Assessing Risk Factors and Predicting Sepsis Mortality Using Logistic and Survival Models

by
Yunfei Xie

BA, Mathematics, Luther College, 2015

Submitted to the Graduate Faculty of
Department of Biostatistics
Graduate School of Public Health in partial fulfillment
of the requirements for the degree of

Master of Science

University of Pittsburgh

2019



UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This thesis was presented

by

Yunfei Xie

It was defended on
July 24, 2019

and approved by

Abdus S. Wahed, PhD, Professor of Biostatistics
Department of Biostatistics,
Graduate School of Public Health, University of Pittsburgh

Thesis advisor:

Jonathan Yabes, PhD, Assistant Professor of Medicine, Biostatistics
Department of Medicine, School of Medicine
Department of Biostatistics, Graduate School of Public Health,
University of Pittsburgh

Thesis Co-advisor:
Gilles Clermont, MD, Professor of Critical Care Medicine, Industrial Engineering and
Mathematics, Department of Critical Care Medicine, School of Medicine
University of Pittsburgh



Copyright © by Yunfei Xie

2019



Jonathan Yabes, PhD
Gilles Clermont, MD

Assessing Risk Factors and Predicting Sepsis Mortality Using Logistic and Survival Models

Yunfei Xie, MS

University of Pittsburgh, 2019

Abstract

Identifying sepsis patients with high risk of death is crucial for making treatment decisions and
has a public health significance. Sepsis mortality can be predicted by including clinical features
and biomarkers in a predictive model. Hypotheses: (1) Clinical features combined with
biomarkers would significantly enhance prediction power over clinical features alone; (2) time-
trends of measurements contribute to prediction; (3) Cox proportional hazards model is more
informative than logistic model.

Sepsis patients with complete data were identified from the Protocol-based Care in Early
Septic Shock (ProCESS) trial. The trial obtained measurements at baseline (0 hours), 6 hours,
and 24 hours of hospital admission, as well as patients’ within-60-day-of-admission death time.
To evaluate biomarkers, logistic regressions with biomarkers and clinical features were
compared to logistic regressions with clinical features only. To assess trends, at each time point,
trends variables were evaluated in logistic regressions. To compare statistical models, landmark
mortality within 3-day, 7-day, 14-day, and 60-day of admission were modeled using logistic
regressions; a Cox model was developed to predict mortality over the same period. Areas under
the Receiver Operating Characteristic curve (AUC) with bootstrap confidence intervals (Cl)

were used to evaluate model performance.



There were 528 patients included in baseline cohort (60-day mortality: 25%, mean age: 60
years, mean baseline lactate: 2.41 mmol/L), 534 patients in 6 hours cohort (24%, 60, 2.35), and
432 patients in 24 hours cohort (21%, 60, 2.26). At baseline, the AUC increased significantly from
0.766 [95% CI] = [0.710, 0.826] to 0.812 [0.749, 0.868] when biomarkers were added. In all
models, trends were nonsignificant. For logistic models, 3-day model has AUC 0.888 [0.836,
0.939]; 7-day model has AUC 0.827 [0.776, 0.879]; 14-day model has AUC 0.858 [0.820, 0.895];
and 60-day model has AUC 0.795 [0.716, 0.835]. For the Cox model, the time-dependent AUC
ranges between (0.859, 0.884).

Biomarkers provided incremental discrimination ability over clinical features alone to
predict 60-day mortality at baseline. Trends of time-dependent variables did not increase predictive
power. Logistic models and Cox models have similar predictive power in predicting short-term

mortality but a Cox model is better in predicting long-term mortality.
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1.0 Introduction

Sepsis, as the body’s life-threatening complication to an infection, remains a leading cause
of death of in-hospital mortality (Angus et al., 2001). Immediate medical care and treatment is
necessary for hospitalized patients with signs and symptoms of sepsis. Identifying sepsis patients
with a high risk of death is crucial for making treatment decisions.

Many studies analyzed risk factors for sepsis mortality, most of them considered illness
severity, comorbidities, and organ failures as predictor variables (Dellinger et al., 2004; Moreno
et al., 2008; Ford et al., 2016). However, few of them have considered including inflammatory
biomarkers to improve outcome prediction in sepsis patients. Biomarkers may help to diagnose
sepsis, indicate stages of disease, and the prognosis of the patient. The clinical signs of sepsis, such
as body temperature and blood pressure, are usually unspecific and also occur in noninfectious
states (Reinhart et al., 2006). A variety of biomarkers obtained from laboratory tests can help
physicians diagnose sepsis and assess the patient’s clinical status from sepsis to severe sepsis (Faix,
2013). It is important to recognize biomarkers for the diagnosis and prognosis of sepsis, so that
supportive measures can be implemented as soon as possible to reduce the risk of death.

In addition, existing studies have not considered time trends of clinical features or
biomarkers in sepsis mortality prediction (Dellinger et al., 2004; Moreno et al., 2008; Ford et al.,
2016). Many variables, such as vital signs and biomarkers, are collected over time. Changes in
these time-dependent variables may be indicators of prognosis and provide more information.

Besides the selection of predictors, the type of model used could also influence the
accuracy of the prediction. Different types of statistical models can be used to predict sepsis
mortality (Kasal et al., 2004). The majority of published literature used logistic regression, which

1



is appropriate to assess associations and predict binary survival outcome; however, it ignores
timing of the events in prospective studies. On the other hand, survival models, such as Cox
proportional hazards regression, account for the times. Survival models are default methods to
analyze time-to-event data in cohort studies. If there is no censoring, either model could be used
to predict survival outcome at a fixed time horizon (Staley et al., 2017).

In summary, there are three major objectives of this study with respect to sepsis mortality
prediction: (1) to evaluate the predictive power of biomarkers on top of clinical features, (2) to
assess whether trends of measurements improve prediction, and (3) to compare the prediction
performance of logistic regression and Cox regression. The predictive models were based on
measurements at the baseline of hospital admission, and at 6 hours, 24 hours, and 72 hours after
the admission. These models may prove useful in identifying sepsis patients with a high risk of

mortality to aid in making treatment plans correspondingly.



2.0 Dataset And Methods

2.1 Study Population

We performed a secondary data analysis on data obtained from the Protocol-Based Care
for Early Septic Shock (ProCESS) trial which enrolled patients from 31 hospitals in the United
States (Process Investigators, 2014). Patients were recruited from the emergency department if
sepsis was suspected according to the treating physician.

The enrollment eligibility requires patients had to be at least 18 years of age, who met two
or more criteria for systemic inflammatory response syndrome (the criteria are: i. temperature >38°
C or <36° C; ii. heart rate >90 beats per minute; iii. respiratory rate >20 breaths per minute or
PaC0O2 <32 mm Hg; and, iv. white blood cell count >12,000/mm, <4,000/mm, or >10% immature
(band)forms), and who had refractory hypotension or a serum lactate level of 4 mmol per liter or
higher. Patients did not have to be in shock on arrival of the emergency department but had to be
enrolled in the study within 12 hours after the arrival and 2 hours after the earliest detection of
shock (Process Investigators, 2014).

Patients were excluded in the study if they had: a primary diagnosis of acute cerebral
vascular event, acute coronary syndrome, acute pulmonary edema, status asthmaticus, major
cardiac arrhythmia, active gastrointestinal hemorrhage, seizure, drug overdose, burn or trauma; a
requirement of immediate surgery; a known CD4 count < 50/mm; an advance directive that would
restrict protocol implementation; a contraindication to central venous catheterization; a high

likelihood of blood transfusion rejection; a treating physician who deemed resuscitation to be



futile; on-going participation in another interventional study; known pregnancy; or had been

transferred from another hospital (Process Investigators, 2014).

