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Abstract 

Porous Pseudomaterials for Studying Structure-Property Relationships of Gas Adsorption 
 

Alec Kaija, PhD 
 

University of Pittsburgh, 2019 
 

The discovery in 1995 of metal-organic frameworks (MOFs) – with record-breaking 

surface areas – sparked exponential growth in research efforts dedicated to the development of 

new porous adsorbents, particularly for energy related gas storage applications. However, despite 

their promise, decades of research have yet to yield MOFs that perform well enough for many of 

these applications, particularly high-pressure vehicular natural gas storage and post-combustion 

carbon capture. To understand why, I developed a novel computational methodology for 

generating large (100,000+) libraries of randomly configured Lennard-Jones (LJ) crystals, or 

“pseudomaterials”, with the intention of calculating various adsorption-related properties of 

interest en masse using grand canonical Monte Carlo (GCMC) simulations. These libraries were 

used to map an n-dimensional structure-property space, where n refers to the number different 

structure- and property-parameters. 

One approach for generating these libraries of pseudomaterials is random sampling, where 

each structure is generated algorithmically at random; however, we attempt to improve the overall 

computational efficiency using alternative methods. These alternative methods include mutation 

algorithms and augmenting random sampling with property prescreening. Mutation algorithms 

identify pseudomaterials with unique structure-property combinations and selectively perturb their 

structural characteristics to sample the sparsely populated regions of the structure-property space. 

Property prescreening uses machine learning models to predict the properties of a pseudomaterial 

to justify whether it is a candidate worthy of more computationally expensive GCMC simulations; 

it is an attempt at reducing the computational expense associated with running simulations on 

pseudomaterials with redundant properties. 

The overall goal of this new computational methodology was to observe structure-property 

relationships for porous materials in general (i.e., not limited to any particular sub-class). I showed 

that understanding these structure-property relationships provides insights into the design of better 

adsorbents for a wide range of gas storage and separations applications. In the future, this 

methodology could potentially be extended to better understanding porous materials for catalysis, 

sensing, and more. 
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1.0 A Brief History of Crystal Engineering: Motivation for Studying Structure-Property 

Relationships 

1.1 An Introduction to Crystal Engineering 

The term crystal engineering was first coined in 1971 by Schmidt when he described 

fundamental rules which could someday be used to design crystalline structures. By the late 1980s 

this Holy Grail-type problem remained unsolved to the dismay of researchers like Maddox who 

called it “one of the continuing scandals in the physical sciences.”[1] In 1989 the term received a 

revised definition from Desiraju: “the understanding of intermolecular interactions in the context 

of crystal packing and the utilization of such understanding in the design of new solids with desired 

physical and chemical properties.”[2] Because of the many, minute intermolecular forces that 

govern crystal packing,[3] crystal engineering is a daunting task even with modern 

supercomputing resources. This has not stopped, however, a nearly exponential growth in research 

efforts dedicated to crystal design and crystal engineering. 

Crystal engineering, particularly in the context of organic solids, has become inherently 

linked to concepts derived from supramolecular chemistry. As defined by Lehn in 1978, 

supramolecular chemistry is the “chemistry beyond the molecule,” concerning complex entities 

which arise from the association of two or more chemical species via intermolecular forces.[4] 

One can consider crystals as single chemical entities and as such special examples of 

supramolecular assemblies; in fact, Dunitz referred to the crystal as a “supermolecule par 

excellence,” held together by ion-ion, ion-dipole, dipole-dipole interactions, hydrogen bonding, 

London forces, and more.[5] Schmidt emphasized that the physical properties of crystalline solids 
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depend upon the distribution of chemical components within the crystal lattice as properties of the 

individual components. Schmidt’s work spawned a series of publications by Desiraju[6-8] and 

Etter[9-11] which used the Cambridge Structural Database (CSD) to investigate noncovalent 

bonding in organic solids. This work established the concept of supramolecular synthons,[6] 

making hydrogen bonds the most widely exploited noncovalent interaction in crystal engineering. 

One approach to crystal engineering of functional solids involves constructing polymeric 

networks. The work of Wells, who was particularly interested in inorganic structures,[12, 13] 

established a system of defining structures according to their topology by reducing them to points 

(nodes) of a particular geometry (tetrahedral, trigonal planar, etc.). This approach wasn’t reflected 

in laboratory work until the 1990s when Robson facilitated the development of the field of 

coordination polymers.[14-17] The field was further developed by Kitagawa[18] and Yaghi,[19] 

who showed that it was possible to apply Robson’s approach to create extensive families of 

compounds with specific structural topologies. Yaghi coined the term reticular chemistry, referring 

to the systematic synthesis of families of frameworks.[20] The term metal-organic framework also 

first appeared in a publication by Yaghi and Li in 1995.[21] A few years later Yaghi and Li, in 

what would become a highly influential publication, reported the structure of MOF-5.[19] This 

new class of materials, because of their extremely high surface areas, has attracted substantial 

interest in a wide range of applications[22-29] including gas storage[19, 30-37] and 

separations,[38-45] catalysis,[46-51] and sensing.[52-55] Though relatively little is known about 

the mechanisms of self-assembly in MOFs,[56] their highly tunable nature represents a significant 

step towards the dream of crystal engineering. 
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1.2 Computational Crystal Engineering 

One of the primary challenges in engineering crystals from first principles is the 

massiveness of the phase space. For four-element stoichiometries, ignoring geometries, there are 

1012 possible structures, and when more than four elements and their geometries are considered 

this number exceeds 10100 structures.[57] Nevertheless, sampling this vast space, even 

incompletely, provides improved insight particularly for investigating structure-property 

relationships. In 1999 Delgado enumerated all possible networks in which each atom is connected 

to exactly four neighbors, representative of covalently bonded crystals, silicates, hydrates, 

crystalline elements, and more.[58] In the field of zeolites, Deem developed methods for 

generating large libraries of hypothetical structures.[59, 60] Haldoupis later conducted pore size 

analysis for >250,000 hypothetical zeolites in Deem’s library, calculating Henry’s coefficients and 

diffusion activation energy for H2 and CH4 in a subset of 8000 structures.[61] This was a major 

step towards deriving structure-property relationships in this class of materials which at the time 

only consisted of around 190 synthesizable structures. 

For MOFs Mellot-Draznieks developed the automated assembly of secondary building 

units (AASBU) method, which focused on the topology of network-based structures, exploring the 

possible ways to assemble predefined inorganic building blocks in three-dimensional space.[62] 

By 2010 Yazaydin synthesized the first computationally-designed MOF, NU-100, which broke 

records for methane storage.[63] At the same time Wilmer sought to create an algorithm which 

would generate every possible MOF from a particular library of building blocks.[64] By 2013 

Wilmer’s methods were used to design a new record-breaking methane adsorbent whose 

experimental performance nearly matched computational predictions.[34] Despite the vastness of 

the hypothetical MOF libraries generated to date, it remains uncertain whether better adsorbents, 
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to name one application area, exist. More work is required to establish simple design rules or 

overarching laws governing the performance of these and other crystalline materials. 

This work develops a novel computational methodology for generating large libraries of 

hypothetical structures, which we call pseudomaterials. Past work has focused on generating 

libraries of hypothetical structures by assembling modular molecular building blocks, according 

to design rules observed in nature. One potential shortcoming of this approach is the possibility of 

generating structures from molecular building blocks which have not been previously considered 

or assembling these molecular building blocks according to design rules which have not yet been 

observed in nature. This means that the regions of the structure-property space for porous 

crystalline materials observed to date represent an incomplete view of nature – by generating large 

libraries of pseudomaterials we hope to fill in the gaps. 

Pseudomaterials are random configurations of matter, generated in an attempt at sampling 

both the previously observed regions of the structure-property space for porous crystalline 

materials and those disparate regions which may not yet have been explored by past work. If one 

were to generate an infinite number of different pseudomaterials – an admittedly impossible feat 

– the result would be a complete map of the structure-property space for porous crystalline 

materials. While it is not feasible to create an infinitely large library of pseudomaterials, we have 

developed strategies towards uniformly sampling the structure-property space. This work 

approaches two feats: a rigorous exploration of structure-property relationships and the 

establishment of theoretical performance limits for specific application areas of porous crystalline 

materials. The work described herein is the just the beginning: it is our hope that others in the 

scientific community will pick up where we have left off. 
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2.0 Pseudomaterials: Lennard-Jones Crystals for Sampling the Structure-Property Space 

for Porous Adsorbents 

2.1 Algorithmically generating pseudomaterials 

A pseudomaterial, in the simplest sense, is a configuration of Lennard-Jones (LJ) spheres 

within a unit cell. This can be any configuration of LJ spheres, regardless of whether it represents 

a real or hypothetically synthesizable structure. In fact, most pseudomaterials could never be 

synthesized. Pseudomaterials are an abstract representation of a configuration of matter for the 

sake of sampling a structure-property space. A library of pseudomaterials therefore represents a 

sampling, or mapping, of the structure-property space for porous materials. 

Pseudomaterials are generated by randomly positioning LJ spheres, which we refer to as 

pseudoatoms, within a randomly-sized unit cell. The unit cell dimensions were bounded between 

25.6 and 51.2 Å in each of the crystallographic directions (with the lower bound twice the cutoff 

length used for gas-gas and gas-crystal interactions: 12.8 Å). The number of LJ spheres within a 

unit cell is bounded between 1.49 * 10-5 and 0.02122 atoms / Å3, where the lower boundary ensures 

that each unit cell contains at least two atom sites and the upper boundary corresponds to 10% the 

number density of iron. Pseudoatom types are defined by their LJ parameters: σ, the van der Waals 

radius, and ε, the potential well depth. Values for σ are bounded between 1.052 and 6.549 Å and 

values for ε between 1.258 and 513.264 K. This range of LJ parameters was based on the Universal 

Force Field (UFF),[65] where σ/ε-values were allowed to be 50% lower or greater, respectively, 

than the minimum and maximum values present in the UFF. While a pseudomaterial’s unit cell 
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may contain hundreds of pseudoatoms depending upon the randomly selected number density, the 

number of pseudoatom types is limited to four in all pseudomaterials. 

 
 
 

Table 1. Pseudomaterial generation steps and associated parameter ranges 

 
 

 Pseudomaterial generation step Parameter range 

1 Select lattice constants 25.6 – 51.2 Å 

2 Select number density 
1.49 × 105 – 0.02122 

atoms/Å3 

3 Position pseudoatom sites N/A 

4 
Select four sets of LJ parameters (one for 

each pseudoatom type) 

σ: 1.052 – 6.549 Å 

ε: 1.258 – 513.264 K 

 
 
 

2.2 HTSoHM: High-Throughput Screening of Hypothetical Materials, a Software Package 

for Generating Libraries of Pseudomaterials 

To sample a substantial region of the structure-property space, a large library (>100,000) 

of pseudomaterials is needed. Because of scale, the process of generating such a library and 

simulating properties for each pseudomaterial must be automated. This task can be divided into 

two smaller tasks: (1) create a data structure for storing simulations results and pseudomaterial 

structural data and (2) devise a system for distributing work on a computing cluster. These two 
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problems may seem disparate; however, the use of a computing cluster dictates the use of a 

database. A relational database management system (RDBMS) is used because it allows 

concurrent access from multiple computing nodes and provides a convenient method for storing 

structural and simulation data simultaneously (see Figure 1). 

 
 
 

 
 
 

Figure 1. RDBMS schema for storing simulated data and structural information for pseudomaterials 

libraries. 

 
 
 
The database is in PostgreSQL using SQLAlchemy as an API to interface with the main 

program – called HTSoHM, short for High-Throughput Screening of Hypothetical Materials – 

which is written in Python. The program consists of two main pieces of code: a PBS shell script 

containing instructions to start a worker node using qsub (Figure 2a) and a Python script for the 

worker run loop (Figure 2b, Figure 2c, Figure 2d) in which the worker creates a pseudomaterial 
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structure (Figure 2b), simulates properties of interest (Figure 2c), and stores the structure in the 

database (Figure 2d), repeating the process until enough pseudomaterials have been added to the 

database. 

 
 
 

 
 
 

Figure 2. Flowchart for HTSoHM software. First a worker node is launched (A) and then it enters the worker 

run loop to generate a pseudomaterial structure (B), simulate properties of interest (C), and store all these 

data in the database. 

