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Abstract 

Understanding biological systems requires the knowledge of their individual components. Single 

cell RNA sequencing (scRNA-Seq) becomes a revolutionary tool to investigate cell-to-cell 

transcriptomic heterogeneity, which cannot be obtained in population-averaged measurements 

such as the bulk RNA-Seq. This dissertation focuses on developing novel statistical methods for 

analyzing droplet-based single cell data, which includes clustering methods to identify cell types 

from single or multiple individuals, and a joint clustering approach to analyze paired data from 

Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-Seq), a new state-of-art 

technology that allows the detection of cell surface proteins and transcriptome profiling within the 

same cell simultaneously. 

In the first part of this dissertation, I developed DIMM-SC, a Dirichlet mixture model 

which explicitly models the raw UMI count for clustering droplet-based scRNA-Seq data and 

produces cluster membership with uncertainties. Both simulation studies and real data applications 

demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and 

much lower clustering variability compared to other clustering methods. 

In the second part, I developed BAMM-SC, a novel Bayesian hierarchical Dirichlet 

mixture model to cluster droplet-based scRNA-Seq data from population studies. BAMM-SC 

takes raw count data as input and accounts for data heterogeneity and batch effect among multiple 
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individuals in a unified Bayesian hierarchical model framework. Extensive simulation studies and 

applications to multiple in house scRNA-Seq datasets demonstrated that BAMM-SC outperformed 

existing clustering methods with improved clustering accuracy.  

In the third part, I developed BREM-SC, a novel random effects model that jointly cluster 

the paired data from CITE-Seq simultaneously. Simulations and analysis of in-house real data sets 

were performed, which successfully demonstrated the validity and advantages of our method in 

understanding the heterogeneity and dynamics of various cell populations.   

 

Contribution to public health: 

Recent droplet-based single cell sequencing technology and its extensions have brought 

revolutionary insights to the understanding of cell heterogeneity and molecular processes at single 

cell resolution. I believe the proposed statistical approaches in this dissertation for single cell data 

will help us fully understand cell identity and function. This will promote the innovation for the 

traditional public health and medical research. 
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1.0  Introduction 

1.1 Transcriptomic Data 

RNA is essential in coding, regulation and expression of genes. For a certain gene to be expressed 

and coded into protein, messenger RNA (mRNA) is necessary, which is the RNA that conveys 

information from the genome to ribosome to instruct the coding of proteins. This step is called 

transcription. The transcriptome is the set of all RNA molecules in one cell or a population of cells 

and reflects the genes that are being actively expressed at any given time. Transcript profiling (also 

known as transcriptomics) is defined as the simultaneous quantitation of multiple mRNAs in a 

biological sample. The study of transcriptomics examines the expression level of RNAs in a given 

cell population. As many thousands of gene transcripts can be quantified, transcriptomics provides 

a way of gaining experimental information on a biological system relatively quickly. 

RNA sequencing (RNA-Seq) is one of the transcriptomics techniques. It uses next-

generation sequencing (NGS) to reveal the presence and quantity of RNA in a biological sample 

at a given moment (Wang, et al., 2009). Expression is quantified by counting the number of reads 

that mapped to each locus in the step of transcriptome assembly. Expression is quantified to study 

cellular changes in response to external stimuli, differences between healthy and diseased states, 

and other research questions. A number of organism-specific transcriptome databases have been 
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constructed and annotated to aid in the identification of genes that are differentially expressed in 

distinct cell populations. 

1.2 Overview of Single Cell RNA Sequencing 

Cells are the basic biological units of multicellular organisms. Within a cell population, individual 

cells vary in their gene expression levels, reflecting the dynamics of transcription across cells 

(Shalek, et al., 2014; Spencer, et al., 2009). Traditional bulk RNA-Seq technologies profile the 

average gene expression level of all cells in the population. In contrast, recent single cell RNA 

sequencing (scRNA-Seq) technology has the advantage in generating expression measurement for 

each individual cell. It can be used to dissect transcriptomic heterogeneity, which cannot be 

obtained in population-averaged measurements such as the bulk RNA-Seq. scRNA-Seq studies 

have led to the discovery of novel cell types and provided insights into regulatory networks during 

development. 

Commercially available, microfluidic-based scRNA-Seq approaches have limited 

throughput (Pollen, et al., 2014). Plate-based methods often require time-consuming fluorescence-

activated cell sorting (FACS) into many plates that must be processed separately (duVerle, et al., 

2016; Jaitin, et al., 2014). To overcome these challenges, the newly developed a droplet-based 

system enables parallel processing with digital counting of thousands of single cells in a short 

period of time (Macosko, et al., 2015; Zheng, et al., 2017).  

More recently, 10X Genomics has released a commercialized droplet-based Chromium 

system, which is a microfluidics platform based on Gel bead in Emulsion (GEM) technology. 

GEM generation takes place in a multiple-channel microfluidic chip that encapsulates single gel 
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beads. It is efficient and cost-effective in isolating thousands of single cells with an average 

running time of ten minutes. Reverse transcription takes place inside each droplet. Unique 

Molecular Identifiers (UMI) was introduced as a barcoding technique to reduce amplification 

noise. In the parallelized droplet based systems, samples are processed in parallel, which allow for 

the analysis of a much larger number of cells. It performs direct counting of molecule copies using 

UMI and the detection result of UMI is minimally affected by gene length, resulting in low 

transcript bias. 

1.3 Clustering Analysis 

Clustering analysis is an unsupervised study where data of similar types are put into one cluster 

while data of another types are put into different cluster. This is the process of dividing data 

elements into different groups in such a way that the elements within a group possess high 

similarity while they differ from the elements in a different group. Broadly speaking, clustering 

can be divided into two subgroups: hard clustering and soft clustering. In hard clustering, each 

data point either belongs to a cluster completely or not.  On the contrary, instead of putting each 

data point into a separate cluster, soft clustering provides a probability or likelihood of that data 

point to be in those clusters is assigned. 

Cell clustering based on transcriptomic profiles plays an important role in single cell 

analysis. Different types of cells have different gene expression profiles (Silbereis, et al., 2016). 

Thus, they can be identified by these profiles, especially by expression of certain genes that tend 

to have cell-specific expression (marker genes). Characterization of these profiles has recently 

been facilitated by scRNA-Seq techniques (Tang, et al., 2009). Clustering scRNA-Seq data 
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identifies and characterizes cell subtypes from heterogeneous tissues and enhances understanding 

of cell identity and functionality.  The identification of cell types from a mass of heterogeneous 

cells can be used as covariates in downstream differential expression analysis. However, the 

intrinsic features of droplet-based scRNA-Seq data pose great statistical and computational 

challenges, particularly in handling the large number of single cells, data sparseness of UMI count, 

and multiple levels of uncertainties in a nested experiment design. 

To cluster cells for scRNA-Seq data, unsupervised clustering methods such as K-means 

clustering, hierarchical clustering, and density-based clustering approach (Rodriguez, et al., 2014) 

have been used. Among them, a commonly used method for single cell clustering is K-means 

clustering on dimensional reduced data. The K-means (Gawad, et al., 2016) is one of the famous 

hard clustering algorithms. It takes the number of clusters as input parameter, and partitions a set 

of objects into clusters so that the resulting intra-cluster similarity is high but the inter-cluster 

similarity is low. Although K-means algorithm is significantly sensitive to the initial randomly 

selected cluster centers, it has been adapted to many scientific fields. 

Choosing a particular clustering algorithm is solely dependent on the type of the data to be 

clustered and the purpose of the clustering applications. Hard clustering algorithm like K-means 

algorithm is suitable for exclusive clustering task. In some situations, we cannot directly consider 

that data belongs to only one cluster. It may be possible that some data’s properties contribute to 

more than one cluster. For scRNA-Seq data, it is more appropriate to use soft clustering 

approaches, since a particular cell may be categorized into multiple different categories. For 

example, development often involves pluripotent cells transitioning into other cell types or in a 

series of different stages.  
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1.4 Overview of Cellular Indexing of Transcriptomes and Epitopes by Sequencing 

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) is a recently 

developed cutting-edge technology. It is the first technique that can measure single cell surface 

protein and mRNA expression level simultaneously in the same cell (Stoeckius, et al., 2017), and 

fully compatible with droplet-based single cell transcriptome sequencing (scRNA-Seq) technology 

by 10X Genomics Chromium.  

Droplet-based single cell sequencing technology and its extension has brought 

revolutionary insights to our understanding of cell heterogeneity and molecular processes. 

Embedded in the scRNA-Seq experiment, the recently developed CITE-Seq (Stoeckius, et al., 

2017) and cell hashing technologies (Stoeckius, et al., 2018) allow for immunophenotyping of 

single cells based on the expression of specific cell surface proteins together with simultaneous 

transcriptome profiling and sample origin detection within a cell. These promising and popular 

technologies provide the unprecedented opportunity for jointly analyzing transcriptome and cell-

surface proteins, and examining the complex relationship between mRNA and surface protein at 

single cell level and in a cost-effective way.  

CITE-Seq measures cellular surface protein abundance by counting the sequencing of 

oligos conjugated to antibodies directed against different cell surface proteins. Traditionally, 

transcriptomic and proteomic studies utilize different technologies. Previously, scRNA-Seq 

technologies are developed to obtain cellular transcriptomic expression level, while flow 

cytometry techniques are for cellular protein level measurements. At that time, there is no “bridge” 

to connect scRNA-Seq and flow cytometry, leading to the fact that there is no cell-matched RNA 

and protein data. However, the development of CITE-Seq technology, which uses DNA-barcoded 
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antibodies to quantitatively measure protein levels through sequenceable readout, can match 

mRNA and surface protein data with unique cell barcode for each individual cell. 

The rapid advances in single cell technologies help researchers better understand cell 

heterogeneity and identify cell types, which is a crucial step in single cell analyses, and it leads to 

the high demand of novel statistical methods and tools to analyze data with different 

characteristics. In companion with the great advances of these new technologies and their 

important applications in biomedical research, statistical and computational methods are emerging. 

Numerous methods have been recently proposed to address different aspects of single cell data 

such as clustering, differential gene analysis, and trajectory analysis. However, current statistical 

methods for jointly analyzing data from scRNA-Seq and CITE-Seq are still immature, which 

motivates us to develop some novel statistical approaches that fully utilizes the advantages and 

unique features of these single cell multi-omics data. 
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2.0  DIMM-SC: A Dirichlet Mixture Model for Clustering Droplet-Based Single Cell 

Transcriptomic Data 

Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study 

cellular and molecular processes at single cell resolution. Among existing technologies, the 

recently developed droplet-based platform enables efficient parallel processing of thousands of 

single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). 

Despite the technology advances, statistical methods and computational tools are still lacking for 

analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering 

large-scale single cell transcriptomic data are still under-explored. 

I developed DIMM-SC, a Dirichlet mixture model for clustering droplet-based single cell 

transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq 

experiments and characterizes variations across different cell clusters via a Dirichlet mixture prior. 

I performed comprehensive simulations to evaluate DIMM-SC and compared it with existing 

clustering methods such as K-means, CellTree and Seurat. In addition, I analyzed public scRNA-

Seq datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic 

sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation 

studies and real data applications demonstrated that overall, DIMM-SC achieves substantially 

improved clustering accuracy and much lower clustering variability compared to other existing 

clustering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify 

the clustering uncertainty for each single cell, facilitating rigorous statistical inference and 

biological interpretations, which are typically unavailable from existing clustering methods. 
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2.1 Introduction 

Single cell RNA sequencing (scRNA-Seq) technologies have advanced rapidly in recent years 

(Gawad, et al., 2016). Among them, the newly developed droplet-based technologies have 

generated great interests (Macosko, et al., 2015; Zheng, et al., 2017). They are able to measure the 

transcriptome of thousands of single cells simultaneously in a short time period and at a relatively 

low cost (Macosko, et al., 2015; Zheng, et al., 2016). More attractively, droplet-based technologies 

utilize Unique Molecular Identifier (UMI) to annotate the 3’ end of each transcript in order to 

reduced PCR amplification bias, increase transcript capture efficiency, and substantially minimize 

batch effect (Islam, et al., 2014; Kivioja, et al., 2012). More recently, 10X Genomics has released 

a commercialized droplet-based Chromium system, which is efficient and cost-effective in 

isolating thousands of single cells with average running time of ten minutes based on the Gel bead 

in EMulsion (GEM) technology. They used this platform to comprehensively characterize and 

profile peripheral blood mononuclear cells (PBMC) (Zheng, et al., 2017). Harnessing the power 

of these exciting new technologies, droplet-based scRNA-Seq has brought revolutionary insights 

to understand cellular and molecular processes at single cell resolution.  

One important question in the analysis of scRNA-Seq data is to identify and characterize 

cell subtypes from heterogeneous tissues, which is essential to fully understand cell identity and 

cell function. Clustering methods have been extensively studied for many areas in the past decades. 

For example, unsupervised clustering methods such as K-means clustering, hierarchical clustering, 

and Adaptive Density Peak (ADP) clustering (Rodriguez and Laio, 2014; Wang and Xu, 2015), 

can be applied to droplet-based scRNA-Seq data after certain data transformation. In addition, 

tailored methods such CellTree and Seurat have been proposed to analyze scRNA-Seq data with 

the motivation from early generation platforms (duVerle, et al., 2016; Jaitin, et al., 2014). 
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However, clustering methods tailored to droplet-based scRNA-Seq data are largely lagging behind. 

Although existing clustering methods can be adapted, there are at least three key limitations of 

using those methods to cluster droplet-based scRNA-Seq data. First of all, most existing methods 

are developed for continuous data (e.g. Fragments Per Kilobase of transcript per Million (FPKM) 

or log-transformed count data) while droplet-based scRNA-Seq data consist of the discrete count 

of the unique UMIs, which are direct measurements of transcript copies from each gene. 

Converting UMI counts into continuous measure will alter the straightforward interpretation of 

UMI, thus it is more appealing and reasonable to directly model the count data. Second, most 

existing methods are designed for the early generation of scRNA-Seq technologies that measure 

transcriptome across a relatively small number of single cells. It is unclear how these methods can 

be scaled up to cluster droplet-based scRNA-Seq data, which usually contain thousands of single 

cells. Last but not the least, most existing methods only provide a “hard” cluster membership for 

each cell without statistical uncertainty quantification. In order to conduct rigorous statistical 

inference and achieve reliable data interpretation, different sources of uncertainties in droplet-

based scRNA-Seq data need to be explicitly taken into consideration in the clustering analysis.  

To fill in these gaps, I proposed DIMM-SC, a Dirichlet mixture model for clustering 

droplet-based scRNA-Seq data. DIMM-SC explicitly models both the within-cluster and between-

cluster variability of the UMI count data, leading to rigorous quantification of clustering 

uncertainty for each single cell. I also implemented an efficient expectation-maximization (E-M) 

algorithm (Dempster, et al., 1977) for fast convergence. Furthermore, I proposed different 

strategies for initial value selection to ensure algorithm robustness. In the following sections, I first 

introduce the unique features of droplet-based scRNA-Seq data, as well as the details of the 

DIMM-SC method. Next, I compare the performance of DIMM-SC with three popular clustering 
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methods, including K-means clustering, CellTree and Seurat, in both simulation studies and real 

data applications. K-means is one of the most popular clustering methods and has been used in the 

first 10X genomics publication (Zheng, et al., 2017). CellTree has been recently developed to 

cluster scRNA-Seq data based on Latent Dirichlet Allocation (LDA) (duVerle, et al., 2016). Seurat 

is a deterministic approach which relies on a graph-based clustering approach (Satija, et al., 2015).  

2.2 Methods  

 Data description 

The droplet-based scRNA-Seq data can be summarized into a UMI count matrix (Table 1), in 

which each row represents one gene and each column represents one single cell. Each entry in the 

UMI count matrix is the number of transcripts (unique UMIs) for one gene in one single cell. 

Compared to the data generated from early generation of scRNA-Seq technologies, droplet-based 

scRNA-Seq data have three important features (Gawad, et al., 2016; Stegle, et al., 2015; Zheng, et 

al., 2017). First, each experiment can generate thousands of cells, which dramatically increase the 

data dimension and computational burden. Second, the use of UMI can reduce PCR amplification 

bias and quantify the copies of captured molecules. Droplet-based sequencing protocol amplifies 

the 3’ end of the transcript, so the number of UMI is independent of the total transcript length. The 

normalization method used in RPKM and FPKM, which adjusts for total transcript length, is 

invalid for analyzing droplet-based scRNA-Seq data. Therefore, the raw count data should be 

directly modeled to retain their biological interpretations. Third, the UMI count matrix is extremely 

sparse, and thus violates the statistical assumption of many existing clustering methods. Figure 18 



11 

(Appendix A) lists the empirical distribution of the UMI counts for a few representative genes, 

demonstrating the non-ignorable proportion of zeroes for different levels of expression. Pre-

selection of informative single cells and informative genes are necessary before the downstream 

clustering analysis. After clustering analysis, the results are usually visualized by a t-distributed 

stochastic neighbor embedding (t-SNE) approach (van der Maaten and Hinton, 2008), which 

embeds high-dimensional transcriptome data into a two-dimensional scatter plot. Note that t-SNE 

is a visualization tool, and it is not intended to be used for clustering scRNA-Seq data. 

