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Abstract 

A Hybrid Brain-Computer Interface Based on Electroencephalography and Functional 

Transcranial Doppler Ultrasound 

 
Aya Khalaf, Ph.D. 

 
University of Pittsburgh, 2019 

 
 
 
 

Hybrid brain computer interfaces (BCIs) combining multiple brain imaging modalities 

have been proposed recently to boost the performance of single modality BCIs. We advance the 

state of hybrid BCIs by introducing a novel system that measures electrical brain activity as well 

as cerebral blood flow velocity using Electroencephalography (EEG) and functional transcranial 

Doppler ultrasound (fTCD), respectively.  The system we developed employs two different 

paradigms to induce changes simultaneously in EEG and fTCD and to infer user intent.  One of 

these paradigms includes visual stimuli to simultaneously induce steady state visually evoked 

potentials (SSVEPs) and instructs users to perform word generation (WG) and mental rotation 

(MR) tasks, while the other paradigm instructs users to perform left and right arm motor imagery 

(MI) tasks through visual stimuli.   

To improve accuracy and information transfer rate (ITR) of the proposed system compared 

to those obtained through our preliminary analysis, using classical feature extraction approaches, 

we mainly contribute to multi-modal fusion of EEG and fTCD features. Specifically, we proposed 

a probabilistic fusion of EEG and fTCD evidences instead of simple concatenation of EEG and 

fTCD feature vectors that we performed in our preliminary analysis. Experimental results showed 

that the MI paradigm outperformed the MR/WG one in terms of both accuracy and ITR. In 

particular, 93.85%, 93.71%, and 100% average accuracies and 19.89, 26.55, and 40.83 bits/min 



 v 

average ITRs were achieved for right MI vs baseline, left MI versus baseline, and right MI versus 

left MI, respectively. Moreover, for both paradigms, the EEG-fTCD BCI with the proposed 

analysis techniques outperformed all EEG- fNIRS BCIs in terms of accuracy and ITR.  

In addition, to investigate the feasibility of increasing the possible number of BCI 

commands, we extended our approaches to solve the 3-class problems for both paradigms. It was 

found that the MI paradigm outperformed the MR/WG paradigm and achieved 96.58% average 

accuracy and 45 bits/min average ITR. Finally, we introduced a transfer learning approach to 

reduce the calibration requirements of the proposed BCI. This approach was found to be very 

efficient especially with the MI paradigm as it reduced the calibration requirements by at least 

60.43%. 
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1.0 Introduction 

 Brain computer interfaces (BCIs) translate brain activity into control signals that can be 

used to command external devices as shown in Fig.1. The main objective of BCIs is to either 

bypass or restore neuromuscular activity for individuals experiencing neurological deficits that 

cause motor impairment such as stroke, Parkinson’s disease, and amyotrophic lateral sclerosis [1]. 

Therefore, developing BCIs is essential for those individuals to communicate with the surrounding 

environment using only their brain signals. Prosthetic limbs and wheelchairs are common BCI 

applications targeting patients with neurological deficits [2], [3]. BCIs are also used to design 

rehabilitation programs for disabled individuals to restore the lost functionalities [4]. Such 

programs are cost-effective as they can be administered in clinics or at home without requiring 

additional supervision from a rehabilitation therapist. In addition, BCIs have other diverse 

applications such as control of humanoid robots [5] and aircrafts [6] as well as  controlling virtual 

reality environments [7]. 

 

Figure 1 The main building blocks of a BCI system. 



 2 

Current BCI systems can be categorized into active, reactive and passive BCIs [8]. The 

first category relies on the active performance by the BCI user of cognitive tasks such as mental 

calculation and motor imagery [9].  In such systems, training should be provided to the subjects in 

order to be able to perform these mental tasks so that the BCI system can identify the recorded 

brain activity with sufficient accuracy. The second category, reactive BCIs, are event driven which 

means that they employ external stimuli to generate certain brain activity. In such systems, brain 

response to visual, auditory or tactile stimuli is measured and analyzed [10]. The main advantage 

of this BCI category is that the user does not have to be trained to be able to use the BCI. Passive 

BCIs use brain signals that are generated by the BCI user unintentionally such as signals generated 

due to drowsiness and vigilance [11]. 

BCIs record mental activity either invasively or non-invasively and translate the recorded 

brain activity into signals needed for controlling external devices or providing neurofeedback for 

patients during rehabilitation [12]. Non-invasive BCIs are usually used to avoid risks of surgical 

procedures needed for invasive BCIs [1]. To design noninvasive BCI systems, different modalities 

have been investigated including functional near-infrared spectroscopy (fNIRS) [13], functional 

magnetic resonance imaging (fMRI) [14], and magnetoencephalography (MEG) [15]. However, 

these modalities have limitations that hamper BCI usage outside the laboratory-controlled 

environment.  For instance, fMRI and MEG are expensive nonportable equipment that can be used 

efficiently only in a controlled environment [16]. On the other hand, fNIRS does not require highly 

controlled environment, but it lacks the speed needed for real-time BCIs [17].  

Given the limitations of the previously mentioned modalities, Electroencephalography 

(EEG) is widely used to design non-invasive BCIs due to its portability and low cost [18], [19]. 

Moreover, it has high temporal resolution, therefore, it can be used for developing real-time BCIs. 
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EEG measures brain electrical activity using electrodes connected to a cap that is placed on the 

scalp as seen in Fig.2. Different EEG signals have been investigated by researchers in a vast 

number of studies to be used for controlling BCI systems. Depending on the brain signal/pattern 

employed for BCI design, EEG-based BCIs can be categorized into event-related 

desynchronization/synchronization (ERD/ERS) BCIs, steady-state visual evoked potentials 

(SSVEPs) BCIs, P300 BCIs, and slow cortical potentials (SCPs) BCIs [20]. 

1.1 EEG-based BCIs 

1.1.1  Steady-state visual evoked potentials (SSVEPs) BCIs 

Among several categories of EEG-based BCIs, SSVEP BCIs have been extensively 

investigated for communication and control purposes [21]–[23]. In such SSVEP systems, visual 

stimuli with different flickering frequencies are used to elicit temporally matching electrical 

oscillation in the visual cortex [24]. For instance, in a binary BCI system in which the user observes 

two visual stimuli flickering with frequencies 5 and 15 Hz, considering the EEG power spectrum 

due to each stimulus, it is expected that peaks will appear at the flickering frequency of that 

stimulus and its harmonics as seen in Fig.3. Therefore, to issue a command using SSVEP BCI, the 

user has to focus his/her attention on one of the visual stimuli shown on the screen.  
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a) b) 

Figure 2 a) EEG cap with electrodes connected b) sample of the EEG signals recorded from 8 

different channels. 

Figure 3 Power spectral density for EEG responses due to stimuli flickering with frequencies 5 and 15 

Hz. It can be noted that there are spikes at the harmonics of each stimulus frequency [149]. 
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1.1.2  Event-related desynchronization/synchronization (ERD/ERS) BCIs 

ERD reflects neural activity enhancement and it occurs during movement planning, actual 

movement, or motor imagery (MI). ERD is represented by a reduction in EEG frequency power in 

alpha (8-12 Hz) and beta (12-30 Hz) bands on the motor area. In contrast to ERD, ERS is 

represented by an increase in EEG frequency power in alpha and beta bands [25]. MI is known to 

induce ERD in the ipsilateral hemisphere and ERS in the contralateral hemisphere. 

BCIs based on MI have been intensively used in rehabilitation applications that seek 

assisting disabled individuals as well as restoring an individual’s physical and cognitive functions 

lost due to neural disorders [26]. It was found that the MI process activates the same brain regions 

activated during the actual physical movement [27]. Therefore, during the rehabilitation process, 

patients with motor impairments practice the MI process to activate the injured brain motor regions 

[28]. Several studies were performed on both healthy and nonhealthy participants to examine the 

feasibility of motor imagery for BCI applications [27], [29], [30]. With the goal of motor recovery 

after a stroke, several motor imagery BCIs with robotic feedback were developed [28], [4]. Such 

systems decode the motor imagery signals into robot assisted movements and it was shown that 

such systems yielded motor improvements. 

1.1.3  P300 BCIs  

The P300 evoked potentials are positive waves in EEG signal that are mainly elicited by 

infrequent occurrence of visual, auditory or tactile stimuli. P300 appears in around 300 ms after 

presenting an infrequent stimulus among many frequent stimuli [31]. A number of research studies 

have shown that decreasing frequency of occurrence of the target stimulus will lead to a higher 
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P300 amplitude. Nevertheless, the user may get used to the infrequent presence of the target stimuli 

which may decrease the P300 amplitude and consequently decreases the performance [31], [32]. 

One advantage of using P300-based BCIs is that they do not require training. 

1.1.4  Slow cortical potentials (SCPs) BCIs 

Slow cortical potentials (SCPs) are slow voltage shifts that appear in EEG signals and last 

for few seconds. The frequency of SCPs is usually below 1 Hz [33]. Such brain activities are 

mainly associated with changes in the level of cortical activity. In particular, an increase in the 

neural activity will elicit negative SCPs and a decrease in the neural activity will induce positive 

SCPs [33]. These shifts in SCPs can be used to control a BCI. For instance, patients can move a 

cursor or select tasks on computer by self-regulating these brain activities [34]. 

1.2 Multi-modal BCIs 

 Although EEG is the most common modality used for  BCI design due to its high temporal 

resolution, cost effectiveness, and portability [18], it suffers from low signal-to-noise ratio and it 

encounters non-stationarities  due  to  brain background activities [35].  Moreover, although the 

performance of EEG-based BCIs is stable in laboratory environment, such performance decreases 

significantly when the system is used in complex environments or for long periods [36], [37]. BCI 

performance also decreases when it is controlled by severely motor-impaired patients [38].  

To boost the performance of EEG-based BCI, many studies suggested using fNIRS as a 

second modality to be simultaneously acquired with the EEG [39], [40] since it is less sensitive to 
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electrical noise as well as electromyography artifacts [41]. However, as mentioned earlier, fNIRS 

has a relatively slow response [42] and is difficult to setup as it requires at least 20 sensors for data 

acquisition [43], [44]. Therefore, to avoid fNIRS disadvantages, we suggest functional transcranial 

Doppler ultrasound (fTCD) to be simultaneously recorded with EEG. Compared to fNIRS, fTCD 

has a faster response time. In addition, it is easier to setup and requires fewer sensors. fTCD 

assesses cerebral blood velocity using two ultrasound sensors placed on the left-side and right-side 

transtemporal window located above the zygomatic arch [45] as shown in Fig.4. It was observed 

that signals recorded using fTCD change with different cognitive tasks.  Based on this observation, 

a study suggested that it is possible to develop a BCI that is based on fTCD modality using mental 

rotation and word generation cognitive tasks [46]. However, an observation period of 45 seconds 

was required to achieve acceptable accuracy which is not practical for a real-time BCI. Towards 

more efficient fTCD-based BCIs, shorter observation periods (15-20 seconds) were achieved [47], 

[48].  In a recent study, detailed in chapter 3, we examined fTCD as an approach for real-time BCI 

[49] and achieved approximately 80% accuracy within 5 seconds of the task onset. Therefore, it is 

expected that EEG and fTCD, when combined, can produce an efficient multi-modal hybrid BCI. 

 

Figure 4 a) top view for the skull with the transcranial Doppler probe fixed on the left transtemporal window  

b) sample Doppler ultrasound signal showing the change in cerebral blood velocity across time [150]. 

a) b) 
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1.3 Contributions 

Initially, as explained in chapter 3, we investigate the possibility of designing a real-time 

BCI based on fTCD. Inspired by the results achieved using the fTCD-based BCI, we propose a 

novel multi-modal hybrid EGG-fTCD system that simultaneously measures brain electrical 

activity as well as cerebral blood flow velocity. The cognitive tasks to be presented to the users of 

such a system have to differentiable using both EEG and fTCD in order to for the hybrid BCI to 

be efficient.  Based on a study that proved that the cerebral blood velocity in left and right middle 

cerebral arteries (MCAs) changes depending on whether the moving arm is the left or the right one 

[50], we suggested designing MI-based EGG-fTCD hybrid BCI. However, it was found that there 

are slight differences between the recorded fTCD signals in response to right and left MI tasks 

which indeed affected the overall performance accuracy of the hybrid system. To boost the 

performance of the system, we introduce a presentation paradigm for the EEG-fTCD hybrid 

system that is claimed to provide higher overall performance compared to those obtained using MI 

paradigm. Specifically, instead of using 2 imagery tasks (right and left MI), we designed mental 

rotation (imagery) and word generation (analytical) tasks since, these tasks were proved to be 

separable for the fTCD-based BCI as described in chapter 3. However, such tasks cannot be 

distinguished using the EEG. To develop an efficient hybrid BCI in which cognitive tasks can be 

differentiated using both neuroimaging modalities, we propose altering the word generation (WG) 

and mental rotation (MR) tasks into flickering checkerboard-textured WG and MR tasks with each 

task flickering with a different frequency. Consequently, EEG will differentiate MR and WG tasks 

because they will elicit different SSVEPs while fTCD will distinguish the same tasks due to 

differences in cerebral blood flow velocity. The coming chapters are organized as follows: 
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x Chapter 2 introduces a literature review about the existing multi-modal BCIs. 

x Chapter 3 shows a study we performed to examine the feasibility of fTCD for real-time 

BCIs. 

x Chapter 4 explains the hybrid EEG-fTCD system implementation using MI paradigm. In 

addition, it shows the performance measures obtained using this paradigm. 

x Chapter 5 illustrates the design of flickering MR/WG paradigm to be presented to the 

hybrid users as well as the performance measures we obtained.  

x Chapter 6 shows feature extraction and fusion techniques that we present to improve the 

performance of the hybrid system utilizing MI paradigm. 

x Chapter 7 shows feature extraction and fusion techniques that we present to improve the 

performance of flickering MR/WG paradigm. 

x Chapter 8 explains extension of our feature extraction and fusion techniques to solve 3-

class problems of both MI and flickering MR/WG paradigms. 

x Chapter 9 introduces a transfer learning approach that we suggest to reduce calibration 

requirements of the hybrid system utilizing both MI and flickering MR/WG paradigms. 

x Chapter 10 presents remarks and conclusions about the performance of both MI and 

flickering MR/WG paradigms. 
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2.0 Literature Review 

Recently, hybrid BCIs have been extensively studied so that the process of identifying user 

intent can be performed with a minimal amount of error in a reasonable amount of time [51]. 

Hybrid BCIs can be categorized into 2 main classes including BCIs exploiting multimodal signals 

(multi-modal BCIs) and BCIs using single modality to sense different patterns of the same brain 

activity due to mental tasks with different nature (multi-paradigm BCIs) [52].  For the design of 

BCIs that belong to the first class, signals from modalities such as EEG, fTCD, fNIRS, fMRI, 

EOG, EMG, etc., are recorded simultaneously [53].  Multimodal BCIs can be further divided into 

2 subcategories including BCIs sensing brain signals only such as EEG-fNIRS and EEG-fMRI 

systems and BCIs sensing brain and non-brain signals such as EEG-EMG and EEG-EOG systems 

[54]. The other hybrid BCI category includes BCIs based on different brain patterns. In these 

systems, different patterns (SSVEP, MI, P300, etc.) of the same physiological signal (EEG) are 

used to design the hybrid BCI [55]. Both hybrid BCI categories can exploit multisensory 

stimulation (visual, auditory, and tactile) depending on the employed recording modalities [52]. 

In general, BCI research focuses on developing direct connection between the human brain 

and a device by converting a user's expressed intention into a meaningful control signal that drives 

an application. This process requires several processing steps following acquisition of the BCI 

input signals. These steps include: a) preprocessing, b) feature extraction, c) feature selection and 

reduction, d) information fusion, and f) classification. In this chapter, we focus on reviewing these 

processing steps for both categories of multi-modal BCIs exploiting brain and non-brain signals. 

More specifically, we review each of the processing steps mentioned above for each modality 

employed for multi-modal BCI design separately as detailed below. 
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2.1   Preprocessing 

Artifacts are undesired electrical signals that originate from different sources than those 

used to control BCIs. Such signals can interfere with the signals employed as source of control and 

can alter the characteristics of physiological phenomena of interest or even be mistakenly used to 

control a BCI system [56]. Therefore, it is essential to efficiently remove such artifacts to avoid 

degradation of BCI system performance especially when used by patients in a real-life 

environment. The performance of BCI systems could be affected by several physiological and non-

physiological artifacts. Physiological artifacts are usually caused by muscular, ocular, respiratory, 

and heart activities while non- physiological artifacts include artifacts due to equipment and 

artifacts due to surrounding environment such as power line interference [57]. 

EEG: EEG signals are known to be highly contaminated with physiological activities due 

to eye blinking, eye movements, muscle contractions, respiration, and heart electrical activity [56]. 

The most significant physiological artifacts are eye movements and blinking since they generate 

high-magnitude artifacts compared to EEG amplitude [58].  

To eliminate high frequency EEG artifacts, classical temporal filtering methods such IRR 

low-pass filters have been employed [59], [60]. In addition, band-pass filters were extensively used 

to remove both low and high frequency artifacts [61]–[79].  Alternatively, subject-dependent 

filtering methods have been introduced to account for variations in ranges of various physiological 

artifacts across subjects and to improve signal to noise ratio (SNR). For instance, a subject-

dependent band-pass filtering method was designed using point-biserial correlation coefficient to 

filter EEG signals [80]. Moreover, in another study, a temporal FIR filter for all channels was 

developed using a regularization method that favors a sparse solution for the coefficients as an 

alternative to common sparse spectral spatial pattern (CSSSP) which optimizes a filter per channel 
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[81], [82]. Other preprocessing techniques have been used to eliminate noise such as linear 

detrending to remove low frequency drift [83] and  independent component analysis (ICA) to 

remove nonbrain artifacts [64], [77]. 

On the other hand, in addition to temporal filtering, EEG data can be also filtered in the 

spatial domain. For instance, the Laplacian filter was employed in various studies to improve the 

spatial resolution of EEG data [59], [66], [71], [73], [81]. In other studies, EEG data were spatially 

filtered using common average reference (CAR) to achieve the same purpose [61], [80]. 

fNIRS: fNIRS signals are mainly contaminated with physiological and instrumental noise. 

To remove high frequency artifacts due to breathing and heart electrical activity, IIR low-pass 

filters [59], [81], [84], exponential moving average filters [60], median filtering [64], Gaussian 

low-pass filters, and wavelet denoising [79] have been used. In addition, slow Baseline drifts were 

removed using high-pass filters [77], [83] and linear detrending [59]. Several studies employed 

band-pass filters to remove both low and high frequency artifacts [78], [80]. On the other hand, 

similar to EEG signals, fNIRS signals were also be spatially filtered using common average 

reference (CAR) [64]. 

fTCD: High frequency noise present in fTCD signals is usually removed using low-pass 

FIR filters [85] [86] or using moving average [84]. Moreover, high-pass filters can be used to 

remove Doppler shifts caused by reflections off the vessel walls [84]. 

EOG: To eliminate baseline drift as well as high frequency noise, band-pass filters [61], 

[62], [69], [74], [87], high-pass and low-pass filters [70] have been used. Moving average has been 

also employed to remove high frequency noise [74]. As a preprocessing step before feature 

extraction, some studies rectify EOG signals [74]. 
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EMG: An important preprocessing step for EMG signals is to obtain the signal envelope 

which can be calculated using mean filtering [88], band-pass filtering  [73], [74], [89], low-pass 

and high-pass filtering [72] [71]. To attenuate effect of crosstalk [90], ICA can be applied to EMG 

signals [72]. In some studies, the EMG signal is rectified before feature extraction [72]. 

ECG: ECG signals are mainly preprocessed using band-pass filtering [75]–[77] and 

detrending to remove baseline drift [77]. 

2.2 Feature Extraction 

BCI systems rely mainly on the variations between the brain activity patterns due to target 

and non-target stimuli. The distinctive differences between these patterns can be captured using 

efficient pattern recognition techniques that aim at classifying mental activity into a certain class 

according to the extracted features. One of the main steps of pattern recognition process is feature 

extraction which aims at representing signal characteristics in a compact form that can be 

interpreted by a classification algorithm. 

EEG: Several feature extraction techniques have been employed to extract EEG features 

in both the time and frequency domains.  One of the most efficient feature extraction methods 

especially for MI BCIs is common spatial pattern [60], [62], [63], [80], [81]  and its variations 

such as  generic learning regularized common spatial patterns [78] and one-versus-rest common 

spatial pattern designed for multi-class classification [61]. Another efficient feature extraction 

technique known to be successful with SSVEP BCIs is canonical correlation analysis [88] [72] 

[91]. 



 14 

To reduce the number of extracted features especially in case of using a high number of 

electrodes,  average amplitudes [65], [69], [79], [92] or downsampled signal amplitudes [64], [70] 

[93] are considered. However,  some studies employ signal amplitudes without downsampling or 

averaging [87]. Moreover, thresholding signal amplitudes was performed to identify user intent 

[66], [67].  Differential entropy was also considered as a feature to extract discriminative 

information from EEG signals [68]. Various other techniques have been employed to extract 

features from EEG data such as Hilbert Transform [59] and autoregressive modeling [66], [67], 

[71], [73]. 

EEG data have been analyzed in the frequency domain using features extracted from the 

Fourier Transform [72] and the EEG bi-spectrum [75]. Moreover, many studies have exploited 

power spectrum density estimation [66], [67], [71], [73], [76], [77] while other studies used the 

power spectrum to calculate band power spectral features [64], [78], [81], [83], [94].  Features 

extracted using wavelet analysis were also considered through applying fuzzy mutual information 

based wavelet packet decomposition to EEG data [95].  

fNIRS: In fNIRS systems, optical intensity signals are translated into concentration 

changes according to the modified Beer–Lambert law [96]. Mainly 4 concentration signals 

including deoxygenated hemoglobin (HbR), oxygenated hemoglobin (HbO), HbR + HbO, and 

HbO - HbR are used for feature extraction. In some studies, amplitudes of these signals [59], [77], 

[83],  average of peak amplitudes of HbO and HbR [79], or average of HbO and HbR time courses 

[80], [81] are used as features.  Moreover, slopes which identify the changes in the signal 

amplitudes across time are extracted as features [78], [80], [84]. In one study, the difference 

between the HbO current value and the previous value was considered as a feature [60]. In another 
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study, to capture the decrease or increase in HbO and HbR , the mean of first few samples was 

subtracted from the mean of the following samples [64]. 

Although the features extracted from fNIRS signals are usually simple features, in one 

study generic learning regularized common spatial patterns was applied to fNIRS signals to extract 

spatial patterns characteristic to the mental tasks performed by the users [78]. 

fTCD: Most common time domain features extracted from fTCD signals include 

hemodynamic laterality, slope, mean, range, and change in signal value measured from the 

beginning to the end of each trial [84]. In the frequency domain, features derived from power 

spectrum and wavelet decomposition of fTCD signals were extracted [85], [86], [97], [98].  

EOG: Analyzing EOG signals is usually performed either to recognize different eye 

movements or to identify gaze direction.  Such aims can be achieved through calculating certain 

features or through thresholding EOG amplitudes. EOG features may include temporal features 

such as minimum, mean, maximum, and variance of EOG amplitude [68] or frequency domain 

features such as wavelet coefficients extracted using fuzzy mutual information based wavelet 

packet decomposition [95].  

For instance, eye movements including saccades, blinks, and winks were identified using 

an algorithm that employs sets of fuzzy logic rules [70], [99]. Moreover, using such sets of fuzzy 

logic rules, the algorithm computed the area at which the user gazes [12].  To distinguish different 

eye movements, canonical correlation analysis (CCA) [61], multithresholding [87] have been 

applied to EOG signals. Binary thresholding was also used to identify right and left eye movements 

[66], [67]. To detect saccades and blinks, thresholding was applied to wavelet coefficients  

resulting from wavelet decomposition [68]. In another study, average EOG amplitude was 

thresholded using subject-specific threshold for winking detection [69]. Rapid repeated eye 
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movements were detected through thresholding the EOG amplitude and the number of crossings 

of a certain threshold with a specific time window as well as maximum and minimum EOG 

amplitude while single eye blink was detected through negative derivative and thresholding EOG 

amplitude [74]. 

To determine gaze direction, difference of EOG signals from right and left electrodes (right 

and left eye) was thresholded based on the receiver operating characteristics curve [62]. In another 

study, the maximum positive potential form the right eye and the minimum negative potential from 

the left eye were thresholded to determine the gaze direction [94]. 

In certain studies, EOG is used to enhance the performance of EEG BCIs. In particular, 

EOG was used to identify the EEG intervals with the minimum EOG artifacts [92]. In another 

study, ICA and minus rule were used to obtain an approximation for vertical and horizontal EEG 

from forehead EOG [68].  

EMG: The common EMG features in the literature are usually extracted in the time domain 

such as waveform length [71], [73], mean of EMG absolute value, EMG variance, and EMG log 

variance [73]. Alternatively, many studies threshold the envelope of EMG signal to infer user 

intent. Such envelope can be  calculated using mean filtering [88], rectification and low-pass 

filtering [93], and the Hilbert transform [74]. Thresholding can be also applied to envelope of the 

Integrated EMG (iEMG) [91]. 

Recently, researchers have investigated features representing corticomuscular coupling. 

These features either measure the correlation between band-limited power time-courses (CBPT) 

associated with EMG and EEG or the coherence between EEG and EMG such as corticomuscular 

coherence (CMC) [89]. 
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ECG: ECG features of interest for BCI community are either signal-specific or signal-

independent features. Common signal specific features include R-R interval [77]  and transient 

heart rate changes based on instantaneous heart rate [76] while signal independent features include 

absolute log of ECG bi-spectrum [75] and coefficients resulting from fuzzy mutual information 

based wavelet packet decomposition [95].  

2.3 Feature Selection and Reduction 

Feature selection or reduction has been shown to be essential for BCI systems since the 

feature vectors from multiple modalities can be high dimensional vectors depending on the number 

of channels from each modality and the sampling rate of each modality. Several techniques have 

been employed to reduce the dimensionality of feature vectors such as signal downsampling 

performed especially when the signal amplitudes are intended to be used as features [59], [62], 

[64], [68], [69], [70], [73], [79], [81], [83], [87], [93].  Feature selection methods such as mutual 

information [59], exhaustive search [84], Fisher criterion [84],  and spectral regression-based 

kernel discriminant analysis [95] have been also employed. 

2.4 Information Fusion 

One of the simplest approaches to fuse information from multiple modalities is to 

concatenate the feature vectors corresponding to the signals collected form all modalities [59], 

[68], [71], [75], [78], [84], [95], [97], [98]. However, in certain multi-modal systems, information 
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fusion is not needed since each modality is used to identify different set of commands. Such an 

approach has been employed in several EEG-EOG [61], [87], [94], EEG-fNIRS [79], and EEG-

EOG-EMG systems [74]. Alternatively, another group of multi-modal BCIs uses different 

modalities to take decisions sequentially. For instance, in an EEG-fNIRS system, detection of MI 

was performed using fNIRS while classification of MI was achieved using EEG [60]. 

Certain studies investigating hybrid BCIs aim to infer the user intent through a 2- step 

hierarchical process. In particular, all the possible commands that can be issued through the BCI 

are categorized into fewer groups. One of the modalities identifies the group to which the command 

reflecting user intent belongs, while the second modality recognizes the exact command from the 

selected group [70], [72], [73], [76], [91]. 

In certain multi-modal BCI systems, information fusion is performed through exploiting 

features that can only be calculated using signals from multiple modalities.  For instance, features 

representing corticomuscular coupling were used to infer user intent in an EEG-EMG BCI. These 

features consider the correlation between band-limited power time-courses (CBPT) associated 

with EMG and EEG or the coherence between EEG and EMG such as corticomuscular coherence 

(CMC) [89]. 

Logic decision rules have been investigated to infer user intent. For instance, in an EEG-

EMG system, ‘AND’ fusion rules of classification output were developed based on which modality 

gives higher accuracy [88].  In another study utilizing an EEG-EOG system, a decision rule was 

developed based on combinations of all possible classifiers’ outputs [65]. To improve the 

performance of multi-modal systems, one modality can be used to confirm the decision of the other 

modality  [69]. For instance, in an EEG-EOG speller system, subjects were instructed to actively 

wink once if the EEG classifier denoted the target letter as the top candidate.  
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Fusion of information from multiple modalities can also be performed on the classifier 

level. For instance, the outputs of an EEG classifier and 3 fNRIS classifiers were combined using 

a naïve Bayesian approach [83]. In another study, user intent inferred from EEG and gaze 

information provided by an eye-tracker were fused under Bayes rule assuming independence [63]. 

In an EEG- fNRIS system, optimal classifiers of single features were constructed and 

probabilistically fused under a feature independence assumption [61].  

Projected scores of two EEG and fNIRS sLDA classifiers were combined as input for a 

meta sLDA [80]. In another study, Meta LDA classifier was constructed by optimally combining 

outputs of and EEG LDA classifier and 2 fNIRS LDA classifiers [81]. Alternatively, a meta 

classifier was designed with a fusion rule based on the weighted sum of class probabilities of 4 

different classifiers including 2 EEG classifiers and 2 fNIRS classifiers where the input 

observation is assigned to the class with the highest probability sum [64].  In an EEG-fTCD system,  

projected EEG and fTCD SVM scores were combined using a probabilistic fusion approach under 

3 different assumptions [85], [86]. 

2.5 Classification 

The main aim of BCI systems is to translate brain activity into control commands to derive 

certain applications. This goal can be achieved either using regression or classification algorithms 

[100]. However, in BCI systems, classification algorithms are more popular than regression 

algorithms.  Classification techniques are used to recognize the user intent based on the 

characterization of the brain activity in response to certain tasks/stimuli.  
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Various classification algorithms have been used in BCI applications to infer user intent 

such as  Linear discriminant analysis (LDA) [62], [64], [69]–[71], [73], [75], [77]–[79], [84], [87], 

[92], [93], [95] and shrinkage linear discriminant analysis (sLDA) [80]. Support vector machines 

with linear [60], [61], [64], [89] and radial basis function (RBF) kernels [72] were also employed 

to identify user intent.  In addition, some studies utilized neural networks with different 

architectures such as extreme learning machines (ELMs) [59]  and feedforward neural networks 

[63]. Researchers also investigated L2-regularized linear logistic regression classifiers [83] and 

minimum distance classifiers [65]. 