2.2 Data

The original dataset of the ProCESS trial has 1341 subjects with variables including:
demographic variables, chronic conditions, vital signs, and biomarkers. In-hospital mortality
information was recorded and there were no censored observations.

Demographic variables and chronic conditions are considered as time-independent
variables in the analysis. Demographic variables, including age, race, and ethnicity, were included
in the analysis. Chronic conditions, such as cancer, immunosuppression status, and cirrhosis, were
also included.

Two types of time-dependent variables were included in the analysis, they were vital signs
and biomarkers. Vital signs, such as blood pressure and temperature, indicate severity of a patient’s
condition. Biomarker variables, such as lactate and cytokines, may help identify patients who are
developing severe sepsis and thus may help to reduce the risk of death. Measurements occurred at
the baseline of admission (0 hours), and at 6 hours, 24 hours, and 72 hours after admission. The

unit of measurement for serum biomarkers is mmol/L.



2.3 Evaluating Biomarkers

2.3.1 Data

The variable 60-day mortality was the primary outcome of interest when evaluating
biomarkers. All 1341 subjects from the ProCESS trial and 387 variables were initially included in
this part of the analysis. Biomarkers were measured at different times. In order to evaluate the
predictive power of biomarkers at different times, patients were selected into four cohorts based
on their data availability at time of measurement.

Patients with complete data for the initial predictor set measured at time of admission
(baseline time) were included in the baseline (0 hours) cohort. Patients with complete data for
initial predictors measured at 6 hours, 24 hours, and 72 hours after the enrollment were enrolled
in the 6 hours cohort, 24 hours cohort, and 72 hours cohort. Baseline characteristics at time of
admission were reported in the baseline cohort, 6 hours cohort, 24 hours cohort, 72 hours cohort,
and in the source population. Baseline characteristics were compared between one cohort and
patients who were outside that cohort in the source population in order to assess potential selection
bias. P-values for comparison were performed using the Student’s t-test for normally distributed
continuous variables, median test for non-normally distributed continuous variables, and the Chi-

square test of independence for categorical variables.



2.3.2 Methods of Evaluating Biomarkers

To evaluate the predictive contribution of biomarkers, logistic regressions with clinical
features only (LRC) and logistic regressions with both clinical features and biomarkers (LRCB)
were constructed and compared at different hour-based cohorts. For non-normally distributed
biomarker variables, such as TMB, they were log transformed.

Before predictor selection, variables with over 80% missing values were first dropped.
Univariate logistic regression was then employed for each variable, with 60-day mortality as the
outcome. Variables with significant p-value below 0.05 from univariate logistic regression were
selected into the initial predictor set.

Logistic regressions with clinical features only (LRC) and logistic regressions with both
clinical features and biomarkers (LRCB) were developed for each cohort. Specifically, for the
baseline cohort, 6 hours cohort, and 24 hours cohort, since there was a large humber of initial
predictors, elastic net regularization (Friedman et al., 2010) was additionally applied to refine the
initial predictor set. The cohorts were randomly split into training (67%) and testing (33%) sets.
While the training set was used for model development, the testing set was used for model
validation. Multivariable logistic regression was fitted in the training set. As for the 72 hours
cohort, the number of predictors and sample size was small due to a great number of missing data.
Hence, the initial set of predictors was determined based on the univariate analysis only. The final
logistic models were derived after the backward elimination based on the Akaike Information
Criterion (AIC). When fitting logistic regression models with clinical features alone (LRC), only
clinical predictors were included; when fitting logistic regression models with both clinical
features and biomarkers (LRCB), biomarkers were added to the selected clinical predictors in

LRC.



Area under the Receiver Operating Characteristic curve (AUC) with 95% bootstrap
confidence intervals (CI) was used to compare model performance. AUCs of LRC and LRCB were
compared within each cohort to evaluate the contribution of biomarker predictors at different time
points.

Model calibration was assessed via the Hosmer-Lemeshow goodness-of-fit test, where a p-
value larger than 0.05 would demonstrate a sound calibration (Lemeshow et al., 1982). Model
discrimination was tested by measuring the AUC (Hanley et al., 1982). Statistical analyses were
performed using R version 3.4.1. Statistical significance was set at 0.05. All results were provided

for the test set.
2.3.3 Logistic Regression

Multivariable logistic regression was used to predict the binary survival outcome of

mortality status of a patient. The logistic regression model was defined as:

ln<13p>=XB

where p is the probability of death, with covariate matrix X and parameter vector 8. Wald’s

test was used to test the significance of variables in the model.

2.3.4 Elastic Net Regularization

Elastic net regularization was employed to further screen out predictors from the univariate

analysis, it was used to determine a smaller subset of predictors that exhibits the strongest effects.



Elastic net regularization is a regularized regression method that linearly combines
penalties of lasso and ridge regressions (Friedman et al., 2010). LASSO (Least Absolute Shrinkage
and Selection Predictor) is a method to select variables, it has low bias but large variance in
accuracy. The limitation of lasso is that for highly correlated data, lasso tends to pick one of them,

but cannot do group selection. Given a response vector y € Ry, the lasso regression is defined

as following:

N

A argmin p

prose = L pp Q0= BT +2) 1
i=1 =1

Here A (A = 0) is a tuning parameter, which controls the strength of the penalty term.
Ridge regression is a technique to shrink coefficients, but it does not set any coefficients to 0 and

does not give easily interpretable model. The ridge regression is defined as following:
A argmin b
prioe = po Z(yl Frx?+2) B

The elastic net regularization combines the penalty of ridge and lasso: the ridge penalty
shrinks the coefficients of correlated predictors towards each other while the lasso tends to pick
one of them and discard the others. The elastic-net penalty mixes these two and overcomes the

limitations of them. Elastic net solves the following problem:

1-a)
2

N
1
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Here N is number of observations, w; is the weight for observation i, L(y;, By + BT x;) is

the negative log-likelihood contribution for observation i, x; is covariate for observation i, § is

(-

2“) 18113 + allBll4, it is controlled by elastic-net mixing

parameter. The penalty is defined as

parameter o, where 0 < a < 1. When a=1, the penalty is the lasso penalty; when a=0, the penalty

is ridge penalty. ||B]|; = Z?:l |B;| is the penalty from lasso regression, which selects only one
variable from a group of highly correlated variables. ||3]|3 = Z;’zlﬁfis the penalty from ridge

regression, which shrinks coefficients of correlated variables. Parameter o bridges the gap between
lasso and ridge. A is a tuning parameter that controls the overall strength of the penalty, it has value
between 0 and positive infinity (Friedman et al., 2010).

For logistic models defined as following:

eﬁ0+BTxi

T 11 eBotBTx;

p
n(;2=) = hot BTx

The objective function for elastic net regularization with penalized logistic regression uses

the negative binomial log-likelihood, and is defined as:

(1-a)
2

N
1 T
. T i 2
Lmin —[7 >y (B + BTxp) —log(1 + e BT m0)] + A——— 18113 + allBll]
i=1

Logistic regression often has problem that when number of predictors is greater than or
close to the number of observations, and when this happens, logistic regressions would not perform
well. The elastic net penalty would alleviate this problem and select variables.

For this analysis, elastic net regularization was implemented in R package glmnet. The
regularization path for elastic net is computed for the elastic net penalty at a grid of values for the
regularization parameter A. The glmnet algorithms use cyclical coordinate descent, which

optimizes the objective function over each parameter with others fixed, and cycles repeatedly until



convergence. 10-fold cross-validation was utilized for parameter tuning and variable selection. In
this study, elastic net regularization was only used to refine predictor set to within 20 variables.

Final set of predictors was selected using backward stepwise selection with logistic regressions.