 

Table 1. An example of the raw UMI count table from droplet-based scRNA-Seq data 

 Cell 1 Cell 2 Cell 3 … Cell 2,000 
Gene1 0 0 0 … 0 
Gene2 1 0 1 … 0 
Gene3 23 12 9 … 3 

… … … … … … 
Gene 10,000 22 6 7 9 3 

 

 Statistical model 

I start with a matrix 𝑿𝑿, of which the element 𝑋𝑋𝑖𝑖𝑖𝑖 represents the number of unique UMIs for gene 𝑖𝑖 

in cell 𝑗𝑗 where 𝑖𝑖 runs from 1 to the total number of genes 𝐺𝐺, and 𝑗𝑗 runs from 1 to the total number 

of cells 𝐶𝐶 (as showed in Table 1). 𝑋𝑋𝑖𝑖𝑖𝑖 is the count for the absolute number of transcripts. I denote 

the 𝑗𝑗 th column of this matrix, which gives the number of unique UMIs in the 𝑗𝑗 th single cell, by a 

vector 𝒙𝒙𝒋𝒋 = �𝑥𝑥1𝑗𝑗 , 𝑥𝑥2𝑗𝑗 , … , 𝑥𝑥𝐺𝐺𝐺𝐺� , where 𝑗𝑗 = 1, … ,𝐶𝐶 . I assume that 𝒙𝒙𝒋𝒋  is generated from a 

multinomial distribution with parameter vector 𝒑𝒑𝒋𝒋 = (𝑝𝑝1𝑗𝑗,𝑝𝑝2𝑗𝑗 , … ,𝑝𝑝𝐺𝐺𝐺𝐺). The element of 𝒑𝒑𝒋𝒋, 𝑝𝑝𝑖𝑖𝑖𝑖, is 
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the probability that a unique UMI count taken from cell 𝑗𝑗 belongs to gene 𝑖𝑖. This gives a likelihood 

for each cell: 

𝑃𝑃�𝒙𝒙𝒋𝒋�𝒑𝒑𝒋𝒋� = 𝑇𝑇𝑗𝑗!
∏ 𝑥𝑥𝑖𝑖𝑖𝑖!𝐺𝐺
𝑖𝑖=1

𝑝𝑝1𝑗𝑗
𝑥𝑥1𝑗𝑗𝑝𝑝2𝑗𝑗

𝑥𝑥2𝑗𝑗 … 𝑝𝑝𝐺𝐺𝐺𝐺
𝑥𝑥𝐺𝐺𝐺𝐺 , 

where 𝑇𝑇𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  is the total number of unique UMIs for the 𝑗𝑗 th cell. The joint likelihood of all 

𝐶𝐶 cells is the product of the likelihood for each cell: ∏ 𝑃𝑃�𝒙𝒙𝒋𝒋�𝒑𝒑𝒋𝒋�𝐶𝐶
𝑗𝑗=1 . 

In a Bayesian framework, I need to define a prior distribution for the multinomial parameter 

probability vector 𝒑𝒑𝒋𝒋 . For multinomial distribution, a commonly used conjugate prior is the 

Dirichlet distribution. Specifically, I assume that the proportion 𝒑𝒑𝒋𝒋 = (𝑝𝑝1𝑗𝑗,𝑝𝑝2𝑗𝑗, … , 𝑝𝑝𝐺𝐺𝐺𝐺) follows a 

Dirichlet prior distribution 𝐷𝐷𝐷𝐷𝐷𝐷(𝜶𝜶) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐺𝐺): 

𝑃𝑃�𝒑𝒑𝒋𝒋�𝜶𝜶� =
1

𝐵𝐵(𝜶𝜶)
𝑝𝑝1𝑗𝑗
𝛼𝛼1−1𝑝𝑝2𝑗𝑗

𝛼𝛼2−1 … 𝑝𝑝𝐺𝐺𝐺𝐺
𝛼𝛼𝐺𝐺−1, 

where 𝐵𝐵(𝜶𝜶) is Beta function with parameter 𝜶𝜶 = (𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐺𝐺). All the elements in 𝜶𝜶 are strictly 

positive (𝛼𝛼𝑖𝑖 > 0). The mean and variance of 𝑝𝑝𝑖𝑖𝑖𝑖  are 𝛼𝛼𝑖𝑖/|𝜶𝜶| and 𝛼𝛼𝑖𝑖(|𝜶𝜶| − 𝛼𝛼𝑖𝑖)/(|𝜶𝜶|2(|𝜶𝜶| + 1)), 

respectively, where |𝜶𝜶| = 𝛼𝛼1 + 𝛼𝛼2 + ⋯+ 𝛼𝛼𝐺𝐺 . A large |𝜶𝜶|  gives small variance about the 

proportions 𝒑𝒑𝒋𝒋 , while a small |𝜶𝜶|  leads to widely spread 𝒑𝒑𝒋𝒋 ’s. When the cell population is 

homogeneous, I assume that 𝒑𝒑𝒋𝒋 ’s all follow the same prior distribution 𝐷𝐷𝐷𝐷𝐷𝐷(𝜶𝜶), and the full 

likelihood function is as follows: 

𝑃𝑃�𝒙𝒙𝒋𝒋�𝜶𝜶) = �𝑃𝑃�𝒙𝒙𝒋𝒋�𝒑𝒑𝒋𝒋�𝑃𝑃�𝒑𝒑𝒋𝒋�𝜶𝜶� 𝑑𝑑𝒑𝒑𝒋𝒋 =
𝑇𝑇𝑗𝑗!

∏ 𝑥𝑥𝑖𝑖𝑖𝑖!𝐺𝐺
𝑖𝑖=1

��
Γ�𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖�
Γ(𝛼𝛼𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
Γ(|𝜶𝜶|)

Γ�𝑇𝑇𝑗𝑗 + |𝜶𝜶|�
 

I then assume that the cell population consists of 𝐾𝐾 distinct cell types, where 𝐾𝐾 can be pre-defined 

according to prior biological knowledge or can be estimated through model fitting. To provide a 

more flexible modeling framework and allow for unsupervised clustering, I extend the 

aforementioned single Dirichlet prior to a mixture of 𝐾𝐾 Dirichlet distributions, indexed with 𝑘𝑘 =
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1, … ,𝐾𝐾, each with parameter 𝜶𝜶(𝑘𝑘). If cell 𝑗𝑗 belongs to the 𝑘𝑘 th cell type, its gene expression profile 

𝒑𝒑𝒋𝒋 follows a cell-type-specific prior distribution 𝐷𝐷𝐷𝐷𝐷𝐷(𝜶𝜶(𝑘𝑘)). The full likelihood function is then 

obtained by multiplying the Dirichlet mixture prior by the multinomial likelihood. 

 E-M algorithm for fitting the mixture of Dirichlet prior 

I now use a latent variable vector 𝒁𝒁 with elements 𝑧𝑧𝑗𝑗 to represent the cell type label for the cell 𝑗𝑗. 

This allows me to maximize the log posterior distribution using the E-M algorithm (Dempster, 

1977).  I have: 

𝑃𝑃�𝒙𝒙𝒋𝒋�𝑧𝑧𝑗𝑗 = 𝑘𝑘,𝜶𝜶(𝑘𝑘)) ∝ ��
Γ�𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖�
Γ(𝛼𝛼𝑖𝑖𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
Γ��𝜶𝜶(𝑘𝑘)��

Γ�𝑇𝑇𝑗𝑗 + �𝜶𝜶(𝑘𝑘)��
 

and   𝑃𝑃�𝑧𝑧𝑗𝑗 = 𝑘𝑘� = 𝜋𝜋𝑘𝑘, where 𝜋𝜋𝑘𝑘 is the proportion of the 𝑘𝑘 th cell type among all cells. I can treat 

𝑧𝑧𝑗𝑗 as missing data, and use the E-M algorithm to estimate 𝛼𝛼1𝑘𝑘,𝛼𝛼2𝑘𝑘, … ,𝛼𝛼𝐺𝐺𝐺𝐺 and 𝜋𝜋𝑘𝑘. The complete 

log likelihood is 

log�𝑃𝑃(𝒙𝒙𝒋𝒋, 𝑧𝑧𝑗𝑗 = 𝑘𝑘)
𝐶𝐶

𝑗𝑗=1

= �𝐼𝐼(𝑧𝑧𝑗𝑗 = 𝑘𝑘)
𝐶𝐶

𝑗𝑗=1

log ���
Γ�𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖�
Γ(𝛼𝛼𝑖𝑖𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
Γ(|𝜶𝜶(𝑘𝑘)|)

Γ(𝑇𝑇𝑗𝑗 + |𝜶𝜶(𝑘𝑘)|)
� 

The formula for updating 𝛼𝛼1𝑘𝑘,𝛼𝛼2𝑘𝑘, … ,𝛼𝛼𝐺𝐺𝐺𝐺 is derived from the Minka’s fixed-point iteration for 

the leaving-one-out likelihood (Minka, 2000): 

𝛼𝛼�𝑖𝑖𝑖𝑖
(𝑡𝑡+1) = 𝛼𝛼𝑖𝑖𝑖𝑖

(𝑡𝑡)
∑ 𝛿𝛿𝑗𝑗𝑗𝑗�𝑥𝑥𝑖𝑖𝑖𝑖/(𝑥𝑥𝑖𝑖𝑖𝑖 − 1 + 𝛼𝛼𝑖𝑖𝑖𝑖

(𝑡𝑡))�𝐶𝐶
𝑗𝑗=1

∑ 𝛿𝛿𝑗𝑗𝑗𝑗 �𝑇𝑇𝑗𝑗/(𝑇𝑇𝑗𝑗 − 1 + |𝜶𝜶(𝑘𝑘)
(𝑡𝑡) |)�𝐶𝐶

𝑗𝑗=1

. 

We repeat the above steps until the convergence of log likelihood or a maximum number of 

iterations is reached (see detailed algorithm in Appendix A). 
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 Selection of the number of clusters and initial values 

To implement DIMM-SC, it is critical to select the total number of clusters and the initial values 

for the E-M algorithm. Specially, the number of clusters 𝐾𝐾 can be defined with prior knowledge 

or can be selected from model selection criteria such as AIC or BIC (Akaike, 1974; Schwarz, 

1978). Meanwhile, there are many methods to determine the initial values of 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐺𝐺  in the 

E-M algorithm for fitting the Dirichlet mixture model. For example, Ronning (1989) suggests to 

estimate ∑ 𝛼𝛼𝑖𝑖𝐺𝐺
𝑖𝑖=1  by 

𝑙𝑙𝑙𝑙𝑙𝑙� 𝛼𝛼𝑖𝑖
𝐺𝐺

𝑖𝑖=1
=

1
𝐺𝐺 − 1

�𝑙𝑙𝑙𝑙𝑙𝑙 �
𝐸𝐸(𝑝𝑝𝑖𝑖)�1 − 𝐸𝐸(𝑝𝑝𝑖𝑖)�

𝑣𝑣𝑣𝑣𝑣𝑣 (𝑝𝑝𝑖𝑖)
− 1�

𝐺𝐺−1

𝑖𝑖=1

 

where 𝐸𝐸(𝑝𝑝𝑖𝑖) can be approximated by (∑ 𝑥𝑥𝑖𝑖𝑖𝑖/ 𝑇𝑇𝑗𝑗)/𝐶𝐶𝐶𝐶
𝑗𝑗=1 ) (Ronning, 1989). An alternative approach 

is to estimate the initial values using a method of moment estimates proposed by Weir and Hill 

(Weir and Hill, 2002). In this paper, I applied the K-means clustering to obtain the initial clustering 

results, and then used either the Ronning’s method or the Weir and Hill’s method to obtain the 

initial estimates of Dirichlet parameter 𝛼𝛼. 
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2.3 Simulation Studies 

I performed comprehensive simulation studies to compare DIMM-SC with three existing 

clustering methods, including K-means clustering, Seurat and CellTree. The first two are 

deterministic approaches and the third one is a probabilistic approach.  

In the simulation set-up, the UMI count matrix was sampled from the proposed Dirichlet 

mixture model. Specially, for a fixed total number of cell clusters K, I first pre-defined the values 

of 𝛼𝛼(𝑘𝑘) = �𝛼𝛼1(𝑘𝑘),𝛼𝛼2(𝑘𝑘), … ,𝛼𝛼𝐺𝐺(𝑘𝑘)� for the 𝑘𝑘 th cell cluster, and then sampled the proportion 𝑝𝑝𝑗𝑗 =

(𝑝𝑝1𝑗𝑗,𝑝𝑝2𝑗𝑗, … ,𝑝𝑝𝐺𝐺𝐺𝐺) from a Dirichlet distribution 𝐷𝐷𝐷𝐷𝐷𝐷�𝛼𝛼(𝑘𝑘)�. Next, I sampled the UMI count vector 

𝒙𝒙𝒋𝒋 for the 𝑗𝑗 th cell from the multinomial distribution 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑗𝑗 ,𝒑𝒑𝒋𝒋). I fixed 𝑇𝑇𝑗𝑗 as a constant 

across all cells. 

In the simulation studies, I considered the following seven clustering methods. (1) DIMM-

SC + K-means + Ronning (hereafter referred as DIMM-SC-KR), in which I used the K-means 

clustering to obtain the initial values of clustering labels and then used the Ronning’s method to 

estimate initial values of 𝜶𝜶; (2) DIMM-SC + K-means + Weir (hereafter referred as DIMM-SC-

KW), in which I used the K-means clustering to obtain the initial values of clustering labels and 

used the Weir and Hill’s method to estimate initial values of 𝜶𝜶; (3) DIMM-SC + random + Ronning 

(hereafter referred as DIMM-SC-RR), in which I randomly selected the initial values of clustering 

labels and used the Ronning’s method to estimate initial values of 𝜶𝜶; (4) DIMM-SC + random + 

Weir (hereafter referred as DIMM-SC-RW), in which I randomly selected the initial values of 

clustering labels and used the Weir and Hill’s method to estimate initial values of 𝜶𝜶; (5) K-

meaning clustering; (6) CellTree, a LDA-based approach to cluster scRNA-Seq data; and (7) 

Seurat. To perform the simulation analysis using Seurat, I followed the tutorial instructions from 
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the Seurat website and used all genes as input to perform Principal Component Analysis (PCA). 

After that, I followed the “jackstraw” procedure implemented in Seurat, and identified first ten 

PCs for their downstream algorithm. I fixed the number of PCs in all the simulation runs under 

each scenario. Since Seurat requires users to self-specify a resolution parameter with increased 

values leading to a greater number of clusters, the clustering results are very sensitive to this 

resolution parameter. Seurat suggests that setting this resolution parameter between 0.6-1.2 

typically returns good results for datasets of around 3,000 cells, so I ran Seurat using resolution 

parameter with 0.6, 0.8, 1.0 and 1.2, and chose the one with the highest adjusted rand index (ARI) 

value in each simulation setting. Note that ARI is a commonly-used metric of the similarity 

between the estimated clustering labels and the true clustering labels (Rand, 1971). 

I used the signal-to-noise ratio (SNR) to measure the magnitude of difference among 

different cell clusters. When 𝐾𝐾 = 2, SNR is defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆 =
�𝜶𝜶(1) − 𝜶𝜶(2)�1

𝐺𝐺�𝑉𝑉𝑉𝑉𝑉𝑉�𝜶𝜶(1)� + 𝑣𝑣𝑣𝑣𝑣𝑣(𝜶𝜶(2))
, 

where |.|1 is the L1 norm of a vector. I performed comprehensive simulations to investigate how 

different SNRs, different sequencing depths, different total numbers of cells/genes/clusters, and 

different proportions of noisy genes affect the clustering results. To evaluate the performance of 

DIMM-SC and other competing clustering methods, I used the following two metrics: (1) 

clustering accuracy measured by ARI and (2) Stability (the standard deviation of ARI). I expect a 

good clustering method should achieve both high accuracy and high stability.  
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2.4 Results 

 Simulation studies 

Figure 1A shows the boxplots of ARI for seven clustering methods across 100 simulations at 

different SNRs. Four DIMM-SC based methods (KR, KW, RR, RW) achieved comparable 

performance, which produced higher accuracy and lower variability than K-means clustering, 

Seurat and CellTree. When SNR is high (i.e., substantial differences among cell clusters), all seven 

methods performed well. However, when SNR is low (i.e., different cell clusters are similar), K-

means clustering, Seurat and CellTree produced less accurate and more variable clustering results, 

while four DIMM-SC based methods still performed well. 

Figure 1B shows the boxplots of ARI for seven clustering methods across 100 simulations, 

when the total number of clusters is 2, 3, 4, 5 and 8 respectively. The four DIMM-SC based 

methods, especially the two methods with randomly selected initial cluster labels (RR and RW), 

achieved better clustering accuracy (i.e., higher ARI) with more number of clusters. K-means 

clustering has high variability for more clusters, since it is a deterministic procedure and is more 

likely to end at a local optimum when the total number of clusters increases. CellTree performed 

worse for more clusters, partially due to the over-parameterized LDA model and lack of fit to 

highly heterogeneous data. Seurat was run under different default recommended parameters and 

the performance varies with different parameters.  

Figure 1C~F list the boxplots of ARI for seven clustering methods across 100 simulations, 

for different number of genes (Figure 1C), different number of cells (Figure 1D), different 

sequencing depths (Figure 1E) and different number of informative genes (Figure 1F) (i.e., 

differentially expressed genes among clusters), respectively. Consistent across all these four 
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scenarios, more information (i.e., more genes, more cells, higher sequencing depths and more 

informative genes) lead to higher clustering accuracy and lower clustering variability. Four 

DIMM-SC based clustering methods consistently outperformed K-means clustering, Seurat and 

CellTree in all these simulation settings, suggesting the advantage of DIMM-SC. 
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Figure 1. Boxplots of ARI for seven clustering methods in simulation studies 

Boxplots of ARI investigating how different SNRs (A), number of clusters (B), number of genes (C), number of cells (D), sequencing depth (E) and the number 
of informative genes (F) affect clustering results. 
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 Real data analysis: the publicly available 10X scRNA-Seq data 

2.4.2.1  In silicon studies based on purified cell types from published scRNA-Seq data 

To illustrate the application of DIMM-SC to real datasets, I first benchmarked our method against 

pre-defined measures in capturing true cell-to-cell similarities on published single-cell datasets. 

