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Abstract 

Lung cancer is a significant public health concern as the leading cancer-related deaths in 

the United States. Chronic inflammation is strongly involved in the pathogenesis of chronic 

obstructive pulmonary disease (COPD) and increases the risk of lung cancer. The inflammatory 

responses in the tumor microenvironment not only promote tumor progression but also have effects 

on treatment efficacy such as immunotherapy. In addition, Metalloproteinases (MMPs), which 

increase expression in COPD have been reported to correlate with tumor recurrence in surgically 

resected non-small cell lung cancer.  

In the first study, we used the cigarette smoke carcinogen 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK) to generate genetic instability and parallelly provided repeated LPS to 

induce chronic lung inflammation. This novel exposure paradigm creates an immunosuppressive 

microenvironment favorable of tumor progression similar to that of inflammation-associated lung 

tumorigenesis in patients. Furthermore, the model was used to evaluate the efficacy of anti-PD-1 

immunotherapy as well as myeloid-derived suppressor cells depletion on lung tumorigenesis. In 

addition, we identified immune gene signatures, which predict treatment responses and survival 

outcome of patients with NSCLC treated with either PD-1 blockade or conventional therapies. 
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In the second study, we conducted transcriptome analysis of lung adenocarcinoma cases in 

two discovery cohorts and discovered metalloproteinases (MMPs)-enriched gene clusters, which 

contained MMPs and related genes. We further identified a MMPs-gene signature from the two 

MMPs-gene clusters, which predicted recurrence and worse overall survival in patients with stage 

I lung adenocarcinoma after surgical resection. The high MMPs-gene signature expression 

remained an independent risk factor after adjusting covariates and showed enrichment in KRAS-

mutant lung tumors. Finally, the MMPs-gene signature was successfully validated in an 

independent cohort. The MMPs-gene signature is a potential prognostic biomarker to stratify 

patients with stage I lung adenocarcinoma into subgroups based on their risk of recurrence for 

aiding physicians to decide the use of adjuvant therapeutics. 

For public health significance, our study provided a clinically-relevant lung cancer animal 

model in elucidating the effects of chronic inflammation on lung tumorigenesis and the efficacy 

of cancer therapies. The utility of gene signatures in predicting lung cancer treatment and survival 

could be useful for personalized therapeutics. 
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1.0 Introduction 

1.1 Lung Cancer Overview 

Lung cancer is the leading cancer-related deaths in the United States with estimated 

228,150 newly diagnosed cases and 142,670 deaths in 2019 (1). About 85% of lung cancer is non-

small cell lung cancer (NSCLC), of which lung adenocarcinoma and lung squamous cell 

carcinoma are the most common histological subtypes (2). Tobacco smoking is the most common 

etiology for lung cancer and accounts for most lung cancer-related deaths (3-6). Occupational 

exposure to agents such as arsenic, chromium, asbestos, nickel, cadmium, beryllium, silica, and 

diesel fumes are known to cause lung cancer (7-9). In addition, other possible risk factors include 

acquired lung diseases (eg, COPD), infections, family history of lung cancer, and Radon gas seem 

to cause lung cancer (4). Regardless of the identification of well-established causal risk factors, 

cigarette smoking remains the primary risk factor of the global epidemic of lung cancer. 

Although a significant amount of effort has been made for lung cancer in regards to 

screening, minimally invasive techniques for diagnosis, and advancement in therapeutics, the 5-

year survival rate remains low at only 18% (1). The majority of patients is diagnosed as locally 

advanced or metastatic disease, which the curative surgery is no longer feasible (10). Regardless 

of curative surgery for early-stage lung cancer, 20% to 40% of stage I patients will have tumor 

recurrence, which remains the main causes of cancer-related death (11-14). Patients with stage I 

lung adenocarcinoma, which is the most common histological subtype, vary in survival outcome. 

It indicates that the current tumor (T), node (N), metastasis (M) staging system fails to distinguish 

patients with a higher risk of recurrence for the stage I disease following surgical resection (15).  
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Adjuvant chemotherapy has been shown to decrease disease recurrence and prolonged 

overall survival in patients with stage II-III disease (16-19), but its role in stage I remains 

controversial and lacks biomarkers for the indication of treatments. In addition, most patients with 

advanced or metastatic disease are typically treated with cytotoxic chemotherapy with a modest 

increase in survival. During the last two decades, the discovery of small molecular inhibitors 

targeting genetic alternations has improved the survival rates for the subsets of cancer patients. 

Patients with the mutated epidermal growth factor receptor (EGFR) responded to erlotinib or 

gefitinib, and those with altered anaplastic lymphoma receptor tyrosine kinase genes (ALK) 

responded to crizotinib (20, 21). A study showed that the frequency of EGFR, and ALK mutation 

in lung adenocarcinoma is 27% and <8%, respectively that the majority of lung cancer patients 

either don't contain these genetic alternations (22). Even though the subsets of patients with these 

mutations treated with targeted therapies, they eventually developed resistance within 1-2 years of 

starting therapy (23). Immunotherapy such as immune checkpoint blockade (ICB) has been used 

recently for lung cancer treatment with promising clinical responses, but the response rate is low 

and only a small subset of patients benefited from the treatment (24). While most patients who 

responded to initial ICB treatment, they finally develop resistance. Several mechanisms for 

acquired resistance to ICBs have been identified including the defects in interferon-γsignaling or 

major histocompatibility complex presentation, and the increased levels of the enzyme 

indoleamine 2,3-dioxygenase (IDO1), which impaired T cell function by the deprivation of 

tryptophan (25-27).  

Overall, major challenges still remain in lung cancer treatment, including the need of 

reliable biomarkers to stratify stage I NSCLC with high risk of recurrence for adjuvant therapies, 

better understanding of mechanisms of resistance to targeted therapy to allow them to be prevented 
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or overcome, the better predictors of responses to immunotherapy, and new drugs and rationally 

designed drug combination therapies for advanced stage NSCLC. 

1.2 Chronic Inflammation Correlates with Lung Tumorigenesis 

Inflammation is an essential process for host immune responses to prevent pathogen 

invasion and also involves in wound healing. However, persistent and uncontrolled inflammatory 

responses are associated with active recruitment of inflammatory cells and the production of 

mediators such as cytokines, chemokines, growth factors, and matrix-degrading enzymes leading 

to inflammatory microenvironment (28). It has been reported that “smoldering” inflammation in 

the tumor microenvironment has many tumor-promoting effects such as tumor-cell migration, 

invasion, and metastasis, epithelial-mesenchymal transition and angiogenesis (29). In addition, 

chronic inflammation also induces immunosuppressive mechanism associated with accumulation 

of suppressive cells like myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) 

as well as the increased immunosuppressive mediators such as IL-10 and TGF-β, which help 

tumors escape from immune surveillance (30, 31). Although the exact mechanisms of 

inflammation in promoting lung cancer remain unclear, two connected hypotheses have been 

proposed that an intrinsic pathway driven by genetic alternations leads to neoplasia and 

inflammation, and an extrinsic pathway driven by inflammatory conditions increases cancer risk 

(29).  
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1.2.1  Inflammation links COPD and lung cancer 

Cigarette smoking is the leading causes of chronic obstructive pulmonary disease (COPD) 

and lung cancer, accounting for the third leading cause of death in the United States and the leading 

cause of cancer death worldwide, respectively (32, 33). Several epidemiological studies have 

shown that patients with COPD have a higher incidence of lung cancer risk than those without 

obstructive lung disease (34). In addition, COPD is characterized by chronic airway inflammation 

and has an increased risk of lung cancer independent of cigarette smoking, which suggests the 

further link between inflammation and lung cancer (35, 36). The bacterial colonization by 

Pseudomonas aeruginosa is frequently found in COPD and associated with increased airway 

inflammation and acute exacerbations (37, 38). Lipopolysaccharide (LPS) is a major component 

of the outer cell wall of Gram-negative bacteria and may involve in bacterial infection-induced 

exacerbations of COPD, which contributes to the progression of the disease (39). However, the 

mechanism of bacteria associated with chronic inflammation, especially those induced by LPS in 

lung carcinogenesis remains unclear.  

1.2.2  COPD-related inflammation is associated with immunotherapy responses 

There is increasing evidence for the role of local immune responses and systematic 

inflammation in the progression of tumors, which has an influence on the efficacy of treatments 

(40). Immunotherapy such as checkpoint inhibition has emerged as a new treatment modality in 

lung cancer and showed durable clinical responses (41, 42). However, the overall treatment 

response rate for non-small cell lung cancer (NSCLC) is around 15-20%, that only a minority of 

patients are benefited from the treatment, due to the lack of clear biomarkers or indications for the 
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responders or non-responders (24). Two recent studies showed increased survival in PD-1 

blockade recipients of NSCLC patients with COPD, suggesting that COPD-related dysregulated 

inflammation affects PD-1 blockade efficacy (43, 44). However, the mechanism of the effective 

immunotherapy remains unclear in NSCLC, and the immunological biomarkers used in the clinics 

just partially predicted the lung cancer patients’ responding rates. This leaves a big gap for the 

current diagnosis and prognosis of lung cancer patients under immunotherapy (45). 

1.2.3   Immune gene signatures predict immunotherapy efficacy 

The development of specific gene expression profiling for a subset of tumors provided the 

possibility to identify prognostic gene expression signatures and patient selection for targeted 

therapies. The immune gene signatures recently identified include the genes of cell surface 

markers, cytokines and chemokines, cellular signaling molecules, and transcription factors, which 

is indicative of the presence of specific immune-related responses (46). The modulation of immune 

contexture of tumor microenvironment holds the potential in cancer treatment. For instance, the 

baseline T cell-inflamed tumor microenvironment is associated with checkpoint inhibitors and 

adaptive cell therapy (47, 48). In agreement, multiple immune-related gene signatures have been 

reported to correlate with clinical responses in a subset of patients with solid tumors treated with 

checkpoint inhibitors (47, 49-51). However, the complete immune gene signature, which is 

associated with enhanced therapeutic and survival benefits in lung cancer patients and related 

animal models have not been clearly identified.  
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1.2.4  MMPs overexpressed in COPD and associated with early-stage lung cancer 

recurrence 

The emphysematous component of COPD is characterized by the excessive inflammatory 

responses with the destruction of matrix destruction, and confer to an increased risk of lung cancer 

(34). The matrix metalloproteinases (MMPs) are a family of 24 proteolytic enzymes, which can 

degrade the extracellular matrix (52). Several MMPs such as MMP1, MMP9, and MMP12, which 

are cable of degrading elastin and collagen have been implicated in the pathogenesis of COPD in 

response to cigarette smoke (53-55). In addition, many of these enzymes are reputed to promote 

lung tumor growth in many phases of cancer progression, including invasiveness, angiogenesis, 

and metastasis (56-58).  

Tumor recurrence remains the leading cancer-related deaths in patients with early-stage 

lung cancer after curative surgery. Several MMPs such as MMP2, MMP9, MMP10, and MMP12 

have been reported to correlate with recurrence in surgically resected early-stage NSCLC (59-61).  

However, these MMPs-based biomarker studies showed inconsistent or not reproducible results in 

different cohorts, which limit the use as prognostic markers for clinical application (62). In 

addition, and their effects on survival outcome for patients with stage I lung adenocarcinoma after 

curative surgery remains unknown.  

1.3 Dissertation Objectives 

In the first study, we plan to address the role of chronic inflammation, especially induced 

by LPS, in lung tumorigenesis. We hypothesize that LPS-mediated chronic inflammation alters 
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immune contexture in the tumor microenvironment contributing to lung carcinogenesis and 

affecting immunotherapy efficacy. Therefore, we first developed a two-staged lung cancer mouse 

model, which mimics the smoking carcinogen-induced, and COPD-related airway inflammation 

promoted lung cancers. To further explore the effects of inflammation on immunotherapy 

responses, the mice exposed to NNK or NNK/LPS were treated with either IgG control or anti-

PD-1. In addition, anti-Ly6G was administrated to evaluate the impact of the MDSCs depletion on 

lung tumorigenesis. Furthermore, we analyzed the published lung cancer datasets to identify 

potential immune gene signature in predicting immunotherapy efficacy.  

