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Abstract 

Helping Students Learn Quantum Mechanics using Research-Validated Learning Tools 

 

Paul Derek Justice, PhD 

 

University of Pittsburgh, 2019 

 

 

 

 

The development and implementation of research-validated instructional tools has shown 

promise in improving student learning in not only introductory physics courses, but also upper 

level quantum mechanics. Engaging students with well-designed clicker questions is one of the 

commonly used research-based instructional strategies in physics courses partly because it has a 

relatively low barrier to implementation in classes of any size. Moreover, validated robust 

sequences of clicker questions are likely to provide better scaffolding support and guidance to help 

a variety of students build a good knowledge structure of physics than an individual clicker 

question on a particular topic. In this dissertation, I discuss a framework for the development, 

validation and in-class implementation of clicker question sequences (CQS) and apply that 

framework to help advanced undergraduate students learn quantum mechanics in the context of 

the Stern-Gerlach experiment, Larmor precession of spin, the addition of angular momentum, and 

the concepts involving Fermi energy and total electronic energy of a free electron gas and the 

Fermi-Dirac distribution function, several of which take advantage of the learning goals and 

inquiry-based guided learning sequences in previously validated Quantum Interactive Learning 

Tutorials (QuILT). The in-class evaluation of the CQSs using peer instruction is discussed.  This 

dissertation also explores the impact of increased mathematical rigor in a QuILT on students’ 

conceptual understanding of quantum optics.  In particular, student performance after engaging 

with a QuILT, which uses a guided inquiry-based approach to help students learn concepts 

involved in a quantum eraser in the context of the Mach-Zehnder Interferometer (MZI), is 



 v 

discussed for two versions: one version was primarily qualitative and the other involved both 

conceptual and quantitative aspects of the MZI.  The implications of the extent to which students 

learned from the two versions of the QuILT within the Integration of Conceptual and Quantitative 

Understanding in Physics (ICQUIP) framework, which emphasizes appropriate integration of 

conceptual and quantitative aspects to equip students with functional knowledge and skills, are 

discussed. Finally, I discuss instructional pragmatism and how instructors should view teaching as 

a process and innovate in their courses using a variety of research-based instructional pedagogies 

to improve student learning. 
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1.0 INTRODUCTION 

In physics education research (PER), a major goal is to help students build a robust 

knowledge structure and develop problem solving, reasoning and meta-cognitive skills.  Evidence-

based instructional methods are invaluable in accomplishing these goals for not only introductory 

physics students, but also for advanced physics students, such as those in upper-level quantum 

mechanics [1-39].  Within this dissertation, I investigate the efficacy of some of these evidence-

based instructional methods in the context of learning quantum mechanics, which is a non-intuitive 

subject.  In doing so, I explore the difficulties students exhibit with foundational concepts, 

determine ways in which these evidence-based instructional methods succeeded in addressing 

these difficulties, and propose strategies for improving those evidence-based instructional 

methods. 

1.1 COGNITIVE SCIENCE 

In order to help students build a robust knowledge structure and develop their reasoning 

and meta-cognitive skills in physics courses, cognitive science plays a central role in informing 

the development, validation and implementation of evidence-based instructional approaches and 

pedagogical tools.  There are several cognitive models, described in this section, that were central 

throughout the development of the evidence-based instructional tools developed, validated and 

implemented as discussed throughout this dissertation. 
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1.1.1  Cognitive Apprenticeship Model 

The Cognitive Apprenticeship Model is a field-tested model initially described by Collins, 

Brown, and Newman that focuses on how viewing helping students learn as an apprenticeship can 

help in creating effective learning environments [40]. This model involves three major 

components: modeling, coaching and scaffolding, and fading or weaning.  In such a learning 

environment informed by the cognitive apprenticeship model, the instructor first demonstrates the 

criteria of good performance. This is followed by coaching and scaffolding which involves the 

instructor asking students to engage with tasks similar to the one that the instructor demonstrated 

and providing appropriate coaching and support. In other words, the instructor provides 

appropriate scaffolding support as students work on the task commensurate with their prior 

knowledge and similar to what has been modeled for them.  Once students develop a certain level 

of proficiency, in the fading or weaning step of the cognitive apprenticeship model, the instructor 

gradually removes this scaffolding support until students develop self-reliance and can complete 

the task on their own.  This cognitive apprenticeship model is different from the traditional 

instruction wherein elements of scaffolding or coaching are missing. In other words, students are 

lectured and instructor demonstrates what they want students to learn (even this modeling phase 

of the cognitive apprenticeship model is often not done very well in traditional instruction since 

instructors often think about the difficulty of concepts from their own perspective instead of from 

the perspective of the students they are teaching) and then students are asked to do their homework 

(in which students do not have sufficient opportunity to get support and feedback from their 

instructor or others, e.g., teaching assistants). 
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1.1.2  Piaget’s Optimal Mismatch Model 

Learning entails adapting one’s knowledge structure via assimilation and accommodation.  

When one learns concepts and principles that are consistent with students’ existing knowledge 

structure, it is called assimilation.  However, when students learn concepts that highlight 

inconsistencies between what they are learning and their existing knowledge structure, it can cause 

a cognitive conflict or a state of disequilibrium. When this occurs, students may be motivated to 

accommodate that new information by changing or repairing their knowledge structure [41].  This 

accommodation is the core mechanism in Piaget’s Optimal Mismatch Model, and allows students 

to discover mistakes in their own conceptual understanding via guided instruction and then 

opportunity to help them develop a robust knowledge structure. 

1.1.3  Vygotsky’s Zone of Proximal Development Model 

Vygotsky’s Zone of Proximal Development (ZPD) is the zone defined by what a student 

can do with the help of an instructor who is familiar with his/her prior knowledge and skills and 

uses this information to provide the student with appropriate guidance and support to learn as 

opposed to on his or her own [42]. In the ZPD, students can perform the tasks with the scaffolding 

support of the instructor but would not be able to do so without that support.  As students gain 

higher level of mastery of the tasks and expand their conceptual knowledge structure, the ZPD 

expands, and student learning can be stretched further.  If instruction is not within the ZPD but 

rather beyond it, learning will not be meaningful and students will struggle to develop a robust 

conceptual knowledge structure.  If instruction is rote, students can perform associated tasks 

without support, and their knowledge structure has no opportunity to grow further.  In contrast, 
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instruction too far beyond students’ current knowledge structure will be too difficult for them to 

benefit from even with instructor support.  In this case, they will struggle less productively.  By 

continuing to keep instruction within the ZPD, one can ensure that students can learn effectively.  

1.1.4  Preparation for Future Learning 

Bransford and Schwartz’s Preparation for Future Learning (PFL) framework suggests that 

effective instruction should have elements of both innovation and efficiency [43].  If these 

elements are treated as orthogonal and plotted, an emphasis on efficiency would be represented by 

one axis, while an emphasis on innovation would be represented by the axis that is orthogonal to 

efficiency.  If instruction is entirely focused on efficiency, students can become “rote experts,” but 

their expertise is not adaptable to any other contexts.  In contrast, instruction that is entirely focused 

on innovation provides students with little to no opportunity to practice the skills they are 

developing.  In this framework, the most effective instruction includes both elements in what they 

call the Optimal Adaptive Corridor.  Instruction in this region enables students to become adaptive 

experts who can transfer their knowledge to new domains readily. 

1.2 PARADIGM SHIFT IN QUANTUM MECHANICS 

This dissertation focuses on student learning of quantum mechanics. The diversity in 

student motivation, goals and prior preparation has increased significantly among physics majors. 

This makes teaching challenging for instructors. Moreover, the paradigm shift for upper-level 

students from classical mechanics to quantum mechanics can be particularly challenging [44].   For 
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example, while students may have mastered classical mechanics, quantum mechanics is 

probabilistic rather than deterministic.  This probabilistic nature of quantum mechanics is 

highlighted by the Heisenberg uncertainty principle, which necessitates that the more precisely the 

position of a particle is measured, the less precisely the momentum can be known. 

This paradigm shift makes learning quantum mechanics even more challenging, analogous 

to the difficulties experienced by students in introductory physics who experience a paradigm shift 

from naïve conceptions of how things work to those learned in classical mechanics.  In both cases, 

students lack familiarity with the new paradigm and hence are novices, even if they have developed 

expertise in another paradigm.  This dissertation discusses development, validation and 

implementation of multiple evidence-based instructional pedagogies and how they guide students 

in building a hierarchical knowledge structure in this knowledge-rich domain of quantum 

mechanics. 

1.3 CLICKER QUESTION SEQUENCES IN QUANTUM MECHANICS 

This thesis consists of several studies pertaining to the development, validation, and 

evaluation of Clicker Question Sequences (CQS) on topics in upper level quantum mechanics.  

While a large number of physics instructors utilize clicker questions in their classrooms, little 

research has been done regarding development and validation of clicker question sequences in a 

synergistic way.  In chapter 2, I present a framework for the development, validation and 

implementation of CQSs. Analysis of select CQSs is then discussed in chapters 2-5. 

Engaging students with well-designed multiple-choice questions during class and asking 

them to discuss their answers with their peers after each student has contemplated the response 
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individually can be an effective evidence-based active-engagement pedagogy in physics courses. 

Moreover, validated sequences of multiple-choice questions are more likely to help students build 

a good knowledge structure of physics than individual multiple-choice questions on various topics. 

Here we discuss a framework to develop robust sequences of multiple-choice questions and then 

use the framework for the development, validation and implementation of a sequence of multiple-

choice questions focusing on helping students learn quantum mechanics via the Stern-Gerlach 

experiment (chapter 2), addition of angular momentum (chapter 3), Larmor precession of spin 

(chapter 4), and Fermi energy and total electronic energy of a free-electron gas (chapter 5) that 

takes advantage of the guided inquiry-based learning sequences in an interactive tutorial on the 

same topic. The extensive research in developing and validating the multiple-choice question 

sequence strives to make it effective for students with diverse prior preparation in upper-level 

undergraduate quantum physics courses. We discuss student performance on an assessment task 

focusing on these topics after traditional lecture-based instruction vs. after engaging with the 

research-validated multiple-choice question sequence administered as clicker questions in which 

students had the opportunity to discuss their responses with their peers.   

Instructional pragmatism is essential for successfully adopting and adapting evidence-

based active engagement (EBAE) approaches in that instructors should view improving teaching 

and learning as a process and not get disheartened if a particular EBAE approach does not produce 

the desired outcome. Instructional pragmatism entails keeping a variety of EBAE methods in one’s 

instructional toolbox and using them flexibly as needed to improve student learning and 

continuously refining and tweaking one’s implementation of the EBAE approaches to make them 

effective. Here we illustrate an example of instructional pragmatism in which a quantum 

mechanics instructor did not give up when an EBAE method involving implementation of a 
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sequence of clicker questions on addition of angular momentum did not yield expected learning 

outcomes even though it was found effective earlier. Instead, the instructor remained optimistic, 

viewing improving teaching and learning as a process, and pulled out another EBAE method from 

his tool box that did not require him to spend more time on this topic in class. In particular, the 

instructor created an opportunity for students to productively struggle with the same problems they 

had not performed well on by incentivizing them to correct their mistakes out of class. Student 

performance on one of the addition of angular momentum problems posed on the final exam 

suggests that students who corrected their mistakes benefited from the task and learned about 

addition of angular momentum better than those who did not correct their mistakes. Encouraging 

and supporting physics instructors to embrace instructional pragmatism can go a long way in 

helping students learn physics because it is likely to increase their persistence in using various 

EBAE approaches flexibly as they refine and tweak their implementation for their students. This 

is discussed in chapter 3. 

I conducted an investigation of the difficulties that undergraduate physics students in 

upper-level quantum mechanics and graduate students have with Fermi energy, the Fermi-Dirac 

distribution, and total electronic energy of a free electron gas after quantum and statistical 

mechanics core courses. These difficulties were probed by administering written conceptual and 

quantitative questions to undergraduate students and asking some undergraduate and graduate 

students to answer those questions while thinking aloud in one-on-one individual interviews. We 

find that advanced students have many common difficulties with these concepts after traditional 

lecture-based instruction. Engaging with a sequence of clicker questions improved their 

performance, but there remains room for improvement in their understanding of these challenging 

concepts.  This is discussed in chapter 5. 
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1.4 FURTHER CQS CONSIDERATIONS 

 In addition to the CQSs presented in chapters 2-5, I have helped develop CQSs on a 

number of other topics in quantum mechanics.  A selection of these are included in Appendix A 

alongside those discussed and analyzed in chapters 2-5. 

1.5 IMPACT OF ADDING MATHEMATICAL RIGOR TO QuILT 

We use the “Integrating Conceptual and Quantitative Understanding In Physics” or 

“ICQUIP” framework to develop, validate and evaluate a Quantum Interactive Learning Tutorial 

(QuILT) which incorporates mathematical rigor while focusing on helping students develop 

expertise, i.e., a good conceptual understanding of quantum optics using a Mach Zehnder 

Interferometer with single photons and polarizers. We compare upper-level undergraduate and 

graduate students’ performance on conceptual questions after engaging with this “hybrid” 

(conceptual and quantitative) QuILT with a conceptual QuILT focusing on the same topics in 

which quantitative tools were not employed. Both versions of the QuILT use a guided inquiry-

based approach to learning and are based on research on student difficulties in learning these 

challenging concepts as well as a cognitive task analysis from an expert perspective. The hybrid 

and conceptual QuILTs were part of the courses for upper-level undergraduates or first year 

physics graduate students in several consecutive years at the same university. Although the course 

instructors were different, the same individual facilitated the in-class hybrid or conceptual QuILT 

in all of the courses as a guest instructor to maintain uniformity in implementation. We find that 

physics graduate students’ posttest performance on conceptual questions after engaging with the 
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hybrid QuILT was generally better than their performance after engaging with the conceptual 

QuILT. For undergraduate students, the results were mixed. In particular, one group of 

undergraduates, which had roughly a 50% average pretest score after traditional lecture-based 

instruction on these topics and which engaged with the hybrid QuILT after the pretest, 

outperformed the undergraduates who engaged with the conceptual QuILT on the posttest, which 

was completely conceptual. On the other hand, another group of undergraduates, which had 

roughly a 25% average pretest score after traditional lecture-based instruction on these topics and 

which engaged with the hybrid QuILT after the pretest, had reasonable posttest performance on 

some conceptual questions, especially those pertaining to two-dimensional Hilbert space involving 

only path states (no polarization states of single photons involved since polarizers were not present 

in those experimental situations). However, their performance on many of the other conceptual 

posttest questions was worse than that of the undergraduates who used the conceptual QuILT. One 

possible interpretation of these findings consistent with the ICQUIP framework is that integration 

of conceptual and quantitative aspects of physics should be commensurate with students’ prior 

knowledge of relevant physics and mathematics so that students do not experience cognitive 

overload while engaging with such a learning tool striving to develop a good grasp of physics 

concepts. In the undergraduate course in which students did not benefit as much from the hybrid 

QuILT that focused on integration of conceptual and quantitative understanding to help students 

learn physics concepts, their pretest performance suggests that the traditional instruction may not 

have sufficiently given a “first coat” and prepared students with requisite physics concepts to 

engage with the hybrid QuILT. Since physics majors in the required undergraduate quantum 

mechanics course come with diverse physics and mathematics backgrounds, the hybrid QuILT 

may have caused cognitive overload at least for some students (on topics in which their conceptual 
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posttest performance is not good) so that they could not benefit from integrated conceptual and 

quantitative learning sequences. In other words, integration of conceptual and quantitative 

understanding in physics must adequately build on students’ prior knowledge to avoid cognitive 

overload and help students develop expertise. This is discussed in chapter 6. 
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2.0 IMPROVING STUDENT UNDERSTANDING OF QUANTUM MECHANICS 

UNDERLYING THE STERN-GERLACH EXPERIMENT USING A RESEARCH-

VALIDATED MULTIPLE-CHOICE QUESTION SEQUENCE 

2.1 INTRODUCTION 

2.1.1  Background 

A major goal of many physics courses from introductory to advanced levels is to help 

students learn physics concepts [1-7] while also helping them develop problem solving and 

reasoning skills [8-18]. We have been investigating strategies to help students develop a solid 

grasp of physics concepts and develop their problem solving and reasoning skills [19-31]. In fact, 

many education researchers have been involved in developing and evaluating evidence-based 

active-engagement (EBAE) curricula and pedagogies [32-50], but implementation of these EBAE 

approaches to help college students learn has been slow. Some of the major barriers to 

implementation of the EBAE pedagogies at the college-level include lack of faculty buy-in and 

their reluctance and/or resistance, partly due to a lack of institutional reward system for using these 

evidence-based approaches, the time commitment involved in effectively adapting and 

implementing them, and instructors’ fear that their students may complain (since students may 

prefer to passively listen to lectures as opposed to actively engage in the learning process) [32].  
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2.1.2  Use of Multiple-Choice questions and peer interaction 

The use of well-designed multiple-choice questions in the classroom in which each student 

must first take a stand before discussing the responses with peers is an EBAE pedagogy that has a 

relatively low barrier to implementation. These multiple-choice questions can be used in a variety 

of ways to engage students actively in the learning process. For example, “think-pair-share” 

approach in which each student thinks about why a particular answer choice is correct for each 

question first and then pairs up with a peer sitting next to them to share their thoughts before a 

general discussion about the correct answer can be an effective pedagogy. The use of multiple-

choice questions keeps students focused during the lectures and helps them self-monitor their 

learning. Moreover, depending upon instructional goals and instructors’ preferences, multiple-

choice questions can be used in diverse manner, e.g., they can be interspersed within lectures to 

assess student learning of the material in each segment, posed at the end of a class or used to review 

materials from previous classes. They can be used in a flipped class in which the class time is 

entirely focused around multiple-choice questions and discussions around them [32]. 

Integration of peer interaction with lectures using multiple-choice clicker questions has 

been made popular by Mazur in the physics community [33]. In Mazur's approach, the instructor 

poses conceptual, multiple-choice clicker questions to students throughout the class. Students first 

answer each multiple-choice question individually using clickers (or personal response system), 

which requires them to take a stance regarding their understanding of the concepts involved [33]. 

Next, they discuss the questions with their peers and learn by articulating their thought processes 

and assimilating their ideas and understanding with those of the peers. Then, there is a class 

discussion involving all students about those concepts in which both students and the instructor 

participate fully. By having students take a stand anonymously using clickers as opposed to using 
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a show of hand for each answer choice selected for a multiple-choice question, students do not feel 

embarrassed if their answer choices are not correct. Moreover, clickers offer another advantage 

over a show of hand or show of cards with different colors (for different answer choices selected 

for each multiple-choice question) in that the responses are recorded and the instructor can 

contemplate how to address the common difficulties that students have (which they otherwise may 

not feel comfortable sharing with the instructor). In particular, the immediate feedback that is 

obtained by the instructors is valuable because they have an understanding of the extent of student 

difficulties and the percentage of students who understand the concepts. 

2.1.3  Multiple-Choice Question Sequences 

While multiple-choice questions, which can be used with or without clickers, have been 

developed [33-45] for introductory physics and upper-level physics such as quantum mechanics 

(QM), there have been very few documented efforts [45] toward a systematic development of 

multiple-choice question sequences (MQSs) in which the set of questions build on each other 

effectively and help students extend, organize and repair their knowledge structure. Moreover, in 

the past two decades, many investigations have focused on improving student learning of QM, 

e.g., see [51-64]. Our group has been involved in such investigations and we are using the research 

on student difficulties as a guide to develop research-validated learning tools [65-84].  Our past 

investigations in upper-level QM courses suggest that while engaging students with multiple-

choice questions during class can help them learn, they may not be as effective as a research-

validated QuILT on the same concepts unless they are carefully sequenced [68]. For example, we 

find that when students in upper-level undergraduate QM course only had traditional lecture-based 

instruction, their performance on a quantum measurement quiz covering those concepts was 26% 
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[68]. The next year, the student performance in the same course on an equivalent quiz on quantum 

measurement concepts was 68% after lecture and multiple-choice questions on quantum 

measurement, and their score on another equivalent quiz was 91% after engaging with a QuILT 

on quantum measurement [68]. A research-validated MQS has the potential to bridge the gap 

between students’ performance after they engage with a QuILT vs. after they engage only with a 

MQS on the same topic (since the multiple-choice questions in a MQS build on each other and can 

take advantage of the learning objective and guided sequences in the corresponding QuILT). 

Here we discuss a framework for the development, validation and implementation of a 

MQS and then apply it to develop and validate a MQS to help students learn about Stern-Gerlach 

experiment, a topic which is valuable for exposing students to the foundational issues in QM, by 

taking advantage of the guided learning sequences in a research-validated Quantum Interactive 

Learning Tutorial (QuILT) on that topic [66]. The SGE MQS strives to help students learn 

fundamental issues in QM using a simple two-state system. We also discuss the implementation 

of this MQS by two different instructors using clickers with peer discussions interspersed 

throughout the class. A QuILT focusing on a QM concept uses a guided, inquiry-based approach 

to learning and consists of learning sequences, which are based both upon a cognitive task analysis 

from an expert perspective and an extensive research on student difficulties in learning those 

concepts. The QuILT was useful both for developing new multiple-choice questions and 

revising/fine-tuning existing multiple-choice questions (e.g., in situations in which individual 

multiple-choice questions are already validated but the sequencing of questions is not validated), 

or for developing entirely new multiple-choice questions to ensure that different questions in the 

MQS build on each other. Before we focus on a MQS that strives to help students learn about the 

Stern-Gerlach experiment (SGE), we enumerate the learning objectives. 
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2.1.4  Learning objectives of the SGE MQS 

The learning objectives of the SGE MQS are commensurate with the corresponding QuILT 

[66], which guided the development and sequencing of the SGE MQS questions. These learning 

objectives are focused on improving student understanding of the foundational issues in QM via 

the Stern-Gerlach experiment and were developed using extensive research on student difficulties 

with these concepts and cognitive task analysis from an expert perspective [66]. These 

foundational issues include the difference between the physical space (in which the experiment is 

performed) and the Hilbert space (in which the state of the quantum system lies), quantum state 

preparation, quantum measurement and the difference between a superposition and mixture. We 

find that after traditional lecture-based instruction, many students have difficulty differentiating 

between the physical space and Hilbert space. For example, they believe that if a neutral silver 

atom in an eigenstate |↑⟩𝑥 of the x component of the spin angular momentum 𝑆̂𝑥 is sent through a 

Stern-Gerlach apparatus (SGA) with magnetic field gradient in the z direction, the magnetic field 

will not impact the quantum state because the magnetic field gradient is orthogonal to the quantum 

state |↑⟩𝑥.  This type of reasoning is incorrect because the quantum state is a vector in the Hilbert 

space in which the state of the system lies whereas the magnetic field is a vector in the physical 

space in which the experiment is being performed. It does not make sense to talk about 

orthogonality of two vectors in different vector spaces. Thus, the first learning objective of the 

MQS is to help students develop a solid grasp of the difference between the physical space and 

Hilbert space using the SGE with a two state system as an example. The second learning objective 

focuses on helping students develop a functional understanding of quantum state preparation 

because one fundamental issue that the SGE can beautifully illustrate at least conceptually using a 

two state system is the issue of how to prepare a quantum state. For example, if a quantum system 
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consisting of a large number of neutral silver atoms is initially in an eigenstate |↑⟩𝑧 of the z 

component of the spin angular momentum 𝑆̂𝑧, is it possible to use appropriate SGAs and detectors 

to prepare a state which is orthogonal to it, i.e., |↓⟩𝑧?  The third learning objective focuses on 

helping students learn about quantum measurement in the context of a simple two-state system 

(e.g., using a beam of neutral silver atoms which can be treated as a spin-1/2 system) in a given 

spin state and how the state of the silver atoms is impacted by passing through a SGA and how the 

placement of the detectors (that can detect the silver atoms) in appropriate positions will collapse 

the state to different eigenstates of the observable measured with different probabilities, depending 

upon the set up. The fourth learning objective is to help students understand that there is a 

difference in the situations in which a beam of silver atoms propagates through a series of SGAs 

but no measurement via a detector is performed vs. the case in which a detector is present for 

measuring the silver atoms deflected upward or downward (because the measurement will collapse 

the state of the system into an eigenstate of the measured observable with different probabilities).  

Since the orbital and spin degrees of freedom of the silver atoms are entangled, a detector after a 

SGA in the up channel or down channel clicking would signify the spin state of the silver atom 

collapsing to a particular state. The fifth learning objective is to help students be able to analyze 

the probabilistic outcome of a measurement when a given initial two-state system is sent through 

a SGA by transforming the initial state given in a basis to another basis that is more suited for the 

analysis of measurement outcomes based upon the magnetic field gradients (e.g., if the Stern-

Gerlach apparatus has a gradient in the x direction, the most convenient basis in which the 

incoming state should be transformed to analyze the measurement outcomes consists of eigenstates 

of the x component of the spin angular momentum). Finally, the sixth learning objective of the 

MQS is to help students be able to develop a functional understanding of the difference between a 
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superposition vs. mixture and how certain experimental configurations involving SGAs are able 

to differentiate between them. 

2.2 METHODOLOGY FOR DEVELOPING, VALIDATING, AND IMPLEMENTING A 

MQS 

Before discussing the SGE MQS, we first summarize general issues involved in the 

development, validation and implementation of a robust MQS using the inquiry-based learning 

sequences in the corresponding QuILT as a guide. In particular, below, we summarize some of 

these “lessons learned” from the guided sequences in the QuILT that can be used as a guide to 

develop and/or revise a MQS (first three points below) and implement it effectively (last three 

points below: 

2.2.1  Balance difficulty 

A QuILT is structured such that students are provided enough guidance to develop a 

coherent conceptual understanding without becoming frustrated or discouraged. Following this 

principle and earlier suggestions to make effective use of class time, e.g., by Mazur et al. [33], we 

decided that a majority of the questions in a MQS should have correct response rates such that 

both extremes are avoided (i.e., we avoided cases in which very few students answer the question 

correctly or incorrectly). If some students already have a reasonable understanding of the topic, it 

is likely to make the peer discussions effective and encourage students to engage in productive 

discussions and learn the concepts with peer support. A question in which very few students can 
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reason about it correctly may result in reinforcing students’ inaccurate conceptual models and it 

also becomes more likely that students would guess as opposed to apply the physics concepts 

systematically. On the other hand, high scores indicate that there is little constructive struggle. 

With restricted class time, such questions should be limited except for warmups (to help students 

review basic concepts and prime them to answer more complex questions later) [45]. 

2.2.2  Change only the context or the concept between questions 

We took inspiration from the corresponding QuILT [66] on the same topic to ensure that 

different questions in the MQS build on each other and ascertain how changes in context and 

concepts should be included in the MQS. We found that switching both the concept and the context 

in adjacent questions may result in cognitive overload for students. Changing only the context or 

concept between consecutive questions may help students identify the differences and similarities 

between subsequent questions and construct correct models more effectively. 

2.2.3  Include a mix of abstract and concrete questions 

Although the type of questions in a MQS is usually dictated by the topic and the goals and 

learning objectives, we examined guided learning sequences in the QuILT [66] to determine how 

to pose abstract and concrete questions in a MQS. Abstract questions may provide students 

opportunities to generalize concepts across different contexts. On the other hand, concrete 

questions allow students to apply their learning to a concrete context. Students may benefit from 

a balance of both question types. 
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2.2.4  Allow student collaboration 

Collaborative group work is found to be beneficial for helping many students learn [33-

50]. A student who is having difficulty and a student who is articulating her thoughts both refine 

their understanding so that co-construction of knowledge can occur when neither student was able 

to answer the questions before peer collaboration, but were able to answer them correctly after 

working together [33]. Thus, instructors should allow for peer discussion while implementing a 

MQS. 

2.2.5  Incorporate “checkpoints” at appropriate times during a MQS 

A QuILT often includes checkpoints which provide opportunity to reconcile the differences 

between student ideas and the correct conceptual model. The MQS for a given topic can include 

“checkpoints” at similar points as the QuILT, at which the instructor can have a general class 

discussion and can give feedback to the entire class based upon students’ multiple-choice question 

responses to help them learn. 

2.2.6  Include a manageable number of multiple-choice questions per sequence 

The researchers deliberated and concluded (based upon data from multiple-choice 

questions in previous years and the learning sequences in the QuILT) that a MQS should include 

a manageable number of questions that should build on student prior knowledge. Having many 

questions in a sequence may offer students more opportunities to practice concepts, but having too 
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many questions can result in a sequence of multiple-choice questions that cannot be reasonably 

implemented effectively, given the time constraints of the class. 

2.3 METHODOLOGY FOR DEVELOPING AND VALIDATING SGE MQS 

In order to develop and validate effective sequences of multiple-choice questions for QM 

focusing on the SGE, three researchers met to holistically examine the instructional materials from 

the past few years on these topics in an upper-level undergraduate QM course at a large research 

university in the US, which included existing multiple-choice questions and the QuILT on this 

topic. This course typically has 15-25 students each year, who are mainly physics juniors/seniors. 

The validation of MQS was an iterative process. Moreover, the questions in the SGE MQS were 

developed or adapted from prior validated multiple-choice questions and sequenced to balance 

difficulties, avoid change of both concept and context between adjacent questions as appropriate 

in order to avoid experiencing cognitive overload, and include a mix of abstract and concrete 

questions to help students develop a good grasp of the concepts. In particular, in order to design 

an effective SGE MQS, we examined the SGE QuILT [66] and contemplated how to take 

advantage of its learning objectives, guided learning sequences, and student performance on the 

pre-/posttests administered before and after they engaged with it. 

While developing the SGE MQS, we drew upon the learning objectives delineated earlier 

and the requisite knowledge and skills required to achieve those objectives. We also focused on 

the order in which different QM concepts that are involved in the learning objectives are invoked 

and applied in a given situation within the SGE QuILT to inform the design of the SGE MQS. 

Furthermore, we carefully examined the types of scaffolding provided in the SGE QuILT [66] to 
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reflect on how different questions within the SGE MQS should effectively build on each other and 

whether more scaffolding between some existing multiple-choice questions is required. We also 

analyzed student performance on SGE multiple-choice questions in previous years to determine 

whether students were able to transfer their learning from one multiple-choice question to another 

and whether some multiple-choice questions would require more scaffolding between them in 

order to be effective. In particular, when examining the SGE MQS that had been administered in 

the previous years and comparing them with the guided learning sequences in the SGE QuILT, we 

realized that sometimes both the concept and the context changed from the preceding to the 

following question in an old sequence. We hypothesized that this may cause cognitive overload 

for students and at least partly be responsible for making the previous set of multiple-choice 

questions less effective (for which we had evidence from the data from previous years). We took 

inspiration from the SGE QuILT to develop the set of questions for the SGE MQS that have 

appropriate ordering and balance to scaffold student learning and help them compare and contrast 

different concepts and contexts effectively. The issue of abstract vs. concrete questions was also 

deliberated. Abstract questions posed tend to focus on generalized cases whereas concrete 

questions, in general, involve a specific context. It was decided that only the last question in the 

MQS will have an abstract choice since the SGE is best learned using concrete examples using 

diverse setups of SGAs and initial states. 

After the initial development of the SGE MQS using the learning objectives, inquiry-based 

guided sequences in the QuILT and existing individually validated questions, we iterated the MQS 

with three physics faculty members who provided valuable feedback. The feedback from faculty 

helped in fine-tuning and refining some new questions that were developed and integrated with 

the existing ones to construct the sequence of questions in the SGE MQS and to ensure that the 
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questions were unambiguously worded and build on each other based upon the learning objectives.  

We also interviewed four students individually who answered the MQS questions in a one on one 

interview situation while thinking aloud so that we could understand their thought processes. The 

four interviews totaled about 3 hours. These interviews, which also reaffirmed the common 

difficulties earlier described by Zhu et al. [66], ensured that students found these questions 

unambiguous and were able to take advantage of the scaffolding provided by different questions 

that build on each other. These student interviews were helpful for further tweaking the questions. 

2.4 MQS FOCUSING ON THE SGE THAT WAS IMPLEMENTED IN CLASS 

After the out-of-class development and validation, the final version of the SGE MQS that 

went through in-class implementation via clickers along with peer discussion has 7 questions 

(MQ1-MQ7). As discussed in the next section, two different instructors at the same institution 

implemented the SGE MQS in two consecutive years in the upper-level undergraduate QM course 

such that the pretest was given after traditional lecture-based instruction, and then students 

engaged with the entire SGE MQS with 7 questions in class before they were administered the 

posttest. There was no overall class discussion after MQ1 but there was an overall class discussion 

after each of the other questions in the SGE MQS. 

Similar to the QuILT [66], in the MQS administered as clicker questions with peer 

interaction and the corresponding pretest and posttest, the description of the Stern-Gerlach 

apparatus shown in Figure 2.1 was provided to students because it is important to clarify the 

notation used for the SGAs.  Students also knew that the orbital angular momentum of a beam of 

neutral silver atoms is zero, so they had to focus on the fact that a beam of neutral silver atoms 
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passing through a SGA can be considered a spin-1/2 system. They had learned that a SGA can 

entangle the orbital and spin degrees of freedom depending upon the initial state of the system and 

the SGA setup. Students also were asked to assume that the detectors were placed in appropriate 

orientations after a SGA and when a detector clicks, the silver atom is absorbed by that detector. 

 

The figure below shows the pictorial representations used for a Stern-Gerlach apparatus (SGA). 

If an atom with state |↑⟩𝑧 (or |↓⟩𝑧) passes through a Stern-Gerlach apparatus with the field 

gradient in the negative z-direction (SGZ-), it will be deflected in the +z (or -z) direction. If an 

atom with state |↑⟩𝑧 (or |↓⟩𝑧) passes through a Stern-Gerlach apparatus with the field gradient in 

the positive z-direction (SGZ+), it will be deflected in the -z (or +z) direction. Similarly, if an atom 

with state |↑⟩𝑥 passes through SGX- (or SGX+), it will be deflected in the +x (or -x) direction. The 

figures below show examples of deflections through the SGX and SGZ in the plane of the paper. 

However, note that the deflection through a SGX will be in a plane perpendicular to the deflection 

through an SGZ. This actual three-dimensional nature should be kept in mind in answering the 

questions. 

 

Figure 2.1 This information is provided to students in all contexts (e.g., before the MQS and with the pretest and 

posttest). 
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The first two questions of the MQS, questions MQ1 and MQ2, focus on student difficulty 

in differentiating between Hilbert space and physical space as well as on the choice of an 

appropriate basis to analyze the probability of measuring different outcomes given a particular 

initial state of the system and the SGE setup as follows. Correct answers are in bold for all multiple-

choice questions. 

(MQ1)  A beam of neutral silver atoms in a spin state  |𝜒⟩ =
1

√2
(|↑⟩𝑧 + |↓⟩𝑧)  propagates into the 

screen (x-direction) as shown in Figure 2.2.  The beam is sent through a SGE with a horizontal 

magnetic field gradient in the –z-direction. What is the pattern you predict to observe on a distant 

screen in the y-z plane when the atoms hit the screen? 

