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Solid-liquid filtration is a long-standing engineering practice and has been widely used in 

the chemical, process and mineral industries. Current models are semi-empirical in nature; thus, 

they require significant experimental and/or computational resources in order to determine the 

empirical quantities. In contrast, this dissertation provides a model to predict the dynamic behavior 

for both the liquid and solid phase of a filtration process without the requirement of empirical 

parameters. Instead, the model relies solely on the to-be-captured particle size distribution of 

contaminants as well as the pore size distribution of the filtration media. The new algorithm is 

capable of describing filtration based on both “steric” capture of contaminants as well as capture 

within dead-end pores in the material.   

This dissertation shows the performance of the model in modeling beds comprised of high 

void fraction materials (diatomaceous earth) that is used for the removal of multi-modal mixtures 

of contaminant. By formally accounting for the complex pore size distribution, the predict flow 

dynamics that are much closer to experimental results than the predictions of the traditional 

Kozeny-Carmen (K-C) model and show that this approach is viable for both statically formed and 

evolving (dynamic) beds. In an effort to understand the relationship between flow dynamics and 

pore size distribution more fully, a dynamic filter cake model is proposed that continuously 

modifies the pore size distribution as contaminants (polydispere spheres) are deposited. This 

dissertation also describes a simulation model capable of describing the capture of spherical 
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particles within dead-end pores. A 3D discrete element method-lattice Boltzmann method (DEM-

LBM) coupling approach is applied to investigate the particle capture under conditions of different 

particle size and pore structures. Both the pressure drop and the fluid density are examined to 

indicate this capture performance. The predicted flow dynamics of this new model match the 

dynamic experimental results remarkably well, setting the stage for a priori prediction of filtration 

times, flow-rates, particle capture, and pressure requirements from simple measurements of the 

size distribution of both the filter media pores as well as the contaminant particles/droplets. 
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1.0 Introduction 

Filtration is the process of separation that involves the flow of a solid-liquid (or liquid-

liquid) mixture through a fixed bed that is filled with a porous material(Kavoosi 2014). Application 

for a filtration separation process have been developed in a wide range of industries. The most 

commonly used filtration process include cake filtration, depth filtration and cross-flow 

filtration(Yim and Kwon 1997). Filtration in the separation of solid-liquid mixtures has been 

studied for 90 years. However, the lack of a generalized set of laws for filtration has increased the 

difficulty of incorporating equations from one model into another(Tien 2006). Thus, economic 

optimization of a filtration process, which can help industries reach their least cost design with 

respect to the filtration velocity, the operating time and the filter medium consumption, has long 

been identified but there are no algorithms reach these requirements(Dharmappa et al. 1992). 

The conventional cake filtration theory originates from Ruth’s pioneering work(Ruth 

1946), who introduced electric analogy and proposed a two-resistance theory. The development of 

conventional filtration theory consists two steps: (1)combining the mass balance equation for the 

liquid phase by considering both porosity(Tiller 1953) and pressure drop(Tiller 1953) during the 

filtration process and (2) assuming only point contacts(Willis et al. 1991) exist between particles. 

With some empirical quantities related to pressure and porosity, the governing equations can be 

numerically solved(Carman 1956). Flow through a packed bed is commonly modeled using the 

so-called Kozeny-Carman (K-C) model (Carman 1956, Wyllie and Gardner 1958), in order to 

predict the pressure drop during a cake filtration process. However, works of literature show that 

the K-C model does not fit when the cake has high porosity, non-spherical particles, or systems of 

particles that are multi-disperse(Mauran, Rigaud, and Coudevylle 2001). Two issues that make the 
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prediction of the K-C model limited to strict filtration are (1) the empirical quantity used in the K-

C model to represent the tortuosity of a packed bed and (2) the lack of validated description of the 

complex structure of a filter medium. Thus, analysis for the theoretical quantity to replace the 

empirical quantity is discussed in this dissertation. A novel method to describe the structure of 

filter mediums is also introduced.  

Depth filtration always uses the same separating agent with cake filtration. However, the 

roles played by the filter medium are different(Kuhn and Briesen 2016). The main problems for 

the prediction of depth filtration are the retention of particles through a filter medium, resulting in 

the change of the structure of the filter medium(Chi and Payatakes 1979). Current approach affords 

only limited insight about the depth filtration with empirical quantities(Herzig, Leclerc, and Goff 

1970a). Despite the inherent complexities of the depth filtration, the problem can be studied based 

on fundamental analysis. The flow behavior of a depth filtration is also related to the pore size 

distribution of the filter medium and the pressure drop in the fluid phase(Wong and Mettananda 

2010). Thus, the depth/dynamic filtration model can be derived from the cake/static filtration 

model by adding in the analysis of the dynamic change of the pore size distribution during the 

particle retention. 

The dissertation is organized as follows. Chapter 2.0 introduces the basic filtration 

knowledge and the difference between surface/depth filtration. The simulation methods that are 

used to mimic the filtration process, DEM and LBM, are also discussed. Chapter 3.0 verifies the 

traditional K-C model with polydisperse glass beads as the filter medium. The limitations are 

discussed based on the comparison between empirical and predicted flow rates. Then a modified 

K-C model is proposed, which fits the experimental results better. Chapter 4.0 introduces a new 

model called the PSD model that can predict the filtration process with a highly porous medium. 
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The model has been verified with both steric and dynamic filtration experiments. Chapter 5.0 

analysis the ability of intrinsic pores in the filter medium capture relatively small contaminants, 

haze induced particles. The change of concentration of the contaminants is tested. Two 

mechanisms are proposed and tested with surface modification and DEM/LBM simulation. Under 

the analysis of the capture mechanism, a model, capture model, is proposed to mimic the capture 

ability of the intrinsic pores in a filtration process. Chapter 6.0 describes a semi-empirical deep 

bed filtration model to predict the migration of micro- and semi microparticles in porous media. 

Chapter 7.0 organizes the filtration models together and discusses the possibility of these new 

models work with the prediction of a real industrial filtration process. 

 



 4 

2.0 Background 

Filtration is a process that separates one phase of material from another phase. Types of 

filtration can be classified by different types of filters (i.e., cake filtration, frame filtration and 

candle filters). This dissertation is focused on fluid flow through a porous filter medium, which is 

widely applied in groundwater flow, oil transport in porous rock, the permeation of ink in paper, 

and other engineering applications(Tien 2006). It is a technique that creates a cake – a layer that is 

composed of solids – on the filter that is then used to separate (additional) solid(s) from the 

liquid(Kavoosi 2014), as shown in Figure 1. A porous cake and its interconnect voids are a 

heterogeneous system. The void space allows fluid to pass through. In constant pressure filtration, 

external pressure is added across the filter. In constant flow filtration, a positive displacement 

pump is used to push the liquid through at a constant flow rate(Rushton, Ward, and Holdich 2008). 

A non-constant filtration is a pressure filter fed by a pump.  

Studies on cake filtration have been reported for over ninety years. They changed from 

simple restricted results to more exact and relaxed results. The conventional theory was developed 

during the beginning of the last century by Ruth, Grace, Tiller, and Shirato(Tien 2006).  That is 

the mainstay in design calculations, scale-up, and data interpretation of cake filtration 

systems(Mauran, Rigaud, and Coudevylle 2001). This theory is based on assumptions that the 

particle velocity is negligible, and the fluid flow follows Darcy’s law(Whitaker 1986). This 

indicates that the flow rate of fluid in the filtration process is directly proportional to the ultimate 

pressure drop and inversely proportional to the flow resistance between the cake and the 

medium(Flickinger 2013).  
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Filtration is always composed of multi-sized particles in industry applications. The 

Kozeny-Carman model and other theories cannot be directly applied to the multi-disperse system. 

In order to verify the change for a multi-disperse system, the studies during the last decade have 

been focused on drag forces because the drag forces between fluid and particles are very important 

in filtration(Rong, Dong, and Yu 2014). Koch proposed new relations based on numerical data 

from simulations(Koch and Hill 2001). Van der Hoef determined the drag forces of particles in bi-

sized spheres in 2005(van der Hoef, Beetstra, and Kuipers 2005). Yin and Sundaresan generated a 

fluid-particle drag forces equation for binary and ternary systems(Yin and Sundaresan 2009). 

Because these works were based on very loosely packed beds, the equations may not work well in 

dense systems. Based on previous works, Rong organized the relationship between fluid and 

particles more accurately and reasonably(Rong, Dong, and Yu 2014). However, Rong and 

coworkers assumed that the particles remained stationary when the fluid flowed through them and 

used very low pressure during the experiment and simulation.  
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2.1 Surface and Depth Filtration 

From a first-principles mechanistic standpoint, depth and surface filtration (see Figure 2 

and Figure 3) has been investigated extensively as the key components of cake filtration. Iwasaki 

first formulated a mathematical model describing the differences between depth and surface 

filtration(Iwasaki 1937). Later, Hermia provided a blocking model to describe the flux decline 

during the stage of depth/surface filtration(Hermia 1982). This model includes several 

stages/mechanisms of blocking, including “standard” (some particles accumulate inside the filter 

medium); “intermediate” (some particles accumulate inside the filter medium, others accumulate 

on the top of the medium leading to an increase in medium thickness); and “complete” (particles 

seal off the pores since the particle sizes are larger than the pore size). Based on the blocking model, 

Bowen generated a set of equations to describe the steps of the membrane blocking (Bowen, Calvo, 

and Hernandez 1995). Based on the blocking mechanisms of pores(Chudacek and Fane 1984), we 

can classify the filtration into surface filtration (boundary layer resistance)(Sampath, Shukla, and 

Rathore 2014) and depth filtration (pore blocking) (Johnson and Johnson 1987). Researchers have 

been studied the behavior of depth/surface filtration based on this model with experimental data 

(Sampath, Shukla, and Rathore 2014). Thus, the current depth/surface filtration models are 

extremely depended on the experimental results. 

Figure 1 Solid liquid separation filtration process. 

2.1.1  Surface Filtration 

In general, during surface filtration, the filter medium acts as a screen so that particles of 

the suspension to be treated are retained solely on the surface of  the medium(Zularisam, Ismail, 
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and Salim 2006), resulting in the formation of an increasing large filter cake, as shown in Figure 

2. The pores in this model are assumed to become less accessible as the particles deposit on the 

surface. Thus, the cake thickness grows leading to a decrease in the filtrate volumetric flow 

(Chudacek and Fane 1984, Bowen, Calvo, and Hernandez 1995). Mathematically, this model can 

be described via 

 

𝑑𝑑2𝑡𝑡
𝑑𝑑𝑚𝑚2 = 𝑘𝑘 �

𝑑𝑑𝑡𝑡
𝑑𝑑𝑚𝑚

�
0

= 𝑘𝑘 (2-1) 

  

 

Figure 2 Surface filtration process. 
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2.1.2  Depth Filtration 

During depth filtration, separation is effected through particle deposition throughout the 

entire depth of the medium as shown in Figure 3. In other words, the individual entities constituting 

the medium act as particle collectors(Tobiason and O'melia 1988). In this process, particles go 

through the pores and deposit on the pore walls when the particle size is smaller than the pore size 

of the filter medium. Thus the pore volume is decreased as a result of deposition: (Chudacek and Fane 

1984). 

 

𝑑𝑑2𝑡𝑡
𝑑𝑑𝑚𝑚2 = 𝑘𝑘 �

𝑑𝑑𝑡𝑡
𝑑𝑑𝑚𝑚

�
1.5

 (2-2) 

  

 

Figure 3 Depth filtration process. 
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2.2 Filter Aids 

Filter aids are widely used in the solid-liquid filtration. These systems often contain 

impurities that differ widely in their properties or gelatinous particles, which tend to block the 

filter medium(Halbfoster 1980). Thus, the use of filter aids assures increased filtration times and 

lower energy expenditure due to higher filter-cake permeability. This approach is used in a variety 

of areas, such as chemistry and biotechnology (Flickinger 2013), water filtration(Flickinger 2013), 

and filtration of beverages. Unfortunately, the selection and dosage of filter aids in industrial 

practice are mostly based on experience. It is, however, doubtful that the optimal point of operation 

is always found because the process at hand is rather complicated and comprises many free 

variables, such as filter-aid material, size distribution, and concentration(Sulpizio 1999). For many 

decades, the role of the right type and amount of filter aid for successful filtration is emphasized 

(Sutherland and Hidi 1966, Heertjes and Zuideveld 1978). Some of these researchers present 

simple models that analysis the cake resistance with the concentration of contaminants. They 

assume that separation only directly takes place at the surface of the cake(Carman 1938).  

However, the influence of the depth filtration has been estimated experimentally. Due to 

computational limitations, these conventional models were simplified to consider filtration process 

with constant impurity concentrations and a constant porosity of filter aids even though a time-

varying porosity of filter aids have been shown experimentally(Höflinger 2000). Thus, a novel 

theoretical model that describes both surface and depth filtration process is presented in this 

dissertation with the consideration of all process variables and parameters. 

Diatomaceous earth (DE) is a highly porous filter aid that provides the opportunity to 

combine high porosity with important properties such as high strength and a high thermal and 

chemical stability(Scheffler and Colombo 2006). This combination is very important for industrial 
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applications such as filters for gases and molten metals, removal of heavy metal ions (Cr, Ni etc) 

from sewage water, catalytic supports, and chromatography columns(Green and Colombo 2003). 

DE has intrinsic pores that smaller than 1.5µm (Al-Ghouti et al. 2003). Even though these pores 

are too small to let suspension go through, they still have the ability to capture relatively “smaller” 

particles, haze induced nano-particles(Parfitt 1976). To predict the actual flow behavior and cake 

structure during the filtration process, the model should not only consider the flow behavior but 

also consider the capture ability of intrinsic pores. 

2.3 Simulations 

Due to the limitations such as high costs and small scale in the experimental filtration test, 

numerical analysis becomes a primary investigative tool. In general, the numerical models may be 

categorized into continuum method and discrete method. Most continuum methods are formulated 

within the framework of poroelastic theory (Biot 1941, Hong, Mum, and Lim 2001). Distinct 

element method (DEM) is the most often used discrete method(Hong, Mum, and Lim 2001). 

2.3.1  Discrete Element Method 

The discrete element method (DEM), which was pioneered by Cundall in 1971, is a 

numerical method that is used to compute the physic properties of an extensive number of 

particles(Parfitt 1976). DEM is widely used in simple models of particle interactions because it 

models materials as an assemblage of discrete particles(Dong et al. 2009b, Eichholz et al. 2012). 

It calculates the interaction forces between these particles based on Newton’s law(Thornton and 
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Sokoloff 1998). Then it determines how the motion of each particle would change based on the 

calculated forces(Zhu et al. 2007).  

DEM is a method to solve Newton’s laws of motion for each discrete elements allowing 

for all degrees of freedom to describe the physic properties of each particle individually in the 

system depending on time t(Eichholz et al. 2012): 

 

𝑚𝑚𝑖𝑖
𝑑𝑑𝑣𝑣𝚤𝚤���⃑
𝑑𝑑𝑡𝑡

= 𝐹𝐹𝚤𝚤��⃑  (2-3) 

 

𝐼𝐼𝑖𝑖
𝑑𝑑𝜔𝜔𝚤𝚤����⃑
𝑑𝑑𝑡𝑡

= 𝑇𝑇𝚤𝚤��⃑  (2-4) 

 

where vi is the transitional velocity of particle i, mi is the mass of particle i, ωi is the rotational 

velocity of particle i, Ii is the moment of inertial of particle i. The force (Fi ) ⃑ is the force that 

acting on the particle i as shown: 

 

𝐹𝐹𝚤𝚤��⃑ = ���⃑�𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑖𝑖𝑖𝑖 + �⃑�𝐹𝑛𝑛,𝑖𝑖𝑖𝑖 + �⃑�𝐹𝑡𝑡,𝑖𝑖𝑖𝑖� + �⃑�𝐹𝑔𝑔,𝑏𝑏  (2-5) 

 

 𝑇𝑇𝚤𝚤��⃑ , the rotation phenomena are not considered.  Fg,b is the gravity and buoyancy forces that 

calculated by: 
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�⃑�𝐹𝑔𝑔,𝑏𝑏 =
𝜋𝜋
6
𝑑𝑑3∆𝜌𝜌𝑠𝑠𝑠𝑠�⃑�𝑔 (2-6) 

 

where ∆𝜌𝜌𝑠𝑠𝑠𝑠  is the difference of density between particle and the liquid phase, g is the gravitational 

acceleration, d is the particle diameter. Particle and particle contacts can be treated as a hard-sphere 

approximation or a soft-sphere approach(Dong et al. 2009a). In this dissertation only the hard-

sphere approach is included. 