10X Genomics has made eleven datasets from purified cell types available to public (Zheng, et al., 

2017). Among which, over 10,000 cells were detected in most experiments. Here I considered two 

scenarios: (1) a simple case with cells from three highly distinct cell types (CD56+ NK cells, 

CD19+ B cells, and CD4+/CD25+ regulatory T cells); (2) a challenging case with cells from three 

similar cell types (CD8+/CD45RA+ naive cytotoxic T cells, CD4+/CD25+ regulatory T cells, and 

CD4+/CD45RA+/CD25- naive T cells) (Table 2). For visualization, I used the t-SNE algorithm to 

project the data into a two-dimensional space so that certain hidden structures in the data can be 

depicted intuitively (see the t-SNE visualization in Figure 19 and Figure 20 (Appendix A)). 

I ran DIMM-SC, K-means clustering, CellTree and Seurat 50 times for both two scenarios. 

In the simple case, at each time, I randomly selected 1,000 CD56+ NK cells, 2,000 CD19+ B cells 

and 3,000 CD4+/CD25+ regulatory T cells from the 10X Genomics datasets, and combined them 

together. Thus the total number of cells for clustering is 6,000. Similarly, in the challenging case, 

1,000 CD8+/CD45RA+ naive cytotoxic T cells, 2,000 CD4+/CD25+ regulatory T cells and 3,000 

CD4+/CD45RA+/CD25- naive T cells were randomly selected at each time.  

Cell types in each dataset were known as a priori and were further validated in the 

respective follow-up studies, providing a reliable gold standard to benchmark the clustering 

performance for each method. I compared the performance of four DIMM-SC methods with K-

means clustering, CellTree and Seurat, in terms of clustering accuracy and stability. 
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In the simple case, I applied all these seven clustering methods on the top 100 variable 

genes ranked by their standard error among all cells. Table 3 shows that all methods provided good 

clustering results. Two DIMM-SC methods with randomly selected initial cluster labels (RR and 

RW) slightly outperformed K-means clustering in terms of accuracy and variability. For the 

challenging case, unlike what I did in the simple case, I chose different numbers of top variable 

genes. Table 3 and Figure 21 (Appendix A) show that the ARIs of CellTree and Seurat were lower 

than other methods when the total number of genes used for clustering was greater than 200. 

DIMM-SC slightly outperformed K-means clustering in terms of accuracy. K-means clustering 

made a great leap forward when the total number of genes increased to 300. However, there is no 

further improvement of ARI with K-means clustering when top 500 or more variable genes were 

used. Since in the challenging case, CD4+/CD25+ regulatory T cells and CD4+/CD45RA+/CD25- 

naive T cells were similar to each other, more and more noisy genes were included in the analysis 

when we increased the total number of genes, which undermined the performance of K-means 

clustering. Note that K-means clustering and Seurat were only able to provide a deterministic 

clustering label, while DIMM-SC and CellTree can additionally provide the probability that each 

cell belongs to each cluster. 
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Table 2. Total number of cells, genes and validated populations for two scenarios 

Scenario #Genes #Cell Cell type 
 

Simple 
 

   32,738 
8,385 CD56+ NK cells 

10,085 CD19+ B cells 
10,283 CD4+/CD25+ regulatory T cells 

 
Challenging 

 
   32,738 

11,953 CD8+/CD45RA+ naive cytotoxic T cells 
10,263 CD4+/CD25+ regulatory T cells 
10,479 CD4+/CD45RA+/CD25- naive T cells 

 

 

Table 3. Performance of clustering in the simple case and the challenging case 

#Genes DIMM-SC-KR DIMM-SC-KW DIMM-SC-RR DIMM-SC-RW K-means clustering CellTree Seurat 
The simple case 

100 0.952 (0.114) 0.951 (0.118) 0.982 (0.052) 0.990 (0.002) 0.951 (0.129) 0.983 (0.002) 0.983 (0.003) 
The challenging case 

100 0.351 (0.140) 0.357 (0.140) 0.368 (0.140) 0.408 (0.128) 0.182 (0.012) 0.278 (0.018) 0.395 (0.027) 
200 0.558 (0.014) 0.559 (0.014) 0.558 (0.014) 0.559 (0.013) 0.283 (0.050) 0.389 (0.022) 0.410 (0.017) 
300 0.563  (0.013) 0.564 (0.013) 0.563 (0.013) 0.563 (0.013) 0.526 (0.063) 0.419 (0.023) 0.413 (0.022) 
400 0.571 (0.014) 0.571 (0.014) 0.566 (0.040) 0.571 (0.014) 0.554 (0.014) 0.404 (0.050) 0.429 (0.012) 
500 0.572 (0.015) 0.572 (0.015) 0.572 (0.015) 0.572 (0.015) 0.559 (0.014) 0.397 (0.067) 0.435 (0.011) 
800 0.562 (0.041) 0.562 (0.041) 0.557 (0.057) 0.556 (0.056) 0.557 (0.041) 0.365 (0.078) 0.445 (0.011) 
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2.4.2.2 Real data analysis on the PMBC 68K dataset 

To examine how DIMM-SC is applicable to large-scale dataset, I applied DIMM-SC-KR on the 

PBMC 68K dataset, which consists of >68,000 single cells. Among all 32,738 genes, I selected 

the top 1,000 genes with the highest variations. Figure 2A shows a clear separation of cell types 

as I expected. 11 purified sub-populations of PBMCs were used as the reference to identify the 

cell type of each single cell from the PBMC 68K dataset. I used the labels from cell classification 

analysis as the approximated truth. In this analysis, each cell was assigned to the purified 

population which has the highest correlation with its gene expression profile. I calculated ARIs 

between the true labels and inferred ones obtained from K-means clustering, CellTree, Seurat and 

DIMM-SC. The ARIs of K-means clustering, CellTree and DIMM-SC are 0.32, 0.28 and 0.41, 

respectively. To perform the analysis using Seurat, I used the default setting of Seurat to select the 

top 1,657 variable genes, and picked the first 22 PCs for the clustering analysis. The ARI of Seurat 

is 0.31, suggesting that DIMM-SC performed the best in the PMBC 68K dataset. Additionally, I 

highlighted vague cells in the t-SNE projection (Figure 2B), where vague cells are defined as cells 

with the largest posterior cluster-specific probability < 0.95. As shown in Figure 2B, most of vague 

cells are located at the boundary of different clusters, which reassuring the validity of the clustering 

results. 
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Figure 2. The t-SNE projection of 68K PBMCs, colored by the DIMM-SC clustering assignment and the 
illustration of vague cells with the largest posterior probability < 0.95 

  

2A 

2B 
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2.4.2.3 Analysis of the in-house scRNA-Seq data from systemic sclerosis study 

Collaborating with investigators at the University of Pittsburgh, I am in the first place to use the 

10X Chromium system to generate scRNA-Seq data in order to study systemic sclerosis. I applied 

DIMM-SC to the scRNA-Seq data of skin tissue collected from a systemic sclerosis patient. 

Starting from a UMI count matrix for 1,180 cells generated by the 10X genomics Cellranger 

pipeline, I first removed cells that had less than 300 genes expressed and filtered noisy genes that 

were expressed in less than five cells, then we extracted the top 1,000 highly variable genes based 

on their standard deviations. I set the total number of clusters to be six based on our prior 

knowledge and utilized the KR method to generate the initial cluster labels and the initial values 

for the parameter 𝜶𝜶. The six cell clusters from DIMM-SC included 92, 89, 45, 156, 469 and 271 

cells, respectively. Figure 3 shows the t-SNE projection of the skin cells, colored by cluster labels 

inferred by DIMM-SC, and the dashed circles represent potential subtypes of skin cells according 

to the expressions of cell type specific markers. It is interesting that fibroblast cells exhibit two 

clusters, suggesting possible subtypes.  For each cell cluster, I identified top marker genes that 

were differentially expressed between the specified cluster and all the other clusters. I recognized 

some subtypes of skin cells for the identified clusters based on the biological knowledge of cell 

specific markers, such as pericyte cells specifically expressed gene RGS5, T cells specifically 

expressed gene IL32, endothelial cells specifically expressed gene VWF, fibroblast cells 

specifically expressed gene COL1A1, basal keratinocyte cells specifically expressed gene KRT14 

and gene KRT5, and suprabasal keratinocyte cells specifically expressed gene KRT1 and gene 

KRT10. 
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Figure 3. The t-SNE projection of cells from systemic sclerosis skin tissue, colored by the DIMM-SC 
clustering assignment 
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 Model fitting diagnosis 

An important step in applying model-based approach is to examine whether the proposed statistical 

model fits the real data well. In Dirichlet distribution, the marginal distribution of 𝒑𝒑 is a Beta 

distribution. In addition, the mean of 𝑝𝑝𝑖𝑖, 𝛼𝛼𝑖𝑖𝑖𝑖/�𝜶𝜶(𝒌𝒌)�, is approximately proportional to its variation 

𝛼𝛼𝑖𝑖𝑖𝑖��𝜶𝜶(𝒌𝒌)� − 𝛼𝛼𝑖𝑖𝑖𝑖�/(�𝜶𝜶(𝒌𝒌)�
2
��𝜶𝜶(𝒌𝒌)� + 1�). After applying DIMM-SC to the PBMC 68K scRNA-

Seq dataset, I performed the following two analyses to evaluate the goodness of fit of the model. I 

first collected cells that belong to the same cell type using datasets of purified sub-populations of 

PBMCs from 10X Genomics, and then plotted the empirical marginal distribution of proportion 

𝑝𝑝𝑖𝑖 for top variable genes. I compared such empirical distribution with the marginal distribution 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝛼𝛼𝑖𝑖𝑖𝑖, �𝜶𝜶(𝑘𝑘)� − 𝛼𝛼𝑖𝑖𝑖𝑖� at 𝛼𝛼(𝑘𝑘) = 𝛼𝛼�(𝑘𝑘), where 𝛼𝛼�(𝑘𝑘) was estimated from the real scRNA-Seq data. 

Figure 22 (Appendix A) shows that the fitted distributions for top variable genes aligned very well 

with the empirical distributions, suggesting that DIMM-SC achieved good fit in real scRNA-Seq 

data. 

Moreover, I explored the relationship between the mean and variance of 𝑝𝑝𝑖𝑖’s, as commonly 

used in count data analysis, to evaluate whether any over-dispersion pattern exists. Similar to the 

previous analysis, I also collected cells from the same cell type, and calculated the mean and 

variation of 𝑝𝑝𝑖𝑖 for each gene. The scatter plot of the log mean of 𝑝𝑝𝑖𝑖 versus the log variance of 𝑝𝑝𝑖𝑖 

(Figure 23 (Appendix A)) shows a clear linear relationship between mean and variance. Derived 

from Dirichlet distribution, the expected intercept and slope can be approximated by 1 and 

log (|𝜶𝜶|), respectively, where log (|𝜶𝜶�|) was estimated from the real scRNA-Seq data. In CD56+ 

Natural Killer cells and CD19+ B cells, log (|𝜶𝜶�|) equals to 6.60 and 6.67, respectively. As shown 

in Figure 22B, the intercept and slope of the fitted line (red line) are close to the expected values, 
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indicating a good model fitting in this real scRNA-Seq data. I noticed that, due to both technical 

and biological uncertainties, a few genes exhibit extra variation, which cannot be fully explained 

by the mean-variation relationship posited by the Dirichlet distribution. I will pursue to extend 

DIMM-SC to account for such additional variation in the near future.  

2.5 Discussion 

Compared with the early generation scRNA-Seq technologies, the intrinsic characteristics of 

droplet-based scRNA-Seq data, including a much larger number of cells and direct counting of 

molecule copies using UMI, pose great challenges on statistical analysis and require new 

methodological development. In this study, I developed a model-based clustering method DIMM-

SC for analyzing droplet-based scRNA-Seq data. DIMM-SC directly models UMI counts from 

scRNA-Seq data using a multinomial distribution with Dirichlet mixture priors. I demonstrated 

that DIMM-SC has achieved substantial improvements in clustering accuracy and stability 

compared to existing clustering methods such as K-means clustering, Seurat and CellTree. More 

importantly, my probabilistic model provides clustering uncertainty for each cell (how likely each 

cell belongs to each cluster), thus can benefit rigorous statistical inference and straightforward 

biological interpretations. In addition, DIMM-SC can be used to detect differentially expressed 

gene markers among different cell types, which is under our further investigation. 

My probabilistic model coupled with a computationally efficient E-M algorithm is able to 

cluster large-scale droplet-based scRNA-Seq data. For example, it takes around 3 hours to cluster 

68,000 cells using top 1,000 highly variable genes. In the analysis of scRNA-Seq data, both gene 

level filtering and cell level filtering are critical for clustering regardless of which clustering 
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method to use. I recommend ranking genes by their variations among all cells and choosing top 

500-1,000 highly variable genes. In addition, I also recommend running DIMM-SC 5~10 times, 

each with different random seeds, and choosing the one with the largest likelihood as the final 

results. For the number of clusters, I can pre-define it based on prior knowledge on the tissue or 

determine it using some model checking criteria such as AIC or BIC (Akaike, 1974; Schwarz, 

1978). As shown in Figure 24 (Appendix A), AIC and BIC work well in the analysis of simulated 

datasets, the performance in real data needs further exploration. Alternatively, it can be determined 

using the procedure described in ADPclust (Wang and Xu, 2015) or the Dirichlet process (Teh, 

2011). DIMM-SC is currently implemented in R/ Rcpp with satisfactory computing efficiency for 

most needs so far. Further improvement (e.g. parallel computing) can be made to accommodate 

larger-scaled data. 

There are several noticeable limitations of my method. First, DIMM-SC only models 

variations among different cells from one single individual. To jointly model scRNA-Seq data 

from multiple individuals, a hierarchical structure can be posed in the current method to account 

for the individual level heterogeneity, but a more sophisticated numerical algorithm will be needed 

to reduce the computational cost. Second, DIMM-SC is an unsupervised method that infers 

structures from all data. Prior knowledge on cell-type-specific biomarkers may further improve 

the clustering accuracy. To use such prior information, a semi-supervised approach is needed to 

guide cluster inference. Furthermore, existing scRNA-Seq data from purified cells (e.g. via flow 

cytometry) can serve as external reference panels or training datasets to reduce experimental 

biases, remove outliers, and improve clustering reliability. Last but not least, my DIMM-SC model 

ignores the measurement errors and uncertainties buried in the UMI count matrix. Multiple factors 

such as dropout event, mapping percentage, sequencing depth, and PCR efficiency are not 
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considered in the current model. These limitations can be largely overcome by extending my 

method. I will explore these directions in the near future. 

I noticed that similar models have been proposed in the field of text-mining (Yamamoto 

and Sadamitsu, 2005) and microbiome (Holmes, et al., 2012), where word, article, and topic or 

taxa, individual, and meta-community are studied. However, in those applications, the clusters are 

not well defined and require a careful interpretation. On the contrary, scRNA-Seq data usually 

consist of a set of known cell types from prior knowledge and have a much larger signal-to-noise 

ratio for the clustering analysis. Although sharing the common types of data structure, these fields 

have different fundamental questions, so existing methods proposed from other fields need to be 

tailored or extended to incorporate intrinsic characteristics of scRNA-Seq data. For example, 

CellTree adapts the LDA approach from the text-mining field. Although LDA is more flexible and 

more widely used in text-mining field than the Dirichlet mixture model based methods, I have 

showed that DIMM-SC is more accurate, stable and efficient than CellTree in both simulation 

studies and real data applications in the context of scRNA-Seq clustering analysis. 

In summary, I provide a novel statistical method and an efficient computational tool 

DIMM-SC for clustering droplet-based single cell transcriptomic data, which facilitates rigorous 

statistical inference of cell population heterogeneity. I am confident that DIMM-SC will be highly 

useful for the fast-growing community of large-scale single cell transcriptome analysis.  
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3.0  BAMM-SC: A Dirichlet Mixture Model for Clustering Droplet-based Single Cell 

Transcriptomic Data from Multiple Individuals 

The recently developed droplet-based single cell transcriptome sequencing (scRNA-Seq) 

technology makes it feasible to perform a population-scale scRNA-Seq study, in which the 

transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite 

the advances of many clustering methods, there are few tailored methods for population-scale 

scRNA-Seq studies. Here, I developed a BAyesian Mixture Model for Single Cell sequencing 

(BAMM-SC) method to cluster scRNA-Seq data from multiple individuals simultaneously. 

BAMM-SC takes raw count data as input and accounts for data heterogeneity and batch effect 

among multiple individuals in a unified Bayesian hierarchical model framework. Results from 

extensive simulation studies and applications of BAMM-SC to in-house experimental scRNA-Seq 

datasets using blood, lung and skin cells from humans or mice demonstrated that BAMM-SC 

outperformed existing clustering methods with considerable improved clustering accuracy, 

particularly in the presence of heterogeneity among individuals. 

3.1 Introduction 

Single cell RNA sequencing (scRNA-Seq) technologies have been widely used to measure gene 

expression for each individual cell, facilitating a deeper understanding of cell heterogeneity and 

better characterization of rare cell types (Gawad, et al., 2016). Compared to early generation 

scRNA-Seq technologies, the recently developed droplet-based technology, largely represented by 
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the 10X Genomics Chromium system, has quickly gained popularity because of its high-

throughput (tens of thousands of single cells per run), efficiency (a couple of days), and relatively 

lower cost (< $1 per cell) (Macosko, et al., 2015; Zheng, et al., 2017). It is now feasible to conduct 

population-scale single cell transcriptomic profiling studies, where several to tens or even 

hundreds of individuals are sequenced. 

