pressreleases/jedec-ddr5-nvdimm-p-standards-under-development
http://www.kitguru.net/components/memory/anton-shilov/intel-first-3d-xpoint-ssds-will-feature-up-to-6gbs-of-bandwidth
http://www.kitguru.net/components/memory/anton-shilov/intel-first-3d-xpoint-ssds-will-feature-up-to-6gbs-of-bandwidth

[10] N. Binkert, B. Beckmann, et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[11] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi.
CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main memory.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
33–38, 2012.

[12] S. Chhabra and Y. Solihin. i-NVMM: a secure non-volatile main memory system with
incremental encryption. In Annual International Symposium on Computer Architec-
ture (ISCA), pages 177–188, 2011.

[13] P. Chown. Advanced encryption standard ciphersuites for transport layer security.
Technical report, 2002.

[14] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. De Lara, H. Raj, S. Saroiu, and A. Wol-
man. Protecting Data on Smartphones and Tablets from Memory Attacks. Proceedings
of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 177–189, 2015.

[15] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. Nvsim: A circuit-level performance, en-
ergy, and area model for emerging nonvolatile memory. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 31(7):994–1007, 2012.

[16] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 7(31):994–1007, 2012.

[17] D. Fan, S. Angizi, and Z. He. In-memory computing with spintronic devices. In VL-
SI (ISVLSI), 2017 IEEE Computer Society Annual Symposium on, pages 683–688.
IEEE, 2017.

[18] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. Mibench:
A free, commercially representative embedded benchmark suite. In Workload Char-
acterization, 2001. WWC-4. 2001 IEEE International Workshop on, pages 3–14, Dec
2001.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark suite. In

104

Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop on,
pages 3–14. IEEE, 2001.

[20] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We Remember : Cold Boot
Attacks on Encryption Keys. In USENIX Security Symposium, pages 45–60, 2008.

[21] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen. Design and imple-
mentation of low-area and low-power aes encryption hardware core. In Proceedings of
the 9th EUROMICRO Conference on Digital System Design, pages 577–583, 2006.

[22] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger. Preventing pcm banks
from seizing too much power. In Proceedings of the 44th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 186–195, 2011.

[23] J. L. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[24] M. Henson and S. Taylor. Memory encryption: A survey of existing techniques. ACM
Computing Surveys, 46(4):1–26, mar 2014.

[25] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yama-
da, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A novel nonvolatile
memory with spin torque transfer magnetization switching: spin-ram. In IEEE In-
ternational Electron Devices Meeting, 2005. IEDM Technical Digest., pages 459–462,
Dec. 2005.

[26] F. Huang, D. Feng, Y. Hua, and W. Zhou. A wear-leveling-aware counter mode for
data encryption in non-volatile memories. In Proceedings of the Conference on De-
sign, Automation & Test in Europe, pages 910–913. European Design and Automation
Association, 2017.

[27] T. Instruments. Msp430frxx microcontrollers. http://www.ti.com/lsds/ti/

microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/

overview.page.

[28] H. Jayakumar, A. Raha, and V. Raghunathan. Quickrecall: A low overhead hw/sw
approach for enabling computations across power cycles in transiently powered com-
puters. In VLSI Design and 2014 13th International Conference on Embedded Sys-
tems, 2014 27th International Conference on, pages 330–335. IEEE, 2014.

105

http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page

[29] A. Jog, A. K. Mishra, et al. Cache revive: architecting volatile stt-ram caches for en-
hanced performance in cmps. In Proceedings of the 49th Annual Design Automation
Conference, pages 243–252. ACM, 2012.

[30] e. a. K.-J. Lee. A 90nm 1.8v 512mb diode-switch pram with 266mb/s read throughput.
IEEE Journal of Solid-State Circuits, 43(1):150–162, Jan. 2008.

[31] D.-H. Kang, J.-H. Lee, J. Kong, D. Ha, J. Yu, C. Um, J. Park, F. Yeung, J. Kim,
W. Park, Y. Jeon, M. Lee, Y. Song, J. Oh, G. Jeong, and H. Jeong. Two-bit cell
operation in diode-switch phase change memory cells with 90nm technology. In 2008
Symposium on VLSI Technology, pages 98–99, June 2008.