In the second study, we hypothesize that multiple MMPs were co-expressed and increased 

expression in lung adenocarcinomas and correlated with worse survival outcome. We sought to 

characterize the expression of MMPs and related genes by analyzing transcriptome data of lung 

adenocarcinoma cases. We aimed to develop an MMPs-related gene signature as a prognostic 

molecular marker to stratify patients with stage I lung adenocarcinoma into subgroups based on 

the risk of recurrence for aiding physicians to decide the personalized adjuvant therapeutics. 
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2.0 Materials and Methods 

2.1 Murine Model and Reagents 

FVB/NJ (7 weeks, female) mice were purchased from Jackson Laboratory (Bar Harbor, 

Maine, USA). Procedures were approved by the Institutional Animal Use and Care Committee of 

the University of Pittsburgh. Lipopolysaccharides from Pseudomonas aeruginosa (L8643, Sigma, 

St Louis, MO) was resuspended and diluted in phosphate-buffered saline (PBS). NNK (M325750, 

Toronto Research Chemicals) was resuspended in methanol and diluted in PBS. Mice were treated 

with PBS, 3mg i.p. NNK (biweekly for 4 weeks), 5µg LPS by intranasal instillation (weekly for 

16 weeks), or combined NNK and LPS (Figure 1A) as previously described (63). In addition, mice 

exposed to NNK with/without 10-week LPS instillation were treated with 200µg i.p. IgG2a, (2A3, 

BioXCell, West Lebanon, NH), 200µg i.p. anti-PD-1 (RMP1-14, BioXCell) for 6 weeks (Figure 

6A) or combined NNK and 16-week LPS exposure mice were treated with 200µg i.p. IgG2a, anti-

PD-1, anti-Ly6G (1A8, BioXCell) or in combination (Figure 6D). Mice were euthanized one week 

after the last treatment, and samples were obtained for transcript, protein, histopathological, and 

immunohistochemical analyses.  

2.2 Immune Gene Signature Analysis 

The normalized mRNA of 730 immune-related genes and patient profiles were downloaded 

from GSE93157 cohort (51). Tumor samples from 22 non-squamous (Non-SqNSCLC) and 13 
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squamous non-small cell lung cancer (SqNSCLC) before anti-PD-1 treatment were analyzed. The 

tumor response to anti-PD-1 treatment was classified as nonprogressive disease (NPD) including 

stable disease (SD), partial response (PR), complete response (CR) and progression disease (PD) 

based on modified RECIST 1.1 criteria. Differentially expressed genes (n=130, absolute fold 

change >1.5 and unadjusted P <0.05) between NPD and PD were determined using Partek 

Genomic Suite and assigned as immune gene panel. Immune cell gene signatures for T-, B-, and 

NK-cell were defined by the genes, which were present in two or more studies of eight published 

signatures (46, 64-70). IL17 and IL22 were selected as the Th17 cell signature (71). The median 

gene level from the signature was used for the expressional level quantification. The mouse 

ortholog of immune signature transcripts was used for murine model gene signature analysis. 

2.3 The Cancer Genome Atlas (TCGA) Data Analysis 

TCGA lung adenocarcinoma RNAseq and clinical data (n=517) were obtained from UCSC 

Xena (http://xena.ucsc.edu/). The immune gene panel (n=117 with low expression genes with 

mean <1 filtered out), were used for signature analysis. In survival analysis, the stratification of 

signature as high or low depends on the expression level with the best separation of survival curves 

among subgroups.  
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2.4 Histopathology, Immunohistochemistry, and Immunofluorescence Analysis 

Mouse lung lobes were fixed with 4% paraformaldehyde (Affymetrix), embedded in 

paraffin and evaluated by H&E staining, immunohistochemistry (IHC), or immunofluorescence 

(IF) staining. Antibodies used for immunostaining (all from Cell Signaling) included PD-L1 

(DV53B, 1:100), PD-1 (D7D5W, 1:200), CD4 (D7D2Z, 1:400), CD8 (D4W1Z, 1:400). Digital 

images of H&E staining and IHC slides were obtained at 40× magnification (0.23 μm per pixel) 

using a whole-slide scanner (Hamamatsu nanozoomer HT 2.0) for tumor area quantification. 

Tumor area was quantified by the percentage of tumor area divided by the total lung area using 

ImageJ Software. Lung tumor grade was classified by criteria previously published (72). Multiplex 

tissue IF staining was performed with Opal staining system (PerkinElmer, MA), and images were 

captured using Nikon 90i microscope with 4′,6-diamidino-2-phenylindole for nuclear staining. 

Quantification of positively stained cells was performed using NIS-Elements Microscope Imaging 

Software. For tumor-infiltrating T lymphocytes characterization in the tumor microenvironment, 

the number of CD4 and CD8 T cells infiltrating to tumors was taken and the density of cell 

(number/mm2) was calculated based on tumor area. In addition, the percentage of PD-1 co-

localization with CD4 or CD8 was also calculated. 

2.5 Western Blot Analysis 

Lung-protein extracts from mouse tissue were separated by SDS-PAGE under reduced 

conditions and transferred onto a PVDF membrane (Millipore). The membranes were 

immunoblotted overnight at 4°C with anti-PD-L1 (AF1019, R＆D, 0.5μg/ml). Antibody binding 
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was detected with SuperSignal West Pico PLUS Chemiluminescent Substrate according to the 

manufacturer’s instructions (ThermoFisher Scientific). 

2.6 Flow Cytometry  

Cells isolated from tumor-bearing lungs were processed for surface labeling with several 

antibody panels staining for CD4, CD8, CD11b, and Ly6-G markers. Fc receptors were blocked 

using Fc-Block (BD Biosciences). Cells were further permeabilized using Transcription Factor 

Buffer Set (BD Biosciences) and stained for IFN-γ, IL-17, and Foxp3. Data were acquired using 

the FACSAria flow cytometer and analyzed using FlowJo software (Treestar). 

2.7  Mouse mRNA Microarray Analysis 

RNA extraction was performed using Trizol method (Sigma). RNA purity and integrity of 

samples were assessed by Bioanalyzer. The cDNA synthesis and hybridization onto HD Whole 

Mouse Genome Microarray (Agilent, G2519F-014868). Partek Genomics Suite 7 (Partek, St. 

Louis, MO) was used to process the raw microarray data, and RMA method was used for 

background correction. Differential expression analysis between NNK/LPS and NNK was 

performed using Partek Genomics Suite, and Benjamini–Hochberg method was used to adjust the 

raw P values for multiple testing. Only genes with fold change (up- and down-regulated) >2 and 

false discovery rate (FDR) <0.05 were considered as differentially expressed genes (DEGs). 
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Hierarchical clustering heatmap was conducted using Partek Genomics Suite. Data are deposited 

in the Gene Expression Omnibus database (submitted). 

2.8 Ingenuity Pathway Analysis of NNK/LPS vs NNK DEGs (IPA) 

List of DEGs between NNK/LPS and NNK, which contains 1179 genes was used to carry 

out gene set enrichment analysis using Ingenuity pathway analysis (IPA, http://www. 

ingenuity.com). IPA was used to determine which pathways were differentially represented in the 

identified significant genes, compared to the Ingenuity knowledge base. 

2.9 Quantitative RT-PCR 

Total cellular RNA was extracted by Trizol method (Sigma) and reverse-transcribed by 

random primers using High Capacity cDNA Reverse Transcriptase Kit (ThermoFisher Scientific). 

The reverse transcription reaction was then subjected to PCR amplification using Fast SYBR 

Green Master Mix (ThermoFisher Scientific). PCR signals were recorded on ABI 7900HT Fast 

Real-Time PCR and the data was normalized by mouse 18s ribosomal RNA analyzed by RQ 

Manager Software. Primer sets included Pdcd1, Ctla4, Lag3, and Tim3. All primer sequences are 

in the supplementary data. 
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2.10 Cytokine Quantification in Bronchoalveolar Lavage Fluid and Lung-Protein Extracts  

The levels of proinflammatory mediators in bronchoalveolar lavage fluid (BALF) were 

quantified using magnetic bead 10-plex MILLIPLEX MAP Kit (Millipore, USA). In addition, the 

concentration of interferon gamma (IFN-γ) in lung-protein extracts were measured by enzyme-

linked immunosorbent assay (ELISA) (R&D Systems, USA). These assays were performed 

according to the manufacturer’s instructions. The results were expressed in the BALF samples as 

pg/ml, and lung lysates normalized to the total protein concentration as pg/ml/mg.  

2.11 Patient and Expression Data  

2.11.1  GSE31210 cohort 

The microarray expression data and clinical data were previously obtained under an IRB 

approved protocol, with informed consents and download from the National 

Center for Biotechnology Information Gene Expression Omnibus database 

(http://www.ncbi.nlm.nih.gov/geo) (73). Raw gene-expression data were normalized by MAS5. A 

total of 226 lung adenocarcinoma cases consisting of 168 stage I and 58 stage II cases and 20 

normal lung tissue were subjected to expression profiling. The 204 cases who received complete 

resection with free resection margins and no involvement of mediastinal lymph nodes and did not 

receive postoperative chemotherapy and/or radiotherapy, unless relapsed, were subjected to 

survival analyses. 22 cases were excluded for prognosis analysis due to incomplete resection or 

adjuvant therapy.  

http://www.ncbi.nlm.nih.gov/geo
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2.11.2  TCGA cohort 

TCGA lung adenocarcinoma RNAseq and clinical data were obtained under IRB approved 

protocols with informed consents and downloaded from UCSC Xena (http://xena.ucsc.edu/). A 

total of 517 lung adenocarcinoma cases and 59 adjacent lung tissue were subjected to expression 

profiling. Among the 517 cases including 277 stage I cases who have survival data were subjected 

to survival analysis.  

2.11.3  GSE30219 cohort  

The microarray expression data and clinical data were previously obtained under an IRB 

approved protocol, with informed consents and download from the National 

Center for Biotechnology Information Gene Expression Omnibus database 

(http://www.ncbi.nlm.nih.gov/geo) (74). Raw gene-expression data were normalized by robust 

multi-array average (RMA). A total of 70 stage I (T1N0M0) lung adenocarcinoma cases who 

received surgery and did not receive postoperative chemotherapy and/or radiotherapy selected 

from 293 lung cancer cases was subjected for survival analysis.  

2.12 Ingenuity Pathway Analysis of MMPs (IPA) 

MMP-related gene clusters and signature including 150-gene cluster, 185-gene cluster, and 

36-gene MMP signature were used to carry out gene set enrichment analysis using Ingenuity 

pathway analysis (IPA, http://www. ingenuity.com). IPA was used to determine which pathways 

http://www.ncbi.nlm.nih.gov/geo
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were differentially represented in the identified significant genes, compared to the Ingenuity 

knowledge base. 

2.13 Gene Set Enrichment Analysis (GSEA) 

GSEA was applied using ranked lists of genes from GSE31210 cohort based on mutation 

status and sorted by Signal2Noise. After Kolmogorov-Smirnoff testing, 36-gene MMP signature 

showing a P <0.05 were considered enriched between mutation status under comparison. 