 
 

 
The methods for generating pseudomaterial structures have been covered previously and 

properties of interest that are simulated include volumetric gas loading, volumetric surface area, 

and helium void fraction. This overall approach to generating libraries of pseudomaterials at 

random is referred to as random sampling, attempts at improving the efficiency of this overall 

computational methodology will be described later. 
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The HTSoHM software package is free and open source and available online at: 

https://github.com/WilmerLab/HTSOHM-dev 

2.3   Atomistic models used for simulating properties of interest 

A simulation package called RASPA was used to simulate all properties of interest. Grand 

canonical Monte Carlo (GCMC) simulations are used to calculate volumetric gas loading 

according to previously established methods.[35, 66] Each calculation uses a 1000 cycle 

equilibration period followed by a 1000 cycle production run. A cycle consists of n Monte Carlo 

steps, where n equals the number of molecules in the system (which fluctuates). Simulations 

include insertion, deletion, and translation moves of molecules with equal probabilities. Fugacities 

are calculated using the Peng-Robinson equation of state. 

GCMC simulations are also used to calculate void fraction in each pseudo material 

according to established methods.[67] Each simulation consists of a 1000 cycle production run. 

Simulations use the Widom particle insertion method with a helium atom probe (σ=2.96Å). 

Average Rosenbluth weight is recorded for the void fraction of each pseudomaterial. 

Interaction energies from non-bonded atoms are computed through the Lennard-Jones 

potential:  

 
 
 

𝑉𝑉𝑖𝑖𝑖𝑖 = 4𝜖𝜖𝑖𝑖𝑖𝑖 ��
𝜎𝜎𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
�
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𝜎𝜎𝑖𝑖𝑖𝑖
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https://github.com/WilmerLab/HTSOHM-dev


 10 

where i and j are interacting atoms, rij is the distance between atoms i and j, σij is the LJ 

diameter, and εij is the LJ well depth. The LJ cutoff was 12.8 Å. LJ parameters for framework 

pseudoatoms were selected at random from a range of values 50% larger than the UFF. 

2.4 Improving the computational efficiency of HTSoHM 

We have explored various approaches improving the efficiency with which HTSoHM 

samples the structure-property space for porous adsorbents. Two of these approaches are mutation 

algorithms and property prescreening. Mutation algorithms introduce an alternative method of 

generating pseudomaterials via mutation or perturbing the structural characteristics of existing 

pseudomaterials to more rigorously sample specific regions of the structure-property space. 

Property prescreening augments random sampling by using machine learning models to predict 

the property-combinations of a pseudomaterial to determine whether it is worth spending 

computing resources on simulating properties of interest for that structure. We have also developed 

a software package, OEDIPUS, for testing the effectiveness of new methods more quickly than by 

generating pseudomaterials libraries and calculating properties of interest using GCMC 

simulations. 

2.4.1  Mutation Algorithms: An Alternative Approach to Generating Pseudomaterials 

The approach described above, simply randomly generating structures, represents an 

attempt at randomly sampling the structure-property space. While this approach is effective, it 

stands to be improved by developing a different method for generating materials, one which 
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doesn’t rely solely on randomness. To accomplish this, we proposed (after having randomly 

generated a seed population) selecting those pseudomaterials with unique structure-property 

combinations and using them to create new pseudomaterials via mutation. This approach requires 

the addition of two algorithms: one to select these unique, parent pseudomaterials and another to 

mutate them. There is more than one way to identify a pseudomaterial’s uniqueness in this context; 

however, we chose to use the number of pseudomaterials in each of a congruent three-dimensional 

bin. This requires us to establish arbitrary maxima in each dimension, then subdivide the structure-

property space into equally-sized bins, counting the number of pseudomaterials in each bin. Those 

bins with the fewest pseudomaterials contain the most unique pseudomaterials, which are most 

likely to be selected to parent new pseudomaterials as shown in Figure 3. 
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Figure 3. Diagram of how pseudomaterials are select to parent new materials through mutation. The least 

populated bins (green) contain pseudomaterials most likely to be selected as parents whereas the most 

populated bins (red) contain pseudomaterials least likely to be selected as parents. 
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Mutating pseudomaterials consists of perturbing each of the defining parameters: atom-site 

positions, Lennard-Jones parameters, lattice constants, and number density. Generating a mutated 

child can be concisely described as linearly interpolating each defining value between the parent 

and a completely random pseudomaterial (unrelated to the parent) to a degree dictated by the 

mutation strength. At 0%, the child is a clone of its parent, and at 100% the child is a completely 

new randomly generated pseudomaterial. We can observe the effect of using different mutation 

strengths in Figure 4. 
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Figure 4. 2D projections of the structure-property space showing methane loading with respect to volumetric 

surface area. Shown are ten generations of 1,000 children each using different mutation strengths: 10% (A), 

20% (B), 50% (C), and starting at 50% decreasing by 5% with each generation. Children added in each 

generation are colored while all previously generated pseudomaterials are represented in black. 
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To compare the effectiveness of each mutation strength, we defined a uniformity metric, 

U. First each bin-count, c, was normalised: 

 
 
 

𝑐𝑐∗ =
𝑐𝑐

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
 (2 − 2) 

 
 

 
Here cmax is the highest bin-count observed. The uniformity metric is then calculated as the 

variance of the normalized bin-counts for the number of non-zero bins in the dataset, N: 

 
 
 

𝑈𝑈 =
∑ �𝑐𝑐∗ − ∑ 𝑐𝑐∗

𝑁𝑁 �

𝑁𝑁
 (2 − 3) 

 
 
 
The lower the value of U, the more uniformly the structure–property space has been 

explored. A high value of U indicates that some structure–property combinations are over-

represented relative to others. 

In Figure 5 we use this uniformity metric to compare the effectiveness of different mutation 

strengths. 
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Figure 5. Uniformity metrics across ten generations of 1,000 pseudomaterials each. 

 
 

  
Figure 5 shows a 20% mutation strength as being the most effective for uniformly sampling 

the structure-property space; however, for all mutation strengths evaluated the uniformity remains 

relatively constant after a few generations. Visual inspection of the mappings in Figure 4 show 

that after a few generations very few of the unexplored regions of the structure-property space are 

accessed. One cause for this is statistical outliers; because GCMC simulations are used to calculate 

the properties of interest it is possible that a simulation may not converge in the number of cycles 

used. These statistical outliers falsely demonstrate structure-property combinations that make them 

unique as shown in Figure 6, causing them to be selected as parents while their children never 

appear in the same bin as them, increasing the uniformity metric. One way to address this issue is 

to recalculate all the properties of interest and compare them to the original value; if the 

recalculated value is substantially different from the originally calculated value the material can 

be flagged to prevent it from being selected as a parent. 
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Figure 6. Example of statistical outliers. 2D projection of structure-property space showing volumetric gas 

loading with respect to helium void fraction. One parent is indicated by a light green point and its children by 

dark green points. Another parent is indicated by a light blue point and its children by dark blue points. The 

entire mapping of the structure-property space is represented by light grey points. 
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Another limiting factor is the presence of pseudomaterials which are particularly sensitive 

to mutation, making it highly unlikely (at a particular mutation strength) that they will produce 

children in the same bin as the parent. This leads to a sort of infinite loop in which a unique 

pseudomaterial is repeatedly selected to parent children while none of the children appear in the 

same bin as the parent as demonstrated in Figure 7. 
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Figure 7. Examples of pseudomaterials sensitive to mutation. A 2D projection of the structure-property space 

(right) shows volumetric gas loading with respect to helium void fraction where the children of three parents 

are indicated by cyan, magenta, and yellow points and the remaining pseudomaterials in the library are 

represented by grey points. All three of these parents are in the same bin (top), yet none of their children 

appear in the same bin as their parents. A histogram (left) shows the number of children in each of the four 

bins they appear in, none of which are the same as the parents. This data comes from a library of 5,000 

pseudomaterials; thousands of these materials were generated by mutating these three parents alone, 

indicative of the infite loop problem. 
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This infinite loop problem manifests itself when comparing libraries generated using the 

mutation approach with a 20% mutation strength and those generated by random sampling. In 

addition to the uniformity metric we may also compare convergence by counting the number of 

empty bins. Our search algorithm assumes arbitrary minima and maxima as the boundaries to be 

used when binning pseudomaterials. For volumetric methane loading these boundaries are 0 and 

350 v/v STP, for volumetric surface area 0 and 4500 m2/cm3, and for helium void fraction 0 and 

1. The area between these boundaries is then subdivided so it is possible to subtract the number of 

accessed bins by the total number of bins to get the number of empty bins, which can be used as a 

convergence metric. Figure 8 shows a comparison of empty bin counts for two libraries of 300,000 

materials, one generated using random sampling and the other the mutation method with a strength 

of 20%; different thresholds were used to define occupied bins where either 1, 10, 100, or 250 

pseudomaterials had to be present to consider a bin occupied. 
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Figure 8. Comparison of convergence using empty bin counts between two libraries, one generated by 

random sampling, indicated by dashed lines, and another by mutation at 20% strength, indicated by solid 

lines. Different thresholds were used to determine whether a bin was occupied; either 1 (cyan), 10 (magenta), 

100 (green), or 250 (purple) pseudomaterials needed to be present to consider a bin occupied. 

 
 
 
Regardless of the threshold used, random sampling was more effective than mutation at 

exploring the structure-property space. A likely culprit for this is the infinite loop problem, but 

unlike the statistical outlier problem a more sophisticated solution is required. 
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2.4.2  OEDIPUS: A Software Package for Rapidly Testing New Methods 

To provide a platform for testing methods more rapidly, primarily to combat the infinite 

loop problem, we started studying abstract representations of pseudomaterials: rectangular prisms, 

or boxes. Where a pseudomaterial has a complex input space: a number density, lattice constants, 

many atom-site positions, many LJ parameters, many partial charges, a box has only three input 

values: length, width, and breadth. Just as we use GCMC simulations to calculate properties of 

interest from a pseudomaterial structure, we can use the inputs from a box to calculate our own 

properties of interest. We can carefully define these properties of interest such that we understand 

with certainty the resulting probability distributions and behavior of this idealized structure-

property space. Suppose we are generating boxes by randomly selecting values between 0 and 1 

for each input parameter: length (x), breadth (y), and width (z). Each variable, x, y, or z is 

represented by a uniform distribution. If we then define a property of interest, α as the sum of x 

and y, the convolution of these two uniform distributions results in the density shown in Figure 9. 

 
 
 

 
 
 

Figure 9. Convolution of two uniform distributions. 
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More importantly we know that all values of α are between 0 and 2. If we then define a 

second parameter, β, as z12 we’d expect a probability density with a sharp peak near 0 and limits 

of 0 and 1. Our hypothetical parameter space is now a box with a width of 2 and height of 1. We 

can redefine α as (x + y) / 2 to make our parameter space a unit square as shown in Figure 10. 

 
 
 

 
 

 
Figure 10. Parameter space for boxes where α = (x + y) / 2 and β = z12. 

 
 
 
Whereas the pseudomaterials parameter space is of an unknown size and shape, we know 

in advance the exact size and shape of our parameter space for boxes. This allows us to know 

precisely how well we’ve sampled the parameter space using our sampling algorithms. 

Furthermore, because we have insight into the probability density of the parameters of interest we 

have some intuition as to how the space will be sampled when using a random sampling algorithm. 

Because the probability densities for both α and β are non-uniform certain regions are sampled 

more rigorously than others via random sampling as show in Figure 11. 
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Figure 11. Histograms of α (left) and β (middle) values from a population of 10,000 boxes generated using a 

random sampling method. A scatterplot (right) represents the mapping of the overall 2D parameter space 

using this method. 

 
 
 

β was intentionally defined to make it difficult to sample the entire parameter space via 

random sampling to mimic challenges in sampling the pseudomaterials space. We can then 

compare different methods by the number of empty bins remaining after each generation using the 

random sampling approach as a benchmark. This idealized input/output space captures the essence 

of the problem while reducing the amount of time for output from weeks to just minutes. 