[32] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. 1972.

[33] S. Kawai, A. Hosogane, S. Kuge, T. Abe, K. Hashimoto, T. Oishi, N. Tsuji, K. Sakak-
ibara, and K. Noguchi. An 8kb eeprom-emulation dataflash module for automotive
mcu. In Digest of Technical Papers. IEEE International Solid-State Circuits Confer-
ence, 2008, pages 508–632, 2008.

[34] W. kei Yu, S. Rajwade, S.-E. Wang, B. Lian, G. Suh, and E. Kan. A non-volatile
microcontroller with integrated floating-gate transistors. In 2011 IEEE/IFIP 41st In-
ternational Conference on Dependable Systems and Networks Workshops (DSN-W),
pages 75–80, 2011.

[35] Q. A. Khan and S. J. Bang. Energy harvesting for self powered wearable health
monitoring system. Health, pages 1–5, 2009.

[36] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A case for exploiting subarray-
level parallelism in dram. Annual International Symposium on Computer Architecture
(ISCA), pages 368–379, 2012.

[37] V. Leonov. Thermoelectric Energy Harvesting of Human Body Heat for Wearable
Sensors. IEEE Sensors Journal, 13(6):2284–2291, 2013.

[38] H. Li, Y. Liu, Q. Zhao, Y. Gu, X. Sheng, G. Sun, C. Zhang, M. Chang, R. Luo,
and H. Yang. An energy efficient backup scheme with low inrush current for non-
volatile SRAM in energy harvesting sensor nodes. In Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, DATE, pages 7–12, 2015.

106

[39] J. Li, P. Ndai, A. Goel, H. Liu, and K. Roy. An alternate design paradigm for robust
spin-torque transfer magnetic ram (stt mram) from circuit/architecture perspective.
In ASP-DAC ’09: Proceedings of the 2009 Asia and South Pacific Design Automation
Conference, pages 841–846, Yokohama, Japan, 2009.

[40] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. Pinatubo: A processing-in-
memory architecture for bulk bitwise operations in emerging non-volatile memories.
In ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2016.

[41] D. Liu, X. Luo, Y. Li, Z. Shao, and Y. Guan. An energy-efficient encryption mechanis-
m for nvm-based main memory in mobile systems. Journal of Systems Architecture,
76:47–57, 2017.

[42] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A new approach for
eliminating dead blocks and increasing cache efficiency. In 2008 41st IEEE/ACM
International Symposium on Microarchitecture, pages 222–233. IEEE, 2008.

[43] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie,
J. Shu, and H. Yang. Ambient energy harvesting nonvolatile processors: from circuit
to system. In Proceedings of the 52nd Annual Design Automation Conference, page
150, 2015.

[44] Y. Liu, F. Suy, Z. Wangy, and H. Yang. Design exploration of inrush current aware
controller for nonvolatile processor. In Non-Volatile Memory System and Applications
Symposium (NVMSA), 2015 IEEE, pages 1–6. IEEE, 2015.

[45] B. Lucia and B. Ransford. A simpler, safer programming and execution model for
intermittent systems. In ACM SIGPLAN Notices, volume 50, pages 575–585. ACM,
2015.

[46] T. Luo, W. Zhang, B. He, and D. Maskell. A racetrack memory based in-memory
booth multiplier for cryptography application. In ASP-DAC, pages 286–291. IEEE,
jan 2016.

[47] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson, Y. Xie, and
V. Narayanan. Architecture exploration for ambient energy harvesting nonvolatile
processors. In 21st IEEE International Symposium on High Performance Computer
Architecture, HPCA 2015, February 7-11, 2015, pages 526–537, 2015.

107

[48] R. Maes, A. Van Herrewege, and I. Verbauwhede. Pufky: A fully functional puf-based
cryptographic key generator. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 302–319, 2012.