 

Figure 2.2 Figure for MQ1 

 (MQ2)  A beam of neutral silver atoms in a spin state  |𝜒⟩ =
1

√2
(|↑⟩𝑧 + |↓⟩𝑧)  propagates into the 

screen (x-direction) as shown in Figure 2.3.  The beam is sent through a SGE with a horizontal 

magnetic field gradient in the –y-direction. What is the pattern you predict to observe on a distant 

screen in the y-z plane when the atoms hit the screen? 
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Figure 2.3 Figure for MQ2 

In the in-class administration discussed in the next section, after students answered both 

questions using clickers after discussing their responses with a peer sitting next to them, a whole 

class discussion led by the instructor focused on common student difficulties, e.g., in 

differentiating between physical space and Hilbert space, the importance of choosing an 

appropriate basis and transforming the initial state in that basis in order to analyze the measurement 

outcomes before posing MQ3 as a clicker question.  In question MQ3 (see Appendix II), students 

were told that |a|2+|b|2=1. In MQ3, silver atoms in a generic spin state given in the basis of 

eigenstates of 𝑆̂𝑧 are sent through a single Stern-Gerlach apparatus with an x gradient.  This 

question focuses on helping students learn about the usefulness of transforming from the given 

basis to a more suitable basis in order to analyze the measurement outcomes including the 

probability of the detector clicking.  It also helps students learn about preparing a specific spin 

state, here |↓⟩𝑥. Building on this question, MQ4-MQ6 (see Appendix II) ask students to 

contemplate issues related to preparation of quantum states in different arrangements of SGAs and 

initial state.  In MQ5, students were told to assume that the strength of the second SGA was such 

that any spatial separation of the state after the first SGA was negated. Finally, MQ7 focuses on 

helping students think about how to use the SGE to differentiate between a state which is a 

superposition of eigenstates of an operator corresponding to an observable and a mixture. We note 
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that oblique lines are shown as a guide only in some of the figures (e.g., Figures 2.7, 2.8 and 2.9) 

as a scaffolding support but not shown in others, e.g., in Figures 2.6 and 2.11 so that students learn 

to think about and draw them themselves. We also note that there are many experimental 

considerations in constructing a real SGA, e.g., the challenge of maintaining coherence between 

two spatially separated beams such as in MQ5.  These considerations were not discussed by the 

instructor (since it has the possibility to increase student cognitive load) but would certainly add 

richness to the topic. 

2.5 METHODOLOGY FOR IN-CLASS IMPLEMENTATION 

Not only did we focus on developing and validating the SGE MQS, we also contemplated 

effective strategies for their in-class implementation. For example, we used the SGE MQS with 

clickers and peer discussion, a principle emphasized by Mazur [33]. In fact, empirical data from 

QM multiple-choice questions given in previous years suggest that, on average, student 

performance on multiple-choice questions improved significantly after discussing responses with 

a peer [35]. We also considered the need for productive struggle for students when working on the 

SGE MQS. For example, we considered the points at which the instructor should provide feedback 

to students in order to maximize productive engagement and minimize discouragement. Again we 

drew both upon the SGE QuILT and empirical data from student responses to multiple-choice 

questions in previous years to identify where feedback might be most effective in the SGE MQS. 

We paid attention to the QuILT “checkpoints” for students to resolve possible conflicts between 

their understanding and the correct conceptual model of the foundational issues elucidated via the 

SGE [66]. These “checkpoints” guided us in identifying points for instructor feedback and general 
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class discussion for the SGE MQS that may be beneficial for students. We also analyzed the points 

at which students struggled when answering clicker questions in previous years to determine 

possible points during the implementation of the SGE MQS when a particular general class 

discussion was likely to be effective. It was determined that one productive approach would be for 

the instructor to have students answer the first two SGE MQS questions before having a general 

class discussion followed by a class discussion after each of the following SGE MQS questions. 

We note that the final version of the 7 SGE MQS questions can be integrated with lectures 

in which these relevant concepts pertaining to SGE are covered in a variety of ways based upon 

the instructor’s preferences.  For example, the MQS can be given over multiple sessions or together 

depending, e.g., upon whether these are integrated with lectures, used at the end of each class, or 

used to review concepts after students have learned about the Stern-Gerlach experiment via 

lectures. However, in this study, the SGE MQS was implemented with clickers and peer discussion 

[33] in an upper-level undergraduate QM class at a large research university after traditional 

lecture-based instruction in relevant concepts on the Stern-Gerlach experiment for two consecutive 

years by two different instructors. Both instructors tried their best to implement the SGE MQS in 

a very similar manner using clickers and peer discussion and with similar general whole class 

discussions that was deemed effective as discussed in the preceding paragraph. Prior to the 

implementation of the SGE MQS in class, students were administered a pretest after traditional 

lecture-based instruction, which was developed and validated by Zhu et al. [66] to measure 

comprehension of the relevant concepts. The students then engaged in class with the SGE MQS 

and discussed their answers with their peers. This implementation was completed in one class 

period.  The posttest was administered during the following week to measure the impact of the 

SGE MQS on student learning of relevant concepts.  
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The posttest that students were administered following the implementation of the SGE 

MQS was analogous to the pretest [66]. These pre-/posttests are the same as those administered by 

Zhu et al. to measure student learning after traditional lecture-based instruction and after engaging 

with the SGE QuILT [66].  In order to compare the performance of the SGE MQS and QuILT 

groups on pre-/posttests so that the relative improvements can be determined, the same rubric was 

used for the pre-/posttests given to the SGE MQS students as the corresponding QuILT students 

in Ref. [66] (who were also advanced undergraduate students in QM course at the same university).  

All questions were scored out of a possible 2 points, with partial credit assigned to answers that 

were correct, but for which either incorrect justification or no justification was provided if 

reasoning was requested. The inter-rater reliability was better than 95%. 

We also note that two versions (test versions A and B) of the tests were designed to be 

administered as a pretest or posttest. In particular, all questions on the two versions of the test are 

not identical because we wanted to investigate how students answer questions when the pretest 

and posttest questions are the same or different. Moreover, the version of the test that was used as 

a pretest before the SGE MQS in one year was used as a posttest in the other year. The first two 

questions in the pretest and posttest are analogous to MQ1 and MQ2 in the SGE MQS.  Question 

1 on both versions is identical and pertains to a state, which is an equal superposition (no relative 

phase factor) of the spin-up and spin-down states in the z-basis, passing through a SGE with a 

magnetic field gradient in the -z direction (identical to MQ1).  Question 2 has silver atoms with 

spin-up in the z-basis passing through a SGE with a magnetic field gradient in either the -y 

direction (as in MQ2) or –x direction, depending on the version of the test.  These first two 

questions address the first learning objective. Question 3 on both versions of the test corresponds 

to MQ3.  On both versions A and B of the test (see Appendix III), question 3 asks about the 
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measurement outcomes for a superposition of spin-up and spin-down states in the z-basis passing 

through a SGX-.  On version A, both coefficients of the state are given numerically, whereas they 

are given in terms of complex numbers “a” and “b” in version B with |a|2+|b|2=1. This question 

addresses both the third and fifth learning objectives. 

Question 4 on both versions most closely matches MQ4, but also connects with MQ5 and 

MQ6.  The question 4 in version B is shown in Figure 2.11 in Appendix III.  On version A, the 

first SGE seen in MQ4 is a SGY-, rather than SGX-.  On version B, there is an additional SGZ- in 

front of the SGX-.  This question emphasizes the second learning objective, while also addressing 

the third, fourth, and fifth learning objectives. 

Question 5 on test version A and the analogous test question on version B align with the 

learning objectives underlying MQ7, i.e., they assess whether students are able to differentiate 

between a superposition state and an analogous mixture using SGAs.  In both versions (see 

Appendix III), students are given two beams of silver atoms: a superposition  |𝜒⟩ = √
1

2
|↑⟩𝑧 +

√
1

2
|↓⟩𝑧, and the analogous mixture of 50% |↑⟩𝑧 and 50% |↓⟩𝑧.  Version A asks students to design 

a setup of SGAs to differentiate between these two beams (superposition and mixture), while 

version B asks students to identify which combination of three statements is true regarding these 

beams passing through different SGAs (see Appendix III).  This question emphasizes the sixth 

learning goal, while also addressing the third and fifth. 

Finally, on the same topic as question 4, question 6 (see Appendix III) on both versions of 

the test assesses student understanding of preparing a state (here students are given an initial state 

and asked if they can prepare a given orthogonal state using SGAs and how they may be able to 

do that), and connects most closely with MQ6 asking students to design a setup of SGAs to prepare 
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a spin-up state in the z-basis given an initial spin-down state in the z-basis.  This question 

emphasizes the second learning objective, while also addressing the third, fourth, and fifth. 

2.6 IN-CLASS IMPLEMENTATION RESULTS 

In one year of the SGE MQS implementation in upper-level undergraduate QM, students 

were administered version A as a pretest and version B as a posttest, while in the other year, they 

were administered version B as a pretest and version A as a posttest. On the other hand, when the 

SGE QuILT was implemented [66], some of the students in the same class were given version A 

as the pretest whereas others were given version B (and the versions were switched for each student 

for the posttest). Tables 2.1 and 2.2 compare pre-/posttest performances of students in upper-level 

QM course from the same university in different years after traditional lecture-based instruction 

(pretest) and on the posttest after students had engaged with the SGE MQS (Table 2.1) or SGE 

QuILT (Table 2.2). The normalized gain (or gain) is calculated as 𝑔 = (𝑝𝑜𝑠𝑡% −

𝑝𝑟𝑒%)/(100% − 𝑝𝑟𝑒%) [85].  Effect size was calculated as Cohen’s 𝑑 = (𝜇𝑝𝑜𝑠𝑡 − 𝜇𝑝𝑟𝑒)/

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 where 𝜇𝑖 is the mean of group i and where the pooled standard deviation (in terms of the 

standard deviations of the pre- and posttests) is  𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √𝜎𝑝𝑟𝑒  2 + 𝜎𝑝𝑜𝑠𝑡 2/2 [85]. Normalized 

gain and effect size are only shown in Table 2.1 (not available for Table 2.2 data in Ref [66]). 
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Table 2.1 Comparison of the mean pre/posttest scores on each question, normalized gains and effect sizes for 

students in upper-level undergraduate QM (averaged over two years in which the corresponding questions in 

versions A and B are averaged) who engaged with the SGE MQS (N=48). 

Question Pretest Mean Posttest Mean Normalized Gain (g) Effect Size (d) 

1 61% 96% 0.88 0.50 
2 40% 92% 0.87 0.71 
3 38% 49% 0.18 0.13 

4 51% 80% 0.59 0.38 

5 24% 50% 0.34 0.28 

6 43% 82% 0.69 0.46 
 

Table 2.2 Comparison of mean pre/posttest scores on each question from Ref. [66] (effect sizes not available) for 

students in upper-level undergraduate QM who engaged with the SGE QuILT.  Questions from versions A and B 

were mixed in both pre- and posttest in that some students got version A as the pretest and others as the posttest (and 

vice versa). Mean scores are not for matched students and numbers of students varies from 5 to 35 (more details can 

be found in Ref. [66]). 

Question Pretest Mean Posttest Mean 

1 80% 81% 
2 39% 77% 
3 30% 80% 

4 40% 90% 

5 42% 90% 

6 38% 100% 
 

Tables 2.1 and 2.2 show that students in general did not perform well on the pretest after 

traditional lecture-based instruction. Note that we have combined the data for questions which 

have been treated as equivalent between versions A and B, whereas Zhu et al. refer to questions 

from different versions separately in Ref.[66]. 
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Figure 2.4 An example of a common student belief that the state of the beam propagating through the Stern-Gerlach 

apparatus will be deflected in the z direction because the state is |↑⟩𝒛 in response to question 2 on version B of the 

test. 

However, Table 2.1 shows that there is significant improvement on the first two questions 

from the pretest (after traditional lecture-based instruction in relevant concepts) to posttest (after 

the SGE MQS) with students using the SGE MQS scoring greater than 90% on both questions.  

This improvement in students’ understanding is partly due to students being able to differentiate 

between the Hilbert space and physical space better and also being able to choose a suitable basis 

for the initial state of the system sent through a SGA and analyze the outcomes of an experiment 

based upon the magnetic field gradient of the SGA after engaging with the SGE MQS. 

Switching between bases and preparation of a state orthogonal to an initial state are 

investigated via test questions 4 and 6 (see Figure 2.3) and MQ4. Table 2.1 also shows that on both 

questions 4 and 6, there was a reasonable gain from pretest to posttest after the SGE MQS 

implementation.  While not as large as the gains observed for these questions from pretest to 

posttest for students using the SGE QuILT (see Table 2.2), Table 2.1 shows that students scored 

approximately 80% in response to these questions after engaging with the SGE MQS (these 

questions were about a situation in which the final prepared spin state of the silver atoms was a 

“flipped” state orthogonal to the spin state of the incoming atoms, and a situation in which students 



 36 

had to design an experiment with a series of SGAs with the goal of “flipping” the incoming 

quantum state).  

In contrast, questions 3 and 5 both demonstrate some room for improvement on posttest 

even after the SGE MQS implementation (see Table 2.1) compared to the corresponding 

improvement after the SGE QuILT (see Table 2.2).  An example of a student response to Question 

3 on the pretest on version A is shown in Figure 2.5, in which the student had difficulty recognizing 

that the initial state is an eigenstate |↑⟩𝑥 of 𝑆̂𝑥 so the entire beam will be deflected upward in this 

situation. The student stated that the probability of the detector clicking when an atom exits the 

SGX- is “50% probability because the SGE is in the x-direction, so it will not deflect particles 

with z but these particles also have x-components, we just don’t know them.” It appears that this 

student is aware of the fact that “these particles also have x-components” but the student does not 

know how to find them. Many other students had similar difficulties on the pretest. Another 

difficulty students had with the orthogonality of states was mistakenly assuming that a spin-up 

state |↑⟩𝑧 is orthogonal to the spin-up state |↑⟩𝑥. 
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Figure 2.5 An example of a student response to Question 3 on test version A in which the student had difficulty 

recognizing that the initial state is an eigenstate of 𝑺̂𝒙 so the entire beam will be deflected upward. The student states 

that the probability that the detector will click when an atom exits the SGX- is “50% probability because the SGE is 

in the x-direction, so it will not deflect particles with z but these particles also have x-components, we just don’t 

know them.” 

Based on our results, the topic of different bases in question 3 on the pretest and posttest is 

an area in which the SGE MQS should be refined to improve student understanding.  Moreover, 

Table 2.3 (see Appendix I) shows that students who obtained version A of the test as a pretest and 

version B of the test as a posttest showed moderate gains from the implementation of the SGE 

MQS, but the same did not hold true for those who obtained version B as a pretest and version A 

as a posttest (see Table 2.4 in Appendix I).  Apart from differences between students and instructor 

implementation in two consecutive years (even though each instructor implemented them using 

similar approaches to the best of their abilities, there still may be individual differences), one issue 

that may contribute to the difference between question 3 performances of these two classes in 

Tables 2.3 and 2.4 is that students in Table 2.4 received this question as a multiple-choice question 

on version B on their pretest and as an open-ended version A on their posttest shown in Appendix 
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III.  In Table 2.3, students had the reverse situation with regard to the versions.  Tables 2.3 and 2.4 

suggest that the class assessed using version B performed better on this question on the posttest.  

We also note that the differences in pretest averages before engaging with MQS can likely be due 

to differences in instructors’ lecturing styles and differences between students in two consecutive 

years, something we do not have any control over. Therefore, we do not want to dwell on the 

pretest differences on any question in Tables 2.3 and 2.4. However, regardless of the pretest 

performance in Tables 2.3 and 2.4, the posttest performance on both versions of question 3 (see 

Tables 2.3 and 2.24 in Appendix I) after the SGE MQS shows room for improvement with regard 

to helping students learn to transform from one basis to another to analyze measurement outcomes 

after passing through a SGA with a particular magnetic field gradient. We are contemplating 

adding another question to provide additional coaching and scaffolding to students in order to 

solidify their conceptual understanding of how to transform from one basis to another depending 

upon the magnetic field grading in the Stern Gerlach apparatus and to help students reason about 

the outcomes of measurement after the atoms pass through a SGA. 

Question 5 assesses student proficiency in differentiating between a mixture and 

superposition of states and showed weak improvement after implementation of the MQS (see 

Tables 2.1, 2.3 and 2.4).  Even after engaging with the MQS, which strived to help students learn 

to differentiate between a superposition state, |𝜒⟩ = √
7

10
|↑⟩𝑧 + √

3

10
|↓⟩𝑧 and an analogous mixture 

made up of 70% |↑⟩𝑧 particles and 30% |↓⟩𝑧 particles, students struggled with this concept.  

Previously, students using the SGE QuILT had shown much stronger gains (Table 2.2).  We are 

currently considering adding another multiple-choice question in the SGE MQS to have students 

further reflect upon the difference between a superposition of states and a mixture. 
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2.7 SUMMARY 

Well-designed multiple-choice questions with peer discussions are excellent tools for 

engaging students in the learning process and relatively easy to implement in the classroom, with 

or without the use of clickers, compared to many other evidence-based active-engagement 

pedagogies. We describe a framework for developing and validating multiple-choice question 

sequences and the development, validation and in-class implementation of a MQS focusing on the 

fundamental concepts in quantum mechanics using the Stern-Gerlach experiment that was inspired 

by the learning objectives and guided learning sequences in the corresponding QuILT [66].  The 

SGE MQS was developed using research on student difficulties in learning these fundamental 

concepts of quantum mechanics as a guide. Different questions in the MQS build on each other 

and strive to help students organize, extend and repair their knowledge structure. One useful aspect 

of the Stern Gerlach experiment is that it can help students learn about foundational issues in 

quantum mechanics using a very simple two state model. In particular, the MQS focuses on helping 

students learn about important issues in quantum mechanics such as the difference between the 

Hilbert space and physical space, how to prepare a quantum state, how to analyze the outcomes of 

a particular set up involving various Stern-Gerlach devices and an initial spin state of neutral silver 

atoms, and the difference between a superposition state vs. a mixture (and how the SGAs with 

appropriate orientations of magnetic field gradients can be used to differentiate between these). 

This MQS is composed of seven questions most of which are posed in concrete contexts with 

different initial spin states of a beam of neutral silver atoms sent through various SGAs.  Only the 

last question, which focuses on helping students differentiate between a superposition and mixture, 

concerns an abstract case in which students are asked for the outcome in a situation for which they 
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must consider more than one possible setup to answer correctly. The entire MQS can be spread 

across separate lecture periods, or can be implemented together, e.g., to review the concepts. 

Development of a research-validated learning tool such as the SGE MQS described here is 

an iterative process. After the in-class implementation of the SGE MQS using clickers and peer 

interaction by two different instructors, we found that the MQS was effective in helping students 

learn many of the important concepts.  However, in-class evaluation also shows that further 

scaffolding is needed to guide students in differentiating between a quantum state which is a 

superposition of eigenstates of an operator corresponding to an observable from a mixture.  

Appropriate modifications are being made to the SGE MQS so that this issue can be addressed in 

the future iterations and implementations. Moreover, while both instructors implemented the MQS 

by interspersing them with lectures using clickers and peer interaction, future research can evaluate 

the effectiveness of these validated MQS in other modes of classroom implementations. 
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2.10 CHAPTER APPENDIX 

2.10.1  Individual class data 

Table 2.3 Comparison of mean pre/posttest scores on each question, normalized gains and effect sizes for upper-

level undergraduate students in QM who engaged with the SGE MQS when version A was used for pretest and 

version B was used for posttest (total number of students N = 17). 

Question  Pretest 
Mean 

Posttest Mean Normalized Gain (g) Effect Size (d) 

1 38% 100% 1.00 1.05 
2 14% 97% 0.97 1.79 
3 41% 65% 0.40 0.24 

4 38% 79% 0.67 0.51 

5 12% 59% 0.53 0.64 

6 41% 74% 0.55 0.34 
 

Table 2.4 Comparison of mean pre/posttest scores on each question, normalized gains and effect sizes for upper-

level undergraduate students in QM who engaged with the SGE MQS when version B was used for pretest and 

version A was used for posttest (total number of students N = 31). 

Question  Pretest 
Mean 

Posttest Mean Normalized Gain (g) Effect Size (d) 

1 74% 93% 0.72 0.28 
2 53% 89% 0.77 0.45 
3 35% 41% 0.09 0.06 

4 58% 80% 0.53 0.30 

5 31% 43% 0.18 0.14 

6 44% 88% 0.78 0.55 
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2.10.2  Additional MQS questions 

 (MQ3)  A beam of neutral silver atoms in a spin state |𝜒⟩ = 𝑎|↑⟩𝑧 + 𝑏|↓⟩𝑧 is sent through a SGX-. An “up” detector 

blocks some silver atoms, as shown in Figure 2.6.   What fraction of the initial atoms will be blocked by the detector? 

 
Figure 2.6 Figure for MQ3 using the representation as describeded in Figure 2.1. 

 

𝑎)  |𝑎|2 

b)  |𝑏|2 

c) 
𝟏

𝟐
|𝒂 + 𝒃|𝟐 

d)  
1

2
|𝑎 − 𝑏|2 

e) None of the above 

 
(MQ4)  A beam of neutral silver atoms is in the initial spin state |↑⟩𝑧.  It propagates through two SGAs as shown in 

Figure 5.  What is the probability that detector B will click for the atoms that enter the first SGA? 
 

 
Figure 2.7 Figure for MQ4 using the representation as described in Figure 2.1. 

𝑎)  1 2⁄  

b)  𝟏 𝟒⁄  

c) 1 8⁄  

d)  1 

e) None of the above 

 

  

 

 SGX- 

QM1 Concept Test 7.4 

A beam of neutral silver atoms in a spin state 
zz

bat +== )0(  is sent through 

an SGX-.  An “up” detector blocks some silver atoms, as shown in the picture 

below.  What fraction of the initial silver atoms will be blocked by the detector? 

 

A.  |𝑎|2 

B.  |𝑏|2 

C.  
|𝑎+𝑏|2

2
 

D.  
|𝑎−𝑏|2

2
 

E.  None of the above 
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(MQ5)  The initial state of a beam of neutral silver atoms is |↑⟩𝑧. It propagates through three SGEs as shown in Figure 

2.8. What is the probability that the detector will click for the atoms that enter the first SGE? 

 

 

 
Figure 2.8 Figure for MQ5 using the representation as described in Figure 2.1. 

 

𝑎)  1 2⁄  

b)  1 4⁄  

c) 1 8⁄  

d)  𝟏 

e) None of the above 

 

 (MQ6)  The initial state of a beam of neutral silver atoms is |↑⟩𝑧. Suppose you want to prepare a beam of neutral 

silver atoms in spin state  |↓⟩𝑧. Which of the options in Figure 2.9 shows an appropriate SGE to collect neutral silver 

atoms (not intercepted by a detector) in spin state |↓⟩𝑧? 

 

 
Figure 2.9 Figure for MQ6 using the representation as described in Figure 2.1. 

 

  



 50 

(MQ7)  Suppose neutral silver atoms are in an unknown spin state.  The spin state is either a mixture with 70% of the 

atoms in the |↑⟩𝑧 state and 30% in the |↓⟩𝑧 state or it is a superposition state  |𝜒⟩ = √
7

10
|↑⟩𝑧 + √

3

10
|↓⟩𝑧.  Choose all 

of the following states that are correct about the beam propagating through an SGZ or SGX apparatus: 

 

I. When the beam propagates through the SGZ, 70% of the atoms will register in one detector and 30% of the 

atoms will register in the other, regardless of the two possibilities for the state. 

II. When the beam propagates through the SGX, 50% of the atoms will register in one detector and 50% of the 

atoms will register in the other, regardless of the two possibilities for the state. 

III. We can use a  SGZ to distinguish between the possible spin states of the incoming silver atoms. 

 

a)   I only 

b)   II only 

c)  III only 

d)   II and III only 

e) None of the above 

 

2.10.3  Additional test questions 

 

3. (version B) Harry sends silver atoms all in the normalized spin state |𝜒(𝑡 = 0)⟩ =
𝑎|↑⟩𝑧 + 𝑏|↓⟩𝑧 through a SGX-. He places an “up” detector as shown to block some silver 

atoms and collects the atoms coming out in the “lower channel” for a second experiment. 

What fraction of the initial silver atoms will be available for his second experiment? 

What is the spin state prepared for the second experiment? Show your work. 

 

 
Figure 2.10 Figure for Question 3 on version B that focuses on the learning objective related to transforming the 

initial state to a basis that makes the analysis of measurement outcomes after passing through the SGA convenient 

(as well as on how to determine the spin state that is prepared and the fraction of the atoms that are in that final state 

prepared (i.e., not intercepted by the detector). 

4.  (version B) Sally sends silver atoms in state |↑⟩𝑧 through three SGAs as shown below. A 

detector is placed either in the up or down channel after each SGA as shown. Note that 

each SGA has its magnetic field gradient in a different direction. Next to each detector, 

write down the probability that the detector clicks. The probability for the clicking of a 

detector refers to the probability that a particle entering the first SGA reaches that detector. 

Also, after each SGA, write the spin state Sally has prepared. Explain.  

 

 SGX- 

QM1 Concept Test 7.4 

A beam of neutral silver atoms in a spin state 
zz

bat +== )0(  is sent through 

an SGX-.  An “up” detector blocks some silver atoms, as shown in the picture 

below.  What fraction of the initial silver atoms will be blocked by the detector? 

 

A.  |𝑎|2 

B.  |𝑏|2 

C.  
|𝑎+𝑏|2

2
 

D.  
|𝑎−𝑏|2

2
 

E.  None of the above 
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Figure 2.11  Figure for Question 4 on version B that corresponds to the learning objective related to preparing a final 

quantum state which is orthogonal to the initial state.  On both versions of this test question, students were given an 

arrangement of Stern-Gerlach apparati and were asked to determine the probability that each detector clicks and the 

spin state prepared. 

5  (version A) Suppose beam A consists of silver atoms in the state|𝜒⟩ =
1

√2
(|↑⟩𝑧 + |↓⟩𝑧), and 

beam B consists of an unpolarized mixture in which half of the silver atoms are in state |↑⟩𝑧 

and half are in state |↓⟩𝑧. Design an experiment with SGAs and detectors to differentiate 

these two beams. Sketch your experiment setup below and explain how it works.  

5. (version B) Suppose beam A consists of silver atoms in the state |𝜒⟩ =
1

√2
(|↑⟩𝑧 + |↓⟩𝑧), and 

beam B consists of an unpolarized mixture in which half of the silver atoms are in state |↑⟩𝑧 

and half are in state |↓⟩𝑧 .  Choose all of the following statements that are correct. 

(1) Beam A will not separate after passing through SGZ-. 

(2) Beam B will split into two parts after passing through SGZ-. 

(3) We can distinguish between beams A and B by passing each of them through a SGX-. 

A. only 1 

B. only 2 

C. 1 and 2 

D. 2 and 3 

E. All of the above. 

 

6. (version B) Suppose you have a beam of atoms in the spin state |𝜒(0)⟩ = |↓⟩𝑧 but you need 

to prepare the spin state |↑⟩𝑧 for your experiment. Could you use SGAs and detectors to 

prepare the spin state |↑⟩𝑧? If yes, sketch your setup below and explain how it works. If 

no, explain why. 
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3.0 INSTRUCTIONAL PRAGMATISM: USING A VARIETY OF EVIDENCE-BASED 

APPROACHES FLEXIBLY TO IMPROVE STUDENT LEARNING 

3.1 INTRODUCTION 

3.1.1  Background 

A major goal of many physics courses from introductory to advanced levels is to help 

students learn physics concepts [1-13] while also developing their problem solving and reasoning 

skills [14-28]. We have been studying how students in physics courses can learn to think like a 

physicist and develop a solid grasp of physics concepts [29-45]. Many researchers have been 

involved in developing and evaluating evidence-based active-engagement (EBAE) curricula and 

pedagogies [1-45] to improve student learning, but implementation of these EBAE approaches to 

help students learn has been slow. Some major barriers to implementation of the EBAE pedagogies 

at the college-level include lack of faculty buy-in and their reluctance and/or resistance, partly due 

to a lack of an institutional reward system for using these evidence-based approaches, the time 

commitment involved in effectively adapting and implementing them, and instructors’ fear that 

their students may complain (since students may prefer to passively listen to lectures as opposed 

to actively engage in the learning process) [46]. Moreover, the amount of class time required to 

implement an EBAE pedagogy, the flexibility with which it can be implemented, the need to train 

instructors in how to effectively use it, and the architectural constraints of the classrooms may also 

increase the barrier and make it difficult to implement an EBAE pedagogy [46]. Because of this, 

even those instructors who adopt and adapt EBAE curricula and pedagogies in their classes are 
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often disappointed when they do not observe the learning gains they expected and may quit 

employing the EBAE methods. 

3.1.2  Instructional Pragmatism Framework 

One major cause for the low sustained usage of the EBAE learning tools and pedagogies 

among the adopters is that the early adaptations in their classes do not necessarily show the same 

large gains in student learning as those observed by their developers [46]. One reason for this 

failure to replicate the positive outcomes of an innovation in early implementations by instructors 

is that the EBAE approaches must be refined and tweaked to suit the instructor’s style and their 

students’ prior knowledge and skills as well as their motivational characteristics. Also, the 

bandwidth for the different ways in which EBAE curricula and pedagogies can be adapted, 

implemented and still be successful in producing desired student learning is limited. Thus, if an 

EBAE curriculum or pedagogy is replicated in a somewhat modified form and does not produce 

the desired learning outcome, instructors may feel disappointed and quit using that innovative 

EBAE approach. Instructional pragmatism framework advocates that when an EBAE approach 

does not appear to be successful in improving student learning, instructors should be flexible and 

persistent and remind themselves that improving teaching and learning is a process that requires 

refinement and tweaking to yield desired outcome. Therefore, instead of giving up on the EBAE 

approaches, they should cultivate instructional pragmatism, keep several EBAE approaches in 

their tool box and be pragmatic about adopting and adapting various EBAE approaches that meet 

the needs of their students as well as the constraints of their classroom in order to help their students 

master physics concepts. 
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3.1.3  Goal and motivation 

The goal and motivation of this work are to illustrate an example of instructional 

pragmatism in which a quantum physics instructor did not lose hope when an EBAE method 

involving implementation of a sequence of clicker questions on addition of angular momentum 

did not yield expected learning outcomes on the posttest administered after the clicker question 

sequence even though it was found effective in earlier implementations by other instructors. 

Instead, the instructor viewed improving teaching and learning as a continuous process, remained 

optimistic and employed another EBAE method with the same set of students and implemented it 

as homework that did not require him to spend more time in class on this topic. In particular, the 

instructor created an out of class opportunity for students to productively struggle [47-49] with the 

same posttest problems on addition of angular momentum that they had not performed well on by 

incentivizing them to correct their mistakes before providing the correct solution. The instructor’s 

flexibility and use of another field-tested pedagogy, “incentives for learning from mistakes,” 

appear to be effective in that students’ performance on one of the addition of angular momentum 

problems posed on the final exam shows that students who corrected their mistakes benefited from 

the exercise and learned about addition of angular momentum better than those who did not correct 

their mistakes. We argue that supporting and aiding physics instructors to embrace instructional 

pragmatism can go a long way in helping their students learn physics since it will encourage them 

to be persistent in using various EBAE approaches flexibly as they refine and tweak their 

implementation. 
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3.1.4  Background on clicker questions 

Here we discuss instructional pragmatism in the context of a quantum mechanics course in 

which instructors first used an EBAE pedagogy involving sequences of clicker questions. Clicker 

questions (also known as concept tests) are conceptual multiple-choice questions typically 

administered in the classroom to engage students in the learning process and obtain feedback about 

their learning via a live feedback system called clickers [50-56]. Integration of peer interaction 

with lectures via clicker questions has been popularized in the physics community by Mazur [50]. 

In Mazur's approach, the instructor poses conceptual, multiple-choice clicker questions to students 

which are interspersed throughout the lecture. Students first answer each clicker question 

individually, which requires them to take a stand regarding their thoughts about the concept(s) 

involved. Students then discuss their answers to the questions with their peers and learn by 

articulating their thought processes and assimilating their thoughts with those of the peers. Then 

after the peer discussion, they answer the question again using clickers, followed by a general class 

discussion about those concepts in which both students and the instructor participate. The feedback 

that the instructor obtains is also valuable because it provides an estimate of the prevalence of 

student common difficulties and the fraction of the class that has understood the concepts and can 

apply them in the contexts in which the clicker questions are posed. The use of clickers keeps 

students alert during lectures and helps them monitor their learning. Clicker questions can be used 

in the classroom in different situations, e.g., they can be interspersed within lectures to evaluate 

student learning in each segment of a class focusing on a concept, at the end of a class or to review 

materials from previous classes at the beginning of a class. While clicker questions for introductory 

[50-56] and upper-level physics such as quantum mechanics [57] have been developed, there have 

been very few documented efforts [58] toward a systematic development and validation of clicker 
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question sequences (CQSs), e.g., question sequences on a given concept that can be used in a few 

class periods when students learn the concepts and that build on each other effectively to help 

students organize their knowledge structure. 

3.1.5  Background on “Incentives for Learning from Mistakes” pedagogy 

The discussion of instructional pragmatism in the context of a quantum mechanics course 

here involves an instructor using an EBAE pedagogy that involves giving incentives to students to 

learn from their mistakes when the CQS did not yield the desired outcome on the posttest after 

CQS implementation. In order to appreciate the ILM pedagogy, we must recognize that two 

characteristics of physics experts are that they have learned how to learn and they use problem 

solving as an opportunity for learning [59-63]. In particular, experts automatically reflect upon 

their mistakes in their problem solution in order to repair, extend and organize their knowledge 

structure.  Unfortunately, for many students, problem solving is a missed learning opportunity 

[59,60]. Without guidance, students often do not reflect upon the problem solving process after 

solving problems in order to learn from them nor do they make an effort to learn from their 

mistakes after the graded problems are returned to them [59,60]. The incentives for learning from 

mistakes pedagogy are based on the tenet that instructors can explicitly prompt students to learn 

from their mistakes by rewarding them for correcting their mistakes [61-63]. This type of activity 

over time can also help them learn to make use of problem solving as a learning opportunity. 

Here we discuss instructional pragmatism in the context of implementation of ILM 

pedagogy in a junior/senior level quantum mechanics course when a CQS did not yield the learning 

gains expected by the instructor. Prior research has focused on how introductory physics students 

differ from physics experts and strategies that may help introductory students learn to learn [61-
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62]. By comparison, few investigations have focused on the learning skills of advanced physics 

students [63], although investigations have been carried out on the difficulties advanced students 

have with various advanced topics such as quantum physics [64-107]. In fact, it is commonly 

assumed that most physics majors in junior and senior years have not only learned a wide body of 

physics content but have also picked up the habits of mind and self-monitoring skills needed to 

build a robust knowledge structure [63]. Many physics instructors take for granted that advanced 

physics students will learn from their own mistakes in problem solving without explicit prompting, 

especially if students are given access to clear solutions. It is implicitly assumed that, unlike 

introductory students, advanced students have become independent learners and will take the time 

out to learn from their mistakes, even if the instructors do not reward them for fixing their mistakes, 

e.g., by explicitly asking them to turn in, for course credit, a summary of the mistakes they made 

and writing down how those mistakes can be corrected [63]. However, such assumptions about 

advanced students' superior learning and self-monitoring skills have not been substantiated by 

research. In an earlier investigation, Mason and Singh [60] investigated the extent to which upper-

level students in quantum mechanics learn from their mistakes. They administered four problems 

in the same semester twice, both on the midterm and final exams in an upper-level quantum 

mechanics course. The performance on the final exam shows that while some students performed 

equally well or improved compared to their performance on the midterm exam on a given question, 

a comparable number performed poorly both times or regressed (i.e., performed well on the 

midterm exam but performed poorly on the final exam). The wide distribution of students' 

performance on problems administered a second time points to the fact that many advanced 

students may not automatically exploit their mistakes as an opportunity for repairing, extending, 

and organizing their knowledge structure. Mason and Singh also conducted individual interviews 
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with a subset of students to delve deeper into students' attitudes toward learning and the importance 

of organizing knowledge. They found that many students focused on selectively studying for the 

exams and did not necessarily look at the solutions provided by the instructor for the midterm 

exams to learn, partly because they did not expect those problems to be repeated on the final exam 

and/or found it painful to confront their mistakes.  

