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Abstract 

 

 

Identifying sepsis patients with high risk of death is crucial for making treatment decisions and 

has a public health significance. Sepsis mortality can be predicted by including clinical features 

and biomarkers in a predictive model. Hypotheses: (1) Clinical features combined with 

biomarkers would significantly enhance prediction power over clinical features alone; (2) time-

trends of measurements contribute to prediction; (3) Cox proportional hazards model is more 

informative than logistic model.  

Sepsis patients with complete data were identified from the Protocol-based Care in Early 

Septic Shock (ProCESS) trial. The trial obtained measurements at baseline (0 hours), 6 hours, 

and 24 hours of hospital admission, as well as patients’ within-60-day-of-admission death time. 

To evaluate biomarkers, logistic regressions with biomarkers and clinical features were 

compared to logistic regressions with clinical features only. To assess trends, at each time point, 

trends variables were evaluated in logistic regressions. To compare statistical models, landmark 

mortality within 3-day, 7-day, 14-day, and 60-day of admission were modeled using logistic 

regressions; a Cox model was developed to predict mortality over the same period. Areas under 

the Receiver Operating Characteristic curve (AUC) with bootstrap confidence intervals (CI) 

were used to evaluate model performance.  

Jonathan Yabes, PhD 

Gilles Clermont, MD 
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There were 528 patients included in baseline cohort (60-day mortality: 25%, mean age: 60 

years, mean baseline lactate: 2.41 mmol/L), 534 patients in 6 hours cohort (24%, 60, 2.35), and 

432 patients in 24 hours cohort (21%, 60, 2.26). At baseline, the AUC increased significantly from 

0.766 [95% CI] = [0.710, 0.826] to 0.812 [0.749, 0.868] when biomarkers were added. In all 

models, trends were nonsignificant. For logistic models, 3-day model has AUC 0.888 [0.836, 

0.939]; 7-day model has AUC 0.827 [0.776, 0.879]; 14-day model has AUC 0.858 [0.820, 0.895]; 

and 60-day model has AUC 0.795 [0.716, 0.835]. For the Cox model, the time-dependent AUC 

ranges between (0.859, 0.884).  

Biomarkers provided incremental discrimination ability over clinical features alone to 

predict 60-day mortality at baseline. Trends of time-dependent variables did not increase predictive 

power. Logistic models and Cox models have similar predictive power in predicting short-term 

mortality but a Cox model is better in predicting long-term mortality.  
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1.0  Introduction 

Sepsis, as the body’s life-threatening complication to an infection, remains a leading cause 

of death of in-hospital mortality (Angus et al., 2001). Immediate medical care and treatment is 

necessary for hospitalized patients with signs and symptoms of sepsis. Identifying sepsis patients 

with a high risk of death is crucial for making treatment decisions.  

Many studies analyzed risk factors for sepsis mortality, most of them considered illness 

severity, comorbidities, and organ failures as predictor variables (Dellinger et al., 2004; Moreno 

et al., 2008; Ford et al., 2016). However, few of them have considered including inflammatory 

biomarkers to improve outcome prediction in sepsis patients. Biomarkers may help to diagnose 

sepsis, indicate stages of disease, and the prognosis of the patient. The clinical signs of sepsis, such 

as body temperature and blood pressure, are usually unspecific and also occur in noninfectious 

states (Reinhart et al., 2006).  A variety of biomarkers obtained from laboratory tests can help 

physicians diagnose sepsis and assess the patient’s clinical status from sepsis to severe sepsis (Faix, 

2013). It is important to recognize biomarkers for the diagnosis and prognosis of sepsis, so that 

supportive measures can be implemented as soon as possible to reduce the risk of death.  

In addition, existing studies have not considered time trends of clinical features or 

biomarkers in sepsis mortality prediction (Dellinger et al., 2004; Moreno et al., 2008; Ford et al., 

2016). Many variables, such as vital signs and biomarkers, are collected over time. Changes in 

these time-dependent variables may be indicators of prognosis and provide more information.  

Besides the selection of predictors, the type of model used could also influence the 

accuracy of the prediction. Different types of statistical models can be used to predict sepsis 

mortality (Kasal et al., 2004). The majority of published literature used logistic regression, which 
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is appropriate to assess associations and predict binary survival outcome; however, it ignores 

timing of the events in prospective studies. On the other hand, survival models, such as Cox 

proportional hazards regression, account for the times. Survival models are default methods to 

analyze time-to-event data in cohort studies. If there is no censoring, either model could be used 

to predict survival outcome at a fixed time horizon (Staley et al., 2017).  

In summary, there are three major objectives of this study with respect to sepsis mortality 

prediction: (1) to evaluate the predictive power of biomarkers on top of clinical features, (2) to 

assess whether trends of measurements improve prediction, and (3) to compare the prediction 

performance of logistic regression and Cox regression. The predictive models were based on 

measurements at the baseline of hospital admission, and at 6 hours, 24 hours, and 72 hours after 

the admission. These models may prove useful in identifying sepsis patients with a high risk of 

mortality to aid in making treatment plans correspondingly.   