Moreover, regression models have also been investigated in certain passive BCI 

applications. For instance, support vector regression (SVR) with RBF kernel  was employed to 

estimate vigilance levels [68]. 
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3.0 A Brain-Computer Interface Based on Functional Transcranial Doppler Ultrasound 

Using Wavelet Transform and Support Vector Machines 1 

In this chapter, we propose feature selection techniques to build an fTCD-based BCI 

system that overcomes the speed limitations of previous fTCD-BCIs. Given the fact that fTCD 

detects different velocities of cerebral blood flow in response to different cognitive tasks, these 

tasks can be used as the selections in the development of the fTCD-based BCI if such cognitive 

tasks could be differentiated with sufficient accuracy and speed. Here, cognitive tasks including 

word generation and mental rotation as well as the resting state are considered for the development 

of the BCI. These cognitive tasks have already been explored in BCI design and it was shown that  

both mental rotation and word generation cause significant increase in cerebral blood flow velocity 

in right and left middle cerebral arteries [101]. However, the word generation task resulted in 

significantly stronger activation in the left middle cerebral arteries while the mental rotation task 

shows bilateral activation [102] so it is expected that these tasks can be differentiated  with a high 

accuracy if employed in a BCI application. 

Four subject-specific classification schemes are formulated to study the feasibility of 2-

class and 3-class real-time fTCD- based BCIs. The first and second classification schemes are 

formulated to distinguish each cognitive task from the resting state.  The third scheme aims at 

classification of the word generation and mental rotation tasks against each other.  Finally, in the 

fourth scheme, a 3-class classification problem combining mental rotation, word generation and 

                                                 

1 Based on Aya Khalaf, Ervin Sejdic, Murat Akcakaya, “A Brain-computer Interface Based on Functional 
Transcranial Doppler Ultrasound Using Wavelet Transform and Support Vector Machines,” Journal of Neuroscience 
Methods, vol. 293, pp. 174-182, 2018 © [2018] ELSEVIER. 
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the resting state is studied with the aim of increasing the number of possible selections for the BCI.  

For all these classification schemes, features derived from a five-level wavelet transform are used 

in a support vector machines (SVM) classifier that employs a linear kernel. To determine the 

classification accuracy as a function of data rate (speed), two methods for feature vector 

formulation are employed: (1) moving window (MW), and (2) incremental window (IW) methods. 

These feature vector formulation methods are presented in section 3.1.3.  Finally, we show that 

with the proposed techniques we can achieve significant improvements in the data rate and hence 

the speed of operation, without compromising the accuracy.  

3.1 Materials and Methods  

This section includes a description of the recruited participants, experimental procedure, 

and the proposed preprocessing, feature extraction, selection and classification methods. 

3.1.1  Participants 

All research procedures were approved by the local institutional review board at the 

University of Pittsburgh and all participants provided informed consent. Data was collected from 

20 healthy participants including 10 males and 10 females with mean age of 21.5 ±1.86 years, 

mean weight of 67.9 ± 14.2 kg and mean height of 174 ± 9.69 cm [103]. None of the participants 

had a history of migraines, concussions, strokes, heart murmurs, or other brain related injuries. 

Participants were also subjected to the Edinburgh handedness tests [104] which showed 16 
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participants were right-handed, with a mean score of 64% , 3 participants were left-handed, with 

a mean score of 80%, and one was ambidextrous. 

3.1.2  Experimental Procedure 

Two 2 MHz transducers were fixed on the left-side and right-side transtemporal window 

located above the zygomatic arch [45] . The depth of the TCD was set to 50 mm to approximate 

the depth of the mid-point of the middle cerebral arteries segment [105]. Since a previous TCD 

study [106] reported that the maximum safe continuous exposure time to TCD is 30 minutes to 

avoid thermal damage to brain tissues, the data collection session was divided into 3 parts. In the 

¿UVW�VHFWLRQ��HDFK�SDUWLFLSDQW�ZDV�DVNHG�WR�WDNH�D�UHVW�VR�WKDW�WKH�FHUHEUDO�EORRG�IORZ�LV�VWDELOL]HG�

while recording a 20-min baseline period.  The next two sections were each 15-min trials with a 

5-min break in between. Each of these trials included five-word generation tasks and five mental 

rotation tasks, in a random order. Within each trial, every task lasted 45 seconds (which we denote 

as an activation period for each task) with a 45-second resting period between consecutive tasks. 

In total, each participant underwent 20 cognitive tasks divided evenly into word generation and 

mental rotation. 

3.1.2.1 Mental Rotation Task 

Randomly selected pairs of images from a database of 3D shapes constructed from cubes 

[107] were displayed on the screen for a duration of 9 seconds. This means that for an activation 

period of 45 seconds, 5 different pairs of images were displayed. Each pair of images were 

displayed as either identical or symmetrically mirrored images. Participants were asked to decide 
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if the displayed image pairs were identical or mirrored by mentally rotating these images as seen 

in Fig.5. 

 

3.1.2.2 Word Generation Task 

 During the 45-second activation periods, a randomly chosen letter was displayed on the 

screen. The participants were asked to think of words starting with that displayed letter. This 

nonverbal action was chosen to avoid artifacts due to speech or intrathoracic pressure changes 

[108].  

3.1.3  Data Analysis 

Two methods for classifying the cognitive tasks were tested; a moving window (MW) and 

an incremental window (IW). In the MW method, a window containing the first 0.5 seconds of the 

fTCD data was used for feature extraction. After taking the classification decision based on the 

data from that window, the window was shifted by 0.25 seconds and features were recalculated 

for that new window of data and a new classification decision was made. This procedure was 

Figure 5 Sample of the mental rotation task. Each participant was asked to decide if the 
pair of images are identical or mirrored by mentally rotating one of the two 
images. 
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repeated until the window reached 45 seconds, the length of a task.  Note that in this approach the 

classification decision at a specific time was independent of all past windows.  

As a second method, an incremental window was employed in which all the samples up to 

the time of classification were included. Initially, features were extracted from the first 0.5 seconds 

of data and a classification decision was made. Then, the size of the window was increased by 0.5 

seconds, features were recalculated and a new decision was made. This incremental increase was 

then repeated until the length of the task was reached. One drawback of this method is that when 

the window size increases, fine changes in the signal, that might correspond to a specific task, 

might be dominated by the trend of the majority of the samples.  The choice of the window size 

and the amount of shift or increment for both methods was performed empirically. It was found 

that the smaller the window size, the better the performance accuracy. 

Fig.6 shows a flowchart for the main algorithm steps as well as the differences between 

these two windowing methods. Data transmission rate for both windowing methods was calculated 

according to (1).  

                                        B = logଶ(N) + Plogଶ(P) + (1 െ P)logଶ ൬
1 െ P
N െ 1

൰                                        (1) 

where N is the number of classes, P is the classification accuracy and B is the data transmission 

rate per trial. 

3.1.3.1 Preprocessing 

The data was approximately bandlimited to under 4 kHz. A 150th order low pass filter of 

5 kHz corner frequency was applied for antialiasing purposes. The original data was sampled at 

44.1 kHz, and it was downsampled by a factor of 5 to reduce computation requirements. 
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3.1.3.2 Feature Extraction 

Five level wavelet decomposition [109] was performed for each window defined by the 

IW, and MW methods using the Daubechies 4 mother wavelet. The choice of the number of 

decomposition levels was determined using visual inspection. First, approximate coefficients of 

the last level of each task were plotted to check if they show any difference between the 3 tasks. 

The number of decomposition levels was increased and approximate coefficients of the last level 

were plotted until no difference could be seen.  

After performing the wavelet decomposition over each window of data, simple statistical 

features including mean, variance, skewness, and kurtosis were calculated for the wavelet 

coefficients. For each TCD channel, these 4 features were calculated for 6 wavelet bands resulting 

in a total of 24 statistical features for each channel (i.e., a total of 48 features), and these features 

were considered for feature selection. Both the skewness and kurtosis measure deviations from 

Gaussianity. Kurtosis [110]  measures the peak of the curve compared to the Gaussian curve. The 

skewness also measures the asymmetry of a given probability distribution. A probability 

distribution with a heavier tail and higher peak than the Gaussian has a positive kurtosis while 

lighter tails with flatter peaks give a negative kurtosis. A positive skewness value reflects a 

distribution with the right side tail longer than the left side and with a mean that is greater than the 

mode; whereas, a distribution with a left side tail that is longer than the right side and a mean value 

less than the mode has a negative skewness [111].  
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Figure 6 A flowchart for the algorithm used for data analysis using moving window (MW) 

and incremental window (IW) methods. 
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3.1.3.3 Feature Selection 

Features were statistically assessed using the Wilcoxon test [112], which is a nonparametric 

hypothesis test used to evaluate differences between two populations. One advantage of this test 

is that it does not restrict the data to follow any specific parametric distribution such as the 

Gaussianity assumption imposed by the Student-t test [113].  Briefly, for each feature, the 

difference between the two groups per sample is calculated. The higher the difference magnitude, 

the higher the rank assigned to that sample. Only ranks of positive differences are considered to 

estimate the Wilcoxon test statistic W while negative differences and zero-magnitude differences 

are excluded.  The Wilcoxon test statistic W given by (2) is the sum of all the positive ranks. 

                                                                        W = R୧
(ା)

୬ᇱ

୧ୀଵ

                                                                        (2)  

where R୧
(ା) is the rank of the  ith positive difference and  nԢ is the number of samples with positive 

rank. This means that nԢ <= n; that is, the number of positive differences is at most equal to the 

total number of available samples n. 

When applying the Wilcoxon test, we chose a p-value of 0.05 to be used for the test and 

the features that satisfy such criteria were selected independently of each other. Therefore, the 

number of features can vary from person to person depending on the significance of each feature 

whether it satisfies the chosen p-value or not. For example, during cross-validation to predict the 

system performance, at each validation step, the number of features changes based on the 

Wilcoxon test. As for  the 3-class problem, considering the fact that the Wilcoxon test is a binary 

feature selection method, a one versus one approach [114] was used to decompose the 3-class 

problem into 3 binary problems with a p-value of 0.05. The resulting 3 sets of selected features 

were used separately as inputs for 3 binary SVM classifiers as indicated in the next subsection.  



 29 

3.1.3.4 Classification 

Support vector machines (SVM) were used to perform the classification task [114]. Basic 

SVM is a linear classifier that formulates an optimization problem aimed at finding an optimal 

hyper plane that has the largest possible distance to the nearest data point in the training set 

regardless of the class that such point belongs to. Consequently, SVM achieves better 

generalization compared to the other linear classifiers such as linear discriminant analysis. Given 

the fact that the classes are not typically linearly separable, a kernel can be used to transform each 

observation into higher dimensional feature space in which the classes are linearly separable. 

Common kernels include linear, polynomial, and radial basis function kernels.  

In order to reduce the computational complexity, a linear kernel was employed in this work. 

Four different classification schemes were formulated. In the first two schemes, two 2-class 

classifiers were developed to distinguish the word generation task from the resting state and mental 

rotation task from the resting state. In the third scheme, a 2-class classifier was developed to 

distinguish between the features corresponding to mental rotation and word generation. Finally, a 

3-class classifier was developed to jointly distinguish among the mental rotation, word generation 

and resting state. A one versus one approach was used to convert the 3-class problem into 3 binary 

problems since the SVM is basically a binary classifier [114]. The majority vote obtained from the 

3 classifiers was considered for the final decision.   

To evaluate the robustness of the proposed system, for each participant, leave-one-out cross 

validation was used to assess the performance measures. MATLAB (R2015b) was used to run the 

experiments on a HP Z840 Workstation with Intel®, and Xeon® CPU, 2.2 GHz processor speed, 

and 128 GB RAM.  
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3.2 Results 

The proposed methodology was tested using fTCD data recorded from 20 participants.  

Three types of problems were analyzed including: 1) cognitive tasks versus resting state (two 2-

class problems i.e., mental rotation task vs resting state and word generation task vs. resting state), 

2) mental rotation task versus word generation task (one 2-class problem) and 3) mental rotation 

versus word generation versus resting state (one 3-class problem). For each classification problem, 

MW and IW methods, as described in Section 3.1.3, were applied for feature extraction and 

performance measures (speed, sensitivity, specificity and accuracy of classification) were 

analyzed.    

Tables 1 through 4 show the average of the maximum classification accuracy and 

corresponding sensitivity and specificity values achieved by each participant using IW and MW 

data analysis and feature extraction methods at different state durations. A state duration is defined 

as the period in which a mental activity takes place before it is assigned to a specific class. In other 

words, it is the time since the task onset till the time point at which a decision has to be made. In 

case of both MW and IW methods, for each state duration, all possible windows that are within 

that period (i.e. state duration) were considered, and the window achieving the maximum accuracy 

was selected to compute the average accuracy, sensitivity, specificity and time across participants. 

For example, in the MW method, a 5-s state duration  means that the windows 0-0.5s, 0.25-0.75s, 

0.5-1s, ……, and 4.5-5s are used for the analysis and the performance measures (accuracy, 

sensitivity, specificity and time) for the window that obtains the maximum accuracy are considered 

to calculate average performance measures across participants, while for the IW method, windows 

0-0.5s, 0-1s, 0-1.5s,….., and 0-5s  are analyzed and the average performance measures are 
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computed in the same way described above for the MW method. Time column shown in these 

tables represents the average time at which the maximum accuracy was achieved for each 

participant within the corresponding state duration.  

3.2.1  2-Class Problems 

As seen in Tables 1-2, the MW method achieved higher average accuracies, compared to 

the IW method, in a relatively short time of approximately 3 s, an average accuracy, sensitivity 

and specificity of 80.29%, 81.18%, and 79.41%, for the resting state versus mental rotation and 

82.35%, 82.94%, and 81.76% for the resting state versus word generation. In addition, according 

to Tables 1 and 2, within approximately 3 s of the cognitive activity onset, an average accuracy, 

sensitivity, and specificity of 74.41%, 72.94%, and 75.88% was achieved for the resting state 

versus mental rotation classification compared to 77.94%,7 7.65%, and 78.24% for the resting 

state versus word generation problems using the IW method. Moreover, as seen in Table 3, using 

the MW method for the task versus task classification achieved 79.72%, 80.56%, and 78.89% 

average accuracy, sensitivity and specificity while IW method obtained average accuracy, 

sensitivity and specificity of 74.64%, 72.86%, and 76.43%. Both methods achieved such 

accuracies within approximately 3 s of the task onset. 

Considering the maximum performance accuracy that could be achieved by each of the 

three binary classification problems, the MW method obtained the best possible accuracy 

compared to the IW method at each state duration. Using the MW method an average accuracy, 

sensitivity, and specificity of 94.41%, 95.29%, and 93.53% was achieved for the mental rotation 

versus resting state problem after 15.57 s from the task onset while the IW method obtained an 

average accuracy, sensitivity, and specificity of 89.41%, 89.41%, and 89.41% respectively in  
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Table 1 Average maximum accuracy and the corresponding sensitivity, specificity, and time at different state 

durations for the word generation task versus resting state using MW and IW methods. 

 State Duration (S) Time(s) Sensitivity (%) Specificity (%) Accuracy (%) 

M
W

 M
et

ho
d 

5.0 2.84 82.94%±09.19% 81.76%±09.51% 82.35%±06.87% 

7.5 4.41 88.82%±09.28% 85.88%±07.12% 87.35%±05.89% 

10.0 4.93 90.00%±08.66% 86.47%±07.02% 88.24%±05.29% 

12.5 4.93 90.00%±08.66% 86.47%±07.02% 88.24%±05.29% 

15.0 6.10 90.59%±08.99% 87.65%±06.64% 89.12%±05.07% 

17.5 6.63 91.18%±09.27% 87.65%±06.64% 89.41%±05.29% 

20.0 8.62 91.76%±08.09% 88.24%±06.36% 90.00%±05.00% 

22.5 8.62 91.76%±08.09% 88.24%±06.36% 90.00%±05.00% 

45 21.22 94.70%±07.17% 91.76%±07.28% 93.24%±04.31% 

IW
 M

et
ho

d 

5.0 2.50 77.65%±13.93% 78.24%±13.80% 77.94%±11.73% 

7.5 3.17 80.00%±12.25% 80.59%±13.91% 80.29%±10.96% 

10.0 3.65 80.59%±11.97% 81.76%±12.37% 81.18%±09.93% 

12.5 4.79 82.94%±07.72% 82.35%±12.51% 82.65%±08.31% 

15.0 5.82 83.53%±08.62% 83.53%±11.69% 83.53%±08.06% 

17.5 6.65 83.53%±08.62% 84.12%±12.28% 83.82%±08.39% 

20.0 7.32 84.12%±09.39% 84.12%±12.28% 84.12%±08.88% 

22.5 7.88 84.71%±09.43% 84.12%±12.28% 84.41%±08.82% 

45 13.88 86.47%±09.31% 90.59%±12.49% 88.53%±08.62% 
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Table 2 Average maximum accuracy and the corresponding sensitivity, specificity, and time at different state 

durations for the mental rotation task versus resting state using MW and IW methods. 

 State Duration (S) Time(s) Sensitivity (%) Specificity (%) Accuracy (%) 

M
W

 M
et

ho
d 

5.0 2.04 81.18%±09.28% 79.41%±13.45% 80.29%±09.27% 

7.5 4.19 84.12%±12.28% 84.12%±10.64% 84.12%±08.52% 

10.0 5.78 87.65%±09.03% 86.47%±10.57% 87.06%±06.86% 

12.5 5.96 88.82%±09.28% 87.06%±10.47% 87.94%±06.86% 

15.0 7.82 90.59%±08.27% 88.82%±09.93% 89.71%±05.44% 

17.5 10.34 90.59%±09.66% 93.53%±07.02% 92.06%±04.70% 

20.0 11.19 92.35%±08.31% 93.53%±07.02% 92.94%±04.70% 

22.5 11.19 92.35%±08.31% 93.53%±07.02% 92.94%±04.70% 

45 15.57 95.29%±06.24% 93.53%±07.02% 94.41%±03.91% 

IW
 M

et
ho

d 

5.0 2.59 72.94%±17.95% 75.88%±16.61% 74.41%±14.35% 

7.5 3.47 77.06%±14.04% 78.24%±17.04% 77.65%±13.36% 

10.0 4.59 81.18%±13.17% 77.65%±17.51% 79.41%±12.36% 

12.5 4.88 82.94%±12.13% 79.41%±14.78% 81.18%±09.77% 

15.0 6.06 83.53%±11.15% 81.76%±15.09% 82.65%±10.33% 

17.5 7.29 83.53%±11.15% 83.53%±13.67% 83.53%±09.81% 

20.0 8.41 84.71%±11.79% 83.53%±13.67% 84.12%±10.19% 

22.5 9.97 85.29%±12.31% 84.12%±12.78% 84.71%±09.60% 

45 20.38 89.41%±09.66% 89.41%±11.44% 89.41%±07.05% 
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Table 3 Average maximum accuracy and the corresponding sensitivity, specificity, and time at different state 

durations for the mental rotation versus word generation using MW and IW methods. 

 State Duration (S) Time(s) Sensitivity (%) Specificity (%) Accuracy (%) 

M
W

 M
et

ho
d 

5.0 2.24 80.56%±11.62% 78.89%±10.23% 79.72%±06.75% 

7.5 3.18 83.33%±12.37% 81.11%±11.32% 82.22%±07.90% 

10.0 3.87 85.00%±11.50% 81.11%±11.32% 83.06%±07.89% 

12.5 5.93 87.78%±08.78% 84.44%±09.84% 86.11%±07.58% 

15.0 7.22 91.11%±08.32% 86.11%±09.16% 88.61%±06.14% 

17.5 9.01 92.78%±08.26% 87.22%±09.58% 90.00%±05.94% 

20.0 10.78 92.22%±09.43% 89.44%±08.73% 90.83%±04.62% 

22.5 11.28 91.67%±09.24% 91.11%±07.58% 91.39%±04.47% 

45 15.41 93.89%±07.78% 91.67%±07.86% 92.78%±03.52% 

IW
 M

et
ho

d 

5.0 2.50 72.86%±13.26% 76.43%±11.51% 74.64%±07.71% 

7.5 3.73 78.57%±09.49% 79.29%±13.28% 78.93%±05.94% 

10.0 4.80 79.29%±09.97% 82.14%±11.88% 80.71%±07.03% 

12.5 6.87 80.71%±09.97% 85.00%±10.92% 82.86%±06.99% 

15.0 6.87 80.71%±09.97% 85.00%±10.92% 82.86%±06.99% 

17.5 7.17  82.14%±11.21% 85.00%±10.92% 83.57%±07.70% 

20.0 7.17 82.14%±11.21% 85.00%±10.92% 83.57%±07.70% 

22.5 10.93 83.57%±10.08% 86.43%±11.51% 85.00%±07.34% 

45 19.00 90.00%±09.61% 87.86%±11.88% 88.93%±07.12% 
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20.38 s. On the other hand, word generation versus resting state problem obtained an average 

accuracy, sensitivity, and specificity 93.24%, 94.70%, and 91.76% respectively after 21.22 s from 

task onset using MW method while IW method achieved 88.53%, 86.47%, and  90.59% average 

accuracy, sensitivity, and specificity in  13.88 s. Considering the task versus task problem, the IW 

method achieved an average accuracy, sensitivity, and specificity of 88.93% , 90.00%, and 87.86% 

in 19 s while the MW method obtained 92.78%, 93.89%, and 91.67% accuracy, sensitivity, and 

specificity in 15.41 s. 

3.2.2  3-Class Problem 

As shown in Table 4, the MW method shows better performance when compared to the 

IW method. Average accuracies of 66.12%, 68.26%, and 61.32% were achieved for mental 

rotation, word generation and resting state respectively with overall accuracy of 65.27% using the 

MW method within 5 s from the onset of the cognitive task (chance level is 33%). Using the IW 

method achieved accuracies of 57.70%, 69.71%, and 63.20% for mental rotation, word generation 

and resting state respectively with overall accuracy of 63.80% at the same 5-second period. 

Utilizing the whole observation period with the MW method, average accuracies of 72.19%, 

75.93%, and 70.88% for mental rotation, word generation and resting state respectively with 

overall accuracy of 72.91% were obtained at average time of 11.27 s. Mental rotation, word 

generation and resting state accuracies of 70.10%, 77.86%, and, 67.04% were achieved in average 

time of 14.29 s with an overall accuracy of 71.57% using IW method. 
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Table 4 Average maximum accuracy and the corresponding sensitivity, specificity, and time at different state 

durations for the 3-class (mental rotation (MR), word generation (WG), and resting state problem using MW 

and IW methods. 

 State 

Duration (S) 

Time(s) MR Sensitivity (%)  WG Sensitivity (%) Specificity (%) Accuracy (%) 

M
W

 M
et

ho
d 

5.0 3.35 59.20%±11.97% 70.43%±06.67% 51.90%±22.34% 60.23%±08.89% 

7.5 4.05 63.02%±04.83% 69.10%±07.37% 55.76%±22.73% 62.33%±08.47% 

10.0 4.68 66.12%±09.66% 68.26%±09.19% 61.32%±16.63% 65.27%±09.06% 

12.5 5.75 68.00%±10.33% 71.00%±11.01% 65.00%±18.41% 68.00%±10.80% 

15.0 6.13 70.20%±10.54% 73.65%±08.23% 62.15%±25.73% 68.36%±10.09% 

17.5 7.63 68.78%±12.29% 76.92%±06.99% 67.76%±14.18% 70.83%±08.08% 

20.0 9.45 68.17%±12.29% 76.20%±06.99% 68.91%±13.98% 70.67%±07.98% 

22.5 9.45 68.17%±12.29% 76.20%±06.99% 68.91%±13.98% 70.67%±07.98% 

45 11.27 72.19%±11.01% 75.93%±07.07% 70.88%±14.14% 72.91%±07.73% 

IW
 M

et
ho

d 

5.0 2.53 50.00%±18.26% 65.00%±10.80% 47.00%±29.46% 54.00%±11.84% 

7.5 3.41 58.23%±13.17% 68.01%±12.29% 48.42%±30.47% 58.21%±11.35% 

10.0 3.97 54.07%±23.19% 69.23%±12.87% 58.70%±17.29% 60.67%±08.86% 

12.5 4.59 55.00%±22.73% 69.33%±12.87% 63.67%±10.59% 62.33%±06.49% 

15.0 4.94 57.70%±23.12% 69.71%±12.87% 63.20%±10.59% 63.80%±07.28% 

17.5 4.94 57.70%±23.12% 69.71%±12.87% 63.20%±10.59% 63.80%±07.28% 

20.0 5.94 65.00%±10.80% 68.96%±14.49% 57.04%±22.63% 63.67%±06.37% 

22.5 9.59 68.00%±13.17% 70.48%±12.87% 61.52%±25.58% 66.64%±08.46% 

45 14.29 70.10%±15.63% 77.86%±13.17% 67.04%±29.08% 71.57%±12.59% 
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3.2.3  Transmission Rate 

The bit rate was calculated in bits/trial using (1) then divided by state duration in minutes 

to give bit rate in bits/min.  Among the 3 binary problems described above, the bit rate calculated 

for the word generation versus resting state was the highest compared to the other binary problems. 

As seen in Fig. 7 using the IW method, a maximum bit rate of 3.95 and 2.28 bits per minute was 

achieved for the word generation vs resting state and the 3-class problem respectively. The MW 

method obtained a maximum bit rate of 3.83 and 3.09 bits per minute for the same problems. 

Moreover, maximum bit rates of 3.3, and 2.04 bits per min were achieved for mental rotation 

versus resting state and mental rotation versus word generation respectively using the MW method 

while IW method obtained bit rates of 1.30, and 1.63 bits per min for the same problems.  

Figure 7 Transmission rate in bits/min for binary and 3-class problems using a) IW method b) MW method. 
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3.3 Discussion 

Considering the performance measures shown in Tables 1-3, among the 3 binary 

classification problems we addressed, the word generation versus baseline problem offered the 

highest accuracy within 3 s of the onset of the cognitive activity compared to the other binary 

problems. Therefore, it can be considered as the best candidate to build binary selection based 

BCIs.  Additionally, according to Tables 1-3, it is clear that the MW method achieved the best 

accuracy. The main difference between the MW method and the IW method is that the MW method 

just accounts for the information belonging to the current window while the IW method considers 

all the fTCD data up to the moment at which the decision is taken. One disadvantage of the IW 

method is that the performance measures would be significantly degraded if the participant lost 

concentration at some point during the task; this means that nonstationarities in the data would 

affect the future classification process. 

Table 5 compares our method with the existing methods based on fTCD and NIRS. During 

comparison, both speed (observation period) and accuracy have been considered. For the proposed 

system, we include the accuracies for two different observation periods (3 s and 45 s). Although 

an observation period of 45 s is not practical for a real-time BCI, we computed the performance 

measures of the system with such observation period to ensure a fair comparison with the work 

proposed by Myrden et al. (2011) who used the same dataset employed in this work and achieved 

the reported accuracies for 45 s observation time. As seen in Table 5, the proposed MW method 

outperformed the other fTCD-based methods in the literature in terms of both accuracy and 

observation period. We achieved comparable accuracies to the Myrden et al. (2011) system with 

only 3 s observation period.  On the other hand, NIRS is a portable and hemodynamic-based 
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modality that, like fTCD, is a promising tool to develop BCI applications.  Recent NIRS-based 

BCIs proposed by  Fazli et al., 2012 ,and  Shin et al., 2016 showed promising results, shown in 

Table 5,  that lead to development of a BCI that combines both fTCD and fNIRS [84]. However, 

the approach proposed in this chapter outperformed these studies as it obtained average accuracies 

of 80.29% and 82.35% within approximately 3 s of the onset of the mental task for mental rotation 

vs resting state and word generation vs resting state classification problems respectively. 

Therefore, we believe that the presented results are promising and can be used to develop a real-

time fTCD-based BCI application. 

The proposed 3-class fTCD-based BCI achieved an average accuracy of 65.27% using the 

MW method within 5 s of the task onset as seen in Table 4. The studies suggested in [116], [117] 

reported accuracies of 62.40% within 15 s [116] and 40% within 5 s [117] of the onset of the 

cognitive task. Moreover, the maximum classification accuracy over the whole observation period 

obtained by our approach was 72.91% achieved in 11.27 s compared to the previously reported 

73.11% obtained in 24.90 s [117].  

A maximum bit rate of 3.83 and 3.09 bits per minute were achieved for the binary and the 

3-class problems respectively using the moving window method, while the incremental window 

achieved maximum bit rates of 3.95 and 2.28 bits per minute. This is compared to 0.3 and 1.2 bits 

per minute previously reported for 2 and 3-class fTCD-based BCIs [102], [117]. Being able to 

obtain reasonable classification accuracies within relatively short time period for the binary 

problems as well as the 3-class problem introduces the possibility of developing a real time fTCD-

based BCI with acceptable data transmission rates. Applications of the proposed BCI include 

controlling assistive devices that can be used for communication and movement control through 

which the users can control prosthetic limbs or wheel chairs [118]. Another application of this  
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Table 5 Comparison between the proposed MW method and the state of the art methods for binary BCIs. 

Method BCI Type Accuracy Observation Period (s) 

Myrden et al., 2011 fTCD 82.90% 45 

Myrden et al., 2011 fTCD 85.70% 45 

Aleem and Chau, 2013 fTCD 80.00% 20 

Lu et al., 2015 fTCD 79.69% 15 

Fazli et al., 2012 fNIRS 73.30% 7 

Shin et al., 2016 fNIRS 77.00% 10 

Faress and Chau, 2013 fTCD-fNIRS 76.10% 20 

Proposed method (MR/rest) fTCD 80.29% 3 

Proposed method (WG/rest) fTCD 82.35% 3 

Proposed method (MR/rest) fTCD 93.24% 45 

Proposed method (WG/rest) fTCD 94.41% 45 

 

technology is the environmental control such that the BCI users can adjust lights and temperature 

in their houses or control the TV, etc. [119]. The BCI systems have the potential to enhance the 

quality of life for individuals with disabilities specially those who experience locked-in syndrome. 