2.14 Bioinformatic and Statistical Analysis  

A two-tailed Student’s t-test was used for two group comparisons, and ANOVA was used 

for comparisons of three or more groups. Differential expression analysis between tumor and 

normal lung tissue was performed using Partek Genomics Suite (Partek, St. Louis, MO), and 

Benjamini–Hochberg method was used to adjust the raw P values for multiple testing. Only genes 

with fold change (up- and down-regulated) >2.5 and FDR <0.05 were considered as differentially 

expressed genes (DEGs). Hierarchical clustering heatmap was conducted using Partek Genomics 

Suite. Survival was compared using Kaplan-Meyer analysis. The stratification of signature as high 

or low depends on the expression level with significant differences in the survival outcomes and 

the lowest log-rank P value among subgroups. The log-rank test was used to compare survival or 

event-free survival between groups, and Cox proportional hazards modeling was used for 



16 

univariate and multivariate analyses. Chi-squared test was used to compare frequencies in one or 

more categories. P<0.05 was considered significant. 
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3.0 Inflammation Promotes Tobacco Carcinogen-Induced Lung Cancer and Determines 

Immunotherapy Efficacy 
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3.1 Introduction 

Smoking is a well-established risk factor for lung cancer and the main cause of COPD (75). 

COPD is characterized by chronic lung inflammation, and patients with COPD have increased 

risks for lung cancer after controlling for smoking (76, 77). This suggests that COPD is an 

independent risk factor of lung cancer and provides the further link between inflammation and 

lung cancer. Bacterial colonization by Pseudomonas aeruginosa is frequently found in COPD and 

correlates with increased inflammation and acute exacerbations (37, 38). ”Smoldering” 

inflammation in the tumor microenvironment has tumor-promoting effects, including enhanced 

tumor-cell migration, invasion, metastasis, epithelial-mesenchymal transition, and angiogenesis 

(29, 78). In addition, chronic inflammation also induces immunosuppression associated with 

accumulation of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and 

related cytokine mediators (e.g., IL10 and TGFβ) (30, 31). However, the effects of bacterial-related 

chronic inflammation on lung tumorigenesis remain unclear.  

Local immune responses and systematic inflammation are likely to influence the 

progression of tumors, which could alter treatment efficacy (40). Immunotherapy, such as 

checkpoint inhibitors, has emerged as a new treatment modality in lung cancer, yielding durable 

clinical responses (41, 42). However, the overall treatment response rate for non-small cell lung 

cancer (NSCLC) is around 15-20%, and only a minority of patients benefit from the treatment, 

possibly due to a lack of clear biomarkers or indications for the responders versus non-responders 

(24). Survival increases in PD-1 blockade recipients among NSCLC patients with COPD, 

suggesting that COPD-related dysregulated inflammation affects efficacy (43, 44). However, the 

mechanism of the effective immunotherapy remains unknown, and biomarkers used in the clinics 
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only partially predicted responding rates. This leaves a significant gap between the current 

diagnosis and the prognoses for lung cancer patients under immunotherapy (45).       

The immune gene signatures recently identified include the transcripts encoding for cell 

surface markers, cytokines, cell signaling molecules, and transcription factors, which are indicative 

of specific immune-related responses (46). Immune-related gene signatures correlated with clinical 

responses in a subset of patients with solid tumors treated with checkpoint inhibitors (47, 49-51). 

However, the complete immune gene signatures in the animal models of lung cancer and in lung 

cancer patients associated with enhanced therapeutic and survival benefits have not been clearly 

identified.  

To investigate the impact of chronic inflammation on lung tumorigenesis, we developed a 

two-staged lung cancer mouse model, which mimics the smoking carcinogen-induced, and COPD-

related airway inflammation-promoted lung cancers in patients. We used the cigarette smoke 

carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to generate genetic instability 

and parallelly provided repeated LPS to induce chronic lung inflammation. This exposure 

paradigm creates an immunosuppressive microenvironment favorable of tumor progression 

similar to that of inflammation-associated lung tumorigenesis. The model was used to evaluate the 

efficacy of anti-PD-1 immunotherapy. Our study provided a clinical-relevant lung cancer animal 

model in elucidating the effects of chronic inflammation on lung tumorigenesis and the efficacy 

of therapies.  
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3.2 Results 

3.2.1  LPS-mediated chronic inflammation synergistically promotes NNK-induced lung 

tumorigenesis in mice 

To explore the effect of LPS-mediated chronic inflammation on NNK-induced lung 

tumorigenesis, we established a murine lung cancer model by combining NNK exposure with 

recurring intranasal instillation of LPS during and after NNK administration (Figure 1A). Mice 

treated with NNK alone induced the average of 1.5 lung tumors per mice, while mice exposed to 

LPS alone generally did not have lung tumors except one tumor identified in all LPS-exposed mice 

(Figures 1B-C). However, combined exposure to NNK and LPS synergistically increased tumor 

numbers than NNK or LPS exposure alone (Figures 1B-C). Consistent with tumor multiplicity 

result was that 75 percent of mice developed lung tumors in NNK exposure, but 100 percent of 

mice developed lung tumors in the combined NNK plus LPS exposure (Figure 1D). In addition, 

tumor grade (alveolar hyperplasia, adenoma, and adenocarcinoma) and tumor area significantly 

increased in the combined exposure mice group than in the NNK-treated group (Figures 1E-F). 

Notably, NNK-induced lung tumors showed few inflammatory cells infiltrates (Figure 1G, panel 

1 and 2), but tumors in combined exposure mice displayed an enhanced and distinct inflammatory 

cell infiltration phenotype, which recruited leukocytes infiltrating to the lung tumors (Figure 1G, 

panel 3 and 4, arrow). 
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Figure 1. Chronic exposure to LPS promotes NNK-induced lung tumorigenesis. 

3.2.2  Chronic exposure to LPS increases inflammatory cells and alters 

cytokines/chemokines in the lung  

To investigate the impact of LPS-mediated chronic inflammation in the lung, we analyzed 

the total cellular and cytokines/chemokines profiles in the BALF and lung protein extracts. The 

results showed that there was no significant difference in total and differential inflammatory cell 

count in BALF between control and NNK-treated mice (Figures 2A-B). Nevertheless, the total 

numbers of inflammatory cell in BALF increased and various inflammatory cells including 

macrophages, neutrophils, and lymphocytes all significantly increased in the presence of chronic 

LPS exposure regardless NNK treatment (Figures 2A-B). Consistent with the result was that the 

cytokines/chemokines analysis showed minor changes between control and NNK exposure, but 

increased IFN-γ, IP-10, IL-17, G-CSF, KC, MIP-1α levels in the presence of LPS exposure, 

especially in the NNK and LPS combined exposure (Figures 2C-H). Notably, combined exposure 

(A) Seven-week-old female FVB/NJ mice were exposed with NNK (3mg/mouse, intraperitoneal 
injection semi-weekly for first 4 weeks), LPS (5μg/mouse, weekly intranasal instillation for 16 
weeks), or combined NNK and LPS. (B) H&E staining of tumor-bearing lungs. (C) 
Quantification of tumor number in mice exposed to PBS control (n=5), LPS (n=9), NNK (n=15) 
or NNK/LPS (n=11), Data shown are mean ± S.D., ****P < 0.0001 using one-way ANOVA. 
(D) Tumor incidence rate (%) in various exposure group was calculated, *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001 using Chi-squared test. (E) The number of alveolar hyperplasia, 
adenoma and adenocarcinoma in NNK compared to NNK/LPS exposure as quantified, Data 
shown are mean ± S.D., **P < 0.01, ****P < 0.0001 using two-way ANOVA. (F) Tumor area 
(%) was calculated in NNK (n=4) and NNK/LPS exposure (n=4), Data shown are mean ± S.D., 
***P < 0.001 using Student’s t- test. (G) H&E staining of tumors derived from NNK and 
NNK/LPS-treated mice. Bottom, high-magnification images. The arrow defines tumor-
infiltrating leukocytes. Scale bars, 100 μm. AH = alveolar hyperplasia; i.n. = intranasal; i.p. = 
intraperitoneal; PBS = Phosphate-buffered saline. 
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to NNK and LPS synergistically increased G-CSF levels, which has been reported to correlate with 

granulocytic MDSC recruitment and development (Figure 2F) (79).  

 

 

 

Figure 2. Chronic exposure to LPS increases lung inflammatory cells and alters cytokines 
and chemokines profile. 

 

(A) Quantification of total cell number from bronchoalveolar lavage of different exposure groups 
(n=5 for each individual group). (B) Differential cell counts of inflammatory cells in BAL. (C-H) 
Cytokines/Chemokines in BAL and protein extracts (n=5 for each individual group) from different 
exposure groups were analyzed by Luminex assay and enzyme-linked immunosorbent assay. Data 
were collected from the samples harvested 17 weeks after treatment as shown by Figure 1A, and 
presented as the mean ± S.D. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 using one-way 
ANOVA. 
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3.2.3  Combined exposure to NNK and LPS increase the accumulation of 

immunosuppressive cells in the lung  

To identify the profile of the increased immune cell population in the lungs of tumor-

bearing mice, we performed the immune cell profiling of lung tissue by flow cytometry. NNK 

exposure alone showed higher number of CD4+ T helper cells such as Th1, Th17, and Tregs, 

MDSCs, and CD8 cytotoxic T cells (Tc1) compared to control, but there was no statistical 

difference (Figures 3A-F). LPS exposure alone increased Th17 cells compared to control and NNK 

exposure (Figure 3B). However, combined NNK and LPS exposure significantly increased Th1, 

Th17, Tregs, and MDSCs compared to other exposure groups (Figures 3A-F). Importantly, 

immunosuppressive cells such as MDSCs and Tregs in the combined exposure group were 

significantly increased in the mouse lungs, suggesting the immunosuppressive microenvironment. 

The slightly increased Tc1 after combined exposure did not reach a statistically significant 

difference compared to other exposure groups (Figure 3F). 
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Figure 3. Combined exposure of NNK and LPS increases accumulation of 
immunosuppressive cells in the lungs. 

 

Flow cytometry analysis of immune cell population of mouse lungs in different exposure groups 
harvested at week 17 after NNK and LPS treatment as indicated in Figure 1A. The cellular 
markers included (A) Th1, (B) Th17, (C) Tregs, (D) Granulocytic MDSCs, (E) Monocytic 
MDSCs, and (F) Tc1. Data shown are mean ± S.D. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001 using one-way ANOVA. Th1 = T-helper cell type 1; Th17 = T-helper cell type 17; Treg = 
regulatory T cell; MDSC = myeloid-derived suppressor cell; Tc1 = CD8+ cytotoxic T lymphocyte.  
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3.2.4  Chronic exposure to LPS correlates with T-cell exhaustion and immune cell gene 

signatures  

To elucidate the mechanisms of LPS-mediated inflammation in NNK-induced lung 

tumorigenesis, we performed the mRNA microarray analysis of mouse lung tissue from different 

exposure groups. Unsupervised hierarchical clustering heatmap revealed two sample groups 

clustered with the differentially expressed genes between NNK/LPS and NNK. The first one 

included control and NNK-treated groups, while the other one showed LPS and NNK/LPS-treated 

groups were clustered together (Figure 4A). A gene cluster showed that lymphocyte recruitment 

related chemokine genes such as Cxcl9, Cxcl10, Cxcl13, and Ccl20 were increased expression in 

the presence of chronic exposure to LPS (Figure 4A). IPA based on the differentially expressed 

genes showed multiple pathways involved in T-cell immune responses with high statistical 

significance (Figure 4B). Since antigen overstimulation has been shown to correlate with T cell 

exhaustion (80), we hypothesized that chronic LPS exposure may result in T cell exhaustion. 