The contact forces during collisions are shown in Figure 4. The normal contact force: 

 

�⃑�𝐹𝑛𝑛,𝑖𝑖𝑖𝑖𝑛𝑛�⃑ 𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑛𝑛𝜆𝜆1.5 − 𝜂𝜂𝑛𝑛,𝑖𝑖𝑖𝑖�⃑�𝑣𝑟𝑟𝑟𝑟𝑠𝑠,𝑛𝑛,𝑖𝑖𝑖𝑖 (2-7) 

 

where knis the spring constant in normal direction calculated with:  

 

𝑘𝑘𝑛𝑛 =
��⃑�𝐹𝑣𝑣𝑚𝑚𝑚𝑚�

[𝑑𝑑(1 − 𝜆𝜆∗)]1.5 (2-8) 

 

where λ* is a defined penetration(Dong et al. 2009a), ηnij  is the damping constant in normal 

direction: 
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𝜂𝜂𝑛𝑛,𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑛𝑛�
9
2
�
𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑖𝑖
�√𝜆𝜆𝑘𝑘𝑛𝑛 (2-9) 

 

where cn  is the damping coefficient which is equal to 0.3(CHU et al. 2008). Tangential force in 

static particles is shown as: 

 

�⃑�𝐹𝑡𝑡,𝑖𝑖𝑖𝑖 = −𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡𝑚𝑚∆𝑥𝑥𝑡𝑡,𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑡𝑡,𝑖𝑖𝑖𝑖�⃑�𝑣𝑟𝑟𝑟𝑟𝑠𝑠,𝑡𝑡,𝑖𝑖𝑖𝑖 (2-10) 

 

where 𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡𝑚𝑚 is the static spring constant in tangential direction and 𝜂𝜂𝑡𝑡,𝑖𝑖𝑖𝑖  is the damping constant 

in tangential direction: 

 

𝑘𝑘𝑡𝑡,𝑠𝑠𝑡𝑡𝑚𝑚/𝑣𝑣𝑑𝑑𝑛𝑛 =
𝜇𝜇𝑠𝑠𝑡𝑡𝑚𝑚/𝑣𝑣𝑑𝑑𝑛𝑛

𝑑𝑑(1 − 𝜆𝜆∗)
��⃑�𝐹𝑣𝑣𝑚𝑚𝑚𝑚� (2-11) 

 

𝜂𝜂𝑡𝑡,𝑖𝑖𝑖𝑖 = 2�
2
7
�
𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑖𝑖
�𝑘𝑘𝑡𝑡,𝑣𝑣𝑑𝑑𝑛𝑛 (2-12) 

 

where 𝜇𝜇𝑠𝑠𝑡𝑡𝑚𝑚/𝑣𝑣𝑑𝑑𝑛𝑛 is the static or dynamic friction coefficient. Tangential forces are changed with the 

transcending of the static friction and the moving of particles:  
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�⃑�𝐹𝑡𝑡,𝑖𝑖𝑖𝑖 = −𝜇𝜇𝑣𝑣𝑑𝑑𝑛𝑛��⃑�𝐹𝑛𝑛,𝑖𝑖𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖∆𝑥𝑥𝑡𝑡,𝑖𝑖𝑖𝑖 (2-13) 

 

 

Figure 4 Particle-particle contact models (normal direction: spring and damper; tangential direction: spring, 

damper and slider) adapted from (Eichholz et al. 2012). 

 

DEM simulation can be run with desired initial conditions, such as the number of particles, 

particle diameter, and particle size distribution, for multi-disperse systems(Chu and Yu 2008). In 

DEM, the solid matrix of porous media is modeled by packed particle assembly. The mechanical 

behaviors of the particle assembly are realized at contacts by appropriate contact and bonding laws. 

Because DEM can be used to simulate the physical locations of each particle in the model, one 

method of coupling the DEM and Lattice Boltzmann Method (LBM) techniques is to use the result 

of a DEM as the initial particle/boundary locations for the LBM (Munjiza, Bangash, and John 
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2004). LBM has been mathematically verified to represent Navier-Stokes equations in nearly 

incompressible fluids, its evolution equation is explicit, easy to implement and parallelization 

(Succi, Benzi, and Higuera 1991, Chen and Doolen 1998). 

2.3.2  Lattice Boltzmann Method 

The Lattice Boltzmann Method (LBM) is a computational model that is widely used in 

designing models of the physic properties of fluid flow, such as flow rate(Chen and Doolen 1998). 

LBM is based on the fact that individual molecules compose the fluid and the total behavior of the 

fluid can be calculated by summing the behavior of each individual molecule(Mohamad 2011). In 

LBM, a fluid is assumed to consist of mesoscopic fluid packets that repeatedly propagate and 

collide on a regular Cartesian lattice representing the flow field. The fundamental idea of LBM is 

to incorporate the essential physics of the microscopic process in a mesoscopic kinetic model so 

that the relationship among average properties at macroscale conforms to the Navier-Stokes 

equations(Succi 2001, Succi, Benzi, and Higuera 1991). Since its appearance (Mcnamara and 

Zanetti 1988), the lattice Boltzmann method (LBM) has been successfully solving different fluid 

physical problems, ranging from single-component hydrodynamics (Chen and Doolen 1998, Yu 

et al. 2003) to multi-phase or multi-component fluid flows (Grunau, Chen, and Egger 1993, Hou 

et al. 1997), creeping flow to turbulence flow(Luo, Qi, and Wang 2002), pure fluid flow to flow 

through porous media (Gunstensen and Rothman 1993) and solid particle suspension (Ladd 2015).  

In the theoretical studies and simulations of LBM, various lattice models have been proposed and 

examined (Mei, Luo, and Wei 2006): i.e., 3D models include D3Q15, D3Q19 and D3Q27. D3Q19, 

3D lattice with 19 discrete velocities, providing best combination of computational stability and 

accuracy (Mei, Luo, and Wei 2006, Mei et al. 2000) as shown in Figure 5.  
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Figure 5 D3Q19 adapted from Luo, 2008 (Rubinstein and Luo 2008). 

 

The LBM models developed by (Qian, D'Humières, and Lallemand 2007) in which the 

BGK (also called LBGK) collision function is used are implemented in this dissertation. The 

evolution equation of LBM-BGK model contains two steps in each computational loop: streaming 

and collision(Qian, D'Humières, and Lallemand 2007): 

 

𝑓𝑓𝛼𝛼(𝒙𝒙𝒊𝒊 + 𝒆𝒆𝛿𝛿𝑡𝑡, 𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) −
1
𝝉𝝉

(𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) − 𝑓𝑓𝑖𝑖
𝑟𝑟𝑒𝑒(𝒙𝒙, 𝑡𝑡)) (2-14) 
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The left-hand side of (2-14 represents the streaming of fluid particles across the lattice, 

while the right-hand side describes the collision process via relaxation. The explicit nature of the 

equation makes LBM very simple to implement; the local nature of the collision operation makes 

the implementation quite straightforward to parallelize. In the equation, xi is a physical point in 

the lattice space; e is the lattice velocity vector; 𝛿𝛿𝑡𝑡 is the timestep; 𝜏𝜏 is the dimensionless relaxation 

factor,  𝜏𝜏 = 𝜆𝜆/𝛿𝛿𝑡𝑡, 𝜆𝜆 is the relaxation time; i is the discretized direction; 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) is the particle 

distribution function (PDF); 𝑓𝑓𝑖𝑖
𝑟𝑟𝑒𝑒(𝑥𝑥, 𝑡𝑡) is the equilibrium distribution function (EDF): 

 

𝑓𝑓𝑖𝑖
𝑟𝑟𝑒𝑒(𝑥𝑥, 𝑡𝑡) = 𝑤𝑤𝑖𝑖𝜌𝜌[1 + 3

𝒆𝒆 ∙ 𝒖𝒖
𝑐𝑐2

+
9
2

(𝒆𝒆 ∙ 𝒖𝒖)2

𝑐𝑐4
−

3
2
𝒖𝒖 ∙ 𝒖𝒖
𝑐𝑐2

] (2-15) 

 

where 𝜌𝜌 is the density; u is the velocity vector; 𝑤𝑤𝑖𝑖 is a weighting factor. where c is the lattice speed 

(𝛿𝛿x / 𝛿𝛿t), 𝛿𝛿x is the lattice node spacing). In three-dimensional, 𝒆𝒆 is 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑒𝑒0 = 𝑐𝑐(0,0,0);
𝑒𝑒1 = 𝑐𝑐(0,1,0); 𝑒𝑒2 = 𝑐𝑐(0,−1,0);
𝑒𝑒3 = 𝑐𝑐(0,0,1); 𝑒𝑒4 = 𝑐𝑐(0,0,−1);
𝑒𝑒5 = 𝑐𝑐(1,0,0); 𝑒𝑒6 = 𝑐𝑐(−1,0,0);
𝑒𝑒7 = 𝑐𝑐(0,1,1); 𝑒𝑒8 = 𝑐𝑐(0,−1,−1);
𝑒𝑒9 = 𝑐𝑐(0,1,−1); 𝑒𝑒10 = 𝑐𝑐(0,−1,1);
𝑒𝑒11 = 𝑐𝑐(1,0,1); 𝑒𝑒12 = 𝑐𝑐(−1,0,−1);
𝑒𝑒13 = 𝑐𝑐(−1,0,1); 𝑒𝑒14 = 𝑐𝑐(1,0,−1);
𝑒𝑒15 = 𝑐𝑐(1,1,0); 𝑒𝑒16 = 𝑐𝑐(−1,−1,0);
𝑒𝑒17 = 𝑐𝑐(−1,1,0); 𝑒𝑒18 = 𝑐𝑐(1,−1,0);

 (2-16) 
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The density ρ and velocity u are related to PDF and EDF as follows: 

 

𝜌𝜌 = �𝑓𝑓𝑖𝑖
𝑖𝑖

= �𝑓𝑓𝑖𝑖
𝑟𝑟𝑒𝑒

𝑖𝑖

;  𝜌𝜌𝒖𝒖 = �𝒆𝒆𝑓𝑓𝑖𝑖
𝑖𝑖

= �𝒆𝒆𝑓𝑓𝑖𝑖
𝑟𝑟𝑒𝑒

𝑖𝑖

 (2-17) 

 

For a node marked as being solid, the bounce-back rule applies to reflect the particles back 

in their incoming direction at the collision stage. If a periodic boundary condition exists in a 

particular direction, the last face will be contiguous with the first edge or face to make sure the 

lattice is closed in that direction (Mei, Luo, and Wei 2006). 

The LBM-DEM coupling approach has been used to explore the physics involved in the 

fluid flow through porous media. Cook(Cundall, Hart, and Shimizu 2004) showed that LBM-DEM 

simulations were able to reproduce the formation of a sand arch stabilizing the solid matrix. In this 

dissertation, the DEM is used to simulate packed cakes to verify the changes of cake structure in 

different particle size distributions. LBM was chosen as the means to calculate the flows of fluid 

in different particle size systems using the DEM simulated beds. 
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3.0 Validating Kozeny Carman Model 

The content of this chapter is taken from Zhang, Siying, and Joseph J. McCarthy. 

"Modeling of the pressure drop across polydisperse packed beds in cake filtration." AIChE Journal 

65, no. 5 (2019). 

3.1 Kozeny Carman Model 

The Kozeny-Carman equation can be used in fluid flow through packed beds. It is based 

on the conventional theory and extended with experiments at constant pressure. For laminar flow 

in straight tubes, according to the Hagen-Poiseuille (H-P) equation(Schmid and Henningson 1994, 

Mortensen, Okkels, and Bruus 2005), 

 

Δ𝑝𝑝𝑠𝑠 =
32𝐿𝐿𝑉𝑉�µ
𝐷𝐷2  (3-1) 

 

where Δ𝑝𝑝𝑠𝑠is the pressure loss, L is the length of pipe, µ is the dynamic viscosity, 𝑉𝑉�  is the average 

velocity in the channels, and D is the diameter of the tube. In order to determine an effective tube 

diameter (Deq) that mimics the pores within a cake, the surface area for n monomodal tubes should 

be equal to the surface-volume ratio times the particle volume: 
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 𝑛𝑛𝜋𝜋𝐷𝐷𝑟𝑟𝑒𝑒𝐿𝐿 =
𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿(1 − 𝜀𝜀)6

Φ𝑠𝑠𝐷𝐷𝑝𝑝
 (3-2) 

 

where Dp is the particle diameter, Φ𝑠𝑠 is the sphericity, Acs is the cross-sectional area of the bed. 

Similarly, the void volume should be equal to the total volume of tubes.  

 

𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿𝜀𝜀 =
1
4
𝑛𝑛𝜋𝜋𝐷𝐷𝑟𝑟𝑒𝑒2 𝐿𝐿 (3-3) 

 

Combining (3-2) and (3-3), provides the equation for Deq: 

 

𝐷𝐷𝑟𝑟𝑒𝑒 =
2
3
Φ𝑠𝑠𝐷𝐷𝑝𝑝

𝜀𝜀
1 − 𝜀𝜀

 (3-4) 

 

The average volume of channels is proportional to the superficial velocity (𝑉𝑉0� ) and 

inversely proportional to the porosity: 

 

𝑉𝑉� =
𝑉𝑉0
𝜀𝜀
�

 (3-5) 
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where 𝜀𝜀 is the porosity. Adding a correction factor, 𝜆𝜆, into (3-1) represents the fact that channels 

are tortuous instead of straight and parallel. Combining this modified H-P equation with (3-4), and 

(3-5) we get 

 

Δp
𝐿𝐿

=
72𝜆𝜆𝑉𝑉0� µ
Φ𝑠𝑠

2𝐷𝐷2

(1 − 𝜀𝜀)2

𝜀𝜀3
 (3-6) 

 

The correction factor (𝜆𝜆) is typically taken as an empirical number equal to 2.1 so that we 

obtain(Rong, Dong, and Yu 2014): 

 

Δp
𝐿𝐿

=
150𝑉𝑉0� µ
Φ𝑠𝑠

2𝐷𝐷2

(1 − 𝜀𝜀)2

𝜀𝜀3
 (3-7) 

 

(3-7) indicates that the flow rate is proportional to the ultimate pressure drop and inversely 

proportional to the fluid viscosity. This equation is similar to Darcy’s law; therefore, it does not fit 

when the cake has high porosity, non-spherical particles, or systems of particles that are multi-

disperse(Rushton, Ward, and Holdich 2008). 
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3.2 Experiments 

In order to verify the influence of different multi-disperse systems on the predicted flow 

rate based on the Kozeny-Carman equation, a Nutsche Filter (a 0.2 Liter stainless steel filter with 

pressure regulator and down cap, DrM Company)(Reneau Jr 1992), is used at constant operating 

pressure. Constant pressure filtration is chosen with a cake that is composed of glass beads with 

regular, smooth surfaces (see Figure 6). The process for each filtration experiment was as follows: 

1. Fix filter paper cloth at the bottom of the filter. 

2. Pour a known volume and mass of dry glass beads into the filter. 

3. Tap the outside chamber several times until the particles have to settle evenly. 

            4. Pour the fluid into the chamber; make sure the structure of the solid phase is not 

destroyed. 

5. Apply a known pressure into the filter. 

6. Allow the fluid flow through the filter continuous into a beaker, which posited on a scale. 

7. Calculate the mass of fluid collected every 30 seconds. 

8. Run six times for each cake with six different operating pressures. 
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Figure 6 Chart of filtration experiment (Chose a pressure Nutsche filter). 

 

We read the pressure (p) from the pressure gauge during the experiment. The ultimate 

pressure drop (∆p) is the pressure in the filter minus the atmospheric pressure. The superficial 

velocity can be calculated by measuring the accumulated mass of filtered fluid as a function of 

time. The porosity is the fraction of void space in a material. We use the fluid displacement 

technique, where we combine particles and fluid in a graduated container, in order to determine 

the porosity. The viscous liquid used for the fluid phase is pure glycerol. We chose different 

“polydisperse” glass beads with size, from 50 μm to 500 μm. Different grades of particles are used, 

thus the width of our particle size distributions varies (see Table 1). The criterion used for 

determining the “wideness” of the particle size distributions is the value of the standard deviation: 

the narrow size distribution corresponds to a standard deviation of the distribution that is smaller 

than 10 μm; the wide size distribution means the standard deviation of the distribution is larger 
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than 10 μm. Experiments are run at six operating pressures (range from 80 kPa to 350 kPa). In 

what follows, we attempt to apply the K-C model to polydisperse systems by using the traditional 

K-C expression but use an average diameter, the harmonic mean diameter (Zhang et al. 2010): 

 

𝑑𝑑𝐻𝐻𝐻𝐻 =
n

∑ 1
𝑑𝑑𝑖𝑖

𝑛𝑛
𝑖𝑖=1

 (3-8) 

 

Table 1 Particle size distribution of polydisperse glass beads. 