A major task of analyzing droplet-based scRNA-Seq data is to identify clusters of single 

cells with similar transcriptomic profiles. To achieve this goal, classic unsupervised clustering 

methods such as K-means clustering, hierarchical clustering, and density-based clustering 

approaches can be applied after some normalization steps. Recently, scRNA-Seq tailored 

unsupervised methods, such as SIMLR (Wang, et al., 2018), CellTree (duVerle, et al., 2016), SC3 

(Kiselev, et al., 2017), TSCAN (Ji and Ji, 2016) and DIMM-SC (Sun, et al., 2018), have been 

designed and proposed for clustering scRNA-Seq data. Supervised methods, such as 

MetaNeighbor, have been proposed to assess how well cell-type-specific transcriptional profiles 

replicate across different datasets (Crow, et al., 2018). However, none of these methods explicitly 

considers the heterogeneity among multiple individuals from population studies. In a typical 

analysis of population-scale scRNA-Seq data, reads from each individual are processed separately 

and then merged together for the downstream analysis. For example, in the 10X Genomics Cell 

Ranger pipeline, to aggregate multiple libraries, reads from different libraries are down-sampled 

such that all libraries have the same sequencing depth, leading to substantial information loss for 

individuals with higher sequencing depth. Alternatively, reads can be naively merged across all 

individuals without any library adjustment, leading to batch effects and unreliable clustering 

results.  
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Similar to the analysis of other omics data, several computational approaches have been 

proposed to correct batch effects for scRNA-Seq data. For example, Spitzer et al. adapted the 

concept of force-directed graph to visualize complex cellular samples via Scaffold (Single-Cell 

Analysis by Fixed Force- and Landmark-Directed) maps (Spitzer, et al., 2015), which can overlay 

data from multiple samples onto a reference sample(s). Recently, two new methods: Mutual 

Nearest Neighbors (Haghverdi, et al., 2018) (MNN) (implemented in scran) and Canonical 

Correlation Analysis (CCA) (Satija, et al., 2015) (implemented in Seurat) were published for batch 

correction of scRNA-Seq data. All these methods require the raw counts to be transformed to 

continuous values under different assumptions, which may alter the data structure in some cell 

types and lead to difficulty of biological interpretation.  

To fill in this gap, I propose BAMM-SC, an extension of my previous DIMM-SC approach, 

to simultaneously cluster droplet-based scRNA-Seq data from multiple individuals. Specifically, 

BAMM-SC represents a Bayesian hierarchical Dirichlet multinomial mixture model, which 

explicitly characterizes three sources of heterogeneity (i.e., genes, cell types and individuals). 

Figure 4 provides an overview of the model structure in BAMM-SC, which directly models cell-

type specific genes’ UMI counts and their heterogeneity among different individuals through a 

hierarchical distribution structure in a Bayesian framework. This method has the following three 

key realistic assumptions. First, cell type clusters are discrete, and each cell belongs to one specific 

type exclusively. Second, heterogeneity exists among different individuals and across different 

cell types. The heterogeneity of the same cell type among different individuals is smaller than the 

heterogeneity across different cell types within the same individual. Third, cells of the same cell 

type share a similar gene expression pattern. That is, the underlying statistical distributions for 

cells within the same cell type are assumed to be the same. Compared to other clustering methods 
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which ignore individual level variability, BAMM-SC has the following four key advantages: (1) 

BAMM-SC accounts for data heterogeneity among multiple individuals, such as unbalanced 

sequencing depths and technical biases in library preparation, and thus reduces the false positives 

of detecting individual-specific cell types. (2) BAMM-SC borrows information across different 

individuals, leading to improved power for detecting individual-shared cell types and higher 

reproducibility as well as stability of the clustering results. (3) BAMM-SC performs one-step 

clustering on raw UMI count matrix without any prior batch-correction step, which is required for 

most clustering methods in the presence of batch effect. (4) BAMM-SC provides a statistical 

framework to quantify the clustering uncertainty for each cell in the form of posterior probability 

for each cell type.  
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Figure 4. (A) UMI counts per cell of three droplet-based scRNA-Seq datasets. (B) An overall workflow of 
BAMM-SC 
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3.2 Motivating Example 

I first conducted an exploratory data analysis using in-house droplet-based scRNA-Seq mouse 

data. For simplicity, I illustrated with three mice. Figure 25A (Appendix B) shows the t-SNE plot, 

suggesting that heterogeneity among single cells of different cell types (i.e., B cell vs. T cell) is 

greater than heterogeneity among three different mice (i.e., dots with three different colors). In 

addition, gene Ftl1 shows higher expression in B cell than that in T cell (Figure 25B (Appendix 

B)). Noticeably, the variation of Ftl1 gene expression between two cell types is larger than the 

variation of Ftl1 gene expression across single cells within the same cell type among three mice. 

This motivating example demonstrates the importance of charactering different levels of 

variability among droplet-based scRNA-Seq data collected from multiple individuals.  

To demonstrate the existence of batch effect in multiple individuals, I used both publicly 

available and three in-house synthetic droplet-based scRNA-Seq datasets including human 

peripheral blood mononuclear cells (PBMC), mouse lung and human skin tissues.  Detailed sample 

information was summarized in Figure 4A and Table 4. Here, I use human PBMC as an example. 

Isolated from the whole blood obtained from 4 healthy donors, I used the 10X Chromium system 

to generate scRNA-Seq data. I also included one additional healthy donor from a published PBMC 

scRNA-Seq data (Zheng, et al., 2017) to mimic the scenario where we combine the local dataset 

with the public datasets. In this cohort, sample 1 and sample 2 were sequenced in one batch; sample 

3 and sample 4 were sequenced in another batch; sample 5 was downloaded from the original study 

conducted by 10X Genomics (Zheng, et al., 2017). As an exploratory analysis, I produced a t-SNE 

plot based on the first 50 Principal Components (PCs) (Figure 5) of all cells from these 5 donors 

and observed a clear batch effect: samples from the same batch tend to cluster together. 
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Figure 5. The t-SNE projection of PBMCs from 5 human samples 
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Table 4. Sample information of three droplet-based scRNA-Seq datasets 

Dataset Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 
Version of Cell Ranger 

Human PBMC 2.0.0 2.0.0 1.2.0 1.2.0 1.1.0 
Mouse Lung 1.2.0 1.2.0 1.2.0 1.2.0  
Human Skin 1.3.0 1.3.0 2.0.0 2.0.0 2.0.0 

Mean Reads per Cell 
Human PBMC 143,286 100,847 96,324 92,650 24,722 
Mouse Lung 86,040 234,182 243,611 267,401  
Human Skin 215,718 168,951 157,677 51,669 107,424 

Number of Cells 
Human PBMC 1,722 2,288 2,400 2,405 2,900 
Mouse Lung 577 724 684 649  
Human Skin 960 1,713 686 2,240 1,636 

 

 

This illustrative example demonstrates the importance and urgent need for well 

characterizing different sources of variability and correcting potential batch effects among droplet-

based scRNA-Seq datasets collected from multiple individuals. In addition, due to the 

computational burden, many methods cannot be scaled up to analyze population-scale droplet-

based scRNA-Seq data with tens of thousands of cells collected from many individuals under 

various conditions. In this study, I propose a BAyesian Mixture Model for Single Cell sequencing 

(BAMM-SC) to simultaneously cluster large-scale droplet-based scRNA-Seq data from multiple 

individuals. BAMM-SC directly works on the raw counts without any data transformation and 

models the heterogeneity from multiple sources by learning the distributions of signature genes in 

a Bayesian hierarchical model framework. In the following sections, I will describe this method, 

benchmark its performance against existing clustering methods in simulation studies, and evaluate 

our method for its accuracy, stability, and efficiency in three in-house synthetic scRNA-Seq 

datasets including PBMCs, skin, and lung tissues from humans or mice. 
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3.3 Statistical Model 

I propose a Bayesian hierarchical Dirichlet multinomial mixture model to explicitly characterize 

different sources of variability in population scale scRNA-Seq data. Specifically, let 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 represent 

the number of unique UMIs for gene 𝑖𝑖 in cell 𝑗𝑗 from individual 𝑙𝑙 (1 ≤ 𝑖𝑖 ≤ 𝐺𝐺, 1 ≤ 𝑗𝑗 ≤ 𝐶𝐶𝑙𝑙, 1 ≤ 𝑙𝑙 ≤

𝐿𝐿). Here 𝐺𝐺 , 𝐶𝐶𝑙𝑙  and 𝐿𝐿 denote the total number of genes, cells (in individual 𝑙𝑙) and individuals, 

respectively. My goal is to perform simultaneous clustering for cells from all 𝐿𝐿 individuals. I 

assume that within each individual, all single cells consist of 𝐾𝐾  distinct cell types. Cell type 

clusters are discrete, and each cell belongs to one cell type exclusively. Here 𝐾𝐾 is pre-defined 

according to prior biological knowledge, or will be estimated from the data, and 𝐾𝐾 is the same 

among all 𝐿𝐿 individuals.   

 Statistical model 

Assume that 𝒙𝒙∙𝒋𝒋𝒋𝒋 = (𝑥𝑥1𝑗𝑗𝑗𝑗, 𝑥𝑥2𝑗𝑗𝑗𝑗 , … , 𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺), the gene expression for cell 𝑗𝑗 in individual 𝑙𝑙, follows a 

multinomial distribution 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑗𝑗𝑗𝑗 ,𝒑𝒑∙𝒋𝒋𝒋𝒋�. Here 𝑇𝑇𝑗𝑗𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺
𝑖𝑖=1  is the total number of UMIs, 𝒑𝒑∙𝒋𝒋𝒋𝒋 =

(𝑝𝑝1𝑗𝑗𝑗𝑗,𝑝𝑝2𝑗𝑗𝑗𝑗, … ,𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺) is the probability vector for gene expression with ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺
𝑖𝑖=1 = 1 (where larger 

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 is associated with more UMI counts 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖). In addition, let 𝑧𝑧𝑗𝑗𝑗𝑗 ∈ {1,2, … ,𝐾𝐾} represent the cell 

type label for cell 𝑗𝑗 in individual 𝑙𝑙, where 𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘 indicates that cell 𝑗𝑗 in individual 𝑙𝑙 belongs to 

cell type 𝑘𝑘. Cells of the same cell type share a similar gene expression pattern. If cell 𝑗𝑗 in individual 

𝑙𝑙 belongs to cell type 𝑘𝑘 (𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘), I assume that 𝒑𝒑∙𝒋𝒋𝒋𝒋 follows a cell-type specific Dirichlet prior 

𝐷𝐷𝐷𝐷𝐷𝐷(𝜶𝜶∙𝒍𝒍𝒍𝒍), where 𝜶𝜶∙𝒍𝒍𝒍𝒍 = (𝛼𝛼1𝑙𝑙𝑙𝑙,𝛼𝛼2𝑙𝑙𝑙𝑙, … ,𝛼𝛼𝐺𝐺𝐺𝐺𝐺𝐺) is the Dirichlet prior parameter for cell type 𝑘𝑘 in 

individual 𝑙𝑙. 
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𝑃𝑃�𝒑𝒑.𝒋𝒋𝒋𝒋|𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘,𝜶𝜶∙𝒍𝒍𝒍𝒍� = 1
𝐵𝐵(𝜶𝜶∙𝒍𝒍𝒍𝒍)

𝑝𝑝1𝑗𝑗𝑗𝑗
𝛼𝛼1𝑙𝑙𝑙𝑙−1𝑝𝑝2𝑗𝑗𝑗𝑗

𝛼𝛼2𝑙𝑙𝑙𝑙−1 … 𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺
𝛼𝛼𝐺𝐺𝐺𝐺𝐺𝐺−1, 

where 𝐵𝐵(𝛼𝛼∙𝑙𝑙𝑙𝑙) is Beta function with parameter 𝛼𝛼∙𝑙𝑙𝑙𝑙 = (𝛼𝛼1𝑙𝑙𝑙𝑙,𝛼𝛼2𝑙𝑙𝑙𝑙, … ,𝛼𝛼𝐺𝐺𝐺𝐺𝐺𝐺). Then after integrating 

𝑝𝑝∙𝑗𝑗𝑗𝑗 out, we have: 

𝑃𝑃�𝒙𝒙∙𝒋𝒋𝒋𝒋|𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘,𝜶𝜶∙𝒍𝒍𝒍𝒍� =
𝑇𝑇𝑗𝑗𝑗𝑗!

∏ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖!𝐺𝐺
𝑖𝑖=1

��
Γ(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖)

Γ(𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
Γ(|𝜶𝜶∙𝒍𝒍𝒍𝒍|)

Γ(𝑇𝑇𝑗𝑗𝑗𝑗 + |𝜶𝜶∙𝒍𝒍𝒍𝒍|)
, |𝜶𝜶∙𝒍𝒍𝒍𝒍| = �𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖

𝐺𝐺

𝑖𝑖=1

. 

The joint distribution of 𝒙𝒙∙𝒋𝒋𝒋𝒋 and 𝑧𝑧𝑗𝑗𝑗𝑗 is: 

𝑃𝑃�𝒙𝒙∙𝒋𝒋𝒋𝒋, 𝑧𝑧𝑗𝑗𝑗𝑗�𝜶𝜶∙𝒍𝒍∙� =
𝑇𝑇𝑗𝑗𝑗𝑗!

∏ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖!𝐺𝐺
𝑖𝑖=1

� 𝐼𝐼(𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

��
Γ(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖)

Γ(𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
Γ(|𝜶𝜶∙𝒍𝒍𝒍𝒍|)

Γ�𝑇𝑇𝑗𝑗𝑗𝑗 + |𝜶𝜶∙∙𝒌𝒌|�
. 

I further assume that all 𝐶𝐶𝑙𝑙 cells in individual 𝑙𝑙 are independent, then the joint distribution for all 

cells in individual 𝑙𝑙 is: 

𝑃𝑃(𝒙𝒙∙∙𝒍𝒍, 𝒛𝒛∙𝒍𝒍|𝜶𝜶∙𝒍𝒍∙) = �𝑃𝑃�𝒙𝒙∙𝒋𝒋𝒋𝒋, 𝑧𝑧𝑗𝑗𝑗𝑗�𝜶𝜶∙𝒍𝒍∙�
𝐶𝐶𝑙𝑙

𝑗𝑗=1

. 

Finally, I assume that all 𝐿𝐿 individuals are independent, then the overall joint distribution for all 

cells across all individuals becomes: 

𝑃𝑃(𝒙𝒙∙∙∙,𝒛𝒛∙∙|𝜶𝜶∙∙∙) = �𝑃𝑃(𝒙𝒙∙∙𝒍𝒍, 𝒛𝒛∙𝒍𝒍|𝜶𝜶∙𝒍𝒍∙)
𝐿𝐿

𝑙𝑙=1

∝����𝐼𝐼�𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘�
𝐾𝐾

𝑘𝑘=1

��
Γ�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖�

Γ(𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
Γ(|𝜶𝜶∙𝒍𝒍𝒍𝒍|)

Γ�𝑇𝑇𝑗𝑗𝑗𝑗 + |𝜶𝜶∙𝒍𝒍𝒍𝒍|�
�

𝐶𝐶𝑙𝑙

𝑗𝑗=1

𝐿𝐿

𝑙𝑙=1

. 

In this model, the two sets of parameters of interest are 𝒛𝒛∙∙ = �𝑧𝑧𝑗𝑗𝑗𝑗�1≤𝑗𝑗≤𝐶𝐶𝑙𝑙,1≤𝑙𝑙≤𝐿𝐿, the cell type 

label for cell 𝑗𝑗 in individual 𝑙𝑙, and 𝜶𝜶∙∙∙ = {𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖}1≤𝑖𝑖≤𝐺𝐺,1≤𝑙𝑙≤𝐿𝐿,1≤𝑘𝑘≤𝐾𝐾, the Dirichlet parameters for gene 

𝑖𝑖 in cell type 𝑘𝑘 in individual 𝑙𝑙. I adopt a full Bayesian approach and use Gibbs sampler to estimate 

the posterior distributions. Specifically, the joint posterior distribution for 𝒛𝒛∙∙ and 𝜶𝜶∙∙∙ are: 

𝑃𝑃(𝒛𝒛∙∙,𝜶𝜶∙∙∙|𝒙𝒙∙∙∙) ∝ 𝑃𝑃(𝒙𝒙∙∙∙, 𝒛𝒛∙∙|𝜶𝜶∙∙∙) × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜶𝜶∙∙∙). 
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Since all 𝛼𝛼’s are strictly positive, I propose a log-normal distribution as the prior distribution for 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 . I assume that for gene 𝑖𝑖  in cell type 𝑘𝑘 , 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖  from all 𝐿𝐿  individuals share the same prior 

distribution 𝐿𝐿𝐿𝐿(𝜇𝜇𝑖𝑖𝑖𝑖,𝜎𝜎𝑖𝑖𝑖𝑖2 ), that is, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜶𝜶𝒊𝒊∙𝒌𝒌) = �
1

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖�2𝜋𝜋𝜎𝜎𝑖𝑖𝑖𝑖2
exp �−

(log𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖)2

2𝜎𝜎𝑖𝑖𝑖𝑖2
�

𝐿𝐿

𝑙𝑙=1

. 

Here 𝜇𝜇𝑖𝑖𝑖𝑖 can be estimated by the mean of 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖’s: 𝜇̂𝜇𝑖𝑖𝑖𝑖 = 1
𝐿𝐿
∑ log (𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖)𝐿𝐿
𝑙𝑙=1 . Estimation of 𝜎𝜎𝑖𝑖𝑖𝑖2  can be 

challenging due to limited number of individuals. I can assume all 𝜎𝜎𝑖𝑖𝑖𝑖2 ’s follow a hyper-prior: 

Gamma distribution 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘), and use information across all genes to estimate variance. 