 

  



 

3 

2.0  Dataset And Methods 

2.1 Study Population 

We performed a secondary data analysis on data obtained from the Protocol-Based Care 

for Early Septic Shock (ProCESS) trial which enrolled patients from 31 hospitals in the United 

States (Process Investigators, 2014). Patients were recruited from the emergency department if 

sepsis was suspected according to the treating physician.  

The enrollment eligibility requires patients had to be at least 18 years of age, who met two 

or more criteria for systemic inflammatory response syndrome (the criteria are: i. temperature >38° 

C or <36° C; ii. heart rate >90 beats per minute; iii. respiratory rate >20 breaths per minute or 

PaCO2 <32 mm Hg; and, iv. white blood cell count >12,000/mm, <4,000/mm, or >10% immature 

(band)forms), and who had refractory hypotension or a serum lactate level of 4 mmol per liter or 

higher. Patients did not have to be in shock on arrival of the emergency department but had to be 

enrolled in the study within 12 hours after the arrival and 2 hours after the earliest detection of 

shock (Process Investigators, 2014).  

Patients were excluded in the study if they had: a primary diagnosis of acute cerebral 

vascular event, acute coronary syndrome, acute pulmonary edema, status asthmaticus, major 

cardiac arrhythmia, active gastrointestinal hemorrhage, seizure, drug overdose, burn or trauma; a 

requirement of immediate surgery; a known CD4 count < 50/mm; an advance directive that would 

restrict protocol implementation; a contraindication to central venous catheterization; a high 

likelihood of blood transfusion rejection; a treating physician who deemed resuscitation to be 
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futile; on-going participation in another interventional study; known pregnancy; or had been 

transferred from another hospital (Process Investigators, 2014). 

2.2 Data 

The original dataset of the ProCESS trial has 1341 subjects with variables including: 

demographic variables, chronic conditions, vital signs, and biomarkers. In-hospital mortality 

information was recorded and there were no censored observations. 

Demographic variables and chronic conditions are considered as time-independent 

variables in the analysis. Demographic variables, including age, race, and ethnicity, were included 

in the analysis. Chronic conditions, such as cancer, immunosuppression status, and cirrhosis, were 

also included. 

Two types of time-dependent variables were included in the analysis, they were vital signs 

and biomarkers. Vital signs, such as blood pressure and temperature, indicate severity of a patient’s 

condition. Biomarker variables, such as lactate and cytokines, may help identify patients who are 

developing severe sepsis and thus may help to reduce the risk of death. Measurements occurred at 

the baseline of admission (0 hours), and at 6 hours, 24 hours, and 72 hours after admission. The 

unit of measurement for serum biomarkers is mmol/L.     

 



 

5 

2.3 Evaluating Biomarkers 

2.3.1  Data  

The variable 60-day mortality was the primary outcome of interest when evaluating 

biomarkers. All 1341 subjects from the ProCESS trial and 387 variables were initially included in 

this part of the analysis. Biomarkers were measured at different times. In order to evaluate the 

predictive power of biomarkers at different times, patients were selected into four cohorts based 

on their data availability at time of measurement.  

Patients with complete data for the initial predictor set measured at time of admission 

(baseline time) were included in the baseline (0 hours) cohort. Patients with complete data for 

initial predictors measured at 6 hours, 24 hours, and 72 hours after the enrollment were enrolled 

in the 6 hours cohort, 24 hours cohort, and 72 hours cohort. Baseline characteristics at time of 

admission were reported in the baseline cohort, 6 hours cohort, 24 hours cohort, 72 hours cohort, 

and in the source population. Baseline characteristics were compared between one cohort and 

patients who were outside that cohort in the source population in order to assess potential selection 

bias. P-values for comparison were performed using the Student’s t-test for normally distributed 

continuous variables, median test for non-normally distributed continuous variables, and the Chi-

square test of independence for categorical variables.  
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2.3.2  Methods of Evaluating Biomarkers 

To evaluate the predictive contribution of biomarkers, logistic regressions with clinical 

features only (LRC) and logistic regressions with both clinical features and biomarkers (LRCB) 

were constructed and compared at different hour-based cohorts. For non-normally distributed 

biomarker variables, such as TMB, they were log transformed.  

Before predictor selection, variables with over 80% missing values were first dropped. 

Univariate logistic regression was then employed for each variable, with 60-day mortality as the 

outcome. Variables with significant p-value below 0.05 from univariate logistic regression were 

selected into the initial predictor set.  