The OEDIPUS software package is free and open source and available at: 

https://github.com/akaija/OEDIPUS 

2.4.3  Adaptive Mutation Algorithms 

To address the infinite loop problem, we assume that different pseudomaterials can respond 

differently despite being mutated with the same mutation strength; that is, the percentage of the 

https://github.com/akaija/OEDIPUS
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pseudomaterial’s children which land in the same bin as the parent will vary. One way to address 

this is to assign mutation strengths to each bin, adjusting based on the percentage of children that 

land in the parent bin. Each bin is initialized with the same mutation strength value, which may be 

adjusted later. Starting in the second generation, mutation strengths are calculated for each bin 

containing parents for children in the previous generation. Mutation strengths are calculated by 

assessing the children from all parents within a bin and determining the fraction of those children 

which landed in the same bin as their parents. If less than 10% of the children occupy the same bin 

as their parents, then the mutation strength is decreased by approximately 10% (divided by 1.1) 

and if more than 50% of the children occupy the same bin as their parents the mutation strength is 

increased by 10% (multiplied by 1.1). The objective is to have between 10% and 50% of all 

children occupying the same bin as their parents. If too few children occupy their parents’ bin, we 

get stuck in an infinite loop, constantly selecting parents from a sparsely populated bin without 

ever increasing the bin’s relative population, causing the same parents to be selected over and over. 

If too many children occupy their parents’ bin, no new regions of the structure-property space will 

ever be explored. The adaptive mutation strength is an attempt at ensuring that two things occur: 

new regions of the structure-property space are explored and that the overall sampling of the 

structure-property space is uniform. 

Recall that using the methods described above, a mutation strength is assigned to each bin. 

Alternatively, mutation strengths can be assigned to each material, though as the number of 

materials in the library reaches tens of thousands this approach may become computationally 

expensive. Testing these two methods using the hypothetical box platform we see that bin-specific 

adaptive mutation strengths outperform material-specific adaptive mutation strengths, as shown in 

Figure 12. 
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Figure 12. Convergence displayed as percentage of empty bins remaining for four 100+ generation libraries 

of hypothetical boxes: using random sampling (red), using a constant mutation strength of 20% (blue), using 

bin-specific adaptive mutation strengths (green), and using material/box-specific adaptive mutation strengths 

(magenta). 

 
 
 
Bin-specific mutation strengths even perform slightly better than a constant mutation 

strength, whereas material-specific mutation strengths do not. Unfortunately, none of these 

mutation methods perform better than random sampling when comparing convergence as number 

of empty bins. However, observing histograms of the number of materials in each bin after 100 

generations shows that these three mutation methods (using constant, bin-specific adaptive, and 
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material-specific adaptive mutation strengths) sample the structure-property space more 

uniformly, as shown in Figure 21.  
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Figure 13. Histograms showing the number of boxes generated in each bin after 100 generations of 100 

materials using random sampling (red), constant 20% mutation strength (blue), bin-specific adaptive 

mutation strengths (green), and material/box-specific adaptive mutation strengths (magenta). Bin-count 

variances are displayed in each subplot. 
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While the three mutation methods don’t perform as well as random sampling when 

measured by the total area sampled, they are more effective at sampling a smaller area more 

uniformly. One simple approach to improve performance is to combine one of the mutation 

methods with random sampling. An implementation of this approach is to randomly choose 

whether to create a new material via mutating an existing structure or generating one randomly 

each time a new material is added to the library. We see this “hybrid” approach outperforms the 

mutation methods and random sampling when compared using empty bin counts, as shown in 

Figure 14. 
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Figure 14. Convergence displayed as percentage of empty bins remaining for four 100+ generation libraries 

of hypothetical boxes: using random sampling (red), using a constant mutation strength of 20% (blue), using 

bin-specific adaptive mutation strengths (green), using material/box-specific adaptive mutation strengths 

(magenta), and using a hybrid approach where each material is created by randomly choosing between 

mutating an existing box or generating one randomly (cyan). 
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The hybrid approach is somewhat less promising when comparing how uniformly the space 

is sampled. While it performs substantially better than random sampling, the hybrid approach 

samples the structure-property space far less uniformly than any of the mutation methods, as shown 

in Figure 15. 

 
 
 

 
 
 

Figure 15. Histograms showing the number of boxes generated in each bin after 100 generations of 100 

materials using random sampling (red), constant 20% mutation strength (blue), and a hybrid approach where 

each material is created by randomly choosing between mutating an existing box or generating one randomly 

(cyan). Bin-count variances are displayed in each subplot. 

 
 
 
This hybrid approach could be further tuned by weighting the random selection between 

creating a new material via mutation or creating one randomly. One might expect that a selection 

more heavily weighted toward mutation would yield a more uniform sampling of the structure-

property space. 
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2.4.4  Property Prescreening: Using Machine Learning to Improve Computational 

Efficiency 

Property prescreening augments the random sampling approach by using machine learning 

models to determine which pseudomaterial structures should be considered for GCMC 

simulations. This approach adds a few steps to the random sampling process. First the overall 

random sampling routine is used to create some number of pseudomaterials. Then, prior to 

generating additional pseudomaterials, a machine learning model is fit to this set of data. We found 

by testing all of the regressors available in the Scikit Learn Python package that Gradient Boosting 

Regressors were the most effective for predicting values outside of the training data used to fit the 

model. To arrive at this conclusion, we built models using the average σ-values, average ε-values 

(where we averaged the values for each atom-site across the pseudomaterial unit cell), 

number density, and unit cell dimensions as inputs with methane loading at 35 bar and 

helium void fraction as outputs. We then used simulated data from HTSoHM to build training 

and testing data sets. The training data consisted of all points within an arbitrarily-sized 

“box”, while testing data consisted of all point outside of this box. This accomplished two 

tasks: (1) it determined which regressors were capable of predicting values “outside” of an 

arbitrary boundary (as certain regressors, such as those which use decision trees, are not 

capable of predicting values outside the convex hull formed by the training set) and (2) it 

determined which of these regressors was the most accurate at predicting values outside of 

this box. The results of this test are shown in Figure 16. 
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Figure 16. Scatterplot of testing data (black) and predicted results from various regressors with non-negative 

R-scores. Each regressor is represented by a different color with its R-score displayed in the legend. Training 

data came from various points within the red box, none of the testing data came from within this box, so a 

perfect regressor would never predict values witihn it. 
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To provide a more realistic estimate of the accuracy of a Gradient Boosting Regressor, we 

then preformed a second test. This time training data came from simulation of a library of 1000 

pseudomaterials. A convex hull was then generated from this data and an additional 10,000 

pseudomaterials were used to create a testing set. The accuracy of the Gradient Boosting Regressor 

was determined by its ability to predict whether values within this testing set were inside or outside 

the convex hull formed by the training data. The results of this test are shown in Figure 17. 
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Figure 17. Predictions of where 10,000 pseudomaterials would exhibit properties inside or outside of a convex 

hull formed by a different set of 1,000 pseudomaterials using a Gradient Boosting Regressor. 
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We observed that the Gradient Boosting Regressor was accurate at predicting whether 

pseudomaterials would exhibit unobserved properties (that is, properties that fall outside of the 

convex hull formed by the training set) more than 85% of the time. Assuming this accuracy was 

sufficient for our purposes, we used this regressor to prescreen pseudomaterials. After generating 

some number of pseudomaterials using random sampling, we would train a Gradient Boosting 

Regressor to predict if newly-generated structures exhibited unobserved properties, if so the 

pseudomaterial structure would be investigated using GCMC simulations (if not, a new structure 

would be generated in loop that exited when the regressor predicts that the newly-generated 

psuedomaterial would exhibit unobserved properties). The overall schematic appears in Figure 18, 

where the property prescreening steps are denoted by dashed lines. 
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Figure 18. Flowchart for HTSoHM with propert prescreening where the property prescreening steps are 

denoted by dahsed lines. 
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Finally, to determine whether it would be worth moving forward with this approach, which 

we have dubbed PROMETHEUS, we used a library of 300,000 pseudomaterials with data for 

volumetric methane loadings at 35 bar and helium void fractions to conduct a final test. This test 

would compare random-sampling to random-sampling with property prescreening. Instead of 

generating new data, which would incur substantial computational expense, we would use a set of 

1,000 pseudomaterials for training data and then use a Gradient Boosting Regressor to iterate over 

the remaining 299,000 pseudomaterials to predict if the exhibited unobserved properties. If a 

pseudomaterial was predicted to have unobserved properties, instead of simulating its properties 

(this was already done when the original 300,000 pseudomaterials library was generated) we 

would add the previously-simulated data to the training set, retrain the model, and continue 

iterating over the remaining pseudomaterials. If property prescreening worked, we would be able 

to observe a comparable region of the strucutre-property space with far fewer pseudomaterials. 

However, one question remains: how do we determine if a material has unobserved properties? 

We attempted two methods: one using a convex hull and another using binning. With the convex 

hull, a pseudomaterial with properties predicted to be outside of the convex hull would be subject 

to simulation. With binning, we would bin the structure-property space and a pseudomaterial with 

properties predicted to access a new, unoccupied bin would be subject to simulation. Results from 

both PROMETHEUS tests are shown in Figure 19 and Figure 20. 
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Figure 19. Comparisons of random sampling and propert prescreening (PROMETHEUS method) using 

number of empty bins as a convergence criteria and a convex hull to assess whether predicted properties were 

unobserved. 
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Figure 20. Comparisons of random sampling and propert prescreening (PROMETHEUS method) using 

number of empty bins as a convergence criteria and binning to assess whether predicted properties were 

unobserved. 
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We observed that in both cases, the PROMETHEUS method would improve computational 

efficiency by reducing the number pseudomaterials needed to rigorously sample the structure-

property space. Between the convex hull and binning approaches, binning proved to be more 

effective at sampling a large region of the structure-property space. Using binning, we were able 

to access ~550 bins with ~3000 pseudomaterials, while random-sampling alone access ~1100 bins 

with 300,000 pseudomaterials. This means the PROMETHEUS method was able to sample ~50% 

of the same space at 1% of the computational expense. This work represents a promising new 

direction for pseudomaterials research and has been implemented into the HTSoHM codebase for 

future testing. 
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3.0 Efficiently Mapping Structure-Property Relationships of Gas Adsorption in Porous 

Materials: Application to Xe Adsorption 

Alec R. Kaija, Christopher E. Wilmer 

Faraday Discuss., vol. 201, pgs. 221-232, (2017). 

 

Designing better porous materials for gas storage or separations applications frequently 

leverages known structure–property relationships. Reliable structure–property relationships, 

however, only reveal themselves when adsorption data on many porous materials are aggregated 

and compared. Gathering enough data experimentally is prohibitively time consuming, and even 

approaches based on large-scale computer simulations face challenges. Brute force computational 

screening approaches that do not efficiently sample the space of porous materials may be 

ineffective when the number of possible materials is too large. Here we describe a general and 

efficient computational method for mapping structure–property spaces of porous materials that can 

be useful for adsorption related applications. We describe an algorithm that generates random 

porous “pseudomaterials”, for which we calculate structural characteristics (e.g., surface area, pore 

size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose 

to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies 

pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to 

generate new pseudomaterials, thereby selectively adding data only to those parts of the structure–

property map that are the least explored. Use of this method can help guide the design of new 

porous materials for gas storage and separations applications in the future. 
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3.1 Introduction 

Porous materials are used widely in many applications related to catalysis, separations,[38, 

41, 44, 45, 68-71] gas storage,[27, 34-36, 72, 73] and chemical sensing,[23, 52, 53, 55] among 

others. Many of these applications stand to be improved from better porous materials, and so 

signicant effort is devoted to searching for them.[28, 29, 46, 74, 75] In particular, enormous 

effort has been devoted over the past decade to designing better metal–organic frameworks 

(MOFs), which are porous crystals with extremely high surface areas that are synthesized by the 

self-assembly of modular chemical building blocks.[20, 49, 76] Due to the modularity of the 

building blocks used in their synthesis, thousands of new MOFs have been synthesized over the 

past decade, and there are undoubtedly millions of possible MOFs that have not yet been 

created.[64] This large design space of possible MOFs makes it an ideal class to search within for 

better porous materials.[77] However, the availability of a large design space does not itself 

provide any guidance on how to design a better porous material. Although simple trial-and error 

synthesis combined with chemical intuition have yielded numerous successes in the field of 