The ILM pedagogy proposes giving incentives to students for learning from their mistakes, 

e.g., by explicitly rewarding them for correcting their mistakes before giving them the correct 

solutions because productive struggle while diagnosing one’s mistakes and learning from them 

can be an excellent learning opportunity both for learning content and developing useful skills. 

Students may gain a new perspective on their mistakes by asking themselves reflective questions 

while solving the problems correctly making use of the resources, e.g., their class notes and 

textbook available to them. In a prior study spanning four years in which advanced undergraduate 

physics students taking a quantum mechanics course, these students were given the same four 

problems in both the midterm exam and final exam (similar to the Mason and Singh study [63]). 

Approximately half of the students were given incentives to correct their mistakes in the midterm 

exam and could get back up to 50% of the points lost on each midterm exam problem.  The 

solutions to the midterm exam problems were provided to all students but those who corrected 

their mistakes were provided the solution after they submitted their corrections to the instructor.  

The performance on the final exam on the same problems suggests that students who were given 

incentives to correct their mistakes significantly outperformed those who were not given an 

incentive [63]. It was found that the incentive to correct the mistakes on the midterm exam had the 

greatest impact on the final exam performance of students who did poorly on the midterm exam, 

which is very encouraging [63]. 
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3.1.6  Organization of chapter 

The rest of the chapter is organized as follows. Since CQS was used as the first EBAE 

pedagogy by the instructors, in section II, we discuss the learning goals and methodology for the 

development, validation and in-class implementation of the clicker question sequence on addition 

of angular momentum. In section III, we discuss a case in which the implementation of the CQS 

did not produce the desired performance on the posttest.  The instructor subsequently used another 

EBAE pedagody, which offered grade incentive to the students for correcting their own mistakes. 

In section IV, we conclude with a discussion and summary. 

3.2 THE EBAE APPROACH INVOLVING CLICKER QUESTIONS SEQUENCE 

Before we discuss how the CQS on addition of angular momentum in quantum mechanics 

(QM) was implemented by the instructors, we summarize its development and validation process 

including its learning goals. This CQS was developed for students in upper-level undergraduate 

QM courses by taking advantage of the learning goals and inquiry-based guided learning 

sequences in a research-validated Quantum Interactive Learning Tutorial (QuILT) on this topic 

[105,106] as well as by refining, fine-tuning and adding to the existing clicker questions from our 

group which have already been individually validated [107]. The CQS can be used in class either 

separately from the QuILT or synergistically with the corresponding QuILT [105] if students 

engage with the QuILT after the CQS as another opportunity to reinforce the concepts learned. 

The learning goals and inquiry-based learning sequences in the QuILT, which guided the 

development and sequencing of the CQS questions, were developed using extensive research on 
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student difficulties with these concepts as a guide and cognitive task analysis from an expert 

perspective. 

3.2.1  Learning Goals 

One learning goal of the CQS (consistent with the QuILT) is that students should be able 

to identify the dimensionality of the product space of the spin of two particles.  For example, if a 

system consists of two spin-1 particles with individual three-dimensional spin Hilbert spaces, the 

product space of the two spin system is the product of those dimensions, 3×3=9 (not the sum of 

dimensions, 3+3=6). Another learning goal of the CQS is that students are able to choose a suitable 

representation, such as the “uncoupled” or “coupled” representation, and construct a complete set 

of basis states for the product space in that representation.  We note that the concepts related to the 

addition of orbital and spin angular momenta are analogous so here we will only focus on spin. In 

standard notation, the basis states in the uncoupled representation are eigenstates of Ŝ1
2,  Ŝz1, Ŝ2

2 and 

Ŝz2 and can be written as |s1, ms1⟩ ⊗ |s2, ms2⟩. Here each particle’s individual spin and z-

component of spin quantum numbers are 𝑠1, 𝑠2 and 𝑚𝑠1, 𝑚𝑠2, respectively. On the other hand, in 

the coupled representation, the basis states, |s,ms⟩, are eigenstates of Ŝ1
2, Ŝ2

2, Ŝ2, and Ŝz where 𝑆̂ =

𝑆̂ 1 + 𝑆̂ 2 and the total spin quantum number, s, and the z-component of the spin quantum number,  

ms, are for the entire system.  Students should be able to use the addition of angular momentum 

to determine that the total spin  quantum number of the system s can range from s1 + s2 down to 

|s1 − s2|, with integer steps in between, where s1  and s2 are the individual spin quantum numbers 

for the particles.  The z-component of the spin of the composite system is ms = ms1 + ms2.  

Another learning goal of the CQS is that students be able to calculate matrix elements of various 
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operators corresponding to observables (e.g., a Hamiltonian in the product space) in different 

representations. 

3.2.2  Development and Validation 

Based upon the learning goals of the QuILT, questions in the addition of angular 

momentum CQS were developed or adapted from prior validated clicker questions and sequenced 

to balance difficulties, avoid change of both concept and context between adjacent questions as 

appropriate in order to avoid cognitive overload [108], and include a mix of abstract and concrete 

questions to help students develop a good grasp of the concepts. The validation was an iterative 

process. 

After the initial development of the addition of angular momentum CQS using the learning 

goals and inquiry-based guided sequences in the QuILT and existing individually validated CQSs, 

we iterated the CQS with three physics faculty members who provided valuable feedback on fine-

tuning and refining both the CQS as a whole and some new questions that were developed and 

adapted with existing ones to build the CQS to ensure that the questions were unambiguously 

worded and build on each other based upon the learning goals. We then conducted individual 

think-aloud interviews with advanced students who had learned these concepts via traditional 

lecture-based instruction in relevant concepts to ensure that they interpreted the CQS questions as 

intended and the sequencing of the questions provided the appropriate scaffolding support to 

students. This version of the CQS has 11 questions, which can be grouped into three sections (to 

be discussed below) and can be integrated with lectures in which these relevant concepts are 

covered in a variety of ways based upon the instructor’s preferences. 
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The addition of angular momentum CQS has three sections that can be used separately or 

together depending, e.g.,  upon whether these are integrated with lectures similar to Mazur’s 

approach, used at the end of each class or used to review concepts after students have learned via 

lectures everything related to addition of angular momentum that the instructor wanted to teach. 

The first section of the CQS, CQ1-CQ3, focuses on the uncoupled representation with basis states 

|s1ms1⟩ ⊗ |s2, ms2⟩.  The first question focuses on student understanding of the notation for the 

basis states in this representation along with the dimensionality of the product space and be able 

to write a complete set of basis states looks like. Following this question, CQ2 and CQ3 build on 

this understanding, asking students to identify the operators for which the basis states in the 

uncoupled representation are eigenstates and about some diagonal and off-diagonal matrix 

elements of various operators and whether they are zero or non-zero (i.e., determining whether 

operators are diagonal in the uncoupled representation).  This section of the CQS concludes with 

a class discussion in which the instructor may review characteristics of this representation, as well 

as address any common difficulties exhibited by students. 

The second section of this CQS, CQ4-CQ6, deals with the coupled representation with 

basis states |s,ms⟩ (where s1and s2 are suppressed).  The structure and concepts in these questions 

shown below are analogous to the structure of the first section, allowing students to compare and 

contrast these two representations. 

 

 

(CQ4)  Choose all of the following statements about the product space for a system of two spin-

1/2 particles in the coupled representation that are correct: 

 

I. The dimensionality of the product space is the product of the dimensions of each particle’s 
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subspace, which is 2x2=4. 

II. |𝑠,  𝑚𝑠⟩ is an appropriate form for the basis states, where s ranges from |𝑠1-𝑠2| to 𝑠1+𝑠2 by 

integer steps, and 𝑚𝑠=𝑚𝑠1+𝑚𝑠2,  ranging from –s to s in integer steps for each s. 

III. |1,1⟩, |1,0⟩, |1, −1⟩, and |0,0⟩ are the elements of a complete set of basis states. 

 

a) I only 

b) b)   I and II only 

c) c)   I and III only 

d)   II and III only 

e) All of the above 

 

 

(CQ5)  Choose all of the following statements about the product space for a system of two spin-

1/2 particles in the coupled representation that are correct: 

I. Basis state |1, −1⟩ is an eigenstate of 𝑆̂2 such that 𝑆̂2|1, −1⟩ = 2ℏ2|1, −1⟩. 

II. Basis state |1, −1⟩ is an eigenstate of both 𝑆̂1
2 𝑎𝑛𝑑 𝑆̂2

2 such that 𝑆̂1
2|1, −1⟩ = 2ℏ2|1, −1⟩ and 

𝑆̂2
2|1, −1⟩ = 2ℏ2|1, −1⟩. 

III. Basis state|1, −1⟩ is an eigenstate of 𝑆̂𝑧1, 𝑆̂𝑧2, and 𝑆̂𝑧. 

 

a) I only 

b)   I and II only 

c)  I and III only 
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d)   II and III only 

e) All of the above 

 

 

(CQ6)  Consider the product space of a system of two spin-1/2 particles.  Choose all of the 

following that are correct regarding the scalar products in the coupled representation. (Recall 

that these scalar products give the matrix elements of the 𝑆̂1𝑧 + 𝑆̂2𝑧 operator in this basis). 

 

I.  ⟨1,1|(𝑆̂𝑧1 + 𝑆̂𝑧2)|1,0⟩ = ⟨1,1|𝑆̂𝑧|1,0⟩ = 0  

II. ⟨1, −1|(𝑆̂𝑧1 + 𝑆̂𝑧2)|1, −1⟩ = ⟨1, −1|𝑆̂𝑧|1,−1⟩ = −ℏ 

III. (𝑆̂𝑧1 + 𝑆̂𝑧2) is diagonal in the coupled representation. 

IV. (𝑆̂𝑧1 + 𝑆̂𝑧2) is diagonal in the uncoupled representation. 

 

a) II and III only 

b)   I, II, and III only 

c)   I and IV only 

d)   I, II, and IV only 

e)  All of the above. 

 
 

 

As noted, the first two sections of the addition of angular momentum CQS deal with only 

one representation at a time, and only with a system of two spin-1/2 particles.  This choice is 
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deliberate by design to avoid cognitive overload and allow students to revisit these representations 

in a familiar context since typical instruction on these concepts tends to emphasize a system of two 

spin-1/2 particles first. 

The third section of the CQS extends these concepts to higher dimensional product spaces 

for both coupled and uncoupled representations. For example, CQ7 deals with the dimensionalities 

of the product space for systems of two spins that are not both spin-1/2. Then, CQ8 and CQ9 ask 

students to identify basis states in the coupled and uncoupled representations for these less familiar 

two-spin systems. Also, CQ12 and CQ13 ask students to identify the basis in the product space in 

which given Hamiltonians are diagonal (note that these are numbered differently because two 

questions were added after CQ9 later on).  These Hamiltonians are comprised of operators 

addressed previously in the first questions of the CQS. 

3.2.3  In-class implementation by instructor A 

A The CQS was implemented with peer discussion [50] in an upper-level undergraduate 

QM class at a large research university (Pitt) after traditional lecture-based instruction in relevant 

concepts on the addition of angular momentum in which students learned about the coupled and 

uncoupled representations not only for a system of two spin-1/2 particles but also for systems for 

which the product spaces involve higher dimensions. Prior to the implementation of the CQS in 

class, students took a pretest after traditional instruction in each class, which was developed and 

validated by Zhu et al. [105] to measure comprehension of the concepts of addition of angular 

momentum. The first six questions in the CQS were implemented together right after the pretest. 

The last five questions in the third section of the addition of angular momentum CQS were 

implemented at the beginning of the next class to review concepts covered earlier in the lectures 
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on product spaces involving higher dimensions. The posttest was administered during the 

following week to measure the impact of the CQS. 

On the pretest, students were given a system of two spin-1/2 particles and a spin-spin 

interaction Hamiltonian, Ĥ1 = (
4𝐸0

ℏ2⁄ ) Ŝ1 ∙ Ŝ2 = (
2𝐸0

ℏ2⁄ ) (Ŝ2 − Ŝ1
2 − Ŝ2

2), and a magnetic 

field-spin interaction Hamiltonian, Ĥ2 = −μB(𝑆̂𝑧1 + 𝑆̂𝑧2), and asked to answer these questions: 

(a) Write down a complete set of basis states for the product space of a system of two spin-1/2 

particles. Explain the labels you are using to identify your basis states. 

(b) Evaluate one diagonal and one off-diagonal matrix element of the Hamiltonian 𝐻̂1 (of your 

choosing) in the basis you have chosen. Label the matrix elements so that it is clear which matrix 

elements they are. 

(c) Evaluate one diagonal and one off-diagonal matrix element of the Hamiltonian 𝐻̂2 (of your 

choosing) in the basis you have chosen. Label the matrix elements so that it is clear which matrix 

elements they are. 

(d) Are both Hamiltonians 𝐻̂1 and 𝐻̂2 diagonal matrices in the basis you chose? 

The posttest that students were administered following the implementation of the CQS was 

analogous to the pretest [5] and asked the same questions as the pretest but for a system of one 

spin-1/2 particle and one spin-1 particle. These pre/posttests are very similar to those administered 

by Zhu et al. to measure student learning after traditional instruction and after engaging with the 

addition of angular momentum QuILT [105]. However, due to time constraints in the classroom, 

questions (b) and (c), which had previously asked students to construct the entire matrix 

representation of the Hamiltonians, were reduced as stated earlier to evaluation of only one 

diagonal and off-diagonal matrix element [105].  In order to compare the performance of CQS and 

QuILT groups on pre/posttests so that the relative improvements can be determined, the same 
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rubric was used for pre-/posttests given to the CQS students as the QuILT students in Ref. [105] 

(who were also advanced undergraduate students in QM). Questions (a), (b), and (c) were each 

worth 3 points, and students were awarded partial credit if only some basis states in (a) or some 

matrix elements in (b) or (c) were correct.  Question (d) was worth 1 point (correct answer “yes or 

no”). 

3.2.4  In-class implementation results for CQS by instructor A in class A 

Tables 3.1 and 3.2 compare pre/posttest performances of upper-level QM students from 

the same university in two different years after traditional lecture-based instruction (pretest) and 

on posttest after students had engaged with the CQS (Table 3.1) or QuILT (Table 3.2) on the 

addition of angular momentum. The normalized gain (or gain) is calculated as 𝑔 = (𝑝𝑜𝑠𝑡% −

𝑝𝑟𝑒%)/(100% − 𝑝𝑟𝑒%) [2] and presented in both Tables 3.1 and 3.2 but effect size is calculated 

only in Table 3.1 (not available for Table 3.2 data in Ref. [105]).  Effect size was calculated as 

Cohen’s 𝑑 = (𝜇𝑝𝑜𝑠𝑡 − 𝜇𝑝𝑟𝑒)/𝜎𝑝𝑜𝑜𝑙𝑒𝑑 where 𝜇𝑖 is the mean of group i and 𝜎𝑝𝑜𝑜𝑙𝑒𝑑 is the pooled 

standard deviation [109]. 

 

Table 3.1 Comparison of mean pre/posttest scores on each question, normalized gains and effect sizes for upper-

level undergraduate QM students in class A who engaged with the CQS on addition of angular momentum concepts 

(N=16). 

Question Pretest Mean Posttest Mean Normalized Gain (g) Effect Size (d) 

(a) 59% 95% 0.88 0.30 
(b) 24% 48% 0.31 0.22 
(c) 17% 71% 0.66 0.44 

(d) 14% 43% 0.33 0.67 

Total 31% 69% 0.54 0.35 
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Table 3.2 Comparison of mean pre/posttest scores on each question and normalized gains from Ref. [105] (effect 

sizes not available) for upper-level undergraduate QM students who engaged with the QuILT on addition of angular 

momentum concepts (N=26). 

Question Pretest Mean Posttest Mean Normalized Gain (g) 

(a) 77% 85% 0.35 
(b) 8% 54% 0.50 
(c) 8% 73% 0.71 

(d) 31% 85% 0.78 

Total 34% 72% 0.58 
 

Although the number of students in each class is small and the pretest scores in Tables 3.1 

and 3.2 are often different, they are low in both tables (except for question (a) in Table 3.2). 

However, the comparison of the posttest scores of the CQS group and the QuILT group in Tables 

3.1 and 3.2 suggests that the CQS is effective in helping students learn to construct a complete set 

of basis states (question (a)) and calculate matrix elements for the magnetic field-spin interaction 

Hamiltonian (question (c)), garnering similar posttest scores to those of students who engaged with 

the QuILT.  However, Table 3.1 also shows that students did not perform well on questions (b) 

and (d) even after engaging with the CQS. Review of student responses suggests that a major 

reason for the poor performance on both of these questions, even after the CQS, is due to the fact 

that a majority of students chose the basis to be the uncoupled representation (since it is the simpler 

representation for constructing the basis states) and then had difficulty with the matrix elements of 

the spin-spin interaction Hamiltonian in questions (b) and (d) since it is only diagonal in the 

coupled representation. In particular, in question (a), many students correctly constructed a 

complete set of basis states, but chose the uncoupled representation.   
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We note that while the magnetic field-spin interaction Hamiltonian in question (c) is 

diagonal in both coupled and uncoupled representations, calculating the matrix elements of the 

spin-spin interaction Hamiltonian in question (b) in the uncoupled representation is challenging 

since that operator is not diagonal in this basis.  Along with a reasonable posttest score for question 

(a), the CQS group students’ poor posttest score on questions (b) and (d) in Table 3.1 is due to the 

fact that while students learned to construct a complete set of basis states, many were not versed 

in calculating the matrix elements of an operator in a representation in which it is not diagonal as 

in question (b) (many students assumed that the spin-spin Hamiltonian in question (b) is also 

diagonal in the uncoupled representation, which it is not). 

In fact, for question (d), even after the CQS, many students claimed that both Hamiltonians 

are diagonal in the uncoupled representation they had chosen. Since students were only asked to 

calculate a single off-diagonal matrix element in question (b), some students who correctly 

calculated an off-diagonal matrix element in question (b) that was zero concluded that the entire 

𝐻̂1 matrix is diagonal in the uncoupled representation which it is not. On the other hand, a 

comparison of student performances on posttest in Tables 3.1 and 3.2 for questions (b) and (d) 

suggests that most students who engaged with the QuILT answered question (d) correctly but 

struggled to calculate matrix elements on the posttest in question (b). 

Moreover, based on think-aloud interviews, we find that QM experts are more likely to 

consider whether different operators are diagonal in a given representation before choosing a basis 

to evaluate the matrix elements of the two Hamiltonians.  They generally preferred to use the 

coupled representation since both Hamiltonians are diagonal in that representation (all off-diagonal 

matrix elements in questions (b) and (c) are zero). Since think-aloud interviews suggest that 

students did not, in general, automatically do this type of metacognition before selecting a basis 
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for evaluating the matrix elements, the CQS was revised to explicitly offer such opportunity to 

students. In particular, more scaffolding was provided to help students construct a set of basis 

states that is not only complete, but is also convenient for evaluating the matrix elements of 

operators corresponding to the observables of interest (e.g., choosing the coupled representation 

would have made both Hamiltonians diagonal in the basis and made it significantly easier to 

calculate the matrix elements).  We refined the second section of the CQS, which deals with the 

coupled representation, to offer additional practice in constructing a basis in this less familiar case.  

Also, the third section of the CQS was refined to offer more practice in identifying a representation 

in which a given operator is diagonal. 

3.3 INSTRUCTIONAL PRAGMATISM: COMBINING TWO EBAE METHODS 

DYNAMICALLY 

Before Instructional pragmatism which involves staying optimistic and persistent and 

continually refining an EBAE approach or changing to a different one and adapting it to fit the 

needs of their students dynamically is an invaluable skill for any instructor.  While EBAE strategies 

are likely to provide promising results in a classroom after a few implementations, the instructors 

must consider the improvement in teaching and learning to be a process that may not yield the 

desired outcome in the first few implementations. In particular, the implementation of the EBAE 

methods needs to be refined and tweaked to suit instructors’ teaching style and their students’ prior 

knowledge and skills and is not a one-size-fits-all panacea.  For this reason, it is important for 

instructors to have several EBAE instructional tools in their toolbox.  
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    Following the implementation of the CQS in class A, which yielded reasonably good 

performance on two posttest questions but not on the other two posttest questions after students 

engaged with the CQS, two more clicker questions were developed and validated based upon the 

difficulties found after implementation in class A. These two new questions, CQ10 and CQ11, 

along with guided discussion after existing CQ12 and CQ13 (see the Appendix), were added to 

provide more support for addressing difficulties with working in the coupled representation and 

identifying convenient bases for answering different questions. This slightly amended CQS was 

then implemented in class B by instructor B, who was a different instructor than that for class A. 

The implementation of the CQS in class B followed the same procedure discussed in the preceding 

section for class A. 

   Table 3.3 shows class B’s performance on all parts of both the pretest and posttest. Table 

3.3 shows that students’ average posttest performance was poor except on question (a).  They 

performed significantly worse than class A (in Table 3.1) even on question (c). Although the 

normalized gains and effect sizes on all questions are reasonable (see Table 3.3), the instructor of 

course B was concerned about the learning as measured by the posttest scores and the fact that a 

majority of students had not mastered the concepts.  Although how the CQS was implemented in 

class B could have play an important role in why the students did not benefit significantly from it, 

one likely reason for not benefiting from the CQS is that students did not have sufficient initial 

knowledge (as evidenced by the pretest scores) before they engaged with the CQS. For example, 

when roughly half of the students know the correct answers to the clicker questions, the peer 

discussions during the implementation of the clicker questions is generally effective [50]. One 

possible reason for the low prior preparation as evidenced by the pretest scores may be that the 

instructor of class B did not spend sufficient time before the CQS on discussing the relevant 
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underlying concepts (e.g., on questions (b) and (d), students in class B performed very poorly on 

the pretest as shown in Table 3.3 and for those questions their posttest scores are also less than 

40%). 

Table 3.3 Comparison of mean pre/posttest scores on each question, normalized gains and effect sizes for upper-

level undergraduate QM students in class B who engaged with the CQS on addition of angular momentum concepts 

(N=19). 

Part Pretest Mean Posttest Mean Normalized Gain 
(g) 

Effect Size (d) 

(a) 46% 86% 0.74 0.26 
(b) 5% 39% 0.35 0.30 
(c) 12% 53% 0.46 0.30 

(d) 3% 34% 0.32 0.66 

Total 19% 57% 0.46 0.30 
 

Following these posttest results on addition of angular momentum, the instructor used 

instructional pragmatism and implemented another active learning pedagogy.  In particular, the 

instructor use the ILM pedagogy and returned the posttests to students with grades and incorrect 

parts marked but without explanations, and asked them to correct their mistakes as homework in 

return for up to half of the quiz points they had lost.  Unlike the earlier implementation of the ILM 

pedagogy in quantum mechanics in which students were asked to correct their mistakes on 

midterm exam with similar incentives to earn 50% of the missed points (in which case all students 

corrected their mistakes), not all students took advantage of the opportunity because the posttest 

was a low stakes quiz worth less than 1% of a student’s final grade in the course.  Table 3.4 shows 

the results after 12 of the 19 students made corrections to their posttests.  With instructional 

pragmatism and implementation of both the CQS and learning from mistakes pedagogies, students 

in class B who corrected their mistakes demonstrated better performance (see Table 3.4). 

Moreover, we note that instructor B gave question (c) as part of the midterm exam. After 
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corrections, students who corrected their mistakes on the posttest obtained an average score of 

85% on this problem. Meanwhile, students who did not correct their posttest obtained an average 

score of 71% (note that those who corrected their mistakes initially had a slightly lower score on 

this question than those who did not correct their mistakes). While students who did not correct 

their mistakes also performed better on the midterm exam (71%) since they also had access to the 

correct solution and had further opportunity to learn concepts, those who corrected their mistakes 

performed significantly better than them (85%). 

 

Table 3.4 Comparison of mean score on each question before and after student corrections for upper-level 

undergraduate QM students in class B who engaged with the CQS on addition of angular momentum concepts and 

also engaged with the ILM pedagogy to learn from their mistakes.  Columns showing only students who made 

corrections (N=12) are shown alongside the class average (N=19).   

Part Initial Posttest After Corrections 

 Correctors (N=12) Non-Correctors 
(N=7) 

All Participants 
(N=19) 

Correctors (N=12) 

(a) 94% 71% 86% 100% 

(b) 47% 24% 39% 94% 

(c) 50% 57% 53% 86% 

(d) 25% 50% 34% 67% 

Total 60% 51% 57% 91% 
 

3.4 DISCUSSION AND SUMMARY 

Physics education researchers have developed many evidence-based active engagement 

(EBAE) curricula and pedagogies and documented their effectiveness in certain physics classes at 

some institutions.  While there are intense efforts being made to disseminate these EBAE curricula 
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and pedagogies, their sustained adoption and adaptation in physics classes have been slow. Even 

instructors who adapt EBAE approaches in their classes often give up if they do not yield desirable 

learning outcomes in early implementation. Here we argue that physics instructors should be 

pragmatic about their instructional approaches and view improvement in their teaching and 

learning as a process. Instructional pragmatism also focuses on encouraging and supporting 

instructors to keep several EBAE learning tools and pedagogies in their toolbox. With the goal of 

improving their teaching and student learning, instructors should remain optimistic and flexible, 

dynamically combining various EBAE approaches if the results from the implementation of one 

of these EBAE approaches does not yield the desired outcome. Instructors should realize that all 

EBAE approaches have certain bandwidth of implementation in which they will be effective. 

Ensuring that the chosen approach is well-matched with their style and their students’ prior 

knowledge and skills may take time. In particular, because different instructors have different 

teaching styles, and varying degrees of familiarity with the tools they are using, some tools may 

prove to be less effective than anticipated based on those reported in publications at least in earlier 

implementation so that an iterative approach with successive refinements will get them closer to 

their goal.  Moreover, when an approach does not yield the desired learning outcome, an instructor 

should be pragmatic and be willing to improvise using additional EBAE methods commensurate 

with the constraints of their course in order to improve learning of students who did not benefit 

from one strategy.   

We presented an example of instructor B with instructional pragmatism who first used 

clicker question sequences on addition of angular momentum because engaging students with 

well-designed clicker questions is one of the commonly used EBAE strategy in physics courses 

with a relatively low barrier to implementation. The in-class evaluation of the CQS using peer 
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instruction in upper-level QM involved comparing students’ performance after engaging with the 

CQS with previously published data from the QuILT pertaining to these concepts. This CQS was 

implemented by two instructors (A and B) in two QM classes in consecutive years. After the in-

class implementation of the CQS on the addition of angular momentum in Class A, it was found 

that the CQS was effective in helping students construct a complete set of basis states in a product 

space and in calculating matrix elements for an operator that is diagonal in that basis.  However, 

in-class evaluation also showed that a few additional questions can be included to guide students 

in selecting a representation that simplifies the task of calculating the matrix elements of an 

operator corresponding to an observable (e.g., choosing a basis in which the Hamiltonian operator 

is diagonal).  Instructor A did not use additional EBAE methods to help students learn about these 

topics. The slightly modified CQS was then implemented the following year at the same institution 

by instructor B in QM Class B and student performance on many of the questions was worse than 

those of instructor A’s students suggesting insufficient mastery of the concepts even after the CQS 

implementation.   

As noted, this is not an uncommon occurrence for instructors adopting new instructional 

tools, as the instructional tool must be adapted to the instructor’s style as well as students’ prior 

preparation.  In this case, because both before and after the CQS implementation, class B’s 

conceptual understanding was lagging relative to both Class A and the QuILT group, instructor B 

adapted to his class’s needs for further support.  He pragmatically used the ILM pedagogy from 

his instructional toolbox and gave students grade incentives to correct their mistakes on the 

posttest.  Students who took advantage of this opportunity and made posttest corrections not only 

showed gains on the revised posttest, they also performed better on a final exam question that 

focused on the same concepts.  We note that even students who did not make corrections to their 
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posttest had the opportunity to take advantage of learning from the solutions to the posttest 

provided for the class after students had the opportunity to correct their mistakes.  However, their 

average score on the final exam question was lower than that of the group that took advantage of 

the ILM pedagogy and corrected their mistakes on the posttest. This finding is consistent with the 

previous study involving the ILM pedagogy spanning several years in which advanced 

undergraduate physics students in a similar QM course performed better on related tasks after 

being given incentives to correct their mistakes [63]. 

In summary, instructional pragmatism and being flexible about using various EBAE 

pedagogies as appropriate to suit the instructional situation at a given time dynamically can go a 

long way in improving teaching and learning in all physics courses. 
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3.7 CHAPTER APPENDIX 

(CQ1)  Choose all of the following statements about the product space for a system of two spin-

1/2 particles in the uncoupled representation that are correct: 

 

I. The dimensionality of the product space is the product of the dimensions of each particle’s 

subspace, which is 2+2=4. 

II. |𝑠1𝑚𝑠1⟩ ⊗ |𝑠2, 𝑚𝑠2⟩ is an appropriate form for the basis vectors. 

III. |
1

2
,
1

2
⟩ ⊗ |

1

2
,
1

2
⟩, |

1

2
,
−1

2
⟩ ⊗ |

1

2
,
−1

2
⟩, and |

1

2
,
1

2
⟩ ⊗ |

1

2
,
−1

2
⟩ are a complete set of basis vectors. 

 

a) I only 

b)   II only 

c)   III only 

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxtb3JlcHVibGljYXRpb25zfGd4OjZkMzU5MzMyMzJjYTA1ZWU
http://dx.doi.org/10.1063/1.3680068
http://dx.doi.org/10.1119/perc.2018.pr.Justice
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d)   II and III only 

e) None of the above 

 

 

(CQ2)  Choose all of the following statements about the product space for a system of two spin-

1/2 particles in the uncoupled representation that are correct: 

 

I. Basis vector |
1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩ is an eigenstate of 𝑆̂1𝑧 such that:  𝑆̂1𝑧 |

1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩ =

(𝑆̂1𝑧 ⊗ 𝕀) (|
1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩)  = (𝑆̂1𝑧 |

1

2
,
−1

2
⟩) ⊗ (𝕀 |

1

2
,
1

2
⟩) =

−ℏ

2
|
1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩. 

II. Basis vector |
1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩ is an eigenstate of 𝑆̂2𝑧 such that:  𝑆̂2𝑧 |

1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩ = 

(𝕀 ⊗ 𝑆̂2𝑧) (|
1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩)  = (𝕀 |

1

2
,
−1

2
⟩) ⊗ (𝑆̂2𝑧 |

1

2
,
1

2
⟩) =

ℏ

2
(|

1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩). 

III. Basis vector |
1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩ is an eigenstate of 𝑆̂1

2 and 𝑆̂2
2. 

 

a) I only 

b)  II only 

c)  I and III only 

d)   II and III only 

e) All of the above 

 

 

(CQ3)  Consider the product space of a system of two spin-1/2 particles in the uncoupled 
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representation.  In this representation, 𝑖𝑡 𝑖𝑠 𝑚𝑜𝑠𝑡 𝑢𝑠𝑒𝑓𝑢𝑙 𝑡𝑜 𝑤𝑟𝑖𝑡𝑒 𝑆̂1 ∙ 𝑆̂2  as 
𝑆̂1−𝑆̂2++𝑆̂1+𝑆̂2−

2
+

𝑆̂1𝑧𝑆̂2𝑧. Choose all of the following that are correct concerning scalar products.  (Recall that these 

scalar products give the matrix elements of the 𝑆̂1−𝑆̂2+ matrix in this basis). 

 

I. ⟨
1

2
,
−1

2
| ⊗ ⟨

1

2
,
1

2
| 𝑆̂1−𝑆̂2+ |

1

2
,
1

2
⟩ ⊗ |

1

2
,
−1

2
⟩ = (⟨

1

2
,
−1

2
| 𝑆̂1− |

1

2
,
1

2
⟩)(⟨

1

2
,
1

2
| 𝑆̂2+ |

1

2
,
−1

2
⟩) = 0  

II.  𝑆̂1 ∙ 𝑆̂2 will be diagonal in uncoupled representation 

III.  ⟨
1

2
,
−1

2
| ⊗ ⟨

1

2
,
1

2
| 𝑆̂1−𝑆̂2+ |

1

2
,
1

2
⟩ ⊗ |

1

2
,
−1

2
⟩ = (⟨

1

2
,
−1

2
| 𝑆̂1− |

1

2
,
1

2
⟩)(⟨

1

2
,
1

2
| 𝑆̂2+ |

1

2
,
−1

2
⟩) = ℏ2 

IV. Some off-diagonal elements of 𝑆̂1 ∙ 𝑆̂2in the uncoupled representation are non-zero. 

 

a) II and III only 

b)  III and IV only 

c)   II and III only 

d)   I and IV only 

e) None of the above. 

 

 

(Class Discussion Notes)   

Basis vectors in uncoupled representation are eigenstates of 𝑆̂1𝑧 ,  𝑆̂2𝑧, 𝑆̂1
2, and 𝑆̂2

2. 

Basis vectors:|
1

2
,
1

2
⟩ ⊗ |

1

2
,
1

2
⟩, |

1

2
,
1

2
⟩ ⊗ |

1

2
,
−1

2
⟩, |

1

2
,
−1

2
⟩ ⊗ |

1

2
,
1

2
⟩, and |

1

2
,
−1

2
⟩ ⊗ |

1

2
,
−1

2
⟩ 

 

CQ4-CQ6 provided in the text are implemented here 
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(Class Discussion Notes)   

Basis vectors in the coupled representation are eigenstates of 𝑆̂𝑧, 𝑆̂1
2, 𝑆̂2

2, and 𝑆̂2. 

Basis vectors:|1,1⟩, |1,0⟩, |1, −1⟩, and |0,0⟩ 

 

Compare and contrast uncoupled and coupled representations. 

(CQ7)  Choose all of the following that are correct: 

 

I. The product space for a system of a spin-1 particle and a spin-3/2 particle is 3+4=7 

dimensional in both coupled and uncoupled representations. 

II. The product space for a system of a spin-1/2 particle and a spin-1 particle is 2x3=6 

dimensional in the coupled representation, but not in the uncoupled representation. 

III. The product space for a system of two spin-1 particles is 3x3=9 dimensional in both coupled 

and uncoupled representations. 

 

a) I only 

b)   II only 

c)  III only 

d)   II and III only 

e) None of the above 
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(CQ8)  Choose all of the following that are correct about the basis vectors in the uncoupled 

representation. 

 

I.  If 𝑠1 = 𝑠2 = 1,  |1, −1⟩ ⊗ |1,1⟩,   |1,
1

2
⟩ ⊗ |1,

1

2
⟩,   and |1,0⟩ ⊗ |1,1⟩ are appropriate basis 

vectors. 

II. If 𝑠1 = 𝑠2 =
3

2
,  |0,0⟩ ⊗ |1,1⟩, |1,1⟩ ⊗ |0,0⟩, and |1,0⟩ ⊗ |1,0⟩ are appropriate basis 

vectors. 

III. If 𝑠1 = 1,  𝑠2 =
3

2
,  |1,0⟩ ⊗ |

3

2
,
1

2
⟩ , |1,0⟩ ⊗ |

3

2
,
−3

2
⟩, and |1,1⟩ ⊗ |

3

2
,
3

2
⟩ are appropriate basis 

vectors. 