Logistic regressions with clinical features only (LRC) and logistic regressions with both 

clinical features and biomarkers (LRCB) were developed for each cohort. Specifically, for the 

baseline cohort, 6 hours cohort, and 24 hours cohort, since there was a large number of initial 

predictors, elastic net regularization (Friedman et al., 2010) was additionally applied to refine the 

initial predictor set. The cohorts were randomly split into training (67%) and testing (33%) sets. 

While the training set was used for model development, the testing set was used for model 

validation. Multivariable logistic regression was fitted in the training set. As for the 72 hours 

cohort, the number of predictors and sample size was small due to a great number of missing data. 

Hence, the initial set of predictors was determined based on the univariate analysis only. The final 

logistic models were derived after the backward elimination based on the Akaike Information 

Criterion (AIC). When fitting logistic regression models with clinical features alone (LRC), only 

clinical predictors were included; when fitting logistic regression models with both clinical 

features and biomarkers (LRCB), biomarkers were added to the selected clinical predictors in 

LRC.  
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Area under the Receiver Operating Characteristic curve (AUC) with 95% bootstrap 

confidence intervals (CI) was used to compare model performance. AUCs of LRC and LRCB were 

compared within each cohort to evaluate the contribution of biomarker predictors at different time 

points.  

Model calibration was assessed via the Hosmer-Lemeshow goodness-of-fit test, where a p-

value larger than 0.05 would demonstrate a sound calibration (Lemeshow et al., 1982). Model 

discrimination was tested by measuring the AUC (Hanley et al., 1982). Statistical analyses were 

performed using R version 3.4.1. Statistical significance was set at 0.05. All results were provided 

for the test set.  

2.3.3  Logistic Regression  

Multivariable logistic regression was used to predict the binary survival outcome of 

mortality status of a patient. The logistic regression model was defined as:  

ln (
𝑝

1 − 𝑝
) = 𝑿𝜷 

where 𝑝 is the probability of death, with covariate matrix X and parameter vector . Wald’s 

test was used to test the significance of variables in the model.  

 

2.3.4  Elastic Net Regularization 

Elastic net regularization was employed to further screen out predictors from the univariate 

analysis, it was used to determine a smaller subset of predictors that exhibits the strongest effects.  
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Elastic net regularization is a regularized regression method that linearly combines 

penalties of lasso and ridge regressions (Friedman et al., 2010). LASSO (Least Absolute Shrinkage 

and Selection Predictor) is a method to select variables, it has low bias but large variance in 

accuracy. The limitation of lasso is that for highly correlated data, lasso tends to pick one of them, 

but cannot do group selection. Given a response vector 𝑦 ∈ ℝ𝑁×𝑝, the lasso regression is defined 

as following:  

𝛽̂𝑙𝑎𝑠𝑠𝑜 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽 ∈ ℝ𝑝 ∑(𝑦𝑖 − 𝛽𝑇𝑥𝑖)
2

𝑁

𝑖=1

+ 𝜆 ∑ |𝛽𝑗|
𝑝

𝑗=1
 

Here 𝜆 (𝜆 ≥ 0) is a tuning parameter, which controls the strength of the penalty term. 

Ridge regression is a technique to shrink coefficients, but it does not set any coefficients to 0 and 

does not give easily interpretable model.  The ridge regression is defined as following:  

 

𝛽̂𝑟𝑖𝑑𝑔𝑒 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽 ∈ ℝ𝑝 ∑(𝑦𝑖 − 𝛽𝑇𝑥𝑖)
2

𝑁

𝑖=1

+ 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1
 

 

The elastic net regularization combines the penalty of ridge and lasso: the ridge penalty 

shrinks the coefficients of correlated predictors towards each other while the lasso tends to pick 

one of them and discard the others. The elastic-net penalty mixes these two and overcomes the 

limitations of them. Elastic net solves the following problem:  

 

min
𝛽0,𝛽

1

𝑁
∑ 𝑤𝑖

𝑁

𝑖=1

𝑙(𝑦𝑖, 𝛽0 + 𝛽𝑇𝑥𝑖) + 𝜆[
(1 − 𝛼)

2
‖𝛽‖2

2 + 𝛼‖𝛽‖1] 
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Here 𝑁 is number of observations, 𝑤𝑖 is the weight for observation 𝑖, 𝑙(𝑦𝑖, 𝛽0 + 𝛽𝑇𝑥𝑖) is 

the negative log-likelihood contribution for observation 𝑖,  𝑥𝑖 is covariate for observation 𝑖, 𝛽 is 

parameter. The penalty is defined as 
(1−𝛼)

2
‖𝛽‖2

2 + 𝛼‖𝛽‖1, it is controlled by elastic-net mixing 

parameter , where 0 ≤ 𝛼 ≤ 1. When =1, the penalty is the lasso penalty; when =0, the penalty 

is ridge penalty. ||β||1 = ∑ |𝛽𝑗|𝑝
𝑗=1  is the penalty from lasso regression, which selects only one 

variable from a group of highly correlated variables. ||𝛽||2
2 = ∑ 𝛽𝑗

2𝑝
𝑗=1 is the penalty from ridge 

regression, which shrinks coefficients of correlated variables. Parameter  bridges the gap between 

lasso and ridge.  is a tuning parameter that controls the overall strength of the penalty, it has value 

between 0 and positive infinity (Friedman et al., 2010).  