MOFs,[69, 78] rational design of materials is generally considered preferable. One way to improve 

on the trial-and-error approach is to search for design rules that can be extracted from observations 

of structure– property relationships. For example, Bae et al. aggregated experimental data of CO2 

adsorption in zeolites and MOFs from over 40 sources in the literature and examined trends with 

respect to material properties.[45] In that work, some trends appeared robust, such as CO2 loading 

at 0.5 bar varying linearly with the isosteric heat of adsorption (up to a point). However, at 2.5 bar, 

the authors wrote that no trend could be inferred from the data. In a follow up work by us, which 

considered the same relationships (CO2 loading vs. isosteric heat of adsorption) at the same 

conditions, but used molecular simulation data from over 130 000 hypothetical MOFs,[71] we 
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found the same trends as Bae et al., but also many well-defined relationships that were not visible 

when only 40 data points were available. There are many recent examples of other researchers 

using molecular simulations and large datasets (numbering anywhere from 5000 to over 600 000 

materials) to obtain structure–property relationships for porous materials related to gas adsorption 

applications.[35, 44, 61, 64, 66, 79, 80] It is worth noting that these computational studies often 

do lead to better synthesized materials, usually because the observed structure–property 

relationships led to design rules that were then followed by experimentalists. For example, a 

promising MOF for natural gas storage, NU-125, was found almost immediately after the 

discovery that methane storage at high pressure peaks sharply at void fractions of 0.8.[34] Their 

demonstrated utility notwithstanding, the large-scale computational studies described above were 

nevertheless very inefficient with regards to mapping structure–property relationships. This is 

because many of the materials considered in those large-scale studies had very similar structures, 

and hence similar adsorption properties. In other words, the structure–property spaces were not 

explored uniformly; some properties (e.g., small pores) were encountered much more frequently 

than others (e.g., large pores). Undoubtedly to the frustration of many, it has usually been the most 

sought aer properties (e.g., high concentrations of adsorbed H2 at 298 K and 100 bar) that have 

been the most poorly represented in the datasets, dwarfed in number by materials whose properties 

do not lend them any obvious application value. Here we describe a method whose aim is to 

uniformly, and thus efficiently, explore structure–property spaces related to gas adsorption. 

Briefly, the method revolves around the use of crystalline porous “pseudomaterials”, which are 

collections of randomly arranged Lennard-Jones spheres in a periodic unit cell. Despite their 

randomness within the unit cell, they have long-range order and are expected to behave like porous 

crystals rather than like amorphous materials. Furthermore, a subset of pseudomaterials have 
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highly symmetric arrangements of spheres even within their unit cells, thus exactly resembling 

typical zeolites and MOFs. Using the same computational methodology that is used for zeolites 

and MOFs, we are able to calculate surface areas, void fractions, and gas adsorption in these 

pseudomaterials. We then identify pseudomaterials in regions of the structure–property space that 

are underexplored and mutate them to generate additional (but not identical) child materials. 

Pseudomaterials in well-explored regions of the structure–property space are ignored. The details 

are described in the Methods section. We focused in this initial study on Xe adsorption at various 

pressures (1 bar, 5 bar, and 10 bar) as a function of the void fraction of the porous pseudomaterials. 

In addition to the relative simplicity of modelling Xe adsorption, it is a gas of industrial importance 

as it is a component in fluorescent lights and must be removed along with radioactive isotopes of 

85Kr from spent nuclear fuels.[81-83] Both of these applications typically employ cryogenic 

distillation to obtain pure Xe, which is very energy intensive and could potentially be replaced by 

the use of the right porous adsorbent in process that operates under ambient conditions.[81, 82, 84] 

A primary focus of this study was to explore how quickly the space of Xe adsorption vs. void 

fraction is explored using this mutation strategy, and to see whether the structure–property space 

of porous pseudomaterials resembles that of real materials. 

3.2 Methodology 

An overview schematic of our six step computational method is presented in Figure 21. 

The details of each step are given in the subsections that follow, but a concise overview is provided 

here. First, a seed population of pseudomaterials is generated. Second, various structural 

characteristics (e.g., surface area, pore size and void fraction) and adsorption properties (e.g., Xe 

https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig1
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig1
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loading at 298 K at 5 bar) are calculated for each newly generated pseudomaterial. Third, 

pseudomaterials with rare structure–property combinations are identified as candidate “parents” 

that can spawn “child” materials with similar properties. Fourth, parent candidates are tested to 

ensure that the rareness of their properties is not due to calculation inaccuracies stemming from 

statistical undersampling. Fifth, a mutation strength parameter is adjusted to ensure that child 

pseudomaterials are not too similar, nor too different, from their parents (this only affects the 

efficiency with which the structure–property space is explored). Sixth, parent pseudomaterials are 

mutated to generate a new population of child pseudomaterials. At that point, we return to step two 

where the process repeats for as many generations as are needed to explore the structure–property 

space completely. 
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Figure 21. Flow chart describing the method in six parts: generating a seed population (A), calculating 

properties of interest (B), selecting rare pseudomaterials as candidate parents (C), removing anomalous 

results due to statistical undersampling (D), adjusting mutation strengths (E), and mutating rare parents to 

create new materials (F). 
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3.2.1  Generating the seed population 

Pseudomaterials are generated by randomly positioning Lennard-Jones spheres, which we 

refer to as pseudoatoms, within a randomly sized unit cell (see Figure 22). The crystal lattice 

constants (i.e., unit cell dimensions) were bounded between 25.6 and 51.2 Å for each of the 

crystallographic directions (the lower bound was set as twice the cutoff length used for the 

interactions between non-bonded atoms: 12.8 Å). The number density of pseudoatoms was 

bounded between 1.49 × 10−5 and 0.02122 atoms per Å3. The density minimum was chosen to 

ensure that each pseudomaterial would have at least two pseudoatoms, and the maximum 

corresponds to 10% the number density of iron. Pseudoatom types were defined by Lennard-Jones 

(LJ) interaction parameters: σ, van der Waals radius, and ε, the potential well depth. Values 

of σ and ε were randomly chosen in the range between 1.052 and 6.549 Å for σ and between 1.258 

and 513.26K/kB for ε. Although a pseudomaterial might have hundreds of pseudoatoms, each 

material had only four pseudoatom types. No two materials shared the same pseudoatom types. 

This range of LJ parameters was based on the Universal Force Field (UFF),[65] where we 

allowed σ and ε values to be 50% lower or greater, respectively, than the minimum and maximum 

values present in that force field. In this study, the seed population, and each subsequent child 

population, contained 100 pseudomaterials. 

  

https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig2
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig2
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Figure 22. Orthogonal and perspective views of two randomly generated pseudomaterials, A and B. The 

black wireframes represent the unit cells. Pseudoatoms are shown as spheres, whose radii and colour 

indicate σ and ε values respectively. 
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3.2.2  Modeling properties of interest 

After a generation of pseudomaterials was created, we used grand canonical Monte Carlo 

(GCMC) simulations to determine xenon adsorption at 298 K and 1 bar, 5 bar, and 10 bar. 

Pseudomaterials were treated as rigid structures, where the positions of the pseudoatoms were held 

fixed in space throughout the simulation. The helium void fraction of each pseudomaterial was 

calculated using a Widom insertion method,[67] with a helium probe (α = 2.96 Å). 

3.2.3  Selecting rare materials 

To explore new regions of the structure–property space, pseudomaterials with rare 

structure–property combinations were preferentially selected as candidate “parents” in the process 

of creating new materials. First, the structure–property space is subdivided into bins. In our case, 

the Xe-adsorption-void-fraction space was divided into 100 bins (10 bins along the Xe loading 

axis times 10 bins along the void fraction axis). Void fraction ranged from 0 to 100%, and Xe 

loading from 0 to either 50 cm3Xe per cm3 framework at 1 bar, 100 cm3 cm−3 at 5 bar, or 150 

cm3 cm−3at 10 bar. Pseudomaterials were chosen as candidate parents with probability inversely 

proportional to the number of materials in the same bin. 

3.2.4  Removing anomalous results 

Because the Monte Carlo methods used to model Xe loading and void fraction are 

stochastic, there is always a finite probability that a candidate parent is selected on the basis of 

anomalous simulation results (e.g., zero Xe loading at 10 bar in a material with over 90% void 
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fraction, which contradicts the ideal gas law). Such anomalous results would get the highest 

weighting based on the selection criteria of rarity, but would have no children with similar 

properties. To prevent these anomalous results from creating such inefficiencies, the Xe loading 

and void fraction of each candidate parent were re-simulated five times. If the average value from 

these retests varied more than one bin-width from the original, the selected pseudomaterial was 

disqualified as a parent and ignored subsequently. 

3.2.5  Assigning mutation strength 

When a parent is selected due to a low bin count, the expected outcome is that many 

children (though not all) are generated in the same bin. However, if the mutation strength is too 

high, most of the children may land far from the parent with respect to their structure–property 

combinations. This is particularly common near edges or cusps of the structure–property space. 

Conversely, if the mutation strength is too low, all of the child materials can end up in the same 

bin as the parent, thus not exploring the structure–property space outwards. 

 

To address this, we apply an adaptive scheme that adjusts the mutation strength every 

generation for each bin. In this study, each bin had an initial mutation strength of 20% and was 

increased or decreased as follows. If in any generation, a bin produced 90% of its children in other 

bins (not including itself) the mutation strength was halved. If more than 50% of its children ended 

up in the same bin as the parent, the mutation strength was doubled (up to a maximum of 40%). In 

the in-between case, the mutation strength was not adjusted. 
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3.2.6  Mutating parents, creating new materials 

Once the mutation strengths are adjusted for each bin, a new generation of child 

pseudomaterials is created. Here mutation refers to the process of randomly perturbing each value 

that defines the parent material’s structure (coordinates of each pseudoatom, number density, LJ 

values of pseudoatom types, and unit cell dimensions). Generating a mutant child can be concisely 

described as linearly interpolating each defining value between the parent and a completely 

random pseudomaterial (unrelated to the parent) to a degree dictated by the mutation strength. At 

0%, the child is a clone of its parent, and at 100% the child is a completely new randomly generated 

pseudomaterial. 

3.2.7  Uniformity metric 

To measure progress in exploring the structure–property space, we defined a uniformity 

metric (U). First each bin-count (c) was normalised: 

 
 
 

𝑐𝑐∗ =
𝑐𝑐

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
 (3 − 1) 

 
 
 
Where cmax is the highest bin-count up to the current generation. Then U is the variance of 

the normalised bin-counts for the number of non-zero bins in the dataset (N): 

 
 
 

𝑈𝑈 =  �
𝑐𝑐∗ − ∑ 𝑐𝑐∗

𝑁𝑁
𝑁𝑁

 (3 − 2) 
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The lower the value of U, the more uniformly the structure–property space has been 

explored. A high value of U indicates that some structure–property combinations are over-

represented relative to others. 

3.3 Results 

In seed populations (Figure 23) in all three runs (1, 5, and 10 bar) more materials were 

concentrated in the 0.9 to 1 void fraction domain than others, with very few to no materials in the 

0 to 0.1 range. In the seed population of the 1 bar run (Figure 24) the most populated bin contained 

twice as many materials as the next most populated bin. While the density limits could be adjusted 

to produce a more even distribution of structure–property combinations right from the start, the 

method should adjust for initial unevenness because we then selectively mutate rare 

pseudomaterials. Already after one generation we see a more even distribution of structure 

property-combinations as well as six new bins (see Figure 24a); after fifty generations, the number 

of accessed bins has nearly doubled and the distribution continues to flatten (Figure 24b). 

 
 
 

https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig3
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig3
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig4
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig4
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig4
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig4
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig4
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig4
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Figure 23. Scatterplots for seed-populations of 100 pseudomaterials from three separate runs at 1 bar (A), 5 

bar (B), and 10 bar (C). The entire parameter-space is plotted as searched in each case, each data point 

represents a different material. Search limits were set at 50, 100, and 150 cm3 xenon per cm3 framework at 1, 

5, and 10 bar respectively. 
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Figure 24. Bar chart of all bin-counts after seed population (black) and addition of first generation (red, A) 

and first fifty generations (red, B). Bin-counts were normalised with the maximum bin-count. 
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Because new pseudomaterials are created by mutating existing ones, new bins are accessed 

by few children while the majority of new pseudomaterials end up in bins that have already been 

populated. This contributes to the histogram in Figure 24 having a “sloped” shape, where bins 

accessed in earlier generations tend to have higher bin-counts than bins accessed later. Even after 

50 generations, we observed that the most populated bin had nearly twice as many materials as the 

next most populated bin, and that the 0 to 0.1 void fraction bin was still not accessed (i.e., empty). 