[49] S. Mathew, F. Sheikh, A. Agarwal, M. Kounavis, S. Hsu, H. Kaul, M. Anders, and
R. Krishnamurthy. 53Gbps native GF(24)2 composite-field AES-encrypt/decrypt ac-
celerator for content-protection in 45nm high-performance microprocessors. In IEEE
Symposium on VLSI Circuits (VLSIC), pages 169–170, 2010.

[50] D. McGrew and J. Viega. The galois/counter mode of operation (gcm). submission
to NIST Modes of Operation Process, 20, 2004.

[51] A. Mirhoseini, E. Songhori, and F. Koushanfar. Automated checkpointing for enabling
intensive applications on energy harvesting devices. In 2013 IEEE International Sym-
posium on Low Power Electronics and Design (ISLPED), pages 27–32, 2013.

[52] A. Mirhoseini, E. M. Songhori, and F. Koushanfar. Automated checkpointing for en-
abling intensive applications on energy harvesting devices. In Low Power Electronics
and Design (ISLPED), 2013 IEEE International Symposium on, pages 27–32. IEEE,
2013.

[53] H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ni-
nomiya, T. Ohkawa, S. Masui, and K. Gotoh. A passive uhf rf identification cmos tag
ic using ferroelectric ram in 0.35-um technology. IEEE Journal of Solid-State Circuits,
42(1):101–110, 2007.

[54] J. H. Oh. Full integration of highly manufacturable 512mb pram based on 90nm
technology. In International Electron Devices Meeting 2006, pages 49–52, 2006.

[55] C. Pan, S. Gu, M. Xie, C. Xue, and J. Hu. Wear-leveling aware page management for
non-volatile main memory on embedded systems. IEEE Transactions on Multi-Scale
Computing Systems, 2016.

[56] C. Pan, M. Xie, J. Hu, Y. Chen, and C. Yang. 3m-pcm: Exploiting multiple write
modes mlc phase change main memory in embedded systems. In Proceedings of the
2014 International Conference on Hardware/Software Codesign and System Synthesis,
CODES ’14, 2014.

[57] C. Pan, M. Xie, J. Hu, M. Qiu, and Q. Zhuge. Wear-leveling for pcm main memory
on embedded system via page management and process scheduling. In 2014 IEEE

108

20th International Conference on Embedded and Real-Time Computing Systems and
Applications, pages 1–9, 2014.

[58] C. Pan, M. Xie, C. Yang, Z. Shao, and J. Hu. Nonvolatile main memory aware garbage
collection in high-level language virtual machine. In 2015 International Conference
on Embedded Software (EMSOFT), pages 197–206, 2015.

[59] J. Paradiso and M. Feldmeier. A compact, wireless, self-powered pushbutton con-
troller. Ubicomp 2001: Ubiquitous Computing, 2001.

[60] B. Ransford, S. S. Clark, M. Salajegheh, and K. Fu. Getting things done on com-
putational rfids with energy-aware checkpointing and voltage-aware scheduling. In
Proceedings of the 2008 Conference on Power Aware Computing and Systems, pages
5–5, 2008.

[61] B. Ransford and B. Lucia. Nonvolatile memory is a broken time machine. In Pro-
ceedings of the Workshop on Memory Systems Performance and Correctness, MSPC,
2014.

[62] B. Ransford, J. Sorber, and K. Fu. Mementos: system support for long-running
computation on rfid-scale devices. ACM SIGPLAN Notices, 47(4):159–170, 2012.

[63] U. Russo, D. Ielmini, and A. L. Lacaita. Analytical modeling of chalcogenide crystal-
lization for PCM data-retention extrapolation. IEEE transactions on electron devices,
54(10):2769–2777, 2007.

[64] N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics.
Ieee Micro, 21(3):30–42, 2001.

[65] X. Sheng, Y. Wang, Y. Liu, and H. Yang. Spac: A segment-based parallel compres-
sion for backup acceleration in nonvolatile processors. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2013, pages 865–868, 2013.