 

  Sample number  1 2 3 1 1 

Narrow size distribution (µm) 

              

Mean size µ (µm) 58 69 82.5 98 500 

Standard deviation σ 5 6 7.5 8 0 

Wide size distribution (µm) Mean size µ (µm) 62.5 75 87.5 163.5 195 

Standard deviation σ 12.5 25 12.5 13.5 15 

 

 

The cake thickness as examined range from 0.5 − 2.5 cm and other quantities are held 

constant. In addition to different grades of “polydisperse” particles, we also examine binary 

mixtures in order to specify the more closely consider the particle size distribution. The procedure 

for each mixing is similar and is as follows. Before the filtration process, for mixture, a known 

volume of small particles and large particles are agitated by hand, while adding a small volume of 

water. This creates a roughly homogeneous binary mixture. Then the cake is allowed to dry under 
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forced air flow. Experiments are run using five different size ratios (see Table 2) and six operating 

pressures (range from 80 kP a to 350 kP a). Ns/l is the number ratio of the mixture (Number of 

small particle/ number of large particle) Rl is the particle size of large particle; Rs is the particle 

size of small particle; Rs/l is the size ratio of the mixture (Rs/Rl). The cake thicknesses are nearly 

2 cm and other quantities are held constant. 

 

Table 2 Five different size ratio by binary mixing with constant number ratio (N1 =1:1;N1 =3:1;N1 =6:1.). 

 

Rs/l  1 0.84 0.50 0.33 0.20 

Rl (µm) 500 98 200 500 500 

Rs (µm) --- 82 100 165 100 

 

Constant pressure filtration is used with a cake that is composed of glass beads with regular, 

smooth surfaces(Andersen 1980). The viscous liquid used for the fluid phase is pure glycerol. We 

chose different size ranges of glass beads with size from 50 μm to 500 μm. Experiments were run 

using different particle size distributions and six operating pressures. The cake thicknesses were 

0.5 − 2.5 cm and other factors were kept constant. After that, binary mixing was chosen in order 

to specify the effects of particle size distribution on the filtration process. The procedure for each 

filtration experiment is similar to the procedure above. However, before the filtration, a known 

volume of small particles and large particles were agitated with a mixer by add a little water to 

create a roughly homogeneous binary mixture and then the cake was allowed to dry under forced 

air flow. Experiments were run using five different size ratios and six operating pressures. The 

cake thicknesses were near 2 cm and other factors were kept constant. 
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3.3 DEM-LBM Simulations 

We chose DEM, a numerical method that is used to compute the mechanical response of 

an extensive number of particles(Cundall and Strack 1979), to simulate the particle packing. DEM 

is a method to solve for the motion and physical response of a collection of particles through the 

solution of Newton’s laws of motion for each discrete element within the system. 

A detailed discussion of implementing this technique may be found in Chapter 2.3. Here, 

we use this approach to obtain the detailed pore structure of a bed of particles (as follows). A pore 

in our DEM model is defined as the void space inside a Delaunay cell(Reboul, Vincens, and 

Cambou 2008). In mathematics, a Voronoi diagram is a partitioning of a space into regions based 

on distance to points in a specific subset of the space. In this study, the specific subset of space is 

the set of positions that correspond to the location of the centers of the particles within the packed 

bed. That set of points is specified beforehand and are closer to a given point of the set to any other 

points. The Delaunay triangulation (DT), is another fundamental computational geometrical 

structure(Aurenhammer 1991). For the set of position in Voronoi diagram, a DT of these points 

ensures that no position is inside the circumcircle associated with each triangle, which is obtained 

by attaching entire pairs of points belongs to in the set point whose Voronoi regions share a 

common Voronoi edge (see Figure 7). Thus, a pore volume in this study is defined as the volume 

of an inscribed sphere of DT. Because the positions of the centers of the particles in the 

computational cake are known via the DEM, we can determine each void volume based on their 

positions by exporting the position into MATLAB with the Delaunay triangulation analysis.  

Therefore, DEM can be used to obtain the void size distribution and particle packing for 

beds com- posed of different particle size distributions. LBM was chosen as the means to calculate 

the flows of fluid in different particle size systems using the DEM simulated beds. LBM is based 
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on the fact that individual molecules compose the fluid and the total behavior of the fluid can be 

calculated by summing the behavior of each individual molecule(Mohamad 2011). Details of this 

technique can be found in Chapter 2.3. 

 

 
Figure 7 The dual Delaunay triangulation of the Voronoi diagram. 
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3.4 Results and Discussion 

In order to verify the utility of the K-C model in a poly-disperse system, empirical flow 

rate was compared to predicted flow rate under the same operating pressure. Curve Fitting Toolbox 

(from MATLAB, command: cftool)(Mookiah et al. 2015) was used to evaluate the goodness of fit 

between data and predicted line.  

3.4.1  Narrow Size Distributions 

Figure 8 and Table 3 illustrates how well the predicted flow rates from K-C model match 

the empirical flow rates when the particle size distribution of the cake is narrow. Although the 

flow rates predicted by the K-C model were consistently a little lower than the empirical results in 

these narrow size distribution samples, the error between the empirical data and predicted data, in 

terms of the percent error, is less than 15 %.  

Figure 9 shows how well the empirical flow rates fit with the predicted flow rates for 

different thicknesses of cakes for the same particle size distribution: 90 − 106 μm. The flow rate 

decreases significantly with the increase of cake thickness; however, the errors between the 

empirical data and the predicted data are remain small. This quantitatively confirms that the K-C 

model can be applied in polydisperse systems with very narrow size distributions (deviation < 10 

μm). 
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Table 3 Experiments: cake thickness, porosity in different narrow size distribution. 

 

Narrow size 

distribution (µm) 

53-63 63-75 75-90 90-106 500 

Cake thickness (cm) 0.52 0.49 0.54 0.54 0.49 

Porosity 0.36 0.36 0.34 0.35 0.35 

 

 

 

Figure 8 The relationship between the operating pressure and the flow rate with narrow size distribution 

particles (line: predicted flow rate, point: empirical flow rate). 
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Figure 9 The relationship between the operating pressure and the flow rate in different thickness with narrow 

size distribution particles (line: predicted flow rate, point: empirical flow rate). 

 

3.4.2  Wide Size Distributions 

Unfortunately, when a cake is composed of particles that exhibit a wide particle size 

distribution, the flow rates predicted by the K-C model were consistently much lower than the flow 

rate obtained experimentally.  

Figure 10 and Table 4 illustrates that the error between the empirical data and the predicted 

data is much larger. Even if we were to assume that the harmonic mean diameter is the wrong 

choice of average particle size and instead treat the average particle size as a fitting parameter we 

obtain an unrealistically high mean diameter (i.e., one that is beyond the limits of the distribution’s 

sizes; see Table 5). 

Figure 11 shows that the errors between the empirical data and the predicted data increase 

as we increase the cake thickness, again using the same particle size distribution: 50 − 100 μm. 
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Thus, even if we introduce an unrealistically large mean particle diameter, 120 μm, we still need 

to modify the tortuosity as the cake thickness changes in order to maintain a good fit (see Table 

6). These “ideal” quantities confirm that the K-C model cannot be used for beds of polydisperse 

particles with wide size distributions (standard deviation > 10 μm). 

 

Table 4 Experiments: cake thickness, porosity in different wide size distribution. 

 

Wide size distribution 

(µm) 

50-75 50-100 75-100 155-177 180-210 

Cake thickness (cm) 0.54 0.54 0.52 0.49 0.52 

Porosity 0.35 0.36 0.35 0.35 0.36 

 

We hypothesize that the increase in error observed for wide particle size distribution is 

caused by the change in cake structure that results in a multi-model pore size distribution (which 

is beyond the scope of the K-C model). The large error between empirical results and predicted 

results from K-C model demonstrates the influence of changing the void volume of the cake on 

the observed flow rate. 
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Figure 10 The relationship between the operating pressure and the flow rate with wide size distri- bution 

particles (line: predicted flow rate, point: empirical flow rate). 

 

 

 

Figure 11 The relationship between the operating pressure and the flow rate in different thickness with wide 

size distribution particles (line: predicted flow rate, point: empirical flow rate). 
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Table 5 Fitted mean particle size for matching the predicted flow rate with experimental flow rate. 

 

Real size (µm) Fit size (µm) 

50-75 92 

50-100 120 

75-100 171 

150-177 223 

180-210 239 

 

Table 6 Fitted tortuosity for matching the predicted flow rate with experimental flow rate. 

 

Cake thickness (cm) Fit tortuosity 

0.53 2.78 

2.16 2.08 

5.01 1.46 
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3.4.3  Binary Distributions 

As shown in Figure 12, the errors between the empirical data and the predicted data are 

quite small for Rs/l = 0.20 and Rs/l = 0.33. However, the errors between empirical data and predicted 

data are much larger for Rs/l = 0.50 and Rs/l = 0.84 as shown in Figure 13. Therefore, the flow rate 

for a constant pressure filtration cake can be predicted by the Kozeny-Carman equation for small 

size ratios (Rs/l = 0.50), and it is inaccurate for large size ratios (Rs/l = 0.50). As previously 

explained, empirical results are influenced by particle distribution. 

 

 

 

Figure 12 The relationship between the operating pressure and the flow rate with small size ratio (line: 

predicted flow rate, point: empirical flow rate). 
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Figure 13 The relationship between the operating pressure and the flow rate with large size ratio (line: 

predicted flow rate, point: empirical flow rate). 
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Figure 14 shows the influence of number ratio in the prediction: the K-C model can only 

work for small size with different number ratio. Based on the work by Lash(Lash et al. 2015), for 

binary systems, particles with Rs/l < 0.50 can be packed efficiently, so the cakes have a tight 

distribution of void sizes; in contrast, particles with Rs/l ≥ 0.50 cannot form ordered packings. 

Because the particles cannot form ordered packings for Rs/l ≥ 0.50, we hypothesize that some voids 

are expanded by this disordered packing which can lead to channel formation and ultimately 

explain the much higher flow rate that is observed during filtration. Alternatively, for particles 

with a size ratio Rs/l < 0.50, we expect that the ordered packing that is achieved will behave much 

like a mono-model particle system (with a narrow size distribution). As a test of these two 

hypotheses, we endeavor to examine the void distributions observed in packings of binary systems 

in the next section. 
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Figure 14 The relationship between the operating pressure and the flow rate with different number ratio. a. 

Rs/l = 0.33; b. Rs/l = 0.50(line: predicted flow rate, point: empirical flow rate). 
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3.5 Modified Binary Model 

Having established that the traditional K-C model fails to accurately account for the 

complex pore size distributions found in polydisperse (and other complex) packed beds, here we 

develop a modification that alleviates this shortcoming. Specifically, we introduce two quantities 

κ and β to describe this complexity. As mentioned earlier,we assume that the increase in the 

measured flow rate is caused by a disordered packing structure within the cake structure. This 

disorder, at a minimum, will lead to the formation of a non-monomodal distribution of effective 

void sizes. As such, as a simple first approximation, we introduce two quantities to describe the 

expansion: κ is the fraction of expanded voids; β is the ratio of void sizes. In order to determine 

the equivalent void tube diameter (Deq) in a polydisperse medium, the surface area for n tubes 

should be equal to the surface-volume ratio times the particle volume(Carman 1956): 

 

𝜅𝜅𝑛𝑛𝜋𝜋𝜅𝜅𝐷𝐷𝑟𝑟𝑒𝑒𝐿𝐿 + (1 − 𝜅𝜅)𝑛𝑛𝜋𝜋𝐷𝐷𝑟𝑟𝑒𝑒𝐿𝐿 = 𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿(1 − 𝜀𝜀′)6/𝐷𝐷𝑝𝑝 (3-9) 

 

𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿(1 − 𝜀𝜀′)6
𝐷𝐷𝑝𝑝

= [𝜅𝜅𝜅𝜅 + (1 − 𝜅𝜅)]𝑛𝑛𝜋𝜋𝐷𝐷𝑟𝑟𝑒𝑒𝐿𝐿 (3-10) 

 

Similarly, the void volume is equal to the total volume of tubes. 

 

𝐴𝐴𝑐𝑐𝑠𝑠𝐿𝐿𝜀𝜀′ =
1
4
𝑛𝑛𝜋𝜋𝐷𝐷𝑟𝑟𝑒𝑒2 𝜅𝜅𝜅𝜅2𝐿𝐿 +

1
4
𝑛𝑛𝜋𝜋𝐷𝐷𝑟𝑟𝑒𝑒2 (1 − 𝜅𝜅)L (3-11) 
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Combining these equations provides a new equation for Deq: 

 

𝐷𝐷𝑟𝑟𝑒𝑒 =
2
3
𝜅𝜅𝜅𝜅 + (1 − 𝜅𝜅)
𝜅𝜅𝜅𝜅2 + (1 − 𝜅𝜅)

𝜀𝜀′
1 − 𝜀𝜀′

𝐷𝐷𝑝𝑝 (3-12) 

 

Due to the fact that we have now assumed that the packed bed has two mean void size, Deq 

and βDeq, the actual velocity in each tube is no longer identical. We will take the actual velocity in 

a normal tube as v, so the actual velocity in an expanded tube should be βv. Then we can achieve 

the relationship between superficial velocity and actual velocity by match the same volumetric 

flow rate: 

 

𝐴𝐴𝑐𝑐𝑠𝑠 × 𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝 =
1
4
𝜋𝜋𝑛𝑛[𝜅𝜅𝜅𝜅2𝑣𝑣𝜅𝜅2 + (1 − 𝜅𝜅)𝑣𝑣]𝐷𝐷𝑟𝑟𝑒𝑒2  (3-13) 

 

Again, combining these expressions gives 

 

𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝 = 𝜀𝜀 × 𝑣𝑣[
𝜅𝜅𝜅𝜅4 + (1 − 𝜅𝜅)
𝜅𝜅𝜅𝜅2 + (1 − 𝜅𝜅)] (3-14) 
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Incorporating this model into the Hagen-Poiseuille equation: 

 

∆p
L

=
32𝑣𝑣𝜇𝜇
Deq
2  (3-15) 

 

Taking u to represent 𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝 , therefore, we can obtain the modified Kozeny-Carman equation 

for multi-disperse systems:  

 

∆𝑝𝑝
𝐿𝐿

=
72𝜆𝜆𝜆𝜆𝜇𝜇
𝐷𝐷𝑝𝑝2𝜀𝜀3

[1 − 𝜀𝜀[𝜅𝜅𝜅𝜅2 + (1 − 𝜅𝜅)]2

[𝜅𝜅𝜅𝜅 + (1 − 𝜅𝜅)]2
×

1
𝜅𝜅𝜅𝜅2 + (1 − 𝜅𝜅) (3-16) 

 

Because we have assumed that some voids are expanded, the pathway through the cake can 

be more linear as fluid has more gaps to flow through. As a result, the tortuosity should be 

decreased. The tortuosity factor, λ, can be modified based on its definition. That is, the tortuosity 

is the ratio between the length of the real pathway and the distance between two ends. Based on 

Figure 15, the length of a real pathway can be calculated from the equation: 

 

𝐿𝐿′ = 𝐷𝐷𝑟𝑟𝑒𝑒 + 2𝐷𝐷𝑝𝑝 (red path) (3-17) 
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Similarly, the distance between two ends is: 

 

𝐿𝐿 = 𝐷𝐷𝑟𝑟𝑒𝑒 + 𝐷𝐷𝑝𝑝 (𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑘𝑘 𝑝𝑝𝑏𝑏𝑡𝑡ℎ) (3-18) 

 

Using this definition, we can calculate the tortuosity from the weighted average of the 

normal value and the expanded one, 

 

𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡 = (1 − 𝜅𝜅)𝜆𝜆𝑛𝑛𝑡𝑡𝑟𝑟𝑣𝑣𝑚𝑚𝑠𝑠 + 𝜅𝜅𝜆𝜆𝑟𝑟𝑚𝑚𝑝𝑝𝑚𝑚𝑛𝑛𝑣𝑣𝑟𝑟𝑣𝑣

=  (1 − 𝜅𝜅)
𝐷𝐷𝑟𝑟𝑒𝑒 + 2𝐷𝐷𝑝𝑝
𝐷𝐷𝑟𝑟𝑒𝑒 + 𝐷𝐷𝑝𝑝

+ 𝜅𝜅
𝜅𝜅𝐷𝐷𝑟𝑟𝑒𝑒 + 2𝐷𝐷𝑝𝑝
𝜅𝜅𝐷𝐷𝑟𝑟𝑒𝑒 + 𝐷𝐷𝑝𝑝

 
(3-19) 
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Figure 15 Determination of tortuosity through a particle. 