Because this bin clearly corresponds to a physically feasible region of structure–property space 

(i.e., that of solid materials), the emptiness of the bin indicated that the method has not yet explored 

the entire space after 50 generations. However, the significantly flattening of the distribution 

clearly shows that the method is functioning as intended. 

We can observe clear examples of new bins being accessed after the 20th and 

30th generations in the 1 bar run and the 20th generation in the 5 bar run (see Figure 25a, Figure 

25b) as indicated by a single red data point in its own bin. The method then successfully fills these 

bins within the next 10 to 20 generations. In the 20th through 30th generations in the 1 bar run, for 

example, the process of filling the newly-accessed bins results in a dense cluster of data points 

with a very slight gap between it and the adjacent bin. The gap is slight because the binning routine 

does not notice the lack of data points as it occurs in the same bin as the dense cluster. The method 

does not smooth the distribution of pseudomaterials within bins, only between them. This results 

in some clustered data points, most clearly visible in the 5 bar data (see Figure 25b). 

  

https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig4
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig4
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig5
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig5


 57 

 
 
 

Figure 25. Scatterplots after 10, 20, 30, 40, and 50 generations (from left to right) of children had been added 

for runs at 1 bar (A), 5 bar (B), and 10 bar (C). Children added in the last generation are highlighted in red. 

  



 58 

The uniformity metric (see Figure 26) gives insight into how new bins are accessed and 

then filled with materials. Immediately after the seed population was generated there is a slight 

increase in the uniformity metric, as new bins that are adjacent to sparsely populated regions, are 

accessed. These new bins are then filled relatively quickly (10 generations or less) as indicated by 

a decrease in the uniformity metric. The uniformity metric then steadily rose in the 1 and 10 bar 

runs before starting to decrease (Figure 26), as new bins were accessed and then filled with 

pseudomaterials. In the 1 bar run, for example, there was a slight decrease followed by an increase 

in uniformity (or a slight increase followed by a decrease in uniformity metric) from generation 

30 to 50 corresponding to the sudden migration of child pseudomaterials into the three bins in the 

upper Xe loading domain (see Figure 25a, 30 vs. 40 generations). This trend is also seen in the 5 

bar run between generations 30 and 50, as well as in the 10 bar run between generations 15 and 

30. This process of discovering new bins can be observed as peaks in the uniformity metric, where 

the downward slope represents the filling of those bins. Figure 26 indicates that the uniformity 

metric is decreasing but has not yet reached a steady minimum value. We expect that allowing this 

method to proceed with more generations, beyond the 50 shown here, would eventually yield a 

more complete mapping of the structure–property space, where the uniformity metric would 

approach zero and every bin would have an equal number of materials. 

 
 
 

https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig6
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig6
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig6
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig6
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig5
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig5
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig6
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig6
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Figure 26. The uniformity metric after each generation for each of the 1 (red), 5 (blue), and 10 bar (green) 

runs. 

 
 
 
Because pseudomaterials are random configurations of Lennard-Jones spheres and thus are 

not synthesizable, it is reasonable to ask how representative they are of real materials. The general 

shape of the structure–property maps of pseudomaterials we observed here (as shown in Figure 

25) closely resembles what was seen for Xe adsorption in a high throughput screening study on a 

database of MOFs.[44] In a similar study on MOFs, but looking at methane adsorption at 35 bar, 

there were observations of a sharp peak in loading at 0.8 void fraction, not unlike the sharp peaks 

we observe here for Xe loading in pseudomaterials. These similarities in structure–property 

relationships between MOFs and pseudomaterials are encouraging and support the possibility that 

the latter can have utility in helping understand real materials. 

https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig5
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig5
https://pubs-rsc-org.pitt.idm.oclc.org/en/content/articlelanding/2017/fd/c7fd00038c#fig5
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3.4 Conclusions 

Despite significant strides in discovering better porous materials for a wide range of 

applications, particularly in the case of MOFs, it remains challenging to find the right design rules, 

especially as they vary from application to application. To extract design rules for a new 

application, one requires large datasets, for which experimental screening is too costly and time 

consuming, and for which high throughput computational screening can be very inefficient if the 

parameter space is non-uniformly sampled. 

We have developed a method for efficiently exploring structure–property maps that relate 

to gas adsorption in sorbents through the creation of multiple generations of porous 

pseudomaterials. In each generation we simulated Xe loading and void fraction using classical 

GCMC techniques. Then we selected pseudomaterials with rare structure–property combinations 

and mutated them to generate child materials in the lesser explored areas of the structure–property 

space. We considered 50 generations for Xe loading at 1 bar, 5 bar, and 10 bar. We observed the 

method systematically accessing new bins then filling them with new pseudomaterials, which 

gradually makes the distribution of properties in the dataset more uniform. To measure this 

uniformity, we introduced a quantitative metric for tracking this process called the uniformity 

metric. 

Encouragingly, structure–property maps from simulations of real materials (MOFs) closely 

resembled those found for our pseudomaterials. The method presented here represents a 

computationally efficient means by which to rapidly map a structure–property space that can then 

be used to extract potentially useful design rules. We hope this methodology may someday aid in 

the design of better porous adsorbents. 
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4.0 High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals 

Alec R. Kaija, Christopher E. Wilmer 

J. Phys. Chem. Lett., vol. 9, pgs. 4275-4281, (2018) 

 

Decades of research have yet to yield porous adsorbents that meet the US Department of 

Energy’s methane storage targets. To better understand why this might be, we calculated high 

pressure methane adsorption in 600,000 randomly generated porous crystals, or 

“pseudomaterials,” using atomistic grand canonical Monte Carlo (GCMC) simulations. These 

pseudomaterials are periodic configurations of Lennard-Jones (LJ) spheres whose coordinates in 

space, along with corresponding well depths (ε) and radii (σ), are all chosen at random. GCMC 

simulations were performed for pressures of 35 and 65 bar at a temperature of 298 K. Methane 

adsorption was compared for all materials against a range of other properties: average ε and σ 

value, number density, helium void fraction, and volumetric surface area. The results reveal 

structure-property relationships that resemble those observed previously for MOFs and other 

porous materials. A common characteristic among top performers was a combination of atoms 

with small radii and strong binding (i.e., low σ and high ε values). We find that our computational 

methodology can be useful for discovering structure-property relationships related to gas 

adsorption without requiring detailed structural data of real (or even realistic) materials.  
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4.1 Introduction 

The discovery of tunable, high-surface area, porous materials known as metal-organic 

frameworks (MOFs)[21] has sparked considerable interest over the past two decades in developing 

adsorbents for various industrial applications[22, 23, 25-29, 85] including gas storage[19, 30-32, 

34-36, 73] and separations,[38-45] catalysis,[46-51] and sensing.[52-55] In particular, the 

application of high pressure methane storage has driven significant exploratory efforts in the MOF 

field. Although tens of thousands of MOFs have been synthesized, there are still potentially many 

millions more that remain undiscovered.[49, 55, 64, 75] In addition to experimental efforts, large-

scale computational screening has been used extensively on hundreds of thousands of real and 

hypothetical MOFs and related materials to find promising targets for methane storage.[66, 80, 86-

88] In addition to identifying useful targets for synthesis, these large-scale screening studies have 

contributed significant insights via the discovery of clear structure-property relationships.[64, 71, 

89, 90] Many researchers have utilized large libraries of hypothetical porous materials (5,000 to 

600,000 materials) to observe structure-property relationships related to gas adsorption.[35, 61, 

64, 66, 79, 80]  

Despite these efforts, MOFs discovered to date (including the hypothetical ones) have not 

met  the high methane storage targets set by the US Department of Energy (DOE): 315 

cm3(STP)/cm3 at 35 or 65 bar and ambient temperature.[91-93] However, given the vast space of 

possible MOFs, it is not clear whether a performance ceiling has been reached or whether higher 

performing MOFs wait to be discovered. A higher performing porous material might also be 

discovered in a different material class altogether (e.g., zeolites).  

In addition to libraries of MOFs, there are libraries of hypothetical zeolites,[60, 94] porous 

polymer networks (PPNs),[87] and zeolitic imidazolate frameworks (ZIFs).[95] To date, virtually 



 63 

all attempts at creating large libraries of hypothetical porous materials have relied on modular 

chemical building blocks and design rules inherent to a particular material class. But what if new 

materials exist which do not obey previously observed design rules, or cannot be constructed from 

previously-studied building blocks? Using these design rules alone to create a comprehensive 

library of porous materials might result in holes where new materials might exist. These holes 

might limit our understanding of the full range of structure-property relationships for porous 

materials. 

In this study, in an attempt to generalize structure-property observations of methane 

adsorption across disparate material classes, we have generated and studied porous 

“pseudomaterials”: periodic configurations of Lennard-Jones (LJ) spheres meant to represent 

arbitrary porous crystals. This pseudomaterials approach makes it possible to sample regions of 

the structure-property space that may have been missed by previous studies (at the expense of 

potentially sampling structure-property combinations that are not physically realizable).[96]  

Briefly, our approach involved generating a library of 600,000 porous crystals, represented 

by configurations of LJ spheres within a unit cell. Six properties were then evaluated for each 

pseudomaterial: methane loading (at both 35 and 65 bar), void fraction, volumetric surface area, 

average ε value, average σ value, and number density. An earlier report on Xe and Kr adsorption 

in pseudomaterials, which was more preliminary in nature, used a much smaller library of 

materials and did not consider as many material properties.[96] We then generated 2D-projections 

of the property space, where the data were grouped into bins that were colored by some third 

property; the result is a heatmap showing various structure-property relationships in three 

dimensions. 
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4.2 Methodology 

4.2.1  Lennard-Jones potential 

Our pseudomaterials are constructed using LJ spheres, meant to represent different 

chemical species or moieties, to create structures for use in grand canonical Monte Carlo (GCMC) 

simulations of methane physisorption. The LJ potential is commonly used in computational studies 

of physisorption in porous materials and has been experimentally validated numerous times.[64, 

71, 79, 97] There are well-documented limitations of the LJ potential in the context of adsorption, 

such as chemisorption or physisorption where the binding is very strong (as is the case for certain 

gases and open metal sites). It may stand that even higher methane capacities may be attainable in 

systems that rely on chemisorption or take advantage of other physical phenomena not captured 

by LJ interactions. 
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Figure 27. Renderings of a synthesizable MOF, NU-125 (A), and an algorithmically generated configuration 

of LJ spheres, or pseudomaterial (B). 
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4.2.2  Generating pseudomaterials 

Pseudomaterials were generated by randomly positioning LJ spheres, which we refer to as 

pseudoatoms, within a randomly-sized unit cell. The unit cell dimensions were bounded between 

25.6 and 51.2 Å in each of the crystallographic directions (with the lower bound twice the cutoff 

length used for gas-gas and gas-crystal interactions: 12.8 Å). The number of LJ spheres within a 

unit cell was bounded between 1.49 * 10-5 and 0.02122 atoms / Å3, where the lower boundary 

ensures that each unit cell contains at least two atom sites and the upper boundary corresponds to 

10% the number density of iron. Pseudoatom types were defined by their LJ parameters: σ, the van 

der Waals radius, and ε, the potential well depth. Values for σ were bounded between 1.052 and 

6.549 Å and values for ε between 1.258 and 513.264 K. This range of LJ parameters was based on 

the Universal Force Field (UFF),[65] where σ/ε-values were allowed to be 50% lower or greater, 

respectively, than the minimum and maximum values present in the UFF. While a particular 

pseudomaterial’s unit cell may contain hundreds of pseudoatoms depending upon the randomly 

selected number density, the number of pseudoatom types was limited to four in all 

pseudomaterials. In this study we generated a library of 600,000 pseudomaterials: two independent 

sets of 300,000 materials for each methane loading pressure. 
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Table 2. Pseudomaterial generation steps and related parameter ranges. 