In addition, I assume a non-informative prior for 𝜇𝜇𝑖𝑖𝑖𝑖’s. Taken all together, I have the full posterior 

distribution as follows: 

𝑃𝑃(𝒛𝒛∙∙,𝜶𝜶∙∙∙|𝒙𝒙∙∙∙) ∝ 𝑃𝑃(𝒙𝒙∙∙∙,𝒛𝒛∙∙|𝜶𝜶∙∙∙) × ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜶𝜶𝒊𝒊∙𝒌𝒌)
𝐺𝐺

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

× �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝝁𝝁∙𝒌𝒌)
𝐾𝐾

𝑘𝑘=1

× �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝝈𝝈∙𝒌𝒌𝟐𝟐 �
𝐾𝐾

𝑘𝑘=1

. 

I use Gibbs sample to iteratively update 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑧𝑧𝑗𝑗𝑗𝑗. Details can be found in Appendix B. 

3.4 Simulation Studies 

I have conducted comprehensive simulation studies to benchmark the performance of BAMM-SC. 

Specifically, I simulated droplet-based scRNA-Seq data collected from multiple individuals from 

the posited Bayesian hierarchal Dirichlet multinomial mixture model. I considered different 

experimental designs, including different heterogeneities among multiple individuals and different 

number of individuals. In the posited hierarchical model, the log normal prior distribution 

𝐿𝐿𝐿𝐿(𝜇𝜇𝑖𝑖𝑖𝑖,𝜎𝜎𝑖𝑖𝑖𝑖2 )  measures the heterogeneity of gene 𝑖𝑖  in cell type 𝑘𝑘  among multiple individuals, 
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where 𝜇𝜇𝑖𝑖𝑖𝑖  and  𝜎𝜎𝑖𝑖𝑖𝑖2  are related to the mean and variation of gene expression. Without loss of 

generality, I used the mean of 𝜎𝜎𝑖𝑖𝑖𝑖2  across all genes and all cell types to quantify the overall 

individual level heterogeneity. I applied BAMM-SC to each synthetic dataset, and compared the 

inferred cell type label of each single cell with the ground truth, measured by adjusted Rand index 

(ARI) (Rand, 1971). I compared BAMM-SC with other competing clustering methods (K-means, 

TSCAN, SC3 and Seurat), which are either methods from different clustering categories or 

recommended by recent reviews on clustering methods for single-cell data (Duo, et al., 2018; 

Freytag, et al., 2018). Since none of methods model batch effects and therefore each needs to be 

combined with a batch correction method as a pre-processing step in data analysis. I applied two 

recently published and prevalent methods srcan Mutual Nearest Neighbors (MNN) (Haghverdi, et 

al., 2018) and Seurat Canonical Correlation Analysis (CCA) (Satija, et al., 2015) prior to these 

clustering methods so that each combination can be a fair comparison with BAMM-SC, which 

does not need a separate batch correction step.  

Specifically, I compared BAMM-SC with the other nine competing methods (MNN+K-

means, MNN+TSCAN, MNN+SC3, MNN+Seurat, CCA+K-means, CCA+TSCAN, CCA+SC3, 

CCA+Seurat and DIMM-SC) in the simulation studies. Noticeably, DIMM-SC, my previously 

developed method for clustering scRNA-Seq data from a single individual, also takes the raw UMI 

count matrix as the input without any batch effect correction or data transformation. I pooled single 

cells from different individuals together while ignoring each individual label, and then applied 

DIMM-SC to the pooled data. I simulated 100 datasets and summarized the corresponding ARIs 

for each method. 
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3.5 Results 

 Simulation studies 

As shown in Figure 6A, BAMM-SC consistently outperformed the other nine competing methods 

across a variety of individual level heterogeneities by achieving higher average ARI and lower 

variation of ARI among 100 simulations. As expected, the performance of all ten clustering 

approaches decreases as the among individual heterogeneity increases, measured by the mean 𝜎𝜎𝑖𝑖𝑖𝑖2  

values.  In Figure 6B, with the increase of number of individuals, BAMM-SC achieved higher 

ARI, while ARIs of other methods either remained stable or decreased. 

Furthermore, I performed comprehensive simulation studies by generating simulated 

scRNA-Seq datasets from different number of cell type clusters (Figure 26A (Appendix B)), 

different overall sequencing depths (Figure 26B), and different cell-type-specific heterogeneities 

(i.e., the mean difference of gene expression profiles between two distinct cell types) (Figure 26C). 

BAMM-SC consistently outperformed other methods in terms of accuracy and robustness in all 

these scenarios. Taken together, my comprehensive simulation studies have demonstrated that, 

when data are generated from the true model, BAMM-SC is able to appropriately borrow 

information across multiple individuals, account for unbalanced sequencing depths, and provide 

more accurate and robust clustering results than other competing methods. 

To evaluate the robustness of BAMM-SC when data generation model is mis-specified, I 

simulated additional datasets using R package Splatter (Zappia, et al., 2017), a commonly used 

tool for scRNA-Seq data simulation using a completely different model. To make my simulated 

data a good approximation to the real data, I first downloaded the raw UMI count matrix of a 

purified B cell scRNA-Seq dataset from the 10X Genomics website 
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(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/b_cells), and used 

the function “splatEstimate” to estimate the parameters related to mean of gene, library size, 

expression outlier, dispersion across genes and dropout rate. I assumed cell types are shared across 

multiple individuals, where each individual is treated as one batch with the same number of cells 

and genes. I further specified batch parameters and differential expression parameters to generate 

scenarios with different amount of group effect (i.e., cell type differences) and batch effect. As 

shown in Figure 7, BAMM-SC still outperformed most other competing methods in terms of 

clustering accuracy in all scenarios, although the improvement is less substantial than my own 

model simulations, which is expected. 

 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/b_cells
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Figure 6. Boxplots of ARIs for ten clustering methods in simulation studies 

Boxplots of ARIs for ten clustering methods across 100 simulations, investigating how (a) different heterogeneity among multiple individuals (measured by mean 
𝜎𝜎𝑖𝑖𝑖𝑖2  values) and (b) number of individuals affect clustering results. In (a), the simulated dataset consists of 10 individuals with 400 cells for each. In (b), we set the 
level of heterogeneity (mean of 𝜎𝜎𝑖𝑖𝑖𝑖2 ) among individuals as 0.1. 
 
 
 
 

6A 6B 
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Figure 7. Boxplots of ARI for ten clustering methods across 100 simulations using Splatter 

Boxplots of ARI for ten clustering methods across 100 simulations using Splatter, investigating how different levels of (a) group effect and (b) batch effect affect 
clustering results. In (a), we set the mean parameters of three cell types as (0.20, 0.21, 0.22), (0.20, 0.22, 0.24) and (0.20, 0.24, 0.28) to represent three levels (low, 
medium, high) of group difference. In (b), we set the mean parameters of the five individuals as (0.1, 0.1, 0.1, 0.1, 0.1), (0.12, 0.12, 0.12, 0.12, 0.12) and (0.14, 
0.14, 0.14, 0.14, 0.14) to represent three levels (low, medium, high) of batch effects. 
 

7A 7B 
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 Real data analysis 

I evaluated the performance of BAMM-SC together with other methods in three in-house synthetic 

scRNA-Seq datasets including human PBMC, mouse lung and human skin tissues generated using 

10X Chromium system at the University of Pittsburgh.  

3.5.2.1 Analysis of the in-house scRNA-Seq data from human PBMC samples 

For aforementioned human PBMC samples, I first pooled cells from 5 donors together, filtered 

lowly expressed genes that were expressed in less than 1% cells. I then extracted the top 1,000 

highly variable genes based on their standard deviations. As shown in Figure 27 (Appendix B), I 

identified 7 types of PBMCs based on the biological knowledge of cell-type-specific gene markers 

(Table 5). Using these gene markers, >70% single cells can be assigned to a specific cell type. 

Since there is no gold standard for clustering analysis in this real dataset, I used the labels of these 

cells as the approximated ground truth to benchmark the clustering performance for different 

clustering methods. Cells with uncertain cell types were removed when calculating ARIs. 

Similar to the simulation studies, I applied ten clustering methods on these samples and 

repeated each method 10 times to evaluate the stability of its performance (Table 6). The total 

number of clusters was set as 7 based on the biological knowledge from cell-type-specific gene 

markers. Both TSCAN and Seurat are deterministic clustering methods and therefore they generate 

identical results for 10 analyses. As shown in Table 6, BAMM-SC achieved the highest ARI for 

human PBMC samples compared to all other competing methods. 
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Table 5. Gene markers used to specify cell types in human PBMC samples 

Cell Types Genes 
CD8+ T cells CD3+CD8A+CD4- 
CD4+ T cells CD3+CD8-CD4+IL2RA-IL7R+ 

B cells CD3-CD19+MS4A1+ 
NK cells NCAM1+NKG7+CD3- 

CD14+ monocytes CD3-CD19-CD14+HLA- 
CD16+ monocytes CD3-CD19-FCGR3A+ 

Dendritic cells CD1C+CD14-HLA-FCER1A+ 
 

 
 

Table 6. Performance of clustering across 10 times analyses for human PBMC, mouse lung and human skin 
samples 

 

 
 

I further generated t-SNE plots with each cell colored by their cell-type classification based 

on specific gene markers (i.e., the approximated truth) (Figure 8A (left figure)) and cluster labels 

inferred by BAMM-SC (Figure 8A (middle figure)), respectively. Despite some dendritic cells 

were wrongly identified as CD16+ Monocytes, these two plots are similar to each other 

(ARI=0.532), suggesting that BAMM-SC performed well in human PBMC samples compared 

with other clustering methods. 

 Human PBMC Mouse Lung Human Skin 
Method Mean SD Range Mean SD Range Mean SD Range 

MNN + K-
means 0.379 0.083 (0.283, 

0.485) 0.662 0.066 (0.596, 
0.815) 0.597 0.075 (0.461, 

0.676) 
MNN + TSCAN 0.373 NA NA 0.720 NA NA 0.553 NA NA 

MNN + SC3 0.348 0.084 (0.266, 
0.511) 0.640 0.061 (0.556, 

0.687) 0.517 0.034 (0.436, 
0.557) 

MNN + Seurat 0.325 NA NA 0.749 NA NA 0.647 NA NA 
CCA + K-

means 0.414 0.056 (0.307, 
0.464) 0.695 0.114 (0.505, 

0.883) 0.619 0.129 (0.424, 
0.737) 

CCA + TSCAN 0.210 NA NA 0.611 NA NA 0.398 NA NA 

CCA + SC3 0.145 0.052 (0.051, 
0.215) 0.610 0.068 (0.531, 

0.708) 0.369 0.071 (0.277, 
0.488) 

CCA + Seurat 0.468 NA NA 0.729 NA NA 0.702 NA NA 

DIMM-SC 0.333 0.071 (0.302, 
0.529) 0.809 0.030 (0.742, 

0.868) 0.715 0.045 (0.671, 
0.779) 

BAMM-SC 0.487 0.056 (0.362, 
0.532) 0.882 0.042 (0.764, 

0.910) 0.762 0.032 (0.717, 
0.843) 
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Moreover, I calculated the averaged cell proportions of each cell type inferred from 

BAMM-SC among 10 runs for 5 PBMC samples, compared with cell proportions calculated from 

the approximated truth based on gene markers. Figure 8A (right figure) shows that the proportions 

inferred from BAMM-SC are close to the truth, suggesting that BAMM-SC can adequately 

account for batch effect when clustering cells from multiple individuals. I also generated t-SNE 

projection plots colored by cluster labels inferred by other methods: MNN+K-means clustering 

(Figure 28A (Appendix B)), MNN+TSCAN (Figure 28B), MNN+SC3 (Figure 28C), 

MNN+Seurat (Figure 28D), CCA+K-means (Figure 28E), CCA+TSCAN (Figure 28F), 

CCA+SC3 (Figure 28G), CCA+Seurat (Figure 28H) and DIMM-SC (Figure 28I).  

3.5.2.2 Analysis of the in-house scRNA-Seq data from mouse lung samples 

In addition to human PBMC samples, I also collected lung mononuclear cells from 4 mouse 

samples under 2 conditions: streptococcus pneumonia (SP) infected (sample 1 and 2) and naive 

(sample 3 and 4). Figure 9 shows the t-SNE plot of lung mononuclear cells from 4 mouse samples. 

Similar to the analysis of PBMC samples, after filtering lowly expressed genes, I pooled cells from 

4 mice together and extracted the top 1,000 highly variable genes. As shown in Figure 29 

(Appendix B), I identified 6 types of cells based on the biological knowledge of cell-type specific 

gene markers (Table 7). Taken together, > 66% of single cells can be assigned to a specific cell 

type. Therefore, I used the labels of these cells as the approximated truth and removed cells with 

uncertain cell types from the downstream analysis. 

Figure 8B (left figure) and Figure 8B (middle figure) show the t-SNE plots with each cell 

colored by their cluster label based on cell-type-specific gene markers and cluster labels inferred 

by BAMM-SC, respectively. These two are highly similar (ARI=0.910), indicating the outstanding 

performance of BAMM-SC. Table 6 shows that BAMM-SC considerably outperformed other nine 
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clustering methods in terms of ARI. I also generated t-SNE plots colored by cluster labels inferred 

by other competing clustering methods (Figure 30 (Appendix B)). As shown in Figure 31 

(Appendix B), the proportions of neutrophils in SP infected samples (sample 1 and sample 2) are 

much higher than the proportions in naïve samples (sample 3 and sample 4). This is consistent 

with the fact that infections by bacteria and viruses may increase the number of neutrophils, which 

is a necessary reaction by the body (Chen and Kolls, 2013; Weiser, 2010). Interestingly, the 

proportion of cell types in naïve sample 3 is different from others, which may due to unsatisfactory 

sample quality or unexpected bacterial infections. 

 

Table 7. Gene markers used to specify cell types in mouse lung cell samples 

Cell Types Genes 
Macrophages Ctss+Chil3+ 
Neutrophils S100a8+S100a9+Il1b+ 
Endothelial Lyve1+Egfl7+ 

Small airway Epithelial Sftpc+Sftpd+Lyz1+ 
Club Cells Scgb1a1+Scgb3a1+ 

Lymphocytes Cd79b+Ms4a1+ / Gzma+Nkg7+ 
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Figure 8. The t-SNE projection of cells and bar plots of proportions of cell types among all individuals for three real datasets 

The t-SNE projection of cells (colored by the approximated truth and BAMM-SC clustering results) and bar plots of proportions of cell types among all individuals 
for human PBMC (A), mouse lung (B) and human skin (C) tissues, separately. BAMM-SC clustering labels are from the result with the highest ARI among 10 
times analysis. 

Human Skin 
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Human PBMC 
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Figure 9. The t-SNE projection of lung mononuclear cells from 4 mouse samples 

 

3.5.2.3 Analysis of the in-house scRNA-Seq data from human skin samples 

To evaluate the clustering performance of BAMM-SC in solid human tissues, I collected skin 

samples from 5 healthy donors that are part of a systemic sclerosis study (Tabib, et al., 2018). 

Figure 4A and Table 4 list the detailed sample information and Figure 10 shows the t-SNE plot of 

cells from 5 human skin samples after the data processing similar as previous analyses. As shown 

in Figure 32 (Appendix B), I identified 8 major types of cells based on the biological knowledge 

of cell-type-specific gene markers (Table 8). Taken together, >67% of single cells can be assigned 
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to a specific cell type. Like the other two real data analyses, I used the labels of these cells as the 

approximated truth and removed cells with uncertain cell types from the downstream analysis. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. The t-SNE projection of cells from human skin dataset 

 

As shown in Figure 8C, BAMM-SC performed well in human skin samples, since the t-

SNE plot with each cell colored by their cell type label based on gene markers is highly similar to 

the plot generated from the clustering result of BAMM-SC (ARI=0.843). Also, BAMM-SC 

achieved higher ARI compared with all the other clustering methods (Table 6). As comparisons, I 

generated t-SNE plots colored by cluster labels inferred by different clustering (Figure 33 

(Appendix B)). 
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Table 8. Gene markers used to specify cell types in human skin samples 

Cell Types Genes 
Smooth muscle cells DES+ 

Suprabasal keratinocytes KRT1+KRT10+ 
Basal keratinocytes KRT14+KRT5+ 

Endothelial cells VWF+ 
Fibroblasts COL1A1+ 
Pericytes RGS5+VWF- 

Melanocytes PMEL+ 
Mecrophages/Dendritic cells AIF1+ 

 
 

To further demonstrate the validity of BAMM-SC, I calculated the confusion matrix for 

three real datasets and reported the clustering accuracy (defined as the proportion of cells being 

classified into the correct cell-type cluster) (Table 9). In Table 9, the clustering results are selected 

based on the highest ARI among 10 times analysis. BAMM-SC outperformed other competing 

methods in all three datasets. Additionally, I performed a flow cytometry experiment, a gold 

standard method for quantifying cell population through cell surface markers, on the sample 3 

from the human PBMC dataset, which has an additional aliquot from the same pool of cells. I used 

FlowJo software to gate each cell population through specific antibodies and calculated the 

percentage of each cell type. Then, I compared the proportions of different cell types from flow 

cytometry and the clustering result of BAMM-SC from scRNA-seq. Figure 34 (Appendix B) 

showed that the proportion of cells in each cell type classified by BAMM-SC is consistent with 

that being estimated by flow cytometry. I also calculated the Pearson’s correlation coefficient of 

cell proportions for each clustering method (Table 10). Similarly, the clustering results are selected 

based on the highest ARI among 10 times analysis. Despite the different technology, the high 

correlation (Pearson correlation coefficient is 0.98) suggests that BAMM-SC is able to adequately 

account for heterogeneity among multiple individuals and provide reliable clustering results. To 
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be noted, unlike other clustering methods we considered, Seurat cannot directly pre-specify the 

number of clusters K. Rather it needs to set a resolution parameter that indirectly controls the 

cluster number. In all three real data sets, after an extensive grid search, I found the resolution 

parameter that yields the same number of clusters as the one based on the biological knowledge. 