[66] H. Shiga, D. Takashima, S. Shiratake, K. Hoya, T. Miyakawa, R. Ogiwara, R. Fukuda,
R. Takizawa, K. Hatsuda, F. Matsuoka, Y. Nagadomi, D. Hashimoto, H. Nishimura,
T. Hioka, S. Doumae, S. Shimizu, M. Kawano, T. Taguchi, Y. Watanabe, S. Fujii,
T. Ozaki, H. Kanaya, Y. Kumura, Y. Shimojo, Y. Yamada, Y. Minami, S. Shuto,
K. Yamakawa, S. Yamazaki, I. Kunishima, T. Hamamoto, A. Nitayama, and T. Fu-
ruyama. A 1.6 gb/s ddr2 128 mb chain feram with scalable octal bitline and sensing
schemes. IEEE Journal of Solid-State Circuits, 45(1):142–152, 2010.

109

[67] K. Suzuki and S. Swanson. The non-volatile memory technology database (nvmdb).
Department of Computer Science & Engineering, 2015.

[68] S. Swami, J. Rakshit, and K. Mohanram. SECRET: smartly EnCRypted energy ef-
ficient non-volatile memories. In ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, 2016.

[69] J. Taneja, J. Jeong, and D. Culler. Design, modeling, and capacity planning for
micro-solar power sensor networks. In Proceedings of the 7th international conference
on Information processing in sensor networks, pages 407–418, 2008.

[70] K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y. Asao, T. Kajiyama, M. I-
wayama, K. Sugiura, S. Ikegawa, et al. A 64Mb MRAM with clamped-reference and
adequate-reference schemes. In ISSCC, pages 258–259, 2010.

[71] R. K. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware placement in DRAM
(RAPID): Software methods for quasi-non-volatile DRAM. In The Twelfth Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages 155–
165, 2006.

[72] C. Wang, N. Chang, et al. Storage-less and converter-less maximum power point
tracking of photovoltaic cells for a nonvolatile microprocessor. In ASP-DAC, pages
379–384, 2014.

[73] C. Wang, N. Chang, Y. Kim, S. Park, Y. Liu, H. G. Lee, R. Luo, and H. Yang.
Storage-less and converter-less maximum power point tracking of photovoltaic cell-
s for a nonvolatile microprocessor. In Design Automation Conference (ASP-DAC),
2014 19th Asia and South Pacific, pages 379–384, 2014.

[74] J. Wang, X. Dong, and Y. Xie. Point and discard: A hard-error-tolerant architecture
for non-volatile last level caches. In 2012 49th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 253–258, June 2012.

[75] J. Wang, Y. Liu, et al. A compare-and-write ferroelectric nonvolatile flip-flop for
energy-harvesting applications. In 2010 International Conference on Green Circuits
and Systems (ICGCS), pages 646–650, June 2010.

[76] Y. Wang, H. Jia, et al. Register allocation for hybrid register architecture in non-
volatile processors. In ISCAS, pages 1050–1053, 2014.

110

[77] Y. Wang, Y. Liu, et al. A 3us wake-up time nonvolatile processor based on ferro-
electric flip-flops. In ESSCIRC (ESSCIRC), 2012 Proceedings of the, pages 149–152,
2012.

[78] Y. Wang, Y. Liu, et al. A 3us wake-up time nonvolatile processor based on ferroelectric
flip-flops. In ESSCIRC, pages 149–152, Sept 2012.

[79] Y. Wang, L. Ni, C.-H. Chang, and H. Yu. DW-AES: A Domain-Wall Nanowire-Based
AES for High Throughput and Energy-Efficient Data Encryption in Non-Volatile
Memory. IEEE Transactions on Information Forensics and Security, 11(11):2426–
2440, 2016.

[80] Z. Wang, D. Jimenez, C. Xu, G. Sun, and Y. Xie. Adaptive placement and migration
policy for an stt-ram-based hybrid cache. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA), pages 13–24, Feb 2014.

[81] Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie. Adaptive placement and mi-
gration policy for an stt-ram-based hybrid cache. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium on, pages 13–24.
IEEE, 2014.