2.3.5 ROC Curve and AUC

Receiver Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC)
were used to evaluate model performance. They are the most common evaluation metrics for
checking classification model’s performance.

ROC curves plot sensitivity against 1 minus specificity of a binary classifier across
different thresholds. AUC is the area under the ROC curve, it is the estimate of the probability of
the classifier to rank a randomly chosen positive event higher than a randomly chosen negative
event using normalized unit (Hanley et al., 1982). AUC ranges between 0 and 1, the higher the
value, the better measure of classification.

To compare AUCs of two models, 300 bootstrap samples were sampled and AUCs were
calculated for each bootstrap sample for two models respectively. 95% bootstrap confidence
interval was calculated based on bootstrap AUCs. To formally test the difference between AUCs
of two different models, differences between AUCs of two models from the same bootstrap
samples were calculated, bootstrap hypothesis test was performed to calculate a p-value for

comparison. ROC and AUC were calculated using R package ROCR for logistic regressions.
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2.4 Evaluating Trends of Variables

2.4.1 Data

Hour-based cohorts generated in section 2.3.1 were used in this section to assess the
predictive power of trends of time-dependent variables. Time-dependent variables were vital
signs and biomarkers, which were measured at the baseline of admission (0 hours), and at 6 hours,
24 hours, and 72 hours after admission. The trends of time-dependent variables were calculated as
the difference between two measurements at different time points. Trends of time-dependent
variables, the latest measurement of time-dependent variables, as well as other time-independent
variables, were included in the analysis as predictors. The outcome variable for this section of

analysis is 60-day mortality.

2.4.2 Methods for Evaluating Trends

In order to evaluate predictive contribution of time-dependent variables, logistic
regressions with both clinical features and biomarkers (LRCB) were constructed at different hour-
based cohorts and trends variables were included as predictors of 60-day sepsis mortality.

The model fitting and variable selection were the same in section 2.3.2, elastic net
regularization was applied to refine the initial predictor set. The cohorts were randomly split into
training (67%) and testing (33%) sets. While the training set was used for model development, the
testing set was used for model validation. Multivariable logistic regression was fitted in the training

set. The final logistic models were derived after the backward elimination based on AIC. If trends

11



variables were dropped during the predictor selection process, then it was considered not

contributing in mortality prediction.

2.5 Comparing Statistical Models

2.5.1 Data

This section compares logistic regression and Cox regression in predicting sepsis mortality.
Only patients from the baseline cohort of section 2.3.1 were used to develop models in this section.
Baseline cohort patients' within-60-days-of-admission death time and 60-day mortality were
obtained and considered as the outcome variable. Both clinical features and biomarkers from initial
predictor set in section 2.3.2 were included in this section of analysis. Time-independent variables

and time-dependent variables measured at baseline were also included as predictors.

2.5.2 Methods for Comparing Models

Cox proportional hazards regression is a semiparametric model that is efficient for
analyzing survival data, it estimates only hazard ratios between reference and other groups. Cox
regression assumes independent observations, censoring independent of time-to-event, and
proportional hazard rates, which means that hazard ratio between two groups is constant over time.
Logistic regression is a parametric model to analyze the binary dependent variable, it estimates

odds ratio of variables. Logistic regression requires independent observations and cannot be used

12



when outcome is censored. When competitive events are ruled out, follow-up is complete, and all
other assumptions are met, the two methods are valid in predicting survival status.

To get more information on time of survival, logistic regressions were developed to predict
mortality at different landmark time points. Data was randomly split into training (67%) and testing
(33%) sets to develop and validate prediction models. Landmark mortality within 3 days, 7 days,
14 days, 30 days, and 60 days of admission were modeled using logistic regression models. The
initial set of predictors was determined using univariate logistic regression. Final models were
derived after backward elimination of non-significant predictors.

A Cox proportional hazards model was developed using the same cohort to predict
mortality over the same period with the logistic regressions, from baseline of admission to 60-day.
The initial set of predictors was determined using univariate Cox regression for the Cox model.
Final model was derived after backward elimination of non-significant predictors.

Area under the Receiver Operating Characteristic curve (AUC) with 95% confidence
intervals (CI) was used to evaluate model performance at different time points. To formally test
the difference between AUCs of two models, 300 bootstrap samples were sampled, logistic AUC
and Cox AUC were calculated for each bootstrap sample and the bootstrap hypothesis testing was
performed for hypothesis testing. Statistical analyses were performed using R version 3.4.1.

Statistical significance was set at 0.05.
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Cox Regression
over 60 days

Figure 1 Flow Chart of Analysis
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2.5.3 Cox Proportional Hazards Model

The Cox proportional hazards model was used to predict sepsis survival within 60-day
period after admission. The model was defined as:
h(t|X) = ho(t)exp(XPB)
where h, (t) is the baseline hazard function with covariate matrix X and parameter vector
B. Wald’s test was used to test the significance of variables in the model. Variables selection was
based on backward stepwise selection under AIC based pseudolikelihood. Cox regression was

developed using R package survival.

2.5.4 Time-dependent AUC

For survival models, the prediction performance is dependent on time of assessment t when
the outcome is observed over time. The prediction performance measured by ROC is a function of
time t. To calculate and plot the time-dependent ROC and AUC, timeROC function in the R
timeROC package was used. The Inverse Probability of Censoring Weighting (IPCW) was
performed to estimate cumulative dynamic time-dependent ROC curve.

Let D;(t) denotes the time-dependent outcome status for subject i at time t. Let M be a
marker at baseline. For any threshold c, the true positive and false positive rates are time-dependent
functions defined as:

TPR(c,t) = P(M > c|D(t) = 1)

FPR(c,t) = P(M > ¢|D(t) = 0)

15



The time-dependent ROC curve ROC(t) plots TPR(c, t) against FPR(c, t) for any threshold
c. Consider two individuals i and j (i # j). Time-dependent AUC at time t can be defined as
following:

AUC(t) = E;;[I{F:(t1X)) > F(¢|X,)}T; < 6, T; > ¢]

Where T; and T; is the event time for i and j, respectively. F(t) is the estimated failure
probability for individuals. A case is defined as a subject i with T; < t. A control is defined as a
subject i with T; > t.

Confidence intervals for areas under time-dependent ROC curves (time-dependent AUC)
were calculated using confint function in the timeROC package. The method was implemented for
inverse probability of censoring weights computed from a Kaplan-Meier estimator. Time-
dependent AUC estimators were asymptotically normally distributed. Then, confidence intervals
were computed using an estimate of the variance and the quantiles of the standard normal
distribution. Pointwise confidence intervals and simultaneous confidence bands were computed
from the asymptotic normality of time-dependent AUC estimators. To compute the variance
estimates, the function computes the empirical variance estimates of the estimated iid-

representations of the time-dependent AUC estimators.
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3.0 Results

3.1 Patients

There were 1351 patients recruited by the Protocol-Based Care for Early Septic Shock
(ProCESS) trial, 10 of them requested to withdraw, 1341 of them included in this analysis. 528
patients were included in baseline cohort (60-day mortality: 25%, mean age: 60 years, mean
baseline lactate: 2.41 mmol/L), 534 patients in 6 hours cohort (24%, 60, 2.35), 432 patients in 24
hours cohort (21%, 60, 2.26), and 140 patients in 72 hours cohort (24%, 61, 2.89).

Important baseline characteristics between patients with different survival statuses were
compared in each cohort (Table 1). Variables, including comatose status, cancer and metastatic
cancer, immuno-suppressed status, renal disease, cirrhosis, chronic liver disease, mechanical
ventilation, non-invasive ventilation, and sofa score, were significantly different between
survivors and non-survivors across different cohorts (Table 1).