For logistic models defined as following: 

ln (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽𝑇𝑥𝑖, 𝑝 =

𝑒𝛽0+𝛽𝑇𝑥𝑖

1 + 𝑒𝛽0+𝛽𝑇𝑥𝑖
 

The objective function for elastic net regularization with penalized logistic regression uses 

the negative binomial log-likelihood, and is defined as:  

min
𝛽0,𝛽∈ℝ𝑝+1

−[
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

(𝛽0 + 𝛽𝑇𝑥𝑖) − log (1 + 𝑒(𝛽0+𝛽𝑇𝑥𝑖))] + 𝜆[
(1 − 𝛼)

2
‖𝛽‖2

2 + 𝛼‖𝛽‖1] 

Logistic regression often has problem that when number of predictors is greater than or 

close to the number of observations, and when this happens, logistic regressions would not perform 

well. The elastic net penalty would alleviate this problem and select variables.  

For this analysis, elastic net regularization was implemented in R package glmnet. The 

regularization path for elastic net is computed for the elastic net penalty at a grid of values for the 

regularization parameter . The glmnet algorithms use cyclical coordinate descent, which 

optimizes the objective function over each parameter with others fixed, and cycles repeatedly until 



 

10 

convergence. 10-fold cross-validation was utilized for parameter tuning and variable selection. In 

this study, elastic net regularization was only used to refine predictor set to within 20 variables. 

Final set of predictors was selected using backward stepwise selection with logistic regressions. 

2.3.5  ROC Curve and AUC 

Receiver Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) 

were used to evaluate model performance. They are the most common evaluation metrics for 

checking classification model’s performance.  

ROC curves plot sensitivity against 1 minus specificity of a binary classifier across 

different thresholds. AUC is the area under the ROC curve, it is the estimate of the probability of 

the classifier to rank a randomly chosen positive event higher than a randomly chosen negative 

event using normalized unit (Hanley et al., 1982). AUC ranges between 0 and 1, the higher the 

value, the better measure of classification.    

To compare AUCs of two models, 300 bootstrap samples were sampled and AUCs were 

calculated for each bootstrap sample for two models respectively. 95% bootstrap confidence 

interval was calculated based on bootstrap AUCs. To formally test the difference between AUCs 

of two different models, differences between AUCs of two models from the same bootstrap 

samples were calculated, bootstrap hypothesis test was performed to calculate a p-value for 

comparison. ROC and AUC were calculated using R package ROCR for logistic regressions.  
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2.4 Evaluating Trends of Variables 

2.4.1  Data  

Hour-based cohorts generated in section 2.3.1 were used in this section to assess the 

predictive power of trends of time-dependent variables. Time-dependent variables were vital 

signs and biomarkers, which were measured at the baseline of admission (0 hours), and at 6 hours, 

24 hours, and 72 hours after admission. The trends of time-dependent variables were calculated as 

the difference between two measurements at different time points. Trends of time-dependent 

variables, the latest measurement of time-dependent variables, as well as other time-independent 

variables, were included in the analysis as predictors. The outcome variable for this section of 

analysis is 60-day mortality.  

2.4.2  Methods for Evaluating Trends   

In order to evaluate predictive contribution of time-dependent variables, logistic 

regressions with both clinical features and biomarkers (LRCB) were constructed at different hour-

based cohorts and trends variables were included as predictors of 60-day sepsis mortality. 

The model fitting and variable selection were the same in section 2.3.2, elastic net 

regularization was applied to refine the initial predictor set. The cohorts were randomly split into 

training (67%) and testing (33%) sets. While the training set was used for model development, the 

testing set was used for model validation. Multivariable logistic regression was fitted in the training 

set. The final logistic models were derived after the backward elimination based on AIC. If trends 
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variables were dropped during the predictor selection process, then it was considered not 

contributing in mortality prediction.  

2.5 Comparing Statistical Models 

2.5.1  Data 

This section compares logistic regression and Cox regression in predicting sepsis mortality. 

Only patients from the baseline cohort of section 2.3.1 were used to develop models in this section. 

Baseline cohort patients' within-60-days-of-admission death time and 60-day mortality were 

obtained and considered as the outcome variable. Both clinical features and biomarkers from initial 

predictor set in section 2.3.2 were included in this section of analysis. Time-independent variables 

and time-dependent variables measured at baseline were also included as predictors.  

2.5.2  Methods for Comparing Models  

Cox proportional hazards regression is a semiparametric model that is efficient for 

analyzing survival data, it estimates only hazard ratios between reference and other groups. Cox 

regression assumes independent observations, censoring independent of time-to-event, and 

proportional hazard rates, which means that hazard ratio between two groups is constant over time. 