Therefore, we checked inhibitory receptors related genes by real-time PCR, and the results 

demonstrated that the expression of Pdcd1, Ctla4, Lag3, and Tim3 were all increased after chronic 

LPS exposure (Figure 4C). Importantly, Pdcd1 showed the highest expression with the 10-fold 

increase among these inhibitory receptor genes in combined NNK and LPS exposure compared to 

NNK exposure alone. In addition, we performed hierarchical clustering analysis of the mouse 

genes (Figure 4D), based on the immune gene signature identified from the NSCLC patient cohort 

under the immunotherapy presented later by Figure 6. Overall, immune cell gene signature 

expression such as T cell, B cell, and Th17 cell increased in the presence of chronic exposure to 

LPS compared to NNK and control groups (Figure 4E). However, NNK-treated mice showed 
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decreased NK cell signature regardless of LPS exposure compared to the control group, indicative 

of immunosuppression (Figure 4E).  
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Figure 4. LPS-mediated chronic inflammation correlates with T-cell exhaustion and 
immune cell gene signatures. 

3.2.5  Combined exposure to NNK and LPS upregulates PD-1/PD-L1 axis in the tumor 

microenvironment 

Our results showed that combined exposure to NNK and LPS involved in T-cell mediated 

immunity pathways with increased inhibitory receptor genes expression, suggestive of T cell 

exhaustion. To characterize the tumor-infiltrating T lymphocytes and PD-1 expression in the tumor 

microenvironment, we performed multiplex immunohistochemical staining of CD4, CD8, and PD-

1 in tumor-infiltrating T lymphocytes (Figure 5A). The results demonstrated that there were much 

less tumor-infiltrating T lymphocytes (CD4+ and CD8+) and PD-1-expressed cells in lung tumors 

of NNK-treated mice than in NNK/LPS-treated mice (Figure 5B). In addition, PD-1 colocalized 

with tumor-infiltrating CD4 and CD8 T lymphocytes, especially in NNK/LPS-treated lung tumors 

(Figure 5B). Western blot analysis showed increased PD-L1 expression in mouse lung-protein 

extracts from NNK/LPS-treated mice than those from NNK-treated mice (Figure 5C). 

Furthermore, the IHC staining results also confirmed increased PD-L1 expression that lung tumors 

from NNK/LPS-treated mice showed significantly increased positive PD-L1 staining than tumors 

from NNK-treated mice (Figure 5D). 

The mRNA microarray data of mouse lung tissues (n=3 for each individual group) were analyzed. 
(A) Unsupervised hierarchical clustering heatmap based on the differentially expressed genes 
(n=1179, absolute fold change >2, false discovery rate <0.05) between NNK/LPS and NNK. 
Lymphocyte recruitment related genes such as Cxcl9, Cxcl10, Cxcl13, and Ccl20 were labeled 
(arrows). (B) Ingenuity pathway analysis based on the differentially expressed genes showed 
significant pathways. (C) The inhibitory checkpoint receptors genes expression: Pdcd1, Ctla4, 
Lag3, and Tim3 in various exposure groups were quantified by quantitative real-time polymerase 
chain reaction. (D) Hierarchical clustering heatmap based on mouse ortholog genes of immune 
gene panel (n=127) identified from GSE93157 cohort. (E). Immune cell gene signatures including 
T cell, B cell, NK cell, and Th17 cell were quantified in different exposure groups. Data shown are 
mean ± S.D. **P < 0.01, ***P < 0.001, ****P < 0.0001 using one-way ANOVA. 
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Figure 5. Combined NNK/LPS exposure increases TILs with co-localized PD-1 and upregulates 
tumor PD-L1 expression.   

(A) Representative immunofluorescence images of CD4 (red), CD8 (Magenta), PD-1 (green), 
and nuclear staining with DAPI (blue) in tumor infiltrating cells. 400x magnification. Scale bars, 
50 μm. Dotted lines outline tumors. (B) Quantification of CD4+ and CD8+ TILs. The percentage 
of PD-1 expression on CD4+ and CD8+ TILs was shown. *P < 0.05, **P < 0.01, ****P < 0.0001 
using two-way ANOVA. (C) Lung lysates from NNK (n=4) and NNK/LPS-treated mice (n=5) 
were quantified for PD-L1 expression. *P < 0.05 using Student’s t-test. (D) Representative 
images for PD-L1 IHC staining. Right, high-magnification images. Scale bars, 100 μm. DAPI = 
4’,6-Diamidino-2-Phenylindole, IHC = immunohistochemistry; PD-1 = programmed cell death 1; 
PD-L1 = programmed death-ligand 1; TIL = tumor infiltrating lymphocytes. 
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3.2.6  Elevated inflammatory responses correlate with PD-1 blockade efficacy 

Based on the increased PD-1/PD-L1 pathway in NNK/LPS-treated mice, we examined if 

the PD-1/PD-L1 checkpoint pathway blockade could inhibit inflammation-associated lung 

tumorigenesis. We performed a separate pilot study and observed that the detection of the first 

lung tumor was frequently identified at 10-week after LPS installation in NNK-treated mice. 

Therefore, NNK-treated mice or plus 10-week LPS installation received either control IgG or anti-

PD-1 antibody starting at 10-week after LPS installation for 6 consecutive weeks (Figure 6A). The 

anti-PD-1 treatment effectively decreased lung tumor numbers in NNK/LPS-treated mice, but the 

effect was not found in NNK-treated mice (Figure 6B). Consistent with the result of anti-PD-1 

efficacy in decreasing tumor numbers, PD-1 blockade also decreased the tumor area in NNK/LPS-

treated mice (Figure 6C). However, when we increased LPS installation for 16 weeks to NNK-

treated mice, anti-PD-1 treatment only slightly decreased tumor number and tumor area compared 

to IgG control but did not reach a statistically significant difference (Figures 6E-F). Anti-Ly6G 

treatment to deplete MDSCs effectively decreased tumor number and tumor area compared to 

control IgG, indicating a dominant tumor-promoting effect of MDSCs (Figure 6E-F). Importantly, 

combined anti-PD-1 and anti-Ly6G significantly decreased tumor numbers and tumor area 

compared to anti-PD-1 or anti-Ly6G treatment alone, suggesting the enhanced anti-tumor activity 

by the combinatory treatment (Figures 6E-F). 
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Figure 6. LPS-mediated inflammatory responses associated with PD-1 blockade efficacy.  

(A) The treatment paradigm of anti-PD-1. Mice were exposed to NNK or NNK combined with 10-
week LPS treated for either IgG control (IgG2a) or anti-PD-1 for 6 weeks. (B) Quantification of 
tumor numbers from mice in NNK and NNK/LPS groups with different treatment. ***P < 0.001 
using Student’s t-test. (C) Quantification of tumor area (%) in NNK/LPS-treated mice treated with 
IgG control (n=11) and anti-PD-1 (n=8). **P < 0.01 using Student’s t-test. (D) The treatment 
paradigm of anti-PD-1 and anti-Ly6G. Mice were exposed to NNK or NNK combined with 16-week 
LPS treated for either IgG control (n=4), anti-PD-1 (n=4), anti-Ly6G (n=8) or combined anti-PD-1 
and anti-Ly6G (n=8) for 6 weeks. (E) Quantification of tumor numbers harvested from each group. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 using one-way ANOVA. (F) Quantification 
of tumor area (%) in NNK/LPS-treated mice treated with IgG control (n=4), anti-PD-1 (n=4), anti-
Ly6G (n=5), anti-PD-1+anti-Ly6G (n=5). ***P < 0.001, ****P < 0.0001 using one-way ANOVA.  
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3.2.7  Immune gene signature correlates with PD-1 blockade responsiveness and 

progression-free survival in NSCLC patients 

We analyzed transcriptomes from a cohort of 35 NSCLC patients involved in PD-1 

blockade response (GSE93157; Table 1). We identified an immune gene panel, which contains 

130 differentially expressed immune-related genes between nonprogressive disease (NPD) and 

progression disease (PD), and generated hierarchical clusters (Figure 7A). Overall, the 

transcriptomes of NPD patients displayed an increased immune-related gene expression compared 

to those of PD patients. Furthermore, we assessed the immune cell gene signatures for T-cells, B-

cells, NK-cells, and Th17-cells. Most T-cell and B-cell associated markers localized to the C1 

cluster, whereas NK-cell, Th17-cell, and other immune-related makers were observed in the other 

clusters (Figure 7A). Moreover, T-cell, B-cell, NK-cell, and Th17-cell signatures increased more 

in NPD than in PD patients, suggesting that the immunologically “hot” tumors could benefit from 

anti-PD-1 treatment. These immune cell gene signature results between patients with NPD and PD 

(Figure 7B) were similar to those between NNK/LPS- and NNK-treated mice (Figures 7D-E). In 

addition, the increased immune cell gene signature was also associated with prolonged 

progression-free survival (PFS) in patients with NSCLC treated with PD-1 blockade (Figure 7C). 

ROC analysis was performed to evaluate the diagnostic accuracy of these gene signatures to predict 

treatment responses (NPD versus PD) in GSE93157. The results showed that all signatures were 

with an area under curve > 0.7 and P value <0.05 (Figure 8). 
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Figure 7. Immune gene signatures correlate with responses to PD-1 blockade and 
progression-free survival. 

 

 

 

 

 

 

 

 

 

 

Tumor samples of 35 NSCLC patients before anti-PD-1 treatment were analyzed for the gene 
expression. (A) Expression profiles of 130 differentially expressed genes between NPD and PD 
were presented by heatmap where red indicates relative gene overexpression and blue indicates 
relative gene underexpression compared to means for each gene. Overall response (NPD; PD), 
drug response (CR; PR; SD; PD), and histological type (Non-SqNSCLC; SqNSCLC) are 
indicated at the top of the heatmap. Immune cell gene signatures including T cell, B cell, NK 
cell, and Th17 cell are labeled (B) Box plots for expression of gene signatures across patients 
that showed PD and NPD. *P < 0.05, **P < 0.001 using Student’s t-test. (C) Kaplan–Meier 
survival analysis based on selected gene signatures in Non-SqNSCLC and SqNSCLC. P value 
was based on the log-rank test. CR = complete response; NK cell = natural killer cells; Non-
SqNSCLC = non-squamous cell non-small cell lung cancer; NPD = non-progressive disease, 
including CR, PR, and SD; PD = progression disease; PR = partial response; SD = stable disease; 
SqNSCLC = squamous cell non-small cell lung cancer; Th17 = T-helper cell type 17. 
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Figure 8. ROC analysis of immune gene signatures in GSE93157 cohort. 
 
 
 

 
 

ROC analysis was performed on immune gene panel and individual immune cell gene 
signatures in GSE93157 cohort of 35 NSCLC patients. The Area under the curve of (A) 
immune gene panel, (B) T-cell signature, (C) B-cell signature, (D) NK-cell signature, (E) 
Th17-cell signature was calculated. Statistical significance is attained when p < 0.05. 
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Table 1. Clinical Characteristics of NSCLC patients with anti-PD-1 treatment from GSE93157 
cohort. 