 
 
 Pseudomaterial generation step Parameter range 

1 Select lattice constants 25.6 – 51.2 Å 

2 Select number density 
1.49 × 105 – 0.02122 

atoms/Å3 

3 Position pseudoatom sites N/A 

4 
Select four sets of LJ parameters (one for 

each pseudoatom type) 

σ: 1.052 – 6.549 Å 

ε: 1.258 – 513.264 K 

5 
Assign each pseudoatom site to one of the 

four pseudoatom types 
N/A 
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4.2.3  Simulating properties 

After each pseudomaterial was created, grand canonical Monte Carlo (GCMC) simulations 

were used to calculate methane adsorption at 298 K and either 35 bar or 65 bar. These pressures 

were chosen primarily because the community has converged on these two pressures as 

benchmarks for high pressure methane storage. It may interest the reader to know that 35 bar is 

the typical pressure of US interstate natural gas pipelines, and 65 bar is the upper limit achievable 

with inexpensive two-stage compressors.[92] Pseudomaterials were treated as rigid structures, 

where pseudoatom site positions were held constant throughout the simulation. Void fractions 

were calculated using a Widom insertion method[67] using a helium probe (σ = 2.96 Å). 

Volumetric surface areas were calculated in a Monte Carlo search, rolling a nitrogen probe (σ = 

3.31 Å) over the surface of the unit cell. All of these properties were calculated using a simulation 

software package for adsorption in nanoporous materials called RASPA.[67]  

4.3 Results and Discussions 

As expected, the more pseudomaterials we generated, the larger the volume of the 

structure-property space we sampled (see Figure 28). However, we also expected that at a certain 

size the library would be sufficiently large such that no new features would be observed with the 

addition of new pseudomaterials. Figure 28 demonstrates that, when generated at random using 

our approach discussed in the Methodology section, several hundred thousand pseudomaterials 

were needed before the addition of new materials became redundant. It was not until tens of 

thousands of materials had been sampled (Figure 28c) that the upper limits of methane capacity 
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were observed. Also, certain combinations of properties were much more likely than others. For 

example, we found that the randomly generated pseudomaterials most commonly had void 

fractions between 0.5 and 0.9, as can be seen most clearly in Figure 28d. 
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Figure 28. 2D histograms for samples of 200 (A); 2,000 (B); 20,000 (C); and 200,000 (D) pseudomaterials from 

a library of 300,000 pseudomaterials. Plots show projections of the structure-property space in methane 

loading (at 35 bar) with respect to helium void fraction and are colored by the number of pseudomaterials in 

each of 40×40 equally-sized bins. 
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Once our library was sufficiently large, we were able to observe the distribution of 

materials across various 2D projections (see Figure 29). We observed that the highest methane 

loadings (regardless of pressure) occurred at void fractions between 0.7 and 0.9 and at volumetric 

surface areas exceeding 3,150 m2/cm3, which is similar to what has been reported previously by 

others in the case of MOFs.[64] We found that our pseudomaterials most commonly had 

volumetric surface areas between 1,350 and 3,600 m2/cm3, as shown in Figure 29c and Figure 29f 

(note that Figure 29c and Figure 29f are nearly identical, as expected, since the properties displayed 

do not depend on pressure). We also found the highest surface areas occurred in a void fraction 

range of 0.7 to 0.95. Not surprisingly, a larger distribution of pseudomaterials occupied the high 

methane loading domain in the 65-bar library. Most notably, we observed the highest volumetric 

surface area pseudomaterials associated with the highest methane loadings. 
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Figure 29. 2D histograms for the full library of 300,000 pseudomaterials. Plots show different projections of 

the high-pressure methane storage structure-property space colored by number of pseudomaterials in each of 

the 40×40 equally-sized bins. Projections shown here: methane capacity with respect to void fraction (A, D), 

methane capacity with respect to surface area (B, E), and surface area with respect to void fraction (C, F). 

The top row of plots corresponds to an operating pressure (for methane adsorption simulations) of 35 bar (A, 

B, C) with results at 65 bar below (D, E, F). 
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Two important parameters to explore in our LJ-based model are, of course, the influence 

of the ε and σ values on methane loading. Since each pseudomaterial contained a range of both, 

we used average values in plotting structure-property relationships. The average ε-value in a 

pseudomaterial provided a measure of the availability of strong (or weak) binding sites in a 

pseudomaterial. In Figure 30, we show the relationship between this average ε-value and void 

fraction, surface area, and methane loading at both pressures. Figure 30a and Figure 30c show that, 

at void fraction values above ~0.3, the presence of strong binding sites (here represented by high 

average ε-values) was necessary to maximize methane loading. Also, median average ε-values 

typically corresponded to median methane loading; however, sometimes high surface area 

pseudomaterials were able to store more methane than ones with higher epsilon values but lower 

surface areas (see Figure 30b and Figure 30d). At 65 bar, we see higher methane loadings out of 

lower average ε-value pseudomaterials; this shows, as one might expect, that increasing the 

pressure decreases the need for strong binding sites given the same porosity. 
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Figure 30. 2D projections of the high-pressure methane storage structure-property space colored by average 

ε-value for all pseudomaterials within each 40×40 bin. Projections shown here: methane capacity with respect 

to void fraction (A, C) and methane capacity with respect to surface area (B, D). The top row of plots 

corresponds to an operating pressure (for methane adsorption simulations) of 35 bar (A, B) with results at 65 

bar below (C, D). 
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We also looked at similar relationships considering the average σ-values (see Figure 31). 

Interestingly, we observed that both the highest methane loadings and highest surface areas 

occurred when the average atom/moiety sizes (represented here by average σ-values) were the 

smallest. Conversely, large atom sites/moieties corresponded with below average surface areas 

and methane loadings. The very highest methane loadings were not achievable above a certain 

average σ-value; however, below this domain, average σ-values were constant at constant surface 

areas. These low to medium-high methane loadings were much more strongly influenced by the 

availability of strong binding sites than by the average pseudoatom size. 
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Figure 31. 2D projections of the high-pressure methane storage structure-property space colored by average 

σ-value for all pseudomaterials within each 40×40 bin. Projections shown here: methane capacity with 

respect to void fraction (A, C) and methane capacity with respect to surface area (B, D). The top row of plots 

corresponds to an operating pressure (for methane adsorption simulations) of 35 bar (A, B) with results at 65 

bar below (C, D). 
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Finally, we considered the effect of number density on methane loadings. First, we divided 

our two 300,000 material libraries into low, medium, and high number density groups. Then we 

colored by methane loading and plotted average σ-value with respect to average ε-values (see 

Figure 32). We found that the highest methane loadings were observed among medium-to-high 

number density pseudomaterials. Lower average σ-values were observed in the high number 

density materials. The highest methane loadings were observed in those pseudomaterials with 

higher-than-average ε-values and lower-than-average σ-values. With high number densities, 

methane loading clearly depended on both σ and ε (see Figure 32d and Figure 32g). However, at 

lower number densities, methane loading appeared independent of σ (see Figure 32a and Figure 

32e). 
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Figure 32. 2D projections of the high-pressure methane storage structure-property space in average σ-value 

with respect to average ε-value colored by methane capacity. The plots represent subsets of the 300,000 

pseudomaterial library containing low (A, D), medium (B, E), and high (C, F) number density 

pseudomaterials. The top row of plots corresponds to an operating pressure (for methane adsorption 

simulations) of 35 bar (A, B, C) with results at 65 bar below (D, E, F). 
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Figure 33 shows pseudomaterial structures from disparate regions of the structure-property 

space. In low methane loading pseudomaterials (I, III, and V), we see fewer strong binding sites 

than in higher methane loading pseudomaterials (II and IV). Pseudomaterial IV had a lower 

average σ-value than pseudomaterial II, which contributed to its higher methane loading. 

Pseudomaterial IV is substantially less porous than pseudomaterial V, which also lacks a dense 

network of strong binging sites. From examining these structures, we continue to see that strong 

binding sites (high average ε-values), as well as relatively low σ-values and an appropriately high 

level of porosity, contribute to the best methane adsorbents. 
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Figure 33. Renderings of pseudomaterials from different regions of the  high-pressure methane storage 

structure-property space. The plot (top left) shows where each pseudomaterial is located with respect to void 

fraction and methane loading: (I) low void fraction and low methane loading, (II) medium low void fraction 

and medium methane loading, (III) medium void fraction and low methane loading, (IV) medium high void 

fraction and high methane loading, and (V) high void fraction and low methane loading. 
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4.4 Conclusion 

Here we used a novel approach to examine structure-property relationships of 

physisorption in porous materials, namely by generating and screening libraries of 

“pseudomaterials,” periodic configurations of Lennard-Jones (LJ) spheres, each representing a 

particular chemical species or moiety. The use of these more abstract structures allowed us to 

flexibly explore the space of porous materials and avoid potential limitations and challenges in 

generating structures using chemical building blocks and design rules.  

We generated two libraries of 300,000 pseudomaterials and for each material simulated 

methane capacity at 35 and 65 bar. We then compared the methane capacities for each material 

with their helium void fraction, volumetric surface area, average σ-values, average ε-values, and 

number density. We found the randomly generated pseudomaterials most commonly had void 

fractions between 0.5 and 0.9 and volumetric surface areas between 1,350 and 3,600 m2/cm3. The 

highest methane loadings occurred at void fractions between 0.5 and 0.9 and at surface areas 

exceeding 3,150 m2/cm3. Strong binding sites were necessary for higher methane loadings as were 

smaller atoms/moieties and medium-to-high number densities.  

Finally, we looked at several individual structures from different regions of our structure-

property space. We believe this pseudomaterials approach will be useful information for efficiently 

creating structure-property maps for gas adsorption that experimental researchers who seek to 

design new adsorbents can use. 
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5.0 Carbon Capture Structure-Property Relationships in Lennard-Jones + Coulomb 

Porous Crystals 

Alec R. Kaija, Christopher E. Wilmer 

Submitted to J. Phys. Chem. C 

 

Global economic growth is correlated with increased energy demand and – because of our 

reliance on fossil fuels – increased greenhouse gas emissions. Carbon capture and sequestration 

(CCS) is therefore not only a potential solution for environmental concerns but economic ones as 

well. Here we focus on vacuum swing adsorption (VSA) as a process for post-combustion CO2 

capture. VSA relies on porous adsorbents with high CO2/N2 selectivity and CO2 working capacity. 

The discovery of such adsorbents, in turn, can be accelerated by developing a better understanding 

the structure-property relationships for VSA. Here, using a library of 20,000 randomly generated 

porous crystals that interact with adsorbed CO2 and N2 molecules via a Lennard-Jones + Coulomb 

interaction, we have evaluated their CO2/N2 selectivity, CO2 working capacity, and other VSA 

performance metrics, in relation to several structural parameters: atom-site number density, 

average well depths and van der Waals radii, helium void fraction, and volumetric surface area. 

The resulting data exhibit sharply defined structure-property relationships not previously observed 

across different classes of porous materials (classes which we have abstracted away in our 

generalized approach). The best performing sorbents had small atom sites/moieties and a limited 

number of strong binding sites. Performance was dictated more by Coulombic interactions than by 

van der Waals interactions. It may be worthwhile to sacrifice CO2 working capacity and CO2 

selectivity to ensure high regenerability. These reported structure-property relationships may 
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provide valuable insight into the structural characteristics necessary to design better adsorbents of 

VSA CCS processes. 

5.1 Introduction 

Because of the dependence on fossil fuels to meet energy demands, global economic 

growth is strongly correlated with increased CO2 emissions. In 2017, the energy demand growth 

rate was more than double the previous year; 72% of this rise was met by fossil fuels.[98] Fossil 

fuels currently account for approximately 85% of energy produced worldwide.[99] This 

dependence on fossil fuels has negative impacts on the environment which are already becoming 

apparent. Atmospheric CO2 levels have risen from 278 ppm at the start of the industrial revolution 

to over 400 ppm today; 75% of this increase has taken place over the past fifty years.[100] This 

rise in greenhouse gas emissions[101] and increased demand for natural gas[98, 102] have sparked 

considerable interest in separating CO2 from flue gases. Power plants are one of the major sources 

of greenhouse gas emissions; a 500 MW coal-fired power plant, for example, can produce 3 million 

tons of CO2 annually.[103] CCS from these large point sources is crucial to reducing CO2 

emissions. 