[82] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai. Metal–oxide rram. Proceedings of the IEEE, 100(6):1951–1970, 2012.

[83] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid cache ar-
chitecture with disparate memory technologies. In Proceedings of the 36th Annual
International Symposium on Computer Architecture, ISCA ’09, pages 34–45, 2009.

[84] M. Xie, S. Li, A. O. Glova, J. Hu, Y. Wang, and Y. Xie. Aim: Fast and energy-
efficient aes in-memory implementation for emerging non-volatile main memory. In
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
625–628. IEEE, 2018.

[85] M. Xie, S. Li, A. O. Glova, J. Hu, and Y. Xie. Securing emerging nonvolatile main
memory with fast and energy-efficient aes in-memory implementation. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 26(11):2443–2455, 2018.

[86] M. Xie, C. Pan, et al. Non-volatile registers aware instruction selection for embedded
systems. In RTCSA, pages 1–9, 2014.

111

[87] M. Xie, C. Pan, J. Hu, C. Yang, and Y. Chen. Checkpoint-aware instruction schedul-
ing for nonvolatile processor with multiple functional units. In The 20th Asia and
South Pacific Design Automation Conference, pages 316–321, 2015.

[88] M. Xie, C. Pan, Y. Zhang, J. Hu, Y. Liu, and C. J. Xue. A novel stt-ram-based hybrid
cache for intermittently powered processors in iot devices. IEEE Micro, 39(1):24–32,
2018.

[89] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue. Fixing the broken time ma-
chine: Consistency-aware checkpointing for energy harvesting powered non-volatile
processor. In Proceedings of the 52Nd Annual Design Automation Conference, DAC
’15, pages 184:1–184:6, 2015.

[90] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue. Fixing the broken time ma-
chine: Consistency-aware checkpointing for energy harvesting powered non-volatile
processor. In Proceedings of the 52nd Annual Design Automation Conference, page
184. ACM, 2015.

[91] M. Xie, M. Zhao, C. Pan, H. Li, Y. Liu, Y. Zhang, C. J. Xue, and J. Hu. Checkpoint
aware hybrid cache architecture for nv processor in energy harvesting powered sys-
tems. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, page 22. ACM, 2016.

[92] K. Yamaoka, S. Iwanari, Y. Murakuki, H. Hirano, M. Sakagami, T. Nakakuma, T. Mi-
ki, and Y. Gohou. A 0.9-v 1t1c sbt-based embedded nonvolatile feram with a reference
voltage scheme and multilayer shielded bit-line structure. Solid-State Circuits, IEEE
Journal of, 40(1):286–292, 2005.

[93] V. Young, P. J. Nair, and M. K. Qureshi. Deuce: Write-efficient encryption for
non-volatile memories. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 33–44, 2015.

[94] H. Zhang, C. Zhang, X. Zhang, G. Sun, and J. Shu. Pin tumbler lock: A shift
based encryption mechanism for racetrack memory. In Design Automation Confer-
ence (ASP-DAC), 2016 21st Asia and South Pacific, pages 354–359. IEEE, 2016.

[95] X. Zhang, C. Zhang, G. Sun, J. Di, and T. Zhang. An efficient run-time encryption
scheme for non-volatile main memory. In Proceedings of the 2013 International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems, page 24,
2013.

112

[96] Y. Zhang, L. Xu, K. Yang, Q. Dong, S. Jeloka, D. Blaauw, and D. Sylvester. Re-
cryptor: A reconfigurable in-memory cryptographic cortex-m0 processor for iot. In
Symposium on VLSI Circuits, pages C264–C265. IEEE, 2017.

[97] J. Zhao, C. Xu, and Y. Xie. Bandwidth-aware reconfigurable cache design with hybrid
memory technologies. In 2011 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 48–55, Nov 2011.

[98] M. Zhao, Q. Li, M. Xie, Y. Liu, J. Hu, and C. J. Xue. Software assisted non-volatile
register reduction for energy harvesting based cyber-physical system. In Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE
’15, pages 567–572, 2015.