Characteristics N (%) 

Subject, n  35 
Sex, M/F, n (%)  27/8 (77/23) 
Age, yr, mean ± SD              59 ± 11 
Histological type, n (%) 
  Nonsquamous lung carcinoma 22 (63%) 
  Squamous lung carcinoma 13 (37%) 
Drug response, n (%)  
  CR 1 (3%) 
  PR 8 (23%) 
  SD 12 (34%) 
  PD 14 (40%) 
Overall response, n (%)  
  Nonprogressive disease (CR, PR, SD) 21 (60%) 
  Progression disease (PD)  14 (40%) 
Smoking status, n (%)    
  Current smoker 10 (29%) 
  Former smoker 22 (63%) 
  Never smoker 3 (8%) 
ECOG, n (%) 

   0 11 (31%) 
   1 24 (69%) 
Drug, n (%) 
  Nivolumab 18 (51%) 
  Pembrolizumab 17 (49%) 
PFS, median (95% CI) 3.2 (3.94−8.90) 
EGFR status, n (%)   
  EGFR mutated  1 (3%)* 

  EGFR wild-type 30 (86%) 
  NA 4 (11%) 
ALK status, n (%)  

   ALK rearranged  0 (0%) 
   ALK not rearranged 30 (75%) 
   NA 5 (25%) 

Clinical–pathologic characteristics of patients with advanced NSCLC (n=35) and anti-PD-1 treatment from 
GSE93157 cohort were evaluated in this study. *Patients previously treated with EGFR tyrosine kinase inhibitor. 
Definition of abbreviations: ALK = Anaplastic lymphoma kinase; CI = confidence interval; CR = complete 
response; ECOG = Eastern Cooperative Oncology Group; EGFR = epidermal growth factor receptor; NSCLC = 
non-small cell lung cancer; SD = stable disease; PD = progression disease; PFS = progression-free survival; PR = 
partial response; NA = not applicable. 
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3.2.8  Immune gene signatures predict treatment responses and survival outcome in TCGA 

lung adenocarcinoma cohort  

We sought to determine whether the immune gene signature could also predict treatment 

responses and survival outcome in patients with NSCLC under conventional treatment. We 

analyzed RNAseq of 517 TCGA lung adenocarcinomas (Table 2) using the immune gene panel 

(n=117), with the exclusion of 13 low expression genes. Overall, unsupervised hierarchical 

clustering revealed four subgroups of lung adenocarcinoma and the immune gene panel expression 

progressively decreased from subgroup 1 to 4. Remarkably, the immune cell gene signatures of T- 

and B-cell were in cluster 1, a similar pattern observed in GSE93157 cohort (Figure 9A). Patients 

with higher immune gene panel expression had better treatment responses and overall survival 

than those with lower expression (Figures 9B-C). Patients with increased immune gene panel 

expression had better treatment responses and overall survival than those with lower levels 

(Figures 9B-C and Figure 10A). We also analyzed the clinical characteristics in these groups and 

the results revealed that stage, mutation status, primary treatment response, and smoking status 

were differentially distributed between groups (Figure 9D and Figure 10B). In the subset of 

immune cell gene signature analysis, we performed unsupervised hierarchical clustering of lung 

adenocarcinomas based on immune cell gene signatures of T-cell, B-cell, and NK-cell (Figure 

11A, Figure 12A, and Figure 13A). Consistently, patients with high immune cell gene signatures 

of T-cell, B-cell, and Th17-cell showed better survival outcome (Figure 11B, Figure 12B, and 

Figure 13B). Importantly, the patient cluster with increased immune gene panel expression 

remains an independent protective factor for overall survival in lung adenocarcinoma patients after 

adjustment of stage, gender, age, smoking, and mutation status (Table 3).  
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Figure 9. Immune gene signatures correlate with treatment responses and survival outcome 
in TCGA lung adenocarcinoma cohort. 

 

 

 

 

 

 

 

 

 

  

517 lung adenocarcinoma patient samples from the TCGA cohort were analyzed for the gene 
expression involved in immune gene signatures. (A) Expression profiles of immune gene panel 
(n=117) were identified from GSE93157 after filtered out the low expression genes. Immune-
related genes are presented by heatmap where red indicates relative gene overexpression and 
blue indicates relative gene underexpression compared to means for each gene. Unsupervised 
hierarchical clustering revealed four lung adenocarcinoma subgroups clustered with immune 
gene panel. Immune gene panel, stage (I; II; III; IV), smoking status (non-smoker; ex-smoker; 
current smoker), mutation status (EGFR mutation; KRAS mutation; ALK fusion; 
EGFR/KRAS/ALK_WT) are indicated at the top of the heatmap. The T-cell, B-cell, and NK-
cell gene signatures are color labeled. (B) Box plots show expression of gene signatures across 
patients with PD and NPD status. *P < 0.05, **P < 0.001 using Student’s t-test. (C) Kaplan–
Meier survival analysis of patient subgroups based on selected gene signatures using log-rank 
test. (D) Clinical characterization of four subgroups associated with immune gene panel as 
indicated in (A). The distribution difference among the four subgroups in the stage, mutation 
status, and primary treatment response was tested by Chi-squared test. ALK = Anaplastic 
lymphoma kinase; EGFR = epidermal growth factor receptor; KRAS = Kirsten rat sarcoma viral 
oncogene homolog; MUT = mutation; NA = not applicable; TCGA = The Cancer Genome 
Atlas; WT = wild type. 
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Figure 10. Immune gene panel expression correlates with overall survival and clinical 
characteristics in TCGA cohort. 

 

Four subgroups of patients with lung adenocarcinoma determined by unsupervised hierarchical 
clustering with immune gene panel. (A) Kaplan–Meier survival analysis based on selected gene 
panel in different subgroups. P value was based on the log-rank test. (B) The distribution 
difference among the four subgroups in mutation subtype and smoking status was tested based 
on the Chi-squared test.  
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Figure 11. T-cell gene signature expression associated with overall survival in TCGA 
cohort. 
(A) Expression profiles of T-cell gene signature are presented by heatmap. Four subgroups of 
patients with lung adenocarcinoma determined by unsupervised hierarchical clustering with 
T-cell gene signature. (B) Kaplan–Meier survival analysis based on selected gene signature in 
different subgroups. P value was based on the log-rank test.  
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Figure 12. B-cell gene signature expression associated overall survival in TCGA cohort. 
(A) Expression profiles of B-cell gene signature are presented by heatmap. Four subgroups of 
patients with lung adenocarcinoma determined by unsupervised hierarchical clustering with 
B-cell gene signature. (B) Kaplan–Meier survival analysis based on selected gene signature in 
different subgroups. P value was based on the log-rank test. 
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Figure 13. NK-cell gene signature expression associated with overall survival in TCGA 
cohort. 

 

(A) Expression profiles of NK-cell gene signature are presented by heatmap. Four subgroups of 
patients with lung adenocarcinoma determined by unsupervised hierarchical clustering with NK 
cell gene signature. (B) Kaplan–Meier survival analysis based on selected gene signature in 
different subgroups. P value was based on the log-rank test.  
patients with lung adenocarcinoma determined by unsupervised 
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Table 2. Clinical Characteristics of TCGA Lung Adenocarcinoma Cohort.  

Characteristics   N (%) 

 Subjects, n 517  
  Sex, M/F, n (%) 240/277 (46/54) 
  Age, yr, mean ± SD 65 ± 13 
  pTNM stages    
   I 277 (54) 
   II 122 (24) 
   III 84 (16) 
   IV 26 (5) 

NA 8 (1)  
  Smoking status    

   Non-smoker  76 (15) 
   Ex-smoker  308 (60) 
   Current-smoker 119 (23)  
   NA 14 (2)  

  Mutation status   
   EGFR_MUT  66 (13) 
   KRAS_MUT  154 (30) 
   ALK _Fusion 5 (1) 
   KRAS/EGFR/AKL_WT 285 (55)  
   NA 7 (1)  
 ECOG   

0 62 (12) 
1 58 (11) 
2 17 (3)  
3 5 (1)  
4 2 (1) 

   NA 373 (72) 
Treatment   

 Surgery  386 (75)  
 Radiotherapy  43 (8)  
 Chemotherapy 155 (30)  
 Targeted therapy 18 (3) 

 
 Primary therapy response  

  CR 296 (57) 
  PR 6 (1) 
  SD 34 (7) 
  PD 65 (13) 
  NA 156 (22) 

Clinical–pathologic characteristics of TCGA lung adenocarcinoma cohort (n=517) were evaluated in this study. 
Definition of abbreviations: ALK = Anaplastic lymphoma kinase; CR = complete response; ECOG = Eastern 
Cooperative Oncology Group; EGFR= epidermal growth factor receptor; MUT = mutation; NA = not applicable; 
PD = progression disease; PFS = progression-free survival; PR = partial response; SD = stable disease; pTNM 
stages = pathologic TNM stages of malignant tumors; TCGA = the cancer genome atlas; WT = wild type. 
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   Table 3. Predictors of Overall Survival in TCGA Lung Adenocarcinoma Cohort.   

Characteristics   HR (95%) P Value 

Univariate predictors of OS    
  Sex, M 1.13 (0.83−1.53) 0.4332 
  Age, per 1yr* 1.00 (0.99−1.02) 0.3618 
  pTMN stages    
   II vs. I 2.27 (1.55−3.32) 0.0165 
   III vs. I 3.25 (2.17−4.83) 0.0007 
   IV vs. I 3.53 (2.03−6.13) 0.0193 
  Smoking status    
   Current smoker vs. Non-smoker  0.89 (0.54−1.47) 0.6582 
   Ex-smoker vs. Non-smoker  0.97 (0.62−1.50) 0.8837 
  Mutation status   
   EGFR_MUT vs. KRAS/EGFR/AKL_WT  1.56 (1.00−2.42) 0.0466 
   KRAS_MUT vs. KRAS/EGFR/AKL_WT 1.23 (0.92−1.84) 0.1378 
   ALK _Fusion vs. KRAS/EGFR/AKL_WT 0.0039 (0−Inf) 0.9990 
 Immune gene panel   
   High vs. Low 0.61 (0.45−0.85) 0.0028 
Multivariate predictors of OS     
  pTMN stage   
   II vs. I 2.19 (1.47−3.25) 0.0001 
   III vs. I 3.19 (2.12−4.80) 0.0009 
   IV vs. I 3.32 (1.86−5.93) 0.0327 
  Immune gene panel: High 0.66 (0.47−0.91) 0.0124 
All variables were evaluated among the 470 patients with lung adenocarcinoma (47 patients 
excluded from 517 patients due to missing data). 
Factors associated with OS in univariate and multivariate Cox regression model (n=470 patients). 
The HR (95%CI) and P value are shown for each. P value <0.05 are set in bold for emphasis. 
*Additional risk with each additional year of age.  
Definition of abbreviations: ALK = Anaplastic lymphoma kinase; EGFR = epidermal growth 
factor receptor; Inf = Infinite; KRAS = Kirsten rat sarcoma 2 viral oncogene homolog; MUT = 
mutation; OS = overall survival; TCGA = The Cancer Genome Atlas; WT= wild type. 
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3.3 Discussion 

3.3.1  The characteristics of driver oncogene and immune contexture in the mouse model 

Although several inflammation-associated lung cancer models have been proposed (81-

83), these models are either genetically Kras-driven lung cancer or susceptible strain such as A/J 

mice, which showed 100% Kras mutation in chemically-induced lung tumors, which may not 

reflect human lung tumors heterogenicity (84). In addition, the effects of chronic inflammation on 

immune contexture contributing to lung tumorigenesis and its impacts on the efficacy of immune 

checkpoint inhibitors in these models have not been completely defined. Here, we used FVB/N 

mouse strain, which the activating mutation rates in Kras were 45.45% of NNK-treated lung 

tumors reported previously, which is close to the frequency of 32% KRAS mutations rate in human 

lung adenocarcinoma compared to other models (22, 63). In addition, we observed that LPS-

mediated chronic inflammation increased various inflammatory cells including macrophages, 

neutrophils, and lymphocytes in the BALF, in agreement with other lung cancer models (81, 82). 

Notably in this model, significantly increased lung lymphocyte recruitment in the presence of 

chronic exposure to LPS, where T lymphocytes as the most affected population. Indeed, we 

observed significant pathways involved in T-cell mediated immunity and upregulated inhibitory 

receptor genes expression such as Pdcd-1, Ctla4, Lag3, and Tim3 in NNK/LPS-treated mice than 

NNK-treated mice, which Pdcd-1 showed the highest fold change increase. In agreement, our data 

showed that CD4+ and CD8+ TILs increased and colocalized with PD-1 in NNK/LPS-treated mice 

than NNK-treated mice, indicative of exhausted TILs. Interestingly, a recent study showed that 

patients with NSCLC and coexisting COPD increased exhausted CD4+ and CD8+ TILs with co-

expression of PD-1, CTLA-4, LAG-3, and TIM-3, suggesting that chronic inflammation-mediated 
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dysregulated immune responses correlated with exhausted TILs, which shared common immune 

contexture with our model (43). Furthermore, we found that NNK/LPS-treated mice increased lung 

tumor PD-L1 expression compared to NNK-treated mice, which may correlate with the response 

to IFN-γ secretion by TILs and LPS-induced TLR-4 signaling (85, 86). Taken together, LPS-

mediated chronic inflammation in NNK-treated mice increases TILs, inhibitory receptor genes 

expression, and upregulated PD-1/PD-L1 axis in the tumor microenvironment contributing to T 

cell exhaustion and diminishes antitumor immune surveillance.  