Specifically, it would decrease their level of dependency to their caretakers and improve the 

individual’s contact with society [120]. In addition, BCI has been recently shown to be a promising 

neurorehabilitation tool that can help individuals with disabilities to restore neuromuscular 

functions [121]. 
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3.4 Conclusion 

In this chapter, we investigated the possibility of developing 2-class and 3-class BCI 

systems using data acquired through bilateral fTCD measurements. To construct the BCI system, 

two different methodologies, incremental window (IW) and moving window (MW), were 

proposed. The main differences between these methods are the windowing and feature vector 

formulation. For each method, the raw data was analyzed using wavelet transform. Statistical 

features were calculated from the wavelet transform coefficients. These features were subjected to 

Wilcoxon test for feature selection followed by classification with SVM with linear kernel. With 

the proposed approach, we showed that within 3 s of the onset of the cognitive task, an accuracy 

of 80.29% was obtained for the mental rotation versus resting state problem while the word 

generation versus resting state achieved an accuracy of 82.35% using the MW. The MW method 

XVHG�IRU�WKH�WDVN�YHUVXV�WDVN�SUREOHP�DFKLHYHG�D�PHDQ�FODVVL¿FDWLRQ�DFFXUDF\�RI��������ZLWKLQ���

s of the onset of cognitive activity. In addition, the MW method used for the 3-class problem 

obtained an average accuracy of 65.72% within 5 s of the onset of mental tasks. The presented 

results show significant improvement in the data rate without a compromise in the accuracy of 

cognitive task classification. Compared to the previous fTCD studies, the proposed method 

showed an increase of 12% and 9% accuracy for the 2-class and the 3-class BCIs respectively. In 

terms of speed, the proposed BCIs are at least 12 and 2.5 times faster than the 2-class and the 3-

class systems proposed in previous fTCD studies. Such promising results support the real-time 

implementation of a 2-class and 3-class fTCD-based BCIs.  Moreover, the improvements in the 

data transmission rate reported in this chapter imply that it would be feasible to utilize the fTCD 

in a multi-modal hybrid BCI. Such an approach to fuse information from multiple modalities to 

achieve a certain task simultaneously will likely improve the system performance compared to a 
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single modality BCI.  For example, a hybrid system that employs both EEG and fTCD may be 

able to achieve higher performance by utilizing both sources of information simultaneously. Such 

a hybrid BCI will be the subject of our future research. 
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4.0 A Novel Motor Imagery Hybrid Brain Computer Interface Using EEG and Functional 

Transcranial Doppler Ultrasound 2 

It was found that the cerebral blood velocity in left and right middle cerebral arteries 

(MCAs) changes depending on whether the moving arm is the left or the right one [50]. Such 

findings suggest that fTCD might be promising for MI-based BCIs. Inspired by these findings as 

well as the results we achieved previously with fTCD as a candidate for real-time BCIs, we propose 

MI-based hybrid BCI that uses both EEG and fTCD modalities. Such system will acquire the 

electrical activity of the brain using the EEG and the vascular response of the brain using the fTCD. 

We claim that combining these modalities will result in a system with higher performance 

accuracy, faster response time, and less setup complexity. In this chapter, cognitive tasks including 

left arm MI and right arm MI are considered for the BCI design. Three different binary selection 

problems were formulated to study the feasibility of 2-class BCI. The first two classification 

problems are formulated to differentiate between each cognitive task and the baseline while the 

third problem aims at classification of the left arm and right arm MI tasks against each other. For 

the 3 binary selection problems, features derived from the power spectrum for both EEG and fTCD 

signals were calculated. In addition, mutual information and linear SVM were used for feature 

selection and classification. 

 

                                                 

2 Based on Aya Khalaf, Ervin Sejdic, Murat Akcakaya, “A Novel Motor Imagery Hybrid Brain Computer 
Interface using EEG and Functional Transcranial Doppler Ultrasound,” Journal of Neuroscience Methods, vol. 313, 
pp. 44-53, 2019 © [2019] ELSEVIER. 
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4.1  Materials and Methods 

4.1.1  Simultaneous Data Acquisition 

EEG was collected using 16 electrodes placed according to the 10-10 system over frontal, 

central, and parietal lobes at positions Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1, C2, Cp3, 

Cp4, P5, and P6. The left mastoid was used as the reference for all participants.  A g.tec EEG 

system with g. USBamp, a bio-signal amplifier, was used in this study. It included 16 24-bit 

simultaneously sampled channels with an internal digital signal filtering and processing unit and 

sampling rate up to 38.4 kHz. The data were digitized with a sampling rate of 256 samples/sec and 

filtered by the amplifier’s 8th order bandpass filter with corner frequencies 2, 62 Hz in addition to 

4th order notch filters with corner frequencies 58, 62 Hz. Through the band-pass filter, our aim 

was to remove possible DC drift and high frequency noise. Processed data were transferred from 

the amplifiers to a laptop via USB 2.0.  

The fTCD data was collected with two 2 MHz transducers using SONARA TCD system 

of 145 Mw ultrasonic power. These transducers were placed on the left and right sides of the 

transtemporal window located above the zygomatic arch. Since the middle cerebral arteries 

(MCAs) provide approximately 80% of the brain with blood [122], the fTCD depth was set to 50 

mm which is the depth of the mid-point of the MCAs [105]. 

4.1.2  Visual Presentation Design 

 In this presentation scheme, a basic motor imagery task is visualized while acquiring EEG 

and fTCD simultaneously.  As seen in Fig. 8, the screen shows a horizontal arrow pointing to the 
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right representing right arm MI and another horizontal arrow pointing to the left representing left 

arm MI as well as a fixation cross that represents the baseline. Each trial lasts for 10 s. During each 

trial, a vertical small arrow, shown in Fig. 8, points randomly to one of the 3 tasks for duration of 

10 s and the user has to take a rest if the vertical arrow points to the fixation cross or to imagine 

moving either left or right arm depending on which MI task is specified by the vertical arrow. A 

total of 150 trials are presented per session. 

4.1.3  Participants 

10 healthy right-handed subjects including 4 males and 6 females participated in the 

experiment with ages ranging from 23 to 32 years old (mean and standard deviation: 26.7±2.3). 

The experiment lasted for approximately 1 hour and 15 min including the time required for the 

setup. All research procedures were approved by local Institutional Review Board (IRB) under the 

University of Pittsburgh IRB number of PRO16080475.  Participants signed a written informed 

consent before starting the experiment. During the experiment, subjects were seated in a 

comfortable chair approximately 1 m away from the screen. Each participant attended one session.  

Figure 8 Stimulus presentation for the hybrid BCI system. 
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4.1.4  Feature Extraction and Fusion 

The 16-channel EEG data as well as the two-channel fTCD data corresponding to each task 

were segmented and extracted. For each segment, the power spectrum was estimated using 

Welch’s method [123].  The features corresponding to each segment included the raw power 

spectrum for that segment. The number of features obtained from each power spectrum was 

reduced by considering the average power over a narrow range of frequencies instead of using all 

the power spectrum values at all frequency bins as features. The average power over each 

consecutive 2 Hz for the EEG data was obtained. Since the fTCD signal has much higher 

EDQGZLGWK��§����.+]��FRPSDUHG�WR�WKH�((*�VLJQDOV��§���+]��DQG�FRQVLGHULQJ�WKH�QHHG�WR�UHGXFH�

the number of features, the average power over each consecutive 50 Hz for the fTCD data was 

obtained to form reduced power spectrums. For each observation, the EEG feature vector was 

formed by concatenating reduced power spectrums corresponding to the 16 EEG segments while 

fTCD feature vector was formed by concatenating reduced power spectrums corresponding to the 

2 fTCD segments. For each observation, the overall feature vector was formed by concatenating 

the EEG feature vector and the fTCD feature vector.   The feature vector representing each trial 

contained 420 features including 320 EEG features as well as 100 fTCD features. Specifically, 20 

features were extracted from each EEG electrode giving a total of 320 features whereas each fTCD 

sensor contributed 50 features giving a total of 100 fTCD features.    

4.1.5  Feature Selection 

Feature selection methods are divided into two main categories including filter and 

wrapper/embedded methods [124].  The main advantage of the filter methods compared to wrapper 
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and embedded methods is the low computational complexity. However, filter methods assume 

feature independence and can select redundant features. Due to the high dimensionality of the 

EEG-fTCD feature vector (420 features), we decided to apply a filter method for feature selection.  

Mutual information [125] was used to select the significant features out of concatenated EEG-

fTCD feature vector.  Mutual information measures the information provided by a variable to 

reduce the uncertainty about another variable. In the feature extraction context, mutual information 

measures contribution of each feature towards taking a correct decision by assigning each feature 

a score based on its contribution. The higher the score is, the higher the contribution is of that 

feature towards correct classification. To calculate the mutual information score, each feature is 

quantized adaptively such that the number of data samples is almost the same in each quantization 

bin so that quantization levels are equiprobable [126]. Mutual information score between the 

discretized feature value ݔ and the class label ݕ is given by (3). In this chapter, to determine the 

number of features to be used for each binary selection problem, the cumulative distribution 

function (CDF) was calculated for the mutual information scores.    We calculated CDF thresholds 

corresponding to probabilities ranging from 0.5 to 0.95 with 0.05 step in addition CDF thresholds 

corresponding to probabilities 0.98 and 0.99.  For each CDF threshold, the features obtaining 

scores greater than or equal that threshold were selected.  The performance measures including 

accuracy, sensitivity, and specificity corresponding to each CDF threshold were computed. 

ܫܯ                                                   = ݈݃(ݕ,ݔ) ൬
(ݕ,ݔ)
(ݕ)(ݔ)

൰
௬א௫א

                                                   (3) 
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4.1.6  Classification 

Since the BCI is intended to be used for real-time applications, we used linear SVM to 

reduce computational expenses. To investigate the feasibility of 2-class BCI, three binary 

classification problems were formulated including right arm MI versus baseline, left arm MI versus 

baseline, and right arm MI versus left arm MI. Based on the classification results, we calculated 

some performance measures to evaluate the hybrid system. These measures included accuracy, 

sensitivity, specificity, and information transfer rate (ITR), known also as the bit rate, given by 

(1). The objective behind calculating sensitivity and specificity is to test if the classifier recognizes 

both classes with similar accuracies or it is biased towards one of the classes. Specifically, 

sensitivity is the accuracy of detecting right/left MI while specificity reflects the accuracy of 

detecting the baseline. 

4.1.7  Evaluation of the Effectiveness of the Hybrid System 

To evaluate the significance of the EEG-fTCD combination compared to the system using 

EEG only, Wilcoxon signed-rank test was used to statistically compare the accuracies and bit rates 

obtained using the combination to those obtained using EEG only. In particular, EEG-fTCD 

accuracy vector as well as EEG only accuracy vector containing the accuracies of the 10 

participants represented the two groups to be compared.  Moreover, same comparison was 

performed between EEG-fTCD bit rate vector and the bit rate vector obtained using EEG only. 
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4.2 Results 

Subject-specific classification was performed on each participant using leave-one-out cross 

validation. For each participant, we analyzed the accuracy profile across time using an incremental 

window the width of which increases by 1 s. The maximum width for the incremental window is 

10 s which represents the trial length. The accuracy analysis was performed using 12 different 

CDF thresholds corresponding to probabilities ranging from 0.5 to 0.95 with 0.05 step as well as 

the thresholds corresponding to probabilities of 0.98, and 0.99.  Therefore, 12 different accuracy 

profiles across time were obtained per participant.  Average performance measures over all 

participants were obtained using subject-independent and subject-specific CDF thresholds. For 

subject-independent threshold, the maximum accuracy at each CDF threshold was obtained for 

each participant yielding 12 different accuracies for each participant corresponding to the 12 CDF 

thresholds. For each threshold, the average accuracy over all the 10 participants was obtained. The 

threshold at which the maximum accuracy was achieved was selected as the general CDF threshold 

that can be used with all participants. For subject-specific thresholds, the maximum accuracy 

across all the CDF thresholds for each subject was obtained and considered as the subject’s 

performance accuracy. Therefore, in subject-specific analysis, each subject might have different 

CDF threshold that corresponds to his/her maximum performance accuracy. 

Tables 6 through 8 show the maximum accuracy achieved by each participant and the 

corresponding time calculated using the EEG-fTCD combination. Corresponding sensitivity and 

specificity values are reported in detail in Tables 30-35 in the appendix section of this chapter. 

Here, in the results section, we report only the average sensitivities and specificities. To reveal the 

significance of the hybrid system, the same performance measures were calculated using EEG only 

and fTCD only with the same time interval at which the EEG-fTCD combination gives the 
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maximum accuracy as seen in Tables 6-8. Transmission rates corresponding to the accuracies and 

times listed in Tables 6 through 8 were also calculated for each binary problem using EEG data, 

fTCD data, and EEG-fTCD combination as seen in Fig. 9, 10, and 11. Fig. 12 compares average 

bit rates obtained using subject-independent and subject-specific thresholds for the 3 binary 

problems. Tables 9 and 10 list the p-values representing the significance of the EEG-fTCD hybrid 

system. These p-values are calculated by statistically comparing the EEG-fTCD accuracy/bit rate 

vector with the EEG only accuracy/bit rate vector for all the binary selection problems when 

subject-independent and subject-specific CDF thresholds are used for feature selection. 

4.2.1  Right/Left arm MI vs Baseline 

Table 6 shows the maximum accuracies and corresponding times for right arm MI versus 

baseline problem using subject-independent and subject-specific thresholds while appendix Tables 

30 through 33 show details about sensitivity and specificity values for each individual.  For subject- 

independent threshold analysis, average accuracy, sensitivity and specificity of 85.73%,87.31%, 

and 83.86% were achieved using both EEG and fTCD within 7.2 s of the cognitive activity onset. 

In the meantime, using EEG only, we obtained 81.56%, 85.19%, and 77.27%   average accuracy, 

sensitivity and specificity respectively.  

Despite the low fTCD accuracy of 58.65%, when combined with EEG, fTCD data boosted 

the overall performance of the hybrid system with average accuracy increase of 4.17% compared 

to the accuracy obtained with the EEG only. As shown in Table 6 and Fig. 9. (a), the EEG-fTCD 

combination scored higher accuracy and bit rate for 8 out of the 10 participants. In terms of 

statistical comparison, as seen in Tables 9 and 10 the differences between hybrid and EEG only 

performance measures were shown to be significant as they correspond to a p-value of 0.012 in 

terms of accuracy comparison and p-value of 0.0078 in terms of bit rate comparison.  
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On the other hand, same performance measures were calculated for right arm MI versus 

baseline problem using subject-specific thresholds as shown in Table 6. It was found that the EEG-

fTCD combination achieved 88.33%, 90.96%, and 85.23% average accuracy, sensitivity, and 

specificity respectively within 7.7s compared to 83.85%. 86.92%, and 80.23% obtained by EEG 

only and 58.23%, 61.92%, and 53.86% obtained by fTCD only.  The average accuracy difference 

between the hybrid combination and the EEG only was 4.48%.  As seen in Fig. 9. (b), the EEG-

fTCD combination achieved higher bit rates compared to EEG only for all of the participants using 

subject-specific thresholds. However, Fig. 12 shows that subject-independent threshold obtained 

slightly higher average transmission rate 4.19 bits/min of compared to 3.87 bits/min for subject-

specific threshold. In terms of statistical comparison, the EEG-fTCD combination achieved higher 

accuracy and bit rate compared to EEG only for all the participants with a p-value of 0.002 for 

both accuracy and bit rate (Tables 9, and 10). 

Table 7 shows the performance measures for left arm MI versus baseline problem using 

subject-independent and subject-specific thresholds. Using subject-independent threshold, average 

accuracy, sensitivity and specificity of 86.49%, 87.55%, and 85.23% were obtained using EEG-

fTCD combination within 6.3s.  EEG only scored 83.61% accuracy, 85.09% and 81.82% 

specificity. A difference of 2.89% was achieved with 0.0098 p-value of as seen in Table 9. In terms 

of bit rates, a p-value of 0.0059 was achieved as shown in Table 10. The hybrid system obtained 

higher accuracies and bit rates compared to EEG for 9 out of 10 subjects.  In contrast, using subject-

specific threshold, an average accuracy difference of 5.36% was achieved with a p-value of 0.0078. 

In terms of bit rates, also, a p-value of 0.0078 was achieved as seen in Table 10. For 8 out of 10 

participants, EEG-fTCD scored higher accuracy and bit rate compared to EEG only. EEG-fTCD 

scored 89.48% accuracy, 91.89% sensitivity, and 86.59% specificity within 6.1s while EEG only 
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scored   84.12% accuracy, 86.42% sensitivity, and 81.36% specificity. Considering Fig. 10, we 

obtained higher bit rates using the EEG-fTCD combination compared to bit rates generated using 

EEG only and fTCD only. In addition, as seen in Fig. 12, subject-specific thresholds achieved 6.02 

bits/min average bit rate compared to 5.45 bits/min for subject-independent threshold.  

 

 

Table 6 Maximum accuracy (Acc) and the corresponding time for each subject using hybrid system, EEG 

only, and fTCD only.  These measures were obtained for right arm MI vs baseline problem.   

 Subject-independent threshold Subject- specific threshold 

Sub_ID Time(s) Acc_EEG Acc_fTCD Acc_Hybrid Time(s) Acc_EEG Acc_fTCD Acc_Hybrid 

1 10 91.67% 57.29% 93.75% 10 91.67% 59.38% 94.79% 

2 10 83.33% 56.26% 83.33% 7 91.67% 61.46% 92.71% 

3 2 79.17% 45.83% 84.38% 7 81.25% 51.04% 86.46% 

4 9 81.25% 55.21% 87.50% 9 81.25% 55.21% 87.50% 

5 9 87.50% 61.46% 90.63% 9 87.50% 61.46% 90.63% 

6 4 72.92% 56.25% 82.29% 7 85.42% 56.25% 86.46% 

7 6 79.17% 56.25% 83.33% 6 80.21% 47.92% 86.46% 

8 7 80.21% 66.67% 89.58% 7 81.25% 69.79% 91.67% 

9 5 73.96% 61.46% 71.88% 5 71.88% 50.00% 76.04% 

10 10 86.46% 69.79% 90.63% 10 86.46% 69.79% 90.63% 

Mean 7.2 81.56% 58.65% 85.73% 7.7 83.85% 58.23% 88.33% 
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Table 7 Maximum accuracy (Acc) and the corresponding time for each subject using hybrid system, EEG 

only, and fTCD only.  These measures were obtained for left arm MI vs baseline problem.   

 Subject-independent threshold Subject- specific threshold 

Sub_ID Time(s) Acc_EEG Acc_fTCD Acc_Hybrid Time(s) Acc_EEG Acc_fTCD Acc_Hybrid 

1 10 88.66% 74.23% 93.81% 10 87.63% 65.98% 97.94% 

2 7 93.81% 58.76% 92.78% 7 91.75% 65.98% 93.81% 

3 8 80.41% 46.39% 89.69% 4 81.44% 51.55% 93.81% 

4 2 73.32% 50.52% 74.23% 5 78.35% 61.86% 81.44% 

5 8 77.32% 43.30% 80.41% 9 87.63% 53.61% 87.63% 

6 2 85.57% 52.58% 86.60% 3 74.23% 53.61% 86.60% 

7 3 88.66% 54.64% 90.72% 3 88.66% 54.64% 90.72% 

8 9 86.60% 55.67% 88.66% 9 85.57% 50.52% 92.78% 

9 5 74.23% 48.45% 79.38% 5 74.23% 48.45% 79.38% 

10 9 87.63% 55.67% 88.66% 6 91.75% 47.42% 90.72% 

Mean 6.3 83.61% 54.02% 86.49% 6.1 84.12% 55.36% 89.48% 
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Table 8 Maximum accuracy (Acc) and the corresponding time for each subject using hybrid system, EEG 

only, and fTCD only.  These measures were obtained for left arm MI vs right arm MI.   

 Subject-independent threshold Subject- specific threshold 

Sub_ID Time(s) Acc_EEG Acc_fTCD Acc_Hybrid Time(s) Acc_EEG Acc_fTCD Acc_Hybrid 

1 1 86.67% 44.76% 86.67% 1 82.86% 51.43% 93.33% 

2 5 75.24% 38.10% 75.24% 5 75.24% 38.10% 75.24% 

3 10 73.33% 46.67% 75.24% 6 71.43% 69.52% 81.90% 

4 1 82.86% 45.71% 83.81% 2 81.90% 53.33% 85.71% 

5 1 78.10% 50.48% 81.90% 1 78.10% 50.48% 81.90% 

6 3 85.71% 42.86% 83.81% 3 85.71% 42.86% 83.81% 

7 4 75.24% 44.76% 71.43% 4 71.43% 43.81% 79.05% 

8 7 89.52% 45.71% 92.38% 9 96.19% 50.00% 97.14% 

9 1 70.48% 44.76% 71.43% 1 70.48% 44.76% 71.43% 

10 1 65.71% 62.86% 68.57% 2 62.86% 66.67% 74.29% 

Mean 3.4 78.29% 46.67% 79.05% 3.4 77.62% 51.10% 82.38% 

 

4.2.2  Right arm MI vs left arm MI 

The maximum accuracies and corresponding times for right arm MI versus left arm MI are 

shown in Table 8 for subject-independent and subject-specific threshold respectively. See also 

appendix Tables 34, and 35 for details about sensitivity and specificity values for each individual. 

Right arm MI versus left arm MI classification achieved 79.05%, 79.04%, and 79.06% average 

accuracy, sensitivity and specificity respectively using the EEG-fTCD combination within 3.4 s 

while EEG data only obtained average accuracy, sensitivity and specificity of 79.29%, 78.08%, 
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and 78.49% respectively. The average accuracy difference was low and insignificant (p-

value=0.3828) according to Table 9. However, subject-specific thresholds obtained higher 

performance measures as, within 3.4 s, it achieved 82.38% average accuracy, 82.12% sensitivity 

and 82.64% specificity using the EEG-fTCD combination and 77.62%, 78.65%, and 76.60% using 

EEG only leading to a significant average accuracy difference of 4.76 % with 0.0195 p-value as 

seen in Table 9.  The EEG-fTCD combination scored higher accuracy for 8 out of 10 participants. 

On the other hand, bit rates for each participant were calculated and visualized as seen in Fig. 11. 

It can be noted that the bit rate difference between EEG-fTCD combination and EEG only based 

on subject-specific threshold is much higher compared to the same difference obtained using 

subject-independent threshold (p-value of 0.25 compared to p-value of 0.0195). On average, from 

Fig. 12, 10.57 bits/min and 9.91 bits/min were achieved using subject-specific and subject-

independent thresholds respectively. 

 

Table 9 P-values representing significance of the EEG-fTCD system in terms of accuracy for the binary 

problems using subject-independent and subject-specific CDF thresholds. 

Threshold Right MI vs Baseline Left MI vs Baseline Right MI vs Left MI 

Subject-independent 0.0117 0.0098 0.3828 

Subject-specific 0.002 0.0078 0.0195 

 

 

Table 10 P-values representing significance of the EEG-fTCD system in terms of bit rates for the binary 

problems using subject-independent and subject-specific CDF thresholds. 

Threshold Right MI vs Baseline Left MI vs Baseline Right MI vs Left MI 

Subject-independent 0.0078 0.0059 0.2500 

Subject-specific 0.0020 0.0078 0.0195 
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By Inspecting the selected significant features across all participants for the right arm MI 

versus left arm MI problem, it was found that, as seen in Fig. 13, across all electrodes, the EEG 

average power spectrum values at frequencies up to 2 Hz (delta frequency band) are the most 

common selected features across participants. Moreover, it was found that the common selected 

Figure 9 Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and 

fTCD only for right arm MI vs baseline problem with a) subject-independent threshold b) subject-specific 

thresholds. 

a) b) 

a) b) 

Figure 10 Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and 

fTCD only for left arm MI vs baseline problem with a) subject-independent threshold b) subject-specific 

thresholds. 
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features belonging to theta (5-8 Hz) and mu (8–13 Hz) bands are coming from electrodes Fp1, 

Fp2, F3, and F4 while the common features belonging to beta (16–28 Hz) band are associated with 

electrodes C1, C2, Cp3, Cp4, P5, and P6. As for the fTCD, the common significant features were 

found at frequency bands 550-600, 2000-2050 and 2150-2200 Hz for the right fTCD channel and 

at frequency band 2050-2100 Hz for the left fTCD channel. 

 

Figure 11 Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and 

fTCD only for right arm MI vs left arm MI problem with a) subject-independent threshold b) subject-specific 

thresholds. 

a) b) 
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Figure 12 Average transmission rates calculated using EEG-fTCD combination for the 

3 binary problems with subject-independent and subject-specific thresholds. 

a) b) 

Figure 13 2D histogram of the significant features during right arm versus left arm MI at each channel 

and each frequency window of width 2Hz for EEG and 50 Hz for fTCD. The heat maps demonstrate, 

across all participants, how many times any of the features within 
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4.3 Discussion 

Considering the performance measures reported for the 3 binary classification problems 

we studied, it is noted that subject-specific thresholds achieved higher performance measures 

compared to subject-independent threshold. However, the EEG-fTCD combination for right/left 

MI versus baseline problems was proven to be significant compared to EEG only using also 

subject-independent thresholds as seen in Tables 9, and 10. Thus, it is possible to use subject-

independent thresholds for right/left MI versus baseline problems. In this case, the same analysis 

can be performed for all participants and no parameter selection (CDF threshold) needs to be 

performed for each participant. In contrast, the EEG-fTCD combination was shown to be 

significant for right arm MI versus left arm MI problem using only subject-specific thresholds. 

Thus, the CDF threshold has to be optimized for each participant separately. In terms of accuracy, 

right/left arm MI versus baseline problems achieved higher accuracy compared to right arm MI 

versus left arm MI.  In contrast, it took approximately 7s on average for right/left MI versus 

baseline problems to achieve maximum accuracy while right arm MI versus left arm MI problem 

obtained maximum accuracy within approximately 3 s. Consequently, right arm MI versus left arm 

MI achieved the highest transmission rate of 10.57 bits/min.  

Despite the high accuracies obtained in a previous study with the fTCD data only (see 

chapter 3.0), in this chapter, we obtained low accuracy with fTCD data only due to several reasons. 

It is well known that fTCD can differentiate imagery and analytical tasks since analytical tasks 

induce higher blood velocity in left MCAs while imagery tasks induce bilateral activation. 

However, in this chapter, both tasks are imagery tasks which makes the classification problem 

harder to solve.  In addition, in the previous study, a 15-min baseline period was recorded before 

starting the tasks to stabilize the cerebral blood flow. Moreover, a resting period of 45 s was 
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inserted between consecutive tasks. In this chapter, no baseline/rest periods were added to stabilize 

the cerebral blood flow since such periods will reduce the communication speed. In fact, the 

baseline was shown at random times since it was designed as a task that resembles the condition 

in which the BCI user does not intend to produce a command. Moreover, the baseline will be used 

later to normalize data across all participants such that all the data can be employed in one machine 

learning problem to infer user intent based on data from other users. This concept is known as 

transfer learning.  

The study presented in [50] proved that the cerebral blood velocity during right arm 

movement increases significantly in the contralateral MCAs than the ipsilateral MCAs while left  

arm movement induces bilateral activation. One of the objectives behind this chapter was to 

confirm if the same phenomenon happens during motor imagery.  To achieve this aim, we 

calculated the difference between left and right fTCD channels in both time and frequency domains 

during left and right motor imagery tasks. In the time domain, we calculated the difference between 

a) b) 

Figure 14 Difference between left fTCD channel (channel 2) and right fTCD channel (channel 1) during 

right arm and left arm MI   for   a) fTCD normalized envelope signals in time domain    b) power spectrum 

features in frequency domain. 
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average envelope signals of left and right fTCD channels during left and right motor imagery tasks 

as shown in Fig. 14. (a). Moreover, in the frequency domain, we calculated the difference between 

average values of the fTCD power spectrum features, described in section 4.1.4, of left and right 

fTCD channels during left and right motor imagery tasks as seen in Fig. 14 (b).  It was found that 

the difference between the left and right channels is much higher for the right arm motor imagery 

with the left channel giving higher feature values while a smaller difference between the 2 channels 

was observed during left arm motor imagery as seen in Fig. 14 (a). This difference (CH2-CH1) 

during left arm motor imagery was much smaller than the difference during right arm motor 

imagery in the frequency ranges from 500 Hz to 750 Hz and from 1100Hz to 1800 Hz as shown 

in Fig. 14 (b). The reported results conform with the findings obtained using actual physical right 

arm movement [50] as the contralateral MCAs showed higher activation compared to the 

ipsilateral MCAs. In contrast, left arm motor imagery did not produce bilateral activation as 

expected. However, the difference in feature values between left and right fTCD channels during 

left arm motor imagery was smaller at specific frequency ranges.  

In summary, as described above, through our time and frequency domain analyses to 

compare our work with [50], we showed that motor imagery induces differences in fTCD that 

could enable the separation among right arm MI vs left arm MI vs baseline.  

Table 11 shows comparison between our method and the existing EEG-fNIRS BCIs that 

employ motor imagery tasks [127], [83], [59], [60], [78]. Comparisons were performed in terms 

of trial length and accuracy. In Table 11, we included the accuracies for the three binary problems 

achieved using subject-specific thresholds. The proposed hybrid BCI outperformed all methods in 

comparison in terms of trial length since it does not require baseline/rest periods before/after each 

task. Therefore, we claim that the proposed hybrid BCI is faster than EEG-fNIRS BCIs and it can 
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be used to design real-time BCI applications especially that, after the presentation of 10-s trial, the 

user intent can be identified within milliseconds. In terms of accuracy, we achieved similar or 

higher accuracies with shorter task duration. However, the system suggested by Buccino et al. [78]  

obtained 94.20% accuracy which is higher than the best accuracy achieved by our system, but that 

system is slower than ours since it requires 6 s baseline before starting each trial.  

To improve the accuracy for right arm MI versus left arm MI since it is significantly lower 

than the accuracies obtained for right/left MI versus baseline problems, our future directions 

include using common spatial pattern (CSP) for EEG analysis instead of power spectrum since 

CSP was proved to be successful with motor imagery BCIs [60], [78], [127]. Moreover, given that 

the most efficient fTCD-based BCI in literature employed wavelet analysis, we plan to use wavelet 

decomposition for analyzing fTCD data.  Both the number of decomposition levels and the mother 

wavelet to be used will be optimized to achieve the best possible accuracy. 

Recently, ultrasound was considered as a potential brain stimulation modality. It was found 

that focused ultrasound energy transmitted through human brain can change EEG oscillatory 

dynamics. In particular, it was proved that the ultrasonic energy targeted to somatosensory cortex 

affect the phase of beta frequency band found in brain electrical activity [128]. However, in this 

study, we are interested in proving the significance of the hybrid system compared to EEG only in 

terms of accuracy and information transfer rate even if such improvement occurred due to 

ultrasound stimulation. 
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Table 11 Comparison between the proposed hybrid system and the state of the art hybrid EEG-fNIRS BCIs 

employing motor imagery tasks. 