 

 

a) I only 

b)   II only 

c)  III only 

d)   II and III only 

e) None of the above 

 

 

(CQ9)  Choose all of the following that are correct about the basis vectors in the coupled 

representation: 

 

I. For the product space of a system of two spin-
𝟑

𝟐
 particles, the possible values for the total spin 
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quantum number s are 0, 1, 2, and 3, with some basis vectors being |3, −1⟩, |0, −1⟩, and |1,0⟩. 

II. For the product space of a system of two spin-1 particles, the possible values for s are 0, 1, 

and 2, with some examples of basis vectors being |1, −1⟩, |2,1⟩, and |0,0⟩. 

III. For the product space of a system of a spin-1 particle and a spin-3/2 particle, the possible 

values for s are 0, 1/2, 3/2, and 5/2 , with some basis vectors being |
5

2
,
−3

2
⟩, |

1

2
,
−1

2
⟩, and |

3

2
,
1

2
⟩. 

 

a) I only 

b)   II only 

c)  III only 

d)   II and III only 

e) None of the above 

 

 

(CQ10)  Choose all of the following that are correct about the product space of a system of a spin-

𝟏

𝟐
 particle and a spin-1 particle with the basis vectors in the coupled representation: 

 

I. The possible values for the total spin quantum number s are 
1

2
 and 

3

2
, with 𝑚𝑠 =

1

2
, 
−1

2
,
3

2
,
−3

2
 

for s =
3

2
 and 𝑚𝑠 =

1

2
, 
−1

2
 for s =

1

2
. 

II. This is a 4-dimensional product space with basis vectors |
1

2
,
1

2
⟩, |

1

2
, −

1

2
⟩, |

3

2
,
3

2
⟩, and |

3

2
, −

3

2
⟩ 

because the possible values of 𝑚𝑠 =
1

2
, 
−1

2
,
3

2
,
−3

2
. 

III. This is a 6-dimensional product space with basis vectors |
1

2
,
1

2
⟩, |

1

2
, −

1

2
⟩, |

3

2
,
3

2
⟩, |

3

2
, −

3

2
⟩, |

3

2
,
1

2
⟩, 
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and |
3

2
, −

1

2
⟩ because the values of 𝑚𝑠 =

1

2
, 
−1

2
,
3

2
,
−3

2
 for s =

3

2
 and 𝑚𝑠 =

1

2
, 
−1

2
 for s =

1

2
. 

 

a) I only 

b)   II only 

c)   I and II only 

d)   I and III only 

e)  All of the above. 

 

 

(Class Discussion Notes)   

What are the values of the total spin quantum number and the z component  of the total spin 

quantum number, s and 𝑚𝑠 , respectively, for the product space of a system of a spin-
𝟏

𝟐
 particle 

and a spin-1 particle, e.g., for writing the basis states in the coupled representation? 

 

What is the dimensionality of this product space? 

 

 

(CQ11)  When working with a given operator(s), it is useful to consider which representation is 

more convenient to work in. Choose all of the following statements that are correct about choosing 

a convenient basis to work in: 

I. Basis vectors in uncoupled representation are eigenstates of 𝑆̂1𝑧 ,  and 𝑆̂2𝑧, making a 

convenient basis for operators that commute with 𝑆̂1𝑧,  and 𝑆̂2𝑧. 

II. Basis vectors in the coupled representation are eigenstates of 𝑆̂𝑧 and 𝑆̂2, making a 
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convenient basis for operators that commute with 𝑆̂𝑧 and 𝑆̂2. 

III. Basis vectors in both couple and uncoupled representations are eigenstates of 𝑆̂1
2 and 𝑆̂2

2, 

making either convenient bases for operators that commute with 𝑆̂1
2 and 𝑆̂2

2. 

 

a) I only 

b)  II only 

c)  I and II only 

d)   I and III only 

e) All of the above 

 

 

(CQ12)  Consider the Hamiltonian 𝐻̂ = 𝐶𝑆̂1 ∙ 𝑆̂2. Choose all of the following statements that are 

correct about this operator acting on the basis vectors for the product space of a system of two 

identical particles with non-zero spin: 

 

I. The Hamiltonian matrix is diagonal in the coupled basis because the basis vectors in 

coupled representation are eigenstates of the operators 𝑆̂2,  𝑆̂1
2,  𝑎𝑛𝑑 𝑆̂2

2 

II. The Hamiltonian matrix is diagonal in the uncoupled basis because the basis vectors in 

uncoupled representation are eigenstates of the operators 𝑆̂1+, 𝑆̂1−, 𝑆̂2+, 𝑆̂2−, 𝑆̂1𝑧 ,  𝑎𝑛𝑑 𝑆̂2𝑧 

III. For a system of two identical spin-1/2 particles, this Hamiltonian matrix is 4-by-4 in either 𝑡ℎ𝑒 

coupled representation or uncoupled representation. 

 

a) I only 
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b)   II only 

c)   I and II only 

d)   I and III only 

e)  All of the above. 

 

 

(Class Discussion Notes)   

For the Hamiltonian 𝐻̂ = 𝐶𝑆̂1 ∙ 𝑆̂2, which representation is convenient? Uncoupled, coupled, both, 

or neither? Why? 

  

For the Hamiltonian 𝐻̂ = 𝐶𝑆̂1 ∙ 𝑆̂2, the Hamiltonian is diagonal in the coupled representation, but 

not the uncoupled representation. The coupled representation is convenient. 

 

 

(CQ13)  Consider the Hamiltonian 𝐻̂ = 𝐶(𝑆̂1𝑧 + 𝑆̂2𝑧). Choose all of the following statements 

that are correct about this operator acting on basis vectors for the product space of a system of 

two identical particles with non-zero spin: 

 

I. The Hamiltonian matrix is diagonal in the coupled basis because the basis vectors in the 

coupled representation are eigenstates of the operator 𝑆̂𝑧 = (𝑆̂1𝑧 + 𝑆̂2𝑧) 

II. The Hamiltonian matrix is diagonal in the uncoupled basis because the basis vectors in the 

uncoupled representation are eigenstates of the operators 𝑆̂1𝑧 𝑎𝑛𝑑 𝑆̂2𝑧 

III. For a system of two identical spin-1/2 particles, this Hamiltonian matrix is 4-by-4 whether 
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the coupled representation or uncoupled representation is chosen. 

 

a) I only 

b)   II only 

c)   I and II only 

d)   I and III only 

e)  All of the above. 

 

 

(Class Discussion Notes)   

For the Hamiltonian 𝐻̂ = 𝐶(𝑆̂1𝑧 + 𝑆̂2𝑧), which representation is convenient? Uncoupled, coupled, 

both, or neither? Why? 

 

For the Hamiltonian 𝐻̂ = 𝐶(𝑆̂1𝑧 + 𝑆̂2𝑧), the Hamiltonian is diagonal in both the coupled and 

uncoupled representations. 

Both the coupled and uncoupled representation are convenient. 
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4.0 DEVELOPMENT, VALIDATION, AND IN-CLASS EVALUATION OF A 

SEQUENCE OF CLICKER QUESTIONS ON LARMOR PRECESSION OF SPIN IN 

QUANTUM MECHANICS 

4.1 INTRODUCTION AND BACKGROUND 

Clicker questions (also known as concept tests) are conceptual multiple-choice questions 

typically administered in the classroom to engage students in the learning process and obtain 

feedback about their learning via a live feedback system called clickers [1-13]. Integration of peer 

interaction with lectures via clicker questions has been popularized in the physics community by 

Mazur [2]. In Mazur's approach, the instructor poses conceptual, multiple-choice clicker questions 

to students which are integrated throughout the lecture. Students first answer each clicker question 

individually, which requires them to take a stance regarding their thoughts about the concept(s) 

involved. Students then discuss their answers to the questions with their peers and learn by 

articulating their thought processes and assimilating their thoughts with those of the peers. Then 

after the peer discussion, they answer the question again using clickers followed by a general class 

discussion about those concepts in which both students and the instructor participate. The feedback 

that the instructor obtains is also valuable because the instructor has an estimate of the prevalence 

of student common difficulties and the fraction of the class that has understood the concepts and 

can apply them in the context in which the clicker questions are posed. The use of clickers keeps 

students alert during lectures and helps them monitor their learning. Clicker questions can be used 

in the classroom in different situations, e.g., they can be interspersed within lectures to evaluate 
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student learning in each segment of a class focusing on a concept, at the end of a class or to review 

materials from previous classes at the beginning of a class. 

While clicker questions for introductory [2] and upper-level physics such as quantum 

mechanics [14] have been developed, there have been very few documented efforts [15] toward a 

systematic development and validation of clicker question sequences (CQSs), e.g., question 

sequences on a given concept that can be used in a few class periods when students learn the 

concepts and that build on each other effectively and strive to help students organize, extend and 

repair their knowledge structure pertaining to the topic. 

   Here we discuss the development, validation and in-class implementation of a CQS to 

help students develop conceptual understanding of the Larmor precession of spin in quantum 

mechanics (QM) that was developed for students in upper-level undergraduate QM courses taken 

by physics juniors and seniors. The CQS was developed by taking advantage of the learning goals 

and inquiry-based guided learning sequences in a research-validated Quantum Interactive 

Learning Tutorial (QuILT) on this topic [16] as well as by refining, fine-tuning and adding to the 

existing clicker questions from our group which have been individually validated previously [14]. 

The CQS can be used in class either separately from the QuILT or synergistically with the 

corresponding QuILT [16] if students engage with the QuILT after the CQS as another opportunity 

to reinforce the concepts learned. 

4.2 LEARNING GOALS AND METHODOLOGY 

The learning goals and inquiry-based learning sequences in the QuILT, which guided the 

development and sequencing of the CQS questions, were developed using extensive research on 
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student difficulties with these concepts as a guide and cognitive task analysis from an expert 

perspective. 

4.2.1  Learning Goals 

One The first learning goal of the CQS (consistent with the QuILT) is that students should 

be able to unpack the consequence of Ehrenfest’s theorem that the time dependence of the 

expectation value of any observable whose corresponding Hermitian operator commutes with the 

Hamiltonian is zero regardless of the state of the quantum system.  This is highlighted throughout 

the CQS by students considering the expectation value of 𝑆̂𝑍 and realizing that it is always time 

independent regardless of the quantum state for the Hamiltonian 𝐻̂ = −𝛾𝐵0𝑆̂𝑧 since 𝑆̂𝑍 commutes 

with the Hamiltonian. The second learning goal is for students to learn another application of 

Ehrenfest’s theorem in that the expectation value of any observable (which does not have explicit 

time-dependence) is not dependent on time when the initial state is a stationary state.  In particular, 

if the system is in a stationary state (i.e., an eigenstate of the Hamiltonian) the expectation values 

of all observables are time independent, rather than just those observables whose corresponding 

operators commute with the Hamiltonian.  Throughout the CQS, stationary states are eigenstates 

of  𝑆̂𝑍, challenging students to recognize that these are eigenstates of the Hamiltonian so the 

expectation values of 𝑆̂𝑋 and 𝑆̂𝑌 are also time-independent.  Finally, the third learning goal of the 

CQS is for students to be able to distinguish between stationary states and eigenstates of Hermitian 

operators that do not commute with the Hamiltonian (e.g., those corresponding to observables 

other than energy).  For the Hamiltonian 𝐻̂ = −𝛾𝐵0𝑆̂𝑧, students should learn that an eigenstate of 

either 𝑆̂𝑋 and 𝑆̂𝑌 is not a stationary state, unlike a system in an eigenstate of 𝑆̂𝑍. 
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4.2.2  Development and Validation 

Based upon the learning goals delineated in the QuILT, questions in the Larmor precession 

of spin CQS were developed or adapted from prior validated clicker questions and sequenced to 

balance difficulties, avoid change of both concept and context between consecutive questions as 

appropriate in order to avoid a cognitive overload, and include a mix of abstract and concrete 

questions to help students develop a good grasp of relevant concepts. The validation was an 

iterative process. 

After the initial development of the Larmor precession of spin CQS using the learning goals 

and inquiry-based guided learning sequences in the QuILT and some existing individually 

validated clicker questions, we iterated the CQS with three physics faculty members who provided 

valuable feedback on fine-tuning and refining both the CQS as a whole and some new questions 

that were developed and adapted with existing ones to ensure that the questions were 

unambiguously worded and build on each other based upon the learning goals. We also conducted 

individual think-aloud interviews with four advanced students who had learned these concepts via 

traditional lecture-based instruction in relevant concepts to ensure that they interpreted the CQS 

questions as intended and the sequencing of the questions provided appropriate scaffolding support 

to students.  

The final version of the Larmor precession of spin CQS has 6 questions, which can be 

integrated with lectures in which these relevant concepts are covered in a variety of ways based 

upon the instructor’s preferences. In particular, they can be interspersed with lecture or posed 

together depending, e.g., upon whether they are integrated with lectures similar to Mazur’s 

approach, used at the end of each class or used to review concepts after students have learned via 

lectures everything related to Larmor precession of spin that the instructor wanted to teach.  
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The first two questions in the CQS, CQ1andCQ2, begin by addressing the time-

development of a state that is initially an energy eigenstate or not initially an energy eigenstate.  

This calls on students’ prior knowledge about the time development of a state before addressing 

general characteristics of the time dependence of an expectation value of 𝑆̂ in CQ3 and CQ4. CQ5 

addresses the time dependence of expectation value for different components of the spin for a state 

that is not an eigenstate of the Hamiltonian, but rather an eigenstate of the x-component of the spin 

angular momentum, 𝑆̂𝑋. The sequence then concludes by contrasting CQ5 with a similar question 

CQ6 which is for a system initially in an energy eigenstate. 

The questions in the CQS are as follows: 

 

 

(CQ1)  An electron in a magnetic field 𝐵⃗⃗ = 𝐵0𝑧̂ is initially in a spin state |𝜒(0)⟩ = |↑⟩𝑧.  Which 

of the following equations correctly represents the state |𝜒(𝑡)⟩ of the electron after time t?  The 

Hamiltonian operator is 𝐻̂ = −𝛾𝐵0𝑆̂𝑧. 

 

a) |𝜒(𝑡)⟩ = |↑⟩𝑧 

b)   |𝝌(𝒕)⟩ = 𝒆𝒊𝜸𝑩𝟎𝒕/𝟐|↑⟩𝒛 

c)   |𝜒(𝑡)⟩ = 𝑒𝑖𝛾𝐵0𝑡/2|↑⟩𝑧 + 𝑒−𝑖𝛾𝐵0𝑡/2|↓⟩𝑧 

d)   |𝜒(𝑡)⟩ = 𝑎𝑒𝑖𝛾𝐵0𝑡/2|↑⟩𝑧 + 𝑏𝑒𝑖𝛾𝐵0𝑡/2|↓⟩𝑧 

e)   None of the above. 
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(CQ2)  An electron in a magnetic field 𝐵⃗⃗ = 𝐵0𝑧̂ is initially in a spin state |𝜒(0)⟩ = 𝑎|↑⟩𝑧 +

𝑏|↓⟩𝑧.  Which of the following equations correctly represents the state |𝜒(𝑡)⟩ of the electron after 

time t?  The Hamiltonian operator is 𝐻̂ = −𝛾𝐵0𝑆̂𝑧. 

 

a) |𝜒(𝑡)⟩ = 𝑒𝑖𝛾𝐵0𝑡/2(𝑎|↑⟩𝑧 + 𝑏|↓⟩𝑧) 

b)  |𝜒(𝑡)⟩ = 𝑒−𝑖𝛾𝐵0𝑡/2(𝑎|↑⟩𝑧 + 𝑏|↓⟩𝑧) 

c)  |𝜒(𝑡)⟩ = 𝑒𝑖𝛾𝐵0𝑡/2((𝑎 + 𝑏)|↑⟩𝑧 + (𝑎 − 𝑏)|↓⟩𝑧) 

d)  |𝝌(𝒕)⟩ = 𝒂𝒆𝒊𝜸𝑩𝟎𝒕/𝟐|↑⟩𝒛 + 𝒃𝒆−𝒊𝜸𝑩𝟎𝒕/𝟐|↓⟩𝒛 

e)  None of the above 

 
 

(CQ3)  Choose all of the following statements that are true about the expectation value ⟨𝑆̂⟩  for 

an electron in a magnetic field 𝐵⃗⃗ = 𝐵0𝑧̂ in the state |𝜒(𝑡)⟩ when the initial state is NOT |↑⟩𝑧 or 

|↓⟩𝑧.  The Hamiltonian operator is 𝐻̂ = −𝛾𝐵0𝑆̂𝑧. 

I. The z-component of ⟨𝑆̂⟩, i.e. ⟨𝑆̂𝑍⟩, is time-independent. 

II. The x- and y-components of ⟨𝑆̂⟩ change with time.  When the magnitude of ⟨𝑆̂𝑋⟩ is a 

maximum, the magnitude of ⟨𝑆̂𝑌⟩ is a minimum, and vice versa. 

III. The magnitudes of the maximum values of ⟨𝑆̂𝑋⟩ and ⟨𝑆̂𝑌⟩ are the same. 

 

a) I only 

b)   I and II only 
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c)   I and IIV only 

d)   II and III only 

e)  All of the above. 

 
 

(CQ4)  Choose all of the following statements that are true about the expectation value ⟨𝑆̂⟩  for 

an electron in a magnetic field 𝐵⃗⃗ = 𝐵0𝑧̂ in the state |𝜒(𝑡)⟩ when the initial state is NOT |↑⟩𝑧 or 

|↓⟩𝑧. The Hamiltonian operator is 𝐻̂ = −𝛾𝐵0𝑆̂𝑧. 

I.  The vector ⟨𝑆̂⟩ can be thought to be precessing about the z-axis at a non-zero angle. 

II. The vector ⟨𝑆̂⟩ can be though to be precessing about the z-axis at a frequency 𝜔 = 𝛾𝐵0. 

I. All three components of vector ⟨𝑆̂⟩ change as it precesses about the z-axis. 

 

a) I only 

b)   I and II only 

c)   I and III only 

d)   II and III only 

e)  All of the above. 

 
 

(CQ5)  Suppose an electron in a magnetic field 𝐵⃗⃗ = 𝐵0𝑧̂ is initially in an eigenstate of the x-

component of spin angular momentum operator, i.e. 𝑆̂𝑋. The Hamiltonian operator is 𝐻̂ =

−𝛾𝐵0𝑆̂𝑧. Choose all of the following statements that are correct. 

I. The expectation value ⟨𝑆̂𝑋⟩ depends on time. 
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II. The expectation value ⟨𝑆̂𝑌⟩ depends on time. 

III. The expectation value ⟨𝑆̂𝑍⟩ depends on time. 

 

a) I only 

b)   I and II only 

c)   I and III only 

d)   II and III only 

e)  All of the above. 

 
 

(CQ6)  Suppose an electron in a magnetic field 𝐵⃗⃗ = 𝐵0𝑧̂ is initially in an eigenstate of the z-

component of spin angular momentum operator, i.e. 𝑆̂𝑍. The Hamiltonian operator is 𝐻̂ =

−𝛾𝐵0𝑆̂𝑧. Choose all of the following statements that are correct. 

IV. The expectation value ⟨𝑆̂𝑋⟩ depends on time. 

V. The expectation value ⟨𝑆̂𝑌⟩ depends on time. 

VI. The expectation value ⟨𝑆̂𝑍⟩ depends on time. 

 

a) I only 

b)   I and II only 

c)   I and III only 

d)   II and III only 

e)  None of the above. 
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4.2.3  In-class implementation 

A The final version of the CQS on the Larmor precession of spin was implemented with 

peer discussion [2-4] in two upper-level undergraduate QM classes at a large research university 

(Pitt) after traditional lecture-based instruction in relevant concepts in two consecutive years. Prior 

to the implementation of the CQS in both classes with peer interaction, students took a pretest after 

traditional lecture-based instruction. The pre/postests were developed and validated by Brown and 

Singh [16] to measure comprehension of the concepts related to the time-dependence of 

expectation values of observables in the context of the Larmor precession of spin. The CQS was 

implemented right after the pretest in one class period with peer interaction. The posttest was 

administered during the following week to measure the impact of the CQS.  

On the pretest and posttest, students were given that the Hamiltonian of the system is 𝐻̂ =

−𝛾𝐵0𝑆̂𝑧 with questions 1-3 being analogous but different and questions 4-6 being identical. In 

particular, an electron is initially in an eigenstate of 𝑆̂𝑥 (𝑆̂𝑌 on the posttest) in questions 1-3, and 

students are asked if the expectation value of 𝑆̂𝑥, 𝑆̂𝑌, and 𝑆̂𝑍 respectively depend on time. Students 

are also expected to explain their reasoning.  These questions primarily focus on the first and third 

learning goals.  Question 4 presents the following conversation between two students about an 

electron initially in an eigenstate of 𝑆̂𝑥 (𝑆̂𝑌 on the posttest) and asks with whom they agree.  This 

question addresses the first and third learning goals. 

Andy: The electron will NOT be in an eigenstate of 𝑆̂𝑥 forever because the state will evolve in time. 

Caroline: I disagree. If a system is in an eigenstate of an operator corresponding to a physical 

observable, it stays in that state forever unless a perturbation is applied. 
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Questions 5 asks students if the expectation value of 𝑆̂𝑌 is time dependent if the initial state 

of the system is an eigenstate of 𝑆̂𝑍 (i.e., an eigenstate of the Hamiltonian or stationary state).  

Then, question 6 asks if there is precession around the z-axis for an electron initially in an 

eigenstate of 𝑆̂𝑌, and if so, to give an example of a situation in which there would be no precession.   

Both of these questions deal with the second and third learning goals. All questions ask students 

to justify their answers.  Partial credit was awarded to students who answered correctly, but with 

no or inadequate justification, consistent with the agreed upon rubric. Interrater reliability between 

the two researchers who graded all pre/posttests was above 95%. 

4.3 IN-CLASS IMPLEMENTATION RESULTS 

Tables 4.1-4.3 compare average pre/posttest performances of students on each question in 

the upper-level QM course from the same large research university in two different years after 

traditional lecture-based instruction (pretest) and on the posttest after students had engaged with 

the CQS with peer instruction on the Larmor precession of spin (Table 4.1-4.2 are for the two 

classes separately and Table 4.3 is for the two classes combined). The normalized gain (or gain) 

is calculated as 𝑔 = (𝑝𝑜𝑠𝑡% − 𝑝𝑟𝑒%)/(100% − 𝑝𝑟𝑒%) [17]. Similarly, the effect size is 

calculated for all questions in all tables.  Effect size is calculated as Cohen’s 𝑑 = (𝜇𝑝𝑜𝑠𝑡 −

𝜇𝑝𝑟𝑒)/𝜎𝑝𝑜𝑜𝑙𝑒𝑑 where 𝜇𝑖 is the mean of group i and the pooled standard deviation is  𝜎𝑝𝑜𝑜𝑙𝑒𝑑 =

√(𝜎𝑝𝑟𝑒 2 + 𝜎𝑝𝑜𝑠𝑡 2)/2 [18]. 
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Table 4.1 Comparison of mean pre/posttest scores on each question, normalized gains and effect sizes for upper-

level undergraduate QM students in class A who engaged with the CQS on Larmor precession of spin concepts 

(N=17). 

Question Pretest Mean Posttest Mean Normalized Gain (g) Effect Size (d) 

1 22% 75% 0.68 0.69 
2 47% 84% 0.71 0.54 
3 19% 72% 0.65 0.66 

4 31% 81% 0.73 0.62 

5 13% 47% 0.39 0.42 

6 34% 75% 0.62 0.50 
 

Table 4.2 Comparison of mean pre/posttest scores on each question, normalized gains and effect sizes for upper-

level undergraduate QM students in class B who engaged with the CQS on Larmor precession of spin concepts 

(N=39). 

Question Pretest Mean Posttest Mean Normalized Gain (g) Effect Size (d) 

1 50% 92% 0.85 0.56 
2 67% 94% 0.82 0.48 
3 52% 95% 0.91 0.61 

4 41% 79% 0.64 0.43 

5 38% 82% 0.71 0.51 

6 56% 85% 0.66 0.35 
 

Table 4.3 Comparison of mean pre/posttest scores on each question, normalized gains and effect sizes for upper-

level undergraduate QM students in both class A and class B combined who engaged with the CQS on Larmor 

precession of spin concepts (N=56). 

Question Pretest Mean Posttest Mean Normalized Gain (g) Effect Size (d) 

1 41% 87% 0.78 0.59 
2 60% 91% 0.77 0.49 
3 41% 88% 0.79 0.59 

4 38% 80% 0.67 0.49 

5 30% 70% 0.58 0.46 

6 49% 82% 0.64 0.40 
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All three tables show moderate effect sizes from pre to posttest on each of the questions, 

with all effect sizes above 0.3, and some even nearing 0.7.  Additionally, all normalized gains 

exceed 0.3, with most falling in the range of 0.6-0.9. Despite varied pretest scores for the two 

classes on different questions, posttest scores for both classes on most questions demonstrate that 

the CQS is effective in addressing the learning goals.  

Although the two groups of upper-level physics majors in the QM course from the same 

university in two consecutive years are different, the difference in pretest scores between two 

classes may also be a reflection of the difference between the effectiveness of traditional 

instruction of the two instructors.  On a positive note, the posttest scores for both groups are robust. 

We note that overall the CQS implementation was consistent between the two years, and both 

instructors provided the same class participation credit for clicker questions and low-stakes testing 

credit for students to take the pre-/posttests.  However, no constraints were placed on instructors’ 

teaching of the topic in class prior to the implementation of the CQS, as the CQS in this 

implementation is meant to act primarily as a “second coat” to reinforce learning.  Moreover, 

possible differences between the instructors may include, but are certainly not limited to, the 

differences in pedagogy and the time spent in lecture on the topic.  

Since the researchers did not have control over traditional instruction, we focus on the 

posttest scores after the CQS. Tables 4.1 and 4.2 show that the difference in pretest scores between 

the two classes is also followed by a corresponding difference in posttest scores after the CQS. 

These differences in posttest scores may indicate that the prior knowledge of the material (or the 

first coat) does affect how well students learn from the CQS implementation with peer instruction.  

In particular, Class B, which exhibited higher pretest scores than Class A on all test questions, also 

exhibited higher posttest scores on five of the six test questions, and exhibited comparable posttest 
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scores on question 4. From this comparison, we conclude that the CQS did not eliminate the 

performance gap in pretest resulting from differences in knowledge after traditional instruction in 

the two classes and before students engaged with the CQS. It is possible that certain threshold 

knowledge may be prerequisite for optimal learning from the CQS particularly because peer 

instruction was involved and students can meaningfully communicate and learn from each other 

only if together they have certain threshold knowledge.  

However, we note that those higher pretest scores of Class B in Table 4.2 do not exceed 

the posttest scores of Class A in Table 4.1.  While the highest average score for Class B on the 

pretest is still below 70%, five of the six posttest scores for Class A exceed 70%.  From this 

comparison, we conclude that, regardless of the effectiveness of traditional lecture-based 

instruction for a given instructor, students still had something to gain pertaining to the time-

dependence of expectation values from the CQS. 

Moreover, as shown in Table 4.3, overall (averaging over the two classes), the CQS was 

effective in addressing its learning goals. On average, student performance on test questions range 

from 30-60% on the pretest, showing that there is much room for improvement after traditional 

instruction.  After the implementation of the CQS, average scores on test questions exceeded 70% 

on the posttest and exceed 90% on questions 1-3. 

Difficulty with question 5 was the most common among students, with Class A averaging 

below 50% on the question even after the CQS implementation.  This suggests that there is still 

room for improving the CQS when dealing with the second learning goal in order for students to 

understand the special role of the stationary states in different contexts.  This was a learning goal 

addressed by both questions 5 and 6 on the pretest and posttest, but the difference in performance 

suggests that students with less prior knowledge (Class A) failed to perform on question 5, even 
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though they averaged above 75% on question 6, which provides more scaffolding. In order to 

address this difficulty, the CQS may be improved by adding another question later in the CQS that 

more directly addresses this second learning goal.  This question could provide an opportunity to 

wean students from the scaffolding provided in prior questions related to this learning goal and 

may allow for more effective learning on future implementations of this CQS. 

4.4 SUMMARY 

Clicker questions are relatively easy to implement in the classroom alongside more 

traditional lecture-based instruction.  We developed and validated a clicker question sequence 

related to the time-dependence of expectation values in the context of Larmor precession of spin 

that continually builds on students’ knowledge as they engage with different questions in the CQS 

after traditional instruction in relevant concepts. Throughout the development and validation 

which was an iterative process, many students and instructors provided feedback several times. 

The in-class implementation of the CQS in two upper-level quantum mechanics classes shows 

moderate effect sizes for gains in students’ performance from the pretest to posttest suggesting this 

CQS is effective in helping students learn these concepts.  The differences in the pretest scores in 

the two classes could be due to the differences in the students and the instructors and the 

effectiveness of their traditional instruction over which the researchers did not have any control. 

However, the posttest scores on all questions in both classes were reasonable, suggesting that the 

CQS is effective regardless of efficacy of an instructor’s traditional lecture-based instruction. 

Moreover, comparison of the pre/posttest scores on each question for the two classes in which 

students engaged with the CQS may shed some light on the role of prior knowledge upon which 
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students can build as they engage with the questions in the CQS. In particular, the average posttest 

scores were generally higher on each question for the class which had a higher pretest scores. This 

issue will be investigated further in future implementation. 
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5.0 STUDENT UNDERSTANDING OF FERMI ENERGY, THE FERMI-DIRAC 

DISTRIBUTION, AND TOTAL ELECTRONIC ENERGY OF A FREE ELECTRON 

GAS 

5.1 INTRODUCTION 

In the past two decades, many investigations have focused on improving student learning 

of quantum mechanics (QM) e.g., see Ref. [1-9]. We have been deeply involved in such 

investigations and are using the research on student difficulties as a guide to develop research-

validated learning tools [10-33].  

5.1.1  Goals of this investigation 

While the Fermi energy, the Fermi-Dirac distribution and total electronic energy of a free 

electron gas are important concepts [34] taught in advanced quantum and statistical mechanics 

courses, there has been little work done on investigating student difficulties with these concepts.  

Here we discuss an investigation of the difficulties that upper-level physics undergraduates in a 

QM course and physics graduate students after quantum and statistical mechanics core courses 

have with these concepts after they had learned them in their respective courses. These difficulties 

were probed by administering written conceptual and quantitative questions to undergraduate 

students and asking some students in undergraduate and graduate courses to answer the questions 

while thinking aloud [35] in one-on-one interviews. We find that advanced students have many 

common difficulties with these concepts after traditional instruction. We also discuss the impact 
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of a clicker question sequence (CQS) on undergraduate student performance on these topics. The 

CQS was developed and validated to help students develop a better grasp of these concepts. The 

implementation of the CQS in an upper-level undergraduate QM course shows that while 

engaging with the CQS reduced these difficulties, many advance students continued to struggle 

with these challenging concepts. 

5.1.2  Background on relevant topics 

The free electron gas [34] is a commonly taught model of solids (metals) in a two-semester 

upper-level undergraduate and core graduate quantum mechanics course. This model ignores many 

realities of real metals like the electron charge and the underlying lattice.  The main consideration 

is the Pauli exclusion principle, which requires electrons to occupy distinct single-particle states. 

In this non-interacting fermionic model in three spatial dimensions, electrons can be considered to 

move freely in a three dimensional infinite rectangular box. Since the size of a solid is macroscopic 

and the number of electrons is very large (of the order of Avogadro’s number), the actual shape of 

the solid is not important for determining the properties of the solid, and the free electron gas 

model explains many qualitative properties of conductors reasonably well [34]. 

Although the concepts of Fermi energy and density of states are defined more broadly, 

these are two key concepts advanced students often learn for the first time in the context of the 

free electron gas model of a solid. The Fermi energy Ef is the energy of the highest occupied state 

at absolute zero temperature T = 0 K. The density of states of the system 𝐷(𝜖) is the number of 

states per interval of energy for a given energy 𝜖. The concepts of Fermi energy and density of 
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states can be used to calculate the total electronic energy of a solid at T = 0 K, i.e., 𝐸𝑡𝑜𝑡 =

∫ 𝐷(𝜖)𝜖 𝑑𝜖
𝐸𝐹

0
.  

In quantum statistical mechanics [34], the concept of the distribution function, 𝑛(𝜖), which 

is defined as the average number of particles in a given single-particle state with energy 𝜖 at a 

given temperature T, becomes important. At T = 0 K, the Fermi-Dirac (FD) distribution function 

for a non-interacting fermionic system, e.g., electrons discussed here, is a step function such that 

all single-particle states below the Fermi energy are completely filled and all states above the Fermi 

energy are empty. However, as the temperature increases, the probability of occupying higher 

single particle energy states increases and at very high temperature when the de Broglie 

wavelength is so small that the wavefunctions of different electrons do not overlap, the Fermi-

Dirac distribution function reduces to the Maxwell-Boltzmann (MB) distribution function, which 

is an exponential function of energy 𝜖. The Fermi-Dirac distribution function is 𝑛𝐹𝐷(𝜖) =

1

𝑒

𝜖−𝜇(𝑇)
𝑘𝐵𝑇 +1

 , where 𝜇 is the chemical potential, defined as the energy required to add an extra particle 

to the system. The chemical potential 𝜇 depends on temperature T and is equal to the Fermi energy 

at T = 0 K. The total electronic energy of the system at temperature T is given by 𝐸𝑡𝑜𝑡 =

∫ 𝑛(𝜖) 𝐷(𝜖)𝜖 𝑑𝜖
∞

0
. For comparison, the Bose-Einstein (BE) distribution function for a bosonic 

system is given by 𝑛𝐵𝐸(𝜖) =
1

𝑒

𝜖−𝜇(𝑇)
𝑘𝐵𝑇 −1

. There are no constraints on the number of bosons in a given 

single-particle state. 
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5.1.3  Background on Clicker Questions 

Clicker questions are conceptual multiple-choice questions that are typically administered 

in the classroom to engage students in the learning process and obtain feedback about their learning 

via a live feedback system called clickers [36-37]. Integration of peer interaction with lectures via 

clicker questions has been popularized in the physics community by Mazur [36]. In Mazur's 

approach, the instructor poses conceptual, multiple-choice clicker questions to students which are 

integrated throughout the lecture. Students first answer each clicker question individually, which 

requires them to take a stance regarding their thoughts about the concepts involved. Students then 

discuss their answers to the questions with their peers and learn by articulating their thought 

processes and assimilating their thoughts with those of the peers. After the peer discussion, they 

answer the question again using clickers followed by a general class discussion about those 

concepts in which both students and the instructor participate. The feedback that the instructor 

obtains is also valuable because the instructor has an estimate of the prevalence of student common 

difficulties and the fraction of the class that has understood the concepts at least in the context in 

which the clicker questions were posed. The use of clickers keeps students alert during lectures 

and helps them monitor their learning. Clicker questions can be used in the classroom in different 

situations, e.g., they can be interspersed within lecture to evaluate student learning in each segment 

of a class focusing on a concept, at the end of a class, or to review materials from previous classes 

at the beginning of a class. They can also be used in a Just-in-Time-Teaching class [38-39] at any 

time to engage students in learning based upon what they may have been asked to learn outside of 

the class. 
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5.1.4  Clicker Question Sequence on Fermi energy, total electronic energy, and Fermi-

Dirac distribution function 

While clicker questions for introductory [36-37] and upper-level QM [39-40] have been 

developed, there have been very few efforts [41] toward a systematic development and 

implementation of clicker question sequences (CQSs), e.g., those on a given concept in which the 

questions build on each other effectively to help students organize their knowledge.  Here we 

discuss how student performance on questions probing their understanding of the Fermi energy 

and total electronic energy of a free electron gas, and of the Fermi-Dirac distribution function, in 

an upper-level undergraduate QM course was impacted by a CQS focusing on these concepts.  This 

CQS was developed and validated by contemplating the learning objectives, and by refining and 

fine-tuning existing clicker questions or developing new questions. The learning objectives related 

to Fermi energy include helping students learn to calculate the Fermi energy in terms of the free 

electron number density and realize that the Fermi energy is not an extensive quantity. The learning 

objectives related to the total electronic energy of a free electron gas include helping students learn 

to calculate the total electronic energy and realize that this quantity is extensive and therefore 

scales with the size of the system. The learning objectives related to the distribution functions 

include preparing students to be able to write an expression for them, be able to distinguish the 

Fermi-Dirac distribution function from the Bose-Einstein and Maxwell-Boltzmann distribution 

functions, be able to explain when the Fermi-Dirac (and Bose-Einstein) distribution functions will 

approach the Maxwell-Boltzmann distribution function, and be able to graphically represent the 

Fermi-Dirac distribution function at T = 0 K and at T > 0 K. The validation was an iterative process. 