3.3.2  The characteristics of immune gene signatures in the mouse model and lung cancer 

patients 

In addition to the analysis of the phenotypic and functional characteristics of immune cells 

by flow cytometry, immunofluorescent staining and cytokine measurement in the mouse model, 

we performed transcriptome analysis using the published human immune gene signatures for 

human cancers. Here, we defined an overall immune gene signature and further stratified it into 

individual immune cell gene signatures, based on the presence in two or more studies of eight 

published signatures (46). These gene lists were transformed to the mouse homologues for the 

analysis of the mouse model, to reveal the similarity of the gene signatures between the mouse 

model and human lung cancer. In the mouse model, NNK/LPS-treated mice showed increased T 

cell gene signature expression indicative of T cell inflamed tumor microenvironment, which was 

associated with favorable efficacy of PD-1 blockade (87) consistent with the similar signature 

pattern in patients with NPD treated with PD-1 blockade (87). Interestingly, most T cell and B cell 

signature genes were clustered together in both mouse model and lung cancer cohorts with similar 

treatment responses and survival outcome, suggesting the potential antitumor immunity of B cell 
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and the possible B cell-T cell interaction of antigen presentation or antibody-mediated activities in 

the tumor microenvironment (70). In addition, mice treated with NNK regardless of LPS exposure 

decreased NK cell signature compared to control mice, indicating that cigarette carcinogen alone 

may mediate immunosuppression in the microenvironment. Although IL17 was reported to 

promote lung tumor progression through neutrophil infiltrate and mediate resistance to PD-1 

blockade (88), we identified the higher Th17 cell signature expression associated with better anti-

PD-1 response. This may reflect the complexity of immunologically “hot” tumors with various 

immune cell infiltration including immunosuppressive cells compared to “cold” tumors. 

Additionally, we explored the TCGA lung adenocarcinoma cohort using the same immune gene 

signatures. Consistently, patients with higher immune gene signature expression correlated with 

favorable treatment responses and overall survival than those with lower expression, regardless of 

treatment modality. These data support that these immune cell gene signatures are potential 

prognostic markers for the patient with NSCLC who received either immunotherapy or 

conventional treatments and provide a rationale for the combination therapeutics. 

3.3.3  Inflammatory responses correlate immunotherapy efficacy 

There is increasing evidence that the effectiveness of immunotherapy strategies relies on the 

presence of baseline immune responses and on unleashing of pre-existing immunity (89). In 

accordance with this hypothesis, NNK/LPS-treated mice showed favorable efficacy to PD-1 

blockade compared to NNK-treated mice, suggesting that inflammation-associated lung cancer 

benefits from anti-PD-1 treatment. This is probably because LPS-induced chronic inflammation 

increased CD4+ and CD8+ TILs with PD-1 expression and upregulated tumor PD-L1 expression 

resulting in T cell exhaustion. Consequently, blockade of PD-1/PD-L1 axis abrogates tumor 
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growth through reversing exhausted T cells and restoring anti-tumor function in the tumor 

microenvironment. In this model of the tumor microenvironment, we also observed high 

percentages of myeloid cells that can be phenotypically divided into CD11b+Ly6G+ cells 

(Granulocytic MDSC, GrMDSC) and CD11b+Ly6G- cells subsets, later include Monocytic MDSC 

(MoMDSC, CD11b+Ly6C+) and other myeloid cells (90). It has been reported that MDSCs in the 

tumor microenvironment may not only inhibit effector T cell and natural killer cell functions but 

also can directly promote tumor progression and metastasis (91). Our results showed that LPS-

mediated chronic inflammation in NNK-treated mice synergistically increased G-CSF in BALF, 

which has been shown to involve GrMDSC development and recruitment (79). In addition, we 

observed that the IL17 also increased in NNK/LPS-treated mice, which has been reported to 

promote COPD-type inflammation promoted lung cancer progression through MDSCs infiltration 

(92, 93). In accordance with the result, NNK/LPS-treated mice with MDSC depletion significantly 

decreased tumor growth in the group with prolonged exposure of LPS. Furthermore, MDSCs in 

the tumor microenvironment are capable of converting naïve T cell to Tregs, contributing to 

immunosuppression (94). Taken together, the inflammatory cytokines/chemokines milieu induced 

by chronic exposure to LPS promotes MDSCs recruitment and tumor proliferation. 

3.3.4  MDSCs depletion enhances immunotherapy efficacy 

Immunosuppressed tumor microenvironment not only hinders natural host immune 

responses, but also the efficacy of cancer immunotherapies (89). We observed that prolonged 

exposure to LPS not only recruited TILs but also increased MDSCs and Tregs accumulation, which 

have been reported to affect the effectiveness of immune checkpoint inhibitors (95). In agreement 

with this hypothesis, our data showed that PD-1 blockade didn’t significantly decrease tumor 
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number and tumor area in NNK-treated mice with persistent exposure to LPS. Nevertheless, 

selective elimination of GrMDSCs, which has been reported as the more suppressive subtype of 

MDSCs in the tumor microenvironment efficiently inhibits lung tumorigenesis (96). Furthermore, 

we observed that combined PD-1 blockade and MDSC depletion enhanced treatment efficacy 

compared to single treatment alone, which are supported by other studies (90, 97). These in vivo 

results may partly explain that a proportion of patients still has progression of disease after anti-

PD-1 treatment despite high immune gene signature expression as seen in GSE93157 and other 

cohorts (47), suggesting the coexisting other inhibitory pathways or coinhibitory signals such as 

the presence of immunosuppressive cells (MDSCs and Tregs) in the tumor microenvironment. 

Therefore, removal of coinhibitory signals, such as MDSC depletion combined with checkpoint 

inhibitors, could improve treatment efficacy as seen in our model. 

3.4 Summary 

In summary, our findings demonstrated that LPS-mediated chronic inflammation in NNK-

treated mice synergistically augmented lung tumorigenesis consistent with induction of an 

immunosuppressive microenvironment. In this instance, immunosuppression was characterized by 

MDSCs and Tregs accumulation, T-cell exhaustion, and increased PD-1/PD-L1 checkpoint 

pathway activities. PD-1 blockade demonstrated favorable treatment efficacy in inflammation-

associated lung cancer in the NNK/LPS-treated mice. Moreover, the combined PD-1 blockade (by 

anti-PD-1 antibody treatment) and MDSC depletion (by anti-Ly6G treatment) were even more 

effective at inhibiting tumor formation in mice. These findings support the concept that PD-1 

blockade combined with MSDC depletion could be a novel therapeutic approach for lung cancer 



52 

in the setting of chronic pulmonary inflammation, as is frequently present in patients with COPD. 

Furthermore, we identified valuable immune gene signatures associated with treatment responses 

and survival outcome in patients with NSCLC under either immunotherapy or conventional 

treatment, which forms the basis to use these immune gene signatures as potential biomarkers for 

clinical utility in existing or ongoing clinical trials for NSCLC treatment.  
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4.0 MMPS-Gene Signature Predicts Survival Outcome in Stage I Lung Adenocarcinoma 
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4.1 Introduction 

Despite curative surgery for early-stage lung cancer, tumor recurrence remains the main 

causes of cancer-related death (11-14). It is estimated that 18.5% of patients with stage I lung 

adenocarcinoma after complete surgical resection have been reported to have cancer recurrence 

(98). It suggests that these patients with a higher risk of recurrence following surgery can’t be 

distinguished by the current lung cancer staging system (15).  

Although adjuvant chemotherapy has been shown to decrease tumor recurrence and 

prolong survival in completely resected stage II or III NSCLC, its role in stage I disease remains 

controversial (16-18, 99-102). Previous studies showed that patients with stage I disease didn't 

benefit from adjuvant chemotherapy after surgical resection except for survival advantage for stage 

IB patients who had tumor size ≥ 4cm (99). This is probably because patients with stage I disease 

and low-risk of recurrence may not get benefit from routine adjuvant chemotherapy. However, 

patients with high-risk factor such as large tumor size (≥ 4cm) demonstrated a significant survival 

difference in favor of adjuvant chemotherapy, which highlights the need of reliable prognostic 

biomarkers to stratify high-risk stage I disease for adjuvant chemotherapy.  

Degradation of extracellular matrix and penetration of basement membrane have been shown 

to involve in tumor invasion and metastasis (103, 104). Studies have shown that the high levels of 

MMPs including MMP1, MMP2, MMP9, MMP10, and MMP12 were expressed in lung tumor 

and correlated with tumor recurrence and poor survival outcome in patients with surgically 

resected NSCLC (60, 61, 105-107). In addition, each MMP can degrade multiple substrates, and 

many substrates are degraded by multiple MMPs, suggesting that multiple MMPs may involve in 

either physiological processes or disease progression such as cancer (108). However, previous 

studies assessed individual MMP in predicting lung cancer prognosis showing inconsistent results 
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(62). In addition, their effects on survival outcome for stage I lung adenocarcinoma remain 

unknown.  

To explore the MMPs expression in lung tumors, we analyzed two publicly available lung 

adenocarcinoma datasets and discovered MMPs-enriched gene clusters. An MMPs-gene signature 

was further identified from these two MMPs-gene clusters as a potential biomarker to predict 

survival outcome in patients with stage I lung adenocarcinoma after complete resection. Finally, 

we validated the prognostic transcriptome signature in an independent cohort. Our study provided 

a valuable biomarker to guide the use of adjuvant therapeutics for patients with early-stage lung 

cancer at high-risk of recurrence.  

4.2 Results 

4.2.1  Overview of this study 

To determine whether expression of different MMPs in lung tumors could be potential 

prognostic biomarkers, we performed a series of analyses in multiple discovery and validation 

cohorts as diagrammed in Figure 14. We first analyzed two lung adenocarcinoma datasets of 

GSE31210 and TCGA as the discovery cohorts to identify MMPs-enriched gene clusters. The 

common genes between two MMPs-gene clusters were further identified as MMPs-associate gene 

signature. Finally, the utility of MMPs-gene signature to predict PFS and OS in stage I lung 

adenocarcinomas was examined in all datasets.  
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Figure 14. The schematic diagram of this study. 

  

The discovery datasets including GSE31210 and TCGA lung ADC were used to define 
MMPs-gene clusters. The 36-gene MMPs signature was further identified and applied to 
patients with stage I lung adenocarcinoma after surgical resection for survival analysis in 
discovery and validation cohorts. ADC = adenocarcinoma. 
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4.2.2  Multiple MMPs co-express in lung tumors and correlate with poor survival outcome 

In order to examine the MMPs expression in lung tumors, we analyzed gene expression of 

226 lung adenocarcinoma samples and 20 normal lung samples from GSE31210 stage I-II lung 

adenocarcinoma cohort (Table 4). We performed unsupervised hierarchical clustering heatmap of 

differentially expressed genes (absolute fold change >2.5, FDR<0.05) between tumor and normal 

tissue (Figure 15A). The result showed that a 150-gene cluster with enriched MMPs including 

MMP1, MMP3, MMP9, MMP11, MMP12, MMP13 and increased expression in tumors compared 

to normal tissue (Figure 15B). In addition, Ingenuity pathway analysis of the 150-gene cluster 

showed significant pathways all involving in MMPs (Figure 15 C). Unsupervised hierarchical 

clustering heatmap revealed four lung adenocarcinoma subgroups clustered with the 150-gene 

cluster (Figure 15D). Overall, the MMP-gene cluster expression from subgroup 1 to subgroup 4 

was consistent with the expression pattern from low to high. In addition, patients with higher gene 

signature expression correlated with worse progression-free survival (PFS) and overall survival 

(OS) than those with lower expression (Figure 15E). 
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Figure 15. MMPs-gene cluster increases expression in lung tumors and associated with 
survival outcome in GSE31210 cohort. 