Therefore, for the two Seurat clustering methods, instead of using the clustering assignments that 

produced the highest ARI among 10 times analysis, I computed the confusion matrix and the 

proportions of different cell types based on this specific resolution parameter. 

 

Table 9. Accuracy of the confusion matrix generated from different clustering methods for human PBMC, 
mouse lung and human skin samples 

 
 Human PBMC Mouse lung Human skin 

MNN + K-means 0.669 0.908 0.801 
MNN + TSCAN 0.560 0.849 0.634 

MNN + SC3 0.687 0.861 0.676 
MNN + Seurat 0.511 0.598 0.775 

CCA + K-means 0.673 0.947 0.797 
CCA + TSCAN 0.452 0.827 0.638 

CCA + SC3 0.528 0.811 0.591 
CCA + Seurat 0.754 0.825 0.748 

DIMM-SC 0.643 0.944 0.793 
BAMM-SC 0.734 0.960 0.859 

 

It is challenging to evaluate clustering algorithms in experimental data since the ground 

truth of cell type label is generally unknown. Other than using ARI based on cell-type-specific 

gene markers as approximated ground truth, I also used cluster stability and tightness to evaluate 

the clustering performance. Specifically, I calculated the average proportion of non-overlap (APN) 

(Datta, 2003) clustered cells and silhouette width (Rousseeuw, 1987) in three real datasets, 

respectively. APN is a cluster stability measurement which evaluates the stability of a clustering 

result by comparing it with the clusters obtained by removing one feature (i.e., one gene in our 

study) at a time. It measures the average proportion of observations not placed in the same cluster 
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under both cases. To make computation affordable in our real data analysis, after extracting the 

top 1,000 highly variable genes, I compared the clustering results based on the full data (1,000 

genes) to the clustering results based on a subset of data with 100 genes randomly removed. I 

repeated this step 10 times to calculate the APN. For cluster tightness, the silhouette width ranges 

from −1 to 1, where a higher value indicates that the observation is better matched to its own 

cluster and worse matched to other clusters. Here, the distance metric is Morisita dissimilarity. For 

both measurements, BAMM-SC achieved high cluster stability and high cluster tightness in most 

scenarios, compared with all other competing methods (Table 11, Table 12). 

Table 10. The correlation of estimated proportions of cells in each cell type between different clustering 
methods and flow cytometry in human PBMC sample 3 

Human PBMC 
MNN + K-means 0.95 
MNN + TSCAN 0.94 

MNN + SC3 0.92 
MNN + Seurat 0.76 

CCA + K-means 0.97 
CCA + TSCAN 0.60 

CCA + SC3 0.88 
CCA + Seurat 0.99 

DIMM-SC 0.97 
BAMM-SC 0.98 

Table 11. Performance of cluster stability measured by APN for human PBMC, mouse lung and human skin 
samples, respectively 

Method Human PBMC Mouse Lung Human Skin 
MNN + K-means 0.24 0.21 0.25 
MNN + TSCAN 0.16 0.11 0.29 

MNN + SC3 0.43 0.44 0.56 
MNN + Seurat 0.14 0.20 0.24 

CCA + K-means 0.29 0.16 0.28 
CCA + TSCAN 0.60 0.37 0.67 

CCA + SC3 0.69 0.23 0.64 
CCA + Seurat 0.11 0.16 0.19 

DIMM-SC 0.23 0.14 0.17 
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BAMM-SC 0.23 0.07 0.16 

Table 12. Performance of cluster tightness measured by silhouette width for human PBMC, mouse lung and 
human skin samples, respectively 

Human PBMC Mouse Lung Human Skin 
MNN + K-means 0.40 0.33 0.16 
MNN + TSCAN 0.18 0.34 0.16 

MNN + SC3 0.14 0.32 0.11 
MNN + Seurat 0.34 0.33 0.20 

CCA + K-means 0.13 0.34 0.11 
CCA + TSCAN -0.03 0.23 0.03 

CCA + SC3 -0.12 0.33 -0.02
CCA + Seurat 0.03 0.29 0.11

DIMM-SC 0.21 0.34 0.12
BAMM-SC 0.35 0.35 0.17

Different from other deterministic methods, BAMM-SC has the ability to assess clustering 

uncertainty through the posterior probability for each cell to belong to each cell-type cluster. As 

shown in Figure 11, I highlighted vague cells in the t-SNE projection plot, where vague cells are 

defined as cells with the largest posterior cluster-specific probability < 0.95. In the human PBMC 

samples, most of the vague cells (colored in red) are located at the boundary of different clusters, 

which reassuring the validity of the clustering results. In real data analysis, users can decide to 

remove vague cells under a user-specified criterion (based on the posterior probability) for the 

downstream analysis such as differential gene expression analysis within each cell type. 

Table 11 Continued
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Figure 11. The t-SNE projection of human PBMC samples for the illustration of vague cells with the largest 
posterior probability < 0.95 
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3.6 Discussion 

In summary, I have developed a novel Bayesian framework for clustering population-scale 

scRNA-Seq data. BAMM-SC retains the raw data information by directly modeling UMI counts 

without data transformation or normalization, facilitating straightforward biological interpretation. 

The Bayesian hierarchical model enables the joint characterization of multiple sources of 

uncertainty, including single cell level heterogeneity and individual level heterogeneity. 

Furthermore, BAMM-SC can borrow information across different individuals through its mixture 

hierarchical model structure and Bayesian computational techniques, leading to improved 

clustering accuracy. BAMM-SC is based on probabilistic models, thus providing the quantification 

of clustering uncertainty for each single cell.  

My model coupled with a computationally efficient MCMC algorithm, which is able to 

cluster large-scale droplet-based scRNA-Seq data with feasible computational cost. For example, 

using 1, 000 highly variable genes, it takes about 1.5, 2.5 and 4.5 hours when analyzing the three 

real datasets (human PBMC, mouse lung and human skin), respectively. For the simulated dataset 

consist of 10 individuals with 4,000 cells each, the computational time for clustering is about 30 

minutes. Figure 35 (Appendix B) demonstrates that the computational time of BAMM-SC 

increases approximately linearly with the increase of the number of cells in each individual, the 

number of individuals and the number of clusters, respectively. To further improve the 

computational efficiency, I provided a “supervised” clustering option in BAMM-SC for very large-

scale datasets. Specifically, users can first apply BAMM-SC on a small subset of single cells in 

each individual, and save predicted cluster labels as well as other informative parameters such as 
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𝜶𝜶∙𝒍𝒍𝒍𝒍 . Then for the remaining single cells, users can perform “supervised” classification via 

BAMM-SC instead of “unsupervised” clustering (Appendix B.2). By clustering a small number of 

single cells, this procedure will substantially reduce the computational cost. I used the simulated 

dataset of 10 individuals to demonstrate the effectiveness of this supervised option in Figure 12. I 

simulated two datasets: one dataset consists of 10 individuals with 400 cells each and the other 

dataset consists of 10 individuals with 4,000 cells each. I selected a subset of cells in each 

individual as the training set and treated the remaining cells as the test set. I set the proportion of 

cells in the training set from 10% to 100% and reported the ARIs for both training and test sets. 

When the proportion equals 100%, there is no test data set, thus only ARI for the training set is 

reported. I repeated this simulation procedure 100 times and reported ARIs in Figure 12 below. 

When the total number of cells in the training set is large enough (4,000 in total or more), the 

prediction performance (measured by ARI) in the test set is saturated. For the dataset consists of 

10 individuals with 4,000 cells each, when I used 10% cells for training, it only takes ~90 seconds 

to obtain the clustering labels for all cells in both training and test sets with the similar performance 

from the full dataset. Therefore, for large datasets (e.g. > 100K cells), users can apply BAMM-SC 

to a smaller subset of cells in each individual to cluster distinct cell types, and then classify the 

remaining cells according to the predicted cell types. BAMM-SC is currently implemented in 

R/Rcpp with satisfactory computing efficiency to accommodate population scale scRNA-seq data. 

Further speed-up can be made through parallel computing or GPU. 

Additionally, I can pre-define the number of clusters based on prior knowledge on the 

tissue or determine it using some standard model checking criterion such as AIC or BIC. As shown 

in Figure 36 (Appendix B), AIC and BIC work as expected in the analysis of simulated datasets 

and provide a reliable range of cluster numbers to guide real data analysis based on prior 
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knowledge. However, in biological study, the number of clusters is often considered as a 

continuum because of the nature of cell growth, so I recommend trying a range of cluster numbers 

in practice. BAMM-SC is shown to be robust against model mis-specification. In my simulation 

studies, I applied Splatter to simulate scRNA-Seq data in which the data generation mechanism is 

different from my proposed BAMM-SC model. BAMM-SC still achieved higher clustering 

accuracy than other competing methods. In addition, I compared BAMM-SC with other clustering 

methods when the number of clusters is different from the true number of cell types. Figure 37 

(Appendix B) shows that BAMM-SC still achieved the highest ARI in most scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 12. The Boxplots of ARI for BAMM-SC across 100 simulations, demonstrating the clustering accuracy 

under different proportions of cells being selected in the training set 
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Other than MNN and CCA, several other approaches have been proposed to correct batch 

effect across multiple individuals. One straightforward approach is taking one individual as the 

reference, producing a low-dimensional embedding of it and then projecting the other individuals 

onto that embedding. To perform low-dimensional embedding, diffusion map (Coifman, et al., 

2005) is a tool for non-linear dimension reduction and has recently been adapted for the 

visualization of single cell gene expression data. Additionally, single-cell Variational Inference 

(scVI) is a scalable framework for batch correction based on variational inference and stochastic 

optimization of deep neural networks (Lopez, 2018). The performance of diffusion map and scVI 

combined with other clustering method was examined, which is worse than MNN and CCA in the 

three synthetic datasets (possibly due to unmet model underlying assumptions). I will explore more 

emerging methods in our future work.   

There are several limitations of BAMM-SC. First, I filtered out genes with excessive zeros 

from the analysis under the assumption that lowly-expressed genes do not contribute much to 

clustering. This may be problematic for rare cell type identification. Second, I do not explicitly 

model a zero-inflation pattern, which may or may not affect clustering accuracy. A refined model 

that can handle inflated zeros can be further developed with a balance between computational 

complexity and model flexibility. Third, in my model, I assume that each cell belongs to one 

distinct cluster. The posterior probability measures the clustering uncertainty, which cannot be 

directly interpreted as a quantification of cell cycle or developmental stage. Finally, although the 

supervised strategy is proven to work for large datasets efficiently, it may potentially miss some 

rare clusters.   

My method has the potential to be extended to perform trajectory analysis (Trapnell, 2015; 

Trapnell, et al., 2014), and accounts for both individual and batch level heterogeneity (e.g. two 
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individuals spread evenly across two 10X chips in a properly blocked design) by adding another 

level of structure. In addition, the model parameters can be used for downstream differential gene 

expression analysis or construct cell-type specific biomarker panels. These interesting directions 

are beyond the scope of this dissertation and will be studied in future papers. Additionally, unlike 

the traditional way of analyzing scRNA-Seq data, BAMM-SC can be also used with batch effect 

correction. As shown in Figure 38 (Appendix B), I ran BAMM-SC on the mouse lung dataset first 

and extracted cells in cluster 4. Then I applied CCA (implemented in Seurat) on this specific cluster 

of cells and replotted the t-SNE plot. From Figure 38E, cells from different samples are 

superimposed on each other, suggesting that most batch effect has been removed. In practice, I 

recommend using BAMM-SC for clustering raw count data and then use other methods, such as 

MNN and CCA, to remove batch effect for each individual cell type if needed. 

I have applied BAMM-SC to simulated datasets and three in-house synthetic datasets to 

showcase its performance on different tissue types and species. With the increased popularity of 

population-based scRNA-Seq studies, BAMM-SC will become a powerful tool for elucidating 

single cell level transcriptomic heterogeneity from population-bases studies and a complementary 

approach to existing clustering methods.  
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4.0  BREM-SC: A Random Effect Bayesian Mixture Model for Joint Clustering Single 

Cell CITE-Seq Data 

Besides the single cell transcriptome sequencing (scRNA-Seq) technology, another revolutionary 

technology named Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) 

came out more recently. Coupling with droplet-based scRNA-Seq, it allows the detection of cell 

surface proteins and transcriptome profiling within the same cell simultaneously. Despite the rapid 

advances in technologies, novel statistical methods and computation tools for analyzing CITE-Seq 

data are lacking. In this study, I developed BREM-SC, a novel random effects model that jointly 

cluster the paired data from CITE-Seq simultaneously. Simulations and analysis of in-house real 

data sets were performed, which successfully demonstrated the validity and advantages of this 

method in fully utilizing both types of data to identify cell clusters. We expect this new method 

will greatly help researchers better understand immune diseases as well as facilitate novel 

biological discoveries. 

4.1 Introduction 

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) is a recently 

developed revolutionary tool, which is the first technique that can measure single cell surface 

protein and mRNA expression level simultaneously in the same cell (Stoeckius, et al., 2017). 

Oligonucleotide-labeled antibodies are used to integrate cellular protein and transcriptome 

measurements. It combines highly multiplexed protein marker detection with transcriptome 
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profiling for thousands of single cells. CITE-Seq allows for immunophenotyping of cells using 

existing single cell sequencing approaches (Stoeckius, et al., 2017). It is fully compatible with 

droplet-based single cell RNA sequencing (scRNA-Seq) technology (by 10X Genomics 

Chromium (Zheng, et al., 2017)). These promising and popular technologies provide the 

opportunity for jointly analyzing transcriptome and surface proteins at single cell level in a cost-

effective way. 

The rapid advances in single cell technologies help researchers better understand cell 

heterogeneity and identify cell types, which leads to the high demand of novel statistical methods 

and tools to analyze data with different characteristics. Current statistical methods for jointly 

analyzing data from CITE-Seq are still immature. A novel joint clustering approach that fully 

utilizes the advantages and unique features of these single cell multi-omics data will lead to a more 

powerful tool in identifying rare cell types.  

In CITE-Seq analysis, RNA measurements and the expression levels of Antibody-Derived 

Tags (ADT) are collected for a common set of cells. These two data sources represent different 

but highly related and dependent biological components. Traditional cell type identification relies 

on cell surface protein abundance, which can be measured with flow cytometry. Moreover, 

researchers can also use scRNA-Seq data to classify cell types, especially based on genes that are 

differentially expressed between different cell types. Both data sources have their unique 

characteristics and can provide complementary information. For example, the use of cell surface 

proteins for cell gating is advantageous in identifying common cell types but may not successfully 

identify some rare cell types due to its low dimensionality. On the other hand, cell clustering based 

on scRNA-Seq could identify more cell types because of its higher dimensionality. However, it 

may not be able to distinguish highly similar cell types, such as CD4+ T cells and CD8+ T cells, 



66 

due to a poor observed correlation between an mRNA and its translated protein expression in single 

cell (Chen, et al., 2002; Haider and Pal, 2013).  

Different clustering methods have been proposed for clustering gene expression data only. 

Recently, single cell interpretation via multi-kernel learning (SIMLR) (Wang, et al., 2018), Seurat 

(Satija, et al., 2015), SC3 (Kiselev, et al., 2017) and DIMM-SC (Sun, et al., 2018) have been 

proposed for clustering scRNA-Seq data. Among these methods, DIMM-SC directly models UMI 

counts using a multinomial distribution with Dirichlet mixture priors, and provides clustering 

uncertainty for each cell (i.e., how likely each cell belongs to each cluster). Therefore, it can benefit 

rigorous statistical inference and straightforward biological interpretations. In contrast, few 

methods are designed for directly clustering surface protein levels generated from CITE-Seq. 

Separate analyses of each data source may lack power and will not capture the associations 

between transcriptomes and expression of surface proteins. Multimodal data analysis can achieve 

a more detailed characterization of cellular phenotypes than using transcriptome measurements 

alone.  

In this study, I proposed BREM-SC, a Bayesian mixture Random Effect Model for joint 

clustering single cell CITE-Seq data. In the following sections, I first introduce the BREM-SC 

method. Next, I compare the performance of BREM-SC with four popular clustering methods, 

including K-means clustering, SC3 (Kiselev, et al., 2017), TSCAN (Ji and Ji, 2016) and DIMM-

SC (Sun, et al., 2018), in both simulation studies and real data applications. K-means is one of the 

most popular clustering methods and has been used in the first 10X Genomics publication (Zheng, 

et al., 2017). SC3, TSCAN and DIMM-SC have been proposed for clustering scRNA-Seq data. 

They are from different clustering categories. For example, SC3 is a single cell consensus 

clustering method. The consensus matrix is calculated using the Cluster-based Similarity 
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Partitioning Algorithm (CSPA). Unlike SC3, TSCAN performs model-based clustering on the 

transformed expression values. 

4.2 Methods 

 Statistical model 

Suppose there are 𝐶𝐶 cells generated from CITE-Seq, denote by the transcriptomic data a matrix 

𝑋𝑋(1) and its ADT levels  𝑋𝑋(2). I use a latent variable vector 𝑍𝑍 with elements 𝑧𝑧𝑗𝑗 to represent the cell 

type label for the cell 𝑗𝑗, where 𝑗𝑗 = 1, … ,𝐶𝐶. 