 

Based on this equation, we can calculate the modified tortuosity with the modified 

quantities. It is important to note that, for a mono-modal distribution of pores, this equation predicts 

a value of the tortuosity equal to 2.1 (as is typically chosen empirically in K-C model). Nattavades 

and Gerald also try to measure the tortuosity based on the streamlines from the lattice Boltzmann 

method(Srisutthiyakorn and Mavko 2017). The tortuosity calculated based on our model are quite 

similar to those found in the simulation results from the Nattavades model as shown in Table 7. 

We should note that this new model ostensibly has two total “fitting” parameters, κ and β. 

However, one way to verify the modified model is to use a DEM simulation to represent the pore 

size distribution and calculate the quantities κ and β (thus reducing the model to zero fitting 

parameters). Because the positions of the centers of particles in the cake are known by the DEM, 
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we can determine each void volume based on their positions in MATLAB(Reboul, Vincens, and 

Cambou 2008). The normal distribution and kernel distribution of the void size distribution can be 

determined by the MATLAB from the CurveFittingToolboxT M (from MATLAB, command: 

cftool). The bi-normal distribution of the void size distribution can be determined by the PDF 

function in MATLAB.  

 

Table 7 Compare tortuosity between modified K-C model and LBM simulation with Ns/l = 3. 

 

Particle size ratio Tortuosity by modified 

model 

Tortuosity by LBM(Srisutthiyakorn 

and Mavko 2017) 

1 2.10 2.11 

0.84 1.76 1.78 

0.50 1.73 1.75 

0.33 2.10 2.12 

0.20 2.10 2.11 

 

Table 8 AIC test of normal and bi-normal fit for the pore size distribution in different particle size ratio. 

 

Rs/l 1 0.84 0.50 0.33 0.20 

AIC of normal fit  -1971.67  -2767.57  -2444.90  -2554.70  -2643.16  

AIC of bi-normal fit  -1921.56  -3516.19 -3093.52 -2510.21 -2578.27 
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For a mono-disperse medium and small size ratio, the void size distribution shows only 

one peak (see Figure 16 and Figure 17), which implies that the size of each void space is identical. 

Thus, one single average void size is adequate to predict the flow behavior by the modified model 

for mono-disperse medium (κ = 0 and β = 1). 

In an effort to assess whether the additional (non-fitting) parameters increase the goodness 

of fit, we use the Akaike information criterion (AIC)(Akaike 1987). The AIC is an estimator of 

the relative quality of statistical models for a given set of data.  

Table 8 shows the AIC of normal fit is small than the AIC of bi-normal fit for Rs/l = 1, 

Rs/l = 0.20 and Rs/l = 0.33, which indicates that the normal model fits better. For a normal model 

of void size distribution, κ = 0 and β = 1. In contrast, the AIC of normal fit is much larger than the 

AIC of bi-normal fit for Rs/l = 0.84 and Rs/l = 0.50. This indicates that the bi-normal fit is better. 

Hence, there is a significant impact of pore size distribution on the permeability of packed beds 

for certain binary particle size ratios. In short, we find that in systems that include large size ratio 

mixtures (Rs/l > 0.5), particle packings are disordered such that they lead to channeling in the 

packed bed. In these cases, void quantities determined by bi-normal distribution are based on 

different mean void sizes and probability density as shown in Figure 18. Using these distributions, 

we can calculate the predicted flow rate using the κ and β from the modified model. Void quantities 

(κ and β) that determined by fitting distribution are based on different mean void sizes and 

probability density as shown in Table 9. 
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Figure 16 Probability density functions of the void size for mono-disperse system. 

 

 

 

 
 

Figure 17 Probability density functions of the void size for binary-disperse system in small size ratio a. Rs/l = 

0.20 b. Rs/l = 0.33. 
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Table 9 Void sizes and the percentages of the second peak for the void size bi-normal distribution of 

simulated beds. 

 

Rs/l Fitting method Void size of first 

peak 

Void size of second 

peak 

Percentage of 

second peak 

0.84 Bi-normal fit 0.1707 0.2224 20.54% 

0.50 Bi-normal fit 0.1932 0.2199 45.86% 

 

For both Rs/l = 0.84 and Rs/l = 0.50 in Figure 18 the error between the empirical flow rate and the 

predicted flow rate based on the K-C model is quite large. Conversely, the error between the 

empirical flow rate and the predicted flow rate using the modified model is much smaller. 

Similarly, the value of R-square is significantly increased with a modified model in Table 10. 

 

 

 

Figure 18 Probability density functions of the void size for binary-disperse system in large size ratio: a. 

Rs/l=0.50 b. Rs/l=0.84. 
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Table 10 Different between predicted flow rate and empirical flow rate. 

 

Rs/l Data Error R-square 

0.84 K-C model 87.71% 0.7803 

0.84 Bi-normal fit 25.68% 0.9557 

0.50 K-C model 110.85% 0.7543 

0.50 Bi-normal fit 40.37% 0.9415 

 

The modified model predicts the fluid flow/pressure relationship to a higher degree of 

accuracy than the K-C model for our filtration experiment as shown in Figure 19 and Figure 20. 

We should note that, while the error between the predict flow rate from the modified model and 

the measured results from experiment are still larger than 10 %, we assume that this error is caused 

by a (small) difference in the pore size distribution observed in the experimental cakes relative to 

those in our simulated packed beds. In order to test this assumption, we mimic the flow through 

the simulated cake using LBM.  

Figure 21 shows the simulation result. As in the physical experiments, our simulated flow 

shows that the K-C model can only predict the flow behavior in mono-disperse systems. The 

difference between the predicted results from the K-C model and the simulated flow rate is much 

larger in Rs/l = 0.84 and Rs/l = 0.50 systems, where the particle packing is observed to be 

disordered. What’s more, the prediction from our modified equation in Rs/l = 0.84 and Rs/l = 0.50 

system fit the simulated results extremely well. 
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Figure 19 The relationship between the operating pressure and the flow rate of binary-disperse system with 

modified K-C model: a. Rs/l=0.50 b. Rs/l=0.84. 
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Figure 20 Verification of modified model in binary-disperse system with different number ratio, Rs/l =0.50. 
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Figure 21 Verification of modified model with LBM simulation: a. mono-disperse b. Rs/l = 0.50 c. Rs/l = 0.84. 
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By comparing experimental results to those predicted from the K-C model, we assess the 

utility of this equation for application to systems that include polydisperse particles at moderate 

fluid pressure. We find substantial agreement between the model and the experiment only for 

systems that result in well-ordered particle packing. Dramatic disagreement is observed for particle 

beds that exhibit wide pore size distributions (deviation > 10 μm), as these particles cannot form 

ordered packings. The K-C model is failed to consider the complexity of the pore size distribution 

of a packed bed. Therefore, we introduce two quantities κ and β to describe this complexity. κ is 

the percentage of the expanded pores in the pore size distribution, which is influenced by the 

percentage of disordered particles; β is the ratio of the expanded pore size to the normal pore size, 

which is influenced by the expanded rate during the filtration. The predicted flow dynamics from 

the modified model are found to be much more similar to the experimental flow rates than those 

calculated using the K-C model. Prediction by the modified model also works much better in LBM 

simulations where we have direct access to the pore size distribution. In short, the effect of the 

pore size distribution on filtration cakes is important. The modified equation is deemed reliable at 

predicting the flow behavior, provided that an accurate representation of the pore size distribution 

is available. It will also be interesting to simplify the modified K-C model based on the analysis 

of the pore size distribution to reduce the redundant calculations. 
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4.0 Dynamic Modeling of Steric Filtration Including Surface- and Depth- Filtration Effects 

From Chapter 3.0, we found that the increase of flow rate is caused by disorder within the 

cake structure. This disorder, at a minimum, will lead to the formation of a non-monomodal 

distribution of effective void sizes(Hulmes et al. 1995). We proposed a modified K-C model 

capable of predicting the flow behavior for a poly-disperse system by introducing two quantities 

to describe the pore structure. The modified model is deemed reliable at predicting the flow 

behavior, provided that an accurate representation of the void size distribution is available. 

However, the calculation of n-1 quantities can be extremely inconvenient with complicated pore 

size distribution. This modified model is also limited to static pressure drop predictions and is 

difficult to directly apply to any dynamic filtration process. In this section, a first-principles based 

model is developed to predict the cake dynamics, including a transition between depth/surface 

filtration, based solely on known physical quantities of the filter bed and contaminants. The model 

relies solely on the to-be-captured particle size distribution of contaminants as well as the pore size 

distribution of the filtration media with an output of all relevant process variables and parameters 

(superficial velocity, pressure drop, etc.). Experiments, including both cake filtration and depth 

filtration, are used to validate this model. 
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4.1 PSD Model 

The current study develops experiments including both cake filtration and depth filtration 

are used to validate this model. Based on previous work, we found that the increase of flow rate is 

caused by disorder within the cake structure. This disorder, at a minimum, will lead to the 

formation of a non-monomodal distribution of effective void sizes(Lash et al. 2015). In order to 

capture this variation in pore size, we explicitly account for both the pore sizes and pore volumes 

to describe the expansion. We provide a model to predict the dynamic behavior for both the liquid 

and solid phase of a filtration process without the requirement of empirical parameters. Instead, 

our model relies solely on the to-be-captured particle size distribution of contaminants as well as 

the pore size distribution of the filtration media. In an effort to understand the relationship between 

flow dynamics and pore size distribution more fully, we built a dynamic filter cake model that 

continuously modifies the pore size distribution as contaminants (polydispere spheres) are 

deposited. The model is based on the following assumptions: (1) The filter cake is incompressible. 

(2) There is no chemical reaction during the filtration process. (3) The fluid flow should be a slow, 

viscous flow with a Reynolds number less than one. According to the Hagen-Poiseuille equation,  

 

∆𝑝𝑝 =
32𝜆𝜆𝐿𝐿𝑣𝑣𝑖𝑖𝜇𝜇
𝐷𝐷𝑖𝑖2

 (4-1) 

 

where ∆𝑝𝑝 is the pressure drop across the tube, L is the length of the tube, 𝜇𝜇 is the dynamic viscosity, 

v is the average velocity in the unhindered tube, and D is the diameter of the tube. We can calculate 

the linear velocity through each pore as: 



 54 

 

𝑣𝑣𝑖𝑖 =
∆𝑝𝑝𝐷𝐷𝑖𝑖2

32𝜆𝜆𝐿𝐿𝜇𝜇
 (4-2) 

 

where 𝜆𝜆 is the tortuosity of the pore channel. Tortuosity can be determined by its definition: that 

is, that the tortuosity is the ratio between the length of the actually path traversed by the fluid and 

the linear distance between the two measurement points. Assuming that the actual fluid pathway 

within a porous material includes traversing both the “empty space” within a pore as well as 

circumscribing the particles that make up the pore, we obtain 

 

𝑅𝑅𝑒𝑒𝑏𝑏𝑏𝑏 𝑝𝑝𝑏𝑏𝑡𝑡ℎ𝑤𝑤𝑏𝑏𝑤𝑤 =  𝐷𝐷𝑖𝑖 + 2𝐷𝐷𝑝𝑝 (4-3) 

 

In contrast, the linear distance between the two corresponding measurement points is given as 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑏𝑏𝑛𝑛𝑐𝑐𝑒𝑒 𝑏𝑏𝑒𝑒𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑛𝑛 𝑡𝑡𝑤𝑤𝑡𝑡 𝑒𝑒𝑛𝑛𝑑𝑑 =  𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑝𝑝 (4-4) 

 

Thus, a first-principles expression for flow through an occluded pore may be written as 

 

𝜆𝜆 =  
𝐷𝐷𝑖𝑖 + 2𝐷𝐷𝑝𝑝
𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑝𝑝

 (4-5) 
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If we employ the constraint that the overall volumetric flow rate may be written either in terms of 

a superficial velocity, 𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝, or in terms of the sum of all of the individual flows within the pores, 

we get: 

𝐴𝐴𝑐𝑐𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝 = �
1
4
𝜋𝜋𝐷𝐷𝑖𝑖2𝑣𝑣𝑖𝑖

𝑣𝑣

𝑖𝑖=1

𝑛𝑛𝑖𝑖 (4-6) 

 

where ni is the number of pores of type i, m is the total number of pore sizes. We can obtain this 

value from a measurement of the total pore volume for each pore, i, using 

 

𝑛𝑛𝑖𝑖 =
𝑉𝑉𝑖𝑖

𝜆𝜆𝐿𝐿 1
4𝜋𝜋𝐷𝐷𝑖𝑖

2
 (4-7) 

 

where 𝑉𝑉𝑖𝑖 is total volume of pore type i. Combining these expressions, we can get a final, first-

principles description of the superficial velocity based on the pore diameters and pore volumes as 

 

𝑣𝑣𝑠𝑠𝑠𝑠𝑝𝑝 =
1
𝐴𝐴𝑐𝑐𝑠𝑠

∆𝑝𝑝
32𝐿𝐿2𝜇𝜇

�
𝐷𝐷𝑖𝑖2𝑉𝑉𝑖𝑖
𝜆𝜆𝑖𝑖
2

𝑣𝑣

𝑖𝑖=1

 (4-8) 
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The pore size distribution (PSD) model, shown in (4-8, allows the prediction/calculation 

of the overall flow (i.e., superficial velocity) through a complex bed that relies simply on 

knowledge of the fluid properties and a measurement of the pore size distribution (including pore 

volumes) of the cake itself. 

4.2 Static Filtration 

In order to verify the PSD model, a Nutsche Filter (Rushton, Ward, and Holdich 2008), 

which is a cake filter and performs filtration at constant operating pressure, was chosen for the 

experiments. Several validation tests were run, including constant pressure flow measurements 

through a cake, as well as both depth and depth/surface filtration of contaminants. The cake 

medium in these tests is either made of glass beads or a commercially available diatomaceous earth 

(FAX) material. The contaminant of choice was comprised of glass beads with regular, smooth 

surfaces (of varying size) and the viscous liquid used for the fluid phase is pure glycerol. 

In our first suite of experiments, we ramp the operating pressure (drop) several times to not 

only test the repeatability of our results but also to ensure that our cake is not to be considered as 

compressible.We chose different grades of FAX (i.e., that we will label as 3, 5, and 7) that offer a 

variety of complex pore structures (see Figure 22). Our first set of validation experiments were run 

using six operating pressures (repeated 3 times). The cake thicknesses were 0.5cm and other factors 

were kept constant. The process for each filtration experiment was as follows: 

1. Fix filter paper cloth at the bottom of the filter. 

2. Pour a known volume and mass of dry filter aid into the filter. 

3. Tap the outside chamber several times until the particles have to settle evenly. 
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            4. Pour the fluid into the chamber; make sure the structure of the solid phase is not 

destroyed. 

5. Apply a known pressure into the filter. 

6. Allow the fluid flow through the filter continuous into a beaker, which posited on a scale. 

7. Calculate the mass of fluid collected every 30 seconds. 

8. Run six times for each cake with six different operating pressures. 

9. Repeat step 8 two times. 

 

 

 

Figure 22 Pore size distribution of filter aid FAX3, FAX 5 and FAX 7 from mercury porosimetry, Lubrizol 

Corporation. 
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We employed both the PSD model and the K-C model to predict flow rates under the same 

operating conditions. Here we determine the number of pore sizes of the filter medium based on 

the number of peaks in its pore size distribution. From the pore size distribution, as shown in Figure 

22, there are approximate seven pore sizes for FAX 3. As a means of refining the PSD model, we 

test our approach under three sets of assumptions Figure 23. The “7-model'' assumes that all 

measurable pores contribute to the fluid flow, thus it combines all the pore modes observed from 

measurements of the FAX structure; the “6-model'' omits the smallest measured mode of pore sizes; 

the “5-model'' omits any pores whose mode falls below 3 µm.  

Figure 24 shows a comparison of the simulation results and a series of experimental tests. 

One notes that the K-C model dramatically under-predicts the flow rate (perhaps due to the highly 

porous nature of FAX). The AIC test(Akaike 1987) also shows the “6 model” fits the experimental 

data best: the AIC of “7 model” is -1763.64, the AIC of “6 model” is -2412.02, the AIC of “5 

model” is -2019.87. Of the PSD model varieties tested, it is clear that the “6 model'' most accurately 

predicts the flow behavior.  

This can be understood in the following way. The single-mode of pore sizes that is omitted 

from the analysis in this PSD variety are those with pore size < 2 µm; however, in examining the 

scanning electron micrograph of the material Figure 25, it is clear that it is not the absolute size of 

the pore that is critical, but instead the fact that the pores of that size are those that are intrinsic to 

the individual particles that make-up the FAX. We found the “6 model” fits the experimental data 

best when we only consider the peak of the pore size distribution.  