[99] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient main mem-
ory using phase change memory technology. In Annual International Symposium on
Computer Architecture (ISCA), pages 14–23, 2009.

[100] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. Energy reduction for stt-ram using early
write termination. In Computer-Aided Design - Digest of Technical Papers, 2009.
ICCAD 2009. IEEE/ACM International Conference on, pages 264–268, 2009.

[101] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog, R. Ledwa,
C. Sichert, V. Rzehak, P. Thanigai, and B. Eversmann. An 82ua/mhz microcontroller
with embedded feram for energy-harvesting applications. In 2011 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC),, pages 334–336,
Feb 2011.

113

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Comparison of different cache architectures
	2. Notations of cache blocks
	3. System configuration
	4. Characteristics of SRAM and STT-RAM Caches (22nm, temperature=350K)
	5. Characteristics of benchmarks
	6. Comparison of different cipher modes
	7. blackPCM and MRAM parameters at bit level

	List of Figures
	1. Energy harvesting system architecture
	2. Ferroelectric Flip-Flop 6341281
	3. Block diagram of energy harvesting systems
	4. Power traces: a) Wifi RF, b) Light
	5. blackComputation progress.
	6. Example of inconsistency problem.
	7. a) Inconsistency error. b) Inserting a checkpoint properly can eliminate inconsistency.
	8. An example of error locating and checkpoint insertion: (a) Potential error pairs located with PEL algorithm, and (b) Checkpoints inserted with CATI algorithm
	9. Paths between all load-store pairs.
	10. blackBlock diagram for Algorithm 2.
	11. Instruction traces example.
	12. Number of potential error pairs given different checkpointing frequencies.
	13. Number of inserted checkpoints given different checkpointing frequencies.
	14. Performance of SRAM cache and NVM cache
	15. Percentage of dirty blocks during lifetime
	16. Hybrid cache architecture
	17. System structure of predictor
	18. An example of sampling the cache set with pattern sampler and updating the prediction table.
	19. Clean block selecting policy
	20. Checkpointing policy
	21. Comparison of execution progress under different cache architectures
	22. Comparison of energy consumption
	23. Execution time under frequent power failures
	24. Comparison of energy consumption under frequent power failures
	25. Left: Pinatubo's architecture computes vector bitwise operations inside NVMs. Right: SA modification in Pinatubo to perform in-memory XOR operations Li2016.
	26. AES Flow Chart.
	27. Memory encryption architecture: a) Traditional encryption approach implemented an cryptographic engine outside main memory, b) The proposed AIM design: in-memory computing with NVM's intrinsic features.
	28. Distributed data organization for AES encryption.
	29. Addroundkey stage with xor operation.
	30. SubBytes transformation with LUT and ShiftRows transformation with addressing logic.
	31. MixColumn substep: M-2 LUT.
	32. Example of MixColumns substep: Calculate Tj for each column (Eq. (4)).
	33. Example of MixColumns substep: Calculate S'0.j.
	34. Encryption of CTR+CFB cipher mode.
	35. Decryption of CTR+CFB cipher mode.
	36. blackComparison of latency among different baselines and different AIM designs.
	37. Left: Energy for encrypting 128-bit block. Right: Energy for accessing and encrypting 1GB main memory.
	38. Different AIM designs area overhead.
	39. Breakdown of encryption overhead.
	40. Breakdown of latency and energy consumption.
	41. Comparison of latency among different cipher modes.
	42. Comparison of energy for encrypting 128-bit block among different cipher modes.
	43. Different AIM design area overhead with the CTR+CFB mode.
	44. Breakdown of encryption overhead with the CTR+CFB mode.