To demonstrate that the cohorts represented the 1341 patients, baseline characteristics of
patients in the cohorts were compared with patients excluded (Table 2). Baseline characteristics
were similar for baseline cohort and patients who were excluded from baseline cohort. As for 6
hours cohort and 24 hours cohort, some predictors were significantly different between those
included in the cohorts and those not included. Predictors, such as mental status, comatose state,
and mechanical ventilation, were significantly different, indicating patients included in 6 hours
cohort and 24 hours cohort were less sick than those excluded. The 60-day mortality for those two

cohorts was significantly lower than that of the patients not in the cohorts.
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Table 1 Baseline Characteristics for Cohorts Based on Survival Status

Baseline (0 Hours) Cohort 6 Hours Cohort 24 Hours Cohort 72 Hours Cohort Al
Baseline Variables! Survivor (N=396)  Non-Survivor (N=132) Survivor (N=407) Non-Survivor (N=127) Survivor (N=340)  Non-Survivor (N=92) Survivor (N=106)  Non-Survivor (N=34) Survivor (N=977)  Non-Survivor (N=364)
age 58.34 (16.01)*2 65.82 (14.0) 58.37 (15.89)" 64.77 (14.19) 58.52 (16.30)" 65.68 (14.31) 60.38 (14.19) 63.79 (16.98) 59.08 (16.08)" 66.58 (14.77)
mental status 285 (72%)* 82 (62.1%) 306 (75.1%) 86(67.7%) 258 (75.9%) 62(67.4%) 78(73.6%) 21(61.8%) 681 (69.7%) 235 (64.6%)
comatose status 18 (4.5%)" 21(15.9%) 14 (3.4%)" 19 (15%) 13 (3.8%)" 11 (12%) 6(5.7%) 4(11.8%) 55 (5.6%)" 51 (14%)
pleural effusion 28 (7.1%)* 28(21.2%) 31(7.6%)* 27(21.3%) 25 (7.4%)* 24(26.1%) 4 (3.8%)" 11 (32.4%) 88(9.0%)* 90 (24.7%)
metastatic cancer 22 (5.6%)" 33 (25%) 21 (5.2%)* 31(24.4%) 18 (5.3%)" 21(22.8%) 3 (2.8%)" 9 (26.5%) 53(5.4%)" 76 (20.9%)
immune-suppressed 55 (13.9%)* 38 (28.8%) 58 (14.3%)* 39(30.7%) 45 (13.2%)* 27(29.3%) 8 (7.5%)" 10(29.4%) 128 (13.1%)* 91 (25%)
renal disease 49 (12.4%)* 30(22.7%) 53 (13%)* 27(21.3%) 43 (12.7%)* 19(20.7%) 14(13.2%) 8(23.5%) 133 (13.6%)* 80 (22%)
cirrhosis 17 (4.3%)* 14(10.6%) 21 (5.2%)* 22(17.3%) 15 (4.4%)* 17(18.5%) 7 (6.6%) 5(14.7%) 43 (4.4%)* 44 (12.1%)
hepatic disease 7 (1.8%) 5(3.8%) 9 (2.2%)* 9(7.1%) 7 (2.1%) 6(6.5%) 2(1.9%) 1(2.9%) 16(1.6%)" 200 (55.0%)
chronic liver disease 24 (6.1%)" 16 (12.1%) 37 (9.1%)* 25(19.7%) 27 (7.9%) 17(18.5%) 8(7.5%) 5(14.7%) 64 (6.6%)" 47 (12.9%)
mechanical ventilation 44 (11.1%)* 59 (44.6%) 35 (8.6%)" 33(26.0%) 31(9.1%)* 23(25.0%) 15 (14.2%)" 10(29.4%) 110 (11.3%)* 105 (28.8%)
non-invasive ventilation 14 (3.5%)" 12 (9.9%) 13 (3.2%)* 9(7.1%) 10 (2.9%) 4(4.3%) 4(3.8%) - 36 (3.7%)" 26(7.1%)
urine output 81.76 (131.01) 79.91 (149.60) 88.06 (143.39) 80.15 (143.42) 89.16 (141.69) 70.40 (122.43) 83.84 (130.86) 105.44 (135.87) 87.02 (140.56) 68.20 (120.16)
respiration rate 22.23 (6.83) 23.18 (7.13) 22.38 (6.98) 23.36 (7.30) 22.21 (6.33) 23.20 (7.27) 22.42 (7.32) 22.50 (7.96) 22.59 (6.60)" 23.43 (7.20)
temperature 37.28 (1.32) 37.02 (1.69) 37.28 (1.24)* 36.97 (1.56) 37.24 (1.26)" 36.88 (1.61) 36.95 (1.23) 36.62 (2.10) 37.38 (1.30)" 37.01 (1.48)
heart rate 101.42 (19.00)* 105.9(21.24) 100.65 (18.98)" 105.25 (22.87) 101.48 (18.65) 104.72 (21.98) 104.54 (19.27) 106.44 (20.30) 102.34 (19.58)" 105.56 (22.42)
sbp 99.12 (25.34) 98.14(21.99) 97.79 (23.64) 98.11 (22.05) 97.97 (23.87) 97.51 (20.66) 98.94 (24.61) 97.32 (17.14) 100.07 (25.03) 99.36 (22.47)
dbp 56.83 (15.47) 56.00 (15.02) 55.77 (14.63) 55.87 (14.94) 55.73 (14.14) 55.83 (15.26) 54.96 (14.71) 56.88 (11.40) 56.97 (15.85) 56.24 (15.45)
O2sat 95.30 (7.24) 93.55 (8.60) 95.67 (6.16)" 94.00 (8.03) 95.81 (5.38) 95.61 (6.99) 95.07 (0.79) 95.06 (6.24) 95.51 (6.13)" 94.37 (7.24)
Sofa 6.44 (3.29)* 9.13(3.79) 6.32 (3.20)" 9.09 (3.90) 6.24 (3.24)" 9.13 (3.63) 6.75 (3.72)* 8.71 (3.71) 6.54 (3.27)" 8.84 (3.80)
Vasopressor 58 (14.6%)* 37 (28.0%) 57 (14.0%)* 33(26.0%) 47 (13.8%)* 26(28.3%) 11 (10.4%)" 13(38.2%) 173 (17.7%)* 109 (29.9%)
lactate 1(0,2)* 2(1,3) 1(0,2) 1(0,2) 1(0,2) 1(0,2) - - - -
IL6 28 (18, 50) 38.22(25.45) - - - - = - = -
IL10 15 (12, 35) 25.35(21.16) - = = = = = - -
WBC 15.51 (9,17) 14.40(12.10) 15.25 (8.79) 15.14 (13.05) 15.48 (8.63) 14.41 (9.82) 16.23 (8.17) 14.70 (10.92) 15.27 (9.50)* 17.28 (15.39)
platelet 231.51 (1832.73) 225.65(166.96) 227.65 (126.02) 214.89 (164.68) 229.69 (127.71)" 198.91 (149.46) 242.27(141.46) 209.17 (151.44) 232.82 (128.83) 224.88 (161.66)
14 day mortality - 89 (67%) - 78(61.4%) - 52 (56.5%) - 15 (44.12%) - 239 (65.7%)
60 day mortality - 132 (100%) - 127 (100%) - 92 (100%) - 34 (100%) - 364 (100%)
1 Mean (standard deviation) calculated for lly distril continuous variables, median (1st quantile, 3rd quantile) calculated for non-normally distributed continuous variables, count(percentage) calculated for categorical variables

2 *ndicates significant P-value less than 0.05, P-values are calculated from Student's t test and median test for continuous variables and Chi-square test of independence for categorical varia
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Table 2 Baseline Characteristics for Cohorts Based on Analysis Inclusion