Thus, we tried to extend the “6 model” with some pore sizes near these six peaks. The AIC 

of the extended “6 model” is about 2474.85, which is only a slightly lower than the AIC of the “6 

model”.   That is, our PSD model works quite well we consider only pores (peaks in the pore size 
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distribution) that are created between particles of the cake/filter media, and omit those that are  

intrinsic (or “dead end”) to the material (Hodgson et al. 1993, Koponen, Kataja, and Timonen 

1997). 
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Figure 23 Selection of pore sizes for 7-PSD Model, 6-PSD Model, and 5-PSD Model. 
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Figure 24 The relationship between the operating pressure and the flow rate of the FAX system with PSD 

models. (Line: predicted results by simulaiton model. Points: experimental data) 

 

 

 

Figure 25 SEM image of FAX 3 with intrinsic pores (pore size < 2µm). 
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The comparison between experimental flow rate and prediction for FAX 5 and FAX 7 also 

show the 6-PSD model works best. Thus, the PSD model (6 model) can predict the flow behavior 

in high porous system very well without the consideration of intrinsic pores.  

4.3 Dynamic Filtration 

The next step is to verify the PSD model in a dynamic filtration, which separate solid 

particles from suspensions. Dynamic filtration can be separated into two parts: depth filtration and 

surface filtration. Depth filtration is typified by a porous layer that captures solid contaminants 

from the liquid phase within its embedded pore volume. Thus, the time dependency of volume 

flow Jv is given by (Chudacek and Fane 1984): 

 

𝐽𝐽𝑣𝑣(𝑡𝑡) =
𝐽𝐽𝑣𝑣(0)

(1 + 𝐵𝐵𝑡𝑡)2
 (4-9) 

 

where B is equal to Ku and K is the decrease in the cross-section area of the pores per unit of total 

permeate volume. The predicted time evolution of the total permeate volume is  

 

𝑉𝑉(𝑡𝑡) =
𝐽𝐽𝑣𝑣(0)𝑡𝑡
1 + 𝐵𝐵𝑡𝑡

 (4-10) 
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While the characteristic equation of the depth filtration process should be 

 

𝑑𝑑2𝑡𝑡
𝑑𝑑𝑉𝑉2

=
2𝐵𝐵
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𝑑𝑑2𝑡𝑡
𝑑𝑑𝑚𝑚2 = 𝑘𝑘 �

𝑑𝑑𝑡𝑡
𝑑𝑑𝑚𝑚

�
1.5

 (4-11) 

 

Instead, surface filtration involves the capture of contaminants at the surface of the media 

such that the filter cake height increases. Thus, particles will remain at the surface of the filter 

medium and create a new cake layer. For a surface filtration, the time law for the volume flow Jv 

is given by (Chudacek and Fane 1984, Bowen, Calvo, and Hernandez 1995): 

 

𝐽𝐽𝑣𝑣(𝑡𝑡) =
𝐽𝐽𝑣𝑣(0)
√1 + 𝐶𝐶𝑡𝑡

 (4-12) 

 

where C = 2RrKCu0. 1/KC is the total permeate volume per unit of membrane area and Rr is the 

hydraulic resistance. The predicted time evolution is given by: 

 

𝑉𝑉(𝑡𝑡) =
2𝐽𝐽𝑣𝑣(0)𝑡𝑡

𝐶𝐶
[√1 + 𝐶𝐶𝑡𝑡 − 1] (4-13) 

 

 

 

 



 64 

Thus, the characteristic equation of the surface filtration process is: 

 

𝑑𝑑2𝑡𝑡
𝑑𝑑𝑉𝑉2

=
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 (4-14) 

 

 

 

Figure 26 Determination of depth- and surface-filtration by experimental results of dynamic filtration 

process: a.3mm b.5mm c.10mm. 
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Based on (4-11 and (4-14, we can determine the filtration mode by plotting  𝒅𝒅
𝟐𝟐𝒕𝒕

𝒅𝒅𝒎𝒎𝟐𝟐 as a function of  𝒅𝒅𝒕𝒕
𝒅𝒅𝒎𝒎

 

as shown in the Figure 26. In this figure, we show measurements made with varying thickness of 

a filter cake comprised of FAX 7 that are used to capture glass beads from a mixture of beads and 

glycerol. One notes that the blue points can be fit with an exponential index close to 1.5 which is 

indicative of depth filtration. In contrast, the red points show a roughly horizontal (i.e., zero slope) 

profile, which is indicative of surface filtration (Tien 2013). Also shown (on the right-hand side of 

this figure) is that the value of 𝒅𝒅𝒕𝒕
𝒅𝒅𝒎𝒎

 becomes proportional to the mass of output (m) during surface 

filtration(Tien 2006). By using both plots, one can identify the transition point where the filtration 

mode shifts from primarily depth to surface filtration. For these thin dynamic filtrations, the 

process starts with a depth filtration that most contaminant go into the filter medium and deposited 

at the bottom filter paper, resulting in the decrease of porosity of the filter medium. Then the 

filtration process changes to a surface filtration at a certain point, where contaminants remain at 

the surface of the filter medium instead of going through it. 

To determine the “changing/switch” point, we create two types of the filter medium as 

shown in Table 11. (1) Pm cake: premix all glass beads with the filter aid. (2) Cm cake: premix a 

certain value of glass beads with FAX7 and then add additional mass of glass beads on the top of 

the cake. 
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Table 11 Sample of glass beads mixed with FAX 7 by different mass.  

 

 

 

 

 

Figure 27 Experimental results between dynamic filtration process and static filtration process: a. 3mm b. 

5mm. 
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Figure 27 shows a comparison of the dynamic PSD flow rate predicted from a dynamic 

filtration (lines) to the experimental results obtained from the series of individual static cases 

described above (Cubes for Pm and points for Cm). Because the Pm cake premixes more glass 

beads into the filter aid than would otherwise be expected to be captured by native depth filtration, 

it results in a more open structure and a flow rate that is larger than predicted by the PSD model. 

In contrast, the more realistic Cm cakes show the combined impact of depth and surface filtration 

and agree much more closely with the PSD predictions.  

Figure 27 shows the flow rate of Pm cake after the changing point is always higher than 

the dynamic cake, that is because after all the pores are filled with glass beads, the pore size can 

be enlarged by adding new glass beads in to the system. Thus, the “changing/switch” point from 

depth filtration to surface filtration is the maximum filling point, which means all the open pores 

of the filter medium is filled with contaminants. 

4.3.1  Dynamic Pore Size Distribution 

In order to accomplish this, we must step forward in time such that, during one-time step, 

the pore size distribution is changed by the filling of contaminants that occurred during the 

intervening time. Our algorithm for pore filling is based on a series of probability functions: for 

contaminant particle identity, for pore flow, and for contaminant capture. That is, the likelihood of 

a particular size contaminant particle being considered for capture is based on the weighted 

frequency of occurrence of that particular size. Then, the pores into which the contaminant flows 

are explicitly related to the pore resistance. Finally, the likelihood of physical capture within that 

given pore is based on the ratio of contaminant to pore sizes (in the current study, for simplicity, 

this probability is set to unity). 



 68 

At the end of each time interval, the pore size distribution is updated based on the resultant 

packing of contaminants within the selected pores. Note that contaminant capture can, therefore, 

lead not only to a reduction in the number of large pores, but also the creation of smaller pores 

(between capture contaminant particles). The packing within particular pores is based on the model 

established by Desmond (Desmond and Weeks 2014). 

Ultimately, with the change of pore size distribution vs. time, we can finally predict the 

flow behavior during the dynamic filtration, as shown in Figure 28.  
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Figure 28 Chart of the dynamic PSD mode. 

 

 

 

 

 

 



 70 

4.3.2  Mono Disperse Systems 

Having validated the ability of the PSD model to capture the transition from depth to 

surface filtration via comparison with curated static flow measurements. Next, we turn toward 

testing fully dynamic filtration modeling. As mentioned earlier, here the critical component is to 

capture the change of the pore size distribution with time (Bryant, King, and Mellor 1993). As an 

initial test, we examine the filtration of a simple mono-disperse glass bead suspension from a 

stream of otherwise pure glycerol. As a test of the PSD model’s efficacy for modeling dynamic 

filtration, a suspension composed of monodisperse spherical glass beads and glycerol is prepared.  

Figure 29 shows the experimental process of the dynamic filtration. The filter medium is 

FAX 7 and varies with 5mm cake thickness. The suspension is 11µm glass beads that mixing in 

180ml glycerol with a constant concentration: 30g/mL. Figure 30 shows the comparison between 

the predicted flow rate from the PSD model to the experimentally measured flow rate in the 

dynamic filtration process of mono-sized spheres. As one can see, the model captures the flow rate 

at a fixed pressure over the entire history of the dynamic filtration process while maintaining an 

error between simulation and experiment that is always smaller than 10%. The model works well 

to predict the flow behavior of dynamic filtration process in mono-spheres suspension since the 

error between simulation and experiment is always smaller than 10\%. The system changes from 

depth filtration to surface filtration can also be predicted.  

Figure 31 shows the pore size distribution for different stages. Depth filtration dominates 

the filtration process from the initial phase through the blocking phase. During this stage, the 

volume of large pores is continually decreased as a result of the increasing particle loading. In 

contrast, the volume of some small pores increases during this stage as  new pores that are created 

between the containment particles and the filter aid. After reaching the blocking point, some 
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contaminant remains at the top surface of the filter aid, creating new small pores and increasing 

the cake thickness. 

 

 

 

Figure 29 Sketch of the dynamic filtration. 
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Figure 30 Comparison between predicted flow rate and experimental flow rate in dynamic filtration process 

of mono-spheres suspension. 
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Figure 31 Dynamic pore size distribution of mono-disperse dynamic filtration: (a). Initial stage (b). Block 

stage (c). Final stage. 
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4.3.3  Multi Disperse Systems 

The last step in testing the PSD model is examine dynamic filtration where the particle size 

distribution of contaminants is also complex. While it is more complex to predict the resultant pore 

size changes when filling a pore with polydisperse contaminants(Al-Raoush, Thompson, and 

Willson 2003), we do so by adapting the packing density model of (Desmond and Weeks 2014) 

where they suggest that: the packing density is influenced by the particle size distribution: 

Φ=0.634+c1δ+c2δ2, where Φ is the packing density, c1 and c2 are constant values that equal to 

0.0658 and 0.0857, δ is the polydispersity. δ is determined by the particle size distribution as shown 

in Table 12(Furnas 1931, Farr 2013). Since we have already shown that we can obtain the flow 

behavior of a filter medium directly from its pore size distributions using the PSD model, now we 

simply need to predict the evolution of the pore side distribution. By modifying our mono-disperse 

approach with the more complex packing fraction outlined above, we can predict the dynamic 

changes in pores size distribution as shown in Figure 33. Then, to verify the PSD model in a more 

realistic dynamic filtration, a suspension that is composed of a mixture of glass beads of differing 

sizes and glycerol is prepared as shown in Appendix B.  

Figure 32 shows the resulting comparison between the predicted flow rate from the PSD 

model and the experimentally measured flow rate from the aforementioned dynamic filtration 

process of a multi-disperse sphere suspension. Once again, it can be seen that the model predicts 

the flow behavior to within 15% error across the entire evolution of the process. 
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Table 12 Polydispersity fuctions. 

 

Function P(R)=p1σ(R-a)+p2σ(R-b)+p3σ(R-c)+…+pnσ(R-n) 
Number fraction pi=P(i)/[(P(a)+…+P(n)] 
Size ratio ηi=Ri/R1 
Constrained a=η1/(p1η1+p2η2+…+pnηn 
Polydispersity δ=[p1(a-1)2+p2(b-1)2+…+pn(n-1)2] 

 

 

 

Figure 32 Comparison between the predicted flow rate and the experimental flow rate in dynamic filtration 

process of multi-spheres suspension. 
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Figure 33 Dynamic pore size distribution of multi-sphere dynamic filtration: (a). Initial stage (b). Block stage 

(c). Final stage 
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4.3.4  Optimization with the PSD Model 

As a final application example, one might envision using the PSD model to perform an 

optimization of a particular filtration process, either attempting to conserve power, reduce the use 

of filter aid and/or reduce the filtration time. Here we examine a candidate contaminated stream 

that contains a known quantity (0.69g) of 11µm glass beads suspended in 35mL glycerol. Table 

13 shows the predictions of a variety of quantities of interest from the filtrations when using 

alternatively FAX 3, 5, or 7. One notes that FAX 7 is the best filter aid for the separation based on 

operating time, the quantity of filter aid required, and total cake thickness used. Figure 34 shows 

the validation of the predicted screening of 11µm glass beads via a comparison of the measured 

and predicted superficial velocity (showing an accuracy similar to our earlier validation plots). In 

contrast, if one were to consider the cleaning of a suspension of 24mL of glycerol that contains 

0.48g of  3-6µm glass beads, our prediction (and subsequent validation) show that FAX 5 is the 

best filter aid for this separation (see quantities of interest in Table 14). 
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Table 13 Screening for 11µm glass beads with FAX 3, FAX 5, and FAX 7. 

 

 FAX3 FAX5 FAX7 

Porosity(ml/g) 2.76 2.30 1.96 

Mass of FAX (g) 1.96 1.51 0.83 

Cake thickness (mm) 6.45 4.35 2.09 

Time (s) 1078 561 180 

Weight index 35.16% 56.46% 83.14% 

Mass velocity (g/s) 6.11e-04 1.23e-03 3.83e-03 

  Better Best 

 

Table 14 Screening for 3-6µm glass beads with FAX 3, FAX 5 and FAX 7. 

 

 FAX3 FAX5 FAX7 

Pore volume (ml/g) 0.88 1.21 0.76 

Mass of FAX (g) 1.34 1.00 1.59 

Cake thickness (mm) 4.19 2.88 4.00 

Time (s) 580 240 350 

Weight index 24.49% 48.00% 30.19% 

Mass velocity (g/s) 1.21e-03 3.37e-03 1.98e-3 

  Best Better 
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Figure 34 Screening for 11µm glass beads by surpefical velocity with FAX 3, FAX 5 and FAX 7. 
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In this chapter, we introduce a new model, the PSD model, that is capable of predicting the 

dynamic flow (or pressure) behavior for both the liquid and solid phases in a cake filtration process. 

It is important to note that the model accurately captures both depth and surface filtration, as well 

as the transition, without requiring any empirical quantities. That is, the model simply requires that 

one known the physical properties of the liquid and solid materials (including both the contaminant 

size(s) as well as the media pore sizes). With these data, the PSD model can provide an accurate 

estimate of the pressure drop, flow dynamics, resultant filter cake structure, and permeability in 

both static and dynamic filtration processes. 
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5.0 Numerical Simulation of the Particle Capture on A Dead-end Pore 

Modeling of the filtration process in porous media is of considerable interest in natural and 

industrial systems, such as wastewater treatment(Busch, Cruse, and Marquardt 2007), petroleum 

engineering(Gitis et al. 2010), chemical engineering (Sambaer, Zatloukal, and Kimmer 2011) and 

aquifer contamination(Harvey and Garabedian 1991). A deep understanding of the mechanism of 

the transport and retention of colloidal particles through the filter medium is essential for 

predicting contaminant separation and fluid dynamics. 

Researchers have been working on the prediction of particle capture within inter-connected 

pores with early attempts adopting a phenomenological point of view (Ison and Ives 1969). This 

approach generally employs empirical equations for the rate of particle retention and the 

subsequent change in pressure gradient. An approach espoused by Ives work (Ison and Ives 1969) 

uses conservation equations for the concentration of the contaminants and obtains the flow 

dynamics from an adaption of  the Darcy's law; however, this approach is an empirical model in 

that it does not directly address the operating mechanisms of particle capture.  An alternative and 

more accurate method of modeling particle capture phenomenon during the filtration process is to 

consider a filter medium as the combination of collectors/pores(Rubenstein and Koehl 1977). The 

mechanism of particle capture by each filter pore/collector then becomes the problem of interest. 

Thus, this approach involves setting up the equation of motion for the suspended particles with the 

addition of a physical description of each possible collection mechanisms(Tufenkji and Elimelech 

2004). 