Logistic regression is a parametric model to analyze the binary dependent variable, it estimates 

odds ratio of variables. Logistic regression requires independent observations and cannot be used 
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when outcome is censored. When competitive events are ruled out, follow-up is complete, and all 

other assumptions are met, the two methods are valid in predicting survival status.   

To get more information on time of survival, logistic regressions were developed to predict 

mortality at different landmark time points. Data was randomly split into training (67%) and testing 

(33%) sets to develop and validate prediction models. Landmark mortality within 3 days, 7 days, 

14 days, 30 days, and 60 days of admission were modeled using logistic regression models. The 

initial set of predictors was determined using univariate logistic regression. Final models were 

derived after backward elimination of non-significant predictors. 

A Cox proportional hazards model was developed using the same cohort to predict 

mortality over the same period with the logistic regressions, from baseline of admission to 60-day. 

The initial set of predictors was determined using univariate Cox regression for the Cox model. 

Final model was derived after backward elimination of non-significant predictors.  

Area under the Receiver Operating Characteristic curve (AUC) with 95% confidence 

intervals (CI) was used to evaluate model performance at different time points. To formally test 

the difference between AUCs of two models, 300 bootstrap samples were sampled, logistic AUC 

and Cox AUC were calculated for each bootstrap sample and the bootstrap hypothesis testing was 

performed for hypothesis testing. Statistical analyses were performed using R version 3.4.1. 

Statistical significance was set at 0.05. 
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Figure 1 Flow Chart of Analysis 
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2.5.3  Cox Proportional Hazards Model  

The Cox proportional hazards model was used to predict sepsis survival within 60-day 

period after admission. The model was defined as: 

ℎ(𝑡|𝑿) = ℎ𝑜(𝑡)exp (𝑿𝜷) 

where ℎ𝑜 (𝑡) is the baseline hazard function with covariate matrix X and parameter vector 

. Wald’s test was used to test the significance of variables in the model. Variables selection was 

based on backward stepwise selection under AIC based pseudolikelihood. Cox regression was 

developed using R package survival.  

2.5.4  Time-dependent AUC 

For survival models, the prediction performance is dependent on time of assessment t when 

the outcome is observed over time. The prediction performance measured by ROC is a function of 

time t. To calculate and plot the time-dependent ROC and AUC, timeROC function in the R 

timeROC package was used. The Inverse Probability of Censoring Weighting (IPCW) was 

performed to estimate cumulative dynamic time-dependent ROC curve.  

Let 𝐷𝑖(𝑡) denotes the time-dependent outcome status for subject i at time t. Let M be a 

marker at baseline. For any threshold c, the true positive and false positive rates are time-dependent 

functions defined as:  

𝑇𝑃𝑅(𝑐, 𝑡) = 𝑃(𝑀 > 𝑐|𝐷(𝑡) = 1) 

𝐹𝑃𝑅(𝑐, 𝑡) = 𝑃(𝑀 > 𝑐|𝐷(𝑡) = 0) 
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The time-dependent ROC curve ROC(t) plots TPR(c, t) against FPR(c, t) for any threshold 

c. Consider two individuals i and j (𝑖 ≠ 𝑗). Time-dependent AUC at time t can be defined as 

following: 

𝐴𝑈𝐶(𝑡) = 𝐸𝑖,𝑗[𝐼{𝐹̂𝑖(𝑡|𝑋𝑖) > 𝐹̂𝑗(𝑡|𝑋𝑗)}|𝑇𝑖 ≤ 𝑡, 𝑇𝑗 > 𝑡] 

Where 𝑇𝑖  and 𝑇𝑗  is the event time for i and j, respectively. F(t) is the estimated failure 

probability for individuals. A case is defined as a subject i with 𝑇𝑖 ≤ 𝑡. A control is defined as a 

subject i with 𝑇𝑖 > 𝑡.  

Confidence intervals for areas under time-dependent ROC curves (time-dependent AUC) 

were calculated using confint function in the timeROC package. The method was implemented for 

inverse probability of censoring weights computed from a Kaplan-Meier estimator. Time-

dependent AUC estimators were asymptotically normally distributed. Then, confidence intervals 

were computed using an estimate of the variance and the quantiles of the standard normal 

distribution. Pointwise confidence intervals and simultaneous confidence bands were computed 

from the asymptotic normality of time-dependent AUC estimators. To compute the variance 

estimates, the function computes the empirical variance estimates of the estimated iid-

representations of the time-dependent AUC estimators.  
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3.0 Results 

3.1 Patients  

There were 1351 patients recruited by the Protocol-Based Care for Early Septic Shock 

(ProCESS) trial, 10 of them requested to withdraw, 1341 of them included in this analysis. 528 

patients were included in baseline cohort (60-day mortality: 25%, mean age: 60 years, mean 

baseline lactate: 2.41 mmol/L), 534 patients in 6 hours cohort (24%, 60, 2.35), 432 patients in 24 

hours cohort (21%, 60, 2.26), and 140 patients in 72 hours cohort (24%, 61, 2.89).  