Method BCI Type Task Type Accuracy 
Trial length (s) 

Task Baseline/rest 

[127] Fazli et al., 

2012 
EEG+fNIRS Right/left hand gripping MI 83.20% 15 6/0 

[83] Blokland et al., 

2014 
EEG+fNIRS Finger & thumb tapping MI /Rest 79.00% 15 0/30±3 

[59] Yin et al., 2015 EEG+fNIRS Right hand clenching force/ speed MI 89.00% 10 0/21±1 

[60] Koo et al. 2015 fTCD+NIRS Right/left hand grasp MI 88.00% 15 0/60 

[78] Buccino et al., 

2016 
EEG+fNIRS 

Right/left arm raising & hand 

gripping MI 
72.20% 6 6/0 

[78] Buccino et al., 

2016 
EEG+fNIRS 

Arm raising & hand gripping MI 

/Rest 
94.20% 6 6/0 

Proposed method EEG+fTCD Right MI/baseline 88.33% 10 NA 

Proposed method EEG+fTCD Left MI/baseline 89.48% 10 NA 

Proposed method EEG+fTCD Right /left MI 82.38% 10 NA 

*NA: Not applicable 
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4.4  Conclusion 

In this chapter, we propose a novel motor imagery hybrid BCI that uses EEG as the primary 

sensing modality that measures brain electrical activity and the fTCD as the secondary sensing 

modality that measures cerebral blood flow velocity. To test the feasibility of binary BCIs, 3 binary 

selection problems were studied including right arm MI versus baseline, left arm MI versus 

baseline, and right arm MI versus left arm MI. It was shown that right/left arm MI versus baseline 

achieved higher accuracies compared to right arm MI versus left arm MI. Specifically, right arm 

MI versus baseline obtained 88.33% average accuracy and left arm MI versus baseline achieved 

89.48% average accuracy while right arm MI vs left arm MI got average accuracy of 82.38%.  

However, right arm MI versus left arm MI obtained the highest bit rate of 10.57 bits/min compared 

to 4.17 bits/min, and 5.45 bits/min obtained by right arm MI versus baseline and left arm MI versus 

baseline.  Based on these results, we believe that the proposed hybrid BCI is a promising tool for 

developing real-time BCI applications. 
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5.0  Towards Optimal Visual Presentation Design for Hybrid EEG-fTCD Brain-Computer 

Interfaces 3 

In the previous chapter, we have studied the feasibility of a motor imagery (MI) hybrid 

system that combines both EEG and fTCD as measurement modalities [98] using the visual 

presentation shown in Fig. 15 (a). A horizontal arrow pointing to the right represents right arm 

motor imagery while another horizontal arrow pointing to the left represents left arm motor 

imagery. In addition, a fixation cross was used to represent the baseline. During each trial, a 

vertical arrow points randomly to one of the 3 tasks that the user has to perform for duration of 10 

s. It was found that, since both cognitive tasks are imagery tasks, there are slight differences 

between the recorded fTCD signals in response to right and left motor imagery tasks which indeed 

negatively affected the overall performance accuracy of the hybrid system [98].  

In this chapter, we introduce a visual presentation for the EEG-fTCD hybrid system in 

order to achieve higher overall performance accuracy compared to the hybrid system that employs 

MI presentation. To develop the system described in this chapter, instead of using 2 imagery tasks 

(right and left MI) to induce responses simultaneously in EEG and fTCD, we use two different but 

complementary paradigms. Specifically, we design mental rotation (imagery) and word generation 

(analytical) tasks through visual instructions since, it was proved that word generation (WG) 

induces higher blood flow velocity in left middle cerebral arteries (MCAs) while the mental 

rotation (MR) induces bilateral activation enabling different responses fTCD [46]. However, such 

                                                 

3 Based on Aya Khalaf, Ervin Sejdic, Murat Akcakaya, “Towards Optimal Visual Presentation Design for 
Hybrid EEG-fTCD Brain Computer Interfaces,” Journal of Neural Engineering, vol. 15, no. 5, 2018. © [2018] IOP 
Publishing. 
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tasks cannot be distinguished using the EEG. Therefore, they cannot be directly employed in a 

hybrid EEG-fTCD system design. To build an efficient hybrid BCI in which cognitive tasks can 

be differentiated using both brain activity sensing modalities, we propose to combine the WG and 

MR tasks with an SSVEP paradigm such that WG and MR tasks will include a flickering 

checkerboard texture as shown in Fig. 15 (b) [129]. Consequently, this approach enables EEG to 

differentiate between MR and WG tasks because each task is designed to elicit a different SSVEP 

response. On the other hand, as also described above, our design enables fTCD to distinguish the 

differences between MR and WG tasks due to differences in cerebral blood flow velocity in 

different parts of the brain. The SSVEP paradigm is used in the proposed system with the 

expectation to achieve higher accuracies compared to the one that used MI visual presentation. 

This is because the SSVEP-BCIs are known to give higher performance measures compared to 

motor imagery BCIs [51]. Moreover, in terms of fTCD, it is expected that analytical versus 

imagery tasks will be differentiated with higher accuracy compared to imagery versus imagery 

tasks. 

To investigate the feasibility of a 2-class hybrid BCI, 3 binary selection problems are 

formulated using the recordings corresponding to the flickering MR and WG task icons as well as 

the baseline. Specifically, a problem is formulated to distinguish flickering MR tasks against WG 

tasks while the other two problems aim at differentiating each cognitive task against the baseline. 

For the 3 selection problems, features derived from the power spectrum for both EEG and fTCD 

signals are calculated and mutual information and SVM are used for feature selection and 

classification respectively.  

 

 

 



 67 

 

 

 

 

 

 

a) b) 

Figure 15 Stimulus presentation for our motor imagery EEG-fTCD BCI (a) and the proposed flickering 

MR/WG hybrid BCI (b) as well as the hybrid system setup captured during one of the data collection 

sessions (c). 

c) 
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5.1 Materials and Methods 

5.1.1  Simultaneous Data Acquisition 

Sixteen electrodes were used to collect the EEG data. For the sake of fair comparison with 

the motor imagery EEG-fTCD hybrid BCI we designed in chapter 4.0 [98], in this chapter, the 

electrode locations are the same locations used for the MI hybrid system. The electrodes were 

positioned over frontal, central, and parietal lobes at positions Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, 

P1, P2, C1, C2, Cp3, Cp4, P5, and P6 according to the 10-10 system. Although SSVEPs give the 

strongest response over occipital area, we anticipated getting responses similar to those obtained 

from the occipital area using the electrodes mentioned above. Especially, we have electrodes on 

locations P5, and P6 which are close to the occipital area given that EEG is known to have low 

spatial resolution. Fig. 15 (c) shows the hybrid system setup during one of the data collection 

sessions. EEG and fTCD data were collected using the same equipment mentioned in chapter 4.0. 

Please see section 4.1.1 in chapter 4.0 for detailed description of simultaneous data acquisition. 

5.1.2  Visual Presentation Design 

The presented tasks have to be differentiated by both EEG and fTCD modalities in order 

to obtain a successful hybrid BCI system. Since fTCD is known to be successful in distinguishing 

analytical and imagination tasks due to differences in blood perfusion in both sides of the brain, 

word generation (WG) and mental rotation (MR) cognitive tasks were used for designing the 

hybrid system visual presentation. As these tasks are not expected to show differences in terms of 

EEG, they have to be modified such that the introduced modification induces the minimum 
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possible cognitive load since the participant will be already mentally busy with performing WG 

and MR tasks. Therefore, the icons/visual stimuli that instruct the users to perform WG and MR 

tasks were textured with a flickering checkerboard pattern as seen in Fig. 15 (b) to induce SSVEPs 

in EEG. For SSVEPs to be elicited, the flickering frequency of the stimuli has to be in the range 

from 7 to 60 Hz [130]. In addition, it was found that flickering frequencies higher than 20 Hz elicit 

SSVEPs with low amplitudes [130]. Based on this information, WG and MR stimuli flickered with 

frequencies of 7 and 17 Hz. In addition, the system included a third class which is a fixation cross 

that represents the baseline. For flickering WG, a randomly chosen letter flickers on the screen in 

order to instruct the user to silently generate words starting with that letter. The flickering MR task 

is represented on the screen by a pair of flickering 3D similar shapes rotated with different angles 

and the user is asked to mentally rotate the shapes to decide if they are identical or mirrored. These 

shapes were inspired from a database of 3D shapes constructed from cubes [107]. The tasks were 

designed using Blender computer graphics software. During each trial, a vertical arrow points 

randomly to one of the 3 tasks for duration of 10 s and the user has to focus on performing the 

mental task specified by that arrow. A total of 150 trials are presented per session.  

In summary, using the proposed presentation scheme, flickering checkerboard-textured 

tasks will induce SSVEPs in the EEG corresponding to the flickering frequency of each task 

leading to different EEG responses while word generation and mental rotation will induce different 

cerebral blood flow in the two hemispheres of the brain, therefore, they will generate distinct fTCD 

responses. The baseline EEG and fTCD will be recorded when the participants are performing no 

mental activity (while looking at the red cross located at the center of the screen).  
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5.1.3   Participants 

All research procedures were approved by the local institutional review board (IRB) at the 

University of Pittsburgh under the University of Pittsburgh IRB number of PRO16080475. Eleven 

healthy participants (3 females, and 8 males) provided informed consent and participated in this 

study with ages ranging from 25 to 32 years. None of the participants had a history of migraines, 

concussions, strokes, heart murmurs, or other brain related injuries. Each participant attended one 

session that lasted for 25 minutes. The participants were seated in a comfortable chair 

approximately 100 cm away from the laptop screen on which the visual presentation was shown. 

Before starting the session, the visual presentation to be shown on the screen was described to the 

participants and they were instructed to keep focusing on the task indicated by the vertical arrow 

as long as the arrow did not change its position. Since the fTCD device displays how the fTCD 

signals change over time, the device was placed outside the participant’s field of view so that the 

participant does not get distracted by the device display. 

5.1.4  Feature Extraction and Fusion 

To ensure fair comparison between the performance measures due to the presentation 

paradigm suggested here and the one suggested in the previous chapter, we applied the same 

feature extraction techniques mentioned in the previous chapter. The process of feature extraction, 

averaging and concatenation is shown in Fig. 16. Please see section 4.1.4 in chapter 4 for detailed 

description of feature extraction and fusion. 

Khaled Sayed


Khaled Sayed
Participants



 71 

5.1.5  Feature Selection 

Mutual information was used to select the significant features out of concatenated EEG-

fTCD feature vector that contains 420 features.  Please see section 4.1.5 in chapter 4 for detailed 

description of using mutual information for feature selection. 

5.1.6  Classification 

Three binary selection problems were formulated and classified using linear SVM. They 

include MR versus baseline, WG versus baseline, and MR versus WG. For each participant, a 

subject-specific classifier was trained and tested using leave-one-out cross validation. Performance 

Figure 16 Diagram showing feature extraction, selection, and classification stages applied on EEG and 

fTCD signals. 
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measures including accuracy, sensitivity, specificity, and information transfer rate (ITR) given by 

(1) were computed to evaluate the hybrid system.  

The objective behind calculating sensitivity and specificity is to test if the classifier 

recognizes both classes with similar accuracies or it is biased towards one of the classes. 

Specifically, sensitivity is the accuracy of detecting MR/WG stimulus while specificity reflects the 

accuracy of detecting the baseline. 

5.1.7  Evaluation of the Effectiveness of the Hybrid System 

Wilcoxon signed rank test was used to assess the significance of the EEG-fTCD 

combination by statistically comparing the resultant performance measures with those obtained 

using EEG data only. Specifically, EEG-fTCD accuracy vector containing accuracies for the 11 

participants as well as the corresponding EEG only accuracy vector for the same 11 participants 

represented the 2 populations to be test using Wilcoxon signed rank test.   

5.1.8  Incremental Analysis  

An incremental window of 1 s initial width was used to calculate performance measures 

for each participant. The window width was increased by 1 s increment up to 10 s which is the 

trial length and the performance measures were evaluated at each increment.  The objective behind 

using incremental window is to check if we can possibly decrease the trial length in future versions 

of this system. For each participant, the performance measures were computed versus time using 

12 different CDF thresholds corresponding to probabilities ranging from 0.5 to 0.95 with 0.05 step 

as well as 0.98 and 0.99.  Therefore, for every person, we obtained 12 different profiles for the 
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performance measures across time. Two groups of average performance measures over all 

participants were obtained by using subject-independent and subject-specific CDF thresholds.  

To get the average performance measures using subject-independent threshold, for each 

participant, the maximum accuracy at each CDF threshold and the corresponding sensitivity, and 

specificity were obtained. Therefore, each participant has 12 sets of performance measures 

corresponding to the 12 CDF thresholds. For each CDF threshold, the average performance 

measures over all the 11 participants were obtained. The threshold at which the maximum average 

accuracy over all participant was achieved was selected as the general CDF threshold to be used 

with all participants. Considering subject-specific CDF thresholds, for each participant, all the 

accuracies at all CDF thresholds were considered and the maximum accuracy and the 

corresponding performance measures as well as the corresponding CDF threshold were used to 

represent that participant.  Average of the maximum accuracy and the corresponding sensitivity, 

and specificity across all participants were obtained.  

5.2 Results 

Tables 12-14 show the performance measures for MR versus baseline, WG versus baseline, 

and MR versus WG using subject-independent and subject-specific thresholds. Each of these tables 

shows the maximum accuracy obtained using EEG-fTCD combination for each participant. The 

time corresponding to the maximum possible EEG-fTCD accuracy that can be obtained by each 

participant was also reported. Accuracy was also calculated using EEG only and fTCD only at 

times yielding EEG-fTCD maximum accuracy to show the significance of the hybrid system.  
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Sensitivities and specificities corresponding to the accuracies reported in Tables 12-14 

were represented using error bars in Fig. 17 and Fig. 18. Transmission rates were calculated for 

EEG, fTCD, and their combination using the accuracies and times listed in Tables 12-14. Fig. 19, 

20, and 21 show these transmission rates obtained for each individual using subject-independent 

and subject-specific thresholds. Fig. 22 shows the comparison between the average bit rates for 

EEG-fTCD combination obtained using subject-independent and subject-specific thresholds.  To 

show the significance of the EEG-fTCD combination compared to EEG only, a statistical 

significance test was performed using the EEG-fTCD and EEG accuracy vectors and the p-values 

for each binary selection problem were calculated and shown in Table 15. In Fig. 23, the 

distribution of the fTCD significant features obtained using subject-specific thresholds was shown.  

Finally, comparisons with hybrid BCIs from literature were performed and listed in Table 16.  

5.2.1  MR/WG versus Baseline  

By analyzing MR versus baseline problem using subject-independent threshold, EEG-

fTCD combination achieved 86.65% average accuracy in 7.82 s compared to 83.24% achieved 

using EEG only as seen in Table 12. Higher accuracies were obtained using EEG-fTCD 

combination with subject-specific thresholds (89.11% average accuracy) in approximately 7.73 s.  

The combination outperformed EEG only by an average accuracy difference of 4.06%. Since 

accuracy as a performance measure is not sufficient to decide if the classification model is biased 

towards one of the classes, both sensitivity and specificity were calculated.  As seen in Fig.17 (a) 

and Fig. 18 (a), considering the error bars representing variability in sensitivities and specificities 

obtained using both threshold types, it can be noticed that the classification model is balanced 

since the average sensitivities and specificities show very similar values. Moreover, the variability 
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in sensitivities and specificities obtained using the hybrid system is lower compared to those 

obtained using EEG only. 

 

Table 12 Maximum accuracy (Acc) and the corresponding and time for each subject using hybrid system, 

EEG only, and fTCD only.  These measures were obtained for MR vs baseline problem using subject-

independent and subject-specific thresholds. 

Sub_ID

` 

Subject-Independent Threshold Subject-Specific Threshold 

Time (s) Acc_Hybrid Acc_EEG Acc_fTCD Time (s) Acc_Hybrid Acc_EEG Acc_fTCD 

1 10 82.29% 82.29% 48.96% 6 89.58% 91.67% 50.00% 

2 10 86.46% 84.38% 57.29% 8 89.58% 84.38% 57.29% 

3 7 91.67% 91.67% 55.21% 10 93.75% 90.63% 56.25% 

4 7 79.17% 69.79% 53.13% 9 84.38% 83.33% 52.08% 

5 8 85.42% 82.29% 42.71% 9 88.54% 82.29% 46.88% 

6 9 91.67% 91.67% 63.54% 9 94.79% 90.63% 60.42% 

7 5 92.71% 92.71% 57.29% 4 94.79% 93.75% 39.58% 

8 7 89.58% 86.46% 47.92% 7 89.58% 88.54% 47.92% 

9 9 85.42% 87.50% 47.92% 9 86.46% 83.33% 50.00% 

10 8 80.21% 58.33% 67.71% 8 80.21% 58.33% 67.71% 

11 6 88.54% 88.54% 38.54% 6 88.54% 88.54% 38.54% 

Mean 7.82 86.65% 83.24% 52.75% 7.73 89.11% 85.04% 51.52% 
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Table 13 Maximum accuracy (Acc) and the corresponding and time for each subject using hybrid system, 

EEG only, and fTCD only.  These measures were obtained for WG vs baseline problem using subject-

independent and subject-specific thresholds. 

Sub_ID

` 

Subject-Independent Threshold Subject-Specific Threshold 

Time (s) Acc_Hybrid Acc_EEG Acc_fTCD Time (s) Acc_Hybrid Acc_EEG Acc_fTCD 

1 8 87.63% 88.66% 43.30% 5 89.69% 82.47% 55.67% 

2 4 59.79% 62.89% 44.33% 4 67.01% 63.92% 43.30% 

3 8 80.41% 73.20% 53.61% 8 80.41% 73.20% 53.61% 

4 3 76.29% 68.04% 42.27% 3 76.29% 68.04% 42.27% 

5 10 82.47% 72.16% 59.79% 10 86.60% 68.04% 57.73% 

6 7 88.66% 84.54% 68.04% 7 89.69% 84.54% 53.61% 

7 4 94.85% 93.81% 47.42% 4 95.88% 94.85% 55.67% 

8 5 64.95% 57.73% 58.76% 5 68.04% 63.92% 50.00% 

9 4 78.35% 78.35% 54.64% 4 78.35% 78.35% 54.64% 

10 7 73.20% 69.07% 54.64% 3 75.26% 68.04% 62.89% 

11 4 68.04% 78.35% 41.24% 9 82.47% 80.41% 52.58% 

Mean 5.82 77.69% 75.16% 51.64% 5.64 80.88% 75.07% 52.91% 

 

 

The EEG-fTCD combination scored higher accuracies than EEG only for 5 out of 11 

participants using subject-independent threshold and for 9 out of 11 participants using subject-

specific thresholds. Performance measures obtained using fTCD only were nonsignificant. 

However, fTCD boosted the overall performance when it was combined with the EEG. As seen in 

Table 15, in case of subject-specific thresholds, the combination was proved to be significant 

compared to EEG only with a p-value of 0.0156 while it was shown to be nonsignificant when 

using subject-independent threshold. In terms of transmission rates, as shown in Fig. 19, for most 

of the participants, the combination achieved higher bit rates compared to EEG only especially 
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using subject-specific thresholds. On average, as seen in Fig. 22, average bit rate of 3.66 bits/min 

was achieved using subject-independent threshold while subject-specific thresholds obtained 4.39 

bits/min. 

 

Table 14 Maximum accuracy (Acc) and the corresponding and time for each subject using hybrid system, 

EEG only, and fTCD only.  These measures were obtained for MR vs WG problem using subject-independent 

and subject-specific thresholds. 

Sub_ID

` 

Subject-Independent Threshold Subject-Specific Threshold 

Time (s) Acc_Hybrid Acc_EEG Acc_fTCD Time (s) Acc_Hybrid Acc_EEG Acc_fTCD 

1 7 98.10% 96.19% 49.52% 7 99.05% 95.24% 51.43% 

2 5 82.86% 75.24% 52.38% 10 85.71% 82.86% 52.38% 

3 6 92.38% 86.67% 53.33% 9 97.14% 96.19% 73.33% 

4 3 87.62% 77.14% 49.52% 9 89.52% 84.76% 54.29% 

5 9 80.00% 80.00% 64.76% 8 86.67% 89.52% 63.81% 

6 8 88.57% 88.57% 64.76% 8 93.33% 90.48% 68.57% 

7 5 94.29% 93.33% 58.10% 9 96.19% 94.29% 57.14% 

8 7 92.38% 88.57% 45.71% 7 93.33% 88.57% 43.81% 

9 4 87.62% 87.62% 43.81% 4 88.57% 87.62% 47.62% 

10 8 89.52% 86.67% 63.81% 8 91.43% 91.43% 60.95% 

11 8 94.29% 89.52% 54.29% 7 95.24% 91.43% 52.38% 

Mean 6.36 89.78% 86.32% 54.55% 7.82 92.38% 90.22% 56.88% 
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Table 15 P-values representing significance of the EEG-fTCD system for the binary problems using subject-

independent and subject-specific CDF thresholds. 

Threshold MR vs Baseline WG vs Baseline MR vs WG 

Subject-independent 0.0938 0.1900 0.0078 

Subject-specific 0.0156 0.0020 0.0195 

 

Considering WG versus baseline problem, as seen in Table 13, average accuracy of 77.69% 

was obtained in 5.82 s using subject-independent threshold while EEG only obtained 75.16% with 

an average accuracy difference of 2.53%. In contrast, higher average accuracy difference of 5.81% 

between the EEG-fTCD combination and EEG only was achieved using subject-specific 

thresholds as shown in Table 13. Specifically, the combination achieved 80.88% average accuracy 

in 5.64 s while EEG only obtained 75.07%.  As seen in Fig. 17 (b) and Fig. 18 (b), error bars show 

that both classes (WG and baseline) can be recognized almost with the same percentage.  

The EEG-fTCD combination scored higher accuracies for 7 out of 11 participants using 

subject- independent threshold and for 10 out of 11 participants using subject-specific thresholds. 

The hybrid system was shown to provide a significant accuracy improvement using subject-

specific thresholds compared to EEG only with a p-value of 0.012 as shown in Table 15 while that 

improvement was not significant in case of subject-independent threshold. The combination 

achieved higher bit rates than EEG only for most of the participants as seen in Fig. 20. Considering 

the average bit rates shown in Fig. 22, subject-specific thresholds achieved higher bit rate (3.92 

bits/min) compared to subject-independent threshold (3.12 bits/min). 



 79 

5.2.2  MR versus WG 

Unexpectedly, MR versus WG obtained higher performance measures compared to 

MR/WG versus baseline. Specifically, as shown in Table 14, in 6.36 s, we obtained 89.78% 

average accuracy with an average accuracy difference of 3.46% compared to EEG only which 

obtained 86.32%. Higher performance measures were obtained using subject-specific thresholds 

as seen in Table 14 as EEG-fTCD combination obtained 92.38% average accuracy in 7.82 s while 

EEG only got 90.22%.   Similar to MR/WG versus baseline problems, average sensitivity and 

specificity have similar values reflecting the ability of the classification model to identify both 

classes almost equally as seen in Fig. 17 (c) and Fig. 18 (c). Moreover, Fig. 17 and Fig. 18 show 

that WG versus MR has the lowest variance in sensitivity and specificity compared to the other 

problems. 

 

 

Figure 17 Sensitivities (mean and standard deviation) calculated using both EEG and fTCD, EEG only, and fTCD 

only for flickering MR vs baseline problem (a), flickering WG vs baseline problem (b), and flickering MR vs 

flickering WG (c). 

a) b) c) 
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 The hybrid combination achieved higher accuracies for 8 out of 11 participants using 

subject-independent threshold and for 9 out of 11 participants using subject-specific thresholds. 

As seen in Table 15, the hybrid combination was shown to be significant with p-value of 0.0078 

and 0.0195 for subject-specific and subject-independent thresholds respectively.  Bit rates obtained 

using the EEG-fTCD combination were higher for most of the participants compared to those 

obtained using EEG as shown in Fig. 21. Average bit rates of 5.60 bits/min and 5.07 bits/min were 

obtained using subject-independent and subject-specific thresholds respectively as shown in Fig. 

22. 

Through investigation of the common EEG and fTCD significant features across all 

participants for the classification problem that yielded the highest accuracy (WG versus MR), as 

expected, the top common EEG power spectrum features were found approximately around the 

1st, 2nd, and 3rd harmonics of 7 Hz and around 1st and 2nd harmonics of 17 Hz. Considering the 

fTCD features, the most common selected significant power spectrum features were found at 

frequency bands of 0-50, 1200-1250, and 1350-1400 for the left fTCD channel and at frequency 

a) b) c) 

Figure 18 Specificities (mean and standard deviation) calculated using both EEG and fTCD, EEG only, and 

fTCD only for flickering MR vs baseline problem (a), flickering WG vs baseline problem (b), and flickering MR 

vs flickering WG (c). 
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bands of 0-100, 300-350, and 1950-2000 Hz for the right fTCD channel as seen in Fig. 23. We 

observed also that there is no specific feature that is common across all the participants, which 

indicates that the selected features are participant specific.  

In this chapter, we initially focused on the feasibility analysis of the EEG-fTCD hybrid 

system to understand the most efficient visual presentation in terms of accuracy and bit rate 

compared to the study we did before [28]. However, since the online performance is of great 

interests to the BCI community, we included an online analysis for the system performance. In 

particular, each participant attended one session (a total of 150 trials).  The first 100 trials were 

used for training of the system and calculating the optimal CDF subject-specific threshold while 

the last 50 trials were used for testing the online performance. Accuracy of 90.91% was obtained 

for MR versus WG compared to 92.38% obtained using offline analysis. In addition, 85.63% was 

achieved for MR versus baseline compared to 89.11% achieved offline. Finally, WG versus 

baseline yielded accuracy of 79.77% while the offline analysis obtained 80.88% accuracy.   

 

 

 

a) b) 

Figure 19 Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and 

fTCD only for for flickering MR vs baseline problem with subject-independent threshold (a) and subject-

specific thresholds (b). 



 82 

 

 

 

 

 

a) b) 

Figure 20 Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and 

fTCD only for flickering WG vs baseline problem with subject-independent threshold (a) and subject-

specific thresholds (b). 

a) b) 

Figure 21 Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, 

and fTCD only for flickering MR vs flickering WG problem with subject-independent threshold (a) and 

subject-specific thresholds (b). 
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Figure 22 Average transmission rates calculated using EEG-fTCD combination for 

the 3 binary problems with subject-independent and subject-specific thresholds. 

Figure 23 2D histogram of the fTCD significant features appearing at right fTCD channel 

(CH1) and left fTCD channel (CH2) among the 11 individuals participated in the study. 
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5.3 Discussion 

In general, subject-specific thresholds achieved higher accuracies compared to subject-

independent thresholds for the 3 binary selection problems. For MR/WG versus baseline, the 

average accuracy difference between the hybrid combination and EEG was higher for subject-

specific thresholds (4.06% / 5.81%) compared to the difference achieved by subject-independent 

threshold (3.46% / 2.53%). In contrast, EEG-fTCD combination achieved higher average accuracy 

difference using subject-independent threshold compared to subject-specific thresholds for MR 

versus WG binary selection problem. Specifically, subject-independent threshold obtained 3.46% 

average accuracy difference compared to subject-specific thresholds which obtained 2.16% 

average difference. The combination was proved to be significant compared to EEG only for 

MR/WG versus baseline using only subject-specific thresholds while it was found to be significant 

using both subject-independent and subject-specific thresholds for MR versus WG. Therefore, it 

is possible to use subject-independent threshold for MR versus WG. One advantage of employing 

such threshold is that no parameter selection (CDF threshold) needs to be performed for each 

participant separately. In contrast, for MR/WG versus baseline, the CDF threshold parameter has 

to be optimized for each participant.   

Compared to a previous fTCD study [49] in which we obtained approximately 80% average 

accuracy, in this study, we obtained lower fTCD accuracies for several reasons. Here, for each 

participant, we find the maximum accuracy for the hybrid system. Such accuracy is more 

controlled by the EEG which is the primary input modality, thus, the corresponding fTCD accuracy 

is not necessarily the maximum fTCD accuracy. In addition, in this study, the tasks were flickering 

to elicit SSVEPs. Such flickering reduced the concentration of each subject on the mental task to 

be performed. In addition, in the previous study, a baseline period of 15 min was included before 
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stating the tasks to stabilize the cerebral blood flow. In addition, a 45-s resting period was included 

between consecutive tasks. Here, no baseline/ resting periods were inserted before/after each task 

to stabilize the cerebral blood flow. In fact, the baseline was shown at random times since the 

objective behind having the baseline was not to stabilize the blood flow after each task, but it was 

considered as a separate task that resembles the case when the BCI user does not intend to issue a 

specific command. Moreover, the baseline is planned to be used in the future to normalize data 

across participants so that data from all participants can be used in one machine learning problem.    

In Table 16, we compared the proposed hybrid BCI with the state of the art EEG-fNIRS 

hybrid BCIs [127], [83], [79], [64] [59], [60], [78], [80] as well as the motor imagery based EEG-

fTCD hybrid system we introduced before [98]. Accuracies of the 3 binary selection problems 

were listed in Table 16. Comparisons were performed in terms of trial length and accuracy. 

Compared to the motor imagery EEG-fTCD hybrid system we developed [98] in the previous 

chapter, an average accuracy increase of 10% was achieved as seen in Table 16. However, the 

proposed system is slower since it requires an average time of 6.36 s to achieve 92.38 % accuracy 

while the MI one requires only 3.5 s on average to reach 82.38% accuracy. In line with the 

differences in speed, the flickering MR/WG presentation achieved maximum bit rate of 5.6 

bits/min while the MI visual presentation obtained 10.57 bits/min. On the other hand, right/left 

arm MI versus baseline achieved higher accuracies compared to right arm versus left arm MI. In 

contrast, it was found that MR/WG versus baseline problems achieved lower accuracies compared 

to MR versus WG problem. Since the location of the baseline cross is very close to the flickering 

MR and WG tasks as seen in Fig. 15 (b), flickering affected the subject attention even during 

focusing at the baseline cross and caused reduction in accuracy for MR/WG versus baseline 

problems. 
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Table 16 Comparison between the proposed hybrid system and the state of the art hybrid BCIs. 