TO TO- p-value? T6 T6- p-value T24 T24- p-value T72 T72- p-value ALL

Baseline Variable' N=528 (39.4%) N=813 (60.6%) - N=534 (39.8%) N=807 (60.2%) - N=432 (32.2%)  N=909 (67.8%) - N=140 (10.4%) N=1201 (89.6%) - N=1341
age 60.21 (15.86) 61.72 (16.20) 0.093 59.89 (15.73) 61.93 (16.26) 0.0229* 60.05 (16.15) 61.63 (16.03) 0.0927 61.21 (14.93) 61.11 (16.21) 0.9445 61.12 (16.08)
ethnicity 70 (13.3%) 73 (9.0%) 0.013* 70 (13.1%) 73 (9.1%) 0.018* 52 (12.0%) 91 (10.0%) 0.261 22 (15.7%) 121 (10.1%) 0.041* 143 (10.7%)
Race

White 374 (70.8%) 544 (66.9%) 0.131 375 (70.2%) 543 (67.3%) 0.257 308 (71.3%) 610 (67.1%) 0.123 102 (72.8%) 815 (67.9%) 0.229 918 (68.5%)

Black 117 (22.2%) 217 (26.7%) 0.061 120 (22.5%) 215 (26.6%) 0.084 94 (21.8%) 240 (26.4%) 0.066 26 (18.6%) 307 (25.6%) 0.07 334 (24.9%)

Other 37 (7.0%) 52 (6.4%) 0.660 39 (7.3%) 49 (6.1%) 0.406 30 (6.9%) 59 (6.5%) 0.755 12 (8.6%) 79 (6.6%) 0.375 89 (6.6%)
mental status 367 (69.5%) 549 (67.5%) 0.446 392 (73.4%) 524 (64.9%) 0.001* 320 (74.1%) 596 (65.6%) 0.002* 99 (70.7%) 817 (68.0%) 0.518 916 (68.3%)
comatose state 39 (7.4%) 67 (8.2%) 0.571 33 (6.2%) 73 (9.0%) 0.057 24 (5.6%) 82 (9.0%) 0.028* 10 (7.1%) 62 (5.2%) 0.325 106 (7.9%)
cancer 93 (17.6%) 141 (17.4%) 0.438 92 (17.2%) 142 (17.6%) 0.862 70 (16.2%) 164 (18.1%) 0.451 18 (12.9%) 216 (18.0%) 0.130 234(17.5%)
metastatic cancer 55 (10.4%) 74 (9.1%) 0.425 52 (9.7%) 77 (9.6%) 0.905 39 (9.0%) 90 (9.9%) 0.612 12 (8.6%) 117 (9.8%) 0.657 129 (9.7%)
immno-suppresed 93 (17.6%) 126 (15.5%) 0.306 97 (18.2%) 122 (15.2%) 0.139 72 (16.7%) 147 (16.2%) 0.819 18 (12.9%) 201 (16.8%) 0.240 219 (16.3%)
renal disease 79 (15.0%) 134 (16.5%) 0.457 80 (14.9%) 133 (16.5%) 0.462 62 (14.4%) 151 (16.6%) 0.29 22 (15.7%) 191 (15.9%) 0.954 213 (16.3%)
cirrhosis 31 (5.9%) 56 (6.9%) 0.460 43 (8.1%) 44 (5.5%) 0.057 32 (7.4%) 55 (6.0%) 0.346 12 (8.6%) 75 (6.3%) 0.290 87 (6.5%)
hepatic failure 12 (2.3%) 24 (2.9%) 0.452 18 (3.4%) 18 (2.2%) 0.206 13 (3.0%) 23 (2.5%) 0.612 3(2.1%) 33 (2.7%) 0.675 36 (2.7%)
chronic liver disease 40 (7.6%) 71 (8.7%) 0.095 62 (11.6%) 49 (6.1%) 0* 44 (10.2%) 67 (7.4%) 0.080 13 (9.3%) 98 (8.2%) 0.647 111 (8.3%)
connective tissue disease 22 (4.2%) 37 (4.5%) 0.737 28 (5.2%) 31(3.8%) 0.220 22 (5.1%) 37 (4.1%) 0.963 9 (6.4%) 50 (4.2%) 0.216 59 (4.4%)
pulse oximetry (%) 94.86 (7.64) 95.42 (5.58) 0.1217 95.27 (6.69) 95.16 (6.33) 0.7608 95.55 (5.77) 95.03 (6.78) 0.1694 95.24 (5.59) 95.18 (6.57) 09174 95.20 (6.47)
non-invasive ventilation 26 (4.9%) 36 (4.4%) 0.672 22 (4.1%) 40 (4.9%) 0.475 13 (3.2%) 48 (5.3%) 0.062 4 (2.9%) 58 (4.8%) 0.293 62 (4.6%)
mechanical ventilation 83 (15.7%) 132 (16.3%) 0.801 68 (12.7%) 147 (18.3%) 0.007* 54 (12.5%) 161 (17.8%) 0.015* 25 (17.8%) 190 (15.8%) 0.534 215 (16.0%)
Urine output 81.30 (135.75) 82.30 (135.46) 0.8950 86.18 (132.31)  79.93 (139.06) 0.4116 85.16 (137.89) 80.33 (134.42) 0.5421 89.08 (131.92)  81.06 (135.97) 0.5078 81.90 (135.53)
temperature 37.22 (1.43) 37.32 (1.32) 0.1900 37.21 (1.32) 37.32(1.39) 0.1481 37.16 (1.35) 37.33(1.37) 0.0331* 36.88 (1.47) 37.33(1.34) 0.0002* 37.28 (1.36)
heart rate 102.54 (19.66) 103.65 (20.92) 0.2366 101.72 (20.03)  104.19 (20.64) 0.0301* 102.15 (19.41) 103.71 (20.88) 0.1913 105.00 (19.47)  102.99 (20.53) 0.2706 103.21 (20.42)
respiratory rate 22.46 (6.36) 23.05 (8.68) 0.1789 22.61 (7.06) 22.95 (6.58) 0.3685 22.41 (6.54) 23.00 (6.88) 0.1363 22.43 (7.45) 22.86 (6.69) 0.4773 22.81(6.77)
systolic blood pressure 98.88(24.23) 100.54 (24.24) 0.2527 97.86 (23.26) 101.21 (24.98) 0.0136* 97.87 (23.22) 100.83 (24.83) 0.0375* 98.55 (22.97) 100.04 (25.52) 0.5092 99.88 (24.36)
diastolic blood pressure 56.63 (15.35) 56.87 (15.99) 0.7851 55.79 (14.78) 57.42 (16.37) 0.0639 55.75 (14.36) 57.25 (16.33) 0.1028 55.43 (13.96) 56.93 (15.93) 0.2860 56.77 (15.74)
Lactate 2(1,3) - = 1(0,2) = = 1(0,2) = = o - = =
IL10 15 (12, 35) — - - - = = = - — = = =
IL6 28 (18, 50) - - — - - - - - - - - -
white blood cell 15.23 (9.98) 16.19 (12.27) 0.1329 15.23 (9.94) 16.18 (12.27) 0.0228* 15.25 (8.89) 16.07 (12.43) 0.2190 15.86 (8.89) 15.79 (11.67) 0.9453 15.80 (11.41)
Platelet 230.06 (141.84)  231.14 (135.96) 0.8889 224.65 (136.03) 234.75 (139.77) 0.1907 223.13 (133.06) 234.36 (140.72) 0.1649 234.29 (144.06) 230.28 (137.68) 0.7456 230.70 (138.32)
60-day mortality 132 (25.0%) 232 (28.5%) 0.155 127 (23.8%) 237 (29.4%) 0.024* 92 (21.3%) 272 (29.9%) 0.001* 34(24.28%) 330 (27.48%) 0.422 364 (27.1%)
1 Mean dard deviation) lated for normally distributed continuous variables, median (1st quantile, 3rd quantile) calculated for non-normal distributed continuous variables, count (percentage) calculated for categorical variables
2 P-values are calculated from Student’s t test or median test for continuous variables and Chi-sq: test of independ for ical variables

* Indicates significant P-value less than 0.05
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The survival time for patients ranges from within 6 hours after admission to over 60 days
after admission. The overall 60-day mortality for all 1341 patients recruited by the trial is 27.14%.
15% of the death occurs within 1 day of admission, 30% of the death occurs within 3 days of

admission, 56% of the death occurs within 14 days of admission.