For transcriptomic data, each element 𝑥𝑥𝑖𝑖𝑖𝑖
(1) represents the number of unique UMIs for gene 

𝑖𝑖 in cell 𝑗𝑗, where 𝑖𝑖 runs from 1 to the total number of genes 𝐺𝐺, and 𝑗𝑗 runs from 1 to the total number 

of cells 𝐶𝐶. Then I denote the number of unique UMIs in the 𝑗𝑗 th single cell by a vector 𝑥𝑥𝑗𝑗
(1) =

�𝑥𝑥1𝑗𝑗
(1), 𝑥𝑥2𝑗𝑗

(1), … , 𝑥𝑥𝐺𝐺𝐺𝐺
(1)�.  I assume that 𝑥𝑥𝑗𝑗

(1)  is generated from a multinomial distribution with 

parameter vector 𝑝𝑝𝑗𝑗
(1) = �𝑝𝑝1𝑗𝑗

(1),𝑝𝑝2𝑗𝑗
(1), … ,𝑝𝑝𝐺𝐺𝐺𝐺

(1)�. For multinomial distribution, I further assume that 

the proportion 𝑝𝑝𝑗𝑗
(1) = �𝑝𝑝1𝑗𝑗

(1), 𝑝𝑝2𝑗𝑗
(1), … ,𝑝𝑝𝐺𝐺𝐺𝐺

(1)�  follows a Dirichlet prior distribution 𝐷𝐷𝐷𝐷𝐷𝐷�𝛼𝛼(1)� =

𝐷𝐷𝐷𝐷𝐷𝐷 (𝛼𝛼1
(1),𝛼𝛼2

(1), … ,𝛼𝛼𝐺𝐺
(1)), with all the elements in 𝛼𝛼(1) being strictly positive. Next, I assume that 

the cell population consists of 𝐾𝐾  distinct cell types. To provide a more flexible modeling 

framework and allow for unsupervised clustering, I extend the aforementioned single Dirichlet 

prior to a mixture of 𝐾𝐾 Dirichlet distributions, indexed by 𝑘𝑘 = 1, … ,𝐾𝐾 and each with parameter 

𝛼𝛼(𝑘𝑘)
(1). If cell 𝑗𝑗 belongs to the 𝑘𝑘 th cell type, its gene expression profile 𝑝𝑝𝑗𝑗

(1) follows a cell-type-
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specific prior distribution 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼(𝑘𝑘)
(1)) . The full likelihood is then obtained by multiplying the 

Dirichlet mixture prior by the multinomial likelihood. The RNA data source-specific log likelihood 

is 𝑙𝑙𝑙𝑙𝑙𝑙∏ 𝑃𝑃(𝑥𝑥𝑗𝑗
(1), 𝑧𝑧𝑗𝑗 = 𝑘𝑘)𝐶𝐶

𝑗𝑗=1 = ∑ 𝐼𝐼(𝑧𝑧𝑗𝑗 = 𝑘𝑘)𝐶𝐶
𝑗𝑗=1 𝑙𝑙𝑙𝑙𝑙𝑙 ��∏

𝛤𝛤�𝑥𝑥𝑖𝑖𝑖𝑖
(1)+𝛼𝛼𝑖𝑖(𝑘𝑘)

(1) �

𝛤𝛤�𝛼𝛼𝑖𝑖(𝑘𝑘)
(1) �

𝐺𝐺
𝑖𝑖=1 �

𝛤𝛤(|𝛼𝛼(𝑘𝑘)
(1)|)

𝛤𝛤(𝑇𝑇𝑗𝑗
(1)+|𝛼𝛼(𝑘𝑘)

(1)|)
� , where 

𝑇𝑇𝑗𝑗
(1) = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

(1)
𝑖𝑖  is the total number of unique UMIs for the 𝑗𝑗 th cell. Similarly, I use the Dirichlet 

multinomial distribution to model ADT data. Suppose there are total 𝐷𝐷 ADT markers, the density 

of Dirichlet multinomial is 𝑃𝑃�𝑥𝑥𝑗𝑗
(2)�𝛼𝛼(2)� =

𝑇𝑇𝑗𝑗
(2)!

∏ 𝑥𝑥𝑑𝑑𝑑𝑑
(2)!𝐷𝐷

𝑑𝑑=1
�∏

𝛤𝛤�𝑥𝑥𝑑𝑑𝑑𝑑
(2)+𝛼𝛼𝑑𝑑

(2)�

𝛤𝛤�𝛼𝛼𝑑𝑑
(2)�

𝐷𝐷
𝑑𝑑=1 � 𝛤𝛤(|𝛼𝛼(2)|)

𝛤𝛤(𝑇𝑇𝑗𝑗
(2)+|𝛼𝛼(2)|)

, where 𝑑𝑑 =

1, … ,𝐷𝐷 and 𝑇𝑇𝑗𝑗
(2) = ∑ 𝑥𝑥𝑑𝑑𝑑𝑑

(2)
𝑑𝑑 . Here, 𝑇𝑇𝑗𝑗

(2) is the total counts of ADT markers for the 𝑗𝑗 th cell. Then 

the joint distribution for all cells is  

��𝐼𝐼
𝐾𝐾

𝑘𝑘=1

𝐶𝐶

𝑗𝑗=1

�𝑧𝑧𝑗𝑗 = 𝑘𝑘� 𝑙𝑙𝑜𝑜𝑜𝑜���
𝛤𝛤�𝑥𝑥𝑖𝑖𝑖𝑖

(1) + 𝛼𝛼𝑖𝑖(𝑘𝑘)
(1) �
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�
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I use Gibbs sample to iteratively update 𝑧𝑧𝑗𝑗, 𝛼𝛼𝑖𝑖(𝑘𝑘)
(1) , 𝛼𝛼𝑑𝑑(𝑘𝑘)

(2)  and 𝑏𝑏𝑗𝑗. Details can be found in Appendix 

C.1. 

 Selection of the number of clusters and initial values 

To implement BREM-SC, it is critical to select the total number of clusters and the initial values 

for MCMC. Specifically, the number of cluster 𝐾𝐾 can be defined with prior knowledge or standard 

model checking criterion such as Akaike's Information Criteria (AIC) or Bayesian Information 

Criteria (BIC). Meanwhile, there are many methods to determine the initial values of 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐺𝐺. 

As described in Chapter 2, I applied K-means clustering to get a preliminary clustering result, and 

then used Ronning’s method to estimate initial values of 𝜶𝜶, similar to the estimation procedure in 

DIMM-SC. 

 Simulation studies 

I performed comprehensive simulation studies to compare BREM-SC with three existing 

clustering methods, including K-means clustering, SC3 and TSCAN. They are hard clustering 

approaches, which assign each cell to an exclusive cluster. Based on different Dirichlet 

multinomial models, I simulated RNA expression and ADT measurements for each single cell. In 

the simulation set-up, the two count matrices were sampled from the proposed Dirichlet mixture 

models. Specifically, for a fixed number of cell clusters 𝐾𝐾, I first pre-defined the values of 𝛼𝛼(𝑘𝑘)
(1) 

and 𝛼𝛼(𝑘𝑘)
(2) for the 𝑘𝑘 th cell cluster. The random effects 𝑏𝑏𝑗𝑗 are generated from log-normal distribution 

with pre-specified value 𝜎𝜎𝑏𝑏2 . Then I can get the transcriptomic profile for each single cell by 
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multiplying 𝛼𝛼(𝑘𝑘)
(1) with 𝑏𝑏𝑗𝑗. Similarly, for cellular protein expression profile, I multiplied 𝛼𝛼(𝑘𝑘)

(2) with 

𝑏𝑏𝑗𝑗 to calculate 𝜶𝜶𝒋𝒋(𝒌𝒌)
(𝟐𝟐)  for each cell. Next, I sampled the proportion 𝒑𝒑𝒋𝒋

(𝟏𝟏) (or 𝒑𝒑𝒋𝒋
(𝟐𝟐)) from a Dirichlet 

distribution 𝐷𝐷𝐷𝐷𝐷𝐷 �𝜶𝜶𝒋𝒋(𝒌𝒌)
(𝟏𝟏) � (or 𝐷𝐷𝐷𝐷𝐷𝐷 �𝜶𝜶𝒋𝒋(𝒌𝒌)

(𝟐𝟐) �). Lastly, I sampled the UMI count vector 𝒙𝒙𝒋𝒋
(𝟏𝟏) for the 𝑗𝑗 th 

cell from the multinomial distribution 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑗𝑗
(1),𝒑𝒑𝒋𝒋

(𝟏𝟏)) and sampled the levels of ADT 

markers 𝒙𝒙𝒋𝒋
(𝟐𝟐) from another multinomial distribution 𝑀𝑀𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑗𝑗

(2),𝒑𝒑𝒋𝒋
(𝟐𝟐)). In my simulation 

studies, I considered different experimental designs, including different number of cells in each 

cluster, different number of clusters, different cell-type-specific heterogeneity (i.e., the magnitude 

of difference among different clusters), and different heterogeneities among cells. All clustering 

methods were run under default parameters. For K-means, SC3 and TSCAN, I pooled data from 

RNA expression and ADT together while ignoring data source label, and then applied each 

clustering method on the pooled data. I simulated 100 datasets and summarized the corresponding 

adjusted rand index (ARIs) for each method. 

4.3 Results 

 Results of simulation studies 

As expected, the performance of all four clustering approaches decreases as the among cell 

heterogeneity increases, measured by the value of 𝜎𝜎𝑏𝑏2 . As shown in Figure 13, BREM-SC 

outperformed the other three competing methods by achieving higher average ARI among 100 

simulations when the level of cell heterogeneities is median or large. However, when 𝜎𝜎𝑏𝑏2 is very 
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small, all 𝑏𝑏𝑗𝑗’s are close to 0, indicating that there is little correlation between two data sources, and 

in this case, BREM-SC demonstrated larger variability compared with other methods. 

 

 

 

 

 

 

 

 

 

 
Figure 13. Boxplots of ARI for four clustering methods across 100 simulations, investigating how different 

levels of heterogeneities among cells affect clustering results 
 

 

Figure 14 lists the boxplots of ARI for different cell-type-specific heterogeneity (Figure 

14A) and different number of cells in each cluster (Figure 14B), respectively. In Figure 14A, I 

considered 4 scenarios in terms of signal strength from two data sources. To illustrate the 

advantage of joint clustering, I also applied K-means, SC3, TSCAN and DIMM-SC on ADT data 

alone. When the clustering signal is strong (i.e., difference among cell clusters is large) in both 

RNA expression and ADT data, all methods performed well. However, when cell clusters are 

similar in either proteomics or transcriptomics data, K-means and TSCAN produced less accurate 

clustering results, while BREM-SC and SC3 still performed well. Strong clustering signal leads to 

higher clustering accuracy and lower clustering variability. If the data of transcriptome as well as 

proteome from single cells are similar across different cell types, ARIs of all methods decreased 
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but BREM-SC still performed better than the other methods. In Figure 14B, more cells can provide 

more accurate and robust clustering results, and BREM-SC achieved the highest ARI across a 

variety of number of cells. Consistent across these two scenarios, when data are generated from 

the true model, BREM-SC outperformed K-means clustering, SC3, TSCAN and DIMM-SC, 

suggesting its advantage in fully utilizing both types of data simultaneously. Furthermore, I 

performed simulation analysis by generating simulated scRNA-Seq datasets from different number 

of cell type clusters (Figure 39 (Appendix C)). BREM-SC still provided more accurate clustering 

results than other competing methods in this scenario. 

To evaluate the robustness of BREM-SC when the data generation model is mis-specified, 

I simulated additional datasets using R package Splatter (Zappia, et al., 2017), a commonly used 

tool for scRNA-Seq data simulation. In Splatter, the final data matrix is a synthetic dataset 

consisting of counts from a Gamma-Poisson (or negative-binomial) distribution. Since there is no 

existing method for generating surface protein expression levels from CITE-Seq, in this work, I 

also used Splatter to generate ADT data. To make my simulated gene expression data a good 

approximation to the real data, I used the same approach as I did in Chapter 3, with model 

parameters (in Splatter) estimated from the real data downloaded from the 10X Genomics website 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/b_cells). For ADT 

data, I modified the Splatter parameters (such as dropout rate, library size, expression outlier, and 

dispersion across features) to make the simulated data similar to real observed ADT data. I 

assumed all cell types are shared between gene expression and ADT data, and further specified 

differential expression parameters to generate scenarios with different amount of cell type 

differences. As shown in Figure 15, BREM-SC still outperformed other competing methods in 

terms of clustering accuracy in all scenarios. 
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Figure 14. Boxplots of ARI for four clustering methods across 100 simulations, investigating how different 
cell-type-specific heterogeneity (14A) and number of cells (14B) affect clustering results 

 
 

 

 

Figure 15. Boxplots of ARI for four clustering methods across 100 simulations using Splatter 
 
We investigated how different levels of cell-type-specific heterogeneity affect clustering results. In Figure 15A, we 
set the mean parameters of three cell types as (0.15, 0.151, 0.152) and (0.15, 0.2, 0.25) to represent two levels (small 
and large) of cell type difference. In Figure 15B, we set the probability that a gene will be selected to be differentially 
expressed as different values.  

 

 

14A 14B 

15A 15B 
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Real data analysis 

4.3.2.1 Analysis of the public human PBMC sample 

To evaluate the clustering performance of BREM-SC, I downloaded a published human PBMC 

CITE-Seq dataset from the website of 10X Genomics. A total of 7,865 cells and 14 ADT markers 

are included in this dataset. Similar to the analysis of in-house human PBMC dataset, I extracted 

the top 100 highly variable genes based on their standard deviations, and identified seven cell types 

based on the biological knowledge of both ADT and gene markers (Figure 40 (Appendix C)). 

Taken together, more than 80% of single cells can be assigned to a specific cell type. I applied five 

clustering methods (K-means clustering, TSCAN, SC3, DIMM-SC and BREM-SC) on this 

dataset. As shown in Table 13, BREM-SC outperformed other methods in terms of ARI. Figure 

16 shows the t-SNE plots with each cell colored by their label based on cell-type-specific markers 

and cluster labels inferred by BREM-SC, respectively. These two are highly similar (ARI = 0.868), 

indicating the outstanding performance of BREM-SC. 

Table 13. Performance of clustering for the public human PBMC real dataset 

              Mean (SD) Median (Range) 
K-means (ADT) 0.653 (0.093) 0.648 (0.436, 0.760) 
TSCAN (ADT) 0.389 (NA) 0.389 (0.389, 0.389) 

SC3 (ADT) 0.649 (0.045) 0.668 (0.568, 0.692) 
DIMM-SC (ADT) 0.673 (0.048) 0.679 (0.618, 0.737) 

K-means 0.645 (0.158) 0. 689 (0.383, 0.889)
TSCAN 0.472 (NA) 0.472 (0.472, 0.472)

SC3 0.543 (0.130) 0.534 (0.395, 0.853)
BREM-SC 0.737 (0.125) 0.713 (0.556, 0.868)
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Figure 16. The performance of BREM-SC for public human PBMC CITE-Seq dataset 
 
The t-SNE projection of cells are colored by the ground truth and BREM-SC clustering results.  
 

4.3.2.2 Analysis of the in-house human PBMC sample 

To evaluate the clustering performance of BREM-SC in solid human tissues, isolated human 

peripheral blood mononuclear cells (PBMCs) from the whole blood were obtained from a healthy 

donor and the 10X Chromium system was used to generate CITE-Seq data, which yielded a total 

of 1,388 cells. There were 10 cell surface markers designed in the experiment. Similarly, I 

extracted the top 100 highly variable genes based on their standard deviations. As shown in Figure 

17, I identified six subtypes of PBMCs based on the biological knowledge of cell-type-specific 

ADT markers. Using these markers, >85% single cells can be assigned to a specific cell type 

(Figure 41 (Appendix C)). I used the labels of these cells as the ground truth to benchmark the 

clustering performance for different clustering methods. Cells with uncertain cell types were 

removed when calculating ARIs. 

16A 16B 
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Similar to the simulation studies, I applied five clustering methods (K-means clustering, TSCAN, 

SC3, DIMM-SC and BREM-SC) on the PBMC dataset and repeated each method ten times to 

evaluate the stability of its performance (Table 14). The total number of clusters was set as six. In 

Table 14, BREM-SC achieved the highest ARI for human PBMC sample compared to all other 

competing methods. Note that TSCAN is a deterministic clustering method and therefore it 

generated identical results for ten analyses. As shown in Figure 17, BREM-SC performed well in 

the human PBMC samples, since the t-SNE plot with each cell colored by their cell-type label 

based on ADT markers is highly similar to the plot generated from the clustering result of BREM-

SC (ARI = 0.895). 

Figure 17. The performance of BREM-SC for in-house human PBMC CITE-Seq dataset 

The t-SNE projection of cells are colored by the ground truth and BREM-SC clustering results. 