Method BCI Type Accuracy 
Trial length (s) 

Task Baseline/rest 

[127] Fazli et al., 2012 EEG+fNIRS 83.20% 15 6/0 

[83] Blokland et al., 2014 EEG+fNIRS 79.00% 15 0/30±3 

[79] Khan et al., 2014 EEG+fNIRS 83.60% 10 0/5 

[64] Putze et al., 2014 EEG+fNIRS 94.70% 12.5±2.5 0/20 ±5 

[59] Yin et al., 2015 EEG+fNIRS 89.00% 10 0/21±1 

[60] Koo et al. 2015 fTCD+NIRS 88.00% 15 0/60 

[78] Buccino et al., 2016 EEG+fNIRS 72.20% 6 6/0 

[78] Buccino et al., 2016 EEG+fNIRS 94.20% 6 6/0 

[80] Shin et al., 2017 EEG+fNIRS 88.20% 10 0/16±1 

[98] Khalaf et al.,2019 (right/baseline) EEG+fTCD 88.33% 10 NA 

[98] Khalaf et al.,2019 left/baseline) EEG+fTCD 89.48% 10 NA 

[98] Khalaf et al.,2019 (right/left) EEG+fTCD 82.38% 10 NA 

Proposed method (MR/baseline) EEG+fTCD 89.11% 10 NA 

Proposed method (WG/baseline) EEG+fTCD 80.88% 10 NA 

Proposed method (MR/WG) EEG+fTCD 92.38% 10 NA 

*NA: Not applicable 

 

Compared to the other BCIs listed in Table 16, in terms of trial length, the proposed system 

has the shortest trial length of 10 s. In addition, the proposed system is faster since it requires no 

baseline/rest period before/after each task. In terms of accuracy, the proposed hybrid BCI 

outperforms most of the methods in comparison. However, the systems introduced by Putze et al. 

[64] and Buccino et al. [78] achieved higher accuracy compared to  ours as they obtained 94.70% 

and 94.20% average accuracy respectively. Yet, these system are slower than our system since the 

one introduced by Putze et al. [64] requires at least 12.5 s as a task period and 20 s as a resting 
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period while the one presented by Buccino et al. [78] requires a baseline period of 6 s before 

starting each task.  

The proposed BCI can be used to improve the quality of life for disabled individuals by 

increasing the contact with the society though using the BCI for communication with the external 

environment. Also, the level of independency for such individuals can be increased when using 

such BCI to control assistive devices such as prosthetic limbs and wheel chairs [118]. Moreover, 

the BCI can be used for environmental control purposes. Specifically,  individuals using the BCI 

in  homes can control lights, temperature, TVs, etc. [119]. In addition, the BCI can be used as a 

neurorehabilitation tool that helps individuals with disabilities to restore lost neuromuscular 

functions [121].   

Compared to the existing work on hybrid BCI that combines EEG with other modalities, 

we have made important progress towards making such systems real-world-worthy in terms of 

speed and accuracy, see Table 16 for comparison with other hybrid systems. However, the system 

still has limitations such that the temporal resolution of fTCD is lower than EEG resulting in longer 

trial lengths and decreasing the speed of the system. We will focus on this limitation in our future 

work. For example, such mismatch between the temporal resolution of these modalities can be 

minimized by introducing advanced analysis techniques for fTCD data to improve the obtained 

accuracy within the minimum possible task period. In particular, Wavelet analysis can be 

employed for fTCD analysis since it was used  in a recent study [49] to prove that fTCD is as a 

viable candidate for real-time BCIs and it achieved accuracies of approximately 80% and 60% for 

binary and 3-class BCIs within 3 and 5 s respectively. On the other hand, based on the feedback 

from the BCI users, a bigger screen will be used to run the experiment to reduce the flickering 
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effect on the subject’s attention while focusing on the baseline cross. Moreover, the 25-min session 

will be divided into 2 sessions to reduce the user fatigue due to the flickering.  

5.4 Conclusion 

We propose a novel hybrid BCI that uses EEG to measure brain electrical activity and 

fTCD to measure cerebral blood velocity. Flickering MR and flickering WG tasks as well as a 

baseline cross were used in designing the visual presentation. Three binary selection problems 

were formulated including MR versus baseline, WG versus baseline, MR versus WG. Each 

problem was analyzed using subject-independent and subject-specific thresholds. It was found that 

subject-specific thresholds achieve higher performance measures for MR versus baseline, WG 

versus baseline and WG versus MR problems as it obtained average accuracy of 89.11%, 80.88%, 

and 92.38% respectively compared to 86.65%, 77.69%, and 89.78% achieved by subject-

independent threshold. Bit rates of 4.39, 3.92, 5.60 bits/min were obtained for MR versus baseline, 

WG versus baseline, MR versus WG respectively. Such promising results show that the proposed 

hybrid BCI is a feasible candidate for real-time BCI applications.  
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6.0 Common Spatial Pattern and Wavelet Decomposition for Motor Imagery EEG- fTCD 

Brain-Computer Interface 4 

 

In this chapter, we extend our previous work, detailed in chapter 4.0, on MI multimodal 

hybrid BCI that utilizes EEG and fTCD modalities. In particular, we extend our feature extraction 

approach by considering features computed based on multiscale analysis and common spatial 

pattern (CSP) instead of using power spectrum based features we employed previously [98] in 

chapter 4.0. It was shown that multiscale analysis captures the changes in fTCD in a timely fashion 

making it a modality suitable for real-time BCIs [49]. Moreover, CSP is commonly used for EEG-

based MI BCIs due to its computational simplicity and ability to find the spatial patterns 

characteristic to different motor imagery tasks [131].  Using the classical feature extraction 

approaches described above, we mainly contribute to multi-modal fusion of EEG and fTCD 

features. In particular, we propose a probabilistic fusion of EEG and fTCD evidences instead of 

simple concatenation of EEG and fTCD feature vectors. Through such a probabilistic fusion, the 

contributions of each modality towards the correct decision can be optimized. More specifically, 

EEG data was analyzed using common spatial pattern while fTCD data was analyzed using 

wavelet decomposition. Significant fTCD features were selected using Wilcoxon test. To fuse 

EEG and fTCD features of each trial, we developed a Bayesian framework and combined EEG 

and fTCD evidences under 3 different assumptions. Intent inference was made based on maximum 

                                                 

4 Based on Aya Khalaf, Ervin Sejdic, Murat Akcakaya, “Common Spatial Pattern and Wavelet 
Decomposition for Motor Imagery EEG-fTCD Brain-Computer Interface,” Journal of Neuroscience Methods, vol. 
320, pp. 98-106, 2019 © [2019] Elsevier. 
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likelihood estimation. The proposed analysis technique was used to evaluate 3 binary selection 

problems including right MI vs baseline, left MI versus baseline, and right MI versus left MI. 

6.1 Materials and Methods 

This section includes detailed explanation of preprocessing, feature extraction and 

selection methods as well as feature fusion and classification. 

6.1.1  Preprocessing 

EEG data was filtered using g. USBamp, a bio-signal amplifier, with 8th order bandpass 

filter of corner frequencies 2 and 62 Hz as well as 4th order notch filter with corner frequencies 58 

and 62 Hz. Since fTCD data are sampled at 44.1 kHz while the fTCD signals are approximately 

bandlimited to 4.4 kHz, the data were downsampled by a factor of 5 after a low-pass filter with 4.4 

kHz corner frequency was applied to avoid aliasing. 

6.1.2  Common Spatial Pattern (CSP) 

In this study, common spatial pattern (CSP) was used to extract features from EEG data. 

CSP is one of the most efficient feature extraction techniques for MI-based EEG BCIs since 

characteristic EEG spatial patterns obtained using CSP make MI different tasks significantly 

differentiable [132]. Basic CSP algorithm is used to analyze multi-channel data based on 

observations from two classes. In particular, it designs a linear transform that maps the 
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observations from two classes to a new space where they are more discriminative in terms of 

variance [133]. More specifically, the aim of CSP is to learn the optimal spatial filters which 

maximize the variance of one class while minimizing the variance of the other class simultaneously 

[82]. Finding such spatial filters can be performed through solving the following optimization 

problem:  

                                                                      max   tr WȭୡW                                                                     (4) 

s. t.  W(ȭ(ା) + ȭ(ି))W = 1 

where ȭୡ is the average trial covariance matrix for class ܿ ߳{+,െ} and wȭୡw is the variance in 

direction w. 

Assume each trial is represented by matrix ܴே௫் where ܰ is the number of EEG channels 

and ܶ is the number of samples. Sample covariance matrix for each trial ݉  is estimated as follows: 

                                                                      ܵ =
்ܴܴ

(்ܴܴ)ݎݐ
                                                                        (5) 

The average trial covariance matrix can be calculated as follows: 

                                                                       ȭୡ =
1
ܯ
 ܵ

ெ

ୀଵ

                                                                      (6) 

where ܯ is the number of trials belonging to class ܿ . The optimization problem in (4) can be solved 

by simultaneous diagonalization of the covariance matrices ȭୡ. This can be written as follows: 

                                                                           Wȭ(ା) W = Ȧ(ା)                                                            (7) 

Wȭ(ି)W = Ȧ(ି)          

            s. t.  Ȧ(ା) + Ȧ(ି) = I 

where Ȧ is a diagonal matrix with the eigenvalues ߣ , j = 1,2, … N  on diagonal. Solving (7) is 

equivalent to solving the generalized eigenvalue problem given by: 
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                                                                       ȭ(ା)w୨ = ɉȭ(ି)w                                                                   (8) 

where w  is the j௧ generalized eigenvector and ߣ =
ఒೕ

(శ)

ఒೕ
(ష) .(7) is satisfied for transformation matrix 

W = [wଵ , wଶ, … . wே] and ߣ given by: 

ߣ                                                                           = w
்ȭୡw                                                                           (9) 

where ߣ are the diagonal elements of Ȧ. Given that Ȧ(ା) + Ȧ(ି) = I, consequently, it can be 

concluded that ߣ
(ା) + ߣ

(ି) = 1. 

For instance, when value of ߣ
(ା) is large, it reflects higher variance in the positive class 

when filtering it using the spatial filter w . In the meantime, a high value of ߣ
(ା)yields low value 

of  ߣ
(ି). Therefore, the same spatial filter w  will result in low variance when used for filtering the 

negative class. For classification purposes, eigenvectors from both ends of matrix W are 

considered to maximize the differentiation between the 2 classes. In previous studies [134]–[136], 

it was found that 3 eigenvectors from both ends of W are sufficient to perform the classification 

task. However, since such choice of the number of eigenvectors used for EEG spatial filtering can 

vary depending on many parameters such as the number and the location of the electrodes used in 

each study, in this chapter, we solved the 3 binary classification problems at all possible numbers 

of eigenvectors. In particular, we spatially filtered EEG data using 1, 2, 3, …., and 8 eigenvectors 

from both ends of  W. To extract EEG features, we calculated the log variance of each spatially 

filtered signal. 
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6.1.3  Wavelet Decomposition 

fTCD data were analyzed using 5-level wavelet decomposition that utilized Daubachies 4 

mother wavelet. Such analysis was performed since it was used before with fTCD  data and it 

yielded the most efficient fTCD-based BCI in literature [137] as explained in chapter 3.0. To 

reduce the dimensionality of the fTCD feature vector, 4 features were computed for each wavelet 

band instead of using all wavelet coefficients as features. The 4 features included mean, variance, 

skewness, and kurtosis. Feature vector corresponding to each trial included 24 features for each 

channel and 48 features in total. 

6.1.4  Feature Reduction and Classification 

The Wilcoxon signed rank test [113] was used to select the significant features from fTCD 

feature vectors. p-values of 0.001, 0.005, 0.01, and 0.05 were used. As for EEG, the feature vector 

of each trial contained 2݂ features obtained by projecting the trial data using ݂ = 1, 2, 3, …., and 

8 eigenvectors from both ends of  W.  To assess the performance of single-modal BCIs (EEG only 

and fTCD only BCIs), selected features from each modality were classified solely using the SVM 

classifier. In particular, the performance of fTCD only system was evaluated at p-values of 0.001, 

0.005, 0.01, and 0.05. Also, the performance of EEG only system was evaluated using 2݂ (2, 4, 6, 

…., and 16) CSP features. The best set of performance measures for each modality were reported 

in the results section below.  

To evaluate the performance of the hybrid system, the EEG feature vector of each trial 

containing ݂ features was projected into one scalar SVM score (EEG evidence). Moreover, the 

selected features from the fTCD feature vector were also projected into one scalar SVM score 
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(fTCD evidence). In particular, the EEG and fTCD feature vectors corresponding to training trials 

were used to learn 2 SVM classifiers separately. The 2 classifiers were used to obtain 2 SVM scalar 

scores representing projected EEG and fTCD feature vectors of each trial under test. EEG and 

fTCD SVM scores were evaluated at p-values of 0.001, 0.005, 0.01, and 0.05 and  2݂ (2, 4, 6, …., 

and 16) CSP features. The best set of performance measures were reported in the results section. 

6.1.5  Bayesian Fusion and Decision Making 

We designed a Bayesian framework to fuse EEG and fTCD evidences (SVM scores 

described in Section 6.1.4) under 3 different assumptions including joint EEG-fTCD distributions 

 as well as weighted independent EEG and (2ܣ) independent EEG and fTCD distributions ,(1ܣ)

fTCD distributions (3ܣ). For each binary selection problem, EEG and fTCD evidences 

corresponding to trials of that problem were partitioned randomly into training and testing sets 

using 10-fold cross validation scheme. Assume ܰ is the number of trials presented to a certain BCI 

user. Given a set of EEG and fTCD evidences Y = {yଵ, … yே} where y = {e, f}, e and f are 

EEG and fTCD evidences respectively. As shown in Fig. 24, for a test trial ݇, inference of the 

unknown user intent x୩ will be achieved through state estimation using the EEG and fTCD 

evidences jointly. Here, since we solve the binary classification problem through state estimation, 

we assume that ݔ takes only two distinct values for each binary classification problem. Fig. 24 

(b) assumes independence between the EEG and fTCD evidences conditioned on the unknown 

state x୩ while Fig. 24 (a) does not make this assumption.  Inference of the user intent without 

restricting EEG and fTCD evidences to any assumption can be found through solving the following 

optimization problem. 
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                                                       x୩ෞ =    arg max
୶ౡ

p(x୩|Y = y)                                                        (10)  

In (10), p(x୩|Y) is the posterior distribution of the state x୩ conditioned on the observations Y. 

From Bayes rule and noting that the conditional distribution of ܻ, ܲ(ܻ) does not depend on the 

state variable ݔ, (10) is equivalent to: 

                                                     x୩ෞ =    arg max
୶ౡ

p(Y = y|x୩) p(x୩)                                              (11) 

where p(Y|x୩)  is the state conditional distribution of the evidences Y and p(x୩) is the prior 

distribution defined over the values of state. Since the number of trials belonging to each class is 

randomized in our study, we assume that p(x୩) is uniformly distributed. Accordingly, we rewrite 

(11) as: 

                                                         x୩ෞ =    arg max
୶ౡ

p(Y = y|x୩)                                                     (12) 

The distribution p(Y|x୩)  is computed from the training data. In particular, p(Y|x୩ = cଵ) and 

p(Y|x୩ = cଶ) are state conditional distributions of the evidences Y belonging to class cଵ (x୩ = cଵ) 

and class cଶ (x୩ = cଶ) respectively. The conditional distribution representing each class were 

estimated using kernel density estimation with a Gaussian kernel. Silverman's rule of thumb [138] 

was used to calculate the kernel bandwidth. User intent at trial ݇ is inferred by solving eqn. (12) 

at the evidences Y = y . In this study, the distribution p(Y|x୩) was evaluated under 3 different 

assumptions.  

6.1.5.1 Assumption 1: Joint Distribution 

Since the  k୲୦ evidences are y = {e, f},  (11) can be written as: 

                                                  x୩ෞ =         arg, max
୶ౡ

p(݁ = e, f = f|x୩)                                           (13) 
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where p(e, f|x୩) is the state conditional joint distribution of e and f.  This is represented graphically 

in Fig. 24 (a). To compute p(e, f|x୩) for N-10 training trials, the joint distribution of the EEG and 

fTCD scores was assumed to follow a multivariate Gaussian distribution. Kernel density 

estimation with a Gaussian kernel was employed to compute the distributions p(݁, f|x୩),݇ = 1, 2. 

For evidences under test y = {e, f},  e and  f are plugged in (13) and the user intent x୩ that 

yields the maximum likelihood is selected. 

6.1.5.2 Assumption 2: Independent Distributions  

In order to compute p(Y|x୩), we will assume that conditioned on the latent state, the EEG 

and fTCD evidences are independent from each other as seen in Fig. 24 (b), then accordingly also 

considering the uniform prior over the states, we rewrite (13) as:  

                                         x୩ෞ =     arg, max
୶ౡ

p(݁ = e|x୩)p(f = f|x୩)                                              (14) 

where  p(e|x୩) and p(f|x୩) are the distributions of EEG and fTCD evidences conditioned on the 

state x୩ respectively.  

a) b) 

Figure 24 Probabilistic graphical model illustrating the state and measurement relationships assuming EEG 

and fTCD evidences are jointly distributed (a) and independent (b). 
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SVM EEG and fTCD scores of the N-10 training trials are used separately to compute 2 

distributions [(e|x୩) and p(f|x୩)] using kernel density estimation with Gaussian kernel. For 

evidences under test  y = {e, f},  e and  f  are plugged in (14) and the user intent x୩ that yields 

the maximum likelihood is selected. 

6.1.5.3 Assumption 3: Weighted Independent Distributions  

Since the contribution of EEG and fTCD evidences towards making a correct decision 

might be unequal, we suggest weighting the distributions p(e|x୩) and p(f|x୩), and thus rewriting 

(13) as: 

                                  x୩ෞ =     arg, max
୶ౡ

p(݁ = e|x୩)ఈp(f = f|x୩)ଵିఈ                                             (15) 

where ߙ and 1 െ  ,represent the optimum contribution of the EEG and fTCD modalities ߙ

respectively. ߙ ranges from 0 to 1. p(e|x୩) and p(f|x୩) were computed as mentioned in section 

6.1.5.2. To simplify (15), natural logarithm was employed. In particular, since natural logarithm 

is a monotonically increasing function, maximization of the right-hand side of (15) is equivalent 

to maximization of the natural logarithm of this right-hand side. Therefore, (15) is equivalent to 

the convex combination of the log likelihoods given by (16). 

                           x୩ෞ =     arg, max
୶ౡ

ߙ]  ln p(݁ = e|x୩) + (1 െ Ƚ) ln p(f = f|x୩)]                      (16) 

The training of our hybrid system requires the identification of the optimum task period for 

each individual. For assumption 3ܣ, unlike 1ܣ and 2ܣ, we performed 2D optimization since we 

seek optimizing both the task period and the Į�YDOXH��6XFK�RSWLPL]DWLRQ�LV�DFKLHYHG�WKURXJK�JULG�

search over a WDVN�SHULRG�UDQJLQJ�IURP���WR����VHFRQGV�ZLWK�D�VWHS�RI���VHFRQG�DQG�RYHU�Į�YDOXHV�

ranging from 0 to 1 with a step of 0.01.   
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6.1.6  EEG-fTCD Analysis Across Time 

To evaluate the performance of the hybrid system compared to the single-modal systems 

(EEG only and fTCD only systems), accuracy and information transfer rate (ITR) were calculated 

across 10-s periods (trial length) for the 3 systems.  

Both EEG and fTCD data were analyzed across time at time points 1, 2….,10 s. An 

incremental window with initial length of 1 second and increments of 1 second was used to analyze 

EEG data while a moving window of 1 second length was used to analyze fTCD data. The moving 

window was chosen for fTCD analysis based on an fTCD-based BCI study in which performance 

of both incremental and moving windows was compared (see chapter 3.0) [49].  In particular, CSP 

EEG features and fTCD features at each time window were computed and the performance 

measures of EEG only and fTCD only systems were calculated at each time point. To compute the 

performance measures of the hybrid system, EEG and fTCD evidences were combined using the 

Bayesian framework described in section 6.1.5 for joint user intent inference. In particular, at each 

time point (1, 2….,10 s), for every trial, EEG and fTCD evidences corresponding to the EEG and 

fTCD feature vectors at that time point were calculated. Then, these evidences were combined 

under the 3 different assumptions described in section 6.1.5 and the corresponding performance 

measures were calculated. 

6.2 Results 

To assess the significance of combining EEG and fTCD for hybrid BCI design, for each 

participant, maximum possible accuracies obtained using EEG only and fTCD only were 
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compared with maximum accuracy achieved using the hybrid system under the 3 different 

assumptions (A1, A2, and A3). These accuracies are reported for each individual separately in 

Tables 17, 18, and 19 for right MI vs baseline, left MI versus baseline, and right MI vs left MI 

problems respectively. Moreover, to evaluate the balance of the prediction model, error bars of 

sensitivities and specificities corresponding to the accuracies reported in Tables 17, 18, and 19 

were plotted in Fig. 25. In addition, to statistically evaluate the significance of the hybrid 

combination compared to EEG only, p-values, reported in Table 20 representing the statistical 

difference between the accuracy vector of A1, A2, and A3 and accuracy vector of EEG only were 

calculated using the Wilcoxon signed rank test. However, statistical comparison in terms of 

maximum accuracy only is not sufficient to judge the effectiveness of the BCI since accuracy does 

not reflect the speed of the BCI in contrast to ITR which is a measure that combines both speed 

and accuracy. Therefore, we compared the hybrid system under A1, A2, and A3 with EEG only 

and fTCD only in terms of ITRs that are computed at 1 second trial length. We chose 1 second as 

the trial length because such a selection will enable us to use this system in online applications. 

Moreover, average ITRs of A1, A2, A3, EEG only, and fTCD only were plotted across the 10-s 

trial length and presented in Fig. 26.  

For right MI versus baseline, Table 17 shows that EEG only achieved average accuracy of 

90.52% and fTCD only achieved average accuracy of 64.48% while the hybrid system obtained 

91.35%, 92.29%, and 93.85% under A1, A2, and A3 assumptions respectively. Statistical 

comparisons showed that accuracy vectors of A2 and A3 are significant compared to accuracy 

vector obtained using EEG only with p-values of 0.002 and 0.0009 while in terms of ITRs, A2 and 

A3 were found to be significant with p-values 0.0098 and 0.001. For both accuracy and ITR, A1 

was found to be insignificant as seen in Tables 20 and 21. As for left MI versus baseline, A1, A2,  
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Table 17 Maximum accuracy achieved for each subject using hybrid combinations (A1, A2, A3), EEG only, 

and fTCD only for right MI vs baseline problem. 

Sub_ID EEG fTCD A1 A2 A3 

1 92.71% 64.58% 93.75% 93.75% 94.79% 

2 90.63% 60.42% 89.58% 90.63% 92.71% 

3 81.25% 63.54% 82.29% 82.29% 84.38% 

4 87.50% 68.75% 89.58% 93.75% 95.83% 

5 96.88% 61.46% 95.83% 97.92% 97.92% 

6 86.46% 68.75% 88.54% 89.58% 92.71% 

7 93.75% 59.38% 94.79% 94.79% 96.88% 

8 95.83% 60.42% 95.83% 96.88% 96.88% 

9 87.50% 65.63% 89.58% 89.58% 91.67% 

10 92.71% 71.88% 93.75% 93.75% 94.79% 

Mean 90.52% 64.48% 91.35% 92.29% 93.85% 

 

Table 18 Maximum accuracy achieved for each subject using hybrid combinations (A1, A2, A3), EEG only, 

and fTCD only for left MI vs baseline problem. 

Sub_ID EEG fTCD A1 A2 A3 

1 92.78% 58.76% 92.78% 91.75% 93.81% 

2 93.81% 68.04% 92.78% 92.78% 93.81% 

3 91.75% 62.89% 92.78% 94.85% 96.91% 

4 87.63% 59.79% 86.60% 83.51% 89.69% 

5 92.78% 61.86% 91.75% 89.69% 92.78% 

6 87.63% 62.89% 83.51% 93.81% 94.85% 

7 93.81% 54.64% 93.81% 94.85% 94.85% 

8 95.88% 59.79% 89.69% 90.72% 90.72% 

9 91.75% 61.86% 91.75% 93.81% 94.85% 

10 93.81% 61.86% 91.75% 93.81% 94.85% 

Mean 92.16% 61.24% 90.72% 91.96% 93.71% 
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and A3 obtained average accuracies of 90.72%, 91.96%, and 93.71% respectively while EEG only 

and fTCD only obtained 92.16% and 61.24% respectively. A1, A2, and A3 were statically 

compared with accuracy vector due to EEG only. As seen in Table 20, in terms of accuracy, A3 

was shown to be statistical ly insignificant compared to EEG only with a p-value of 0.0625 while 

A1 and A2 were insignificant compared to EEG only with p-values greater than 0.5. In contrast, 

in terms of ITR, A3 was found to be significant compared to EEG only with a p-value of 0.001 as 

shown in Table 21. fTCD average sensitivities and specificities of right MI versus baseline and 

left MI versus baseline problems were found to be imbalanced as shown in Fig. 25 (a) and Fig. 25 

(b). 

 

 

 

 

 

 

 

 

 

a) b) c) 

Figure 25 Sensitivities and specificities (mean and standard deviation) calculated using A1, A2, A3, EEG 

only, and fTCD only for right MI vs baseline problem (a), left MI vs baseline problem (b), and right MI 

vs left MI (c). 
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Table 19 Maximum accuracy achieved for each subject using hybrid combinations (A1, A2, A3), EEG only, 

and fTCD only for right MI vs left MI problem. 

Sub_ID EEG fTCD A1 A2 A3 

1 93.33% 63.81% 100.00% 100.00% 100.00% 

2 88.57% 58.10% 100.00% 100.00% 100.00% 

3 92.38% 70.48% 100.00% 100.00% 100.00% 

4 91.43% 62.86% 100.00% 100.00% 100.00% 

5 93.33% 59.05% 100.00% 100.00% 100.00% 

6 90.48% 61.90% 100.00% 100.00% 100.00% 

7 96.19% 60.95% 100.00% 100.00% 100.00% 

8 100.00% 62.86% 100.00% 100.00% 100.00% 

9 95.24% 57.14% 100.00% 100.00% 100.00% 

10 80.95% 62.86% 100.00% 100.00% 100.00% 

Mean 92.19% 62.00% 100.00% 100.00% 100.00% 

 

 

Table 20 P-values showing accuracy significance of A1, A2, and A3 compared to EEG only for the 3 binary 

problems. 

Comparison Right MI vs Baseline Left MI vs Baseline Right MI vs Left MI 

A1/EEG 0.1055 0.9922 0.0020 

A2/EEG 0.0020 0.5332 0.0020 

A3/EEG 0.0009 0.0625 0.0020 
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Table 21 P-values showing ITR significance of A1, A2, and A3 compared to EEG only for the 3 binary 

problems. 

Comparison Right MI vs Baseline Left MI vs Baseline Right MI vs Left MI 

A1/EEG 0.0938 0.2461 0.0059 

A2/EEG 0.0098 0.1250 0.0029 

A3/EEG 0.0010 0.0010 0.0010 

 

As seen in Table 19, the 3 hybrid combinations (A1, A2, and A3) achieved 100% accuracy 

for right MI versus left MI problem compared to 92.19% and 62.00% obtained using EEG only 

and fTCD only respectively. In line with these results, p-values of Tables 20 and 21 showed that 

A1, A2, and A3 are statistically significant compared to EEG only in terms of both accuracy and 

ITR. Moreover, balanced sensitivities and specificities were achieved using the hybrid system 

under the 3 assumptions A1, A2, and A3 as well as EEG only and fTCD only as shown in Fig. 25 

(c). 

The results above show that, on average, the accuracy differences between the hybrid 

system and EEG only are relatively low, however, in terms of ITRs, as seen in Fig. 26, average 

ITRs of A1, A2, and A3 are clearly higher than those achieved using EEG only and fTCD only for 

the 3 binary selection problems although, according to Table 21, A3 is the only assumption that 

shows statistical significance for the 3 selection problems when compared to EEG only. In 

particular, for right MI versus left MI, A1, A2, and A3 achieved maximum ITRs of 39.09, 39.46, 

and 40.83 bits/min respectively compared to 12.08 and 12.11 bits/min achieved by EEG only and 

fTCD only. As for right MI versus baseline, A1, A2, A3, EEG only, and fTCD only achieved 

maximum ITRs of 22.71, 19.89 22.27, 12.08, and 12.11 bits/min respectively. Finally, left MI 

versus baseline problem yielded maximum ITRs of 10.68 and 17.43 bits/min using EEG only and 

fTCD only while A1, A2, and A3 obtained 23.87, 24.29, and 26.55 bits/min. In summary, A3 is 
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the only fusion assumption that provided significantly higher performance compared to EEG only 

system for all the binary selection problems.  

 

a) b) 

Figure 26 Average ITRs calculated using EEG only, fTCD only, and the 3 hybrid combinations (A1, A2, 

and A3) for right MI vs baseline problem (a), left MI vs baseline problem (b), and right MI vs left MI 

problem (c). 

c) 
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6.3 Discussion 

In general, it can be noted that the proposed analysis approach including feature extraction 

and probabilistic fusion stages did not significantly boost the performance of the hybrid system 

compared to EEG only in terms of accuracy. However, the proposed analysis resulted in average 

ITR that is 5 times the average ITR obtained previously for right/left MI versus baseline [98]. 

Moreover, the average  ITR of the right MI versus left MI problem is 4 times the ITR achieved 

before for the same problem [98]. 

Considering the performance of the hybrid system for the 3 binary selection problems, it 

was found that right MI versus left MI problem obtained significantly higher average accuracy and 

average ITR compared to left/right MI versus baseline problems under assumptions A1, A2, and 

A3. Specifically, 100% accuracy was obtained under the 3 different assumptions compared to 

93.85% and 93.71% achieved by right MI versus baseline and left MI versus baseline respectively 

while average ITRs of 40.83, 19.89, and 26.55 bits/min were obtained for right MI versus left MI, 

right MI versus baseline, and left MI versus baseline respectively. Such results indicate that the 

information provided by the EEG and fTCD modalities during task versus task problem are well 

suited to complement each other. 