3.2 Evaluation of Biomarkers

3.2.1 Predictive Models

LRC and LRCB were fitted for each cohort (Table 3). Metastatic cancer and age were
significant predictors in all models across different times. Some other chronic conditions, such as
immuno-compromised status, cirrhosis, and chronic liver diseases, also increased the risk for 60-
day sepsis mortality. On the other hand, among time-dependent vital sign predictors, higher
diastolic blood pressure and higher Glasgow coma scale score (GCS) lowered the risk of death.
As for biomarker predictors, lactate was significant in all LRCBs within 24 hours, TMB was
significant in the baseline model, and total bilirubin level was significant in the 72 hours LRCB
model. Lactate is significant all the time within 24 hours of admission, high lacate level is

associated with high risk of death.
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Table 3 Logistic Models for Mortality Prediction at Different Times

Predictors

OR (95% Cl)

Baseline (0Oh)

Metastatic Cancer

Immuno-Compromised

Cirrhosis

Age

Mechanical Ventilation Oh

Lactate Oh
TMB 0h
6h

Metastatic Cancer

Immuno-Compromised

Cirrhosis

Age

GCS 6h

Heart Rate 6h
Lactate 6h

24h

Metastatic Cancer
Chronic hepatitis

Age

Diastolic blood pressure 24h

GCS 24h
score 3-8
score 9-12
Lactate 24h
72h
Pleural Effusion

Metastatic Cancer

Glasgow Coma Score

Systolic Blood Pressure 24h

Bilirubin 72h

LRC!
3.72 (1.60, 8.88)
2.29 (1.10, 4.70)
4.95 (1.61, 15.20)
1.04 (1.02, 1.06)
3.97 (2.05, 7.74)

6.03 (2.57, 14.58)
3.75 (1.81, 7.73)
8.67 (3.45, 22.64)
1.03 (1.01, 1.06)
0.82 (0.77, 0.89)
1.01(1.00, 1.03)

10.08 (3.96, 26.67)
5.46 (2.18, 13.77)
1.04 (1.01, 1.06)
0.97 (0.95, 0.99)

4.48 (1.81, 11.09)
3.83 (1.01, 13.73)

19.70 5.47, 87.98)
10.75 (2.40, 60.62)
0.82 (0.71, 0.95)
0.96 (0.93, 0.98)

LRCB2
3.53 (1.40, 8.99)
2.89 (1.29, 6.34)
4.39 (1.27, 14.92)
1.04 (1.02, 1.06)
3.19 (1.52, 6.22)
1.30 (1.16, 1.45)
1.09 (1.02, 1.17)

4.87 (2.02, 11.99)
3.96 (1.92, 8.19)
7.11 (2.75, 18.90)
1.03 (1.01, 1.05)
0.86 (0.79, 0.93)

1.18 (1.07, 1.33)

4.27 (1.50, 12.00)
6.44 (2.47, 17.02)
1.04 (1.02, 1.07)
0.97 (0.94, 0.99)

1.42 (1.28, 1.69)

15.47 (4.02, 70.33)
11.33 (2.4, 66.72)
0.81 (0.69, 0.93)
0.96 (0.92, 0.99)
2.41 (1.33, 4.94)

"LRC denotes logistic regression models of clinical variables only

2] RCB denotes logistic regression of clinical variables and biomarker

variables
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3.2.2 Predictive Power of Biomarkers

Area under the Receiver Operating Characteristic curve (AUC) with 95% bootstrap
confidence intervals (CI) was used to compare model performance. Point estimates of AUCs and
their 95% confidence intervals were calculated and plotted (Figure 2). At baseline time, the AUC
increased from 0.766 (95% CI: 0.710, 0.826) of the LRC to 0.812 (95% CI: 0.749,0.869) of the
LRCB, with a p-value of 0.023. For 6 hours cohort, 24 hours cohort, and 72 hours cohort, there
was no significant difference between the AUCs of LRC and LRCB. Therefore, only at baseline,
adding biomarkers to clinical features increased predictive power. As for comparisons between the

cohorts, there was no significant difference between the AUCs of cohorts at different times.

Figure 2 Confidence Intervals for AUCs of Logistic Regressions
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TLRCO, LRC8, LRC24 are logistic regression models with clinical variables only at Oh, 6h, 24h respectively
2LRCOBO, LRC6B6, LRC24B24 are logistic regression models with clinical variables and biomarker variables at
Oh, 6h, 24h respectively
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3.3 Evaluation of Time-dependent Variables

3.3.1 Predictive Power of Time-dependent Variables

To evaluate trends of time-dependent variables, for all time-dependent variables, changes
over time in measurements were included in predictor selection process. The changes were
calculated as latest measurement minus the earlier measurement. In the final models, none of those
changes of time-dependent variables were significant, so they were all dropped. Latest
measurements of time-dependent predictors were significant in the models. For example, for 6
hours cohort, lactate level measured at 6 hours were significant, but its change over time from
baseline time to 6 hours was not. When trends of time-dependent variables were added to the
models, none of them were significant, after dropping non-significant variables, the final models
were exactly the same with Table 1. Therefore, based on the final models, only the latest

measurements of time-dependent variables matter in the prediction.

3.3.2 Time-independent Variables in the Prediction

According to the final logistic regressions (Table 3), metastatic cancer is highly significant
in all models, indicates that having metastatic cancer would higher the risk of sepsis mortality.
Other chronic condition predictors, such as immune-compromised status, cirrhosis, and old age,

would also increase the probability of death.
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3.4 Comparison of Statistical Models

3.4.1 Predictive Models

To make a comparison between logistic regression and Cox proportional hazards
regression in sepsis mortality prediction, only 528 patients from the baseline cohort was included
in analysis (60-day mortality: 25%, mean age: 60 years, mean baseline lactate: 2.41 mmol/L).

For logistic regressions, five unique logistic regressions were developed for predicting 3-
day mortality, 7-day mortality, 14-day mortality, 30-day mortality, 60-day mortality. All these
logistic regressions including both clinical features and biomarker. 3-day mortality model has
AUC 0.888 with 95% CI (0.836, 0.939); 7-day mortality model has AUC 0.827 with 95% CI
(0.776, 0.879); 14-day mortality model has AUC 0.858 with 95% CI (0.820, 0.895); and 60-day
mortality model has AUC 0.795 with 95% CI (0.716, 0.835).

For the Cox proportional hazards regression, a single model for 60-day survival was
developed. None of the final set of predictors were found to violate the proportional hazards
assumption. The time-dependent AUC ranges between (0.859, 0.884). The 95% confidence
intervals of Cox regression AUC at different time points is shown in table 6.