The three authors met to holistically examine the instructional materials from the past few years 

on these topics in an upper-level undergraduate QM course at a large university, which included 
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existing clicker questions on these concepts.  In particular, the questions in the CQS were 

developed or adapted from prior clicker questions and sequenced to balance difficulties, avoid 

change of both concept and context between consecutive questions as appropriate in order to avoid 

a cognitive overload, and include a mix of abstract and concrete questions to help students develop 

a good grasp of the concepts. After the initial development of the CQS, we iterated the CQS with 

three physics faculty members who provided valuable feedback on fine-tuning and refining both 

the CQS as a whole and individual questions that were developed and adapted from existing clicker 

questions to ensure that the questions were unambiguously worded and build on each other based 

upon the learning objectives. We also conducted think-aloud interviews [35] with advanced 

students who had learned these concepts via traditional lecture-based instruction to ensure that 

they interpreted the CQS questions as intended and the sequencing of questions provided 

appropriate guidance to help them learn relevant concepts. 

 

5.2 METHODOLOGY 

The students who participated in this study were upper-level physics undergraduates in a 

second semester junior/senior-level QM course and graduate students who had taken graduate core 

quantum and statistical mechanics courses. Both the undergraduate and graduate courses typically 

have 10-20 students each year. The undergraduate students had also taken the first semester of QM 

in the preceding semester and a majority of them had also taken or were concurrently taking a one-

semester undergraduate thermodynamics and statistical mechanics course. The student difficulties 

were investigated by administering open-ended questions in written form to undergraduate 
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students in the QM course after traditional lecture-based instruction in relevant concepts (we will 

call this pretest) and also after students had engaged with the CQS on relevant concepts (we will 

call this posttest). As noted earlier, the CQS questions were validated with the help of physics 

instructors who had taught QM and/or statistical mechanics courses several times (the questions 

were iterated with them to ensure that they were robust and interpreted unambiguously by physics 

experts) and students to ensure, e.g., that they interpreted the questions as intended.   

In addition to written tests, we also conducted individual semi-structured interviews with 

a subset of students in the undergraduate course and with graduate students after they had 

completed core graduate QM and statistical mechanics courses in which relevant concepts were 

covered. Individual interviews were conducted using a think-aloud protocol [35] to better 

understand the rationale for student responses. During the interviews, similar to the in-class written 

administration in the undergraduate course, students were first given the open-ended question after 

traditional instruction (pretest), then they worked through the CQS, and then they were given the 

open-ended questions again as a posttest.  The testing materials were developed and validated to 

assess student understanding of these concepts based upon the learning objectives delineated 

earlier. During these semi-structured interviews, students were asked to verbalize their thought 

processes while they answered the questions. They read the questions and answered them to the 

best of their ability without being disturbed. We prompted them to think aloud [35] if they were 

quiet for a long time. After students had finished answering a particular question to the best of 

their ability, we asked them to further clarify and elaborate issues that they had not clearly 

addressed earlier. 

The final version of the CQS questions pertaining to this series on the free electron gas at 

T = 0 K has 11 questions (first 11 questions as shown in the Appendix) but the only relevant 
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questions for the pre/posttests are CQ1-CQ7 and CQ10 (note that CQ11 pertaining to the two 

dimensional free-electron gas was not administered to students in this study but it is included here 

as an instructional resource). The last six CQS questions in the Appendix pertain to T > 0 K. Since 

the instructor used the textbook by Griffiths [34], the notation and discussion (e.g., about an octant) 

is consistent with that treatment although in solid state physics, the periodic boundary conditions 

are used for application to transport properties and to extend the discussion to the band model 

(which is necessary for understanding band gaps and properties of systems other than conductors, 

which the free electron model fails to do). The first section, which focuses on the Fermi energy, 

density of states, and total electronic energy of a free electron gas at absolute zero temperature, 

was administered in one class period.  The second section focusing on the FD and BE distribution 

functions and their limiting behavior was administered in another class period.  Unless specified 

otherwise, students were instructed to assume that the symbol for momentum ℏk signifies the 

magnitude of the momentum vector. 

We note that the CQS was implemented with peer interaction [36-41] in the upper-level 

undergraduate QM class after traditional lecture-based instruction in relevant concepts on the 

Fermi energy, density of states, and total electronic energy of a solid within the free electron gas 

model and after learning about the Fermi-Dirac distribution function in the same QM course. When 

students engaged with the CQS in one-on-one interviews, there was no peer discussion, which may 

be detrimental [36-42], but the fact that students were asked to think-aloud [35] to make their 

thought processes clear to the interviewer may have served a somewhat similar purpose. Prior to 

engaging with the CQS, students took the pretest after traditional lecture-based instruction. After 

engaging with the CQS, they took the posttest.  The five questions on the pretest and posttest 

focusing on the topics of Fermi energy, density of states, total electronic energy, and distribution 
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functions are the same and they are given in Figure 5.1. In the individual interviews, students 

answered all five pre/posttest questions together before and after engaging with both sections of 

the CQS. However, in the written pretest in the undergraduate QM course, students were given the 

first two questions of the test together in a pretest part I after students learned about the Fermi 

energy, density of states and total electronic energy of the free electron gas via lecture and 

questions 3-5 together in another pretest (part II of the pretest) on a different day after students 

learned about the distribution functions via lecture-based instruction. The posttest was also 

administered in two parts on two days after students engaged with both sections of the CQS 

focusing on these concepts and questions 1,4 and 5 were deliberately administered together on one 

day (part I of the posttest) and questions 2 and 3 were administered together on another day (part 

II of the posttest). Students had sufficient time to answer the questions on the pre/posttests. We 

note that since questions 1 and 2 on the test are related (question 1 asks about the Fermi energy 

and total electronic energy as a conceptual question whereas question 2 asks about them as a 

question focused on mathematical manipulation) and questions 3-5 are related (question 3 seeks 

requisite mathematical expressions for the distribution functions and constraints on the number of 

particles in each single-particle state whereas question 5 asks about the Fermi-Dirac distribution 

function in graphical representation at two different temperatures and question 4 asks about a 

limiting case of the quantum distribution functions), the grouping of the questions on the two parts 

of the pretest may have made it easier for the students to answer them in that the related questions 

in each part of the pretest can prime students to answer the questions more easily than on the 

posttest in which the different types of questions on Fermi energy, total electronic energy and 

Fermi-Dirac distribution function were deliberately mixed in parts I and II. For example, on pretest 

part I, if students answered question 2 correctly and found that the Fermi energy does not scale 
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with the size of the system but the total electronic energy does, they can potentially use those 

results to answer the conceptual question 1 correctly. Similarly, on pretest part II, a student who 

wrote the correct expression for the Fermi-Dirac distribution function when explicitly prompted 

in question 3 can potentially take advantage of it to come up with its correct graphical 

representation in question 5 or find the correct limiting case in question 4. However, as we will 

see in the results section, student performance on all questions was poor on the pretest after 

traditional lecture-based instruction, and they did not benefit on the pretest from having similar 

questions grouped together. 

 

Figure 5.1 Questions students were asked in pre/posttests 
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These questions map onto the learning goals of the CQS with varying levels of transfer of 

learning required as follows.  In the T = 0 K case, question 1 is a near transfer question directly 

related to CQ10. Question 2, which relates to CQ1 – CQ7, requires further transfer because the 

system is two dimensional instead of the three-dimensional system under consideration in CQ1-

CQ7. Note that CQ11 was not administered to students, but would offer greater guidance and 

support to help students answer pre/posttest questions related to two dimensional free-electron gas.  

For the T > 0 K case, question 3 is a near transfer from CQ12-CQ15 and the subsequent class 

discussion, and question 4 is a near transfer from CQ14.  Finally, question 5 is not a near transfer 

of the FD distribution function related concepts in questions CQ12-15 (although they have related 

concepts), since question 5 in the pre/posttest asks students to use a different representation of 

knowledge. In particular, students have to use graphical representation to answer question 5. 

Converting from mathematical representation to graphical representation is not easy for students 

who are still developing expertise in these topics. We note that direct scaffolding pertaining to 

graphical representation of the FD distribution function can be provided by instructors after the 

CQS (this is a suggested topic of class discussion following CQ17). We again emphasize that the 

learning goals of some clicker questions provided in the appendix are not addressed by these test 

questions.  These clicker questions were provided to give a complete picture of the CQS and offer 

more of the context in which these topics were being discussed. 

5.3 RESULTS 

A rubric was developed for grading student performance on the five questions on the 

pretest and posttest. Two of the authors graded all student responses and the inter-grader reliability 
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was better than 95%. Table 5.1 compares the in-class pre/posttest performances of students in 

upper-level undergraduate QM after traditional lecture-based instruction (pretest) and after they 

had engaged with the CQS on these concepts (posttest). Tables 1 also presents the normalized gain 

(𝑔) which is calculated as 𝑔 = (𝑝𝑜𝑠𝑡% − 𝑝𝑟𝑒%)/(100% − 𝑝𝑟𝑒%) [43].  Moreover, Table 5.1 

displays the effect size on each question between the pre/posttest scores, which was calculated as 

Cohen’s 𝑑 = (𝜇𝑝𝑜𝑠𝑡 − 𝜇𝑝𝑟𝑒)/𝜎𝑝𝑜𝑜𝑙𝑒𝑑 where 𝜇𝑖 is the mean of group i and the pooled standard 

deviation is  𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √(𝜎𝑝𝑟𝑒 
2 + 𝜎𝑝𝑜𝑠𝑡 

2)/2 [43]. Table 5.1 shows that student performance after 

traditional lecture-based instruction was poor on all questions. After engaging the CQS, although 

the average performance improved, it was still at approximately 50% on many of the questions. 

Below, we discuss student difficulties without separating them into pre/posttest since the 

difficulties were similar after traditional lecture-based instruction and after students engaged with 

the CQS, although the difficulties were less prevalent after engaging with the CQS (see Table 5.1). 

 

Table 5.1 Comparison of the mean pre/posttest scores on each question, normalized gains and effect sizes for 

students in upper-level undergraduate QM (number of students N=13). The pretest was administered after traditional 

lecture-based instruction and the posttest after students engaged with the entire CQS on these concepts. The 

percentages in parentheses for questions 1 and 4 refer to the mean scores when students were not graded for whether 

the reasoning they provided was correct. 

Question Pretest Mean Posttest Mean Normalized Gain (g) Effect Size (d) 

1a 8% (8%) 46% (46%) 0.42 0.46 

1b 50% (62%) 58% (77%) 0.15 0.09 

2a 15% 77% 0.73 1.91 

2b 8% 54% 0.50 1.23 

2c 8% 50% 0.46 1.33 

3 50% 82% 0.64 0.96 

4 29% (33%) 50% (62%) 0.29 0.45 

5 38% 85% 0.75 1.36 
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5.3.1  Student difficulties with the Fermi energy 

In question 1, many students had difficulty with the fact that the Fermi energy of copper is 

an intrinsic property and provided responses such as the following: “Cube B has higher Fermi 

energy because higher states must be filled”, “The cube with 2N copper atoms because it has a 

higher free electron density”, “B has more atoms, thus it encloses a larger surface area in k-

space”.  One interviewed student, when asked what the Fermi energy is, stated “[It’s] something 

to do with exclusion principle.  An atom with 10 electrons will settle down to the 10 lowest states.  

[There’s a] higher Fermi energy with 20 because there are more being pushed up the ladder with 

higher energy.  An additional one will have additional energy.”  This type of reasoning 

demonstrates either incomplete conceptual understanding of Fermi energy, specifically how the 

closer level spacing leaves the Fermi energy unchanged. It misses the fact that the volume occupied 

by each state in the k-space has inverse dependence on the volume of the solid, thus the Fermi 

energy is an intrinsic property of a given material. Many students also had difficulty differentiating 

between the Fermi energy and total electronic energy and characterized the Fermi energy as the 

total energy of all the fermions in the system. Responding to question 1a on the posttest in class, 

none of the students who answered correctly explicitly derived a mathematical expression for the 

Fermi energy.  However, Figure 5.2 shows the response of a student who answered this conceptual 

question incorrectly and attempted to derive an expression for the Fermi energy.  Unlike many of 

the other students who struggled to derive the expression for the Fermi energy in response to 

question 1 a, Figure 5.2 shows that this student wrote down correct equations for the Fermi energy. 

However, the student incorrectly inferred that the Fermi energy does depend on the number of 

copper atoms because he did not take into account the volume and the fact that the Fermi energy 

depends on the number density of the free electrons, which is constant for copper (and not the 
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number of copper atoms). Response to question 2 a in Table 5.1 shows that a majority of students 

struggled to derive an expression for the Fermi energy after traditional lecture-based instruction 

but their performance improved significantly after engaging with the CQS. 

 

Figure 5.2 A sample response to question 1a in which the student made an incorrect inference “So the cube with 2N 

copper atoms has higher Fermi energy” based upon his derivation of an expression for the Fermi energy. The student 

wrote down the equations correctly but did not take into account the volume and the fact that the Fermi energy 

depends on the number density of the free electrons which is independent of the size of the copper sample. 

5.3.2  Student difficulties with the density of states 

Many students struggled with the density of states in question 2b with responses such 

as "𝐷(𝜖) =
𝑁

𝜋𝑘3

3

” and  "𝐷(𝜖)=N/𝜖". When asked to explain what the density of states means, a 

common difficulty was assuming that it is related to particle number density or probability of 

occupying a particular single-particle state (confusion between the density of states and the 

distribution function) as in the following responses: “This is the number of particles for each 

energy per k-space volume”, “number of particles in each single-particle state with energy 𝜖”, 

“the density of particles in a particular energy state”, “In a configuration, how close the occupied 

states are to one another”, “Particles having energy 𝜖 per volume”. 
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5.3.3  Student difficulties with the total electronic energy 

In response to question 1b, the most common difficulty was assuming that the total 

electronic energy would be the same regardless of the number of copper atoms. Discussions 

suggest that some of them may have been confused because of the fact that the total electronic 

energy per electron for a free electron gas is (
3

5
) 𝐸𝐹 and they remembered it incorrectly as 𝐸𝑡𝑜𝑡 =

(
3

5
) 𝐸𝐹 . Moreover, in written responses, two students incorrectly claimed that the copper cube with 

larger N will have a lower total electronic energy since the degeneracy pressure in the larger system 

would be lower due to its larger dimension. The calculation of the total electronic energy in 

question 2c was extremely difficult for most students because this calculation cannot be done 

correctly using an algorithmic approach unlike, e.g., the calculations involving traditional circuit 

problems in introductory physics in which Kirchhoff’s rules can be used algorithmically to yield 

the correct value of current, voltage and resistance in different parts of a complicated circuit 

without a functional understanding of the underlying concepts. A majority of students struggled to 

piece together a solution for the total electronic energy. In an interview, before engaging with the 

CQS, in response to question 2c in the pretest, one student stated, “I assume I should integrate but 

I’m not sure how to set it up.”  The following are typical incorrect responses that suggest that 

different students struggled with different aspects of setting up the integral: "𝐸 = ∫ 𝐸𝐹𝑑𝑘
𝑘𝐹

0
”, 

“𝐸𝑡𝑜𝑡 = ∫ 𝑁𝑑𝜖
𝑘𝐹

0
”, “𝐸𝑡𝑜𝑡 = ∫𝐷(𝜖)𝑑𝜖”, “𝐸𝑡𝑜𝑡 = ∫ 𝐷(𝜖)𝑑𝜖

𝑘𝐹

0
”, “𝐸 = ∫

ℏ2𝑘2

2𝑚
𝑑𝑘

𝑘𝑚𝑎𝑥

0
=

ℏ2𝑘𝑚𝑎𝑥
3

6𝑚
”, 

“𝐸 = ∫
ℏ2𝑘2

2𝑚
𝜎𝑙𝑥𝑙𝑦𝑑𝑘

𝑘𝐹

0
=

ℏ2𝑘𝑚𝑎𝑥
3

6𝑚
 , 𝑙𝑥 is length of square in x, 𝑙𝑦 is length of square in y, 𝜎 is number 

of free electrons per unit area”. Table 5.1 shows that the average student scores on questions 2b 

and 2c related to the calculation of the density of states and total electronic energy improved from 
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less than 10% after traditional lecture-based instruction to approximately 50% after the CQS. 

Deriving these expressions was extremely challenging for many students despite the fact that the 

only difference between the CQS and the pre/posttest questions 2b and 2c is that the dimensionality 

of the system was two dimensions, rather than three dimensions. Some interviewed students 

needed guidance from the interviewer to successfully calculate the total electronic energy in 

question 2c even on the posttest. Other interviewed students (not included in Table 5.1) asked to 

review CQ1-CQ7 again, which were in the three-dimensional context, before answering question 

2c in two dimensions on the posttest. 

5.3.4  Student difficulties with the expressions for the distribution functions and constraints 

on the number of particles in each single-particle state 

Table 5.1 shows that out of all of the questions, students performed relatively well on both 

pre/posttests on question 3 which asked for the expressions for the distribution functions and 

constraints on the number of particles in each single-particle state. On the pretest, average student 

scores were 39% on the distribution functions and 61% on the constraints and on the posttest, 

average student scores were 85% on the distribution functions and 80% on the constraints. The 

most common difficulties with regard to the distribution function was not including the chemical 

potential in the expressions or interchanging the signs in the denominator for the fermionic and 

bosonic cases. The most common difficulty for the constraints was switching the fermionic and 

bosonic cases. Other incorrect responses include claims that the constraint on the number of 

particles in each single particle state for the fermionic case is between ½ to 1 particle or that it is 

either 0 or 1 depending on spin. One student stated that for the MB distribution, there is a maximum 

of one particle in each single-particle state, confusing it with the fermionic case. 
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5.3.5  Student difficulties with the high temperature limiting case of distribution functions 

In the high temperature limit 𝑇 → ∞, the de Broglie wavelength of the particle wave 

becomes very small and the overlap of the wavefunction of different particles in the system 

becomes negligible. In this limit, the Fermi-Dirac and Bose-Einstein distribution functions 

approach the Maxwell-Boltzmann distribution function. Students had great difficulty with 

question 4 which focused on this issue (see Table 5.1). The common student difficulties on this 

question can be classified in a few categories as follows. 

Some students claimed that the quantum distribution functions will approach the MB 

distribution function when 𝑇 → 0 𝐾 (which is the exact opposite case in which the quantum effects 

are important). These students often focused on the mathematical expressions for the quantum 

distribution functions and mathematically reasoned about how they might approach the MB 

distribution function. Interviews suggest that students with these types of responses who resorted 

to using mathematical expressions as the basis for their answer did not think physically about 

whether their mathematical reasoning made sense conceptually. This dichotomy of either being in 

the “math” mode (which was prevalent for students who claimed the correct limit was 𝑇 → 0 𝐾) 

or the “physics” mode and not integrating the mathematical and physical reasoning to do the sense-

making is a common novice-like problem solving approach and has been observed in other 

contexts [36]. Two typical responses in this category are: “When 𝑇 → 0, 
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇±1

  ~ 
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇

”, and 

“They approach Maxwell-Boltzmann distribution when the exponential part is the most important, 

so when 𝑇 → 0”. Figure 5.3 shows another student response that falls in this category. Figure 5.3 

shows that the student writes the correct distribution functions in response to question 2 and states 

in response to question 4 that “When the 𝑒
𝜖−𝜇

𝑘𝐵𝑇 term is much larger than 1, the distributions are 
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roughly the same. This happens when 𝜖 > 𝜇 and low temperatures 𝑇 → 0.” This response is 

interesting because the student explicitly notes that the exponential term 𝑒
𝜖−𝜇

𝑘𝐵𝑇 is much larger than 

1 when 𝜖 > 𝜇 and 𝑇 → 0 K but does not contemplate the case when 𝜖 < 𝜇 and 𝑇 → 0 𝐾. For a 

fermionic system, this latter case (𝜖 < 𝜇 and 𝑇 → 0 𝐾) yields  𝑛𝐹𝐷(𝜖) = 1 for all states below the 

Fermi energy (which is the chemical potential at T =0 K). This type of response suggests that 

focusing only on mathematical reasoning prevented students from realizing that their reasoning 

did not take into account all situations (e.g., 𝜖 < 𝜇 and 𝑇 → 0 K in Figure 5.3). Interviews also 

suggest that some of the students had inadequate understanding of the chemical potential of the 

system which exacerbated the difficulty in reasoning about the limiting case. For example, students 

did not realize that 𝜇 for particles with mass depends on temperature and for fermions, 𝜇 is equal 

to the Fermi energy at T = 0 K and then it decreases with an increase in temperature and eventually 

becomes negative at high temperatures (while for bosons, 𝜇 is zero at and below the critical 

temperature and is negative otherwise). 

 

Figure 5.3 A sample response in which the student wrote the correct mathematical expressions for each of the 

distribution functions but drew an incorrect conclusion about the limiting case. 
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Other students who mainly reasoned using the expression for the distribution functions 

focused only on large energy 𝜖 in the expression for the distribution functions, which does not 

make sense. They claimed that the quantum distribution functions will approach MB distribution 

function when 𝜖 → ∞ as in the following student responses: “At very large 𝜖,   
𝜖−𝜇

𝑘𝐵𝑇
>> 1 so it 

approaches M-B distribution”, “As 𝜖 → ∞, all converge b/c the ±1 in denominator becomes 

irrelevant”, “In the high 𝜖-limit, as the exponential term becomes very large”. 

Other students claimed that the quantum distribution functions will approach the MD 

distribution function whenever the particles are non-interacting, as in the following responses: “If 

there is no interaction, both of them [Fermi-Dirac and Bose-Einstein] become classical [Maxwell-

Boltzmann]”or “If there is no interaction…classical.” Discussions suggest that these students often 

confused the fact that the overlap of the wavefunction of different particles in the system should 

be negligible (which happens in the high temperature limit) to conclude that the particles should 

be non-interacting or Coulomb interaction between the electrons should be negligible to approach 

the MB distribution limit. 

5.3.6  In-class implementation by instructor A 

The ability to transform from one representation of knowledge to another, e.g., 

mathematical to graphical, is a sign of expertise. Experts often transform from one representation 

of knowledge to another to simplify the problem solving process. Table 5.1 shows that on question 

5 on the pre/posttests that asked students to draw the Fermi-Dirac distribution function at T=0 K 

and T > 0 K students’ average score more than doubled after engaging with the CQS following 
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traditional lecture-based instruction. On the pretest, many students struggled with the graphical 

representation of the Fermi-Dirac distribution function both at zero and non-zero temperatures. 

For example, Figure 5.4 shows one such graph on which an interviewed student drew an 

exponentially increasing  𝑛𝐹𝐷(𝜖) vs. 𝜖 at T > 0 K. 

 

Figure 5.4 An interviewed student’s incorrect graphical representation of the Fermi-Dirac distribution function at T 

> 0K stating the graph has exponential shape because the expression for  𝐧𝐅𝐃(𝛜) involves “…e to the something… 

probably has energy in there.  I’m not so sure just how temperature would fit into it though.” 

 

Another interviewed student incorrectly claimed that as the temperature increases, a peak 

appears in  𝑛𝐹𝐷(𝜖) and that peak in the Fermi-Dirac distribution function would shift to higher 

temperatures and the occupation of the ground state would eventually reach zero (see his drawing 

in Figure 5).  “For T>0, there’s a local maximum at 𝜖=0, but it gets pushed out as T increases.  

Much, much greater, and it would get pushed out past the Fermi energy.  I wouldn’t think there 

should be anything keeping that maximum at the Fermi energy.” Interviews suggest that some 

students may have been confused about the peak in the Maxwell speed distribution (which has the 

square of the speed from the volume element multiplying the exponential factor so that there is a 

peak at a non-zero value of speed) and how the peak in that distribution moves to higher energies 

as the temperature increases. In written responses to question 5 also, several students drew the 
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Fermi-Dirac distribution function with peaks at the Fermi energy or some other non-zero energy 

similar to Figure 5.5. For example, one student who drew the Fermi-Dirac distribution function 

correctly at T=0 K, drew a graph similar to that shown in Figure 5.5 for T >>0 K. Another student 

drew a graph similar to that shown in Figure 5.5 for T >>0 K for both T=0 K and T > 0 K with 

peaks of different heights centered at the same value of single-particle energy. Other students who 

confused the fermionic and bosonic distribution functions, drew the Fermi-Dirac distribution 

function to be a delta function at 𝜖 = 0  at T = 0 K. 

 

Figure 5.5 An interviewed student’s incorrect graphical representation of the Fermi-Dirac distribution function in 

which the student incorrectly stated that the single-particle ground state of the fermions would eventually be vacated 

and the peak in the distribution function (which is not supposed to be there) will keep shifting to higher energies as 

the temperature of the system increased. 

5.4 SUMMARY AND FUTURE PLANS 

We investigated the difficulties that physics students in upper-level undergraduate QM and 

graduate students after quantum and statistical mechanics core courses have with the Fermi energy, 

Fermi-Dirac distribution and total electronic energy of a free electron gas after they had learned 
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relevant concepts in their respective courses. These difficulties were probed by administering 

written conceptual and quantitative questions to undergraduate students and asking students in 

undergraduate and graduate courses to answer those questions while thinking aloud [35] in one-

on-one individual interviews. We find that advanced students have many common difficulties with 

these concepts, after traditional lecture-based instruction and students struggled with both 

conceptual and quantitative questions. We also find that student performance in the undergraduate 

course improved after students engaged with the CQS on relevant concepts but there is still 

substantial room for improvement.  

The future refinements of the CQS will focus on addressing student difficulties found via 

in-class administration (in-vivo) as opposed to via the earlier administration in the one-on-one 

interview situation (in-vitro).  For example, in order to better address the difficulties with the 

distribution function, an increased emphasis on the chemical potential, its role in the distribution 

functions, and its behavior as a function of temperature will be included in the CQS via additional 

clicker questions.  The common difficulties with the limiting case posed in question 4 will also be 

addressed more explicitly via additional clicker questions.  Moreover, although it is typical to 

guide students through calculational problems (that involve both conceptual and quantitative parts) 

via a series of clicker questions as in CQ1-CQ7, student learning may be improved for question 2 

which involves calculations of the Fermi energy, density of states and total electronic energy by 

changing the implementation of the CQS.  In fact, a majority of interviewed students required at 

least some guidance from the interviewer via leading questions in order to do the calculations 

correctly in question 2 on the posttest, which focused on a two dimensional system instead of the 

three dimensional system treated in CQ1-CQ7.  Some interviewees asked to review CQ1-CQ7 one 

more time for the three dimensional calculations before calculating the corresponding quantities 
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in two dimensions in question 2 on the posttest. In the future implementation of the CQS, 

immediately after the students engage with clicker questions CQ1-CQ7 in the class, we plan to ask 

them to respond to question 2 without any support so that they have an opportunity to reflect upon 

their proficiency in deriving the expressions for the Fermi energy, density of states and total 

electronic energy of a free electron gas and tell them right before they engage with the CQS that 

they will have to do the derivations immediately after the CQS as a quiz. This type of immediate 

individual reflection after engaging with the CQS with their peers may be helpful in improving 

individual accountability and focus, and help students consolidate the concepts learned and 

develop facility and self-reliance in calculating these quantities by combining conceptual and 

quantitative problem solving. 
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5.7 CHAPTER APPENDIX 

 

Notation and procedures coincide with treatment by Griffiths (2nd Edition). Correct 

answers are bolded. 

 

Figure 5.6 Illustration provided to students with the CQ1-CQ10 (Credit: Kyle Whitcomb, University of Pittsburgh) 

 

Section 1 (T = 0 K): 
 
(CQ1) Let’s consider an octant in k-space. Choose all of the following statements that are correct 
about the k-space for a free electron gas at T = 0 K in a three-dimensional solid volume V made 
up of N atoms each with q free electrons, given that two electrons with opposite spins occupy a 

volume 
𝜋3

𝑉
 in k-space. 

(1)   In k-space, the volume of an octant with highest occupied wavevector 𝑘𝐹 is  
1

8
(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑘𝐹) =

1

8
(
4

3
𝜋𝑘𝐹

3) = (
1

6
𝜋𝑘𝐹

3). 

(2) The total volume occupied by the free electrons is 

 
(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠)

2
 (Volume occupied by two electrons in k-space) =

𝑁𝑞

2
(
𝜋3

𝑉
) . 

(3) The volume of an octant with highest occupied wavevector 𝑘𝐹 and the total volume 

occupied by the free electrons in k-space are equal, so (
1

6
𝜋𝑘𝐹

3) =
𝑁𝑞

2
(
𝜋3

𝑉
). 

 
A. 1 only       B. 2 only     C. 1 and 2 only       D. 2 and 3 only    E. all of the above 
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(CQ2)  Equating (
1

6
𝜋𝑘𝐹

3) =
𝑁𝑞

2
(
𝜋3

𝑉
) and solving for 𝑘𝐹 gives 𝑘𝐹 = (3𝜋2𝜌)1/3 where 𝜌 =

𝑁𝑞

𝑉
 is the 

free electron density (number of free electrons per unit volume). Using this information, choose 
all of the following statements that are correct about the Fermi energy 𝐸𝐹 for non-interacting 
electrons in the free electron gas model. 

1) The Fermi energy 𝐸𝐹 is the energy of the highest occupied state at 𝑇 = 0 𝐾. 

2) The Fermi energy is 𝐸𝐹 =
ℏ2𝑘𝐹

2

2𝑚
=

ℏ2

2𝑚
(3𝜋2𝜌)2/3 

3) The Fermi energy 𝐸𝐹 only depends on the electron number density and the mass of the 
electron. 

 
A. 1 only     B. 1 and 2 only    C. 1 and 3 only     D. 2 and 3 only   E. all of the above 
 

 
(CQ3)  Choose all of the following statements that are correct about a free electron gas in three 
dimensions.  

1) Each state in each shell between k and k+dk has energy 𝜖 =
ℏ2𝑘2

2𝑚
. 

2) The volume of a shell of thickness 𝑑𝑘 between k and k+dk in the relevant octant in k 

space occupied by free electrons is 
1

8
(
4

3
𝜋𝑘3) 𝑑𝑘. 

3) The volume of a shell of thickness 𝑑𝑘 between k and k+dk in the relevant octant in k 

space occupied by free electrons is 
1

8
(4𝜋𝑘2)𝑑𝑘. 

 
A. 2 only      B.  3 only      C.  1 and 2 only     D.  1 and 3 only E.  None of the above. 

 

 
(CQ4) Choose all of the following statements that are correct for the 3D free electron gas model. 
(Include electron spin when relevant.) 

1)  The number of electron states in each shell between k and k+dk is:  

2 𝑥 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆ℎ𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑚𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑡𝑎𝑡𝑒 𝑖𝑛 𝑘−𝑠𝑝𝑎𝑐𝑒
=

2∙
1

8
(4𝜋𝑘2)𝑑𝑘

𝜋3

𝑉

=
𝑉

𝜋2
𝑘2𝑑𝑘. 

2) The total energy of the electrons in a shell between k a𝑛𝑑 k + 𝑑𝑘  is 
ℏ2𝑘2

2𝑚

𝑉

𝜋2 𝑘2𝑑𝑘 where 

𝜖 =
ℏ2𝑘2

2𝑚
. 

3) The total electronic energy of the system at T = 0 K can be calculated as:  

 𝐸𝑡𝑜𝑡 = ∫
ℏ2𝑘2

2𝑚

𝑉

𝜋2 𝑘2𝑑𝑘
𝑘𝐹

0
=

ℏ2

2𝑚

𝑉

𝜋2 ∫ 𝑘4𝑑𝑘
𝑘𝐹

0
=

ℏ2

2𝑚

𝑉

𝜋2

𝑘𝐹
5

5
 

 
 

A. 1 only      B.  1 and 2 only      C.  1 and 3 only     D.  2 and 3 only E.  All of the above. 
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(CQ5) Choose all of the following statements that are correct about a free electron gas in three 
dimensions. (Include electron spin when relevant. 𝜖 defines a surface in k-space. A shell is the 
volume between two closely-spaced energy surfaces.) 

1) The number of states in each shell between 𝜖  and 𝜖+d𝜖 is 𝐷(𝜖) 𝑑𝜖 where the density of 
states, 𝐷(𝜖),  is the number of states per small interval of energy for a given 𝜖. 

2) The density of states, 𝐷(𝜖), is the number of particles in a given energy interval between 
energy 𝜖 and 𝜖+d𝜖.  

3) For a free electron gas at T = 0 K, the total energy, 𝐸𝑡𝑜𝑡, can be calculated as 

  𝐸𝑡𝑜𝑡 = ∫ 𝜖 𝐷(𝜖)𝑑𝜖
𝐸𝐹

0
 

 
A. 1 only      B.  1 and 2 only      C.  1 and 3 only     D.  2 and 3 only E.  All of the above. 

 

 
(CQ6) Consider the following conversation: 

Student 1: “For a free electron gas at T = 0 K, the total electronic energy 𝐸𝑡𝑜𝑡 = ∫ 𝐷(𝜖)𝑑𝜖
𝐸𝐹

0
.” 

Student 2: “I disagree. Your integral gives the total number of states up to the Fermi energy.”  

Student 3: “The total energy is 𝐸𝑡𝑜𝑡 = ∫ 𝜖 𝐷(𝜖)𝑑𝜖
𝐸𝐹

0
, which can also be calculated in terms of 

k as we did in a preceding question.” 
 

A. Student 1 only      B.  Student 2 only      C.  Students 1 and 3 only     D.  Students 2 and 3 
only E.  All of the above. 

 

 
(CQ7) Choose all of the following statements that are correct about the density of states, 𝐷(𝜖), for 
the 3D free electron gas model given that the number of electron states in the shell between k and 

k+dk is  
𝑉

𝜋2 𝑘2𝑑𝑘 (electron spin has been included). 

 

1) 𝐷(𝜖)𝑑𝜖 =
𝑉

𝜋2 𝑘2𝑑𝑘. Therefore, 𝐷(𝜖)𝑑𝜖 is proportional to 𝑘2𝑑𝑘. 

2) Given that 𝜖 =
ℏ2𝑘2

2𝑚
,  𝑑𝜖 =

ℏ2

𝑚
𝑘𝑑𝑘. 

 

3) Using (1) and (2), 𝐷(𝜖)𝑑𝜖 is proportional to √𝜖𝑑𝜖. Therefore 𝐷(𝜖) is proportional to √𝜖. 
 

A. 1 only      B.  1 and 2 only      C.  1 and 3 only     D.  2 and 3 only E.  All of the above. 
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(CQ8) We now know that the total electronic energy of the system of free electrons at 𝑇 = 0𝐾 is 

𝐸𝑡𝑜𝑡 = (
ℏ2(3𝜋2𝑁𝑞)

5/3

10𝜋2𝑚
)𝑉−2/3 , which can be written as a function of volume given that the 

number of free electrons is fixed: 𝐸𝑡𝑜𝑡 = 𝐶 𝑉−2/3. Then 𝑑𝐸𝑡𝑜𝑡 = (−2/3)𝐶 𝑉−5/3𝑑𝑉.  