	Acknowledgement
	1.0 Introduction
	1.1 Challenges in Energy Harvesting Powered IoT devices
	1.2 Research Contributions
	1.3 Dissertation Organization

	2.0 Energy Harvesting Embedded System
	2.1 System Architecture
	2.2 Non-volatile Processor
	2.2.1 Non-volatile Register File
	2.2.2 Non-volatile On-chip Memory

	2.3 Related work
	2.3.1 Energy Harvesting
	2.3.2 Non-volatile memory
	2.3.3 Non-volatile Processor
	2.3.4 Non-volatile Cache
	2.3.5 Secure Non-volatile Main Memory

	3.0 Inconsistency-aware Checkpointing for Energy Harvesting Embedded System
	3.1 Background
	3.1.1 Energy harvesting
	3.1.2 Checkpointing
	3.1.3 Inconsistency

	3.2 Motivation
	3.3 Methodology
	3.3.1 Potential Error Locating
	3.3.2 Consistency-aware checkpoints inserting

	3.4 Experiment
	3.4.1 Setup
	3.4.2 Experimental Results and Analysis
	3.4.2.1 Error Locating
	3.4.2.2 Inserting Checkpoints

	3.5 Summary

	4.0 Checkpointing-aware Hybrid Cache for Intermittently Powered IoT Devices
	4.1 Background
	4.2 Motivation and Overview
	4.2.1 Motivation
	4.2.2 Overview
	4.2.2.1 Self-checkpointing Cache
	4.2.2.2 Challenges

	4.3 Basic Placement and Migration policies for one-level hybrid Cache
	4.3.1 Access Pattern Predictor
	4.3.1.1 Updating the pattern access predictor
	4.3.1.2 Making Prediction

	4.3.2 Cache Placement and Migration Policy

	4.4 Checkpointing Aware Cache Policies
	4.4.1 New restrictions Imposed by Intermittent Computing
	4.4.2 Dirty Block Control
	4.4.3 Proactive Early Write Back
	4.4.4 Reliable and Energy-efficient Checkpointing Aware Cache Policies

	4.5 Checkpointing Policy
	4.5.1 Selecting Volatile Blocks for Checkpointing
	4.5.2 Selecting Non-volatile Blocks

	4.6 Experimental Evaluation
	4.6.1 Experiment Setup
	4.6.2 Results
	4.6.3 Execution Frequently Interrupted Under Harvested Power

	4.7 Summary

	5.0 Securing Non-volatile IoT Devices With Fast and Energy-Efficient AES In-Memory Implementation
	5.1 Introduction
	5.2 Background
	5.2.1 Non-volatile Main Memory
	5.2.2 Pinatubo: PIM in NVM
	5.2.3 Advanced Encryption Standard

	5.3 Overview
	5.3.1 NVMM's Vulnerability Challenge
	5.3.2 PIM: A Potential Solution
	5.3.3 Design Overview

	5.4 AES In-Memory Implementation
	5.4.1 Data Organization
	5.4.2 AddRoundKey
	5.4.3 SubBytes
	5.4.4 ShiftRows
	5.4.5 MixColumns
	5.4.6 Discussion

	5.5 Cipher Modes
	5.5.1 Cipher Modes
	5.5.1.1 Electronic Codebook (ECB)
	5.5.1.2 Cipher Block Chaining (CBC)
	5.5.1.3 Cipher Feedback (CFB)
	5.5.1.4 Output Feedback (OFB)
	5.5.1.5 Counter (CTR)

	5.5.2 CTR-CFB Encryption
	5.5.3 CTR-CFB Decryption

	5.6 Key generation and storage
	5.6.1 Master Key Generation and Storage
	5.6.2 Round Key Generation - Rijndael Key Schedule

	5.7 Experimental Evaluation
	5.7.1 Experiment Setup
	5.7.2 Performance and Energy Evaluation
	5.7.2.1 Latency
	5.7.2.2 Power
	5.7.2.3 Energy Efficiency
	5.7.2.4 Overhead Evaluation
	5.7.2.5 Further Improvement

	5.7.3 Evaluation of Different Cipher Modes
	5.7.3.1 Latency
	5.7.3.2 Energy Efficiency
	5.7.3.3 Overhead
	5.7.3.4 Discussion

	5.8 Summary

	6.0 Conclusion
	Bibliography