Model predictors and coefficients are shown in table 4 and table 5. For 60-day mortality
logistic regression and 60-day mortality Cox regression, the variables were almost the same:
metastatic cancer, immunocompromised status, cirrhosis, age, lactate, and TMB were significant

in both models. The coefficients of predictors were different in those two models.
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Table 4 Logistic Models for Landmark Mortality Prediction

Predictors

OR (95% Cl)

3-day mortality
Mechanical Ventilation Oh
Metastatic Cancer
Lactate

TNF

log(TMB)

7-day mortality

02 Saturation

Age

Heart Rate

Glasgow Coma Score
Lactate

VEGF

T™MB

14-day mortality
Pleural Effusion
Metastatic Cancer
Glasgow Coma Score
Noninvasive Ventilation
Lactate

log(TMB)

30-day mortality
Pleural Effusion
Metastatic Cancer
Age

Glasgow Coma Score
Lactate

60-day mortality

Metastatic Cancer

Immuno-Compromised
Cirrhosis

Aae

Lactate

TMB

Mechanical Ventilation

5.89 (2.06, 16.80)
4.16 (1.65, 10.47)
1.29 (1.15, 1.46)
1.02 (1.01, 1.05)
1.99 (1.04, 3.81)

0.94 (0.90, 0.98)
1.03 (1.01, 1.06)
1.02 (1.01, 1.03)
0.88 (0.81, 0.95)
1.33 (1.19, 1.50)
1.02 (1.01, 1.04)
1.08 (1.02, 1.16)

2.47 (1.01, 5.99)
3.33 (1.39, 7.95)
0.90 (0.84, 0.97)
4.62 (1.44,14.77)
1.36 (1.21, 1.54)
2.63 (1.57, 4.41)

5.51 (2.45, 12.42)
3.82(1.71, 8.55)
1.03 (1.01, 1.05)
0.88 (0.81, 0.95)
1.38 (1.23, 1.56)

5.35 (1.40, 8.99)

2.89 (1.29, 6.34)
4.39 (1.27, 14.92)
1.04(1.02, 1.06)
1.30 (1.16, 1.45)
1.09 (1.02, 1.17)
3.19 (1.52, 6.22)
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Table 5 Cox Model for 60-day Mortality Prediction

Predictors Hazard Ratio (95% CI)
Metastatic Cancer 2.52 (1.53,4.17)
Immuno-Compromised 2.10 (1.20, 3.67)
Cirrhosis 3.08 (1.61, 5.89)
Age 1.03 (1.01, 1.05)
Lactate 1.15(1.09, 1.22)
TMB 1.06 (1.02, 1.10)
Glasgow Coma Score 0.90 (0.85, 0.95)
Noninvasive Ventilation 2.76 (1.32, 5.74)

Table 6 Cox Model Time-dependent AUC

Day COX AUC% (95% ClI)
3 87.97 (79.81, 96.13)
18 87.12 (81.37, 92.87)
30 86.70 (81.15, 92.26)
45 88.35 (83.24, 93.47)
60 85.95 (80.01, 91.89)
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3.4.2 Model Evaluation

Area under the Receiver Operating Characteristic curve (AUC) with 95% bootstrap
confidence intervals (CI) was used to evaluate the two models. According to confidence intervals
of AUC (Figure 3), logistic model and Cox model have similar predictive power in predicting
short-term sepsis mortality (mortality within 30 days of admission), where the majority of events
occur. There is no significant difference between AUCs of two models before 30-days. At 60-day,
the AUC of logistic regression is 0.795 with 95% CI (0.716, 0.835), the AUC of Cox regression is
0.859 with 95% CI (0.800, 0.919). 300 bootstrap samples were taken, the difference between
AUC:s is calculated as Cox regression AUC minus logistic regression AUC for each bootstrap
sample. The 95% confidence intervals for the 60-day AUC difference is (0.039, 0.048). Only at
60-day, the bootstrap hypothesis test has significant p-value. Therefore, at 60-day, AUCs of
logistic regression are significantly lower than AUCs of Cox regression, and a Cox regression is

preferable in predicting long-term sepsis mortality.
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Figure 3 Plot of Confidence Intervals of AUC
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4.0 Discussion

4.1 Risk Factors of Sepsis Mortality

This study suggests that biomarkers provide incremental discrimination ability to clinical
features for predicting 60-day mortality at the time of baseline. However, at later time points,
biomarkers did not have significant contribution to mortality prediction. On the contrary to the
original hypotheses that time-trends of measurements contribute to prediction, trends of change in
time-dependent variables did not increase predictive power, while the latest measurements did
matter in the prediction. Chronic morbid conditions would increase the risk of death, metastatic
cancer and organ failures would especially do so. Age was also an important risk factor. As for
biomarkers, lactate, TMB, and total bilirubin level might help identify high risk of death.

Compared with other published literature, this study is unique in including biomarkers in
sepsis mortality prediction. Biomarkers are commonly used to diagnose sepsis, but rarely used in
mortality prediction. Including biomarkers as sepsis mortality predictors may help identify patients
who are developing severe sepsis before organ dysfunction has advanced to far (Faix, 2013). Based
on the study results, biomarkers, especially lactate and TMB, are supportive to predicting sepsis

mortality at the time of admission when sepsis is suspected by the treating physician.
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4.2 Model Selection for Sepsis Mortality Prediction

Logistic regression and Cox proportional hazards regression have been previously
compared in cohort studies (Staley et al., 2017). It was reported that: (i) the Cox model yields more
precise estimates of association; (ii) odds ratios and hazard ratios diverge as follow-up time,
cumulative disease incidence and the strength of the association increases; (iii) in certain situations,
the Cox regression has greater statistical power (Green et al., 1983).

This study investigated the differences between logistic regression and Cox regression
when analyzing sepsis survival data. Compared with Cox regression, which analyzes information
on the entire time period and provides time for the event to happen, logistic regression only
explains survival below or above a fixed time point. To make these two methods comparable, the
60-day mortality period was divided into 3-day, 7-day, 14-day, 30-day, and 60-day intervals,
different logistic regressions were developed for different intervals. According to the AUC results
(Figure 3), logistic regressions have similar predictive power with Cox regression for short term
mortality within 30 days. When time is considered, Cox regression has higher predictive power
for long term mortality.

Based on the study results in section 3.4.1, the model coefficients differ, because hazard
ratios and odds ratios are different measures of association and have different interpretations. Cox
regressions incorporate the length of time the patients survived and measure whether the risk
factors affect the time at which the disease event occurs. Logistic regression assesses whether the
risk factor affects the odds of disease, and hence does not take into account the time of death. In
logistic regressions, early and late death are given the same weight in the analysis. Therefore, they
have lower power than the Cox regression in making long-term predictions, they are better used

for short-term variability of events (Staley et al., 2017).
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4.3 Comparison with Existing Models

The predictive models in this study are not sepsis specific, they can also be generalized to
predict mortality in all ICU patients. The predictors are not sepsis specific, except for biomarker
lactate. Those predictors are easily obtained, routinely recorded, and less likely to be missing. An
existing model, the Mortality Prediction Model (MPM) was developed in 1985 for mortality
prediction in ICU patients, it uses patients’ clinical variables at admission, and 24 and 48 hours
after the admission to predict the probability of in-hospital mortality with logistic regressions
(Lemeshow et al., 1985). Compare LRCOBO with MPM at admission, and LRC24B24 with MPM
at 24 hours, most of the predictors are the same: cancer, organ failures, and age. In addition, the
coefficients for age and cancer are very close between our models and MPM models. MPM models
also include type of hospital admission and infection as predictors (Lemeshow et al., 1985). For
our study, all patients had infection and all the admissions were emergency. AUCs were calculated
to compare our models and MPM models for baseline cohort and 24 hours cohort. At baseline time,
LRCOBO has AUC of 0.78 with 95% CI (0.71, 0.85), while MPM has an AUC of 0.71, which is
lower. At 24 hours, AUC of our model is 0.74 with 95% CI (0.66, 0.83), and the AUC of MPM is
also 0.74.