Choose all of the following that are correct. (Assume no heat transfer from the free electron gas 
to its surroundings in the process discussed below). 

 
1) If 𝑑𝑉 is negative, 𝑑𝐸𝑡𝑜𝑡 is positive. 

2) The infinitesimal work by the system 𝑑𝑊 = 𝑃𝑑𝑉 = −𝑑𝐸𝑡𝑜𝑡,  so the “degeneracy 

pressure”  𝑝 = (
2

3
)𝐶 𝑉−5/3. 

3)  The degeneracy pressure is due to the anti-symmetrization requirement of the many-
particle wavefunction of the electrons.  

4) Since decreasing the volume of the system increases the energy, it is not energetically 
favorable. 

 
A. 1 and 2 only      B.  1 and 3 only      C.  2 and 3 only     D.  1, 2, and 3 only 

E.  All of the above. 

 

 

(CQ9) Choose all of the following statements that are correct about a free electron gas system.  

 
1) “Degeneracy pressure” describes the quantum mechanical effect that there is an 

“outward” force per unit area that prevents a solid from collapsing due to the restriction 

that each electron must occupy a different single particle state. 

2) The degeneracy pressure plays a role in stabilizing a solid object.  

3) If the electrons were bosons, the total electronic energy of the free electron gas at 

temperature T = 0K would be lower than what it actually is. 

 
A. 1 only      B.  3 only      C.  1 and 2 only     D.  1 and 3 only E.  All of the above. 
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(CQ10) Cubes A and B with the same atom number density have N and 2N sodium atoms, 
respectively. Choose all of the following statements that are correct.  

1) At temperature T = 0 K, the Fermi energy of sodium in cube B is larger than the Fermi 
energy of sodium in cube A.  

2) At temperature T = 0 K, the total electronic energy of the electrons in cube B is larger 
than the total electronic energy of the electrons in cube A.  

3) If we slowly compress the volume of cube A, the total electronic energy of the electrons in 
cube A will increase.  

 
A. 1 only      B.  2 only      C.  1 and 2 only     D.  2 and 3 only E.  All of the above. 

 

 
Class Discussion (3D free electron gas at T = 0 K) 

 

• Two electrons in the same spatial state with “opposing” spins occupy a volume 
𝜋3

𝑉
 in 

 𝑘-space (regardless of the value of 𝑘⃗⃗). 

• The volume 
𝜋3

𝑉
 in 𝑘-space can accommodate two electrons due to the fact that electrons 

are spin-1/2 fermions. 

• For an octant, the volume of a shell between k and k+dk of thickness 𝑑𝑘 is 
1

8
(4𝜋𝑘2)𝑑𝑘. 

• The number of electron states in the shell between k and k+dk is 
𝑉

𝜋2
𝑘2𝑑𝑘, which is equal 

to 𝐷(𝜖)𝑑𝜖  where 𝐷(𝜖) is the density of states with 𝜖 =
ℏ2𝑘2

2𝑚
. 

• The energy of the electrons in a shell of thickness 𝑑𝑘 is 𝑑𝐸 =
ℏ2𝑘2

2𝑚

𝑉

𝜋2 𝑘2𝑑𝑘. 

• The total electronic energy is 𝐸𝑡𝑜𝑡 =
ℏ2

2𝑚

𝑉

𝜋2 ∫ 𝑘4𝑑𝑘
𝑘𝐹

0
=

ℏ2

2𝑚

𝑉

𝜋2

𝑘𝐹
5

5
= (

ℏ2(3𝜋2𝑁𝑞)
5/3

10𝜋2𝑚
)𝑉−2/3. 

• “Degeneracy pressure” is an “outward” quantum mechanical force per unit area that 
prevents the system from collapsing. 
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The following question was not administered in this study but could help scaffold transfer from 
3D to 2D in future implementations. 
 
(CQ11) Choose all of the following statements that are correct about the density of states, 𝐷(𝜖), 
for the 2D free electron gas model given that the number of electron states in the shell between k 

and k+dk is  
𝐴

𝜋
𝑘𝑑𝑘 (electron spin has been included when relevant). 

 

1) 𝐷(𝜖)𝑑𝜖 =
𝐴

𝜋
𝑘𝑑𝑘. Therefore, 𝐷(𝜖)𝑑𝜖 is proportional to 𝑘𝑑𝑘. 

2) Given that 𝜖 =
ℏ2𝑘2

2𝑚
,  𝑑𝜖 =

ℏ2

𝑚
𝑘𝑑𝑘. 

 
3) Using (1) and (2), 𝐷(𝜖)𝑑𝜖 is proportional to 𝑑𝜖, therefore 𝐷(𝜖) does not depend on energy 
𝜖. 

 
A. 1 only      B.  1 and 2 only      C.  1 and 3 only     D.  2 and 3 only  E.  All of the above. 

 

 
Section 2 (System at T > 0 K): 
 
 
(CQ12)  

• The distribution function 𝑛(𝜖) is the average number of particles in one single particle 
state with energy 𝜖.  

• For a given system, 𝐷(𝜖), the density of states for energy 𝜖, is the number of single 
particle states per unit energy with energy 𝜖. 

• The average number of particles per unit energy with energy 𝜖 is 𝑁(𝜖).  

 
Choose all of the following statements that are correct: 
 

1) 𝑛(𝜖) =
𝑁(𝜖)

𝐷(𝜖)
 

2) Fermions, bosons, and distinguishable particles have different 𝑛(𝜖). 

3) Bosons and distinguishable particles have the same 𝑛(𝜖) because there is no limit to the 
number of particles that can occupy a given single-particle state, unlike fermions. 

 
A. 1 only      B.  2 only      C.  3 only     D.  1 and 2 only E.  1 and 3 only. 
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(CQ13) Choose all of the following statements that are correct about 
𝑛(𝜖) (𝑎𝑙𝑙 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒𝑖𝑟 𝑢𝑠𝑢𝑎𝑙 𝑚𝑒𝑎𝑛𝑖𝑛𝑔): 

 
1) The distribution function 𝑛(𝜖) is the average number of particles in a given single-

particle state with energy 𝜖. 

2) The distribution function is 𝑛(𝜖) = 𝑒
−(𝜖−𝜇)

𝑘𝐵𝑇 in situations in which the particles can be 
treated as distinguishable. 

3)  0 ≤ 𝑛(𝜖) ≤ 1 for all single particle states with energy 𝜖 regardless of whether the 
particles are bosons or fermions. 

 
A. 2 only      B.  3 only      C.  1 and 2 only     D.  2 and 3 only E.  All of the above. 

 

 

Class Discussion 

 
𝐷(𝜖) - “Density of states” - The number of single particle states per unit energy with energy 
𝜖. 
𝑛(𝜖) - “Distribution Function” – The average number of particles in a given single particle 
state with energy 𝜖.   
𝑁(𝜖) = 𝐷(𝜖)𝑛(𝜖) is the average number of particles per unit energy with energy 𝜖. 
 
Depending on the type of particles, the distribution function 𝑛(𝜖) can be one of the following: 

• Maxwell-Boltzmann:      𝑛(𝜖) =
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇

 

• Fermi-Dirac:     𝑛(𝜖) =
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇+1

 

• Bose-Einstein:     𝑛(𝜖) =
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇−1

 

 
Review the differences between fermions, bosons, and distinguishable particles with respect to 
issues discussed in the two prior questions. 
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(CQ14) Choose all of the following statements that are correct about the Maxwell-Boltzmann 

distribution (MBD),  𝑛(𝜖) =
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇

. 

 
1) The Maxwell-Boltzmann distribution can be used for classical distinguishable particles.  

2) In the expression 𝑛(𝜖) =
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇

, 𝜖 represents the energy of a single-particle state. 

3) In the high temperature limit, the Fermi-Dirac and Bose-Einstein distribution functions 

reduce to the MBD 𝑛(𝜖) =
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇

 

A. 1 only      B.  2 only      C.  1 and 2 only     D.  1 and 3 only E.  All of the above. 

 

 
 
 
(CQ15) Choose all of the following statements that are correct about non-interacting fermions. 

Recall that the Fermi-Dirac distribution function is 𝑛(𝜖) =
1

𝑒

𝜖−𝜇
𝑘𝐵𝑇+1

. 

 

1) At T = 0 K (absolute zero temperature), 𝑛(𝜖)=1 if 𝜖 > 𝜇(𝑇 = 0) and 𝑛(𝜖)=0 if 

𝜖 < 𝜇(𝑇 = 0). 

2) At T = 0 K (absolute zero temperature), the Fermi energy is equal to the chemical 

potential 𝜇(𝑇 = 0). 

3) At a finite non-zero temperature, if 𝜖 = 𝜇(𝑇), the average occupation number for a 

particular single particle state with energy 𝜖 is 𝑛(𝜖) = 1/2. 

 
A. 1 only      B.  1 and 2 only      C.  1 and 3 only     D.  2 and 3 only E.  All of the above. 

 

 
(CQ16) Choose all of the following statements that are correct about non-interacting bosons. 

 
(1) The chemical potential for a bosonic system is always less than or equal to zero,  

𝜇(𝑇) ≤ 0.  

(2) As the temperature decreases, the chemical potential 𝜇(𝑇) increases. 

(3) Bose-Einstein condensation can occur at low temperatures when a macroscopic number 
of bosons occupies the lowest single-particle state or ground state. 

 
A. 1 only      B.  1 and 2 only      C.  1 and 3 only     D.  2 and 3 only E.  All of the above. 
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(CQ17) Given the distribution function 𝑛(𝜖) =
1

𝑒

𝜖−𝜇(𝑇)
𝑘𝐵𝑇 −1

 for massive bosons, choose all of the 

following statements that are true related to the chemical potential of the system:  

 

1) 𝑛(𝜖) cannot be negative, so 
𝜖−𝜇(𝑇)

𝑘𝐵𝑇
> 0. 

2) 𝜖 − 𝜇(𝑇) > 0 implies that 𝜖 > 𝜇(𝑇) for all allowed single particle energies 𝜖. 

3) Since the lowest single particle energy 𝜖~0, 𝜖 > 𝜇(𝑇) for all 𝜖 implies that 𝜇(𝑇) for a 
boson is always negative.  

 
A. 1 only      B.  1 and 2 only      C.  1 and 3 only     D.  2 and 3 only  E.  All of the above. 

 

 
Class Discussion 

 
Discuss issues pertaining to the preceding questions such as these:  
  
At high temperature, why do the Fermi-Dirac and Bose-Einstein distribution functions both 
reduce to the Maxwell-Boltzmann distribution function? 
 
What do the graphical representations of the various distribution functions look like at 
different temperatures? 
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6.0 IMPACT OF INCOROPORATING MATHEMATICAL RIGOR IN A QUANTUM 

INTERACTIVE LEARNING TUTORIAL ON STUDENTS’ CONCEPTUAL 

UNDERSTANDING OF QUANTUM OPTICS 

6.1 INTRODUCTION 

6.1.1  Background on expertise 

In order to help students develop expertise in any area of physics, one must first ask how 

experts, in general, compare to novices in terms of their knowledge structure and their problem-

solving, reasoning, and metacognitive skills. According to Sternberg [1], some of the 

characteristics of an expert in any field include the following: (1) having a large and well organized 

knowledge structure about the domain; (2) spending significant amount of time in determining 

how to represent problems before searching for a problem strategy, (i.e., analyzing the problem 

and planning the solution); (3) developing representations of different problems based on deep 

underlying structural similarities between problems; (4) working forward from the given 

information in the problem and implementing strategies to find the unknowns; (5) efficient 

problem solving—when under time constraints, experts solve problems more quickly than novices; 

and (6) accurately predicting the difficulty in solving a problem. Additionally, experts are more 

flexible than novices in their planning and actions [2].  

Experts also have more robust meta-cognitive skills than novices. Meta-cognitive skills or 

self-regulatory skills, refer to a set of activities that can help individuals control their learning [3-

5]. The three main self-regulatory skills are planning, monitoring, and evaluation [3-5]. Planning 
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involves selecting appropriate strategies to use before beginning a task. Monitoring is the 

awareness of comprehension in light of the problem and task performance. Evaluation involves 

appraising the product of the task and reevaluating conclusions [3-5]. Self-regulatory skills are 

especially important for learning in knowledge-rich domains such as physics. For example, in 

physics, students benefit from approaching a problem in a systematic way, such as analyzing the 

problem (e.g., drawing a diagram, listing knowns and unknowns, and predicting qualitative 

features of the solution that can be checked later), planning (e.g., selecting pertinent principles or 

concepts to solve the problem), and evaluating (e.g., checking that the steps are valid and that the 

answer makes sense) [6-32]. When experts repeatedly practice problems in their domain of 

expertise, problem-solving and self-regulatory skills may even become automatic and 

subconscious [3-5]. Therefore, unless experts are given a “novel” problem, they may go through 

the problem-solving process in an automated manner without making a conscious effort to plan, 

monitor, or evaluate their work [6]. Although individuals’ expertise in a domain spans a wide 

spectrum on a continuum, with this caveat in mind, here we refer to physics instructors as experts 

and students as novices. 

If our goal is to help students become experts in physics, whether at the introductory or 

advanced level, we must also contemplate whether there is something special about the nature of 

expertise in physics over and above what is true in general about expertise, e.g., what is needed 

for becoming an expert tennis or chess player or music performer [33-38].  Physics is a discipline 

that focuses on unraveling the underlying mechanisms of new physical phenomena in our universe. 

Physicists make and refine models to test and explain physical phenomena that are observed or to 

predict those that have not been observed so far. A cohesive physical model requires synthesis of 

both conceptual and quantitative knowledge as shown schematically in Fig. 6.1. Therefore, an 
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important aspect of expertise in physics is the proficiency with which one makes appropriate 

connections between physics concepts necessary to understand physical phenomena and relevant 

mathematics. Indeed, in physics, there are very few fundamental laws which are encapsulated in 

compact mathematical forms and learning to unpack them can help develop expertise and organize 

one’s knowledge hierarchically. In particular, developing expertise in physics entails making 

appropriate math-physics connection in order to meaningfully unpack, interpret and apply the laws 

of physics and use this sense-making to develop a good knowledge structure of physics and solve 

novel problems in diverse situations. It is important to recognize that meaningful sense-making to 

unpack, interpret and apply the laws of physics, develop and organize one’s knowledge structure, 

and retrieve relevant knowledge to solve complex physics problems is an iterative dynamic process 

(see Fig. 6.1) and appropriate reflection and meta-cognition during problem solving is required to 

give individuals an opportunity to refine, repair and extend their knowledge structure and propel 

them towards a higher level of expertise. 

 

Figure 6.1 Schematic diagram showing connections between physical phenomena and modeling involving 

integration of conceptual and quantitative understanding in physics (left) and different synergistic components of 

expertise development in physics (right). 
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Unfortunately, even though some major goals of physics courses for physics majors (as 

well as for other science and engineering majors) are to enable students to develop good reasoning 

and problem solving skills, use these skills in a unified manner to explain,  predict diverse physical 

phenomena in everyday experience, numerous studies show that from a traditionally taught course, 

many students do not acquire these skills and develop the level of expertise desired [6-32]. The 

difficulty in physics expertise development and learning to think like a physicist can partly be 

attributed to the fact that many traditional courses from introductory to advanced level do not focus 

on helping students master the complex chain of reasoning that is often required to solve problems 

in the relatively precise domain of physics. Students have difficulty in making the appropriate 

math-physics connection, which is critical for productive problem solving and using it to develop 

a robust knowledge structure [6]. 

6.1.2  ICQUIP framework for developing expertise in physics from introductory to 

advanced levels 

Since appropriate qualitative (conceptual) and quantitative connection and sense-making 

are central to becoming an expert in physics but are often not adequately recognized and accounted 

for in traditional physics teaching at all levels for science and engineering majors via serious 

contemplation of instructional goals, instructional design and assessment of learning, we propose 

a framework called “Integrating Conceptual and Quantitative Understanding In Physics” or 

“ICQUIP”. This framework focuses on an essential ingredient in physics instruction in order to 

develop students’ expertise adequately and equip them with both conceptual and quantitative 

knowledge and skills to unpack the laws of physics encapsulated in compact mathematical forms 

and use physics problem solving for learning and organizing their knowledge hierarchically [6]. 
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The ICQUIP framework asserts that without focus on appropriate integration of conceptual and 

quantitative understanding in physics, commensurate with students’ prior knowledge and skills, 

physics learning will not be functional.  Rather, many students may perform well in their physics 

courses by memorizing concepts and formulas and solving the problems algorithmically using plug 

and chug approaches. Indeed, prior research suggests that many students view physics as a 

collection of disconnected facts and formulas and believe that performing well in physics courses 

entails memorizing and regurgitating algorithms and doing pattern matching while solving 

problems [39-41]. The goal of the ICQUIP framework is to draw attention to the nature of expertise 

in physics and emphasize the central role of the integration of an appropriate level of conceptual 

and quantitative knowledge and skills and why this integration must be incorporated in 

instructional goals, design and assessment in order for students at both the introductory and 

advanced levels to truly become physics experts.  

The ICQUIP framework that explicitly brings out the importance of appropriate conceptual 

and quantitative connection in teaching, learning and assessment for physics expertise 

development is particularly important because of several related common misconceptions that 

physics instructors at all levels often have. For example, instructors often believe that learning 

physics concepts is easier for students at all levels than learning how to solve physics problems 

using “rigorous” mathematics [42-45]. They believe that if non-science majors can learn physics 

concepts, science and engineering majors (and particularly physics majors) can learn physics 

concepts on their own and there is no point in wasting precious instructional time on concepts 

instead of focusing on mathematical derivations and problems that will help students do complex 

calculations. Moreover, in upper-level or graduate courses, instructors often believe that students 

should have learned the concepts in the previous physics courses (e.g., in undergraduate courses 
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for graduate core courses) so their goal as instructors is mainly to focus on developing the 

“calculational” facility of students in the courses they are teaching instead of striving to 

appropriately integrate conceptual and quantitative understanding [42]. Some instructors also 

believe that students will learn the physics concepts anyway in order to be able to do the 

calculations so there is no need to reward them for conceptual understanding by asking them 

conceptual questions in assessment tasks [42]. Other instructors claim that they always mention 

important concepts involved before doing calculational problems or before doing complicated 

derivations in their classes [42]. However, they only ask students to do complicated calculations 

in assessment tasks that determine their course grade (these are often problems that many students 

attempt to do using algorithmic or plug and chug approaches) because this is the most efficient use 

of instruction and learning time. Also, even if students have had one coat of exposure to concepts 

in previous courses, integrating conceptual and quantitative aspects of physics in instructional 

goals, instructional design and assessment of learning is critical for a majority of students to be 

motivated to focus on functional understanding and be supported to develop a good knowledge 

structure of physics by solving a variety of integrated problems that are appropriately scaffolded.  

Some instructors also claim that they select calculational problems that have rich conceptual 

implications although they expect students to unpack those conceptual implications on their own 

when doing the calculation instead of explicitly integrating conceptual questions with those 

calculational problems in order to provide scaffolding support to make appropriate math-physics 

connections (without such incentive and support, many students at all levels do not make such 

connections automatically and conceptual learning and development of a robust knowledge 

structure and skills are compromised). 
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The ICQUIP framework’s explicit focus on appropriate integration of conceptual and 

quantitative understanding in physics for expertise development is important for instruction 

because physics is one of those disciplines in which quantitative facility and algorithmic 

approaches can mask the lack of a robust knowledge structure and deep conceptual understanding. 

In order to become an expert in physics, students must learn to integrate conceptual and 

quantitative aspects of physics in a meaningful way and internalize each equation encountered in 

physics problem solving as a relation between physical quantities, and not merely as a plug-and-

chug tool or a “formula” to obtain a solution. However, since traditional physics courses for 

physics majors (and science and engineering students in general) often focus primarily on 

quantitative assessments, the algorithmic approaches to solving physics problems that do not 

reflect conceptual understanding can lead to many students obtaining good grades despite having 

superficial understanding of the underlying physics concepts and novice-like knowledge structure. 

Since many students focus on what they are graded on, lack of emphasis on conceptual 

understanding disincentivizes metacognition and making appropriate math-physics connection to 

develop a robust knowledge structure. In fact, motivational goal orientation of students can be 

divided into two broad categories: goal orientation of students who are focused mainly on 

performing well in a course instead of on developing expertise, i.e., a ‘performance’ goal 

orientation, and those who are focused on achieving mastery of the material, i.e., a ‘mastery’ goal 

orientation [46–48]. These different motivational goals can have a negative or positive feedback 

loop effect on student attitudes and may shape their problem-solving beliefs and processes through 

different levels of engagement and sense-making while solving problems [48]. Unlike expertise in 

playing tennis or chess or music performance, in which performance goal orientation would be 

commensurate with the desire for mastery (so that the difference between performance and mastery 
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goals blur), there can often be a huge gulf between performance and mastery goal orientations in 

traditionally taught physics courses that evaluate student learning mainly on algorithmic problem 

solving, which can be accomplished using plug and chug approaches. In such courses, many 

students who are motivated mainly by the course grade are disincentivized to develop mastery and 

may not make sufficient effort to integrate math and physics appropriately and build a good 

knowledge structure. 

We also note that contrary to the common misconception of physics instructors, conceptual 

reasoning without using quantitative tools can often be more challenging than reasoning 

conceptually with quantitative tools, particularly for those who are not experts, because 

quantitative problems can be solved algorithmically by constraint satisfaction. This is because 

novices' knowledge hierarchy is fragmented and the limited capacity of working memory makes 

the cognitive load high during a conceptual reasoning task when no quantitative anchors are 

available, leaving fewer cognitive resources available for metacognition [49]. On the other hand, 

research shows that many students in physics courses, who have become facile at quantitative 

manipulation, are unable to answer similar isomorphic questions posed conceptually. In other 

words, if only quantitative problems are posed, students often view them as ``plug-and-chug" 

exercises while conceptual problems alone are viewed as guessing tasks with little connection to 

physics. Indeed, teaching students to draw conceptual inferences from quantitative tools 

constitutes an important yet under-emphasized tool for helping them learn physics and develop 

their reasoning and meta-cognitive skills because once students have solved a quantitative 

problem, the cognitive resources may be freed up for drawing meaningful conceptual inferences. 

Thus, the ICQUIP framework is important for physics instruction because, without guidance, most 

students do not exploit quantitative problem solving as an opportunity to reflect upon their answers 
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conceptually and build a good knowledge structure. For example, if a student knows which 

equations are involved in solving a problem, he or she can combine them in any order to obtain a 

quantitative answer. On the contrary, while reasoning conceptually without quantitative tools, the 

student must understand the physics underlying the given situation and generally proceed in a 

particular order to arrive at the correct conclusion [6]. Therefore, the probability of deviating from 

the correct reasoning chain increases rapidly as the chain of conceptual reasoning becomes long 

because most students do not have sufficient level of expertise. Combining quantitative and 

conceptual problem solving can provide scaffolding for knowledge and skill acquisition and 

opportunities for meta-cognition. As an example, a beginning student who has learned to reason 

with equations can invoke Newton's second law in mathematical form explicitly to calculate the 

normal force in terms of the tension and weight and then reason conceptually using this equation 

to conclude that the tension in the cable is greater than the weight of the elevator accelerating 

upward. On the other hand, a physics expert can use the same law implicitly without using 

quantitative tools and be confident in conceptually arguing that the upward acceleration implies 

that tension must exceed the weight. Similarly, a student who does not know whether the maximum 

safe driving speed while making a turn on a curved horizontal road depends on the mass of the 

vehicle will have great difficulty reasoning without equations that the maximum speed does not 

depend on the mass. However, again in this situation, if students are asked to make conceptual 

inferences after solving a quantitative problem involving maximum safe driving speed, appropriate 

scaffolding support can help them build a good knowledge structure and develop their reasoning 

and meta-cognitive skills. 

The ICQUIP framework is important for physics instruction at all levels for physics majors 

(and courses for science and engineering majors in general) because several researchers have 
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conducted investigations which suggest that students often perform well on quantitative problems 

but not on isomorphic conceptual questions. In a study on student understanding of diffraction and 

interference concepts, the group that was given a quantitative problem performed significantly 

better than the group given a similar conceptual question [50]. In another study, Kim et al. 

examined the relation between traditional physics textbook-style quantitative problem solving and 

conceptual reasoning [51]. They found that, although students in a mechanics course on average 

had solved more than 1000 quantitative problems and were facile at mathematical manipulations, 

they still had many common difficulties when answering conceptual questions on related topics. 

When Mazur gave a group of Harvard students quantitative problems related to power dissipation 

in a circuit, students performed significantly better than when an equivalent group was given 

conceptual questions about the relative brightness of light bulbs in similar circuits [52]. In solving 

the quantitative problems given by Mazur, students applied Kirchhoff’s rules to write down a set 

of equations and then solved the equations algebraically for the relevant variables from which they 

calculated the power dissipated. When the conceptual circuit question was given to students in 

similar classes, many students appeared to guess the answer rather than reason about it 

systematically. For example, if students are given quantitative problems about the power dissipated 

in each (identical) headlight of a car with resistance R when the two bulbs are connected in parallel 

to a battery with an internal resistance r and then asked to repeat the calculation for the case when 

one of the headlights is burned out, the procedural knowledge of Kirchhoff’s rules can help 

students solve for the power dissipated in each headlight even if they cannot conceptually reason 

about the current and voltage in different parts of the circuit. To reason without resorting explicitly 

to mathematical tools (Kirchhoff’s rules) that the single headlight in the car will be brighter when 

the other headlight is burned out, students have to reason in the following manner: The equivalent 
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resistance of the circuit is lower when both headlights are working so that the current coming out 

of the battery is larger. Hence, more of the battery voltage drops across the internal resistance r 

and less of the battery voltage drops across each headlight and therefore each headlight will be less 

bright. If a student deviates from this long chain of conceptual reasoning required, the student may 

not make a correct inference. Prior research in mechanics [45] also suggests that many students 

were reluctant to convert a problem posed conceptually into a quantitative problem even when 

explicitly asked to do so because due to lack of expertise, the task of first converting a conceptual 

problem to a quantitative problem is cognitively demanding [49] (even though they were more 

likely to obtain the correct answer by integrating conceptual and quantitative approaches). The 

students often used their gut feelings rather than explicitly invoking relevant physics concepts or 

principles for the conceptual problems.  On the other hand, appropriate integration of conceptual 

and quantitative understanding as emphasized in the ICQUIP framework can provide opportunity 

for metacognition and expertise development.  

Prior research suggests that the situation in advanced quantum mechanics courses is similar 

[53-55]. For example, in surveys administered to 89 advanced undergraduates and more than two 

hundred graduate students from seven universities enrolled in quantum mechanics courses, 

students were given a problem in which the wave function of an  electron in a one-dimensional 

infinite square well of width a, at time t = 0 in terms of stationary states is given by Ψ(x, 0) =

√
2

7
𝜙1 + √

5

7
𝜙2 [53-56]. They were asked to write down the possible values of the energy and the 

probability of measuring each and then calculate the expectation value of energy in the state 

Ψ(x, t). Although 67% of the students correctly noted that the probability for the outcome of the 

ground state energy E1 is 
2

7
 and the first excited state energy E2 is 

5

7
, a majority were unable to use 
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this information to determine the expectation value of energy 
1

7
(2𝐸1 + 5𝐸2).  Not only did the 

correct responses decrease from 67% to 39%, the students who calculated the expectation value 

〈𝐸〉 correctly mainly exploited brute-force methods: first writing 〈𝐸〉 = ∫  〈Ψ|𝐻̂|Ψ〉
∞

−∞
𝑑𝑥, then 

expressing  Ψ(x, t) in terms of the two energy eigenstates, then acting 𝐻̂ on the eigenstates, and 

finally using orthogonality to obtain the final answer. Some got lost early in this process while 

others did not remember some other mechanical step, e.g., taking the complex conjugate of the 

wave function, using orthogonality of stationary states or not realizing the proper limits of the 

integral. Interviews reveal that many students did not know or recall the qualitative interpretation 

of expectation value as an ensemble average, and did not realize that the expectation value could 

be calculated more simply in this case by taking advantage of the first part. Other questions posed 

to advanced students in quantum mechanics confirmed that many of the difficulties students have 

are conceptual in nature [55]. For example, analogous difficulties were also observed in response 

to conceptual questions about Larmor spin precession, especially with regard to the expectation 

values of spin components and their time dependence, given a particular initial state [55,56].  

Interestingly, course instructors were often surprised and noted that on similar but exclusively 

quantitative calculations, student performance was significantly higher.  These examples 

demonstrate that quantitative facility in problem solving does not automatically imply conceptual 

understanding in quantum mechanics, and students can master complex calculational problems 

using algorithmic approaches without understanding the underlying quantum physics concepts. In 

this sense, from the introductory to advanced levels, conceptual understanding, which is critical 

for physics expertise development, is much more challenging than facility with the technical 

aspects if students are mathematically savvy. Moreover, it is important to realize that similar to 

the plug and chug approaches to problem solving in introductory physics, strict quantitative 
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exercises in advanced courses often fail to provide adequate incentive and opportunity for 

metacognition and drawing meaningful inferences from the problem solving process to repair, 

organize and extend one’s knowledge structure. 

The ICQUIP framework focuses on the fact that in order to learn physics and develop 

reasoning skills with quantitative tools, students must be given adequate opportunity to interpret 

symbolic equations and draw qualitative inferences from them. Without this explicit focus on 

integration of conceptual and quantitative aspects of physics learning, quantitative problem solving 

can become a mere mathematical exercise instead of an opportunity to develop reasoning skills 

and “compile” new knowledge of physics as the examples to which the preceding paragraphs have 

alluded. In other words, for problem solving to be effective and useful for developing a good 

knowledge structure of physics, students must be given incentives and support to utilize effective 

problem solving strategies and combine conceptual and quantitative understanding. Unfortunately, 

without explicit guidance and support, many students solve physics problems using superficial 

clues and cues, and apply concepts essentially by pattern matching. It is important to recognize 

that many traditional physics courses reward the algorithmic problem solving strategies many 

students utilize. Many instructors implicitly assume that students know that conceptual analysis 

and decision making or planning, evaluation of the plan, and reflection on the problem solving 

process are as important as the implementation phase of the quantitative problem solution. 

Consequently, they do not explicitly emphasize these strategies which involve making appropriate 

math-physics connection while solving quantitative problems during their lectures nor do they 

typically assign conceptual problems in quizzes or exams that require students to think as opposed 

to solve problems using plug and chug approaches. In introductory physics courses for science and 

engineering majors, recitation time is usually taught by the teaching assistants who present 
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quantitative homework solutions on the blackboard while students copy them in their notebooks. 

There is no mechanism in place in a traditional physics courses at all levels to ensure that students 

make a conscious effort to interpret the physical laws and concepts, make conceptual inferences 

from the quantitative problem solving tasks, relate the new concepts to their prior knowledge and 

build a robust knowledge structure. The examples in the preceding paragraphs attest to this fact 

that many students perform well on quantitative problems by memorizing algorithms and 

procedures without actually understanding the underlying physics concepts. Good performance on 

quantitative problems using plug and chug approaches not only gives students the false impression 

that they are learning and acquiring usable knowledge; these types of calculational problems can 

lull instructors into thinking that their students are developing a functional understanding of 

physics, even if they are not. In fact, in one research study we found that physics Ph.D. students in 

a graduate level core course in electricity and magnetism performed only marginally better than 

introductory physics students on conceptual questions and had similar conceptual difficulties to 

introductory students [57]. The ICQUIP framework has important instructional implications 

particularly because many traditionally taught physics courses do not explicitly help students learn 

effective problem solving strategies and focus on how to help them develop a robust knowledge 

structure that necessitates appropriate reflection on both the conceptual and quantitative aspects of 

the physics problems.  

One effective approach for developing and implementing curricula that integrate 

conceptual and quantitative understanding in physics consistent with the ICQUIP framework can 

implement quantitative problem solving followed by conceptual problem solving based upon a 

careful analysis of the underlying knowledge inherent in the quantitative problems commensurate 

with students’ prior knowledge and skills. These conceptual problems can force students to make 
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qualitative inferences from the quantitative problems they just solved. Particular attention should 

be given to designing conceptual questions which probe common misconceptions and challenge 

students to make discrimination between concepts which can easily be misinterpreted. Protocols 

can be designed to help students with the reasoning and planning necessary for a class of problems. 

For example, to draw inferences about electrostatic forces from a given charge configuration, the 

protocol can have the concepts, physics laws, and the path that links them, e.g., charge → electric 

field → superposition of electric field → force, where each arrow can show the nature of the 

relationship between the adjacent concepts. The field-tested cognitive apprenticeship model [58] 

can be used to help students learn productively from integrated conceptual and quantitative 

problem solving. The instructor can constantly model the analysis, planning, implementation, 

evaluation, and reflection phases of problem solving during lectures, and ensure that students 

engage in effective problem solving strategies through the use of appropriate rewards. The 

reflection phase of the problem solving can focus on strategies for making conceptual inferences 

from symbolic equations and on helping students contemplate how those strategies help them 

extend their current knowledge [6]. Students can be required to solve coupled quantitative and 

conceptual problems in homework and recitations after instructors’ modeling of the approach. 

“Scaffolding” can be an important component of instruction to ensure that students develop 

independence while maintaining good discipline. Initially, the instructor can provide guided 

practice with prompt, appropriate feedback and support, but the frequency and rigor can decrease 

as students become better at employing the strategies. 

Indeed, prior research suggests that one effective instructional strategy consistent with the 

ICQUIP framework for reducing conceptual difficulties and helping students develop a functional 

understanding of physics involves using problems that combine quantitative and conceptual 
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problem solving [45].  Here, by conceptual difficulties, we refer to the difficulties in using one's 

knowledge to interpret, explain and draw inferences while answering qualitative questions in 

different physics contexts. For example, we performed a controlled study in introductory physics 

in which we posed only conceptual problems to some students and quantitative/conceptual 

problem pairs to others [45]. In one conceptual problem, students were asked to compare the 

momenta (mass times velocity) of two ships of different masses pulled by two identical tugboats 

in the same fashion. The other group was first given a quantitative problem in which students had 

to find an algebraic expression for the momentum of a ship with mass m starting from rest and 

pulled by a tugboat with a constant force F over a distance d in a time t. Among 65 students who 

were only posed the qualitative problem, only 16% provided the correct response. Among students 

who were posed both problems, 56% and 52% provided the correct responses to the quantitative 

and conceptual problems, respectively [45]. The significant improvement in the performance on 

the conceptual problem and discussions with students suggests that when they were posed both 

problems, many students recognized their similarity and took advantage of their quantitative 

solution to solve the conceptual problem. After solving the quantitative problem, many students 

recognized that the final momenta of the ships were independent of their masses under the given 

conditions. Then, they were able to use that knowledge to answer the conceptual problem correctly.  

Similarly, after recognizing that students in his introductory physics courses had not developed a 

functional understanding, Mazur restructured his course and focused on qualitative reasoning by 

posing conceptual questions to students during lectures and also emphasized such reasoning on 

examinations. Student performance on conceptual problems improved significantly [52]. 

Additionally, if quantitative problems were still included in the homework and recitation and 

contribute to the course grade, emphasizing conceptual understanding in lectures also improved 
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the performance on quantitative problems (although the increase was not as much as for the 

conceptual problems). Similar results have been obtained by replacing traditional recitations which 

emphasize quantitative problem solving with conceptual tutorials [50] for traditionally taught 

classes that heavily focus on quantitative problem solving. Students perform significantly better 

on conceptual problems but they also performed at least as well or better on the quantitative 

problems. 