 

  

  

226 lung adenocarcinoma patient samples and 20 normal lung samples from the GSE31210 
stage I-II lung adenocarcinoma cohort were analyzed. (A) Unsupervised hierarchical 
clustering heatmap of differentially expressed genes between tumor and normal lung tissue 
was performed. A 150-gene cluster with enriched MMPs was identified (square). (B) The 
MMPs including MMP1, MMP3, MMP7, MMP9, MMP11, MMP12, and MMP13 increased 
expression in tumors compared to normal lung tissue. Data shown are mean ± S.D. ****P < 
0.0001 using one-way ANOVA. (C) Ingenuity pathway analysis of the 150-gene cluster 
showed significant pathways. (D) Unsupervised hierarchical clustering heatmap revealed 
four lung adenocarcinoma subgroups clustered with 150-gene cluster (E) Kaplan–Meier 
survival analysis of patient subgroups based on the 150-gene cluster were done using the log-
rank test. 
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Table 4.Clinical Characteristics of GSE31210 Stage I-II Lung Adenocarcinoma Cohort.   

Characteristics   N (%) 

 Subjects, n 226  
  Sex, M/F, n (%) 105/121 (46/54) 
  Age, yr, mean ± SD 60 ± 7 
  pTNM stages    
   IA                               114 (50) 
   IB 54 (24) 
   II 58 (26) 

  Smoking status    
   Non-smoker  115 (51) 
   Ever-smoker  111 (49) 

  Mutation status   
   EGFR_MUT  127 (56) 
   KRAS_MUT  20 (9) 
   ALK _Fusion 11 (5) 
   KRAS/EGFR/AKL_WT                       68 (30)  
Exclude for prognosis analysis                       22 (9.7)  
Clinical–pathologic characteristics of GSE31210 lung adenocarcinoma cohort (n=226) were evaluated in 
this study. 22 cases were excluded for prognosis analysis due to incomplete resection or adjuvant therapy. 
Definition of abbreviations: ALK= Anaplastic lymphoma kinase; EGFR= epidermal growth factor 
receptor; MUT = mutation; pTNM stages = pathologic TNM stages of malignant tumors; WT = wild type. 
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4.2.3  Increased MMPs expression correlated with poor prognosis in an independent lung 

adenocarcinoma cohort 

To validate the results form GSE31210 cohort, we performed a transcriptome analysis of 

TCGA lung adenocarcinoma cohort (Table 5), which included 517 lung tumor samples and 59 

adjacent normal lung tissue samples. The unsupervised hierarchical clustering heatmap based on 

the differentially expressed genes (absolute fold change >2.5, FDR<0.05) between tumor and 

normal adjacent lung tissue (Figure 16A). Similarly, the result showed a 185-gene cluster with 

enriched MMPs including MMP1, MMP3, MMP9, MMP10, MMP11, MMP12, MMP13 and 

increased expression in tumors than adjacent normal lung tissue (Figure 16B). Ingenuity pathway 

analysis of the 185-gene cluster revealed significant pathways mainly involving in MMPs (Figure 

16C). Unsupervised hierarchical clustering heatmap revealed four lung adenocarcinoma subgroups 

clustered with the 185-gene cluster (Figure 16D). Similarly, patients with higher gene cluster 

expression correlated with worse PFS and OS than those with lower expression (Figure 16E). 
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Figure 16. MMPs increased expression in lung tumor and associated with survival outcome 
in TCGA cohort. 

 
 
 
 

  

517 lung adenocarcinoma patient samples and 59 normal adjacent lung samples from the 
TCGA lung adenocarcinoma cohort were analyzed. (A) Unsupervised hierarchical clustering 
heatmap of differentially expressed genes between tumor and normal lung tissue was 
performed. A 185-gene cluster with enriched MMPs was identified (square). (B) The MMPs 
including MMP1, MMP3, MMP9, MMP11, MMP12, and MMP13 increased expression in 
tumors than normal lung tissue. Data shown are mean ± S.D. ****P < 0.0001 using one-way 
ANOVA. (C) Ingenuity pathway analysis of the 185-gene cluster showed significant pathways. 
(D) Unsupervised hierarchical clustering heatmap revealed four lung adenocarcinoma 
subgroups clustered with 185-gene cluster. (E) Kaplan–Meier survival analysis of patient 
subgroups based on 185-gene cluster was done using the log-rank test. 
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Clinical–pathologic characteristics of TCGA lung adenocarcinoma cohort (n=517) were evaluated in this 
study. Definition of abbreviations: ALK = Anaplastic lymphoma kinase; CR = complete response; ECOG 
= Eastern Cooperative Oncology Group; EGFR= epidermal growth factor receptor; MUT = mutation; NA 
= not applicable; PD = progression disease; PFS = progression-free survival; PR = partial response; SD = 
stable disease; pTNM stages = pathologic TNM stages of malignant tumors; TCGA = the cancer genome 
atlas; WT = wild type. 

 

 
 
 
Table 5. Clinical Characteristics of TCGA Lung Adenocarcinoma Cohort. 

 
Characteristics   N (%) 

 Subjects, n 517  
  Sex, M/F, n (%) 240/277 (46/54) 
  Age, yr, mean ± SD 65 ± 13 
  pTNM stages    
   I 277 (54) 
   II 122 (24) 
   III 84 (16) 
   IV 26 (5) 

NA 8 (1)  
  Smoking status    

   Non-smoker  76 (15) 
   Ex-smoker  308 (60) 
   Current-smoker 119 (23)  
   NA 14 (2)  

  Mutation status   
   EGFR_MUT  66 (13) 
   KRAS_MUT  154 (30) 
   ALK _Fusion 5 (1) 
   KRAS/EGFR/AKL_WT 285 (55)  
   NA 7 (1)  
 ECOG   

0 62 (12) 
1 58 (11) 
2 17 (3)  
3 5 (1)  
4 2 (1) 

   NA 373 (72) 
Treatment   

 Surgery  386 (75)  
 Radiotherapy  43 (8)  
 Chemotherapy 155 (30)  
 Targeted therapy 18 (3) 

 
 Primary therapy response  

  CR 296 (57) 
  PR 6 (1) 
  SD 34 (7) 
  PD 65 (13) 
  NA 156 (22) 
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4.2.4  Development of a 36-gene MMP signature with a network analysis 

To search for the common molecular signatures associated with MMPs in these two 

cohorts, we identified 36 overlapping genes, which contained MMPs and the co-expressed genes 

present in both MMPs-gene clusters of GSE31210 and TCGA cohort, termed 36-gene MMP 

signature (Figure 17A). Ingenuity pathway analysis of the 36-gene MMP signature showed 

multiple associated pathways with significance especially in the pathway related to MMPs (Figure 

17B). The network analysis of 150-gene cluster from GSE31210 cohort showed the prediction of 

important upstream regulators such as MYBL2, E2F8, FOXM1, and FHL2 to transcriptionally 

regulate this interaction network (Figure 17C). In addition, the 185-gene cluster from the TCGA 

cohort revealed the connection of MAPK/ERK and NFκB pathway in the network (Figure 17D). 

Notably, the network analysis results showed the direct and indirect interaction between MMPs in 

both gene clusters, suggesting that these MMPS are functionally related molecules and involved 

in lung tumorigenesis (Figures 17C-D, square).  
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Figure 17. Characteristics of a 36-gene MMP signature and network analysis. 
 

 

  

(A) Venn diagram showed 36 MMP-associated genes which were present in both MMPs-
enriched gene clusters of GSE31210 and TCGA cohort. (B) Ingenuity pathway analysis of 
the 36-gene MMP signature showed pathways that are likely to be significantly involved. 
(C) Networks analysis of the 150-gene cluster from GSE31210 cohort. (D) Networks 
analysis of the 185-gene cluster from TCGA cohort. 
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4.2.5  The 36-gene MMP signature predicts poor survival outcome in GSE3120 stage I lung 

adenocarcinomas 

To determine the prognostic value of the 36-gene MMP signature in stage I lung 

adenocarcinoma, we performed the unsupervised hierarchical clustering heatmap of the gene 

signature and stage I lung adenocarcinoma from GSE31210 cohort. The result revealed three lung 

adenocarcinoma subgroups clustered with the gene signature (Figure 18A). In survival analysis, 

patients with higher gene signature expression were associated with worse PFS and OS than those 

with lower expression (Figure 18B). Importantly, the patient cluster with increased MMPs-gene 

signature expression remained an independent risk factor for PFS and OS in patients with stage I 

lung adenocarcinoma after adjustments of stage, gender, age, smoking, and mutation status (Table 

6). We also analyzed the gene mutation in these subgroups and the results revealed mutation status 

were differentially distributed between subgroups (Figure 18C). The patient subgroup with higher 

MMPs-gene signature expression showed a lower proportion of EGFR mutations but higher KRAS 

mutations and triple-negative mutations compared to those with lower expression (Figure 18C). 

Consistently, the GSEA showed that the 36-gene MMP signature enriched in EGFR wild type 

tumors, especially in KRAS-driven lung tumors (Figure 18D).  
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Figure 18. MMPs-gene signature predicts poor survival outcome in GSE31210 stage I lung 
adenocarcinoma.  
 

 

 

 

 

 

.

168 stage I lung adenocarcinoma patient samples from the GSE31210 cohort were analyzed. 
(A) Unsupervised hierarchical clustering heatmap revealed three lung adenocarcinoma 
subgroups clustered with 36-gene MMP signature. (B) Kaplan–Meier survival analysis of 
patient subgroups based on the 36-gene MMP signature was done using the log-rank test. (C) 
The distribution difference among the three subgroups in mutation status was tested by the Chi-
squared test. (D) GSEA showed the enrichment of 36-gene MMP signature based on mutation 
status in GSE31210 cohort.  
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Table 6. Univariate and Mutlivariate Analysis of Progression-free and Overall Survival in 162 stage I lung adenocarcinoma. 
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4.2.6  High 36-gene MMP signature expression predicts poor survival outcome in TCGA 

stage I lung adenocarcinomas 

We further analyzed the TCGA stage I lung adenocarcinoma using the 36-gene MMP 

signature to re-evaluate the correlated prognosis. Unsupervised hierarchical clustering heatmap 

with the gene signature and stage I cases showed four lung adenocarcinoma subgroups (Figure 

19A). In survival analysis, patients with higher MMP gene signature expression correlated with 

poor survival outcome than those with lower expression (Figure 19B). We also analyzed the gene 

mutation in these subgroups and the results revealed mutation status were differentially distributed 

between subgroups (Figure 19C). The patient subgroups with higher signature expression have a 

higher percentage of KRAS-mutant lung tumors (Figure 19C).  
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Figure 19. High MMPs-gene signature expression predicts poor survival outcome in TCGA 
stage I lung adenocarcinoma. 

 
 

 

 

4.2.7  The 36-gene MMP signature is validated in an independent lung cancer cohort  

To validate the 36-gene MMP signature in an independent lung cancer cohort, we analyzed 

70 stage I (T1N0M0) lung adenocarcinoma cases from GSE30219 cohort (Table 7). The 36-gene 

MMP gene signature was used for an unsupervised hierarchical clustering analysis on 70 stage I 

lung adenocarcinoma cases and the results suggested two distinct lung adenocarcinoma subgroups 

with high and low signature expression (Figure 20A). Consistently, patients with higher MMPs-

gene signature expression correlated with worse PFS and OS compared those with lower 

expression (Figure 20B). 