Since the outcome is 60-day mortality, which is long-term, the models in this study may
be more accurate for predicting long-term mortality. Most significant risk factors in our study are
chronic conditions, while vital signs seem less significant. Chronic conditions, such as
comorbidities and baseline health, may greatly influence outcome of a patient and are determinant
in predicting late mortality (Kennelly et al., 2016). In comparison, vital signs are more likely to
predict death in a short period of time rather than in distant future. By applying the baseline models

(LRCO and LRCOBO) to predict mortality for patients who had survived over 24 hours and 72
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hours, the resulted AUCs were higher than the AUC for all patients, this result indicates that the
models have better performance for predicting late mortality. Thus, predictive models in this study

may provide help in predicting long-term mortality in ICU patients irrespective of specific illness.

4.4 Limitations

One major limitation of this study is missing data. For some variables, the missing value is
more than 50% or even 80%. As a result, some variables were eliminated from the initial set of
predictor variables and not included in the statistical analysis process. In addition, patients with
missing values for selected predictors were excluded from the cohorts, therefore the sample size
of each cohorts was greatly reduced. Another potential problem is that patients in different cohorts
are not comparable. Patients in 6 hours cohort and 24 hours cohort are patients who had survived
6 hours and 72 hours, they were significantly healthier than patients excluded from those two
cohorts (Table 2). This might due to patients who were sicker tend to have less measurements and
more missing data for the selected predictors and therefore were not be able to be included in the
cohorts.

The definitions and clinical criteria of sepsis and septic shock were revised in 2016 (Singer
et al., 2016). The new definition defines sepsis as life-threatening organ dysfunction caused by
dysregulated host response to infection and eliminates the systemic inflammatory response
syndrome (SIRS) criteria. Patients with suspected infection can be identified with beside qSOFA
score, alteration in mental status, low systolic blood pressure, and high respiratory rate(Singer et

al., 2016). Although the data of this study were collected before the definition change and the study
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enrollment eligibility were based on SIRS, the major clinical criteria is not changed, the results of

this study should not be affected and thus remain the same.
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5.0 Conclusion

Predictive models for death within 60 days of the hospital admission of sepsis patients were
developed. The models were based on clinical features and biomarker variables obtained during
hospital admission. Biomarkers provided incremental discrimination ability over clinical features
alone to predict 60-day mortality at the baseline time of hospital admission. Latest measurements
of time-dependent variables matter in the prediction, while trends of time-dependent variables do
not contribute to mortality prediction. This study also found that Cox regression and logistic
regression have similar predictive power for short-term mortality within 30 days, while Cox
regression has better predictive power for long-term mortality. These predictive models are not
sepsis specific and may be generalized to help identify ICU patients with high risk of death, while
significant work remains to confirm the contribution of biomarkers and time trends of time-
dependent predictors in sepsis prognosis predicting, other statistical models could be explored to

analyze sepsis survival.

32



Bibliography

Angus, D. C., Wax, R. S. (2001). Epidemiology of sepsis: an update. Crit Care Med, 29,109-116.

Dellinger, R. P., Carlet, J. M., Masur, H., et al. (2004). Surviving Sepsis Campaign guidelines for
management of severe sepsis and septic shock. Crit Care Med, 32, 858-73.

Faix, J. D. (2013). Biomarkers of sepsis. Crit Rev Clin Lab Sci, 50,23-36.

Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models
via Coordinate Descent. J Stat Softw, 33, 1-22.

Ford, D. W., Goodwin, A. J., Simpson, A. N., et al. (2016). A Severe Sepsis Mortality Prediction
Model and Score for Use With Administrative Data. Crit Care Med, 44,319-327.

Green, M. S, Symons, M. J. (1983). A comparison of logistic risk function and the proportional
hazards model in prospective epudemiologic studies. J Chronic Dis, 36, 715-723.

Hanley, J. A., McNeil, B. J. (1982). The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143, 29-36.

Kennelly, P. J., Martin-Loeches, I. (2016). Long term mortality following sepsis. Ann Transl Med,
4, 387.

Kasal, J., Jovanovic, Z., Clermont, G., et al.(2004). Comparison of Cox and Gray’s survival models
in severe sepsis. Crit Care Med, 32,700-707.

Lemeshow, S., Hosmer, D. W. (1982). A review of goodness of fit statistics for use in the
development of logistic regression models. Am J Epidemiol, 115:92-106.

Lemeshow, S., Teres, D., Pastides, H., et al. (1985). A method for predicting survival and mortality
of ICU patients using objectively derived weights. Crit Care Med , 13, 519-25.

Moreno, R. P., Metnitz, B., Adler, L., et al. (2008). Sepsis mortality prediction based on
predisposition, infection and response. Intensive Care Med, 34, 496-504.

Process Investigators (2014). A Randomized Trial of Protocol-Based Care for Early Septic Shock
N Engl J Med, 370,1683-1693.

Reinhart, K., Meisner, M., Brunkhorst, F. M. (2006). Markers for Sepsis Diagnosis: What is Useful?
Crit Care Clin, 22, 503-5109.

33



Stanley, J. R., Edmund, J., Kaptoge, S., Butterworth, A. S., Sweeting, M. j., Wood, A. M., Howson,
J. M. M. (2017). A comparsion of Cox and Logistic Regression for use in genome-wide
association studies of cohort and case-cohort design. European Journal of Human Genetics,
25, 854-862.

Singer, M., Deutschman, C. S., Seymour, C. W., et al. (2016). The Third International Consensus
Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315:801

Teres, D., Lemeshow, S., Avrunin, J. S., et al.(1987). Validation of the mortality prediction model
for ICU patients. Crit Care Med , 15, 208-13.

34



	Title Page
	Committee Members
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1.0  Introduction
	2.0  Dataset And Methods
	2.1 Study Population
	2.2 Data
	2.3 Evaluating Biomarkers
	2.3.1  Data
	2.3.2  Methods of Evaluating Biomarkers
	2.3.3  Logistic Regression
	2.3.4  Elastic Net Regularization
	2.3.5  ROC Curve and AUC

	2.4 Evaluating Trends of Variables
	2.4.1  Data
	2.4.2  Methods for Evaluating Trends

	2.5 Comparing Statistical Models
	2.5.1  Data
	2.5.2  Methods for Comparing Models
	Figure 1 Flow Chart of Analysis

	2.5.3  Cox Proportional Hazards Model
	2.5.4  Time-dependent AUC


	3.0 Results
	3.1 Patients
	Table 1 Baseline Characteristics for Cohorts Based on Survival Status
	Table 2 Baseline Characteristics for Cohorts Based on Analysis Inclusion

	3.2 Evaluation of Biomarkers
	3.2.1  Predictive Models
	Table 3 Logistic Models for Mortality Prediction at Different Times

	3.2.2  Predictive Power of Biomarkers
	Figure 2 Confidence Intervals for AUCs of Logistic Regressions


	3.3 Evaluation of Time-dependent Variables
	3.3.1  Predictive Power of Time-dependent Variables
	3.3.2  Time-independent Variables in the Prediction

	3.4 Comparison of Statistical Models
	3.4.1  Predictive Models
	Table 4 Logistic Models for Landmark Mortality Prediction
	Table 5 Cox Model for 60-day Mortality Prediction
	Table 6 Cox Model Time-dependent AUC

	3.4.2  Model Evaluation
	Figure 3 Plot of Confidence Intervals of AUC



	4.0 Discussion
	4.1 Risk Factors of Sepsis Mortality
	4.2 Model Selection for Sepsis Mortality Prediction
	4.3 Comparison with Existing Models
	4.4 Limitations

	5.0 Conclusion
	Bibliography