Important baseline characteristics between patients with different survival statuses were 

compared in each cohort (Table 1). Variables, including comatose status, cancer and metastatic 

cancer, immuno-suppressed status, renal disease, cirrhosis, chronic liver disease, mechanical 

ventilation, non-invasive ventilation, and sofa score, were significantly different between 

survivors and non-survivors across different cohorts (Table 1).  

To demonstrate that the cohorts represented the 1341 patients, baseline characteristics of 

patients in the cohorts were compared with patients excluded (Table 2). Baseline characteristics 

were similar for baseline cohort and patients who were excluded from baseline cohort. As for 6 

hours cohort and 24 hours cohort, some predictors were significantly different between those 

included in the cohorts and those not included. Predictors, such as mental status, comatose state, 

and mechanical ventilation, were significantly different, indicating patients included in 6 hours 

cohort and 24 hours cohort were less sick than those excluded. The 60-day mortality for those two 

cohorts was significantly lower than that of the patients not in the cohorts. 
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Table 1 Baseline Characteristics for Cohorts Based on Survival Status  
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Table 2 Baseline Characteristics for Cohorts Based on Analysis Inclusion 
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The survival time for patients ranges from within 6 hours after admission to over 60 days 

after admission. The overall 60-day mortality for all 1341 patients recruited by the trial is 27.14%. 

15% of the death occurs within 1 day of admission, 30% of the death occurs within 3 days of 

admission, 56% of the death occurs within 14 days of admission.  

3.2 Evaluation of Biomarkers 

3.2.1  Predictive Models  

LRC and LRCB were fitted for each cohort (Table 3). Metastatic cancer and age were 

significant predictors in all models across different times. Some other chronic conditions, such as 

immuno-compromised status, cirrhosis, and chronic liver diseases, also increased the risk for 60-

day sepsis mortality. On the other hand, among time-dependent vital sign predictors, higher 

diastolic blood pressure and higher Glasgow coma scale score (GCS) lowered the risk of death. 

As for biomarker predictors, lactate was significant in all LRCBs within 24 hours, TMB was 

significant in the baseline model, and total bilirubin level was significant in the 72 hours LRCB 

model. Lactate is significant all the time within 24 hours of admission, high lacate level is 

associated with high risk of death.  
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Table 3 Logistic Models for Mortality Prediction at Different Times 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 

3.2.2  Predictive Power of Biomarkers 

Area under the Receiver Operating Characteristic curve (AUC) with 95% bootstrap 

confidence intervals (CI) was used to compare model performance. Point estimates of AUCs and 

their 95% confidence intervals were calculated and plotted (Figure 2). At baseline time, the AUC 

increased from 0.766 (95% CI: 0.710, 0.826) of the LRC to 0.812 (95% CI: 0.749,0.869) of the 

LRCB, with a p-value of 0.023. For 6 hours cohort, 24 hours cohort, and 72 hours cohort, there 

was no significant difference between the AUCs of LRC and LRCB. Therefore, only at baseline, 

adding biomarkers to clinical features increased predictive power. As for comparisons between the 

cohorts, there was no significant difference between the AUCs of cohorts at different times.  

Figure 2 Confidence Intervals for AUCs of Logistic Regressions 
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3.3 Evaluation of Time-dependent Variables 

3.3.1  Predictive Power of Time-dependent Variables 

To evaluate trends of time-dependent variables, for all time-dependent variables, changes 

over time in measurements were included in predictor selection process. The changes were 

calculated as latest measurement minus the earlier measurement. In the final models, none of those 

changes of time-dependent variables were significant, so they were all dropped. Latest 

measurements of time-dependent predictors were significant in the models. For example, for 6 

hours cohort, lactate level measured at 6 hours were significant, but its change over time from 

baseline time to 6 hours was not. When trends of time-dependent variables were added to the 

models, none of them were significant, after dropping non-significant variables, the final models 

were exactly the same with Table 1. Therefore, based on the final models, only the latest 

measurements of time-dependent variables matter in the prediction. 

3.3.2  Time-independent Variables in the Prediction  

According to the final logistic regressions (Table 3), metastatic cancer is highly significant 

in all models, indicates that having metastatic cancer would higher the risk of sepsis mortality. 

Other chronic condition predictors, such as immune-compromised status, cirrhosis, and old age, 

would also increase the probability of death.  
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3.4 Comparison of Statistical Models  

3.4.1  Predictive Models  

To make a comparison between logistic regression and Cox proportional hazards 

regression in sepsis mortality prediction, only 528 patients from the baseline cohort was included 

in analysis (60-day mortality: 25%, mean age: 60 years, mean baseline lactate: 2.41 mmol/L).  