Current recognized mechanisms of the transport of particles from the fluid phase to the 

pores of a porous filter medium include interception, gravitational sedimentation, and Brownian 
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diffusion. Transport of particles by interception occurs when a particle moving along a streamline 

comes into contact with the pore/collector due to its finite size (Overton 1973). Gravitational 

sedimentation refers to the settling of particles with densities greater than that of the fluid onto the 

pore/collector surface(Velamakanni and Lange 1991). Diffusion/Brownian motion of smaller 

particles result in contact with the pore/collector(Spielman and Goren 1968). Prieve and 

Ruckenstein(Prieve and Ruckenstein 1974) demonstrated that the rate of particle capture 

calculated by summing individual contributions from each transport mechanism was in close 

agreement with deposition rates obtained from a rigorous solution of the convective-diffusion 

equation. 

Yao et al.(Yao, Habibian, and O'Melia 1971) proposed the first filtration model suggesting 

that the three transport mechanisms are additive.  

𝜂𝜂0 = 𝜂𝜂𝐷𝐷 + 𝜂𝜂𝐼𝐼 + 𝜂𝜂𝐺𝐺  (5-1) 

where 𝜂𝜂𝐷𝐷 is the single collector efficiency by diffusion, 𝜂𝜂𝐼𝐼  is the single collector efficiency by 

Interception and 𝜂𝜂𝐺𝐺  is the single collector efficiency by diffusion. Here, the separate correlation 

equation of 𝜂𝜂𝐷𝐷 , 𝜂𝜂𝐼𝐼  and 𝜂𝜂𝐺𝐺  are first determined. Then, the overall single-collector efficiency is 

obtained by summing the individual contributions of each mechanism. 

Despite its utility, Yao's model does not consider the influence of hydrodynamic (viscous) 

interactions or van der Waals attractive (surface) forces. The hydrodynamic interactions and van 

der Waals interactions are studied using a the numerical solution of the convective-diffusion 

equation (Elimelech, Gregory, and Jia 2013, Prieve and Ruckenstein 1974) and trajectory analysis 

for non-Brownian particles(Tien 2013). Due to the fact that the numerical solution is not 

straightforward, and hard to apply, Rajagopalan et al.(Rajagopalan and Tien 1976) provide a semi-

empirical approach for predicting filtration performance with an empirical equation for the single-



 83 

collector efficiency. The correlation equation of Rajagopalan's model has been verified to 

accurately predict the particle retention during the filtration process (Ryan et al. 2000, Martin, 

Bouwer, and Hanna 1992) (Martin, Bouwer, and Hanna 1992). 

Current models are focused on the particle retention in the inter-connected open pores; 

however, studies of the capture of particles within dead-end pores are rare, because of the complex 

pore structure and hydrodynamic conditions. Despite this fact, the mechanism of capture by the 

dead-end pore is essential for the prediction of the performance of the filtration separation process, 

especially for the prediction of the filtrate clarity, such as oil purification. To predict the actual 

flow behavior and clarity during a  filtration process, a model should not only consider the flow 

behavior and ability of open pores to trap contaminants, but also consider the ability of intrinsic 

pores to retain smaller contaminants. This research is focused on the latter mechanism. That is, 

here we examine the ability of intrinsic pores to trap small contaminants during filtration. 

In order to test the ability of intrinsic pores within a filter medium to capture particles of a 

smaller size, we examine a naturally occurring filter material comprised of diatomaceous earth. 

Diatomaceous earth (DE) is a highly porous filter aid that provides the opportunity to combine 

high porosity with essential properties such as high strength and a high thermal and chemical 

stability(Scheffler and Colombo 2006). This combination is very important for industrial 

applications such as filters for gases and molten metals, removal of heavy metal ions (Cr, Ni etc.) 

from sewage water, catalytic supports, and chromatography columns(Green and Colombo 2003). 

DE has intrinsic pores that smaller than 1.5µm(Al-Ghouti et al. 2003). Even though these pores do 

not contribute to suspension throughput, they still contribute to colloidal particle capture (Parfitt 

1976). To predict the actual flow behavior and cake structure during the filtration process, the 

model should not only consider the flow behavior but also consider the capture ability of intrinsic 
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pores. This chapter is focused on the mechanisms and modeling of the capture ability of intrinsic 

pores in the filter aid. 

5.1 Experiments 

To test the pore trap ability of porous materials, we need to figure out the concentration of 

suspension before and after the filtration process. We use model contaminant particle that are made 

up of glass beads whose diameter are 500nm (or smaller, as noted below). For the filter medium, 

we use a 20µm mesh as the filter cloth since this will allow all of the contaminant particles to pass 

through (if the cake has not removed them). In this way, all of the loss of glass beads in the filtrate 

can be assumed to involve the glass beads being trapped within the filter aid. The filtration process 

is designed as follows: 

1. Fix 20µm mesh at the bottom of the filter. 

2. Pour a known volume and mass of dry FAX into the filter. 

3. Tap the outside chamber several times until the particles have settled evenly. 

4. Premixing a known mass of glass beads with 180mL pure glycerol. 

5. Pour the suspension into the chamber; make sure the structure of the solid phase is not 

destroyed. 

6. Apply a known pressure into the filter. 

7. Allow the suspension flow through the filter continuous into a beaker, which posited on a 

scale. 

To determine the change in concentration of the suspension, we first create a calibration 

curve from standard solution, using a UV-VIS apparatus (Haiss et al. 2007) as shown in  
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Figure 35 and therefore measure the concentration of the filtrate both before and after the 

filtration. Since the absorbance is proportional to the concentration of the glass beads, we can then 

determine the captured mass from a simple measurement (and material balance). Based on the 

calibration curve(Haiss et al. 2007): C=a*A+b, (where C is the concentration of suspension, A is 

the absorbance. a and b are the constant value that determined by UV-VIS tests) we can get the 

change of concentration: ∆C=a*∆A. Thus, the captured mass should be equal to ∆A*a*Vsuspension.  

Figure 36 shows the captured mass that is calculated from the UV-VIS absorbance for 

different trials with filter aid and varying (three different) cake thicknesses. The ability of the DE 

to capture these fine particles within the intrinsic pores appears to be proportional to the intrinsic 

void fraction and cake thickness. 

 

 

 

Figure 35 Slica calibration curve based on UV/VIS spectrophotometric method. 
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Figure 36 The capture ability of different FAX with different cake thicknesses. 

 

5.2 Iwasaki Model 

Iwasaki(Iwasaki 1937) made initial attempts at a mathematical description of granular 

media filtration, which assumes that the rate of the change of particle concentration along filter 

depth is proportional to the concentration along the filter depth. He proposed an equation based on 

first-order kinetics, 
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𝜕𝜕𝐶𝐶
𝜕𝜕𝑏𝑏

= −𝜆𝜆𝐶𝐶 (5-2) 

 

which was verified experimentally by Ison and Ives(Ison and Ives 1969). Here, C is the 

concentration of contaminants at a given time and depth, L is the cake thickness / filter depth, and 

λ is the filter coefficient.  

Figure 37 shows the comparison of the form of the Iwasaki model with our experiments 

data. As can be seen, The ln(c/c0) is nearly linear with the filter depth, as suggested by the model. 

At present, the value of λ cannot be predicted beforehand but is determined from the experimental 

results of the specific system. Here we examine a method of predicting the rate of colloidal particle 

capture by forming an expression for the theoretical description of λ. 

             Yao suggested that the performance of the filter coefficient is related to the porosity, 

particle diameter, attachment efficiency and a single spherical collector efficiency(Yao, Habibian, 

and O'Melia 1971).  

 

𝜆𝜆 =
3
2
𝜀𝜀
𝑑𝑑
𝛼𝛼𝜂𝜂 (5-3) 

 

The porosity 𝜀𝜀 (here taken to be the intrinsic porosity) and the particle diameter d are both known 

properties. The attachment efficiency 𝛼𝛼 is the number of contacts which produce a particle 

collector adhesion divided by the number of particle-collector collisions. The single collector 

efficiency 𝜂𝜂 is the at which particles strike a collector divided by the rate at which particles flow 

toward the collector. Thus, it’s important to figure out 𝛼𝛼 and η. 
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Figure 37 Verificaiton of the Iwasaki Model with experimental results. 

 

 

 



 89 

5.3 Capture Mechanisms 

In order to understand the mechanism of particle capture we consider two candidate 

phenomena, as shown in Figure 38. One possible mechanism involves the physical adsorption of 

the contaminants onto the surface of the DE via van der Waals (or other surface) forces(Aparicio, 

Prado, and Durán 2006, Parfitt 1976). The other mechanism involves the capture of the particles 

via entrainment caused by the transport of particles across the streamline that separates the flow 

within the main channel from the fluid entrained within the intrinsic pores (due to hydrodynamic 

forces and the finite size of the contaminant particles)(Luo et al. 2013). The fluid entrainment is 

tested by comparison of experimental results to a simulation of particle transport using DEM-

LBM(Ma et al. 2012, Halama and Spliethoff 2016, Zhang and McCarthy 2019).  
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Figure 38 Two different capture mechanisms: a. fluid entrainment b. physical adsorption. 

 

5.3.1  Physical Adsorption 

The silica surface can be easily modified from the silanol groups, Si-OH, to different 

functional groups like treating with organotrialkoxysilane (RSi(OR’)3) compounds or 

methallylsilanes together with catalyst(Yeon et al. 2008), and surface modification of the silica 
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nanoparticles with biorecognition molecules can make a specific interaction with receptor sites.  

APTEST, 3-aminopropyltriethoxysilane, were widely used for the modification of silica surface 

with (RSi(OR’)3) compounds and also widely explored by many researchers(Chiang, Ishida, and 

Koenig 1980). Caravaja et al. investigated the surface modification of silica in the bulk surface of 

micron size silica(Caravajal et al. 1988). The surface modification process is below (Luo et al. 

2013): 

1. Suspend 800 mg of nano silica in 50 mL of MeOH.  

2. Add 3 mL of 3-aminopropyltrimethoxysilane (APTES).  

3. Stir the mixture at room temperature for 10h. 

4. Centrifuge the product with 8000 rpm 10 min. 

5. Wash the product with methanol five times. 

6.  Dry the product under vacuum. 

Upon modification of the model contaminant particles, we use zeta potential measurements 

to assess the impact pf the surface modification on potential surface forces present under the 

experimental conditions. The zeta potential is caused by the net electrical charge contained within 

the region boundary. Thus, it can be used to quantify the change of the surface charge of the 

contaminants. We obtained the zeta potential by electrophoretic light scattering: first determine 

the particle mobility by the known applied electric field and measured particle velocity. Then the 

zeta potential can be performed with a pH titration. The blue points are the untreated silica and the 

red points are the surfaced modified silica as shown in  

Figure 39. As can be seen, under our experimental conditions (where the operating pH is 

roughly 7.3), there is a significant change in the contaminant surface properties imparted by the 

surface modification. Despite the fact that the zeta potential test has shown that the surface 
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modification successfully alters the sign of the surface charge under experimental conditions, we 

note that the concentration of the output does not change much in Figure 40. This suggests that the 

physical adsorption mechanism is not prevalent for our experimental setup. 

 

 

 

Figure 39 Zeta potential test for both treat and untreated 500 nm silica. Blue points: untreated silica; Red 

points: surface-modified silica. 
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Figure 40 Capture ability test for both treat and untreated 500 nm silica with the same cake thickness and 

operating pressure. 

 

5.3.2  Fluid Entrainment 

The fluid entrainment is tested by the results of simulation using DEM-LBM(Zhang and 

McCarthy 2019) to experimental observations. The DEM is used to mimic the particle motion and 

the LBM is used to simulate the fluid motion past a simple pore-containing channel.  

Figure 42 shows some particle (near the pore) has been “pushed” into the dead-end pore 

and remain there. Additionally, as discussed below, simulations examining single-particle 

transport are effective at estimating the scale of the hydrodynamic forces required to mimic our 

experimentally observed contaminant capture rates. Thus, we anticipate that fluid entrainment is 
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the dominant capture mechanism under the operating conditions examined in this study. Here a 

lift force is generated by the gradient of the shear rate. Thus, η should be related to the lift forces 

generated from the shear gradient and wall effects. (Martel and Toner 2014). Figure 41 shows the 

shear gradient lift force due to the curvature of fluid velocity profile(Di Carlo et al. 2009): 

 

F𝑣𝑣𝑊𝑊 =
𝐶𝐶𝑊𝑊_𝑣𝑣𝑊𝑊𝜌𝜌𝑈𝑈𝑣𝑣𝑚𝑚𝑚𝑚2 𝑑𝑑𝑝𝑝𝑚𝑚𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠𝑟𝑟6

𝑑𝑑𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟4  (5-4) 

 

and the wall lift force that is a result of wall-induced disturbance on the flow field around the 

suspended particles (Di Carlo et al. 2009): 

 

F𝑆𝑆𝐺𝐺𝑊𝑊 =
𝐶𝐶𝑊𝑊_𝑆𝑆𝐺𝐺𝜌𝜌𝑈𝑈𝑣𝑣𝑚𝑚𝑚𝑚2 𝑑𝑑3𝑝𝑝𝑚𝑚𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠𝑟𝑟

𝑑𝑑𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟
 (5-5) 
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Figure 41 Schematis describe the lifing force induced bye shear gradient and wall effect. 
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Figure 42 DEM-LBM simulation of particles go cross a dead-end pore. 
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5.4 Capture Model 

In chapter 5.3, we conclude that the attachment efficiency should be equal to 1 should be 

assumed to be equal to 1 for the filter aid filtration with silica as there was no impact of surface 

forces on the rate of particle capture. Thus, the only significant parameter of interest in predicting 

the capture of colloidal silica with DE is that of the single collector η. The contact efficiency of a 

single media particle or collector η is a ratio of the rate at which particles strike the pore (or 

collector) divided by the rate at which particles flow past the pore/collector. The rate of particles 

flow across the pore can be predicted by the drag force: 

 

𝑣𝑣𝐷𝐷 =
𝐹𝐹𝐷𝐷𝑡𝑡
𝑚𝑚

=
6𝜋𝜋𝜇𝜇𝑑𝑑𝑝𝑝𝑚𝑚𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠𝑟𝑟𝑈𝑈𝑣𝑣𝑚𝑚𝑚𝑚𝑡𝑡

𝑚𝑚
 (5-6) 

 

where  𝐹𝐹𝐷𝐷 is the drag force, t is the time of the fluid flow cross the pore, m is the mass of the 

particle. The rate at which particles ``strike'' a pore should be calculated from the hydrodynamic 

forces acting on the contaminant. The rate at which particles flow strike a pore can be determined 

based on the Newton’s law: 

 

𝑣𝑣𝑠𝑠 =
𝐹𝐹𝑠𝑠𝑡𝑡
𝑚𝑚

 (5-7) 
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where  𝐹𝐹𝑠𝑠 is the total lift force. That is, we must examine the lift forces acting on the particle (in 

this case including a lift force arising from the local shear gradient as well as that arising from the 

proximity of walls):  

 

𝐹𝐹𝑠𝑠 = 𝐹𝐹𝑆𝑆𝐺𝐺𝑊𝑊 − 𝐹𝐹𝑣𝑣𝑊𝑊 (5-8) 

 

Thus, the single collector efficiency is equal to: 

 

η =

𝐶𝐶𝑊𝑊_𝑆𝑆𝐺𝐺𝜌𝜌𝑈𝑈𝑣𝑣𝑚𝑚𝑚𝑚2 𝑑𝑑𝑝𝑝𝑚𝑚𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠𝑟𝑟
3

𝑑𝑑𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟
−
𝐶𝐶𝑊𝑊_𝑣𝑣𝑊𝑊𝜌𝜌𝑈𝑈𝑣𝑣𝑚𝑚𝑚𝑚2 𝑑𝑑𝑝𝑝𝑚𝑚𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠𝑟𝑟

6

𝑑𝑑𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟4

6𝜋𝜋𝜇𝜇𝑑𝑑𝑝𝑝𝑚𝑚𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠𝑟𝑟𝑈𝑈𝑣𝑣𝑚𝑚𝑚𝑚
 

(5-9) 

 

As shown in (5-4) and (5-5), the lift force is related to the maximum velocity,𝑈𝑈𝑣𝑣𝑚𝑚𝑚𝑚 , 

density, 𝜌𝜌, pore diameter, 𝑑𝑑𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟, and particle diameter,𝑑𝑑𝑝𝑝𝑚𝑚𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠𝑟𝑟, via the lift coefficients,𝐶𝐶𝑊𝑊 . To 

determine the lift coefficients, we examined two simple DEM/LBM simulations of single-particle 

flows. Figure 43 shows a model that includes a single wall at the left-hand side with a particle is 

flow parallel to the wall. Figure 44 shows the change of the forces of the moving particle in y-

direction. The lifting coefficient is calculated from (5-5) with the average lift force.  



 99 

 

 

Figure 43 DEM-LBM model of a single wall with a particle moving parallel to the wall. 
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Figure 44 DEM-LBM simulation of the lifting force by the wall effect. 