 

 

 

 

277 stage I lung adenocarcinoma patient samples from the TCGA cohort were analyzed. (A) 
Unsupervised hierarchical clustering heatmap revealed four lung adenocarcinoma subgroups 
clustered with 36-gene MMP signature. (B) Kaplan–Meier survival analysis of patient 
subgroups based on the 36-gene MMP signature done using the log-rank test. (C) The 
distribution difference among the four subgroups in mutation status was tested by the Chi-
squared test.  
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Figure 20. Validation of the 36-gene MMP signature in an independent GSE30219 lung 
cancer cohort. 
70 stage I lung adenocarcinoma patient samples from the GSE30219 cohort were 
analyzed. (A) Unsupervised hierarchical clustering heatmap revealed two lung 
adenocarcinoma subgroups by clustering analysis using a 36-gene MMP signature. (B) 
Kaplan–Meier survival analysis of patient subgroups based on the 36-gene MMP 
signature was done using the log-rank test. 
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Table 7. Clinical Characteristics of GSE30219 Stage I Lung Adenocarcinoma Cohort.   

Characteristics   N (%) 

 Subjects, n 70  
  Sex, M/F, n (%) 54/16 (77/23) 
  Age, yr, mean ± SD 61 ± 9 
  pTNM stages    
   T1N0M0                70 (100) 
Tobacco  7                
  Never-smoker                 5 (7) 
  Former-smoker                                                34 (49) 
  Active-smoker              30 (43) 
  NA               1 (1) 
TP53 mutation   
  WT 42 (60) 
  MUT 25 (36) 
  NA 3 (4) 
Adjuvant chemotherapy  
  No 68 (97) 
  Yes 0 (0) 
  NA 2 (3) 
Adjuvant radiotherapy  
  No 69 (99) 
  Yes 0 (0) 
  NA  1 (1) 
  
Clinical–pathologic characteristics of GSE30219 lung adenocarcinoma cohort (n=70) were evaluated in 
this study. Definition of abbreviations: MUT = mutation; NA = not applicable; pTNM stages = pathologic 
TNM stages of malignant tumors; WT = wild type. 
   



76 

4.3 Discussion 

4.3.1  Multiple MMPs differentially co-express in lung tumors and correlate with worse 

survival outcome 

Tumor recurrence after curative surgical resection poses a great challenge to the clinical 

management of early-stage NSCLC. Patients with stage I lung adenocarcinoma, which is the most 

histological subtype of NSCLC vary in survival outcome, suggesting the current staging system 

fails to stratify patient into subgroup based on the risk of recurrence. While several MMPs have 

been reported to correlate with recurrence and survival outcome in patients with surgically resected 

NSCLC, these results were not consistent in different studies (62). For instance, studies regarding 

the prognostic value of MMP-9 in blood or cancer tissue are contradictive, regardless of the 

detection technique. While several studies showed no prognostic value (109-113), others reported 

high MMP-9 expression correlated with poor prognosis (114-118). In addition, the prognostic 

value of MMPs in early-stage lung cancer, especially for stage I lung adenocarcinoma remains 

unclear. We hypothesized that various MMPs were differentially co-expressed in lung 

adenocarcinoma and have effects on worse survival outcome. Here, we performed unsupervised 

hierarchical clustering of DEGs between tumor and normal lung tissue in two lung 

adenocarcinoma cohorts. Our results showed MMPs-enriched gene clusters containing MMP1, 

MMP3, MMP9, MMP11, MMP12, and MMP13 in these two cohorts. Notably, these MMPs were 

clustered together and overexpressed in lung tumors compared to normal lung tissue, suggesting 

that they display similar gene expression pattern and may be functionally related during lung 

tumorigenesis. In consistent with this assumption, the network analysis also showed both direct 

and indirect interaction among MMPs and the related genes within the gene clusters. Therefore, 
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our results may partially explain the unsuccessful uses of individual MMP as a prognostic 

biomarker in predicting survival outcome because these studies probably overlooked the other co-

expressed MMPs and the related molecules that led to inconsistent results (62). Adjuvant 

chemotherapy and radiotherapy have an effect on survival outcome and may affect survival 

analysis in surgically resected NSCLC. Therefore, we performed the survival analysis of patients 

with only stage I lung adenocarcinoma who received surgical resection without adjuvant 

chemotherapy or radiotherapy from GSE31210 and GSE30219 cohorts. Despite the incomplete 

data of adjuvant therapy after surgery in TCGA cohort, the result was consistent with other cohorts 

that the higher MMPs-gene signature expression associated with recurrence and poor overall 

survival in patients with surgically resected stage I lung adenocarcinoma. 

4.3.2  MMPs-gene signature shows enrichment in KRAS-mutant lung tumors 

Our results showed that the 36-gene MMPs signature displayed enrichment in EGFR-wild 

type lung tumors, especially in those with KRAS mutation compared to ALK translocation and 

triple negative mutations containing wild type EGFR, KRAS, and ALK, suggesting that these genes 

may be associated with KRAS-driven expression signature. A study has shown that patients with 

stage I lung adenocarcinoma and KRAS mutations have a significantly higher risk of recurrence 

than those without the mutation (119). In agreement, a recent meta-analysis suggested that KRAS 

mutations are associated with a poor survival outcome, especially in patients with lung 

adenocarcinoma and stage I disease (120). These findings may be partially explained by that the 

high MMPs-gene signature expression is associated with lung adenocarcinoma with KRAS 

mutations and correlated with recurrence and worse overall survival. In addition, the MMPs-gene 

signature also showed enrichment in triple negative lung tumors with a borderline statistical 
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difference, indicating the signature is not just limited to KRAS mutations. Despite the 

heterogenicity of mutations status such as higher EGFR mutation rate in GSE31210 cohort 

compared (61%) to TCGA cohort (11%) due to ethnicity, which is consistent with the Asians with 

higher EGFR mutation rate in lung adenocarcinoma such as GSE31210 cohort conducted in Japan 

(121), the MMPs-gene signature remained robustly predict survival outcome.    

4.3.3  MMPs-gene signature is a potential prognostic biomarker  

Several MMPs inhibitors (MMPIs) have been developed and used to treat various cancer 

types in clinical trials during the late 1990s and early 2000s (122-124). Even though the MMPIs 

showed promising effects in blocking tumor growth and metastasis in preclinical studies, clinical 

trials of these drugs were not successful (125-127). Several reasons have been hypothesized for 

the explanation including the difference between human and murine biology, the non-specificity 

of MMPIs, and the drug administration at an advanced stage. Preclinical testing reflected this 

concept that MMPIs successfully inhibited early-stage cancers and hematogenous metastases but 

had less effect on large tumors (126). It has been proposed that new trials should be designed to 

use MMPIs in patients with early-stage cancers and a high-risk of metastasis after surgery or as 

neoadjuvant therapy prior to surgery (128). The MMPs-gene signature may be useful for future 

clinical trials to identify patients with early-stage lung adenocarcinoma and high risk of recurrence 

for the MMPIs treatment after curative surgery.  
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4.4 Summary 

In summary, we analyzed transcriptome data of lung adenocarcinoma cases in two 

discovery cohorts and identified MMPs-enriched gene clusters. A 36-gene MMPs signature was 

further selected, which successfully predicted the recurrence and worse overall survival in patients 

with stage I lung adenocarcinoma after curative surgery in discovery and validation cohorts. The 

MMPs-gene signature could be a potential biomarker for the proper stratification of early-stage 

lung cancer patients with a high risk of disease recurrence and worse overall survival for optimized 

follow-up schedule and the use of adjuvant therapeutics. 
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5.0 Conclusion 

In the first part of the study, we established a murine lung cancer model by treating mice 

with tobacco carcinogen NNK and repeated LPS installation, which mimics the smoking 

carcinogen-induced, and COPD-like airway inflammation promoted lung cancer. Our findings 

demonstrated that LPS-mediated chronic inflammation in NNK-treated mice caused 

immunosuppressive microenvironment, characterized by MDSCs and Tregs accumulation, T cell 

exhaustion, and upregulated PD-1/PD-L1 checkpoint pathway. Furthermore, PD-1 blockade 

showed favorable treatment efficacy in inflammation-associated lung cancer such as NNK/LPS-

treated mice compared to NNK-treated mice, and combined PD-1 blockade and MDSC depletion 

enhanced treatment efficacy. Lastly, we identified an overall immune gene signature, as well as 

the individual gene signatures of T-cell, B-cell, NK-cell, and Th1-cell, which could be potentially 

predictive and prognostic markers for NSCLC patients with immunotherapy or conventional 

treatments.  

In the second part of the study, we analyzed transcriptome data of lung adenocarcinoma 

cases in two discovery cohorts and discovered MMPs-enriched gene clusters. A 36-gene MMPs 

signature was further identified, which showed enrichment in KRAS-mutant lung tumors and 

predicted recurrence and worse overall survival in patients with stage I lung adenocarcinoma after 

curative surgery in discovery and validation cohorts. These results will be important to identify 

early-stage patients with a high risk of disease recurrence for adjuvant therapeutics such as 

chemotherapy or MMPIs in future clinical trials. 
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6.0 Strength and Limitations 

This study provides a comprehensive description of an inflammation-associated murine 

model of lung cancer induced by the synergistic action of tobacco smoke carcinogen and LPS, that 

is essential for understanding how inflammatory and immunosuppressive microenvironment 

contribute to the lung cancer progression. Our developed animal model also provides insights 

regarding the determinants of the PD-1 blockade efficacy in elevated inflammatory responses, and 

the depletion of myeloid-derived suppressor cells in significantly enhancing anti-PD-1 therapy 

efficacy. We identified valuable immune gene signatures successfully predict survival outcome of 

patients with NSCLC treated with either PD-1 blockade or conventional therapies. Furthermore, 

we are the first to use the clustering-based approach to identify MMPs-gene signature by the 

analysis of transcriptome profiling of lung adenocarcinoma cases. The MMPs-gene signature may 

be a potential biomarker to predict recurrence of patients with stage I lung adenocarcinoma after 

curative surgery and identify high-risk patients for adjuvant therapeutics in future trials.  

Several limitations exist in this study. First, TLR4 is the receptor of LPS and widely 

expressed in lung epithelial cells and immune cells such as macrophages. The mechanism is not 

clear about whether the LPS is inducing upstream genomic alterations that are driving chemokine 

expression by tumor cells leading to increased tumor inflammation, or the LPS is simply inducing 

“non-specific” inflammation, and this inflammation is in some way contributing to tumorigenesis 

and tumor progression. Second, while the MDSCs depletion by anti-Ly6G treatment showed 

decreased lung tumors and enhanced anti-PD-1 treatment, the mechanism of anti-Ly6G mediated 

anti-tumor effect the combination with anti-PD-1 treatment is not clear. Third, the sample size of 

GSE93157 is small, and we didn’t validate the immune gene signatures in other lung cancer 
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cohorts with immunotherapy due to the lack of other available public datasets. Fourth, these 

signature-based studies used different platforms, which may not be able to determine the optimal 

cut-off for the patient subgroup stratification.  

More research is needed to determine the mechanism of LPS-mediated chronic 

inflammation in lung tumorigenesis using conditional TLR4-knockout mice constructed either in 

lung epithelial cells or myeloid cells. Furthermore, the transcriptome approach such as RNA-seq 

or Single-cell RNA-seq to analyzed mice treated with IgG control, anti-PD-1, anti-Ly6G or 

combined anti-PD-1 and Ly6G may be helpful for the hypothesis-generating studies to understand 

the mechanism of the effects of MDSCs depletion on lung tumorigenesis and immunotherapy. 

Finally, these potentially predictive and prognostic gene signatures need to be validated in a larger 

lung cancer cohort for clinical application. 
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