Various methods have been proposed for separating CO2 from flue gases: absorption, 

adsorption, gas separation membranes, and cryogenic distillation.[104] Adsorption processes are 

promising because they have lower energy requirements than absorption-based processes.[105] 

Solid sorbents can be used over a wider range of temperatures than liquid sorbents, yield less waste 

during cycling, and are more environmentally-friendly at end of life.[106] Adsorption processes 

using solid sorbents fall into two categories: pressure swing adsorption (PSA) and vacuum swing 
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adsorption (VSA). Both PSA and VSA are technologies considered feasible for industrial scale 

CCS,[107] where in PSA the adsorption step is done at elevated pressure and in VSA adsorption 

is performed at or below atmospheric pressure.[108]  

In VSA processes sorbent selection precedes process design. Solid sorbents can be 

classified according to their sorption and desorption temperatures: (1) low-temperature (<200 °C), 

(2) intermediate-temperature (200 – 400 °C), and (3) high-temperature (>400 °C).[106] Low-

temperature sorbents include amine impregnated adsorbents (e.g. PEI/MCM-41),[109] polymeric 

amines (e.g. ion-exchange resins (IER) with amine functionality),[110, 111] carbon-based 

adsorbents (e.g. carbon aerogels),[112] graphite/graphene-based adsorbents (e.g. 

graphene/chitosan),[113] zeolites (e.g. ZSM),[114, 115] metal-organic frameworks (MOFs) (e.g. 

alkylamine tethered MIL-101),[81, 116-119] silica-based adsorbents (e.g. 3-(2-aminoethylamino)-

propyl-dimethoxymethylsilane (APMS)),[120] porous polymers (e.g. PIMs),[121-125], and more. 

Intermediate-temperature sorbents include LDH-base sorbents (e.g. nano-sized spherical Mg3Al-

CO3 LDHs)[126] and MgO-based sorbents (e.g. Cs2CO3-doped MgO).[127] High-temperature 

sorbents include CaO-based sorbents (e.g. CaO-Ca12Al14O33)[128] and alkali silicate-based 

sorbents (e.g. Li4SiO4).[129] This work focuses on low-temperature sorbents, by simulating CO2 

adsorption at ambient temperatures. Instead of evaluating materials in a full-scale VSA process, 

approximate quantitative performance metrics can be calculated from the results of simulated 

adsorption of pure gases (instead of mixtures). Bae and Snurr have established four “adsorption 

evaluation criteria” for evaluating the effectiveness of sorbents using pure CO2 and N2 adsorption 

measurements.[45] See Table 3; here, N is the component absolute volumetric loading, q is the 

component absolute loading, and p is the partial pressure. The subscripts 1 and 2 refer to CO2 and 
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N2, respectively. The subscripts ads and des refer to adsorption and desorption conditions, 

respectively. 

 

Table 3. Adsorption evaluation criteria used by Bae and Snurr to assess sorbents for CCS 

 

Working CO2 capacity (v/v STP), 𝑵𝑵𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂 − 𝑵𝑵𝟏𝟏

𝒅𝒅𝒅𝒅𝒅𝒅 ∆𝑵𝑵𝟏𝟏 

Regenerability (%), ∆𝑵𝑵𝟏𝟏/𝑵𝑵𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂 × 𝟏𝟏𝟏𝟏𝟏𝟏 𝑹𝑹 

Selectivity under adsorption conditions, �𝒒𝒒𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂/𝒒𝒒𝟐𝟐

𝒂𝒂𝒂𝒂𝒂𝒂�/�𝒑𝒑𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂/𝒑𝒑𝟐𝟐

𝒂𝒂𝒂𝒂𝒂𝒂� 𝜶𝜶𝟏𝟏𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂 

Sorbent selection parameter, �𝜶𝜶𝟏𝟏𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂�

𝟐𝟐
/𝜶𝜶𝟏𝟏𝟏𝟏

𝒅𝒅𝒅𝒅𝒅𝒅 × (∆𝑵𝑵𝟏𝟏/∆𝑵𝑵𝟐𝟐) 𝑺𝑺 

 

These criteria were established because prior work often only considered CO2 uptake when 

evaluating a sorbent’s potential for use in CCS processes. CO2 working capacity is defined as the 

difference between the amounts of adsorbed gas between the adsorption pressure and desorption 

pressure. The adsorption selectivity is defined as the ratio of equilibrium uptakes in the pore to the 

ration of the molar fractions in the bulk phase. CO2 working capacity and selectivity dictate the 

amount of gas that can be recovered in single pass, or cycle, through an adsorption column. For 

environmental and economic feasibility, however, a sorbent must be capable of operating for many 

cycles. Regnerability – defined as the ratio of the working capacity and amount adsorbed at the 

adsorption pressure – is a measure of a sorbent’s ability to be used for multiple cycles. A sorbent 

selection parameter was proposed by Rege and Yang and combines the selectivity with the ratio 

of the working capacities of the two components, as opposed to considering the working capacity 

of the more strongly adsorbed component alone.[130] Bae and Snurr used these criteria to assess 

over forty sorbents, identifying the most promising materials for further investigation. In this work 
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the operating conditions considered represent VSA separation of CO2 from flue gas assuming a 

mixture composition of CO2-N2 = 10 : 90, an adsorption pressure of 1bar, and a desorption pressure 

of 0.1 bar. This work complements past large-scale computational screening efforts focused on 

CCS.[68, 71, 95, 131, 132] Lin et al. and Haldoupis et al. computationally screened hundreds of 

thousands of zeolites/zeolitic imidazolate frameworks (ZIFs) and ~500 MOFs, respectively, for 

their ability to separate CO2 from N2, but did not describe correlations of performance with the 

structural features considered in this work (e.g. void fraction, surface area) or other adsorption 

properties (e.g. working CO2 capacity, CO2 selectivity).[68, 95, 132] Wilmer et al. expanded the 

scope of Bae and Snurr’s survey, simulating pure component CO2 and N2 adsorption data required 

to calculate the four adsorption evaluation criteria (as shown in Table 3) in over 130,000 

hypothetical MOFs for VSA under the same operating conditions considered in this work.[71] 

Unlike these past studies, this work takes an abstract approach towards sampling the structure-

property space for VSA sorbents such that it is inclusive of various different classes of porous 

materials. 

In this work, to generalize structure-property observations of VSA sorbents across 

disparate material classes, we have generated a library of porous “pseudomaterials”: periodic 

configurations of spheres, each of which being defined by two Lennard-Jones (LJ) interaction 

parameters and a partial charge. This pseudomaterial approach samples regions of the structure-

property space that may have been missed in prior works that focused on specific material classes 

(at the expense of potentially sampling structure-property combinations that are non-physical).[96, 

133] We generated a library of 20,000 pseudomaterials, simulating pure component CO2 and N2 

adsorption at the operating conditions previously described to simulate a VSA process for CCS, 

as well as calculating void fraction and volumetric surface area. We used this data to consider the 
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four adsorption evaluation criteria (see Table 3) as dimensions to the property space. We then 

generated 2D-projections of this space, where data were grouped into bins that were colored by a 

third property, resulting in a heatmap representing various structure-property relationships in three 

dimensions. 

5.2 Methods 

5.2.1  Generating pseudomaterials with partial charges 

Pseudomaterials were generated by randomly positioning LJ spheres, which we refer to as 

pseudoatoms, within a randomly-sized unit cell according to previously established methods.[96, 

133] Past work using pseudomaterials has considered the adsorption of relatively non-polar gases 

(Xe, Kr, and CH4). In order to effectively model the Coulombic interactions associated with the 

adsorption of CO2 it was necessary to assign partial charges to pseudoatoms within the 

pseudomaterial structure. After an uncharged pseudomaterial was generated, we iterated over 

every pseudoatom and added a partial charge to one while subtracting an equal amount from 

another randomly selected pseudoatom. Finally, the partial charges were scaled to ensure that all 

resulting partial charges were bounded between -1 and 1. In this work a library 20,000 

pseudomaterials was generated, a number selected for being substantially large enough to observe 

structure-property relationships without incurring excessive computational expense. 



 88 

5.2.2  Lennard-Jones + Coulomb potential 

Here we define pseudomaterials as hypothetical porous materials composed of random 

configurations of spheres (see Figure 34b), where each sphere is defined by a coordinate, a pair of 

LJ parameters, 𝜀𝜀 (the LJ well depth) and 𝜎𝜎 (the LJ diameter), and a partial charge, q, which define 

its interaction energy with atoms of adsorbing gases as follows:  

 
 
 

𝑉𝑉𝑖𝑖𝑖𝑖 = 4𝜀𝜀𝑖𝑖𝑖𝑖 ��
𝜎𝜎𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
�

12

− �
𝜎𝜎𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
�

6

� +
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

4𝜋𝜋𝜖𝜖0𝑟𝑟𝑖𝑖𝑖𝑖
 (5 − 1) 

 

 
 
 
In Equation (5-1), the subscripts i and j refer to the ith pseudomaterial sphere interacting 

with the jth atom of a gaseous adsorbate, rij is the distance between i and j, q is the partial charge, 

and the parameters σij and εij are obtained using Lorenz-Bertholot mixing rules:  

 
 
 

𝜎𝜎𝑖𝑖𝑖𝑖 =
𝜎𝜎𝑖𝑖 + 𝜎𝜎𝑗𝑗

2
 (5 − 2) 

 
 
 

𝜀𝜀𝑖𝑖𝑖𝑖 = �𝜀𝜀𝑖𝑖𝜀𝜀𝑗𝑗 (5 − 3) 
 
 
 

For N2 we used a model with three partial charges: a positive charge at the center of the 

linear molecule (N_com) for which no LJ interactions were assigned and two negative charges on 

the two nitrogen (N_n2) pseudoatoms. For CO2 we assigned positive charges to carbon 
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pseudoatoms and a negative charge to the oxygen pseudoatom. See Table 4 for partial charges 

used in this work. 

 

Table 4. LJ Parameters and partial charges for framework pseudoatoms and adsorbate molecules 

 

This LJ + Coulomb potential is commonly used to model physisorption in porous media 

and has been extensively validated experimentally.[64, 71, 79, 97] However, the LJ potential has 

well-documented limitations with regard to its inability to capture the behavior of chemisorption 

or physisorption when binding is very strong.  

  

Atom type σ (Å) ε/kB (K) q (C/particle) 

pseudoatoms 1.052 – 6.549 1,258 – 513.264 -1 – (+)1 

C_co2 2.80 27.0 +0.7 

O_co2 3.05 79.0 -0.35 

N_n2 3.31 36.0 -0.4048 

N_com - - +0.8096 
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Figure 34. Renderings of a MOF, NU-125 and a randomly generated configuration of LJ spheres, which we 

refer to here as a pseudomaterial. 
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5.2.3  Simulating properties 

After each pseudomaterial was created, grand canonical Monte Carlo (GCMC) simulations 

were used to simulate pure component physisorption. These pure component simulations are 

representative of a mixture of composition CO2-N2 = 10 : 90, with an adsorption pressure of 1 bar 

and a desorption pressure of 0.1 bar. We simulated CO2/N2 adsorption at 298K to make 

straightforward comparisons to experimental data in literature, while flue gas at point of emission 

is typically closer to 310K. Pseudomaterials were treated as rigid structures, where pseudoatom 

site positions were held constant throughout the simulation. Void fractions were calculated using 

a Widom insertion method46 using a helium probe (σ = 2.96 Å). Volumetric surface areas were 

calculated in a Monte Carlo search, rolling a nitrogen probe (σ = 3.31 Å) over the surface of the 

unit cell. All of these properties were calculated using a simulation software package for adsorption 

in nanoporous materials called RASPA.[67]  

5.3 Results 

With our large dataset, we were able to observe sharply defined structure-property 

relationships between the four adsorption evaluation criteria (see Table 3) and other material 

properties such as surface area, void fraction, average σ/ε-values, atom-site number density, and 

heats of adsorption (separated by their Coulombic and van der Waals contributions). First, we 

evaluated the relationships between the four adsorption evaluation criteria and the average van der 

Waals radii (also referred to as average σ-values), which are calculated by averaging the σ-values 

for all pseudoatoms within the pseudomaterial unit cell. We observed that low-to-average σ-values 
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were correlated with the highest CO2 selectivities (see Figure 35a), that low σ-values were 

correlated with the highest CO2 working capacities (see Figure 35b), that outside of the very lowest 