 

Figure 45 shows a model that includes a dead-end pore with a particle flow crosses the 

pore. Figure 46 shows the change of the forces of the moving particle in y-direction. The lifting 

coefficient is calculated from (5-4) with the maximum lift force. 
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Figure 45 DEM-LBM model of a dead-end pore with a particle moving cross the pore. 
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Figure 46 DEM-LBM simulation of the lifting force by the shear gradient. 

 

By changing the Re in the DEM/LBM simulation, Table 15 and Figure 47 show that, for the range 

of conditions that are typically encountered in our filtration operations, the lift coefficient for both 

shear gradient and wall effect lift forces may be assumed to be a constant. Incorporating these 

measurements into an expression for the contact efficiency, (5-9),  then yields a capture model as 

below with CLSG = 0.42 and CLWL = 0.22. 

 

ln �
𝐶𝐶
𝐶𝐶0
� = −

𝑏𝑏
4𝑑𝑑𝑝𝑝𝑚𝑚𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠𝑟𝑟

�𝜀𝜀𝑖𝑖𝑅𝑅𝑒𝑒𝑝𝑝,𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝛼𝛼𝑖𝑖2(𝐶𝐶𝑊𝑊𝑆𝑆𝑆𝑆,𝑖𝑖 − 𝛼𝛼𝑖𝑖3𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊,𝑖𝑖)
𝑑𝑑𝑝𝑝𝑡𝑡𝑟𝑟𝑟𝑟,𝑖𝑖
2

𝑑𝑑𝑐𝑐ℎ𝑚𝑚𝑛𝑛𝑛𝑛𝑟𝑟𝑠𝑠,𝑖𝑖2  (5-10) 
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Table 15. Simulation tests of lifting coefficients with different pressure drop and Re. 

 

Trial# 1 2 3 4 5 
Pressure 1e-5 5e-5 1e-4 3e-4 5e-4 
Re 0.12 0.65 1.32 3.97 6.56 

 

 

 

Figure 47 Lifting coeffcient of wall effect and shear gradient with different Re. 

5.4.1  Mono Disperse Systems 

To verify the capture model in a dynamic filtration, a suspension that is composed of mono-

size nano-scale spherical glass beads and glycerol is prepared. The filter medium is a 
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commercially-available DE called FAX 3 built to a 10mm cake thickness. The suspension is 

500nm glass beads mixed into 180ml glycerol with a constant concentration: 15g/mL.  We can 

predict the flow behavior during the dynamic filtration from the previously reported PSD 

model.(Zhang and McCarthy 2019) Combining the flow dynamics from the PSD model with the 

capture kinetics outlined here, we obtain, in Figure 48, a prediction of the output concentration 

from the aforementioned filtration. As one can see, the capture model works well to predict the 

capture rate for a colloidal suspension since the error between simulation and experiment are 

always smaller than 18%. Figure 48 also illustrates that the ability of the filter media to capture 

contaminants decreases with the increase of filtration time due to the decrease of the intrinsic pore 

volume.  

 

 

Figure 48 Comparision between the predicted capture ability (concentration of output) with the experimental 

results for mono-disperse contaminants. 
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5.4.2  Multi Disperse Systems 

The last step in testing the capture model is predicting the capture of a more realistic array 

of contaminants. To test this, we construct a complex contaminant model by premixing 200µm 

500µm and particles in varying number ratios. Again, the flow dynamics is obtained from our 

earlier PSD model, thus the probability of a particle to flow within a particular pore is related to 

both the pore size (i.e., the pore resistance) as well as the and particle size and number ratio (Di 

Carlo et al. 2009). The prediction of the model is still quite good as shown in Figure 49. 
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Figure 49 Comparision between the predicted capture ability (concentration of output) with the experimental 

results for multi-disperse contaminants 
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In this chapter, we test the mechanism of the describe the capture of spherical particles 

within dead-end pores. A 3D discrete element method-lattice Boltzmann method (DEM-LBM) 

coupling approach is applied to investigate the particle capture under conditions of different 

particle sizes and pore structures. We introduce a model to predict the ability of intrinsic pores 

capture semi-nano/nano particles. Both the pressure drop and the fluid density are examined to 

indicate this capture performance. The simulated results illustrate that the capture performance is 

dependent on the intrinsic pore structure and contaminant sizes. 
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6.0 Future Studies: Deep Depth Filtration 

The process of particle transport and retention within porous media during deep bed 

filtration are widely applied(Mackie and Bai 1992, Bedrikovetsky et al. 2002, Jegatheesan and 

Vigneswaran 2005, Chi and Payatakes 1979)in natural and industrial system, such as the petroleum 

industry, wine purification and environmental treatments(Svarovsky 2000), Relatively high 

permeability is essential for a filtration process. However, the permeability is reduced because of 

particle retentions (particle deposit on or block the pore space). Thus, it is important to predict the 

particle retention/permeability reduction during a filtration process. 

Mathematical models of predicting particle retention can be divided into two scales: 

macroscopic and microscopic(Jegatheesan and Vigneswaran 2005). Macroscopic models predict 

the particle transport through a filter medium via a continuous transport equation (Rege and Fogler 

1988). The particle retention rate is assumed to be proportional to the particle advective flux (the 

movements of contaminants/particles along with flowing fluid), cU(Rege and Fogler 1988). The 

filtration coefficient is typically an evolving (rather than constant) parameter that depends strongly 

on the pore size distribution, surface properties (of both the contaminant and filter media), and 

fluid velocity(Herzig, Leclerc, and Goff 1970b, Chiang and Tien 1985). Then, Liu et al.(Liu and 

Civan 1996) provide a macroscopic model to predict the particle retention within two-phase flow. 

This model includes empirical parameters that require identification before any simulation process 

is possible. Van Oort et al. (van Oort, Van Velzen, and Leerlooijer 1993) propose a model that 

relates the permeability reduction with the particle retention, volume fraction of captured particles. 

Although convenient and straightforward, the macroscopic approach to date has been limited in 

its utility due to the strong dependence on fitting parameters (Yuan and Shapiro 2010). 
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Microscopic models, on the other hand, allow for the first-principles investigation of 

particle transport at the pore/particle scale. Properties of the fluid, contaminants and filter medium 

are discussed to model the transport and retention of each particle (Mirabolghasemi et al. 2015). 

The existing microscopic models can be subdivided into a direct numerical model and pore-

network model. Direct numerical models, such as a CFD-DEM model(Mirabolghasemi et al. 2015), 

predict the flow dynamics and particle transport equations from the geometry of the filter medium 

directly by employing detailed (and expensive) computational calculations. Pore network models, 

on the other hand, start with one simplified pore represent the structure of filter medium by an 

interconnected network of pores. Fatt,(Fatt 1956) first introduced a pore network model by 

assuming simple pore shapes in an effort to reduce the computational costs of microscopic 

filtration modeling. Despite the simplification, pore network models have proven useful(Joekar-

Niasar and Hassanizadeh 2012) in predicting particle transport since critical physical properties of 

the filter medium, contaminants, and fluid are preserved. Todd et al.(Todd, Somerville, and Scott 

1984) employed a network model to simulate permeability reduction caused by particle retention 

with a regular cubic lattice. Many current pore network models are hampered by a lack of direct 

connection between the model and the physical mechanisms of particle retention that are at play 

in their application (such mechanisms can include straining by pore throat, Brownian motion and 

interception (Burganos, Paraskeva, and Payatakes 1992) as will be discussed in more detail below).  

In this chapter, we develop a microscopic model for particle retention and penetration 

length. The particle retention model is determined through macroscopic experiments and verified 

by consideration of several potential particle-scale retention mechanisms. The penetration length 

is predicted based on the combination of the particle retention model and a pore network model. 
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6.1 Experiments 

In order to examine particle retention, we perform experiments using a Nustche Filter to 

operate constant pressure filtration. A diatomaceous earth-based filter aid (here called FAX) is 

chosen as the filter medium. 5µm and 11µm spherical silica are used as the model contaminants 

to be removed. Before the filtration process, we calculate the maximum mass of the 

silica/contaminants that would be required to completely fill the available pores within the filter 

aid through a geometric analysis of the pore size distribution of the FAX being used as a filter 

medium (this quantity allows use to employ a somewhat unique scaling when couching our results 

in dimensionless terms).  

The process for each filtration experiment was as follows: 

1. Measure the volume of the filter aid. 

2. Calculate the maximum mass of the (fixed size) contaminants. 

3. Premix the contaminants with a known volume glycerol. 

            4. Put a 20µm mesh support at the bottom of the filter (to retain the filter media, but not 

hamper contaminant transport). 

5. Pour the filter aid into the filter and then pour in the contaminated suspension. 

6. Apply a known pressure to the filter. 

7. Allow the fluid flow through the filter to be continuously collected within a beaker. 

8. Measure absorption via UV-VIS for determining the concentration within the effluent. 

Finally we run the test with different filter aid cake and maintain the same operating 

pressures as shown in Table 16 and Table 17. Here we still use the UV calibration curve to 

calculate the concentration of output as shown in Chapter 5.1.  
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Table 16 Experiment tests of different filter aids and the size ratios (dparticle/dpre) for 11µm contaimiants. 

 

 1 2 3 4 5 
FAX3  0.776  0.328 0.119 
FAX5  0.774  0.323 0.118 
FAX7 0.938  0.501 0.326 0.118 

FAX3+FAX5  0.775  0.325 0.118 
FAX5+FAX7 0.938 0.774 0.501 0.325 0.118 

 

Table 17 Experiment tests of different filter aids and the size ratios (dparticle/dpre) for 5µm contaimiants. 

 

 1 2 3 4 5 6 7 8 9 
FAX3 0.919   0.538  0.353  0.149 0.054 
FAX5  0.809 0.611   0.352  0.147 0.054 
FAX7  0.816   0.426  0.228 0.148 0.054 
(FAX3 

+FAX5)*5 0.919 0.809 0.611 0.538  0.352  0.148 0.054 
FAX5+FAX7  0.812 0.611  0.426 0.352 0.228 0.148 0.054 

6.2 Probability Function 

 

Figure 50 shows the ratio of the measured concentration of the filtrate, c, made 

dimensionless using the maximum concentration that could be captured (c0; note that the value of 

c0 varies with cake thickness). The concentration ratio of c/c0 always reaches a constant value 

when the cake thickness/filtration length is larger than some finite value (typically about 0.4cm). 

That is, after a certain “entrance length” region, the rate of particle retention becomes a constant, 

provided that the relative saturation of available contaminant is fixed. Mathematically, we can 
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write the number of particles retained within a given pore as 𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖∗ where 𝑛𝑛𝑖𝑖 is the number of 

particles that enter the pores of size i, 𝑃𝑃𝑖𝑖 is the probability of flow passing through pores of size i 

(and is related to the resistance to flow within pore i as 𝑅𝑅𝑖𝑖) and 𝑃𝑃𝑖𝑖∗ is the probability that a particle 

is captured within pore i (as will be seen, this value increases quickly to a value P*
max,I, after passing 

the “entrance region”). In this way, the total amount of particles retained can be expressed as the 

sum over all pores of the particles captured within each pore. Noting that this value is constant 

after passing the entrance length, we can write: 

 

�𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖,𝑣𝑣𝑚𝑚𝑚𝑚∗ = 𝐶𝐶𝑡𝑡𝑛𝑛𝐷𝐷𝑡𝑡𝑏𝑏𝑛𝑛𝑡𝑡 (6-1) 

 

𝑃𝑃𝑖𝑖 =

1
𝑅𝑅𝑖𝑖
∑ 𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖

 (6-2) 

 

Based on the pore size distribution, we can extract the Pi values as they completely 

determined by the pore size and pore volume. We hypothesize that P*i is a function of the size 

raito(dparticle/dpore) which we will denote as 𝛼𝛼𝑖𝑖 . Given the contaminant and filter media used in our 

experiments, there are five pores with sizes larger than the contaminant (11µm glass beads). Thus, 

five unknown values of P*max, i are required for each filtration trial to be determined 

mathematically. Five filtration tests were therefore run, each with different filter medium 

combinations so that we may create a system of linear equations for our five unknows. Figure 52 

shows the value of P*
max,i (the results from Table 17 see Appendix D) for a variety of contaminant 
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and pore combinations. Note that the value of P*
max,i may be extracted from the results shown in 

Figure 52 for the capture of the contaminants for a variety of combinations. As can be seen, it 

appears that P*
max,i  is solely a function of the size ratio dparticle/dpore for both 11  and 5µm 

contaminants. 

 

 

 

Figure 50 Concentration of output over the maximum concentration vs. the cake thickness of FAX 3. 
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 Figure 51 Probability of flow go through pore i with the change of concentration ratio c/c0 in the same size 

ratio dparticle/dpore. 
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Figure 52 The maximum probability of a pore “capture” a contaminant with the change of size ratio 

d_particle/d_pore. 

6.3 Deep Depth Model 

To better understand the relationship between dynamic (or spatially varying) P* and pore 

size / particle size. we run tests with a bed of spherical particles as the filter medium such that we 

simplify the bed structure. The pores formed by the mono-disperse large particles are well 

understood and, in general, lead to gaps that are roughly 0.18 * the large particle size. Thus, the 

size ratio dpartile/dpore is dsmall_particles/(0.18dlarge_particles).  
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Figure 53 shows the influence of the cake thickness on P* (i.e., it shows the effective length 

of the entrance region) which we can fit to an exponential expression as: 

 

𝑃𝑃∗ = 𝑃𝑃𝑣𝑣𝑚𝑚𝑚𝑚∗ ∗ �1 − 𝑒𝑒𝑥𝑥𝑝𝑝−
𝑚𝑚
𝑘𝑘� (6-3) 

 

where 𝑃𝑃𝑣𝑣𝑚𝑚𝑚𝑚∗  is the maximum probability of pore i capturing the particle of interest and k is a capture 

coefficient that that is related to size ratio dparticle/dpore.  

 

 

 

Figure 53 Probability of pore i capture particle j vs. cake thickness (size ratio is 0.917). 
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Table 18 Deep depth model tests with sphererical particles. 

 

Particle size 
（µm） 

Pore size 
(µm) 

Contaminant 
size (µm) 

Rc/Rp K 

500 90 µ=82.5, 
σ=7.5 

0.917 2.496 

500 90 µ=69, σ=6 0.766 3.151 

500 90 µ=58, σ=5 0.644 3.503 

500 90 µ=11, σ=6 0.122 3.918 

µ=98, σ=5 17.64 µ=11, σ=6 0.624 3.543 

µ=82.5, 
σ=7.5 

14.85 µ=11, σ=6 0.741 3.207 

µ=69, σ=6 12.42 µ=11, σ=6 0.886 2.636 

µ=98, σ=5 17.64 µ=5, σ=5 0.283 3.901 

µ=82.5, 
σ=7.5 

14.85 µ=5, σ=5 0.337 3.873 

µ=69, σ=6 12.42 µ=5, σ=5 0.403 3.775 

µ=58, σ=5 10.44 µ=5, σ=5 0.478 3.692 
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Figure 54 Dynamic capture coefficient vs. size ratio dparticle/dpore. 

 

Figure 54 shows the relationship between capture coefficient k vs. size ratio. Note that (6-3 is, 

itself, a function of the size ratio (where in Figure 53, it is given as 0.917).  

6.3.1  Particle Retention Mechanisms 

Despite the fact that the prediction from the deep depth model for the superficial velocity 

fits our experimental results well, the performance of the prediction relies significantly on the 

empirical values of both the capture coefficient k and the measured values of P*
max,i . While, at 

present, k will still need to be determined experimentally based on the size ratio dparticle / dpore as 

shown in Figure 54, theoretical analysis of P*
max,i can lead to an first-principles model such that 
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we increase the generality (and accuracy) of the deep depth model. Toward that end, we test three 

sources of particle retention mechanisms and compare them with our measured results for deep 

depth filtration: direct interception, inertial impact, and straining. Direct interception or 

engagement, results in the capture of all particles that are moving along flow lines that are within 

a particle radius of a capture surface. The interception coefficient obtained from Lamb’s solution 

of Navier-Stokes flow equations for low Re numbers (Re<1)(Lamb 1993) gives: 

 

𝜂𝜂 =
1

2(1 − 𝑏𝑏𝑛𝑛𝑅𝑅𝑒𝑒)
[2(1 + 𝛼𝛼) ln(1 + 𝛼𝛼) − (1 + 𝛼𝛼) + 1/(1 + 𝛼𝛼)] (6-4) 

 

where 𝛼𝛼 is the size ratio dparticle/dpore. 
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Figure 55 The p*max obtained from Lamb’s solution (red circle) compared to the experimental results (blue 

points) 

 

Figure 55 shows that the p*
max obtained from Lamb's model fits well with the empirical 

data when the size ratio is smaller than 0.6. One conjecture, therefore, is that the direct interception 

is of primary importance as a retention mechanism in deep depth filtration when size ratios are 

small. Clearly, particle retention at higher size ratios must involve another mechanism(s). 