For logistic regressions, five unique logistic regressions were developed for predicting 3-

day mortality, 7-day mortality, 14-day mortality, 30-day mortality, 60-day mortality. All these 

logistic regressions including both clinical features and biomarker. 3-day mortality model has 

AUC 0.888 with 95% CI (0.836, 0.939); 7-day mortality model has AUC 0.827 with 95% CI 

(0.776, 0.879); 14-day mortality model has AUC 0.858 with 95% CI (0.820, 0.895); and 60-day 

mortality model has AUC 0.795 with 95% CI (0.716, 0.835). 

For the Cox proportional hazards regression, a single model for 60-day survival was 

developed. None of the final set of predictors were found to violate the proportional hazards 

assumption. The time-dependent AUC ranges between (0.859, 0.884). The 95% confidence 

intervals of Cox regression AUC at different time points is shown in table 6.  

Model predictors and coefficients are shown in table 4 and table 5. For 60-day mortality 

logistic regression and 60-day mortality Cox regression, the variables were almost the same: 

metastatic cancer, immunocompromised status, cirrhosis, age, lactate, and TMB were significant 

in both models. The coefficients of predictors were different in those two models.  
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Table 4 Logistic Models for Landmark Mortality Prediction 
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Table 5 Cox Model for 60-day Mortality Prediction 

 

 

 

 

 

 

 

 

Table 6 Cox Model Time-dependent AUC 
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3.4.2  Model Evaluation 

Area under the Receiver Operating Characteristic curve (AUC) with 95% bootstrap 

confidence intervals (CI) was used to evaluate the two models. According to confidence intervals 

of AUC (Figure 3), logistic model and Cox model have similar predictive power in predicting 

short-term sepsis mortality (mortality within 30 days of admission), where the majority of events 

occur. There is no significant difference between AUCs of two models before 30-days. At 60-day, 

the AUC of logistic regression is 0.795 with 95% CI (0.716, 0.835), the AUC of Cox regression is 

0.859 with 95% CI (0.800, 0.919). 300 bootstrap samples were taken, the difference between 

AUCs is calculated as Cox regression AUC minus logistic regression AUC for each bootstrap 

sample. The 95% confidence intervals for the 60-day AUC difference is (0.039, 0.048). Only at 

60-day, the bootstrap hypothesis test has significant p-value. Therefore, at 60-day, AUCs of 

logistic regression are significantly lower than AUCs of Cox regression, and a Cox regression is 

preferable in predicting long-term sepsis mortality. 

 

 

 

 

 

 

 

 

Figure 3 Plot of Confidence Intervals of AUC 
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4.0 Discussion 

4.1 Risk Factors of Sepsis Mortality 

This study suggests that biomarkers provide incremental discrimination ability to clinical 

features for predicting 60-day mortality at the time of baseline. However, at later time points, 

biomarkers did not have significant contribution to mortality prediction. On the contrary to the 

original hypotheses that time-trends of measurements contribute to prediction, trends of change in 

time-dependent variables did not increase predictive power, while the latest measurements did 

matter in the prediction. Chronic morbid conditions would increase the risk of death, metastatic 

cancer and organ failures would especially do so. Age was also an important risk factor. As for 

biomarkers, lactate, TMB, and total bilirubin level might help identify high risk of death. 

Compared with other published literature, this study is unique in including biomarkers in 

sepsis mortality prediction. Biomarkers are commonly used to diagnose sepsis, but rarely used in 

mortality prediction. Including biomarkers as sepsis mortality predictors may help identify patients 

who are developing severe sepsis before organ dysfunction has advanced to far (Faix, 2013). Based 

on the study results, biomarkers, especially lactate and TMB, are supportive to predicting sepsis 

mortality at the time of admission when sepsis is suspected by the treating physician.  
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4.2 Model Selection for Sepsis Mortality Prediction  

Logistic regression and Cox proportional hazards regression have been previously 

compared in cohort studies (Staley et al., 2017). It was reported that: (i) the Cox model yields more 

precise estimates of association; (ii) odds ratios and hazard ratios diverge as follow-up time, 

cumulative disease incidence and the strength of the association increases; (iii) in certain situations, 

the Cox regression has greater statistical power (Green et al., 1983).  

This study investigated the differences between logistic regression and Cox regression 

when analyzing sepsis survival data. Compared with Cox regression, which analyzes information 

on the entire time period and provides time for the event to happen, logistic regression only 

explains survival below or above a fixed time point. To make these two methods comparable, the 

60-day mortality period was divided into 3-day, 7-day, 14-day, 30-day, and 60-day intervals, 

different logistic regressions were developed for different intervals. According to the AUC results 

(Figure 3), logistic regressions have similar predictive power with Cox regression for short term 

mortality within 30 days. When time is considered, Cox regression has higher predictive power 

for long term mortality.  