6.1.3  Developing expertise in advanced physics 

While learning physics is challenging even at the introductory level because it requires 

drawing meaningful inferences and unpacking and applying the few fundamental physics 

principles, which are in compact mathematical forms, to diverse situations [6], learning upper-

level physics is also challenging because one must continue to build on all of the prior knowledge 

acquired at the introductory and intermediate levels. In addition, the mathematical sophistication 

required is generally significantly higher for upper-level physics. In order to develop a functional 

understanding, students must focus on the physics concepts while solving problems and be able to 

go back and forth between the mathematics and the physics, regardless of whether they are 

converting a physical situation to a mathematical representation or contemplating the physical 

significance of the result of a complex mathematical procedure during problem solving. Advanced 

students may possess a large amount of compiled knowledge about introductory physics due to 

repetition of the basic content in various courses and may not need to do much self-monitoring 

while solving introductory problems. Therefore, although much remains to be understood about 

the nature of expertise in advanced physics, the task of evaluating how expertise develops in 

advanced physics and whether the self-monitoring skills of advanced students is better than 
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introductory physics students should involve physics topics at the periphery of advanced students’ 

understanding. 

6.1.4  Developing expertise in quantum mechanics 

Research suggests that learning quantum mechanics is especially challenging for advanced 

students partly due to the abstract and non-intuitive nature of the subject matter. It is difficult to 

visualize and reason about quantum concepts especially because one does not generally observe 

quantum phenomena in everyday experience and the formalism of quantum mechanics is 

unintuitive. Several prior studies have found that many upper-level undergraduate and graduate 

students struggle with the foundational concepts in quantum mechanics. Pedagogical approaches 

have focused on helping students learn quantum mechanics better [e.g., see refs. 59-108].  

Prior research also demonstrates that the patterns of difficulties in the context of quantum 

mechanics bear a striking resemblance to those found in introductory classical mechanics [91]. 

These analogous patterns of difficulties are often due to the diversity in the goals, motivation, and 

prior preparation of upper-level students (i.e., the fact that even in an upper-level physics course, 

students may be inadequately prepared, have unclear goals, and may need extrinsic motivation to 

engage with learning) [109] as well as the “paradigm shift” from classical mechanics to quantum 

mechanics. Among upper-level courses, quantum mechanics can be especially challenging for 

students because the paradigms of classical mechanics and quantum mechanics are very different 

[91]. For example, unlike classical physics, in which position and momentum are deterministic 

variables, in quantum mechanics they are operators that act on a wave function (or a state) which 

lies in an abstract Hilbert space. In addition, according to the Copenhagen interpretation, which is 

most commonly taught in quantum mechanics courses, an electron in a hydrogen atom does not, 
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in general, have a definite distance from the nucleus; it is the act of measurement that collapses 

the wave function and makes it localized at a certain distance. If the wave function is known right 

before the measurement, quantum theory only provides the probability of measuring the distance 

in a narrow range. The significantly different paradigms of classical mechanics and quantum 

mechanics suggest that even students with a good knowledge of classical mechanics will start as 

novices and gradually build their knowledge structure about quantum mechanics. The “percolation 

model” of expertise can be particularly helpful in knowledge-rich domains such as physics [38]. 

In this model of expertise, a person’s long term memory contains different “nodes” which represent 

different knowledge pieces within a particular knowledge domain. Experts generally have their 

knowledge hierarchically organized in pyramid-shaped schema in which the top nodes are more 

foundational than nodes at a lower level and nodes are connected to other nodes through links that 

signify the relation between those concepts. As a student develops expertise in a domain, links are 

formed which connect different knowledge nodes. If a student continues her effort to organize, 

repair, and extend her knowledge structure, she will reach a percolation threshold when all 

knowledge nodes become connected to each other by at least one link in an appropriate manner. 

At this point, the student will become at least a nominal expert. The student can continue on her 

path to expertise with further strengthening of the nodes and building additional appropriate links. 

Redundancy in appropriate links between different nodes is useful because it provides alternative 

pathways during problem solving when other pathways cannot be accessed, e.g., due to memory 

decay. As a student starts to build a knowledge structure about quantum mechanics, her knowledge 

nodes will not be appropriately connected to other nodes farther away, and her reasoning about 

quantum mechanics will only be locally consistent and lack global consistency [38]. In fact, a 

person who begins a pursuit of expertise in any knowledge-rich domain must go through a phase 
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in which her knowledge is in small disconnected pieces which are only locally consistent but lack 

global consistency, leading to reasoning difficulties. Therefore, introductory students learning 

classical mechanics and advanced students learning quantum mechanics are likely to show similar 

patterns of reasoning difficulties as they strive to move up along the expertise spectrum in each of 

these sub-domains of physics. 

6.1.5  Goal, motivation, and theoretical framework for this investigation 

The investigation reported here is based on the hypothesis that consistent with the ICQUIP 

framework, even in the advanced courses such as quantum mechanics, integrating conceptual and 

quantitative understanding can help students build a more coherent knowledge structure of physics 

and develop their reasoning and meta-cognitive skills. The goal of the research is to analyze the 

impact of incorporating mathematical rigor in a Quantum Interactive Learning Tutorial (QuILT), 

which consists of research-validated inquiry-based learning sequences, on students’ conceptual 

understanding of quantum optics in the context of the Mach Zehnder Interferometer (MZI) with 

single photons and polarizers [93,95,110]. We developed and validated a QuILT on the MZI with 

single photons and polarizers that strives to help students learn about foundational issues in 

quantum mechanics using an integrated conceptual and quantitative approach (called the hybrid 

QuILT from now on for convenience) for developing functional understanding and compared 

student performance after engaging with this QuILT with student performance after another 

research-validated QuILT on the same topic which only uses conceptual inquiry-based learning 

sequences.  The conceptual QuILT developed earlier focuses on engaging students with conceptual 

reasoning only under the assumption that the underlying quantum mechanics concepts involving 

single-photon interference and quantum eraser are sufficiently complex that incorporating 
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quantitative tools involving product states of path and polarization may cause cognitive overload 

for students [49]. However, as the ICQUIP framework emphasizes, developing a good knowledge 

structure of physics without using quantitative tools can be particularly difficult for students who 

are not experts because equations can actually provide constraints to help students do appropriate 

sense making. In the hybrid QuILT, research on student difficulties was used as a guide and the 

QuILT uses a scaffolded inquiry-based approach to learning and asks students to make conceptual 

inferences from quantitative tools.  Since the learning goals of the hybrid QuILT pertaining to 

conceptual understanding are the same as for the conceptual QuILT [93,95], after traditional 

instruction in relevant concepts and after the hybrid QuILT, students were administered the same 

pre-/posttests (see the Appendix) to evaluate their conceptual understanding as those who had 

engaged with the conceptual QuILT on the same topic in earlier years. In other words, our goal is 

to investigate the extent to which students who engaged with the hybrid QuILT learned the 

underlying concepts. 

The reason the MZI with single photons was selected as the context for this investigation 

is that in the past few decades, quantum optics has emerged as a vibrant research area and single 

photon experiments have played an important role in elucidating the foundational issues in 

quantum mechanics. The MZI experiments with single photons and polarizers provides students 

an opportunity to learn the fundamentals of quantum mechanics in a concrete context [e.g., see 

refs. 93,95,110], e.g., these experiments elegantly illustrate the wave-particle duality of a single 

photon, single photon interference, and the probabilistic nature of quantum measurement.  

We note that the interpretation of these experiments using quantitative tools involves 

making conceptual inferences using product states of path and polarization, but the underlying 

concepts can be taught qualitatively using only conceptual reasoning.  We also note that both the 
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conceptual and hybrid versions of the MZI QuILT use visualization tools (simulations) involving 

the MZI with single photons and polarizers to help students learn about single photon interference 

and quantum spookiness, e.g., spookiness involving a quantum eraser. Both versions of the QuILT 

focus on using different contexts of the MZI experiment to help students learn topics such as the 

wave-particle duality of a single photon, interference of a single photon with itself, and the 

probabilistic nature of quantum measurements. Students also learn how adding photo-detectors 

and optical elements such as beam-splitters and polarizers in the paths of the MZI affect the 

measurement outcomes. The difference between the two versions is that in the hybrid version some 

of the guided learning sequences involving conceptual reasoning only are replaced by those 

sequecnes involving both conceptual and quantitative reasoning.  This is done with the assumption 

that advanced students in quantum mechanics courses will benefit from the opportunity to make 

qualitative inferences from quantitative tools and will not have a cognitive overload despite 

increased mathematical sophistication of the hybrid QuILT because the learning sequences are 

research-validated and appropriately scaffolded. The findings of this research also have 

implications for understanding the nature of expertise in advanced quantum mechanics. 

The rest of the paper is organized as follows. We first discuss the background material 

pertaining to the MZI with single photons and polarizers that both versions of the MZI QuILT 

strive to help students learn.  Next we discuss methodology for the development, validation and 

in-class implementation of the hybrid QuILT, followed by an overview of the QuILT and how it 

addresses common conceptual difficulties found via research. We compare the data with those 

obtained earlier for the conceptual only QuILT on the same topic and conclude with a discussion 

and summary. Our findings suggest that students perform at least as well or better on questions 

that require conceptual reasoning after engaging with the hybrid MZI QuILT that combines 
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conceptual and quantitative problem solving compared to when they engaged with the conceptual 

only QuILT on the same topic. 

6.2 BACKGROUND ON THE MACH-ZEHNDER INTERFEROMETER WITH SINGLE 

PHOTONS 

This section summarizes the MZI experiments that students learn about in the QuILT as a 

vehicle for learning foundational quantum mechanics concepts [93,95,110]. Figure 6.2 shows the 

MZI setup. For simplicity, the following assumptions are made: 1) all optical elements are ideal; 

2) the non-polarizing beam-splitters (BS1 and BS2) are infinitesimally thin such that there is no 

phase shift when a single photon propagates through them; 3) the monochromatic single photons 

travel the same distance in vacuum in the upper path (U) and lower path (L) of the MZI; and 4) 

the initial MZI without the phase shifter is set up such that there is completely constructive 

interference at photo-detector 1 (D1) and completely destructive interference at photo-detector 2 

(D2).  

 

 

Figure 6.2 MZI setup with a phase shifter in the U path 
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If single photons are emitted from the source in Figure 6.2, BS1 causes each single photon 

to be in a superposition state of the path states U and L. The photon path states reflect off the 

mirrors and recombine at beam-splitter BS2. BS2 mixes the photon path states such that each 

component of the photon state along the U and L paths can be projected into the photo-detectors 

D1 and D2 in Figure 6.2. The projection of both components leads to interference at the photo-

detectors (called detectors from now on). Depending on the thickness of the phase shifter, 

interference observed at detectors D1 and D2 can be constructive, destructive, or intermediate. 

Observing interference of a single photon with itself at D1 and D2 can be interpreted in terms of 

not having “which-path” information (WPI) about the single photon [93,95,110]. WPI is a 

common terminology associated with these types of experiments popularized by Wheeler [110]. 

WPI is unknown (as in the setup shown in Fig. 6.1) if both components of the photon state can be 

projected into D1 and D2 and the projection of both components at each detector leads to 

interference. When WPI is unknown and a large number of single photons are sent through the 

setup, if a phase shifter is inserted in one of the paths of the MZI (as in the U path in Fig. 6.1) and 

its thickness is varied, the probability of the photons arriving at D1 and D2 will change with the 

thickness of the phase shifter due to interference of the components of the single photon state from 

the U and L paths.   

In a simplified quantum mechanical model of a photon state which accounts for the two 

paths U and L (see Fig. 6.2), a single photon traveling through the MZI can be considered to be a 

two state quantum system. If a basis is chosen in which the state of the photon in the upper state is 

denoted by |U〉 = (
1
0
) and the state of the photon in the lower state is denoted by |L〉 = (

0
1
) (and 

we arbitrarily denote the initial state of the photon emitted from the source as |I〉  = (
1
0
), the state 
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of the photon propagating towards detector D1 as path state |D1〉 = (
1
0
), and the state of the photon 

propagating towards detector D2 as the path state |D2〉 = (
0
1
)), the matrix representations of the 

quantum mechanical operators that correspond to beam-splitter 1 [BS1], beam-splitter 2 [BS2], the 

mirrors [M], and a phase shifter in the upper path [PSU] when the basis vectors are chosen in the 

order |U〉, |L〉 are: [BS1] =  
1

√2
[
−1 1
1 1

],  [BS2] =  
1

√2
[
1 −1
1 1

], [M] =  [
−1 0
0 −1

], and [PSU] =

[e
iϕPS 0
0 1

], where ϕPS is the phase shift introduced by the phase shifter. 

In front of BS1 and after BS2, this article and associated QuILT materials use definitions 

of the U and L paths as follows. The sources shown in figures of this article are all defined as U 

path, while a source perpendicular to these would be defined as L path.  Beyond BS2—or, for 

cases where it is absent, where BS2 would be—the path directed toward D1 is defined as the U 

path, while the path directed toward D2 is defined as the L path. 

The final state of a photon |F〉 in Figure 6.2 can be determined by operating on the initial 

photon state with the operators corresponding to the optical elements in the appropriate time-

ordered manner: |F〉 = [BS2][PSU][M][BS1]|I〉 =
1

2
(e

iϕPS + 1
eiϕPS − 1

). The probability of detector D1 

registering a photon is |⟨D1|F⟩|2 = (1 + cosϕPS) 2⁄  (the probability of detector D2 registering a 

photon is |⟨D2|F⟩|2 = (1 − cosϕPS) 2⁄ ). Since the probability of a detector registering a photon 

depends on the phase shift of the phase shifter, interference effects are observed when the phase 

shift of the phase shifter is gradually changed. If there is no phase shifter in the upper path in Fig. 

6.1 (ϕPS = 0), all photons are registered at detector D1 (|F〉 = |D1〉 = (
1
0
)) since completely 

constructive interference takes place at detector D1 and completely destructive interference takes 

place at detector D2. 
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On the other hand, if the components of the photon path state are not recombined, there is 

no possibility for interference of the photon path states to occur at the detectors. In this case, WPI 

is known about a photon that arrives at a detector D1 or D2. In other words, WPI is “known” about 

a photon if only one component of the photon path state can be projected into each detector. For 

example, if BS2 is removed from the setup (see Fig. 6.3), WPI is known for all single photons 

arriving at the detectors because only the component of a photon state along the U path can be 

projected in D1 and only the component of a photon state along the L path can be projected in D2. 

When WPI is known, each detector (D1 and D2) has the same probability of clicking. A detector 

clicks when a photon is detected by it and is absorbed (the state of the single photon collapses, i.e., 

the single photon state is no longer in a superposition of the U and L path states). However, when 

WPI is known, there is no way to know a priori which detector will click when a photon is emitted 

until the photon state collapses either at D1 or at D2 with equal likelihood. When WPI is known, 

changing the thickness of a phase shifter in one of the paths will not affect the probability of each 

detector clicking when photons are registered (equal probability for all thicknesses of the phase 

shifter). 

  

 

Figure 6.3 MZI setup with beam-splitter 2 (BS2) removed 
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If beam-splitter 2 is removed (see Fig. 6.3), the final state of the photon is 

|F〉 = [PSU][M][BS1]|I〉 =
1

√2
(e

iϕPS

−1
). The probability of detector D1 registering a photon is 

|⟨D1|F⟩|2 = 1 2⁄  (the probability of detector D2 registering a photon is also 1 2⁄ ). Thus, the 

probability of the detectors registering a photon does not depend on the phase shift of the phase 

shifter and interference effects are not observed when the phase shift of the phase shifter is 

gradually changed. 

When polarizers are added to the MZI setup, they can affect (and even eliminate or 

reinstate) the interference of a single photon with itself at the detectors [93,95,110]. In all the MZI 

setups discussed, it is assumed that the detectors are polarization sensitive and the single photons 

are linearly polarized. In Figure 6.4, two orthogonal polarizers are placed in the U and L paths of 

the MZI. If the source emits a large number (N) of +45° polarized single photons, N/2 photons are 

absorbed by the polarizers. If a detector in Fig. 6.4 measures a vertically polarized photon, only 

one component of the photon path state can be projected in the detector (i.e., the L path state) and 

WPI is known. If a detector measures a horizontally polarized photon, again, only one component 

of the photon path state can be projected into the detector (i.e., the U path state) and WPI is known. 

WPI is known for all photons arriving at the detectors, and there is an equal probability of each 

detector registering a photon (N/4 photons arrive at each detector). There is no interference 

observed at the detectors. Inserting a phase shifter and changing its thickness gradually will not 

affect the number of photons arriving at the detectors in Fig. 6.4.   
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Figure 6.4 MZI setup with a polarizer with a horizontal transmission axis placed in the U path and a polarizer with a 

vertical transmission axis placed in the L path 

 

If we only consider photon polarization states, the polarization state of a vertically 

polarized photon can be denoted by |V〉 = (
1
0
) and the polarization state of a horizontally polarized 

photon can be denoted by |H〉 = (
0
1
).  These two polarizations are linearly independent and all 

other photon polarizations can be constructed from these states, e.g., |+45°〉 = (|V〉 + |H〉) √2⁄ . 

The Hilbert space involving both path states and polarization states is a product space. The product 

space of the polarization states |V〉 and |H〉 and the path states |U〉 and |L〉 is four dimensional, and 

the basis vectors are |U〉 ⊗ |V〉 = |UV〉, |U〉 ⊗ |H〉 = |UH〉, |L〉 ⊗ |V〉 = |LV〉, |L〉 ⊗ |H〉 = |LH〉. 

If the initial path state of the photon emitted from the source is denoted by |I〉  = (
1
0
) and the initial 

polarization state of the photon is |+45°〉 = (|V〉 + |H〉) √2⁄ , in the 4 × 4 product space, the initial 

state of the photon |I45°〉 is |I45°〉 = |I〉 ⊗ |45°〉 =
1

√2
(

1
1
0
0

). The matrix representations of the 

quantum mechanical operators that correspond to beam-splitter 1 [BS1], beam-splitter 2 [BS2], the 

mirrors [M], a phase shifter in the upper path [PSU], a horizontal polarizer in the upper path [PUH], 
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a vertical polarizer in the lower path [PLV], and a +45 polarizer in the path between BS2 and 

detector D1 [PD1,+45°]  when the basis vectors are chosen in the order |UV〉, |UH〉, |LV〉, |LH〉 are: 

[BS1] =
1

√2
[

−1 0 1 0
0 −1 0 1
1 0 1 0
0 1 0 1

], [BS2] =
1

√2
[

1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

],  [M] = − [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] = −Î, 

[PSU] = [

eiφps 0 0 0
0 eiφps 0 0
0 0 1 0
0 0 0 1

], where ϕPS is the phase shift introduced by the phase shifter, 

[PUH] = [

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

], and [PLV] = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

].  

Thus, the final state of a photon |F〉 in Figure 6.4 can be determined by operating on the 

initial photon state with the operators corresponding to the optical elements in the appropriate time-

ordered manner: |F⟩ = [BS2][PSU][M][PLV][PUH][BS1]|I45°〉 = 

(|UV〉 + eiφPS|UH〉 − |LV〉 + eiφPS|LH〉) (2√2)⁄ . The probability of detector D1 registering a 

horizontally polarized photon is |eiφPS (2√2)⁄ |
2

= 1 8⁄  and the probability of detector D1 

registering a vertically polarized photon is |− 1 (2√2)⁄ |
2

= 1 8⁄ . The total probability of detector 

D1 registering a photon is 1 8⁄ + 1 8⁄ = 1 4⁄ . The total probability of detector D2 registering a 

photon is also 1 4⁄ . Thus, in the case shown in Figure 6.4, the probability of a detector registering 

a horizontally or vertically polarized photon does not depend on the phase shift of the phase shifter 

and interference effects are not observed when the phase shift of the phase shifter is gradually 

changed.  

In Figure 6.5, only one polarizer is present.  Unlike the situation in Figure 6.4, which-path 

information is not known for all photons in the situation in Figure 6.5.  Here, the final state of the 
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photon after it propagates through the beam splitter BS2, but before it reaches the detectors is: 

1

2√2
(|U〉|V〉 + (eiφPS + 1)|U〉|H〉 − |L〉|V〉 + (eiφPS − 1)|L〉|H〉). If detector D1 is covered by a 

vertical polarizer, the probability that detector D1 registers a vertically polarized photon is 
1

8
 

(which-path information is known about these photons arriving at detector D1 and they do not 

display interference). If the detector D1 is covered by a horizontal polarizer, the probability that 

detector D1 registers a horizontally polarized photon is 
1+cosφps

4
 (WPI is unknown about these 

photons arriving at detector D1 and they display interference). The total probability that detector 

D1 clicks (if not covered by a polarizer) is 
1

8
 + 

1+cosφps

4
. Also, if detector D2 is covered by a vertical 

polarizer, the probability that detector D2 registers a vertically polarized photon is 
1

8
 (which-path 

information is known about these photons arriving at detector D2 and they do not display 

interference). If the detector D2 is covered by a horizontal polarizer, the probability that detector 

D2 registers a horizontally polarized photon is 
1−cosφps

4
 (WPI is unknown about these photons 

arriving at detector D2 and they display interference). The total probability that detector D2 clicks 

(if not covered by a polarizer) is 
1

8
 + 

1−cosφps

4
.   

8 6  

Figure 6.5 MZI setup with a polarizer with a horizontal transmission axis placed in the U path 
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Figure 6.6 shows a quantum eraser setup in which two orthogonal polarizers are placed in 

the two paths of the MZI and a third polarizer is placed between BS2 and detector D1. The third 

polarizer has a transmission axis which is different from the two orthogonal polarizers. Without 

polarizer 3, WPI is known for all photons arriving at the detectors (as in Figure 6.4) and 

interference is not observed at the detectors. However, when polarizer 3 is inserted between BS2 

and detector D1, both the U and L path states are projected into D1 and WPI is unknown for all 

photons. For example, if detector D1 measures vertically polarized photons (using another 

polarizer right in front of D1), both components of the photon path state are projected into detector 

D1 and WPI is unknown. Similarly, if D1 measures horizontally polarized photons, both 

components of the photon path state are projected into detector D1 and WPI is again unknown. 

Interference is observed at detector D1. If a phase shifter is inserted into one of the paths of the 

MZI, changing its thickness gradually will change the number of photons arriving at D1. Because 

polarizer 3 eliminates WPI at the detector D1, this MZI setup is called a quantum eraser. However, 

in Fig. 6.6, WPI is known at detector D2 and no interference is observed there. Inserting a phase 

shifter into one of the paths of the MZI and changing its thickness gradually will not affect the 

number of photons that arrive at D2.  
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Figure 6.6 Quantum eraser setup 

 

The matrix representing a third polarizer with a +45° polarization axis inserted between 

beam-splitter 2 and detector D1, [PD1,+45°] (as shown in Figure 6.6) is [PD1,+45°] =

[
 
 
 
 
1

2

1

2
0 0

1

2

1

2
0 0

0 0 1 0
0 0 0 1]

 
 
 
 

 

. The final state of the photon in Figure 6.6 can be determined by operating on the initial photon 

state with the operators corresponding to optical elements in the appropriate time-ordered manner: 

 |F⟩ = [PD1,+45°][BS2][PSU][M][PLV][PUH][BS1]|I45°〉 =

((
1

2
+

1

2
eiφPS) |UV〉 + (

1

2
+

1

2
eiφPS) |UH〉 − |LV〉 + eiφPS|LH〉) (2√2)⁄ . 

The probability of detector D1 registering a horizontally polarized photon is 

|(
1

2
+

1

2
eiφPS) (2√2)⁄ |

2

= (1 + cosφPS) 16⁄  and the probability of detector D1 registering a 

vertically polarized photon is |(
1

2
+

1

2
eiφPS) (2√2)⁄ |

2

= (1 + cosφPS) 16⁄  (the total probability 

of detector D1 registering a photon is (1 + cosφPS) 8⁄ ).In the quantum eraser case shown in 

Figure 6.6, the probability of detector D1 registering a horizontally or vertically polarized photon 
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depends on the phase shift of the phase shifter and interference effects are observed when the phase 

shift of the phase shifter is gradually changed. WPI is unknown at detector D1. 

The quantum eraser setup also distinguishes between a stream of unpolarized photons and 

photons which have been polarized at +45°. If the source emits unpolarized photons, one can 

consider half of the photons emitted to be vertically polarized and half of the photons emitted to 

be horizontally polarized (or half of the photons emitted can be considered +45° polarized and half 

of the photons -45°polarized). In Fig. 6.6, if one considers unpolarized photons as a mixture of 

half vertically polarized and half horizontally polarized photons incident at BS1 randomly, a single 

photon with horizontal polarization can only go through the upper path and a single photon with a 

vertical polarization can only go through the lower path. If the photon passes through polarizer 3, 

the detector can only project one component of the photon path state and WPI is known. 

Interference effects are not observed. Inserting a phase shifter and changing its thickness gradually 

will not affect the number of photons arriving at the detectors. On the other hand, in Fig. 6.7, if 

one considers unpolarized photons as a mixture of half of the photons polarized at +45° and half 

of the photons polarized at -45° incident at BS1 randomly, the total probability of unpolarized 

photons arriving at detector D1 can be determined by averaging the total probabilities of detector 

D1 registering a photon for the two cases in which the source emits +45° single photons and -45° 

single photons. In the case in which the source emits +45° single photons, the total probability of 

detector D1 registering a photon is (1 + cosφPS) 8⁄ , as shown earlier. In the case in which the 

source emits -45° single photons, the total probability of detector D1 registering a photon is 

(1 − cosφPS) 8⁄ . The average of these two probabilities ((1 + cosφPS) 8⁄  and (1 − cosφPS) 8⁄  

) is 1 8⁄ , indicating that for unpolarized light (which can be treated as a mixture in which half of 

the photons are +45° polarized and half of the photons are -45° polarized) the setup in Fig. 6.5 
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does not erase which-path information and changing the phase shift of the phase shifter does not 

affect the number of photons arriving at the detector D1. However, in the quantum eraser setup 

(see Fig. 6.6), if the source emits a stream of +45° polarized single photons, both components of 

the photon path state can be projected in detector D1. The total probability of detector D1 

registering a photon is (1 + cosφPS) 8⁄  and depends on the phase shift of the phase shifter. 

Interference effects are observed at detector D1. Thus, the quantum eraser distinguishes between 

a stream of unpolarized photons and photons which have been polarized at +45°. In the quantum 

eraser setup, interference effects will not be observed at detector D1 when unpolarized photons are 

emitted and interference effects are observed at detector D1 when polarized photons are emitted. 

 

 

Figure 6.7 The MZI arrangement similar to the quantum eraser setup, but with a horizontal polarizer in place of the 

45° polarizer between BS2 and D1 (left) and an additional horizontal polarizer in addition to the 45° polarizer 

between BS2 and D1 as shown (right) 

 

Figure 6.7 shows two arrangements that share a surface feature with the quantum eraser 

shown in Figure 6.6.  However, photons propagating through either of these arrangements do not 

display interference in the way that the quantum eraser does because of WPI for all photons. We 

note that in both versions of the QuILT, students engaged with a situation similar to that in Figure 
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6.7 on the left-hand side (but with a vertical polarizer right before detector D1).  However, the 

situation in the right hand side of Figure 6.7, which was posed as a question on the pre/posttests, 

was novel for students in that they had not encountered this situation in traditional instruction or 

in the QuILT. We wanted to use this context to investigate transfer of learning from the situations 

students had learned to a new situation [12,45]. 

6.3 METHODOLOGY FOR DEVELOPMENT AND VALIDATION AND OVERVIEW 

OF THE QuILT 

6.3.1  Methodology for development and validation of the hybrid QuILT 

Students who participated in this research were upper-level undergraduates and graduate 

students in respective core quantum mechanics courses at a large research university. We note that 

the conceptual QuILT and the corresponding pre/posttests were developed and validated 

previously [93,95] based upon research on student common difficulties with quantum mechanics 

concepts in the context of the MZI experiment after instruction in relevant concepts. The hybrid 

QuILT on the MZI with single photons is inspired by the ICQUIP framework and strives to help 

students develop a coherent understanding of these concepts in the context of the MZI experiments 

by integrating conceptual and quantitative understanding explicitly using a guided inquiry-based 

approach to learning. Similar to the conceptual QuILT, the guided learning sequences in the hybrid 

QuILT take advantage of the synergistic models that emphasize providing appropriate scaffolding, 

e.g., the Piagetian model of “optimal mismatch” [111-112], the preparation for future learning or 

“PFL” framework of Schwartz, Bransford, and Sears [113], and Vygotsky’s zone of proximal 
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development or “ZPD” [114]. These models provide guidelines for how to structure the guided 

learning sequences based upon research on students’ difficulties as well as knowledge of what 

students are able to do after traditional instruction. Furthermore, a cognitive task analysis of the 

underlying concepts from an expert perspective [6] was also used as a guide to develop the hybrid 

QuILT. The cognitive task analysis from an expert perspective involves a careful analysis of the 

underlying concepts in the order in which those concepts should be invoked and applied in each 

situation to accomplish a task. The hybrid QuILT actively engages students in the learning process 

using an inquiry-based approach in which quantitative and conceptual aspects of learning are 

integrated and various concepts build on each other. The hybrid QuILT can be used in upper-level 

quantum mechanics courses after students have had instruction in the relevant topics. Here we will 

focus on its effectiveness for both upper-level undergraduate and graduate quantum mechanics 

students compared to the conceptual only QuILT on the same topic. 

Similar to the conceptual only QuILT, the development of the hybrid QuILT went through 

a cyclic, iterative process of development and validation which included the following stages 

before the in-class implementation: 

(1) Development of the preliminary version based on a cognitive task analysis of the underlying 

knowledge and research on student difficulties,  

(2) Implementation and evaluation of the QuILT by administering it individually to students and 

obtaining feedback from faculty members who are experts in these topics, 

(3) Determining its impact on student learning and assessing what difficulties were not adequately 

addressed by the QuILT, 

(4) Refinements and modifications based on the feedback from the implementation and evaluation. 
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In addition to written free-response questions administered to students in various classes, 

individual interviews with 15 students were carried out using a think-aloud protocol [115] to better 

understand the rationale for their responses throughout the development of various versions of the 

hybrid QuILT. Students are asked to predict what should happen in a particular situation. After 

their predictions, students follow an integrated conceptual and quantitative guided inquiry-based 

approach to learning.  They use a computer simulation to check their predictions and reconcile the 

differences between those predictions and what the simulation shows. After each individual 

interview utilizing a particular version of the hybrid QuILT, modifications were made based upon 

the feedback obtained from the interviewed students. For example, if students got stuck at a 

particular point and could not make progress from one question to the next with the scaffolding 

already provided or could not make meaningful conceptual inferences from quantitative tools 

despite the scaffolding support, suitable modifications were made. Thus, the administration of the 

hybrid QuILT to the graduate students and upper-level undergraduate students individually was 

useful to ensure that the guided approach using integrated conceptual and quantitative tools was 

effective and the questions were unambiguously interpreted. The hybrid QuILT was also iterated 

with three faculty members several times to ensure that the content and wording of the questions 

were appropriate. Modifications were made based upon their feedback. When we found that the 

QuILT was working well in individual administration and the posttest performance was 

significantly improved compared to the pretest performance, it was administered in upper-level 

undergraduate and graduate core quantum mechanics classes. The QuILT is best used in class to 

give students an opportunity to work together in small groups and discuss their thoughts with peers, 

which provides peer learning support. However, students can be asked to work on the parts they 

could not finish in class at home as homework or even the entire QuILT as homework. 
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6.3.2  Overview of the hybrid QuILT 

The QuILT begins with a warm-up that builds on students’ prior knowledge about the 

interference of light and then helps students learn about the MZI with single photons using an 

integrated conceptual and quantitative approach requiring only 2 by 2 matrix mechanics with the 

upper and lower path states. Then, students transition to the main section of the QuILT that focuses 

on the fundamentals of quantum mechanics in the context of the MZI with single photons and 

polarizers using an integrated conceptual and quantitative approach requiring conceptual 

interpretations of the product states of path and polarization. Students are provided scaffolding as 

they construct matrices that describe different elements of the MZI.  Students then use these 

matrices to describe various arrangements and to do sense-making of the underlying concepts. 

Using an integrated conceptual and quantitative approach, the QuILT strives to provide “optimal 

mismatch” [111] by explicitly bringing out common difficulties found via research [93] and then 

providing appropriate scaffolding to help students develop a coherent understanding. Throughout 

the QuILT, students make predictions about a particular MZI setup, work through integrated 

conceptual and quantitative learning sequences, check their predictions via a computer simulation 

and reconcile the differences between their predictions and observations. If the students’ 

predictions and observations are inconsistent, further scaffolding is provided throughout the 

QuILT to ensure that students remain in the “optimal adaptability corridor” [113] or ZPD [114]. 

Throughout the QuILT, students are given opportunities to reflect on the concepts learned so far 

in the guided integrated conceptual and quantitative approach to learning and ensure that they are 

answering the questions correctly.  

As an example, despite traditional instruction, students often struggled with the concept of 

WPI and the relationship between interference of a single photon at the photo-detectors and 
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whether WPI is known or unknown. Therefore, the QuILT gives students an opportunity to use an 

integrated conceptual and quantitative approach to reason about how WPI about the photons 

arriving at the detectors D1 and D2 may be known in some situations. Interviews suggest that 

many students had difficulty with how the interference at D1 and D2 in Fig. 6.2 is affected by 

placing a single polarizer, e.g., with a vertical polarization axis, in the L path of the MZI. In 

particular, students had difficulty with the fact that in this situation, if the source emits a large 

number of unpolarized single photons, there are three possible measurement outcomes at the 

detectors due to the polarizer: 1) the photon is absorbed by the polarizer and it does not reach the 

detectors D1 or D2 (25% probability); 2) the photon is not absorbed by the vertical polarizer but 

both the photon path state and polarization state collapse, i.e., the photon has a 25% probability of 

being in the U path with a horizontal polarization; and 3) the photon is not absorbed by the vertical 

polarizer and the polarization state of the photon collapses but not the path state, i.e., the photon 

has a 50% probability of having a vertical polarization and remaining in a superposition of the U 

and L path states. If a detector registers a photon with a horizontal polarization, WPI is known 

since the vertical polarizer collapsed the photon with a horizontal polarization to the U path state. 

However, WPI is unknown if a detector registers a photon with vertical polarization since the 

vertical polarizer does not collapse the path state of such a photon and this photon displays 

constructive interference at D1 and destructive interference at D2 in the given setup without the 

phase shifter. Thus, D1 will register all single photons with a vertical polarization (50% of photons 

emitted from the source) and 12.5% of the single photons emitted from the source which collapsed 

to the horizontal polarization state due to the vertical polarizer in the L path. D2 will register only 

photons with a horizontal polarization (12.5% of the photons emitted from the source).  
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The QuILT incorporates these types of difficulties as resources. Student learning is 

scaffolded via integrating conceptual and quantitative understanding, incorporating quantitative 

aspects of MZI experiments via 2 by 2 (for path states only when polarizers are absent) or 4 by 4 

matrix mechanics (when both path and polarization are present), and reasoning about what will 

happen at the detectors D1 and D2 for the photon state after passing BS2 (or when BS2 is not 

there) in different situations. For example, for the situation shown in Fig. 6.4, before being asked 

about the probability of detectors D1 and D2 clicking when the detectors are not covered by a 

polarizer (e.g., |⟨𝑈|Ψ⟩|2) vs. when it is covered by a horizontal or vertical polarizer (e.g., 

|⟨𝑈𝑉|Ψ⟩|2 or  |⟨𝑈𝐻|Ψ⟩|2), students are asked to first write the photon state |Ψ⟩ =
1

2√2
(

1
𝑒𝑖𝜑𝑃𝑆

−1
𝑒𝑖𝜑𝑃𝑆

)  

right after the photon exits BS2 in terms of the basis vectors chosen, i.e., 
1

2√2
(|𝑈〉|𝑉〉 +

𝑒𝑖𝜑𝑃𝑆|𝑈〉|𝐻〉 − |𝐿〉|𝑉〉 + 𝑒𝑖𝜑𝑃𝑆|𝐿〉|𝐻〉). Then students are guided to connect WPI and whether 

interference is observed in a given situation to whether the probability of a detector clicking 

depends on the phase shift introduced by the phase shifter (in this case, none of the probabilities 

will depend on the phase shift since WPI is known for all photons arriving at the detectors in Fig. 