 In terms of both accuracy and ITR, as seen in Tables 17-21, the hybrid system under 

assumptions A2 and A3 outperformed EEG only for right MI versus baseline and right MI versus 

left MI problems. For left MI versus baseline problem, although the hybrid system under A1, A2, 

and A3 did not provide significant improvement compared to EEG only in terms of accuracy, the 

hybrid system under A3 provided a significant improvement in terms of ITRs as shown in Table 

21. Considering the 3 binary selection problems, it can be concluded that A3 provides significantly 

higher accuracies and/or ITRs compared to EEG only as seen in Tables 17-19, Fig.  26, and 
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confirmed by the statistical comparisons shown in Tables 20 and 21. Therefore, we believe that 

the system can perform efficiently under the weighted independence assumption (A3).  

Although the accuracy due to EEG only for left MI versus baseline problem was higher 

than the EEG accuracy of right MI versus baseline problem, assumptions A2 and A3 failed to 

significantly improve the accuracy of the hybrid system compared to EEG only for left MI versus 

baseline while the same assumptions succeeded to significantly improve the hybrid performance 

for right MI versus baseline compared to EEG only. Therefore, we claim that such failure occurred 

because fTCD could not boost the performance of the system due to limitations related to the 

features extracted from fTCD data and how well these features are able to highlight the differences 

between left MI and baseline. To prove such a claim, at different decomposition levels, we 

investigated wavelet coefficients from which the fTCD statistical features were derived. As seen 

in Fig. 27, for each fTCD channel, the difference between the right MI coefficients and the baseline 

coefficients (Fig. 27 (a) and Fig. 27 (c)) is higher than the difference between the left MI 

coefficients and the baseline coefficients (Fig. 27 (b) and Fig. 27 (d)). Moreover, the differences 

between the wavelet coefficients due to MI tasks and the baseline seem to be localized rather than 

global while the statistical features we extract in this chapter are calculated for all coefficients 

within each wavelet band. For instance, out of around 2700 approximation coefficients, only 500 

coefficients highlight the differences between left MI and baseline coefficients as shown in Fig. 

27 (b) while many more coefficients highlight the differences between right MI and baseline as 

seen in Fig. 27 (a). Considering level 4 detail coefficients, for left MI versus baseline, the 

differences between the coefficients were more noticeable for the last 3000 coefficients out of 

11000 in total for both channels while for right MI versus baseline, the differences were obvious 
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over all the coefficients representing channel 2 and over the last 3000 coefficients representing 

channel 1.  

                                                                                                                                                                           

a) b) 

c) d) 

Figure 27  For each task, wavelet coefficients of each wavelet band were averaged across trials corresponding 

to that task. The figure shows average approximation and level 4 detail wavelet coefficients for right MI vs 

baseline problem (a, c) and left MI vs baseline problem (b, d). It can be noted that, for each fTCD channel, 

the difference between right MI coefficients and baseline coefficients (Fig.4. a and Fig.4. c) is higher than the 

difference between left MI coefficients and baseline coefficients (Fig.4. b and Fig.4. d). 
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In general, since the difference between the right MI and baseline coefficients is more 

obvious than the difference between the left MI and baseline coefficients, the global features were 

able to better highlight the differences between right MI and baseline and, therefore, improve the 

hybrid performance compared to EEG only for right MI versus baseline. Considering Fig. 27 (a) 

and Fig. 27 (b), for both channels, it can be noted that the difference between the right MI and left 

MI coefficients is more noticeable than the right MI-baseline difference and left MI-baseline 

difference. Such observation explains the reason why fTCD provided more significant information 

for right MI versus left MI problem.  

In this chapter, extraction of fTCD global statistical features was performed with the aim 

of reducing the computational complexity of the system through extracting few numbers of 

features rather than utilizing the wavelet coefficients themselves as features which will result in a 

very high-dimensional feature vector. To address local changes in the wavelet coefficients, as one 

of our future directions, we will calculate localized statistical features for each wavelet band 

though dividing each band into segments with equal length where the segment length can be 

determined based on the calibration sessions of each participant. 

In our preliminary study (chapter 4.0) in which we introduced MI hybrid EEG-fTCD BCI, 

average accuracies of 88.33%, 89.48%, and 82.38% and average ITRs of 4.17, 5.45, and 10.57 

bits/min were achieved for right MI versus baseline, left MI versus baseline, and right MI versus 

left MI respectively [98]. In the current study, we succeeded to significantly improve both accuracy 

and ITR of the proposed MI-based hybrid system. In particular, the current analysis yielded 

93.85%, 93.71%, and 100% average accuracy and 19.89, 26.55, and 40.83 bits/min average ITRs 

for right MI versus baseline, left MI versus baseline, and right MI versus left MI respectively.  
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Moreover, to evaluate the performance of the 2 visual presentations we designed for the 

hybrid EEG-fTCD system, we compared the current performance measures obtained using MI 

visual presentation with the preliminary performance measures we obtained in chapter 5.0 using 

MR/WG visual presentation [97]. As seen in Table 22, MI visual presentation using the current 

analysis approach outperformed MR/WG visual presentation in terms of accuracy. In terms of ITR, 

average ITRs obtained using MR/WG visual presentation were 4.39, 3.92, and 5.60 bits/min for 

MR versus baseline, WG versus baseline, and WG versus MR classification respectively [97]. 

Such ITRs are significantly lower than the ITRs we obtained in the current study using MI visual 

presentation especially for task versus baseline problems. 

Since the hybrid EEG-fTCD system is suggested as a faster alternative for EEG-fNIRS 

BCIs, we compared our results with the binary EEG-fNIRS BCIs in literature in terms of accuracy 

and trial length. As seen in Table 22, the MI EEG-fTCD system with the proposed analysis 

approach outperforms all the studies in comparison in terms of accuracy for the task versus task 

problem. For task versus baseline problems, the achieved accuracies are comparable to those 

obtained in studies [79], [64], [78]. However, unlike the hybrid BCIs in comparison, the proposed 

system does not require baseline/rest periods before/after each task yielding a total trial length that 

is shorter than trial length of all studies in comparison.  Therefore, inference of the user intent can 

be achieved faster using the proposed hybrid system with the current analysis approach.  
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Table 22 Comparison between the proposed hybrid system and the state-of-the-art hybrid BCIs. 

Method Activity Modalities Accuracy 
Trial length (s) 

Task Baseline/rest 

[127] Fazli et al., 2012 Motor Imagery EEG+fNIRS 83.20% 5 6/0 

[127] Fazli et al., 2012 Motor Execution EEG+fNIRS 93.20% 5 6/0 

[83] Blokland et al., 2014 Motor Imagery EEG+fNIRS 79.00% 15 0/30±3 

[83] Blokland et al., 2014 Motor Execution EEG+fNIRS 87.00% 15 0/30±3 

[79] Khan et al., 2014 Mental Arithmetic EEG+fNIRS 83.60% 10 0/5 

[79] Khan et al., 2014 Motor Execution EEG+fNIRS 94.70% 10 0/5 

[64] Putze et al., 2014 Visual/auditory stimuli EEG+fNIRS 94.70% 12.5±2.5 0/20 ±5 

[59] Yin et al., 2015 Motor Imagery EEG+fNIRS 89.00% 10 0/21±1 

[60] Koo et al. 2015 Motor Imagery fTCD+NIRS 88.00% 15 0/60 

[78] Buccino et al., 2016 Motor Execution EEG+fNIRS 72.20% 6 6/0 

[78] Buccino et al., 2016 Motor Execution EEG+fNIRS 94.20% 6 6/0 

[80] Shin et al., 2017 Mental Arithmetic EEG+fNIRS 88.20% 10 0/16±1 

[97] Khalaf et al.,2019 

(MR/baseline) 
SSVEP+ MR/WG EEG+fTCD 89.11% 10 NA 

[97] Khalaf et al.,2019 

(WG/baseline) 
SSVEP+ MR/WG EEG+fTCD 80.88% 10 NA 

[97] Khalaf et al.,2019 (MR/WG) SSVEP+ MR/WG EEG+fTCD 92.38% 10 NA 

[98] Khalaf et al.,2019 

(right/baseline) 
Motor Imagery EEG+fTCD 88.33% 10 NA 

[98] Khalaf et al.,2019 

(left/baseline) 
Motor Imagery EEG+fTCD 89.48% 10 NA 

[98] Khalaf et al.,2019 (right/left) Motor Imagery EEG+fTCD 82.38% 10 NA 

Proposed method (right/baseline) Motor Imagery EEG+fTCD 93.85% 10 NA 

Proposed method (left/baseline) Motor Imagery EEG+fTCD 93.71% 10 NA 

Proposed method (right/left) Motor Imagery EEG+fTCD 100.00% 10 NA 

*NA: Not applicable 
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6.4 Conclusion 

In this chapter, through fTCD multiscale analysis and CSP-based EEG analysis, we 

improved the performance of our novel MI hybrid system in which EEG and fTCD data are 

acquired simultaneously during visual presentation of MI tasks to the BCI users. Moreover, we 

proposed a probabilistic fusion approach of EEG and fTCD evidences instead of concatenating 

EEG and fTCD feature vectors of each trial. The proposed approach fuses EEG and fTCD 

evidences under 3 different assumptions. To evaluate the performance of the hybrid system 

compared to single-modal EEG and fTCD systems, we formulated 3 binary selection problems 

including right MI versus baseline, left MI versus baseline, and right MI versus left MI. It was 

found the hybrid system achieves the highest performance under assumption (A3) that assumes 

that EEG and fTCD are independent, but they do not have equal contribution towards making a 

correct decision. In particular, the hybrid system achieved average accuracies of 93.85%, 93.71%, 

and 100% and ITRs of 19.89, 26.55, and 40.83 bits/min for right MI versus baseline, left MI versus 

baseline, and right MI versus left MI respectively while the same problems yielded 90.52%, 

92.16%, and 92.19% average accuracy and ITRs of 12.08, 10.68, and 22.76 bits/min respectively 

using EEG only. Compared to both hybrid EEG-fNIRS and EEG-fTCD BCIs in literature, the 

system with the current analysis approach outperformed all the studies in comparison.  
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7.0 EEG-fTCD Hybrid Brain-Computer Interface Using Template Matching and Wavelet 

Decomposition 5 

In this chapter, we aim at improving accuracies and ITRs of the system employing 

flickering MR/WG visual presentation. To achieve such aim, we extend our feature extraction 

approach by considering features derived from multiscale analysis and template matching instead 

of employing features derived from EEG and fTCD power spectrums as performed in chapter 5.0 

[97].  In particular, considering fTCD data, it was shown before that the task performed by the BCI 

user can be identified with sufficient accuracy within 3-5 seconds of the task onset through 

analyzing the corresponding fTCD data using 5-level wavelet decomposition which makes fTCD  

a modality suitable for real-time BCI design [49].  Therefore, in this chapter, we employ 5-level 

wavelet decomposition to extract features from fTCD data. As for EEG analysis, one of the most 

successful target detection algorithms designed to detect SSVEPs  is canonical correlation analysis 

(CCA) [139] [140] in which artificial sinusoidal signals are used as reference signals to identify 

the stimulus of interest. To enhance target identification accuracy, CCA is extended such that 

templates generated from the EEG data are used instead of artificial sinusoidal signals [141]. 

However, extended CCA method is computationally expensive since the spatial filters used to 

project trial data are constructed for each single trial [142]. In this chapter, we use a simple 

template matching algorithm in which templates generated from EEG training data are used as 

reference signals instead of using artificial reference signals as performed in CCA. Moreover, our 

                                                 

5 Based on Aya Khalaf, Ervin Sejdic, Murat Akcakaya, “EEG-fTCD Hybrid brain-computer interface using 
template matching and wavelet decomposition,” Journal of Neural Engineering, vol. 16, no. 3, 2019 © [2019] IOP 
Publishing. 
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algorithm, unlike extended CCA, is computationally inexpensive since it requires only calculation 

of cross correlation between EEG segments of each trial and the corresponding EEG templates. 

These cross-correlations are used to generate EEG features. To select EEG and fTCD significant 

features, the Wilcoxon signed-rank test is employed. In this work, using the classical features 

described above, we mainly contribute to multi-modal fusion of EEG and fTCD features. In 

particular, instead of simple concatenation of EEG and fTCD feature vectors before classification 

as performed in our previous work [97], we propose a probabilistic fusion approach of EEG and 

fTCD evidences. Through such a probabilistic fusion, the contributions of each modality towards 

making a correct decision can be optimized. To perform such a probabilistic fusion, two SVM 

classifiers are used to project selected EEG and fTCD features of each trial separately into 2 scalar 

SVM scores. These scores (evidences) are fused under 3 different assumptions through the 

Bayesian framework we developed. To assess the performance of the hybrid system, 3 binary 

selection problems are evaluated including MR versus baseline, WG versus baseline, and WG 

versus MR. 

7.1  Materials and Methods 

This section includes a detailed description of preprocessing, feature extraction, and feature 

selection methods as well as feature fusion and decision-making algorithms. 
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7.1.1  Preprocessing 

EEG data were bandpass-filtered using the g. USBamp bio-signal amplifier with corner 

frequencies 2 and 62 Hz. EEG data were also filtered using 4th order notch filters with corner 

frequencies 58 and 62 Hz. Since fTCD data are sampled at 44.1 kHz while the fTCD signals are 

approximately bandlimited to 4.4 kHz, the data were downsampled by a factor of 5 after a low-

pass filter with 4.4 kHz corner frequency was applied to avoid aliasing. 

7.1.2  Feature Extraction 

During each data collection session, 150 trials were presented to the BCI user. To extract 

features of each trial, both EEG and fTCD data corresponding to each 10-s trial were segmented.  

The data of each trial consisted of 16 EEG segments collected from the 16 EEG electrodes as well 

as 2 fTCD segments collected from the 2 fTCD transducers. 

Cross correction coefficients generated using template matching represented EEG features 

while fTCD features were statistical features derived from the Wavelet decomposition of fTCD 

data corresponding to each trial. Features of all EEG/fTCD segments were concatenated to form 

EEG/fTCD feature vectors. 

7.1.2.1 Template Matching 

One of the most popular techniques to identify stimulus of interest in SSVEP-based BCI 

systems is canonical correlation analysis (CCA). In CCA, artificial sinusoidal signals with 

frequencies of the same value as the flickering frequencies of the stimuli presented to the users are 

used as reference signals to recognize the frequency of the stimulus under test [139] [140]. 
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However, using such artificial reference signals does not yield the best performance accuracy since 

these signals lack the features of real EEG signals. Therefore, CCA is extended such that templates 

generated from the EEG data are used instead of artificial sinusoidal signals [141] . However, such 

extension is computationally expensive since the spatial filters used to project EEG trial data are 

constructed for each single trial [142]. In this chapter, we used a simple template matching 

algorithm to identify the stimulus of interest and instead of using artificial reference signals as 

performed in CCA, templates generated from EEG training data were used as reference signals. 

Moreover, compared to extended CCA, our template matching algorithm is computationally 

inexpensive since it requires only calculation of cross correlations between EEG segments of each 

trial and the EEG templates while extended CCA requires, for each trial, optimizing the spatial 

filters used to project EEG data.  In particular, for each class, average of EEG data of the training 

trials was calculated where each EEG electrode was represented by one template and thus 16 

templates per class were generated. Assume each trial is represented by a matrix ܦ where ܦ is an 

ܰ × ܵ matrix, ܰ is the number of EEG channels and ܵ is the number of samples. The template of 

channel ݊ belonging to class ܥ  (ܶ) can be obtained as follows: 

                                                                    ܶ =
1
ܮ
ܦ(݊, : )


ୀଵ

                                                           (17) 

where ܦ(݊, : ) represents the ݊௧ channel of the ݈௧ trial matrix ܮ ,ܦ is the number of training 

trials belonging to class ܿ, and ݊ = 1, 2, … , ܰ. 

To identify the class of a test trial ܦ, cross correlations were calculated between the ܰ 

templates of each class (ܶ) and the corresponding ܰ EEG segments (ܦ(݊,  of the test trial as ((

given below.  
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where ݉ = 1, 2, … . , 2ܵ െ 1. For each channel ݊, maximum cross correlation value between the 

test segment ܦ(݊, and the corresponding template ܶ (  was selected as the feature representing 

that channel. Therefore, total of ܰ features represented the cross correlations between the test trial 

 These ܰ features were normalized by their maximum .ܥ and the templates belonging to class ܦ

value. Since we have 2 classes in each selection problem, and hence 2 sets of templates, we 

computed 2ܰ features representing each trial.  

7.1.2.2 Wavelet Decomposition 

Instead of extracting features derived from the fTCD power spectrum as performed in 

chapter 5.0 [97], we employed multi-scale analysis since the most efficient fTCD-based BCI in 

literature in terms of both accuracy and ITR employed 5-level wavelet decomposition for 

extracting features from fTCD data corresponding to MR and WG mental tasks [49]. Please see 

section 6.1.3 in chapter 6.0 for detailed description of this analysis. 

7.1.3  Feature Selection and Reduction 

For both EEG and fTCD feature vectors, significant features were selected using the 

Wilcoxon signed-rank test [113] at p-value of 0.05. However, for MR/WG versus baseline 

problems, the Wilcoxon test with 0.05 significance level failed sometimes during some cross-

validation folds to find significant features that distinguish WG/MR task against baseline. 
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Therefore, a p-value of 0.1 was also used for task versus baseline problems and 2 sets of 

performance measures corresponding to p-values of 0.05 and 0.1 were generated. The best set of 

performance measures was reported in the results section below. To evaluate the performance of 

single modality BCIs (EEG only and fTCD only BCIs), selected features from each modality were 

classified solely using the SVM classifier [114] and performance measures corresponding to each 

modality were generated.  

EEG and fTCD feature vectors were combined to assess the performance of the hybrid 

system.  Instead of concatenating the 2 feature vectors corresponding to each trial, SVM was used 

to reduce each feature vector of each trial into a 1-D SVM score. In particular, 2 SVM classifiers 

were trained separately using selected EEG and fTCD feature vectors of the training trials. For 

each trial under test, the selected features from the 32-D EEG and 48-D fTCD feature vectors of 

that trial were reduced into 2 scalar SVM scores corresponding to EEG and fTCD evidences of 

that trial.    

7.1.4  Feature Fusion and Decision Making 

Please see section 6.1.4 in chapter 6.0 for a detailed description of feature fusion and 

decision making processes. 

7.1.5  Temporal Analysis 

With the aim of finding the optimal task period, both EEG and fTCD data were analyzed 

and performance measures were evaluated across time. Calculated performance measures included 

accuracy and information transfer rate (ITR) [143]. 



 118 

Both EEG and fTCD data were analyzed across time at time points 1, 2….,10 s. For EEG 

data, an incremental window of 1 second initial length and increment size of 1 second was used to 

analyze the data across time while a moving window of 1 second length with no overlap was used 

to analyze fTCD data. The choice of the moving window for fTCD analysis was based on a study 

we carried out before to enhance the performance of an fTCD-based BCI that employs MR and 

WG tasks [49]. In particular, when computing the performance measures using EEG only, EEG 

template matching features of the EEG 1 second window are calculated, and performance 

measures are computed. Afterwards, the window size is increased by 1 second, EEG template 

matching features are calculated, and performance measures are revaluated. The same process is 

performed until the window length is equal to task period (10 seconds). Similar to EEG only 

system, performance measures due to fTCD only are evaluated using a moving window of 1-s 

width instead of an incremental window.  

To evaluate the performance of the hybrid combination, we developed a Bayesian 

framework that combines the evidences from fTCD and EEG modalities for joint user intent 

inference. At each time point (1, 2….,10 s), 1-D EEG and fTCD evidences corresponding to the 

EEG and fTCD feature vectors at that time point are generated. EEG and fTCD evidences 

corresponding to each time window are combined under 3 different assumptions including joint 

EEG-fTCD distributions, independent EEG and fTCD distributions as well as weighted 

independent EEG and fTCD distributions as described in section 6.1.4 and the corresponding 

performance measures are calculated. 
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7.2  Results  

To evaluate the effectiveness of the hybrid system, the maximum possible accuracy that 

can be obtained using EEG only and fTCD only was compared with the maximum accuracy 

achieved by the hybrid system under the 3 different assumptions (2ܣ ,1ܣ, and 3ܣ) explained in 

section 6.1.4. These accuracies are reported in Tables 23, 24, and 25 for MR vs baseline, WG 

versus baseline, and WG vs MR problems respectively. In addition, error bars of sensitivities and 

specificities corresponding to the accuracies listed in Tables 23, 24, and 25 were plotted in Fig. 

28. Moreover, ITRs of 3ܣ ,2ܣ ,1ܣ, EEG only, and fTCD only were compared in Fig. 29. P-values 

showing the statistical significance of 2ܣ ,1ܣ, and 3ܣ compared to EEG only and fTCD only 

across subjects were calculated using Wilcoxon signed rank test and reported in Table 26. 

As seen in Table 23, for the MR versus baseline problem, 2ܣ ,1ܣ, and 3ܣ achieved 

significantly higher average accuracies compared to EEG only and fTCD only. In particular, 

79.45%, 83.24%, and 86.27% average accuracies were achieved by 2ܣ ,1ܣ, and 3ܣ while EEG 

only and fTCD only obtained average accuracies of 75.28% and 68.66% respectively. As shown 

in Fig. 28, error bars of the corresponding sensitivities and specificities show that 2ܣ and 3ܣ have 

the highest average values and lowest standard deviation across participants especially compared 

to EEG only. Although 2ܣ ,1ܣ, and 3ܣ outperformed EEG only and fTCD only in terms of average 

accuracy, 1ܣ outperformed EEG for only 8 out of 11 participants while 2ܣ and 3ܣ outperformed 

EEG for 9 and 10 out of 11 participants respectively. Moreover, both 2ܣ and 3ܣ scored higher 

accuracies than fTCD only for all the participants while 1ܣ outperformed fTCD only for 10 out of 

11 participants. In line with these observations, the p-values of Table 26 showed that 1ܣ is not 

statistically significant compared to EEG only. Meanwhile, both 2ܣ and 3ܣ are statistically 
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significant compared to EEG only. Compared to fTCD only, 2ܣ ,1ܣ, and 3ܣ are statistically 

significant. In terms of ITRs, as seen in Fig. 29 (a), 3ܣ outperformed 2ܣ ,1ܣ, EEG, and fTCD for 

most of the participants. On average, as shown in Fig. 29 (d), 3ܣ achieved 8.95 bits/min while 1ܣ, 

 .EEG, and fTCD yielded 7.55, 5.14, 3.49, and 2.46 bits/min respectively ,2ܣ

Tables 24 shows a comparison of the performance measures obtained for the WG versus 

baseline problem. 2ܣ ,1ܣ, and 3ܣ obtained 78.26%, 82.85%, 85.29% average accuracy compared 

to 68.04%, and 67.67% obtained by EEG only and fTCD only. As shown in Fig 28 (b), the 

corresponding sensitivities and specificities have very similar values especially those of 1ܣ and 

 obtained 3ܣ and 2ܣ ,therefore, the proposed classification model is balanced. In addition ,2ܣ

higher accuracies than EEG only and fTCD only for all 11 participants. However, 1ܣ achieved 

higher accuracies than EEG only and fTCD only for 9 and 10 participants respectively. These 

results are supported by the p-values of WG versus baseline problem listed in Table 26. Fig. 29 

(b) shows that 2ܣ ,1ܣ, and 3ܣ yielded higher ITRs for most of the participants compared to EEG 

only and fTCD. Unexpectedly, 2ܣ obtained higher average ITR than 3ܣ as shown in Fig. 29 (d). 

In particular, 2ܣ obtained 8.89 bits/min while 3ܣ obtained 8.34 bits/min. Meanwhile, 1ܣ, EEG 

only, and fTCD only got ITRs of 5.11, 1.98, and 1.37 bits/min respectively. 

MR versus WG problem yielded the highest performance measures compared to MR/WG 

versus baseline problems as seen in Table 25. More specifically, 2ܣ ,1ܣ, and 3ܣ obtained average 

accuracies of 97.84%, 97.40%, and 98.18% compared to 79.65% obtained by EEG only and 

66.93% by fTCD only. Moreover, 2ܣ ,1ܣ, and 3ܣ showed very low variance in sensitivities of 

MR and WG tasks across participants compared to EEG only and fTCD only as shown in Fig. 28 

(c). Supported by the p-values in Table 26, for all participants, 2ܣ ,1ܣ, and 3ܣ yielded higher 

accuracies than EEG only and fTCD only. In addition, 2ܣ ,1ܣ, and 3ܣ achieved higher ITRs than 
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EEG only and fTCD only for all participants as seen in Fig. 29 (c). In terms of average ITRs, as 

shown in Fig. 29 (d), EEG only obtained 3.62 bits/min while fTCD only obtained 2.84 bits/min.  

However, when combined together, 2ܣ ,1ܣ, and 3ܣ yielded average ITRs of 20.99, 19.63, and 

21.29 respectively. 

 

Table 23 Maximum accuracy achieved for each subject using hybrid combinations (A1, A2, A3), EEG only, 

and fTCD only for MR vs baseline problem. 

Sub_ID EEG fTCD A1 A2 A3 

1 68.75% 70.83% 80.21% 86.46% 91.67% 

2 83.33% 60.42% 86.46% 89.58% 92.71% 

3 78.13% 76.04% 83.33% 84.38% 87.50% 

4 75.00% 65.63% 71.88% 76.04% 82.29% 

5 73.96% 78.13% 75.00% 79.17% 81.25% 

6 72.92% 64.58% 79.17% 80.21% 82.29% 

7 78.13% 65.63% 82.29% 84.38% 85.42% 

8 75.00% 65.63% 84.38% 89.58% 91.67% 

9 58.33% 73.96% 84.38% 89.58% 91.67% 

10 83.33% 68.75% 71.88% 76.04% 78.13% 

11 81.25% 65.63% 75.00% 80.21% 84.38% 

Mean 75.28% 68.66% 79.45% 83.24% 86.27% 
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Table 24 Maximum accuracy achieved for each subject using hybrid combinations (A1, A2, A3), EEG only, 

and fTCD only for WG vs baseline problem. 

Sub_ID EEG fTCD A1 A2 A3 

1 79.38% 63.92% 81.44% 86.60% 88.66% 

2 58.76% 62.89% 85.57% 90.72% 93.81% 

3 75.26% 71.13% 85.57% 81.44% 84.54% 

4 61.86% 61.86% 72.16% 78.35% 81.44% 

5 70.10% 72.16% 70.10% 77.32% 79.38% 

6 72.16% 74.23% 78.35% 78.35% 79.38% 

7 63.92% 68.04% 78.35% 85.57% 88.66% 

8 46.39% 72.16% 75.26% 81.44% 83.51% 

9 72.16% 61.86% 82.47% 88.66% 91.75% 

10 75.26% 64.95% 79.38% 85.57% 87.63% 

11 73.20% 71.13% 72.16% 77.32% 79.38% 

Mean 68.04% 67.67% 78.26% 82.85% 85.29% 
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Table 25 Maximum accuracy achieved for each subject using hybrid combinations (A1, A2, A3), EEG only, 

and fTCD only for MR vs WG problem. 

Sub_ID EEG fTCD A1 A2 A3 

1 93.33% 62.86% 99.05% 99.05% 99.05% 

2 81.90% 65.71% 100.0% 100.0% 100.0% 

3 87.62% 68.57% 100.0% 100.0% 100.0% 

4 75.24% 62.86% 100.0% 100.0% 100.0% 

5 78.10% 64.76% 100.0% 96.19% 96.19% 

6 72.38% 72.38% 99.05% 99.05% 99.05% 

7 80.00% 70.48% 96.19% 95.24% 98.10% 

8 72.38% 66.67% 83.81% 85.71% 88.57% 

9 64.76% 69.52% 100.0% 100.0% 100.0% 

10 90.48% 70.48% 100.0% 100.0% 100.0% 

11 80.00% 61.90% 98.10% 96.19% 99.05% 

Mean 79.65% 66.93% 97.84% 97.40% 98.18% 

 

 

 
a) b) c) 

Figure 28 Sensitivities and specificities (mean and standard deviation) calculated using A1, A2, A3, EEG 

only, and fTCD only for flickering MR vs baseline problem (a), flickering WG vs baseline problem (b), and 

flickering MR vs flickering WG (c). 
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Table 26 P-values showing \significance of A1, A2, and A3 compared to EEG only and fTCD only for the 3 

binary problems. 

Comparison MR vs Baseline WG vs Baseline MR vs WG 

A1/EEG 0.1816 0.0039 0.0009 

A1/fTCD 0.0029 0.0029 0.0009 

A2/EEG 0.0293 0.0009 0.0009 

A2/fTCD 0.0009 0.0009 0.0009 

A3/EEG 0.0029 0.0009 0.0009 

A3/fTCD 0.0009 0.0009 0.0009 

d) c) 

b) a) 

Figure 29 Information transfer rates (ITRs) for each participant (P) calculated using EEG only, fTCD 

only, and the 3 hybrid combinations (A1, A2, and A3) for MR vs baseline problem (a), WG vs baseline 

problem (b), and MR vs WG problem (c). Average ITRs for the 3 classifications problems. 
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7.3 Discussion 

Based on the accuracies shown in Tables 23, 24, and 25 as well as the average ITRs shown 

in Fig. 29 (d), it can be noticed that the EEG and fTCD independence hypothesis (2ܣ) yielded 

more efficient performance compared to the general hypothesis where EEG and fTCD are assumed 

to be jointly distributed (1ܣ). Moreover, although weighted independence hypothesis (3ܣ) offers 

higher accuracies compared to those obtained under 2ܣ, the increase in accuracy is not that 

significant considering the increase in computational complexity due to the Į� SDUDPHWHU�

optimization required when combining EEG and fTCD evidences under 3ܣ. Moreover, despite the 

differences in accuracies, the ITRs due to 2ܣ and 3ܣ are very close in value to each other. 

Therefore, we believe that the system can perform efficiently under the independence assumption 

 .(2ܣ)

 It was shown that the MR versus WG problem obtained significantly higher average 

accuracy and average ITR compared to MR/WG versus baseline problems. Specifically, accuracies 

of 86.27%,85.29%, and 98.11% were obtained by MR versus baseline, WG versus baseline, and 

MR versus WG respectively while the same binary problems yielded average ITRs of 8.95,8.34, 

and 21.29 bits/min respectively. One limitation of this study is that the BCI user gets distracted 

while focusing on the fixation cross during the baseline trials since such user experiences flickering 

effect coming from both visual icons representing MR and WG tasks during those baseline trials. 