The Inertial impact caused by the displacement of particles with a finite mass from the flow 

lines near curved regions of the flow (i.e., typical near capture surfaces) can also lead to retention 

(Shaw 1978). The corresponding expression for the capture coefficient is given as: 
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η𝐼𝐼 =
𝑆𝑆𝑡𝑡 ∗ 𝑓𝑓
2𝐾𝐾𝜆𝜆2

 (6-5) 

 

where f is an empirical factor and Ku is the Kuwabara hydrodynamic factor. Shaw 

proposed that this mechanism is not significant under conditions where St << 1. Since our study is 

restricted to conditions that lead to very small values of the Stokes number, we will ignore the 

effect of inertial impact in this study.  

 

 

 

Figure 56 Schematic representation of a constricted pore throat. 

 

Finally, pore blocking is often caused by straining and occurs when the particle size is 

larger than some portion (but not necessarily the largest part) of the pore space. Particles may block 

the pore even if the particle size is smaller than the average pore size because the complex pore 

structure (as shown in Figure 56) can lead to constrictions that are locally smaller than the average. 
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You et al. (You, Badalyan, and Bedrikovetsky 2013) presented a microscale model for particle 

straining, which is the stochastic parallel tube model (PTM). The medium is represented by the 

model of triangular parallel capillaries alternated with mixing chambers. The analytical model for 

dparticle / dpore filtration is derived and the steady-state solution is obtained as: 

 

C𝑟𝑟(𝑜𝑜𝑠𝑠) = C0(𝑜𝑜𝑠𝑠)[𝑓𝑓𝑚𝑚(𝑜𝑜𝑠𝑠) + 𝑓𝑓𝑛𝑛𝑠𝑠(𝑜𝑜𝑠𝑠)]exp [−𝑓𝑓𝑛𝑛𝑠𝑠(𝑜𝑜𝑠𝑠)
𝐿𝐿
𝑏𝑏

] (6-6) 

 

where rs is the injected particle size. fns is the flow fraction through the inaccessible small pores: fa 

+ fnl is the flow fraction through large pores. L is the length of the column. l is the distance between 

two chambers. Ce and C0 are the outlet and inlet concentrations. When the particle size reaches the 

maximum pore size, Ce becomes zero. Here we introduced the mono-size PTM model to achieve 

an expression for P*
max,I based on this mechanism: 

 

1 − P𝑣𝑣𝑚𝑚𝑚𝑚,𝑖𝑖
∗ = [𝑓𝑓𝑚𝑚(𝑜𝑜𝑠𝑠) + 𝑓𝑓𝑛𝑛𝑠𝑠(𝑜𝑜𝑠𝑠)]exp [−𝑓𝑓𝑛𝑛𝑠𝑠(𝑜𝑜𝑠𝑠)

𝐿𝐿
𝑏𝑏

] (6-7) 

 

Figure 57 shows how the capture coefficient obtained from the PTM model fits the empirical data. 

It is clear that the predicted data is consistently lower than the measured red values; however, when 

we combined the Lamb model with the PTM model we are able to predict the P*max,i as shown 

in Figure 58. 
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Figure 57 The capture coefficient obtained from PTM model (green circle) compare to the experimental 

results (blue points). 
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Figure 58 The capture coefficient obtained from the coupled Lamb-PTM model (purple circle) compare to 

the experimental results (blue points). 

 

Despite the fact that Figure 58 shows significant agreement between a first principles 

model and our experimental measurements of P*
max,i there are several shortcomings of this 

approach. First, our model must still rely on the empirical measurements of the value of the k (i.e., 

the entrance length) parameter. Moreover, due to the complicated pore geometries, it is 

considerably more difficult to derive an analytical expression for P*
max,i for more realistic filter 

media materials (such as FAX) from the PTM portion of the model. 
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6.3.2  Penetration Length / Particle Deposition Distribution 

Nevertheless, as a means of validating the predictive capability of our proposed model, we 

examine particle deposition during a deep depth filtration process performed for small spherical 

contaminants being captured by a bed of larger spherical filter media. In capturing the dynamics 

of the deposition process, we obtain the trajectory of individual contaminant particles from a time 

discretization of the (deep depth-modified) PSD model such that: 

 

𝑥𝑥𝑝𝑝𝑖𝑖+1 = 𝑥𝑥𝑝𝑝𝑖𝑖 +
𝜆𝜆𝑝𝑝𝑖𝑖 + 𝜆𝜆𝑝𝑝𝑖𝑖+1

2
𝛿𝛿𝑡𝑡 (6-8) 

 

where xp is the particle position, δt is the time step and the particle velocity at both the present 

𝜆𝜆𝑝𝑝𝑖𝑖+1and the previous time steps 𝜆𝜆𝑝𝑝𝑖𝑖 can be calculated by the PSD model. Based on the particle 

retention model, the change of the particle velocity at pore i +1 reduces to 0 (𝜆𝜆𝑝𝑝𝑖𝑖+1 = 0) is equal 

to the probability of the particle being deposited at that pore, P*
i+1. The time step 𝛿𝛿𝑡𝑡 is chose to be 

0.01s as this is the value at which we find that the result of the particle deposition distribution is 

independent of further reductions in the time step. 

To test the prediction of particle location from the deep depth model, we chose 500μm 

glass beads as the filter medium and 11μm glass beads as the contaminants. Thus, 

 

𝑝𝑝∗ = 0.011 ∗ (1 − 𝑒𝑒−
𝑚𝑚𝑝𝑝
𝑘𝑘 ) (6-9) 
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Figure 59 shows the prediction of the spatial distribution of the deposition of 10,000 

contaminant particles passing through a 4cm bed of filter medium using the deep depth model. As 

one can see, particles are retained at 0.4cm and the probability of particle deposition decreases 

dramatically after that poin. In order to verify the prediction of the deep depth model, a 3.92cm 

filter cake is built with 500µm glass beads. The suspension is composed of 11µm glass beads with 

glycerol. Then, the filtered cake is cut into sections of length step δl=0.3 cm along with the cake 

depth. Particles in each section are separated using a 10µm sieve.  

Figure 60a shows the mass of the 11µm glass beads in each section vs. the position of that 

section of the filtered cake. This figure also compares the experimental particle deposition 

distribution with the prediction from the deep depth model. Similarly, we compare the cumulative 

distributions between the prediction from the deep depth model with the experimental results, as 

shown in Figure 60b. We also chose the 500µm glass beads as the filter medium and 11µm glass 

beads as the filter contaminants, to test the prediction of the concentration with different cake 

thickness. Table 19 shows the prediction of the dimensionless concentration of the output by the 

deep depth model and shows that these results still fit the experimental test quite well. Overall, the 

proposed deep depth model fits the experimental results and theoretical calculations quite well. 

 

 



 127 

 
 

Figure 59 The prediction of particle deposition length distribution / particle penetration depth with 10,000 

particles by the deep depth model. 

 

 
 

Figure 60 Verification of the deep depth model by experimental filtration results. a. Comparison between the 

predicted particle deposition distribution with the experimental particle deposition distribution. b. 

Comparison between the predicted cumulative number distribution with the experimental mass distribution. 
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Table 19 Compare the dimensionless concentration of output between the prediction by the deep depth model 

and the experimental test with different cake thickness. 

 

Cake thickness(cm) 0.5 1 2 4 

Deep depth model(c/c0) 0.704 0.559 0.170 0.001 

Experiment(c/c0) 0.712 0.562 0.176 0 

 
 

In this chapter, we develop a deep bed filtration model to predict the migration of micro- 

and semi microparticles in porous media. A transport probability function P(i) is proposed to 

predict the probability of flow go through a pore based on the analysis of pore resistance. The 

model also includes a deposit/capture probability function P*(i) to describes the probability of 

particles deposit in a pore. The P*(i) is calculated based on the change of concentrations during 

filtration tests with different pore structures and particle sizes. Because of the size exclusion of 

large particles in smaller pores, P*(i) equal to 1 when dparticle ≥ dpore. Based on the experimental 

results, we also find finite particle retention when dparticle < dpore. The empirical P*(i) shows the 

probability of particle deposit/ pore capture is highly related to the size ratio (dparticle/dpore) and flow 

velocity. P*(i) is positively correlated to the size ratio. P*(i) is negatively correlated to the flow 

velocity due to the shorter residence time and exhibit both a transient and steady-state stage. During 

the transient stage, P*(i) increases rapidly since some particles start to deposit in a pore. During 

the steady-state stage, P*(i) is constant since the particle concentration in that pore reaches a 

constant (particle retention limitation).  Particle retention is mainly influenced by direct 

interception when the size ratio is smaller than 0.6. Particle retention with higher size ratio may be 

influenced by the particle geometry (straining). However, the pore geometry is hard to predict. 
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Future work may start with the expression of pore structures like diatomaceous earth with a 

computational method, to better understand the mechanism behind the particle retention.  
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7.0 Conclusion and Future Perspective 

Solid-liquid filtration is a long-standing engineering practice and has been widely used in 

the chemical, process and mineral industries. Current models are semi-empirical in nature; thus, 

they require significant experimental and/or computational resources in order to determine the 

empirical quantities. In contrast, in this dissertation, we provide a model to predict the dynamic 

behavior for both the liquid and solid phase of a filtration process without the requirement of 

empirical parameters. Instead, our model relies solely on the to-be-captured particle size 

distribution of contaminants as well as the pore size distribution of the filtration media. Our new 

algorithm is capable of describing filtration based on both “’steric” capture of contaminants as 

well as capture within dead-end pores in the material.   

Particle capture by a collecting medium is a common process, which can be applied to 

industrial applications (e.g., solid/liquid filtration). Ideally, the capture of contaminant particles by 

a porous filtration medium can be accomplished even when the radius of the particle is smaller 

than the pore radius. Several studies have been proposed to describe particle clogging within inter-

connected (open) pores; however, studies of the capture of particles within dead-end pores are rare, 

because of the complex pore structure and hydrodynamic conditions. Despite this fact, this 

mechanism of capture is preferable due to the significantly smaller impact on overall flow behavior. 

Thus, in this work, we describe a simulation model capable of describing the capture of spherical 

particles within dead-end pores. A 3D discrete element method-lattice Boltzmann method (DEM-

LBM) coupling approach is applied to investigate the particle capture under conditions of different 

particle size and pore structures. The DEM is used to describe the particle dynamics, whereas the 

LBM is employed to describe the fluid flow through the filter medium. Both the pressure drop and 
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the fluid density are examined to indicate this capture performance. The simulated results illustrate 

that the capture performance is dependent on the pore geometry and the Stokes number. 

We show the performance of this model in modeling beds comprised of high void fraction 

materials (diatomaceous earth) that is used for the removal of multi-modal mixtures of contaminant. 

By formally accounting for the complex pore size distribution, we predict flow dynamics that are 

much closer to our experimental results than the predictions of the traditional Kozeny-Carmen 

(KC) model and show that this approach is viable for both statically formed and evolving (dynamic) 

beds. In an effort to understand the relationship between flow dynamics and pore size distribution 

more fully, we built a dynamic filter cake model that continuously modifies the pore size 

distribution as contaminants (polydisperse spheres) are deposited. In short, the predicted flow 

dynamics of this new model match the dynamic experimental results remarkably well, setting the 

stage for a priori prediction of filtration times, flow-rates, particle capture, and pressure 

requirements from simple measurements of the size distribution of both the filter media pores as 

well as the contaminant particles/droplets. 

7.1 Perspective on Industrial Use 

For the industrial use of the PSD model and the Capture model, the only information we 

need to perform these simulations is the physical properties of the fluid product and a 

characterization of the contaminant sizes. As shown in the  

Figure 61, based on the particle size distribution of crude oil, we use the PSD model to 

predict the superficial velocity by considering particle size > 2µm. The red line shows the 

simulation results. We combined the PSD model with the capture model to predict the change of 
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clarity. In this dissertation, NTU test is used as the experimental clarity measurements and this is 

compared with the predicted c of output.  

Figure 62 shows the result of 20mL crude oil filtrate with five clean 3mm filter aid passes. 

Since we have a fixed filter paper at the bottom, we have separated the large particles at the first 

pass, resulting in a dynamic decrease of velocity and decrease of the NTU. For the second to the 

fifth pass, the superficial velocity is almost constant because there is no larger contaminant that 

can block the through-transport pores. The NTU/c of output continuously decreases as a result of 

small contaminant being captured by the dead-end pores as shown in Figure 63. 

 

 

 

Figure 61 Particle size distribution of the contaminant in Detergent A. 
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Figure 62 Comparision between the predicted flow rate by the PSD model with the experimental data ( five  

recycle times). 
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Figure 63 Comparison between the prediction concentration of output by the Capture model with the NTU 

test （five recycle times）. 

 

Combined the PSD model and the Capture model with the requirements of the oil industry, 

we provide a SoLiFi software based on the MATLAB platform as shown in Appendix C. SoLiFi 

provides a computational modeling tool that can be used to enhance correctness of fluid dynamics 

simulations as well as to optimize solid-liquid separation processes. It mimics the filtration 

process, enabling a user to find the most efficient filter aid. It can, for instance, give a process 

engineer an accurate prediction of when a filter would need to be changed based on the inputs to 

that filter, or by an engineer designing filters to make the optimal filter aid selection at each stage 

in an industrial processing pipeline. This would reduce costly downtime from failure to change a 

filter at the right time, as well as reduce the time needed for making many experiments. It can also, 

for example, be used by a software engineer developing a fluid dynamics application to produce 



 135 

more accurate simulations without needing to conduct many experiments to verify the correctness 

of the simulation. 

The software provides a function that takes as input the intrinsic physical properties of the 

liquid and solid materials being tested and produces as output predictions of the dynamic behaviors 

of the liquid and solid phases for a bounded duration of the process. These dynamic behaviors 

include: pressure drop; flow dynamics; filter cake structure; effluent concentration; permeability 

of porous materials. The most closely competing models are based on many repeated experiments, 

which cost more time and money. In contrast, this model is based on first principles and simple 

physical characterization experiments. Therefore, the model can be used to rapidly simulate many 

possibilities to screen out bad inputs, rather than manually experimenting on every input.  

The software has been tested with several oil industrial samples. Optimization of detergent 

samples has been tested via SOLIF software. Table 20 shows FAX7 works best to clean the crude 

detergent by maintain the same recycle times. Other filter aid may work better, which is depending 

on the industrial requirement, such as highest clarity, smallest recycle times, lowest power and 

time.  

Figure 64 also shows the screening results by compare the flow rate during the filtration 

process. It also shows the predicted lines fit experimental circle points very well.  
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Table 20 Optimization of detergent A from oil company. 

 
 

FAX3 FAX5 FAX7 

Porosity(ml/g) 2.76 2.30 1.96 

Recycle times 2 2 2 

Cake thickness (cm) 5.24 4.67 4.12 

Time (s) 5260 4620 3800 
  

Better Best 
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Figure 64 Screeening of detergent A with FAX 3, FAX 5 and FAX 7 with the same recyle times. 



 138 

Another industrial test is the ZDP, Zinc dialkyl dithiophosphate. We test five clean ZDP 

samples and compare the almost constant experimental superficial velocity with the predicted 

velocity by the PSD model as shown in Figure 65. 

 

 

 

Figure 65 Comparision between the predicted velcotiy by the PSD model and the experimental velocity with 

clean ZDP samples. 

 

Extensive R&D work will be needed to be done for the deep depth model. 1) Trying to 

figure out the theoretical description of k. 2) Derive the probability capture function into the filter 

medium with complicate structure. 3) Applied the coupled PSD, Capture and deep depth model 
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into the petroleum industries. This software should also broaden to other industries. Our current 

model can be worked for a slow viscous fluid. Analysis may be changed to the wastewater 

treatment, by consider the change of fluid dynamic and “clogging” problems. 
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Appendix A Prediction of the Change of Pore Size Distribution 

 

 

Figure 66 Prediction of the change of pore size distribution with monosphere contaminants. 
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Figure 67 Prediction of the change of pore size distribution with multisphere contaminants. 
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Appendix B Preparing of Polydisperse Spheres 

 

 

Figure 68 Particle size distribution of the mixed sample. 
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Appendix C SOLIFI Beta 1.1 User Innerface 

 

 

 

Figure 69 SOLIFI software user innerface. 
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Appendix D Probability of the Pore I Capture A Silica 

 

 

Figure 70 Probability of different size pores to capture a 5µm silica sphere. 
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