6.3). On the other hand, for the situation in Fig. 6.5, students learn to reason that the photon state 

after BS2 is given by 
1

2√2
(|𝑈〉|𝑉〉 + (𝑒𝑖𝜑𝑃𝑆 + 1)|𝑈〉|𝐻〉 − |𝐿〉|𝑉〉 + (𝑒𝑖𝜑𝑃𝑆 − 1)|𝐿〉|𝐻〉) and WPI 

is known for some of the photons that arrive at D1 and D2 but not for other photons arriving there 

so some photons display interference while others do not. The QuILT also strives to use the 

coupled conceptual and quantitative approach to help students reason about the quantum eraser. 

Since students struggled with the concepts of whether interference is observed at detectors 

D1 and D2 in different experimental situations involving the MZI and the collapse of the state of 
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the photon upon measurement, the inquiry-based approach employed in the QuILT strives to 

scaffold their learning pertaining to these issues. For example, after traditional instruction, many 

students had difficulties with the fact that, within the MZI, the U and L components of the photon 

state can interfere at the detectors D1 and D2. To check if interference occurs at the detectors for 

the MZI setup shown in Figure 6.2, after working through the integrated conceptual and 

quantitative learning sequences, students are asked to use a computer simulation and reconcile the 

difference between their predictions and observations. In the computer simulation, a screen is used 

in place of point detector D1 and the photon has a transverse Gaussian width as opposed to being 

a collimated beam having an infinitesimally small transverse width. The advantage of the screen 

(as opposed to point detectors D1 and D2) is that an interference pattern is observed without 

placing a phase shifter in one of the paths and changing the path length difference between the two 

paths. For the case with point detectors D1 and D2, the thickness of the phase shifter must be 

changed in order to observe interference if interference is displayed in a particular experimental 

situation. Students can use the computer simulation to verify that single photons can exhibit wave 

properties while propagating through the MZI setup and that the U and L components of the photon 

state can interfere so that interference fringes are observed on the screen in suitable situations (see 

Fig. 6.8) as they reasoned using the integrated conceptual and quantitative approach. 
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Figure 6.8 Screen shot of the computer simulation of a large number of single photons propagating through the 

MZI. Simulation developed by Albert Huber. 

 

After working through the integrated conceptual and quantitative QuILT, students are 

expected to be able to qualitatively reason about how a single photon can exhibit interference. 

They are also expected to be able to describe how a photon can be delocalized or localized 

depending on the situation and that the measurement of a photon’s position at the detector collapses 

the photon path state. Students are also expected to be able to explain the roles of BS1, BS2, and 

additional polarizers placed in the MZI and how these affect the interference at the detectors D1 

and D2. Students should also be able to reason about whether a particular MZI setup gives WPI 

about a single photon and destroys the interference observed at the detectors and whether inserting 

a phase shifter will change the number of photons arriving at detectors D1 and D2. 

6.4 METHODOLOGY FOR IN-CLASS IMPLEMENTATION OF VALIDATED QuILT 

The hybrid QuILT about the MZI with single photons includes a pretest to be administered 

immediately after traditional instruction on the concepts involved in the MZI experiments with 

single photons and polarizers but before students engage with the QuILT and a posttest is 
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administered after students finish working on the QuILT. The questions on the pretest and posttest, 

which are identical, are open-ended and were validated earlier [93]. These are provided in the 

Appendix. The open-ended format requires that students generate answers based upon a robust 

understanding of the concepts as opposed to memorization of concepts. The same rubric that was 

used in Ref. [93] for the conceptual QuILT was also used for to grade the work of students who 

used on the hybrid QuILT. The hybrid QuILT includes the same MZI experiments as the 

conceptual QuILT [93] except that a situation similar to that shown (see pre/posttest question (4) 

in the Appendix) with a detector in the U path was not in the hybrid QuILT, but there was an 

isomorphic situation that students engaged with in the conceptual QuILT with a detector in the L 

path [93].  

Once we determined that the hybrid QuILT was effective in individual administration, it 

was administered to upper-level undergraduates (mainly physics juniors and seniors) and first year 

physics graduate students in core quantum mechanics courses at a large research university. 

Students in two upper-level undergraduate quantum mechanics courses (two consecutive years) 

and one first year graduate core quantum mechanics course first had traditional lecture-based 

instruction in relevant concepts. The instructors for all of these courses were different. The 

instruction by the course instructors included an overview of the MZI setup and students learned 

about the propagation of light through the beam-splitters, phase difference introduced by the two 

paths of the MZI, the meaning of what happens when the detectors “click,” and the effect of 

polarizers in various locations of the MZI in different experiments students engage with in the 

QuILT.   We note that similar to Ref. [93], physics education researchers who developed and 

validated the QuILT did not dictate how the topic of the MZI was to be covered in traditional 

lecture prior to the administration of the pretest and subsequent engagement with the QuILT.  
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Instructors were advised on what should be covered before the pretest and provided a suggested 

grade incentive for student participation on the pretest, QuILT and posttest. Then, students were 

given the pretest in class. The QuILT warm-up was given as homework. Students worked through 

part of the hybrid quantitative-qualitative QuILT in class and were given one week to work through 

the rest of the QuILT as homework. The part of the QuILT that students worked on in class was 

facilitated for all of the courses by one of the authors of this article who filled in as a guest 

instructor (she was also the in-class conceptual MZI QuILT facilitator for all of the classes in Ref. 

[93]). Thus, there was a level of uniformity in the in-class implementation in all of the classes. For 

both undergraduates and graduate students, the pretest and QuILT counted as a small portion of 

their homework grade for the course. All students were then administered the posttest in their 

respective quantum mechanics classes. All students had sufficient time to take the pre-/posttests. 

The posttests were graded for correctness as a quiz for both the undergraduate and graduate 

quantum mechanics courses. We note that two graders graded all of the pre/posttests on the rubric 

and the inter-rater reliability was better than 95%. 

We compare the data from the hybrid MZI QuILT with data from the conceptual MZI 

QuILT from Ref. [93]. We note that the data from undergraduates in Ref. [93] are for the 

conceptual MZI QuILT implemented in the same upper-level quantum mechanics course for 

physics juniors and seniors in preceding years. The data from graduate students in Ref. [93] are 

for first year graduate students who were simultaneously enrolled in the graduate core quantum 

mechanics course and a semester-long teaching of physics course which is a mandatory pass/fail 

course, but the pretest, conceptual QuILT and posttest were part of the teaching of physics course 

to help graduate students learn about the tutorial approach to learning and teaching (since the core 

graduate quantum mechanics instructor was reluctant to administer these in the graduate quantum 
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mechanics course due to time-constraints). Thus, although the conceptual MZI QuILT was 

administered in a similar manner to the hybrid MZI QuILT to a similar graduate student population 

in different years at the same university (first semester physics graduate students), since the 

conceptual QuILT was administered in a pass/fail course, pre-/posttests and the conceptual MZI 

QuILT were graded for completeness [93]. We note that the data that were previously reported in 

Ref. [93] are for two consecutive years of the course for some of the test items, although we 

compare student performance after engaging with the hybrid MZI QuILT also with data for some 

test items after the conceptual MZI QuILT that are unpublished. 
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Table 6.1 Percentages of undergraduates and graduate students who correctly answered questions on the MZI pre/posttest 

before and after using the hybrid QuILT. Normalized gains and effect sizes (Cohen’s d) are shown for each class for each 

question. Graduate students are matched, while undergraduates had only small fluctuations in participation. 

 Graduate Students  Undergraduates Group A  Undergraduates Group B  

Q Pre(%) 

N=10 

Post(%) 

N=10 

<g> d Pre(%) 

N=24 

Post(%) 

N=20 

<g> d Pre(%) 

N=15 

Post(%) 

N=16 

<g> d 

1 55 100 1.00 0.67 17 93 0.91 1.21 48 91 0.81 0.54 

2 55 82 0.60 0.40 69 89 0.64 0.40 57 84 0.64 0.46 

3a 60 95 0.89 0.49 34 100 1.00 1.18 55 100 1.00 0.74 

3b -- -- -- -- -- -- -- -- 57 94 0.86 0.53 

4a 10 82 0.80 2.33 44 60 0.29 0.34 77 100 1.00 0.92 

4b 20 90 0.88 1.98 29 56 0.36 0.54 73 100 1.00 0.85 

4c 30 82 0.74 1.22 13 56 0.49 1.01 40 94 0.90 1.39 

6 64 80 0.45 0.37 56 75 0.43 0.49 73 97 0.88 0.73 

7a 5 68 0.67 3.21 10 60 0.55 1.97 23 47 0.31 0.69 

7b 36 85 0.76 1.19 48 95 0.90 1.29 80 81 0.06 0.03 

7c 36 73 0.57 0.83 23 65 0.55 1.20 40 59 0.32 0.50 

8a 5 95 0.95 6.32 40 83 0.71 1.09 77 91 0.60 0.44 

8b 18 90 0.88 2.07 13 40 0.31 0.66 40 88 0.79 1.13 

8c 41 91 0.85 1.29 13 35 0.26 0.55 20 81 0.77 1.55 

9a 23 91 0.88 2.21 17 65 0.58 1.53 47 88 0.77 1.44 

9b 18 90 0.88 2.07 4 80 0.79 2.40 53 97 0.93 1.20 

9c 9 82 0.80 2.13 2 58 0.57 1.79 23 88 0.84 1.99 

10a 18 91 0.89 2.39 15 68 0.62 1.59 40 94 0.90 1.86 

10b 27 90 0.86 1.65 8 45 0.40 0.91 30 88 0.82 1.48 

10c 27 91 0.88 1.70 4 50 0.48 1.20 27 84 0.79 1.46 

11a 14 91 0.89 2.59 15 45 0.36 0.77 30 84 0.78 1.66 

11b 27 90 0.86 1.65 4 35 0.32 0.84 33 75 0.63 0.92 

11c 27 82 0.75 1.31 4 35 0.32 0.84 33 69 0.53 0.76 

12 18 73 0.67 1.31 4 70 0.69 2.08 36 94 0.90 1.54 

Average 33 87 0.80 3.46 27 70 0.60 2.61 48 88 0.77 2.46 
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Table 6.2 Percentages of undergraduates and graduate students who correctly answered questions on the MZI 

pre/posttest before and after using the hybrid QuILT after averaging over the sub-parts of each question. Normalized 

gains are shown for each class for each question. 

 Graduate Students Undergraduates Group A Undergraduates Group B 

Q Pre(%) 

N=25 

Post(%) 

N=10 

<g> Pre(%) 

N=24 

Post(%) 

N=20 

<g> Pre(%) 

N=15 

Post(%) 

N=16 

<g> 

1 55 100 1.00 17 93 0.91 48 91 0.81 

2 55 82 0.60 69 89 0.64 57 84 0.64 

3 60 95 0.89 34 100 1.00 56 97 0.93 

4 20 85 0.81 29 57 0.39 63 98 0.95 

6 64 80 0.44 56 75 0.43 73 97 0.88 

7 26 75 0.66 27 73 0.63 48 62 0.27 

8 21 92 0.90 22 53 0.39 46 87 0.75 

9 17 88 0.86 8 68 0.65 41 91 0.85 

10 24 91 0.88 9 54 0.50 32 89 0.83 

11 23 88 0.84 8 38 0.42 32 76 0.64 

12 18 73 0.67 4 70 0.69 36 94 0.90 

Average 33 87 0.80 27 70 0.60 48 88 0.77 
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Table 6.3 Percentages of undergraduates and graduate students who correctly answered questions on the MZI 

pre/posttest before and after using the conceptual only QuILT after averaging over the sub-parts of each question. 

Normalized gains are shown for each class for each question (effect sizes were not calculated). Data were primarily 

taken from Ref. [93], with sub-questions averaged for comparison (we note that a few question numberings differed 

from the prior study but have been matched appropriately).  Unless otherwise specified, the number of graduate 

students was 45 (matched), the numbers of undergraduates were 44 (pre) and 38 (post), with data collected over a 

period of two years in both cases.  Data marked with an asterisk (*) are previously unpublished data, with 28 

graduate students (matched) and 26 undergraduates in pretest and 25 in posttest.  Normalized gain is shown for each 

class.   

 Graduate Students Undergraduates 

Q Pre(%) Post(%) <g> Pre(%) Post(%) <g> 

1 21 66 0.57 8 72 0.70 

2 41 76 0.59 31 86 0.80 

3 18 79 0.74 15 79 0.75 

4 50 87 0.74 61 97 0.92 

6* 7 59 0.56 31 73 0.61 

7* 23 66 0.56 25 75 0.67 

8 38 70 0.52 19 85 0.81 

9 30 72 0.60 13 86 0.84 

10* 29 69 0.56 8 66 0.63 

11* 29 51 0.31 8 44 0.39 

12* 22 48 0.33 8 54 0.50 

Average 28 68 0.55 21 74 0.68 
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Figure 6.9 Bar graph depicting the distribution of student pretest scores for each hybrid QuILT group. 

 

 

Figure 6.10 Bar graph depicting the distribution of student posttest scores in each hybrid QuILT group. 
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6.5 RESULTS AND DISCUSSION 

Tables 6.1 and 6.2 show percentages of undergraduates and graduate students who 

correctly answered questions on the MZI pre/posttests before and after engaging with the hybrid 

QuILT. Normalized gains and effect sizes (Cohen’s d) are shown for each class for each question.  

Table 6.2 represents the same data set as in Table 6.1 but after averaging over the sub-parts of each 

question.  Table 6.3 shows data for (comparison with Table 6.2) mostly from Ref. [93] (although 

the data for the last few questions have not been published–see caption of Table 6.3) for the 

pre/posttests administered to undergraduate and graduate students before and after the conceptual 

MZI QuILT at the same large research university. 

6.5.1  Comparison of pre/posttest performance of different groups that learned from the 

hybrid MZI QuILT 

Tables 6.1 and 6.2 show that the graduate students and both groups of undergraduate 

students performed poorly on the pretest after traditional instruction but the posttest performance 

after working on the hybrid QuILT was good on most questions for the graduate students and 

undergraduate group B. However, comparison of undergraduate groups A and B shows that for 

both the pretest and the posttest, group B performed significantly better on most test items. In 

particular, only Q1-3, which address more basic concepts (no polarizers are involved so the Hilbert 

space is two-dimensional) have similar posttest scores in both undergraduate groups A and B (see 

Table 6.2).  This suggests that the hybrid QuILT was effective at helping students learn these 

concepts.   
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In contrast, Table 6.2 shows that Q4-6, 8-12 have considerably higher posttest scores for 

group B, which tended to also perform better on the pretest.  In the hybrid QuILT, these questions 

covered concepts and MZI arrangements involving higher mathematical rigor than Q1-3 (four 

dimensional Hilbert space involving product space of both path and polarization).  Given that these 

two classes were taught at the same university in subsequent years, the population can be 

considered comparable in prior mathematical knowledge.  One possible reason for the differences 

between these groups may likely be the difference in the pretest scores, i.e., how much the students 

had learned about these concepts after traditional instruction in these two courses which were 

taught by different instructors.  In particular, undergraduate students in group A had very low 

pretest scores on the later questions before they engaged with the hybrid QuILT. This may be due 

to how the course instructor for undergraduate group A taught this material, how much time the 

instructor devoted to this topic before students took the pretest and potentially how this material 

was incentivized. We note that the pretest scores are very low on some of the questions even for 

the graduate students (see Table 6.2), but they still managed to perform significantly better than 

undergraduate group A and the graduate students performed comparable to undergraduate group 

B (which generally had higher pretest scores on later questions than graduate students).  

One possible hypothesis for this difference between the average posttest performance of 

graduate students and undergraduate students in group A (see Table 6.2) despite both groups 

having poor pretest performance is that the graduate students on average may have better 

quantitative facility than the undergraduates and this advantage may reduce their cognitive load 

while learning from the hybrid MZI QuILT despite having low level of initial physics knowledge 

of the MZI (as inferred from the pretest performance). In particular, since the undergraduate 

quantum mechanics course is mandatory for all undergraduates whether they are graduate school 
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bound or not, there is a greater diversity in students’ quantitative proficiency in the undergraduate 

course than in the graduate course. Since students’ working memory while learning from the 

hybrid QuILT is limited, if students have both limited conceptual and quantitative facility with the 

hybrid QuILT content,  integration of conceptual and quantitative understanding while learning 

from the QuILT may cause cognitive overload and leave few cognitive resources for meta-

cognition. It is possible that graduate students’ poor initial conceptual understanding of the MZI 

as manifested by their pretest scores did not increase the cognitive load as much as the 

undergraduate students in group A since graduate students on average had better quantitative 

facility which can reduce cognitive load while learning from the hybrid QuILT that integrates 

conceptual and quantitative understanding and leave more cognitive resources for conceptual 

reasoning and sense-making. In fact, Figures 6.9 and 6.10 show bar graphs of the percentages of 

students for the three student groups that engaged with the hybrid QuILT. These figures show that 

while both the undergraduate group A and some graduate students performed poorly on pretest 

(Fig. 6.9), the pretest scores of many students in undergraduate group A is very low after traditional 

instruction (this is the group that did not improve significantly on the posttest as shown in Fig. 

6.10). 

Synthesizing these different comparisons and keeping in mind Table 6.2 and Figures 6.9 

and 6.10 (which show that the pretest performance of undergraduate group A is worst followed by 

graduate students and then undergraduate group B but on the posttest, the graduate student 

performance is comparable to undergraduate group B with the undergraduate group A performing 

worst), we hypothesize the possible reasons for two trends.  One trend concerns prior mathematical 

preparation as it pertains to making appropriate math-physics connections and learning new 

physics concepts in a math-rich context.  On average, graduate students at the same university can 
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typically be considered more experienced in applying advanced mathematical skills to physics 

contexts and are more comfortable changing between and connecting different representations.  

This is in contrast to upper-level undergraduate students only half of whom are typically graduate 

school bound. The difference may manifest in graduate students not having as much cognitive 

overload (as undergraduate group A) when using mathematical representations to learn physics 

concepts even if their initial physics knowledge of these concepts was not very good as evidenced 

by their low pretest scores in Table 6.2 and Fig. 6.9. In the case of the MZI, the more 

mathematically rigorous concepts involved calculations concerning a four-dimensional Hilbert 

space.  On the other hand, undergraduate student group B may have benefited from the hybrid 

QuILT as much as the graduate students, as evidenced by their posttest performance since they 

had the best conceptual physics knowledge of these concepts out of the three groups as evidenced 

by their pretest scores (see Table 6.2 and Fig. 6.9) which may have reduced their cognitive load 

when engaging with mathematically rigorous concepts and making conceptual inferences from 

them. 

6.5.2  Comparison of pre/posttest performance of graduate students that learned from the 

hybrid or conceptual MZI QuILT 

A comparison of Tables 6.2 and 6.3 shows that both groups of graduate students performed 

somewhat similarly on average on the pretests although there are some variations across questions 

(e.g., the hybrid QuILT group’s performance on Q1-3 suggests their lecture experience had them 

better prepared for the more basic concepts of the MZI than their conceptual QuILT counterparts, 

but their performance on Q6-12 suggests that the opposite is true for the more complex situations).  

On the posttest, however, the hybrid QuILT group performed, at worst, roughly the same as, and 
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in most cases, considerably better than their conceptual QuILT counterpart.  One possible 

explanation is that, for the graduate students, a population that is likely to have higher quantitative 

facility at least in the context of physics, the integrated conceptual and quantitative MZI QuILT 

improves student performance on conceptual questions on many of the concepts compared to the 

conceptual MZI QuILT. 

6.5.3  Comparison of pre/posttest performance of undergraduates that learned from the 

hybrid or conceptual MZI QuILT 

With some variations by question, the hybrid QuILT undergraduate group A (see Table 

6.2) on average performed somewhat similarly to the conceptual QuILT group on the pretest (see 

Tables 6.2 and 6.3). There were clear trends on which conceptual issues pertaining to the MZI 

exhibited better pretest performance.  However on the posttest, group A performed better on Q1-

3, while performing worse on Q7-11.  For example, question 3 focuses on the role of beam-splitter 

2 (BS2) and how it affects interference of single photons. In particular, this question investigates 

whether students understand how removing or inserting beam-splitter BS2 will change the 

probability of the single photons arriving at each detector D1 or D2.  An integrated conceptual and 

quantitative inquiry-based sequences involving a two dimensional Hilbert space were designed to 

provide scaffolding support to have students contemplate the role of BS2 and whether interference 

is observed for single photons without BS2. The posttest performance of all student groups 

(graduate students and undergraduate groups A and B) after engaging with the hybrid QuILT is 

close to perfect whereas both graduate and undergraduate students averaged 79% after engaging 

with the conceptual QuILT (see Tables 6.2 and 6.3). 
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One possible hypothesis for why undergraduate student group A in Table 6.2 performed 

well on Q1-3 but not on Q7-11 attributes this difference across questions on the posttest to the 

mathematical facilities of group A (especially in the light of the fact that they had poor conceptual 

understanding of the underlying concepts as reflected by the low pretest scores) and the fact that 

the increased mathematical rigor in the hybrid QuILT may have caused a cognitive overload for 

students particularly for the questions involving polarizers that involves product states of path and 

polarization.   In particular, concepts involved in Q1-3 require a two dimensional Hilbert space 

(only photon path states through the MZI are relevant since polarizers are not present). On these 

questions, undergraduates in Group A appear to have benefitted more from the hybrid QuILT as 

reflected by their posttest performance.  However, for Q7-11 on the posttest, which involve the 

four-dimensional Hilbert space (since both photon path states and polarization states must be taken 

into account to understand the outcomes of the experiment) their performance is poor. 

In contrast, the undergraduate group B which engaged with the hybrid QuILT exhibited 

better pretest performance than the undergraduates who engaged with the conceptual QuILT.  This 

is likely an instructor effect with the instructor of the undergraduate group B preparing and 

incentivizing students better than the instructor of the undergraduate conceptual QuILT group.  

Moreover, these undergraduate students in group B outperformed all other groups on the 

conceptual posttest including those who engaged with the conceptual QuILT. 

We note that question (4) on the posttest evaluates student understanding of the role of 

additional detectors inserted into one of the paths of the MZI. In particular, it investigates student 

understanding of how inserting an additional detector in the U path of the MZI would affect the 

interference at the detectors D1 and D2. Students need to reason that an additional detector would 

collapse the state of the photon to the U or L path state (instead of the single photon state being a 
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superposition of the U and L path states) and how the collapse of the photon state to the U or L 

path state causes the detectors D1 or D2 after BS2 to click with equal probability and destroys the 

interference at the detectors.  This type of situation is covered in the conceptual QuILT but is not 

covered in the hybrid MZI QuILT, although students had learned about the role of detectors D1 

and D2 after BS2. Table 6.2 shows that on the posttest, graduate students and undergraduates in 

group B who engaged with the hybrid QuILT performed comparably to the graduate and 

undergraduate students in the conceptual QuILT group. This is encouraging since it suggests that 

students were able to transfer their learning about the role of detectors from those after BS2 (photo-

detectors D1 and D2) to a detector in the U path of the MZI. For example, we believe this is a 

farther transfer compared to the situation in question 10 on the posttest in which students had 

worked through a situation in which the polarizer right before detector D1 was a vertical polarizer 

(instead of a horizontal polarizer). 

6.6 DISCUSSION AND SUMMARY 

We use the “Integrating Conceptual and Quantitative Understanding In Physics” or 

“ICQUIP” framework to develop, validate and evaluate a Quantum Interactive Learning Tutorial 

(QuILT) which incorporates mathematical rigor while focusing on helping students develop 

expertise, i.e., a good conceptual understanding of quantum optics using a Mach Zehnder 

Interferometer with single photons and polarizers. The “ICQUIP” framework posits that 

appropriate integration of conceptual and quantitative aspects of physics in teaching and assessing 

student learning is central for effective instruction, advancing students along the expertise 

spectrum and equipping them with adequate level of mastery within the context of a physics 
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course. Constructing a conceptual reasoning chain without equations can be more difficult than 

learning to reason with quantitative tools by constraint satisfaction. The framework also 

emphasizes that the instructional design should provide appropriate scaffolding support to students 

commensurate with their prior knowledge and skills to integrate conceptual and quantitative 

understanding, learn physics concepts and develop their problem solving, reasoning and meta-

cognitive skills. In other words, if the level of math-physics connection (or conceptual and 

quantitative connection) is not appropriate, use of quantitative tools in courses can increase 

students' cognitive load to the extent that very little cognitive resources may be available for 

drawing conceptual inferences from them. These issues are critical due to the limited capacity of 

working memory. In other words, in order to learn physics and build a robust knowledge structure 

with quantitative tools [23], students must be given opportunities to interpret symbolic equations 

correctly and be able to draw conceptual inferences from them. This implies that students must be 

given support to not treat quantitative problem solving merely as a mathematical exercise but as 

an opportunity for sense making, learning physics concepts and developing expertise. This requires 

that students are provided scaffolding to engage in effective problem solving strategies. Through 

integration of appropriate levels of mathematics and physics and expecting students to learn to 

reason by drawing conceptual inferences from quantitative problem solving in order to perform 

well in the course, physics learning and expertise development can, in general, be enhanced 

significantly.  

The hybrid MZI QuILT uses an approach consistent with the ICQUIP framework and 

integrates conceptual and quantitative aspects of MZI experiments to develop students’ expertise 

and conceptual understanding of physics. We compared upper-level undergraduate and graduate 

students’ performance on conceptual questions after engaging with this hybrid QuILT with a 
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conceptual QuILT [93] focusing on the same topics in which quantitative tools were not employed. 

Both versions of the QuILT use a guided inquiry-based approach to learning and are based on 

research on student difficulties in learning these challenging concepts as well as a cognitive task 

analysis from an expert perspective. We find that physics graduate students’ posttest performance 

on conceptual questions after engaging with the hybrid QuILT was generally better than their 

performance after engaging with the conceptual QuILT. For undergraduate students, the findings 

were mixed. One group of undergraduates, which had reasonable pretest scores after traditional 

lecture-based instruction on these topics and which engaged with the hybrid QuILT after the 

pretest, outperformed the undergraduates who engaged with the conceptual QuILT on the posttest, 

which was completely conceptual. On the other hand, another group of undergraduates, which had 

very low average pretest score after traditional lecture-based instruction on these topics and which 

engaged with the hybrid QuILT after the pretest, had good posttest performance on some 

conceptual questions, especially those pertaining to a two-dimensional Hilbert space involving 

only path states of the single photons through the MZI. However, their posttest performance on 

many of the other conceptual posttest questions was worse than the undergraduates who used the 

conceptual QuILT.  

One possible interpretation of these findings consistent with the ICQUIP framework is that 

integration of conceptual and quantitative aspects of physics should be commensurate with 

students’ prior knowledge of physics and mathematics involved so that students do not experience 

cognitive overload while engaging with such a learning tool striving to develop a good grasp of 

physics concepts. In the undergraduate course in which students did not benefit as much from the 

hybrid QuILT that focused on integration of conceptual and quantitative understanding to help 

students learn physics concepts, their pretest performance suggests that the traditional instruction 
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may not have sufficiently given a “first coat” and prepared students with requisite physics concepts 

to engage with the hybrid QuILT. Since physics majors in the mandatory undergraduate quantum 

mechanics course come with diverse physics and mathematics backgrounds, the hybrid QuILT 

may have caused cognitive overload at least for some students (on topics in which their conceptual 

posttest performance is not good) so that they could not benefit from integrated conceptual and 

quantitative learning sequences. In other words, integration of conceptual and quantitative 

understanding in physics must adequately build on students’ prior knowledge to avoid cognitive 

overload and help students develop expertise. 

In summary, conceptual and quantitative aspects of physics learning should be integrated 

appropriately in order to help students develop physics expertise at all levels.  By incorporating 

mathematical rigor in the hybrid MZI QuILT, we aimed to improve students’ conceptual 

understanding of the challenging single photon quantum mechanics experiments in the context of 

a MZI as measured by the conceptual posttest questions. By comparing to performance on 

conceptual pretest and posttest, we find that integrating conceptual and quantitative aspects of the 

MZI with single photons in the hybrid MZI QuILT provided opportunity for more effective 

learning for graduate students and undergraduates who had an adequate first coat of conceptual 

understanding of the MZI experiments when compared to students who engaged with the 

conceptual MZI QUILT.  On the other hand, undergraduates who had very low pretest scores 

before engaging with the hybrid QuILT exhibited similar or worse conceptual learning than those 

who engaged with the conceptual QuILT. One possible hypothesis for the significantly better 

posttest performance of graduate students compared to the undergraduates, both of whom engaged 

with the hybrid QuILT and performed  poorly on the pretest,  is that the graduate students with 

more experience using advanced math in the physics context were able to more consistently and 
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effectively benefit from the mathematical representations of concepts in the hybrid QuILT and did 

not experience cognitive overload despite having low level of conceptual understanding of the 

MZI with single photons are manifested by the pretest scores. Thus, adequate prior physics and 

mathematical facility above a certain threshold is necessary for students to be in the optimal 

adaptability corridor and engage effectively with the hybrid QuILT that integrates conceptual and 

quantitative understanding of physics. 
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6.9 CHAPTER APPENDIX:  MACH-ZEHNDER INTERFEROMETER (MZI) 

POSTTEST 

 

 

 

The setup for the ideal Mach-Zehnder Interferometer (MZI) shown below in Figure 1 is as follows: 

• The photons originate from a monochromatic coherent point source. (Note:  Experimentally, a source can only emit 

nearly monochromatic photons such that there is a very small range of wavelengths coming from the source.  Here, 

we assume that the photons have negligible “spread” in energy.)   

• Assume that the photons propagating through both the U and L paths travel the same distance in vacuum to reach each 

detector. 

• All angles of incidence are 45° with respect to the normal to the surface.  

• For simplicity, we will assume that a photon can only reflect from one of the two surfaces of the identical half-silvered 

mirrors (beam splitters) BS1 and BS2 because of an anti-reflection coating on one of the surfaces. 

• Assume that beam splitters BS1 and BS2 are infinitesimally thin so that there is no phase shift when a photon 

propagates through them. 

• The phase shifter is ideal and non-reflective. 

• Ignore the effect of polarization of the photons due to reflection by the beam splitters or mirrors.   

• The photo-detectors D1 and D2 are point detectors located symmetrically with respect to the other components of the 

MZI as shown.  

• All photo-detectors are ideal and 100% efficient. 

• Polarizers do not introduce phase shifts. 

• All measurements are ideal projective measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  

For all of the following questions, assume that: 

• The single photons are emitted from the source in a highly collimated stream, i.e., the width of the 

transverse Gaussian profile of each photon is negligible. 

• A very large number (N) of single photons are emitted from the source one at a time and pass 

through beam splitter BS1. 
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1. Consider the following statement about single photons emitted from the source in Figure 1:  

• If the source emits N photons one at a time, the number of photons reaching detectors D1 

and D2 will be N/2 each. 

Explain why you agree or disagree with this statement. 

 

 

 

 

2. Consider the following conversation between Student 1 and Student 2:  

 

• Student 1:  The beam splitter BS1 causes the photon to split into two parts and the energy of 

the incoming photon is also split in half.  Each photon with half of the energy of the incoming 

photon travels along the U and L paths of the MZI and produces interference at detectors D1 

and D2. 

• Student 2: If we send one photon at a time through the MZI, there is no way to observe 

interference in the detectors D1 and D2. Interference is due to the superposition of waves 

from the U and L paths. A single photon must choose either the U or the L path.  

Do you agree with Student 1, Student 2, both, or neither?  Explain your reasoning. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 

 

3a. Suppose we remove BS2 from the MZI setup as shown in Figure 2 above.  How does the 

probability that detector D1 or D2 will register a photon in this case differ from the case when BS2 is 

present as in Figure 1?  Explain your reasoning. 
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Figure 3 

 

3b. Suppose we have an MZI setup initially without BS2.  If we suddenly insert BS2 after the photon 

enters BS1 but before it reaches the point where BS2 is inserted (see Figure 3 above), with what 

probabilities do detectors D1 and D2 register the photon? Explain your reasoning. Assume that the 

situation after BS2 is inserted is identical to Figure 1. 

 

 

 

 

 

 

 

 

Figure 4 

4. Suppose we modify the set up shown in Figure 1 and insert a photo-detector into the upper path 

between BS1 and mirror 2 as shown in Figure 4.   

a) What is the fraction of single photons emitted by the source that reach each detector D1 and 

D2?  Explain your reasoning.   

 

 

 

 

b) If you place a phase shifter in the L path and change its thickness gradually to change the path 

length difference between the U and L paths, how would the phase shifter affect the fraction 

of photons arriving at detectors D1 and D2?  Explain your reasoning.   

 

 

 

 

c) If there is interference displayed in part 5b) by any photons at detector D1, write down the 

percentage of the photons emitted by the source that display interference.  You must explain 
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7.0 FUTURE DIRECTIONS 

In this thesis, I discussed the development, validations and implementation of multiple 

instructional tools to help students learn upper-level quantum mechanics.  The use of robust clicker 

question sequences (CQS) pertaining to many quantum mechanics concepts was found to be 

effectiveness in improving students’ conceptual understanding on relevant concepts. However, 

many of these sequences can still be iterated, refined, and improved particularly after 

implementing them in classes at other universities and colleges.  Some common student difficulties 

still have room to be addressed in a more impactful way. 

The findings in this thesis have implications for improving teaching and learning of not 

only upper-level quantum mechanics, but also for developing learning tools for other introductory 

and advanced courses.  Here the framework for the development, validation and implementation 

of a CQS has been applied to an upper-level quantum mechanics course. The effectiveness of this 

framework to helping students learn physics in other courses, such as introductory physics, should 

be investigated in the future.  Additionally, a number of CQSs have been developed for other topics 

in upper-level quantum mechanics.  Some of these can be found in Appendix B.  While preliminary 

data has been gathered for most of these CQSs, not only should those data be analyzed in the 

future, the CQSs should be refined and iterated by researchers based upon data analysis and further 

implemented and evaluated in the refined form. 
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APPENDIX A: MACH-ZEHNDER INTERFEROMETER HYBRID QUANTITATIVE-

QUALITATIVE QuILT 

 

A.1  HYBRID QuILT SECTION WITHOUT POLARIZERS 
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A.2  HYBRID QuILT SECTION WITH POLARIZERS 
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APPENDIX B: ADDITIONAL CLICKER QUESTION SEQUENCES 

B.1 IDENTICAL PARTICLES: WAVEFUNCTION SYMMETRY 
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B.2 IDENTICAL PARTICLES: COUNTING 
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B.3   DEGENERATE PERTURBATION THEORY 
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