However, the user is less distracted by this flickering effect while performing MR and WG tasks 

since they are separated by a larger distance on the screen as shown in Fig. 15. Such flickering 

effect is the reason behind the significant difference in both accuracy and ITR obtained for MR 
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versus WG problem compared to accuracy and ITR achieved for MR/WG versus baseline 

problems. To reduce the distraction encountered by the user during baseline trials, a screen with 

larger dimensions can be used instead of the current 15.6” laptop screen. Another solution is to 

reduce the size of the visual icons representing the MR and WG tasks. Another limitation of the 

current study is the long data collection sessions (25 min) which leads to user fatigue and eye strain 

due to long exposure to flickering objects. Therefore, in the future version of this system, each 

session will be divided into 2 separate sessions. 

From fTCD literature, it was found that the imagination nature of MR task induces bilateral 

activation in both brain hemispheres while the analytical nature of WG task induces higher 

activation in left left middle cerebral arteries (MCAs) enabling different responses fTCD [46]. To 

confirm such observation, we plotted the envelope of fTCD signals measured using left and right 

channels while performing MR and WG tasks separately. As shown in Fig. 30 (a), the fTCD signal 

collected from the left channel (records from left MCAs) during WG task has a higher amplitude 

than the fTCD signal collected from the right channel as well as both fTCD signals corresponding 

to MR task. Moreover, as seen in Fig. 30 (b), the amplitude of the difference between right and 

left channels during the WG task is higher than the amplitude of the difference during the MR task.  

To a large extent, such findings are in line with the observations reported in the literature about 

cerebral activation due to MR and WG tasks. 

Note that to induce changes in EEG to infer user intent, we use checkerboard patterns with 

different frequencies to represent MR and WG tasks as seen in Fig. 15. In Fig. 30 (c) and Fig. 30 

(d), power spectrum of EEG due to MR (flickering frequency= 7 Hz) and WG (flickering 

frequency= 17Hz) tasks are presented. In both subfigures, a peak around 2 Hz can be noticed. 

However, this peak is due to the bandpass filter used to preprocess the EEG data (described in 
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section 7.1.1) not due to the flickering frequencies of MR and WG tasks. As for the other peaks in 

the power spectra, considering the fact that although the BCI user gets distracted while observing 

a specific task since such user experiences flickering effect coming from both tasks, it is expected 

d) c) 

b) a) 

Figure 30 (a) Right fTCD channel (channel 1) and left fTCD channel (channel 2) normalized envelope 

signals during MR and WG tasks, (b) Difference between right fTCD channel (channel 1) and left 

fTCD channel (channel 2) envelope signals shown in (a) for MR and WG tasks, (c) power spectrum of 

EEG signals collected from electrodes P1, P2, P5, and P6 during MR task (flickering frequency= 7 Hz) 

(d) power spectrum of EEG signals collected from electrodes P1, P2, P5, and P6 during WG task 

(flickering frequency= 17 Hz). 
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that, even though the BCI user might be focusing on a single task, the effects of both flickering 

frequencies can be observed from the power spectrum of the corresponding EEG data. For 

instance, in Fig. 30 (c), the power spectrum of the EEG response due to the MR task (flickering 

frequency= 7 Hz) shows peaks at approximately 7 Hz which is the MR flickering frequency as 

well as 9 Hz which is around the first subharmonic frequency of the WG task.  Such results are in 

line with the literature since it was found that the subharmonic responses can be observed for 

flickering frequencies in the range of 17–22 Hz especially over the parietal lobe [144] from which 

the EEG data used to obtain the power spectra in Fig. 30 are recorded. Moreover, based on the 

power spectrum due to the WG task (flickering frequency= 17 Hz) shown in Fig. 30 (d), it can be 

noted that there LV�D�SHDN�DW�§���+]�ZKLFK�LV�WKH�IOLFNHULQJ�IUHTXHQF\�RI�WKH�:*�WDVN�DV�ZHOO�DV�D�

SHDN�DW�§��+]�ZKLFK�LV�DSSUR[LPDWHO\�WKH�ILUVW�VXEKDUPRQLF�RI�WKH����+]��0RUHRYHU��D�VPDOO�SHDN�

at 7 Hz was noticed which is most likely due to the flickering effect of the MR task on the BCI 

user while performing the WG task. 

Compared to the preliminary results we obtained before using the flickering MR/WG 

visual presentation, in this chapter, we improved the ITRs for the 3 binary problems at least 2 times 

compared to the ITRs we obtained previously. In particular, previously we obtained 4.39, 3.92, 

and 5.60 bits/min average ITRs for MR versus baseline, WG versus baseline, and MR versus WG 

respectively while in this work, ITRs of 8.95,8.34, and 21.29 bits/min were obtained for the same 

binary problems respectively. In terms of accuracy, as shown in Table 27, the analysis we 

performed in the previous study yielded 89.11%, 80.88%, and 92.38% average accuracy for MR 

versus baseline, WG versus baseline, and MR versus WG respectively compared to 

86.27%,85.29%, and 98.11% obtained with the current analysis. It can be noted that the MR versus 

baseline problem achieved lower accuracy with the current analysis. However, it obtained twice 



 129 

the ITR obtained in the previous study where the ITR is known to be a measure that combines both 

accuracy and speed of the BCI system.  Moreover, as shown in Table 27, the flickering MR/WG 

visual presentation with the current analysis outperforms the motor imagery hybrid EEG- fTCD 

BCI we designed before.  

In terms of accuracy, as seen in Table 27, the flickering MR/WG visual presentation with 

the current analysis outperforms the state of the art hybrid EEG-fNIRS BCIs [78], [60], [127], 

[83], [79], [98], [97], [64], [59], [80] especially the MR versus WG binary selection problem.  In 

terms of trial length, the proposed system has the shortest trial length of 10 s compared to the other 

systems in literature. Moreover, the proposed system does not require baseline or rest period before 

or after performing each task. Instead, the baseline cross in this study is selected randomly without 

any specified order during the visual presentation since it is considered as one of the tasks that 

reflects the case when no action is required to be performed.  Even though the systems introduced 

in [78], [79], [64] achieved accuracies comparable to ours, such systems are slower than the 

proposed system. In particular, the system introduced by Putze et al. [64] requires a task period of 

12.5 s and a rest period of 20 s while the system introduced by Khan et al. [79] needs a 5 s rest 

period and a 10 s task period. Moreover, baseline and task periods of 6 s are required for the system 

proposed by Buccino et al. [78]. In addition, 2 of these 3 studies exploited motor execution to 

design their BCIs [78], [79] while the proposed system is intended to be used in the future by 

individuals with disabilities, therefore, it does not require any movement to execute any BCI 

command. 
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Table 27 Comparison between the proposed hybrid system and the state-of-the-art hybrid BCIs. 

Method Activity Modalities Accuracy 

Trial length (s) 

Task 
Baseline/re

st 

[127] Fazli et al., 2012 Motor Imagery EEG+fNIRS 83.20% 15 6/0 

[127] Fazli et al., 2012 Motor Execution EEG+fNIRS 93.20% 15 6/0 

[83] Blokland et al., 2014 Motor Imagery EEG+fNIRS 79.00% 15 0/30±3 

[83] Blokland et al., 2014 Motor Execution EEG+fNIRS 87.00% 15 0/30±3 

[79] Khan et al., 2014 Mental Arithmetic EEG+fNIRS 83.60% 10 0/5 

[79] Khan et al., 2014 Motor Execution EEG+fNIRS 94.70% 10 0/5 

[64] Putze et al., 2014 Visual/auditory stimuli EEG+fNIRS 94.70% 12.5±2.5 0/20 ±5 

[59] Yin et al., 2015 Motor Imagery EEG+fNIRS 89.00% 10 0/21±1 

[60] Koo et al. 2015 Motor Imagery fTCD+NIRS 88.00% 15 0/60 

[78] Buccino et al., 2016 Motor Execution EEG+fNIRS 72.20% 6 6/0 

[78] Buccino et al., 2016 Motor Execution EEG+fNIRS 94.20% 6 6/0 

[80] Shin et al., 2017 Mental Arithmetic EEG+fNIRS 88.20% 10 0/16±1 

[97] Khalaf et al.,2019 

(right/baseline) 
Motor Imagery EEG+fTCD 88.33% 10 NA 

[97] Khalaf et al.,2019 

(left/baseline) 
Motor Imagery EEG+fTCD 89.48% 10 NA 

[97] Khalaf et al.,2019 (right/left) Motor Imagery EEG+fTCD 82.38% 10 NA 

[98] Khalaf et al.,2018 

(MR/baseline) 
SSVEP+ MR/WG EEG+fTCD 89.11% 10 NA 

[98] Khalaf et al.,2018 

(WG/baseline) 
SSVEP+ MR/WG EEG+fTCD 80.88% 10 NA 

[98] Khalaf et al.,2018 (MR/WG) SSVEP+ MR/WG EEG+fTCD 92.38% 10 NA 

Proposed method (MR/baseline) SSVEP+ MR/WG EEG+fTCD 86.27% 10 NA 

Proposed method (WG/baseline) SSVEP+ MR/WG EEG+fTCD 85.29% 10 NA 

Proposed method (MR/WG) SSVEP+ MR/WG EEG+fTCD 98.11% 10 NA 

*NA: Not applicable 
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7.4 Conclusion 

In this chapter, to improve the performance measures of the hybrid EEG-fTCD BCI we 

designed before, we employed template matching and wavelet decomposition for EEG and fTCD 

analysis, respectively. Moreover, we proposed a probabilistic fusion approach of EEG and fTCD 

evidences. Through such an approach, the contributions of each modality towards making a correct 

decision can be optimized. In this hybrid BCI, EEG and fTCD data are recorded simultaneously 

while a visual presentation showing flickering MR and WG tasks is presented to the BCI user. To 

assess the hybrid system performance, 3 classification problems were solved including MR versus 

baseline, WG versus baseline, and MR versus WG. Average accuracies of 86.27%, 85.29%, and 

98.11 were obtained for MR versus baseline, WG versus baseline, and MR versus WG respectively 

while the same problems achieved average ITRs of 8.95, 8.34, and 21.29 bits/min respectively. 

These performance measures outperform the preliminary results we obtained before using 

flickering MR/WG visual presentation. Moreover, the system with the current analysis 

outperforms the hybrid EEG-fNIRS BCIs in literature in terms of accuracy and trial length. Such 

results show that the proposed hybrid BCI with the current analysis techniques is a promising step 

towards making such hybrid systems efficient to be used in real-life BCI applications. 
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8.0 3-Class EEG-fTCD Brain-Computer Interfaces 

In this chapter, we aim at extending our feature extraction approaches explained in chapters 

6.0 and 7.0 to solve the 3-class problems of both the MI and flickering MR/WG paradigms. In 

particular, for the MI paradigm, we analyzed the 3-class fTCD data using wavelet decomposition 

and extended the basic binary CSP algorithm to multi-class CSP to extract features from 3-class 

EEG data. As for the flickering MR/WG paradigm, we modified our template matching algorithm 

to analyze the 3-class EEG data while features were extracted from fTCD data using wavelet 

decomposition. 

8.1 Materials and Methods 

In this section, we explain extending our feature extraction, selection, and fusion 

approaches to solve 3-class problems of both the MI and flickering MR/WG paradigms. 

8.1.1  EEG Feature Extraction 

8.1.1.1 MI Paradigm 

Given that CSP is a binary feature extraction technique while the classification problem to 

be solved is a 3-class problem, in this chapter, we extended basic CSP algorithm to multi-class 

CSP using  one versus one approach [114] which decomposes a  k-class problem into ݇ ିଵ
ଶ

 binary 

problems that include all possible pairs of the k classes. Therefore, the 3-class problem was 
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decomposed into 3 binary problems. In particular, the training trials of the 3 classes were arranged 

into 3 different groups such that each group contained the training trials corresponding to each pair 

of classes.   CSP was applied to the training trials of each group separately and the corresponding 

eigenvectors were computed. During testing a trial ݔ, the EEG data of that trial were projected on 

the set of eigenvectors of each group separately. In particular, for each group, we spatially filtered 

EEG data of trial ݔ using ݂ = 1, 2, 3, …., and 8 eigenvectors from both ends of W matrix as 

explained in chapter 6.0. To extract EEG features, we calculated the log variance of each spatially 

filtered signal yielding 2݂ (2, 4, 6, …., and 16) CSP features. The overall feature vector was formed 

by concatenating the features due to the 3 groups of eigenvectors. Therefore, the overall feature 

vector contained  6݂ CSP features. 

8.1.1.2 Flickering MR/WG Paradigm 

Here, we extended our EEG template matching technique explained in chapter 7.0 to solve 

the 3-class problem of the flickering MR/WG paradigm. In particular, for each class, since each 

trial is represented by 16 EEG segments collected from 16 EEG channels, we extracted 16 

templates corresponding to the 16 EEG channels by averaging EEG training trials over each 

channel. To extract EEG features of certain trial, cross correlations between the 16 templates of 

each class and the corresponding 16 EEG segments of that trial were calculated. At each channel, 

the maximum cross correlation value between the EEG segment of that channel and the 

corresponding template was selected as the feature representing that channel. Therefore, a total of 

16 features represented the correlations between the 16 EEG segments of each test trial and the 

templates belonging to each class. These 16 features were normalized by their maximum value. 

Since we have 3 classes in each selection problem; and hence, 3 sets of templates, we computed 

3x16 features for each trial.  
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8.1.2  fTCD Feature Extraction 

 Wavelet analysis was employed to analyze fTCD data collected using both MI and 

flickering MR/WG paradigms. In particular, 5-level wavelet decomposition was applied to the 2 

fTCD data segments corresponding to each trial (one segment per fTCD channel) as explained in 

chapters 6.0 and 7.0. Four statistical features including mean, variance, skewness, and kurtosis 

were calculated for each of the 6 wavelet bands obtained from the decomposition leading to 

computation of 24 features per segment and 48 features per trial. 

8.1.3  Feature Selection and Reduction 

Given that the Wilcoxon rank-sum test is a binary feature selection technique while the 

classification problem to be solved is a 3-class problem, we employed a one versus one approach 

[114] which decomposes a  k-class problem into ݇ ିଵ
ଶ

 binary problems that include all possible 

pairs of the k classes. In particular, each 3-class classification problem was decomposed into 3 

binary problems. For each binary problem, the significant features were evaluated separately using 

the Wilcoxon rank-sum test. The set of selected features for each binary problem was used as an 

input to one SVM classifier. Each 3-class problem was solved at p-values of 0.001, 0.005, 0.01, 

and 0.05. As explained in chapters 6.0 and 7.0, the Wilcoxon rank-sum test was used to select 

significant features of fTCD data as well as EEG data of flickering MR/WG paradigm.  

SVM was used to reduce EEG and fTCD feature vectors of each trial separately into scalar 

SVM scores. As mentioned above, each of the 3-class problems was decomposed into 3 binary 

problems.  Each binary problem has its own significant features and its own SVM classifier where 

each classifier is trained using data from different pair of classes. During testing a trial belonging 
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to class ݇ (݇ = 1, 2, 3) the selected EEG/fTCD feature vector of that trial is used as input to the 3 

binary classifiers. Therefore, for each trial under test, the selected features from the EEG and fTCD 

feature vectors of that trial are reduced into 3 scalar EEG SVM scores and 3 scalar fTCD SVM 

scores, respectively corresponding to EEG and fTCD evidences of that trial.    

8.1.4  Feature Fusion and Decision Making 

The probabilistic fusion approach introduced in chapter 6.0 was extended to solve the 3-

class problem of the MI and flickering MR/WG paradigms. Inference of the user intent without 

restricting EEG and fTCD evidences to any assumption can be found through solving the following 

optimization problem. 

                                                          x୩ෞ =    arg max
୶ౡ

p(x୩|Y = y)                                                     (10)  

In (10), p(x୩|Y) is the posterior distribution of the state x୩ conditioned on the observations 

Y where x୩ = 1, 2,  To reduce computational complexity, we solved (10) only under the .3 ݎ

independence assumption (A2). Therefore, as explained in chapter 6.0, (10) can be written as: 

                           x୩ෞ  =     arg, max
୶ౡ

p(݁ = e|x୩)p(f = f|x୩)                                           (14) 

where  p(e|x୩) and p(f|x୩) are the distributions of EEG and fTCD evidences conditioned on the 

state x୩ respectively.  

SVM EEG and fTCD scores of training trials are used separately to compute two 3-

dimentional distributions [(e|x୩) and p(f|x୩)] that are assumed to be multivariate Gaussian 

distributions. To estimate these distributions, EEG and fTCD evidences of the training trials were 

fitted to a 3-dimentional Gaussian mixture model [145]. For evidences under test  y = {e, f},  

e and  f  are plugged in (14) and the user intent x୩ that yields the maximum likelihood is selected. 
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8.2 Results 

As shown in Table 28, for the MI paradigm, EEG-fTCD combination under the 

independence assumption (A2) obtained higher accuracies compared to accuracies obtained using 

EEG only and fTCD only. In particular, 96.58%, 85.50%, and 43.89% average accuracies were 

achieved using EEG-fTCD, EEG only, and fTCD only. On the other hand, EEG-fTCD, under A2, 

obtained average accuracy of 90.60% using the flickering MR/WG paradigm while EEG only and 

fTCD only yielded 57.54% and 44.66% average accuracies as seen in Table 29. 

To assess if the classification model is balanced, for both paradigms, we calculated the 

accuracy of identifying each task (task sensitivity) as well as the accuracy of identifying the 

baseline (specificity). As seen in Fig. 31 (a) and Fig. 31 (b), considering the error bars representing 

variability in sensitivities and specificities across participants, it can be concluded that the EEG-

fTCD classification models of the MI and MR/WG paradigms are balanced since the average 

sensitivities and specificities show very similar values. Moreover, for the MI paradigm, the 

variability in sensitivities and specificities obtained using the hybrid system is much lower 

compared to those obtained using fTCD only, while for the MR/WG paradigm the variability in 

sensitivities and specificities obtained using the hybrid system is much lower than those obtained 

using EEG only and fTCD only. 
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Table 28 Maximum accuracy achieved for each subject using A3, EEG only, and fTCD only for the MI 

paradigm. 

Sub_ID EEG fTCD A2 

1 92.62% 44.33% 96.64% 

2 81.88% 46.31% 100.00% 

3 83.22% 50.34% 98.66% 

4 79.87% 44.97% 93.29% 

5 88.59% 41.61% 99.33% 

6 83.22% 43.62% 91.95% 

7 90.60% 42.28% 90.60% 

8 93.29% 44.30% 98.66% 

9 84.56% 37.58% 99.33% 

10 77.18% 43.62% 97.32% 

Mean 85.50% 43.89% 96.58% 
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Table 29 Maximum accuracy achieved for each subject using A2, EEG only, and fTCD only for the flickering 

MR/WG paradigm. 

Sub_ID EEG fTCD A2 

1 65.10% 38.26% 94.63% 

2 57.72% 48.32% 96.64% 

3 63.76% 42.95% 96.64% 

4 57.72% 43.62% 97.32% 

5 61.07% 45.64% 95.30% 

6 57.05% 47.65% 86.58% 

7 51.01% 50.34% 85.23% 

8 49.66% 40.94% 70.47% 

9 47.65% 48.99% 85.23% 

10 63.09% 39.60% 97.99% 

11 59.06% 44.97% 90.60% 

Mean 57.54% 44.66% 90.60% 

 

 

 

a) b) 

Figure 31  Sensitivities and specificities (mean and standard deviation) calculated using 

EEG-fTCD, EEG only, and fTCD only for the MI paradigm (a), and the flickering MR/WG 

paradigm (b). 



 139 

 

 

In terms of ITRs, for each participant, we calculated ITRs corresponding to the maximum 

accuracies obtained using EEG-fTCD, EEG only, and fTCD only. As shown in Fig. 32, ITRs due 

to the hybrid combination are significantly higher than those obtained using EEG only and fTCD 

b) 

Figure 32 Information transfer rates (ITRs) for each participant (P) calculated using EEG only, fTCD 

only, and the EEG-fTCD combination for the MI paradigm (a), and the flickering MR/WG paradigm (b). 

a) b) 

Figure 33 Average ITRs calculated using EEG only, fTCD only, and the hybrid combination for the MI 

paradigm (a), and the flickering MR/WG paradigm (b). 

a) 
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only.  In particular, for the MI paradigm, EEG- fTCD obtained average ITR of 19.16 bits/min 

while EEG only and fTCD only obtained 5.57 and 0.66 bits/min, respectively while for the 

flickering MR/WG paradigm, average ITRs of 14.73, 2.27, and 0.40 were achieved using EEG-

fTCD, EEG only, and fTCD only.  

Alternatively, for both paradigms, the average ITRs were computed and plotted across the 

10 second trial length and presented in Fig. 33. It can be noted that at 1 second trial length, EEG-

fTCD yielded 43.59 and 25.70 bits/min for the MI and MR/WG paradigms, respectively while 

EEG only obtained 18.56 and 18.09, respectively. Using fTCD only, average ITRs of 0.78 and 

3.84 bits/min were obtained for the MI and MR/WG paradigms, respectively. 

8.3 Discussion 

As shown in Tables 28 and 29, the accuracies of the 3-class problems obtained using the 

hybrid combination are significantly higher than those obtained using EEG only and fTCD only 

for both the MI and flickering MR/WG paradigms. In particular, for the MI paradigm, EEG-fTCD 

obtained an average accuracy of 96.58% which is 10% higher than the accuracy obtained using 

EEG only (the primary modality in the EEG-fTCD multimodal BCI). As for the MR/WG 

paradigm, the combination achieved 90.60% average accuracy which is 33% higher than that 

obtained using EEG only.  

In line with these results, for both paradigms, ITRs of EEG-fTCD combination 

significantly outperformed ITRs obtained using EEG only and fTCD only as shown in Fig. 33 

especially at 1-second trial length. More specifically, for the MI paradigm, EEG-fTCD achieved 

approximately an average ITR that is 2.5 times the average ITR obtained using EEG only while 
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for the MR/WG paradigm, the average ITR achieved using EEG-fTCD combination is 1.5 times 

the average ITR of EEG only.  

In terms of both accuracy and ITR, it can be noted that the MI paradigm achieved higher 

performance compared to the flickering MR/WG system. In particular, the combination achieved 

96.58% average accuracy using the MI paradigm and 90.60% average accuracy using the MR/WG 

paradigm. Moreover, at 1-second trial length, ITRs of 43.59 and 25.70 bits/min were achieved 

using the MI and MR/WG paradigms, respectively. Such findings in addition to the performance 

measures obtained in chapters 6.0 and 7.0 suggest that the MI paradigm is a more promising 

candidate for real-time BCI applications. 

8.4 Conclusion 

In this chapter, we extended our feature extraction approaches that we proposed in chapters 

6.0 and 7.0 to solve the 3-class problem of both the MI and flickering MR/WG paradigms. In 

particular, we solved 2 classification problems including right MI versus left MI versus baseline 

and MR versus WG versus baseline. Experimental results showed that the hybrid combination 

significantly outperformed EEG only and fTCD only for both paradigms. Moreover, it was found 

that the hybrid combination of MI paradigm is more efficient that the hybrid combination of the 

flickering MR/WG paradigm in terms of both accuracy and ITR. In particular, an average accuracy 

of 96.58% and an average ITR of 43.59 bits/min were achieved using MI paradigm compared to 

90.60% average accuracy and 25.70 bits/min average ITR obtained using flickering MR/WG 

paradigm. Consequently, it can be concluded that the hybrid system utilizing MI paradigm is a 

more viable candidate for real-time BCI applications. 
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9.0 A Probabilistic Transfer Learning Approach for Calibration Time Reduction in Hybrid 

EEG-fTCD Brain-Computer Interfaces 

9.1 Introduction 

Generally, before being used by each individual, a BCI requires calibration to ensure that 

it can identify user intent with sufficient accuracy in a reasonable amount of time. Moreover, since 

the BCI performance is directly proportional to the amount of available training data, each BCI 

user has to attend a certain number of calibration sessions which may be burdensome for 

individuals with limited speech and physical abilities.   

One potential solution for such a problem is combining data from different BCI users to 

calibrate the system for a certain user. However, the statistical distribution of the data varies across 

subjects and even across sessions within the same subject [146]. This limits the transferability of 

training data across sessions and subjects. The concept of transfer learning focuses on developing 

algorithms that can improve learning capacity so that the prediction model either learns faster or 

better on a given data set through exposure to other datasets [147]. Recently, two categories of 

transfer learning methods have been studied including domain adaptation and rule adaptation 

methods [146]. Rule adaptation methods require learning a decision boundary for each subject 

separately. The decision boundary is considered as a random variable. The distribution of this 

random variable is found using the decision boundaries estimated based on datasets collected from 

previous subjects. However, for rule adaptation methods to be efficient, a high number of datasets 

is needed to estimate the distribution of the decision boundary.  
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In contrast, domain adaptation approaches have been extensively used for BCIs 

applications. These approaches aim at finding a common structure in the data such that one 

decision boundary can be generalized across subjects. Finding a common structure can be 

performed either by finding a linear transformation where the data is invariant across all 

individuals [131] or by using similarity measures to find the top similar datasets to the dataset 

under test [148].  

In this chapter, we propose a domain adaptation based transfer learning approach to reduce 

the calibration requirements of our multimodal EEG-fTCD BCI utilizing both the MI and 

flickering MR/WG paradigms through transferring BCI training experience across participants.  

To evaluate the performance of the proposed approach, we formulated 3 binary selection problems 

for each presentation paradigm including right arm MI versus baseline, left arm MI versus 

baseline, right versus left arm MI, MR versus baseline, WG versus baseline, and MR versus WG.  

As explained in chapters 5.0 and 6.0, common spatial pattern (CSP) and wavelet decomposition 

were used to extract features from EEG and fTCD data collected using the MI paradigm while 

template matching and wavelet decomposition were used to extract features from EEG and fTCD 

data of the flickering MR/WG paradigm.  

To apply transfer learning, similarity between the EEG and fTCD data of the current BCI 

user and those of the previous users has to be measured. To achieve such aim, we reduced feature 

vectors of EEG and fTCD data of each trial into scalar SVM scores to learn EEG and fTCD class 

conditional distributions. Similarities across participants were identified based on these class 

conditional distributions. In particular, we computed Bhattacharyya distance between the class 

conditional distributions obtained using the training data of the current BCI user and class 

conditional distributions obtained using datasets collected from the previous BCI users. After 
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identifying the top similar datasets, we combined the training trials of the current user with trials 

of these top similar datasets to form a training set that can be used to calibrate the BCI system.  

Using the new training set, we evaluated the performance of the system through assessing 

the test trials of the current BCI user.  Depending on which presentation paradigm is presented to 

the user, we either followed the analysis approaches explained in chapter 5.0 or chapter 6.0. Based 

on the performance measures obtained in chapter 5.0 and 6.0, it can be noted that the best 

performance was achieved under assumption A3 for the MI paradigm; therefore, for MI, we 

utilized the assumption A3 in this chapter. On the other hand, for the flickering WG/MR paradigm, 

A2 and A3 both had high performance without any statistically significant differences. However, 

A3 is more computationally complex compared to A2; therefore, for the WG/MR paradigm, we 

performed probabilistic fusion under assumption A2. 

9.2 Materials and Methods 

With the aim of decreasing calibration requirements and improving the performance of the 

hybrid system, we propose a transfer learning approach that identifes the top similar datasets 

collected from previous BCI users to a training dataset collected from a current BCI user and uses 

these datasets to augment the training data of the current BCI user. The proposed  transfer learning 

approach is intended to be used for both the MI and flickering MR/WG paradigms. Therefore, the 

performance of the proposed approach was tested using the 6 binary selection problems of both 

paradigms.  
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9.2.1  Similarity Measure 

To apply transfer leanring to a certain binary selection problem, for each dataset from 

previous BCI users, EEG and fTCD feature vectors of trials corresponding to that problem were 

projected into scalar SVM scores. Therefore, each trial was represented by a scalar EEG SVM 

score and a scalar fTCD SVM score. Using KDE, 2 EEG class conditional distributions and 2 

fTCD class conditional distributions were learnt from these scores. KDE was performed using 

gaussian kernel. EEG and fTCD class conditional distributions of the current BCI user were also 

estimated using his/her training trials. 

To measure the similarity between the class conditional distributions of the current BCI 

user and those of the previous users, Bhattacharyya distance [149] , given by (19), was used  since 

it is a symmetric measure that can be applied to genreal distributions especially if these 

distributions are diverging from normal distributions and it provides bounds on Bayesian 

misclassification probability, which overall fits very well to our approach of making Bayesian 

decisions on binary classification problems using the estimated density functions. 

                                                                              ݀ = െ ln ܲܳ                                                          (19)
ே

ୀଵ

 

where ܲ and ܳ are 2 probablility distrbutions and ܰ is the number of points composing each 

distribution. 

Bhattacharyya distance between the EEG class conditional distribution of class i (i=1,2) 

and the corresponding EEG class conditional distribution of the current BCI user were calculated. 

Bhattacharyya distance was also calculated between the fTCD class conditional dirstibutions of 

each previous BCI user and the current BCI user. The sum of these 4 distances (2 EEG distances 

and 2 fTCD distances) represented the total distance between the current BCI user and a certain 
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previous BCI user. distances and 2 fTCD distances) represented the total distance between the 

current BCI user and a certain previous BCI user.  

9.2.2  Proposed Transfer Learning Algorithm 

The proposed transfer learning appraoch is described in detail in Fig. 34 and Fig. 35. Given 

a group of previous BCI users where each user is represented by one dataset, the objective is to 

find the most similar datasets to the training dataset of the current BCI user and to combine the 

trials from these datasets with small number of training trials from the current user to train a 

classifier that can predict the labels of the test trials of that user with high accuracy. In particular, 

for each binary selection problem, the dataset of the current user was divided into training and 

testing sets. Initially, given that each binary selection problem is represented by 100 trials, we used 

the first 10 trials from the current BCI user for training the prediction model and the remaining 90 

trials for testing. As seen in Fig. 34, features are extracted from training trials of the current user 

as well as the trials corresponding to the binary problem of interest from each of the previous BCI 

users. Extracted EEG and fTCD  features vary depending on the paradigm used for data 

colleection. In particular, CSP ans wavelet decompsiton were used to extract features from the MI 

paradigm while the flickering MR/WG paradigm employed template matching and wavelet 

decomposition for data analysis as explained in chapters 6.0 and 7.0. EEG and fTCD feature 

vectors of each trial were projected into 2 scalar SVM scores.  
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For each class within the binary selection problem of interest, we learnt class conditional 

distributions of the EEG and fTCD scores obtained from SVM projection as seen in Fig. 34.  The 

distance between class conditional distributions of the current BCI user and those of each of the 

previous BCI users was computed as explained in section 9.2.1. To identify the top similar datasets, 

these distances were sorted ascendingly. At this point, it was required to decide on how many 

similar datasets should be considered to train the classifier besides the training trials from the 

current BCI user. Here, we considered a maximum of 3 datasets to be combined with the training 

trials of the current BCI user. Through cross validation, the number of top similar datasets that 

maximize the performance accuracy when combined with the training trials of the current user was  

Figure 34 Identifying the top similar datasets using the proposed transfer learning approach. 
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chosen to be used later to predict test trials of the current BCI user as shown in Fig. 35. Here, for 

each participant, we used up to 3 datasets to be used for transfer learning. However, the maximum 

number of datasets could be increased or decreased depending on the needs of the designers. 