Based on the study results in section 3.4.1, the model coefficients differ, because hazard 

ratios and odds ratios are different measures of association and have different interpretations. Cox 

regressions incorporate the length of time the patients survived and measure whether the risk 

factors affect the time at which the disease event occurs. Logistic regression assesses whether the 

risk factor affects the odds of disease, and hence does not take into account the time of death. In 

logistic regressions, early and late death are given the same weight in the analysis. Therefore, they 

have lower power than the Cox regression in making long-term predictions, they are better used 

for short-term variability of events (Staley et al., 2017).  
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4.3 Comparison with Existing Models  

The predictive models in this study are not sepsis specific, they can also be generalized to 

predict mortality in all ICU patients. The predictors are not sepsis specific, except for biomarker 

lactate. Those predictors are easily obtained, routinely recorded, and less likely to be missing. An 

existing model, the Mortality Prediction Model (MPM) was developed in 1985 for mortality 

prediction in ICU patients, it uses patients’ clinical variables at admission, and 24 and 48 hours 

after the admission to predict the probability of in-hospital mortality with logistic regressions 

(Lemeshow et al., 1985). Compare LRC0B0 with MPM at admission, and LRC24B24 with MPM 

at 24 hours, most of the predictors are the same: cancer, organ failures, and age. In addition, the 

coefficients for age and cancer are very close between our models and MPM models. MPM models 

also include type of hospital admission and infection as predictors (Lemeshow et al., 1985). For 

our study, all patients had infection and all the admissions were emergency. AUCs were calculated 

to compare our models and MPM models for baseline cohort and 24 hours cohort. At baseline time, 

LRC0B0 has AUC of 0.78 with 95% CI (0.71, 0.85), while MPM has an AUC of 0.71, which is 

lower. At 24 hours, AUC of our model is 0.74 with 95% CI (0.66, 0.83), and the AUC of MPM is 

also 0.74. 

Since the outcome is 60-day mortality, which is long-term, the models in this study may 

be more accurate for predicting long-term mortality. Most significant risk factors in our study are 

chronic conditions, while vital signs seem less significant. Chronic conditions, such as 

comorbidities and baseline health, may greatly influence outcome of a patient and are determinant 

in predicting late mortality (Kennelly et al., 2016). In comparison, vital signs are more likely to 

predict death in a short period of time rather than in distant future. By applying the baseline models 

(LRC0 and LRC0B0) to predict mortality for patients who had survived over 24 hours and 72 
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hours, the resulted AUCs were higher than the AUC for all patients, this result indicates that the 

models have better performance for predicting late mortality. Thus, predictive models in this study 

may provide help in predicting long-term mortality in ICU patients irrespective of specific illness.  

4.4 Limitations  

One major limitation of this study is missing data. For some variables, the missing value is 

more than 50% or even 80%. As a result, some variables were eliminated from the initial set of 

predictor variables and not included in the statistical analysis process. In addition, patients with 

missing values for selected predictors were excluded from the cohorts, therefore the sample size 

of each cohorts was greatly reduced. Another potential problem is that patients in different cohorts 

are not comparable. Patients in 6 hours cohort and 24 hours cohort are patients who had survived 

6 hours and 72 hours, they were significantly healthier than patients excluded from those two 

cohorts (Table 2). This might due to patients who were sicker tend to have less measurements and 

more missing data for the selected predictors and therefore were not be able to be included in the 

cohorts.  

The definitions and clinical criteria of sepsis and septic shock were revised in 2016 (Singer 

et al., 2016). The new definition defines sepsis as life-threatening organ dysfunction caused by 

dysregulated host response to infection and eliminates the systemic inflammatory response 

syndrome (SIRS) criteria. Patients with suspected infection can be identified with beside qSOFA 

score, alteration in mental status, low systolic blood pressure, and high respiratory rate(Singer et 

al., 2016). Although the data of this study were collected before the definition change and the study 
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enrollment eligibility were based on SIRS, the major clinical criteria is not changed, the results of 

this study should not be affected and thus remain the same.  
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5.0 Conclusion 

Predictive models for death within 60 days of the hospital admission of sepsis patients were 

developed. The models were based on clinical features and biomarker variables obtained during 

hospital admission. Biomarkers provided incremental discrimination ability over clinical features 

alone to predict 60-day mortality at the baseline time of hospital admission. Latest measurements 

of time-dependent variables matter in the prediction, while trends of time-dependent variables do 

not contribute to mortality prediction. This study also found that Cox regression and logistic 

regression have similar predictive power for short-term mortality within 30 days, while Cox 

regression has better predictive power for long-term mortality. These predictive models are not 

sepsis specific and may be generalized to help identify ICU patients with high risk of death, while 

significant work remains to confirm the contribution of biomarkers and time trends of time-

dependent predictors in sepsis prognosis predicting, other statistical models could be explored to 

analyze sepsis survival.   
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