σ-value domain (where regenerability tapered off) regenerability was independent of σ-values (see 

Figure 35c), and that average σ-values were correlated with the highest sorbent selection 

parameters (see Figure 35d). Maximizing surface area optimizes the CO2 working capacity (see 

Figure 35b) and approaches the highest CO2 selectivity (see Figure 35a) and sorbent selection 

parameter (see Figure 35d), but leads to poor regenerability (see Figure 35c). 
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Figure 35. 2D projections of the CCS sturcture-property space depicting the relationship between average 

van der Waals radii of interaction (σ-value) and the four adsorption evaluation criteria: CO2 selectivity (A), 

CO2 working capacity (B), regenerability (C), and sorbent selection parameters (D), all colored by volumetric 

surface area. 
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Next, we evaluated the relationships between the four adsorption evaluation criteria and 

the average potential well depths (also referred to as average ε-values), which are calculated by 

averaging the ε-values for all pseudoatoms within the pseudomaterial unit cell. We observed in 

this work that CO2 working capacity was relatively independent of average ε-values except in the 

absolute lowest average ε-value domain (see Figure 36b). Regenerabilities were also relatively 

independent of average ε-values, except that the lower boundary was higher for lower ε-values 

than in higher average ε-value domains (see Figure 36c). The lowest average ε-values were 

correlated with the highest CO2 selectivities (see Figure 36a) as well as the highest sorbent 

selection parameters (see Figure 36d). Once again, it is apparent that maximizing surface area 

improves CO2 working capacity (see Figure 36b) and to a lesser extent CO2 selectivity (see Figure 

36a) and sorbent selection parameter (see Figure 36d), but negatively impacts regenerability (see 

Figure 36c). 
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Figure 36. 2D projections of the CCS sturcture-property space depicting the relationship between average 

potential well depths (ε-value) and the four adsorption evaluation criteria: CO2 selectivity (A), CO2 working 

capacity (B), regenerability (C), and sorbent selection parameters (D), all colored by volumetric surface area. 
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Beyond the aggregate characteristics of the pseudoatoms themselves we have also 

considered the role of other structural features such as helium void fraction, volumetric surface 

area, and number density. First, we compared these three features to the CO2 selectivity. One might 

naively expect that the most porous materials (those with the highest void fraction and surface 

area) would exhibit the best performance across all four adsorption evaluation criteria, however, 

we found that in general there were no strong correlations between any of these three structural 

features and CO2 selectivity, but that the very highest CO2 selectivity was observed in those 

pseudomaterials with below-average helium void fractions (see Figure 37a) and volumetric surface 

areas (see Figure 37b) as well as those pseudomaterials with relatively average number densities 

(see Figure 37c). Unfortunately, the highest CO2 selectivities we observed among pseudomaterials 

with well-below-average regenerabilities, which means there is a substantial trade-off between 

these two adsorption evaluation criteria. 

 
 
 

 
 
 

Figure 37. 2D projections of the CCS structure-property space depicting the relationship between CO2 

selectivity and different structural characteristics: helium void fraction (A), volumetric surface area (B), and 

number density (C), all colored by regenerability. 
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When comparing the same three structural features to CO2 working capacities, we observed 

– not surprisingly – that highly porous materials performed better (see Figure 38a, Figure 38b). As 

in the case of CO2 selectivities, the highest CO2 working capacity was observed among 

pseudomaterials of average number densities (see Figure 38c). Again, there is a substantial tradeoff 

between regenerability and CO2 working capacity. 

 
 
 

 
 
 

Figure 38. 2D projectsions of the CCS structure-property space depicting the relationship between CO2 

working capacity and different structural characteristics: helium void fraction (A), volumetric surface area 

(B), and number density (C), all colored by regenerability. 

 
 
 
Finally, because this model differs from our previous studies using pseudomaterials[96, 

133] in that partial charges have been assigned to each pseudoatom, it is worthwhile to compare 

the contributions of van der Waals and Coulombic interactions to the performance of different 

pseudomaterials. First, we will consider the Coulombic interactions. CO2 selectivity and CO2 

working capacity – the two most tightly correlated adsorption evaluation criteria – are both 

maximized at relatively average Coulombic host-adsorbate energies (Uc) (see Figure 39a, Figure 
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39b), while regenerability is maximized when the magnitude of Uc is the lowest, that is when the 

Coulombic interactions are the weakest (see Figure 39c). The sorbent selection parameter is 

maximized when Coulombic interactions are weak (see Figure 39d), suggesting that weak 

Coulombic interactions give rise to the best sorbents. 
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Figure 39. 2D projections of the CCS structure-property space depicting the relationship between Coulombic 

heat of adsorption and the four adsorption evaluation criteria: CO2 selectivity (A), CO2 working capacity (B), 

regenerability (C), and sorbent selection parameter (D), all colored by helium void fraction. 
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Finally, we have evaluated the contributions of van der Waals interactions in a same 

manner as Coulombic interactions as well as by visualizing pseudomaterials from different regions 

of the structure-property space. We observe that the magnitude of van der Waals host-adsorbate 

energies (Uvdw) were about half those their Coulombic counterparts. CO2 selectivity, 

regenerability, and sorbent selection parameters were all maximized when the magnitudes of Uvdw 

were the lowest, that is when the van der Waals interactions were the weakest (see Figure 40a, 

Figure 40c, Figure 40d). CO2 working capacity was maximized with relatively weak van der 

Waals interactions (see Figure 40b). Uvdw is a function of the number density and average ε-value. 

Because we observe different upper boundaries for CO2 working capacity (Figure 36b, Figure 40b) 

and regenerability (Figure 36c, Figure 40c) when considering Uvdw and average ε-values, we can 

assume that number density has a substantial effect upon these two adsorption evaluation criteria. 
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Figure 40. 2D projections of the CCS structure-property space depicting the relationship between van der 

Waals heat of adsorption and the four adsorption evaluation criteria: CO2 selectivity (A), CO2 working 

capacity (B), regenerability (C), and sorbent selection parameter (D), all colored by helium void fraction. 
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We have visualized different pseudomaterials from different regions of the structure-

property space, coloring pseudoatoms by their ε-value. We observe that the poorest performer has 

the most void space, so much so that the accessible surface area is diminished (see Figure 41a); it 

has more strong binding sites than the next poorest performer, whose performance is improved by 

an increased accessible surface area (see Figure 41b). As CO2 working capacity increases (see 

Figure 41c, Figure 41d) we observe an increase in the number of strong binding sites as well as a 

decrease in average σ-values. As CO2 selectivity increases (see Figure 41e) we observe fewer 

strong binding sites, as selectivity decreases with increasing average ε-values (see Figure 36a), 

and large pseudoatoms, as the smallest average σ-values are not correlated with the highest 

selectivities (Figure 35a). 
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Figure 41. Renderings of five pseudomaterials from different regions of the CCS structure-property space, 

indicated the lettering overlaid upoon the top-right heat map depicting CO2 working capacity with respect to 

CO2 selectivity. Here pseudoatoms are represented by spheres where the radius corresponds to the van der 

Waals radius (σ-value) and color corresponds to the potential well depth (ε-value). 
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5.4 Conclusion 

Our approach considers a large number and diversity of structures, not limited to any 

particular class of materials, resulting in a continuous spectrum of structural characteristics and 

observed properties. Our results are derived from an abstract model which is approximate and best 

suited for high-level, high-throughput analysis. We have considered four adsorption evaluation 

criteria: CO2 working capacity, CO2 selectivity, regenerability, and a previously-established 

sorbent selection parameter. We found the relatively small atom sites/moieties are ideal when 

considering the impact of their size upon the four adsorption evaluation criteria and that the 

presence of strong binding sites was not conducive to producing the best performing sorbents. 

Maximizing surface area or void fraction does not appear to optimize sorbent performance. We 

also found substantial tradeoffs between regenerability, CO2 working capacity, and CO2 selectivity 

where it may be worthwhile to sacrifice CO2 working capacity and CO2 selectivity to ensure high 

regenerability. We found that Coulombic interactions dictated a sorbent’s performance more than 

van der Waals interactions. While these insights are valuable, experimental researchers would 

benefit from more rigorous characterization of these pseudomaterials. Future work may investigate 

the geometric and topological “fingerprints” of these abstract structures to bridge this theoretical 

approach to one that results in synthesizable structures. 

We have simulated CO2/N2 adsorption in 20,000 hypothetical pseudomaterials assessing 

the overall structure-property relationships governing VSA for CCS. The resulting structure-

property relationships with include surface area, void fraction, heats of adsorption, and more, are 

sharply defined and provide high-level insights into the design of adsorbents in VSA CCS 

processes. 
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6.0 Commercial Impact of Pseudomaterials Research 

My pseudomaterials research lead to the successful spin-out of a startup company – 

Aeronics, Inc. – which specializes in lightweight, portable gas delivery systems. Pseudomaterials 

were used to investigate the potential of porous adsorbents for oxygen storage (see Figure 42). 
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Figure 42. Preliminary data generated for oxygen storage in porous pseudomaterials at 30 bar, the operating 

pressure of standard oxygen cylinders. Shown is a 3D mapping of a structure-property space consisting of 

volumetric oxygen loading, helium void fraction, and volumetric surfae area. 
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These results suggested a theoretical performance limit of over 600 vSTP/v for oxygen at 

the same operating pressure as standard gas cylinders, which compress oxygen to ~26 v/v.  

6.1 mediPOD: Product Ideation and Business Competitions 

Considering the possibility of improving the storage capacity of standard oxygen cylinder 

by nearly thirty times, we proposed storing an hour’s supply of oxygen in a soda can (a product 

called mediPOD). This would provide a lightweight, portable supply of medical grade oxygen for 

people suffering from chronic lung conditions, such as Chronic Obstructive Pulmonary Disorder 

(COPD). This design was intended to be a drop-in replacement for soft drink filling lines, where a 

supply of liquid oxygen would replace the soft drink and a porous adsorbent would ensure that the 

internal pressure would remain below the burst pressure for a standard soda can as the liquid 

oxygen entered the gas phase. Concept art for this design is shown in Figure 43 and Figure 44. 
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Figure 43. Concept art for mediPOD, cross-sectional view showing adsorbent and protective filter to prevent 

inhalation of sorbent. 
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Figure 44. Concept art for mediPOD, demonstration of flexible adaptor connecting cannister to user’s 

existing cannula. 
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Using this concept (mediPOD), Aeronics entered numerous business plan competitions. A 

complete listing of all prize money earned by Aeronics through business competitions appears in 

Table 5. 

 
 
 

Table 5. Aeronics’ winnings via business competitions. 

 
 

Competition Name Year Winnings 

Randall Family Big Idea Compeition, University of Pittsburgh 2016 $25,000 

Michael G. Wells Competition, University of Pittsburgh 2016 $10,000 

Kuzneski Innovation Cup, University of Pittsburgh 2016 $5,000 

TigerLaunch Startup Challenge, Princeton University 2017 $10,000 

xTechSearch, US Army ASA(ALT) 2018 $130,000 

 
 

 

6.2 Incorporation, Fundraising, and Product Development 

In 2017, Aeronics was incorporated as a C Corporation in the state of Delaware. It received 

pre-seed investment from Quake Capital, in New York City, NY, where it participated in the 

second cohort of its in-house accelerator. During this time Aeronics developed its first product, 

Everyday Oxygen (shown in Figure 45), a recreational oxygen (95%) product that contains three 

times the capacity of the leading competitor at the same price-point. 
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Figure 45. Everyday Oxygen, recreational oxygen with three times the capacity of the leading competitor. 

 
 
 
While the release of Everyday Oxygen was delayed on account of shelf-life issues, 

Aeronics entered the veterinary market with an adsorbent-less product, called Pawprint Oxygen 

(shown in Figure 46). 
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Figure 46. Pawprint Oxygen, emergency oxygen for the veterinary market. 
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Since its launch, Pawprint Oxygen has generated $18,000 in sales in Q1 2019; sales are 

projected to more than double to $40,000 in Q2 2019. Aeronics has also raised over a $1,000,000 

in both dilutive and non-dilutive funding to date. Aeronics is current engaged key decision makes 

and subject matter experts within the Department of Defense to develop products for the US Army 

and US Special Operations Command (SOCOM).  
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