Moreover, the presented framework could be used to identify person-specific maximum number 

of datasets. For future versions of this algorithm, instead of using a maximum of 3 datasets to be 

combined with the training trials of the current BCI, such number can be optimized for each subject 

separately by means of model order selection techniques [150].   

To study the impact of the training set size (from the current BCI user) on the performance 

of the proposed transfer learning approach, we applied the proposed approach on training sets of 

size ranging from 10 to 90 trials which corresponds to test sets of size ranging from 90 to 10 trials.  

Figure 35 Testing phase of the proposed transfer learning approach. 
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9.2.3  Performance Evaluation  

For both the MI and flickering MR/WG paradigms , to assess the significance of the 

transfer learning (TL) compared to the no transfer learning case (NTL), for each participant, 

accuracy and ITR were calculated and compared at different number of training trials from the 

current BCI user . In particular, at every number of training trials, accuracy and ITR were 

calculated at time points 1, 2….,10 s. For each number of training trials, maximum accuracy and 

ITR across the 10-s period (trial length) were reported for TL and NTL cases.  

To compute the reduction in calibration requirements for each binary problem when using 

TL compared to the NTL case, at each training set size, we formed a vector containing performance 

accuracies obtained for all participant at that training set size. We statistically compared the 

accuracy vectors of TL at training set sizes of 10, 20…,90 with accuracy vector obtained for the 

NTL case at maximum training set size (90 trials). Initially, at 10 training trials, we performed a 

one-sided Wilcoxon signed rank test between the accuracy vector of TL with 10 training trials and 

NTL accuracy vector at 90 training trials. Such statistical comparison is repeated with TL applied 

at bigger training set sizes until there is no statistically significant difference between the 

performance of TL and the performance of NTL at 90 trials. The number of trials N at which that 

statistical insignificance occurs is used in (20) to compute percentage of reduction. 

Reduction % =
1
ܲ


(݅)ே்݄ݐ݃݊݁ܮ ݊݅ݐܽݎܾ݈݅ܽܥ െ (݅)்݄ݐ݃݊݁ܮ ݊݅ݐܽݎܾ݈݅ܽܥ
(݅)ே்݄ݐ݃݊݁ܮ ݊݅ݐܽݎܾ݈݅ܽܥ

x100%


ୀଵ

    (20) 

Eq (20) is equivalent to: 

Reduction % =
1
ܲ


ே(݅)|ே்݄ݐ݃݊݁ܮ ݈ܽ݅ݎܶ ݔ ܰ െ (݅)|்݄ݐ݃݊݁ܮ ݈ܽ݅ݎܶ ݔ݉
ே(݅)|ே்݄ݐ݃݊݁ܮ ݈ܽ݅ݎܶ ݔ ܰ

x100%


ୀଵ

      (21) 
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where ܰ is the maximum number of training trials (ܰ=90) from the current BCI user and ݉ is the 

minimum number of trials at which TL performance is at least equivalent to NTL performance 

where ݉ ranges from 10 to 90 trials. 

To guarantee that TL will improve or at least achieve the same average performance 

accuracy obtained for the NTL case, we checked if the TL average performance accuracy at ݉ 

training trials was similar to or outperforms the average performance accuracy of the NTL case at 

90 training trials. If this condition is not satisfied, we consider statistical comparisons at training 

set sizes > ݉ until this condition is satisfied. 

9.3 Results 

For both the MI and flickering MR/WG paradigms, to evaluate the effectiveness of the 

proposed TL approach, for each binary selection problem, we reported the average accuracies and 

ITRs across participants obtained using different training set sizes. Moreover, we compare these 

accuracies/ITRs with those obtained without transfer learning. Fig. 36-41 reflect the impact of the 

amount of data available to train a prediction model on the accuracy/ITR that can be obtained with 

and without transfer learning. In particular, the x-axis shows the number of training trials, ranging 

from 10 to 90 trials, used to train a prediction model, while the y axis shows the average 

accuracy/ITR across participants corresponding to those training trials.  

For both TL and NTL cases, at each training set size, a classifier is trained, and its 

performance is evaluated for each participant at trial lengths of 1, 2...10 seconds. The maximum 

accuracy/ITR at each training set size is reported regardless of the corresponding trial length. The 

average accuracy/ITR is computed across all participants at different training set sizes. Therefore, 
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in terms of calibration requirements, comparing the best possible performances obtained for TL 

and NTL cases is not entirely fair since these performances are not evaluated at the same 

calibration length. In particular, calibration length is not only a function of the number of training 

trials, but also is a function of trial length which varies depending on when maximum accuracy/ITR 

could be achieved. Therefore, as seen in Fig. 36-41, to ensure fair comparison, in addition to 

reporting the best possible TL and NTL performances, we evaluated the performance of NTL at 

the same trial lengths that yield the maximum possible TL performance. In addition, we evaluated 

the performance of TL and the same trial lengths that yield the maximum NTL performance.  

9.3.1  MI Paradigm 

As seen in Fig.  36-38, the TL performance evaluated at the trial lengths that yield the 

maximum NTL performance is similar to the maximum NTL performance while the performance 

of NTL at the same trial lengths that yield the maximum possible TL performance is significantly 

worse than the maximum TL performance. Disregarding differences in trial length, average 

accuracies obtained using TL are significantly higher than those obtained without transfer learning 

(NTL) as shown in Fig.  36-38. Moreover, in terms of ITRs, it can be also noted that TL provides 

the highest ITRs compared to the NTL case. 

In addition, we observed that, when TL is employed, using only 10 training trials, average 

accuracies of 80.58%, 75.29%, and 69.16% can be achieved for right MI versus baseline, left MI 

versus baseline, and right MI versus left MI, while for the NTL case, the average accuracies that 

can be obtained using 10 training trials are 56.63%, 58.14%, and 60.21%, respectively. In terms 

of ITRs, at 10 training trials, it can be noted that right MI versus baseline, left MI versus baseline, 
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and right MI versus left MI achieved average ITRs of 2.34, 2.13, and 2.98 bits/min, respectively 

compared to 1.51, 0.54, and 1.74 bits/min obtained for the NTL case.   

Using 90% of the available data for training which corresponds to 90 training trials, TL 

achieved accuracies of 98.89%, 98.00%, and 94.67% and ITRs of 16.5, 20.51, and 11.3 bits/min 

for right MI versus baseline, left MI versus baseline, and right MI versus left MI, respectively 

compared to of accuracies of 80.00%, 78.33%, and 76.67% and ITRs of 7.83, 7.04, and 6.27 

bits/min achieved without TL. 

Using (21), we found that the calibration requirements for MI paradigm can be reduced by 

80.00%, 60.43%, and 81.99% for right MI versus baseline, left MI versus baseline, and right MI 

versus left MI, respectively. 

 

 

 

 

a) b) 

Figure 36    Average accuracy (a) and average ITR (b) as a function of the number of training trials for right 

MI versus baseline problem. 
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b) a) 

a) b) 

Figure 37 Average accuracy (a) and average ITR (b) as a function of the number of training trials for left MI 

versus baseline problem. 

 

Figure 38 Average accuracy (a) and average ITR (b) as a function of the number of training trials for right 

MI versus left MI problem. 
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9.3.2  Flickering MR/WG paradigm 

Fig.  39-41 show that the TL performance evaluated at the trial lengths yielding the 

maximum NTL performance is comparable to the maximum NTL performance while the 

performance of NTL at the same trial lengths yielding the maximum possible TL performance is 

significantly worse than the maximum TL performance. Disregarding trial length, for the 3 binary 

selection problems, average accuracy and ITR trends obtained using TL are significantly higher 

than those obtained without transfer learning (NTL) especially at smaller training set sizes as 

shown in Fig.  39-41. However, for the WG versus baseline problem, we observed that ITRs 

obtained using TL outperform those obtained without TL for training set sizes <50 trials. 

We observed also that when the training set size drops to 10 trials, transfer learning 

provides an improvement in the accuracy by approximately 11%, 5%, and 7% for MR versus 

baseline, WG versus baseline, and MR versus WG. In terms of ITRs, at 10 training trials, 1, 0.37, 

and 0.71 bits/min were obtained for MR versus baseline, WG versus baseline, and MR versus WG 

using TL, while without TL, 0.28, 0.29, and 0.17 bits/min were achieved for the same classification 

problems.  

Using 90 training trials, TL achieved 82.83%, 79.09%, and 80.00% average accuracies and 

8.13, 10.66, and 15.28 bits/min average ITRs MR for versus baseline, WG versus baseline, and 

MR versus WG, respectively, while NTL obtained 75.76%, 80.52%, and 69.97% average 

accuracies and 6.83, 11.13, 6.55 bits/min average ITRs for the same classification problems.  

Using (21), we found that the calibration requirements for flickering MR/WG paradigm 

can be reduced by 17.31% and 12.96% for MR versus baseline and MR versus WG, respectively 

while for WG versus baseline, TL approach only boosted the performance accuracy without 

reducing the calibration requirement.  
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a) b) 

a) b) 

Figure 39 Average accuracy (a) and average ITR (b) as a function of the number of training trials for 

MR versus baseline problem. 

Figure 40 Average accuracy (a) and average ITR (b) as a function of the number of training trials for 

WG versus baseline problem. 
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9.4 Discussion 

For the MI paradigm, it can be concluded that, using 10 training trials, TL can improve the 

average performance accuracy by 9-24% for the 3 binary selection problems compared to the NTL 

case, while using 100% of the available training data (90 trials), the performance of NTL case can 

be enhanced by 18-20% for the 3 classification problems.  Moreover, ITRs obtained using TL at 

10 training trials are 1.8-2.90 times the ITRs obtained without TL, while at 90 training trials, ITRs 

of TL case are 1.5-3.94 times the ITRs obtained without TL. 

As for the MR/WG paradigm, at 10 training trials, improvements ranging from 5 to 11% 

in average accuracy as well as ITRs that are 1.28- 4.18 times ITRs of NTL case can be achieved 

for MR versus baseline and MR versus WG. At 90 training trials, performance can be enhanced 

a) b) 

Figure 41 Average accuracy (a) and average ITR (b) as a function of the number of training trials 

MR versus WG problem. 
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by 7-10% average accuracy with 1.19-2.33 times ITRs of NTL case. However, there is no 

improvement in performance for the WG versus baseline problem when using 100% of the 

available training data.  

Comparing the average accuracies and ITRs obtained using both paradigms as well as their 

average accuracy and ITR improvements compared to the NTL case especially at 10 training trials, 

it can be concluded that the proposed transfer learning algorithm is more efficient when used with 

the MI paradigm. Therefore, TL can be used to reduce the calibration requirements of the system 

while maintaining sufficient performance that is comparable to NTL performance with a higher 

number of training trials. For instance, given only10 training trials from the current BCI user who 

uses the MI paradigm, accuracies ranging from 70% to 80% can be achieved for the 3 classification 

problems when using the proposed transfer learning approach. This corresponds to a maximum of 

100 seconds calibration length.  

Considering the trade-off between the calibration length and the corresponding BCI 

performance, it is the BCI designer’s decision to choose the optimal number of trials to be recorded 

from each BCI user to calibrate the system.  Given that the proposed transfer learning approach 

has significantly reduced the calibration requirements of the MI-based hybrid BCI by at least 

60.43%, we believe that our proposed approach gives more flexibility to the BCI designers to 

control and reduce the calibration requirements of the system which is an important criterion 

especially when the BCI is intended to be used by patients with disabilities. 
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9.5 Conclusion 

In this chapter, aiming at reducing the calibration requirements as well as improving the 

BCI performance, we propose a transfer learning approach that identifies the top similar datasets 

to the current BCI user and combines the trials from these datasets as well as few training trials 

from the current user to train a classifier that can predict the test trials of that user with high 

accuracy. To achieve such aim, EEG and fTCD feature vectors of each trial were projected into 

two scalar SVM scores. EEG and fTCD class conditional distributions were learnt separately using 

the scores of each class. Bhattacharyya distance was used to identify similarities between class 

conditional distributions obtained using training trials of the current BCI user and those obtained 

using trials of previous BCI users.  Experimental results showed that the performance obtained 

using the proposed transfer learning approach outperforms the performance obtained without 

transfer learning for both the MI and flickering MR/WG paradigms. However, comparing the 

performance improvement achieved for both paradigms, it can be noted that the proposed transfer 

learning algorithm is more efficient when used with the MI paradigm. In particular, average 

accuracies and ITRs of 80.58%, 75.29%, and 69.16% and 2.34, 2.13, and 2.98 bits/min can be 

achieved for right MI versus baseline, left MI versus baseline, and right MI versus left MI using 

10% of the available data which corresponds to a calibration length of 100 seconds.  Moreover, it 

was found that the calibration requirements of the MI paradigm can be reduced by at least 60.43% 

when using the proposed transfer learning approach. 
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10.0 Conclusions 

In this dissertation, we investigated the possibility of developing 2-class and 3-class fTCD 

BCI systems and proved that fTCD is a viable candidate for real-time BCIs as it achieved 

accuracies of approximately 80% and 60% for binary and 3-class BCIs within 3 and 5 s, 

respectively. Inspired by these findings, we introduced a novel hybrid BCI system that uses 

electrical brain activity recorded using EEG as well as cerebral blood flow velocity measured using 

fTCD. This hybrid BCI was designed using two different paradigms. The first paradigm was based 

on motor imagery (MI) to induce changes simultaneously in EEG and fTCD, while the other 

system simultaneously utilized mental rotation (MR) and word generation (WG) as stimuli for 

fTCD and flickering checkerboards to induce SSVEPs in EEG.  

To evaluate the performance of both paradigms, we collected data from 21 healthy 

participants. As a preliminary analysis, features derived from the power spectrum of EEG and 

fTCD signals were extracted. Mutual information and linear SVM were employed for feature 

selection and classification. Using the MI paradigm, the EEG-fTCD combination achieved average 

accuracies of 88.33%, 89.48%, and 82.38% for right arm MI versus baseline, left arm MI versus 

baseline, and right arm MI versus left arm MI, respectively. In addition, average information 

transfer rates (ITR) of 4.17, 5.45, and 10.57 bits/min were achieved. As for the flickering MR/WG 

paradigm, the EEG-fTCD combination obtained accuracies of 89.11%,80.88%, and 92.38% for 

MR versus baseline, WG versus baseline, and MR versus WG, respectively. Average ITRs of 4.39, 

3.92, 5.60 bits/min were obtained. Compared to the existing work on hybrid BCI that combines 

EEG with fNIRS, the proposed hybrid system with both paradigms showed important progress 

towards making such systems real-world-worthy in terms of speed and accuracy.  
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However, the system has a limitation since the temporal resolution of fTCD is lower than 

EEG resulting in longer trial lengths that decrease the speed of the system. Such mismatch between 

the temporal resolution of these modalities can be minimized by introducing advanced analysis 

techniques for fTCD data to improve the obtained accuracy within the minimum possible task 

period. To achieve such aim, wavelet decomposition was employed for fTCD analysis since it was 

used in a previous study (see chapter 3.0) to prove that fTCD is a viable candidate for real-time 

BCIs.  

In addition, to improve both the accuracy and ITR of this novel hybrid BCI, we proposed 

an EEG-fTCD feature fusion approach and investigated analysis techniques for EEG data of both 

paradigms. In particular, we proposed a probabilistic fusion of EEG and fTCD evidences instead 

of simple concatenation of EEG and fTCD feature vectors. Through such a probabilistic fusion, 

the contributions of each modality towards the correct decision can be optimized. For the MI 

paradigm, we used common spatial pattern algorithm and wavelet decomposition to extract EEG 

and fTCD features, respectively, while for the MR/WG paradigm, we used template matching and 

wavelet decomposition to extract EEG and fTCD features.  

Experimental results showed that 93.85%, 93.71%, and 100% average accuracies and 

19.89, 26.55, and 40.83 bits/min average ITRs were achieved for right MI vs baseline, left MI 

versus baseline, and right MI versus left MI, respectively. As for the MR/WG paradigm, average 

accuracies of 85.29%, 86.27%, and 98.11%, and average ITRs of 8.34, 8.95, and 21.29 bits/min 

were achieved for WG versus baseline, MR versus baseline, and WG versus MR, respectively. 

Considering these results, it can be concluded that MI paradigm outperforms MR/WG one in terms 

of both accuracy and ITR. Moreover, for both paradigms, the EEG-fTCD BCI with the proposed 

analysis techniques outperforms all EEG-fNIRS BCIs in comparison in terms of accuracy and ITR.  
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With the aim of increasing the possible number of commands that can be issued through 

the proposed BCI, we extended our feature extraction and analysis approaches to solve the 3-class 

problem of each paradigm. It was found that hybrid combination of the MI paradigm is more 

efficient than the hybrid combination employing the flickering MR/WG paradigm in terms of both 

accuracy and ITR. In particular, average accuracy of 96.58% and average ITR of 43.59 bits/min 

were achieved using the MI paradigm compared to 90.60% average accuracy and 25.70 bits/min 

average ITR obtained using the flickering MR/WG paradigm. 

Finally, the generalization of the system across subjects was explored using a transfer 

learning approach that we proposed to decrease the calibration requirements of both paradigms. 

The proposed approach was shown to be more successful with data collected through the MI 

paradigm. In particular, it was found that the calibration requirements can be reduced by at least 

60.43% for the MI paradigm, while at most a reduction of 17.31% can be achieved for the 

flickering MR/WG paradigm. 

Considering the analysis results mentioned above, it can be noted that the MI paradigm 

outperformed the flickering MR/WG paradigm for both binary and 3-class selection problems. 

Moreover, data collected through the MI paradigm showed better generalization across subjects, 

therefore, the proposed transfer learning approach was able to significantly reduce the calibration 

requirements. Consequently, it can be concluded that the proposed hybrid system using the MI 

paradigm is a more viable candidate for real-time BCI applications. In addition to these significant 

results, the proposed system is portable and cost-effective compared to the other multimodal BCIs 

that exploit multimodal brain activity such as EEG-fMRI, EEG-MEG, and EEG-fNIRS BCIs. 

Moreover, the proposed system is easier to setup (in terms of number of sensors) and faster (in 

terms of trial length) compared to hybrid BCIs that utilize EEG and fNIRS simultaneously. 
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Appendix 

In Tables 30-35, we introduce the detailed performance measures of each individual 

including maximum accuracy and the corresponding sensitivity, specificity, and time for the 3 

classification problems solved using both subject-independent and subject-specific thresholds.  

 

Table 30  Maximum accuracy (Acc) and the corresponding sensitivity (Se), specificity (Sp), and time for each 

subject using hybrid system, EEG only, and fTCD only.  These measures were obtained for right arm MI vs 

baseline problem using subject-independent threshold.   

 

 

 

 

Sub_ID 
  

Time(s) 

Se 

Hybrid 

Sp 

Hybrid 

Acc 

Hybrid 

Se 

EEG 

Sp 

EEG 

Acc 

EEG 

Se 

TCD 

Sp 

fTCD 

Acc 

fTCD 

1 10  98.08%  88.64% 93.75% 96.15% 86.36% 91.67% 55.77% 59.09% 57.29% 

2 10  82.69%  84.09% 83.33% 82.69% 84.09% 83.33% 67.31% 43.18% 56.26% 

3 2  84.62%  84.09% 84.38% 80.77% 77.27% 79.17% 55.77% 34.09% 45.83% 

4 9  92.31%  81.82% 87.50% 90.38% 70.45% 81.25% 63.46% 45.45% 55.21% 

5 9  92.31%  88.64% 90.63% 90.38% 84.09% 87.50% 63.46% 59.09% 61.46% 

6 4  82.69%  81.82% 82.29% 78.85% 65.91% 72.92% 61.54% 50.00% 56.25% 

7 6  90.38%  75.00% 83.33% 80.77% 77.27% 79.17% 55.77% 56.82% 56.25% 

8 7  92.31%  86.36% 89.58% 84.62% 75.00% 80.21% 69.23% 63.64% 66.67% 

9 5  65.38%  79.55% 71.88% 78.85% 68.18% 73.96% 53.85% 70.45% 61.46% 

10 10  92.31%  88.64% 90.63% 88.46% 84.09% 86.46% 65.38% 75.00% 69.79% 

Mean 7.2  87.31%  83.86% 85.73% 85.19% 77.27% 81.56% 61.15% 55.68% 58.65% 
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Table 31 Maximum accuracy (Acc) and the corresponding sensitivity (Se), specificity (Sp), and time for each 

subject using hybrid system, EEG only, and fTCD only.  These measures were obtained for right arm MI vs 

baseline problem using subject-specific thresholds.   

 

 

 

 

 

 

 

 

Sub_ID Time(s) 
Se 

Hybrid 

Sp 

Hybrid 

Acc 

Hybrid 

Se  

EEG 

Sp  

EEG 

Acc 

EEG 

Se 

fTCD 

Sp 

fTCD 

Acc 

fTCD 

1 10 98.08% 90.91% 94.79% 92.31% 90.91% 91.67% 55.77% 63.64% 59.38% 

2 7 96.15% 88.64% 92.71% 94.23% 88.64% 91.67% 88.46% 29.55% 61.46% 

3 7 84.62% 88.64% 86.46% 78.85% 84.09% 81.25% 48.08% 54.55% 51.04% 

4 9 92.31% 81.82% 87.50% 90.38% 70.45% 81.25% 63.46% 45.45% 55.21% 

5 9 92.31% 88.64% 90.63% 90.38% 84.09% 87.50% 63.46% 59.09% 61.46% 

6 7 88.64% 84.09% 86.46% 86.54% 84.09% 85.42% 67.31% 43.18% 56.25% 

7 6 92.31% 79.55% 86.46% 84.62% 75.00% 80.21% 46.15% 50.00% 47.92% 

8 7 96.15% 86.36% 91.67% 84.62% 77.27% 81.25% 73.08% 65.91% 69.79% 

9 5 76.92% 75.00% 76.04% 78.85% 63.64% 71.88% 48.08% 52.27% 50.00% 

10 10 92.31% 88.64% 90.63% 88.46% 84.09% 86.46% 65.38% 75.00% 69.79% 

Mean 7.7 90.96% 85.23% 88.33% 86.92% 80.23% 83.85% 61.92% 53.86% 58.23% 
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Table 32 Maximum accuracy (Acc) and the corresponding sensitivity (Se), specificity (Sp), and time for each 

subject using hybrid system, EEG only, and fTCD only.  These measures were obtained for left arm MI vs 

baseline problem using subject-independent threshold.   

 

 

 

 

 

 

 

 

Sub_ID Time(s) 
Se 

Hybrid 

Sp 

Hybrid 

Acc 

Hybrid 

Se  

EEG 

Sp  

EEG 

Acc 

EEG 

Se 

fTCD 

Sp 

fTCD 

Acc 

fTCD 

1 10 92.45% 95.45% 93.81% 86.79% 90.91% 88.66% 77.36% 70.45% 74.23% 

2 7 94.34% 90.91% 92.78% 96.23% 90.91% 93.81% 77.36% 36.36% 58.76% 

3 8 86.79% 93.18% 89.69% 81.13% 79.55% 80.41% 39.62% 54.55% 46.39% 

4 2 73.58% 75.00% 74.23% 75.47% 70.45% 73.32% 58.49% 40.91% 50.52% 

5 8 83.02% 77.27% 80.41% 79.25% 75.00% 77.32% 30.19% 59.09% 43.30% 

6 2 92.45% 79.55% 86.60% 92.45% 77.27% 85.57% 64.15% 38.64% 52.58% 

7 3 90.57% 90.91% 90.72% 88.68% 88.64% 88.66% 58.49% 50.00% 54.64% 

8 9 90.57% 86.36% 88.66% 88.68% 84.09% 86.60% 49.06% 63.64% 55.67% 

9 5 83.02% 75.00% 79.38% 75.47% 72.73% 74.23% 56.60% 38.64% 48.45% 

10 9 88.68% 88.64% 88.66% 86.79% 88.64% 87.63% 52.83% 59.09% 55.67% 

Mean 6.3 87.55% 85.23 86.49% 85.09% 81.82% 83.61% 56.42% 51.14% 54.02% 
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Table 33 Maximum accuracy (Acc) and the corresponding sensitivity (Se), specificity (Sp), and time for each 

subject using hybrid system, EEG only, and fTCD only.  These measures were obtained for left arm MI vs 

baseline problem using subject-specific thresholds.   

 

 

 

 

 

 

 

 

Sub_ID Time(s) 
Se 

Hybrid 

Sp 

Hybrid 

Acc 

Hybrid 

Se  

EEG 

Sp  

EEG 

Acc 

EEG 

Se 

fTCD 

Sp 

TCD 

Acc 

fTCD 

1 10 100.00% 95.45% 97.94% 88.68% 86.36% 87.63% 64.15% 68.18% 65.98% 

2 7 96.23% 90.91% 93.81% 92.45% 90.91% 91.75% 92.45% 34.09% 65.98% 

3 4 94.34% 93.18% 93.81% 86.79% 75.00% 81.44% 43.40% 61.36% 51.55% 

4 5 86.79% 75.00% 81.44% 84.91% 70.45% 78.35% 69.81% 52.27% 61.86% 

5 9 86.79% 88.64% 87.63% 84.91% 90.91% 87.63% 58.49% 47.73% 53.61% 

6 3 88.68% 84.09% 86.60% 75.47% 72.73% 74.23% 56.60% 50.00% 53.61% 

7 3 90.57% 90.91% 90.72% 88.68% 88.64% 88.66% 58.49% 50.00% 54.64% 

8 9 96.23% 88.64% 92.78% 92.45% 77.27% 85.57% 56.60% 43.18% 50.52% 

9 5 83.02% 75.00% 79.38% 75.47% 72.73% 74.23% 56.60% 38.64% 48.45% 

10 6 96.23% 84.09% 90.72% 94.34% 88.64% 91.75% 45.28% 50.00% 47.42% 

Mean 6.1 91.89% 86.59% 89.48% 86.42% 81.36% 84.12% 60.19% 49.55% 55.36% 
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Table 34 Maximum accuracy (Acc) and the corresponding right arm and left arm sensitivities (SeR, and 

SeL), and time for each subject using hybrid system, EEG only, and fTCD only.  These measures were 

obtained for right arm MI vs left arm MI problem using subject-independent threshold.   

 

 

 

 

 

 

 

 

Sub_ID Time(s) 
SeR 

Hybrid 

SeL 

Hybrid 

Acc 

Hybrid 

SeR  

EEG 

SeL  

EEG 

Acc 

EEG 

SeR 

fTCD 

SeL 

fTCD 

Acc 

fTCD 

1 1 88.46% 84.91% 86.67% 88.46% 84.91% 86.67% 40.38% 49.06% 44.76% 

2 5 73.08% 77.36% 75.24% 75.00% 75.47% 75.24% 50.00% 26.42% 38.10% 

3 10 78.85% 71.70% 75.24% 76.92% 69.81% 73.33% 59.62% 33.96% 46.67% 

4 1 86.54% 81.13% 83.81% 82.69% 83.02% 82.86% 59.62% 32.08% 45.71% 

5 1 78.85% 84.91% 81.90% 76.92% 79.25% 78.10% 34.62% 66.04% 50.48% 

6 3 82.69% 84.91% 83.81% 84.62% 86.79% 85.71% 46.15% 39.62% 42.86% 

7 4 71.15% 71.70% 71.43% 73.08% 77.36% 75.24% 46.15% 43.40% 44.76% 

8 7 94.23% 90.57% 92.38% 88.46% 90.57% 89.52% 51.92% 39.62% 45.71% 

9 1 71.15% 71.70% 71.43% 76.92% 64.15% 70.48% 44.23% 45.28% 44.76% 

10 1 65.38% 71.70% 68.57% 57.69% 73.58% 65.71% 73.08% 52.83% 62.86% 

Mean 3.4 79.04% 79.06% 79.05% 78.08% 78.49% 78.29% 50.58% 42.83% 46.67% 
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Table 35 Maximum accuracy (Acc) and the corresponding right arm and left arm sensitivities (SeR, and 

SeL), and time for each subject using hybrid system, EEG only, and fTCD only.  These measures were 

obtained for right arm MI vs left arm MI problem using subject-specific thresholds.   

 

 

 

 

 

 

Sub_ID Time(s) 
SeR 

Hybrid 

SeL 

Hybrid 

Acc 

Hybrid 

SeR  

EEG 

SeL 

EEG 

Acc 

EEG 

SeR 

fTCD 

SeL 

fTCD 

Acc 

fTCD 

1 1 94.23% 92.45% 93.33% 82.69% 83.02% 82.86% 55.77% 47.17% 51.43% 

2 5 73.08% 77.36% 75.24% 75.00% 75.47% 75.24% 50.00% 26.42% 38.10% 

3 6 78.85% 84.91% 81.90% 71.15% 71.70% 71.43% 67.31% 71.70% 69.52% 

4 2 86.54% 84.91% 85.71% 84.62% 79.25% 81.90% 63.46% 43.40% 53.33% 

5 1 78.85% 84.91% 81.90% 76.92% 79.25% 78.10% 34.62% 66.04% 50.48% 

6 3 82.69% 84.91% 83.81% 84.62% 86.79% 85.71% 46.15% 39.62% 42.86% 

7 4 84.62% 73.58% 79.05% 71.15% 71.70% 71.43% 36.54% 50.94% 43.81% 

8 9 98.08% 96.23% 97.14% 98.08% 94.34% 96.19% 50.00% 50.00% 50.00% 

9 1 71.15% 71.70% 71.43% 76.92% 64.15% 70.48% 44.23% 45.28% 44.76% 

10 2 73.08% 75.47% 74.29% 65.38% 60.38% 62.86% 76.92% 56.60% 66.67% 

Mean 3.4 82.12% 82.64% 82.38% 78.65% 76.60% 77.62% 52.50% 49.72% 51.10% 
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