17A 17B 
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Table 14. Performance of clustering across ten times analyses for human PBMC real dataset 

              Mean (SD) Median (Range) 
K-means (ADT) 0.930 (0.120) 0.986 (0.702, 0.989) 
TSCAN (ADT) 0.877 (NA) 0.877 (0.877, 0.877) 

SC3 (ADT) 0.921 (0.039) 0.931 (0.816, 0.951) 
DIMM-SC (ADT) 0.959 (0.037) 0.985 (0.916, 0.992) 

K-means 0.596 (0.142) 0.613 (0.434, 0.803) 
TSCAN 0.443 (NA) 0.443 (0.443, 0.443) 

SC3 0.777 (0.047) 0.788 (0.679, 0.848) 
BREM-SC 0.857 (0.048) 0.874 (0.749, 0.895) 

In real world, researchers may not have any biological information of a specific cell type 

when designing ADT markers. In this case, we will not be able to identify all the cell types in the 

data only based on ADT markers. To mimic the situation where the pre-designed ADT markers 

cannot capture the characteristics of all cell types, I randomly removed three ADT markers (CD8A, 

CD16, CD127) in this human PBMC dataset, and applied five clustering methods (K-means 

clustering, TSCAN, SC3, DIMM-SC and BREM-SC) on the subset dataset and repeated this 

process ten times to evaluate the stability of all approaches (Table 15). The total number of clusters 

was still set as six. In Table 15, BREM-SC achieved the highest ARI compared with all other 

clustering methods. 
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Table 15. Performance of clustering for the subset of human PBMC real dataset with three ADT markers 

(CD8A, CD16, CD127) removed 

               Mean (SD) Median (Range) 
K-means (ADT) 0.752 (0.126) 0.707 (0.666, 0.991) 
TSCAN (ADT) 0.662 (NA) 0.662 (0.662,0.662) 

SC3 (ADT) 0.757 (0.106) 0.818 (0.552, 0.840) 
DIMM-SC (ADT) 0.782 (0.124) 0.758 (0.647, 0.983) 

K-means 0.466 (0.023) 0.478 (0.437, 0.485) 
TSCAN 0.371 (NA) 0.371(0.371, 0.371) 

SC3 0.711 (0.095) 0.688 (0.614, 0.831) 
BREM-SC 0.839 (0.017) 0.845 (0.805, 0.851) 

4.4 Discussion 

BREM-SC directly models count data from CITE-Seq using two multinomial distributions (one 

for each data type) with cells being treated as random effects. Unlike many other clustering 

methods which typically convert the counts into continuous measures, BREM-SC can work on the 

full matrix files compiled by users from the 10X Genomics Cellranger pipeline directly, to preserve 

the straightforward interpretation of count data. BREM-SC is also the first statistical approach to 

jointly cluster the paired data (scRNA and ADT) from CITE-Seq simultaneously. I demonstrated 

that BREM-SC has achieved substantial improvements in clustering accuracy compared to 

applying existing scRNA data clustering methods (e.g., K-means, TSCAN, SC3 and DIMM-SC) 

on CITE-Seq data. This probabilistic model provides clustering uncertainty for each cell (i.e., how 

likely each cell belongs to each cluster), which can enjoy the advantage of rigorous statistical 

inference and straightforward biological interpretations. Unlike DIMM-SC, BREM-SC considers 

the correlation between different data sources for the same cell. The random effect part further 

accounts for data heterogeneity among cells and therefore reduces the false positives of detecting 

rare cell types. 
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When analyzing data from different data sources, ensemble clustering may be considered 

to integrate the separate clusterings and determine an overall partition of cells that agrees the most 

with the source-specific clusterings. However, most of ensemble clustering methods assume that 

the separate clusterings are known in advance and do not inherently model the uncertainty (Wang, 

2011). At the other extreme, a joint analysis that ignores the heterogeneity of the data may not 

capture important features that are specific to each data source. A fully integrative clustering 

approach is necessary to effectively combine the discriminatory power from transcriptome and 

protein measurements. 

However, there are several noticeable limitations of this method. First, BREM-SC uses a 

computationally intensive MCMC algorithm which may cluster large datasets (e.g., >10 K cells) 

with a high computational cost. BREM-SC is currently implemented in R/Rcpp to accommodate 

large scale CITE-Seq data. Further speed-up can be made through block-wise MH within Gibbs 

sampling approach or graphics processing unit. Second, BREM-SC model ignores the 

measurement errors and uncertainties buried in count matrices. Multiple factors such as drop-out 

event, mapping percentage and PCR efficiency are not considered in the current model. These 

limitations can be largely overcome by extending the method. I will explore these directions in the 

near future. 

In summary, I provide a novel statistical method BREM-SC for clustering CITE-Seq data, 

which facilitates rigorous statistical inference of cell population heterogeneity. I am confident that 

BREM-SC will be highly useful for the fast-growing community of large-scale single cell analysis. 
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5.0  Discussion and Future Work 

The research work comprising this dissertation focuses on developing statistical methods for 

clustering the count data generated from scRNA-Seq and CITE-Seq technologies. In the first part, 

I developed DIMM-SC, a Dirichlet mixture model for clustering droplet-based scRNA-Seq data. 

I performed comprehensive simulations and real data applications to evaluate DIMM-SC and 

compared it with existing clustering methods. Both simulation studies and real data applications 

demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and 

much lower clustering variability compared to other existing clustering methods. In the second 

part, I developed BAMM-SC, a novel Bayesian hierarchical Dirichlet mixture model to cluster 

droplet-based scRNA-Seq data from population studies. To be noted, BAMM-SC is able to 

account for data heterogeneity among multiple individuals such as unbalanced sequencing depths, 

read length and technical bias. I demonstrated that BAMM-SC achieves substantially improved 

clustering accuracy compared to other existing clustering methods. I applied this method to both 

human and mouse datasets. In the third part, I developed BREM-SC, a novel statistical method of 

joint clustering for data from CITE-Seq. Analysis of simulations and in-house real data were 

performed. It has been demonstrated that BREM-SC can account for the correlation between 

transcriptomes and cell surface proteins measurements within each single cell, and it is a powerful 

tool to jointly analyze RNA and surface protein data at single cell level.  

However, there are some challenges that have not been fully addressed in this dissertation. 

For example, all the models proposed in this dissertation directly models UMI counts from scRNA-

Seq data using a multinomial distribution with Dirichlet mixture priors. These models ignore the 

drop-out event, meaning that a gene which is expressed even at a relatively high level may be 
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undetected due to technical limitations such as the inefficiency of reverse transcription. Such errors 

are distinct from random sampling and can often lead to significant error in cell-type identification 

and downstream analyses. Other than that, DIMM-SC, BAMM-SC and BREM-SC are 

unsupervised clustering method that infers structures from all data. Prior knowledge on cell-type-

specific biomarkers may further improve the clustering accuracy. To use such prior information, a 

semi-supervised approach is needed to guide cluster inference.  

The development of machine learning methods (especially deep learning) is also crucial in 

the analysis of single cell data. Machine learning methods are well-known to their high prediction 

efficiency which is based on prior knowledge from a training process. For prediction with omics 

data whose number of features is usually large, machine learning methods are expected to have 

better performance compared to traditional statistical tools. We expect that the utilization of deep 

learning methods on single cell data from the revolutionary scRNA-Seq and CITE-Seq technology 

will greatly advance our understanding of cell biology, tissue heterogeneity, and disease 

pathogenesis. 
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Appendix A (For DIMM-SC) 
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A.1 The E-M Algorithm 

I used the E-M algorithm to maximize the log posterior distribution. Specifically, I first denoted 

𝑃𝑃�𝑧𝑧𝑗𝑗 = 𝑘𝑘� = 𝜋𝜋𝑘𝑘, where 𝜋𝜋𝑘𝑘 is the proportion of the 𝑘𝑘 th cell type among all cells. I then treated 𝑧𝑧𝑗𝑗 

as missing data and used the E-M algorithm to estimate 𝛼𝛼1𝑘𝑘,𝛼𝛼2𝑘𝑘, … ,𝛼𝛼𝐺𝐺𝐺𝐺 and 𝜋𝜋𝑘𝑘. The complete 

data likelihood is: 

�𝑃𝑃(𝑥𝑥𝑗𝑗, 𝑧𝑧𝑗𝑗)
𝐶𝐶

𝑗𝑗=1

= ����
𝛤𝛤(𝑥𝑥𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖)
𝛤𝛤(𝛼𝛼𝑖𝑖𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
𝛤𝛤(|𝛼𝛼(𝑘𝑘)|)

𝛤𝛤(𝑇𝑇𝑗𝑗 + |𝛼𝛼(𝑘𝑘)|)
�

𝐶𝐶

𝑗𝑗=1

𝐼𝐼(𝑧𝑧𝑗𝑗=𝑘𝑘)

, 

where �𝛼𝛼(𝑘𝑘)� = 𝛼𝛼1𝑘𝑘 + 𝛼𝛼2𝑘𝑘 + ⋯+ 𝛼𝛼𝐺𝐺𝐺𝐺 and the log likelihood is: 

𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃(𝑥𝑥𝑗𝑗 , 𝑧𝑧𝑗𝑗)
𝐶𝐶

𝑗𝑗=1

= �𝐼𝐼(𝑧𝑧𝑗𝑗 = 𝑘𝑘)
𝐶𝐶

𝑗𝑗=1

𝑙𝑙𝑙𝑙𝑙𝑙 ���
𝛤𝛤�𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖�
𝛤𝛤(𝛼𝛼𝑖𝑖𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
𝛤𝛤(|𝛼𝛼(𝑘𝑘)|)

𝛤𝛤(𝑇𝑇𝑗𝑗 + |𝛼𝛼(𝑘𝑘)|)
�. 

E-step: 

At the t th iteration, with the current realization of parameters 𝛩𝛩(𝑡𝑡) = (𝛼𝛼1𝑘𝑘
(𝑡𝑡),𝛼𝛼2𝑘𝑘

(𝑡𝑡), . . . ,𝛼𝛼𝐺𝐺𝐺𝐺
(𝑡𝑡),   𝜋𝜋𝑘𝑘

(𝑡𝑡)), 

the conditional expectation is: 

𝐸𝐸𝑧𝑧𝑗𝑗|𝑥𝑥𝑗𝑗,𝛩𝛩(𝑡𝑡) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃�𝑥𝑥𝑗𝑗 , 𝑧𝑧𝑗𝑗� = 𝑙𝑙𝑙𝑙𝑙𝑙 ���
𝛤𝛤�𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖�
𝛤𝛤(𝛼𝛼𝑖𝑖𝑖𝑖)

𝐺𝐺

𝑖𝑖=1

�
𝛤𝛤��𝛼𝛼(𝑘𝑘)��

𝛤𝛤�𝑇𝑇𝑗𝑗 + �𝛼𝛼(𝑘𝑘)��
� ∗ 𝑃𝑃�𝑧𝑧𝑗𝑗 = 𝑘𝑘�𝑥𝑥𝑗𝑗 ,𝛩𝛩(𝑡𝑡)�, 

 

where 

𝑃𝑃�𝑧𝑧𝑗𝑗 = 𝑘𝑘�𝑥𝑥𝑗𝑗 ,𝛩𝛩(𝑡𝑡)� =

�∏
𝛤𝛤�𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖

(𝑡𝑡)�

𝛤𝛤�𝛼𝛼𝑖𝑖𝑖𝑖
(𝑇𝑇)�

𝐺𝐺
𝑖𝑖=1 �

𝛤𝛤 ��𝛼𝛼(𝑘𝑘)
(𝑡𝑡) ��

𝛤𝛤 �𝑇𝑇𝑗𝑗 + �𝛼𝛼(𝑘𝑘)
(𝑡𝑡) ��

𝜋𝜋𝑘𝑘
(𝑡𝑡)

∑ �∏
𝛤𝛤�𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖

(𝑡𝑡)�

𝛤𝛤�𝛼𝛼𝑖𝑖𝑖𝑖
(𝑇𝑇)�

𝐺𝐺
𝑖𝑖=1 �

𝛤𝛤 ��𝛼𝛼(𝑘𝑘)
(𝑡𝑡) ��

𝛤𝛤 �𝑇𝑇𝑗𝑗 + �𝛼𝛼(𝑘𝑘)
(𝑡𝑡) ��

𝜋𝜋𝑘𝑘
(𝑡𝑡)𝐾𝐾

𝑘𝑘=1

= 𝛿𝛿𝑗𝑗𝑗𝑗. 
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Here 𝛿𝛿𝑗𝑗𝑗𝑗 represents the probability that the 𝑗𝑗 th cell belongs to the 𝑘𝑘 th cluster. We calculated 𝛿𝛿𝑗𝑗𝑗𝑗 

in the E-step at each iteration. 

M-step: 

At the 𝑡𝑡 th iteration, the estimation of the proportion of the 𝑘𝑘 th cell type is 

𝜋𝜋�𝑘𝑘
(𝑡𝑡+1) = ∑ 𝛿𝛿𝑗𝑗𝑗𝑗

(𝑡𝑡)𝐶𝐶
𝑗𝑗=1 /𝐶𝐶. 

The update formula for 𝛼𝛼1𝑘𝑘,𝛼𝛼2𝑘𝑘, … ,𝛼𝛼𝐺𝐺𝐺𝐺 is derived from the Minka’s fixed-point iteration for the 

leaving-one-out (LOO) likelihood (Minka , 2000): 

𝛼𝛼�𝑖𝑖𝑖𝑖
(𝑡𝑡+1) = 𝛼𝛼𝑖𝑖𝑖𝑖

(𝑡𝑡)
∑ 𝛿𝛿𝑗𝑗𝑗𝑗�𝑥𝑥𝑖𝑖𝑖𝑖/(𝑥𝑥𝑖𝑖𝑖𝑖 − 1 + 𝛼𝛼𝑖𝑖𝑖𝑖

(𝑡𝑡))�𝐶𝐶
𝑗𝑗=1

∑ 𝛿𝛿𝑗𝑗𝑗𝑗 �𝑇𝑇𝑗𝑗/(𝑇𝑇𝑗𝑗 − 1 + |𝛼𝛼(𝑘𝑘)
(𝑡𝑡) |)�𝐶𝐶

𝑗𝑗=1

. 

After the M-step, I calculated ∑ (𝜋𝜋�𝑘𝑘
(𝑡𝑡+1) − 𝜋𝜋�𝑘𝑘

(𝑡𝑡))2𝐾𝐾
𝑘𝑘=1  and the relative difference of log likelihood 

between two consecutive iterations. Convergence tolerances for difference between iterations are 

pre-defined. I repeated the above steps until the convergence of log likelihood and 𝜋𝜋�𝑘𝑘
(𝑡𝑡) , or a 

maximum number of iterations was reached. The default maximum number of iterations is 200. 
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A.2 Additional Figures 

 

 
 
 

Figure 18. The empirical distribution of UMI counts for a few representative genes 
 
We used the scRNA-Seq data from CD56+ NK cells. We first removed 29683 genes with zero count in more than 
95% single cells and then performed normalization such that all single cells have the same total number of UMI 
counts. Normalization was performed by dividing UMI counts by the total number of UMI counts in each cell, and 
then multiplied by the median of the total UMI counts across all cells. We divided the remaining 3055 genes into three 
equal-sized groups based on their average gene expression levels. We randomly selected five genes from each group 
to generate the density plot of normalized count, for all data (Figure 18A) and non-zero part (Figure 18B), respectively. 
In addition, we provided the histograms of the raw counts (Figure 18C) and the untransformed normalized counts 
(Figure 18D) for gene SMC1A, gene CCT5 and gene OAZ1. All these empirical distribution plots of the UMI counts 
have demonstrated that drop-seq data contain extensive zeroes, for genes with different levels of expression. 
 
 
 

 

 

18A 18C 18D 18B 
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Figure 19. The t-SNE projection of the simple case 
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Figure 20. The t-SNE projection of the challenging case 
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Figure 21. The boxplots of ARI for seven clustering methods across 50 simulations in the challenging case 
 
 



89 

  

 
 

Figure 22. The histogram of proportion 𝐩𝐩𝐢𝐢 for gene RPS27 and gene RPL18A and the theoretical marginal beta distribution (solid blue line) in CD56+ 
NK cells 

To obtain the theoretical marginal beta distribution, we used the top 1% (327) genes and calculate 𝛼𝛼𝑖𝑖 of the Dirichlet distribution by the Ronning's method 
(Ronning, 1989).
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Figure 23. The scatter plot of the log mean of 𝒑𝒑𝒊𝒊 versus the log variance of 𝒑𝒑𝒊𝒊 in the CD56+ NK cells 
 
𝛼𝛼 and 𝛽𝛽 are linear regression intercept and slope, respectively. Each dot represents one gene. This figure includes the 
top 1% (327) highly variable genes. 
 
 
  



91 

 

 
 

Figure 24. The performance of AIC/BIC criteria when selecting number of clusters 
 
The dot plots of AIC and BIC for the final clustering results in the simulated dataset, where the true number of clusters 
is 3. Blue dots and red dots denote values of BIC and AIC, respectively. Black dots denote ARIs. 
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Appendix B (For BAMM-SC) 
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B.1 Details of Gibbs Sample 

Based on Bayes formula, I have the full posterior distribution as follows: 
 

𝑃𝑃�𝒛𝒛∙∙,𝜶𝜶∙∙(∙)|𝒙𝒙∙∙∙� ∝ 𝑃𝑃�𝒙𝒙∙∙∙, 𝒛𝒛∙∙|𝜶𝜶∙∙(∙)� × ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜶𝜶𝒊𝒊∙𝒌𝒌)
𝐺𝐺

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

× �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝝁𝝁∙𝒌𝒌)
𝐾𝐾

𝑘𝑘=1

× �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝝈𝝈∙𝒌𝒌𝟐𝟐 �
𝐾𝐾

𝑘𝑘=1

. 

 
The complete log likelihood is: 

 

log𝑃𝑃�𝒛𝒛∙∙,𝜶𝜶∙∙(∙)|𝒙𝒙∙∙∙� = ���𝐼𝐼�𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘� ∗ log ���
Γ(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘))

Γ(𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘))

𝐺𝐺

𝑖𝑖=1

�
Γ(|𝜶𝜶∙𝒍𝒍(𝒌𝒌)|)

Γ(𝑇𝑇𝑗𝑗𝑗𝑗 + |𝜶𝜶∙𝒍𝒍(𝒌𝒌)|)
�

𝐾𝐾

𝑘𝑘=1

𝐶𝐶𝑙𝑙

𝑗𝑗=1

𝐿𝐿

𝑙𝑙=1

 

+����− log𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 −
(log𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖)2

2𝜎𝜎𝑖𝑖𝑖𝑖2
�

𝐿𝐿

𝑙𝑙=1

𝐺𝐺

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

+ ���−
𝐿𝐿
2

log 𝜎𝜎𝑖𝑖𝑖𝑖2 �
𝐺𝐺

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

 

+𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇∙∙) + ��𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃(𝜎𝜎𝑖𝑖𝑖𝑖2 ,𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝐺𝐺

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

. 

 
Here the hyper-prior parameters 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 can be pre-specified, or estimated from data via an 

empirical Bayes approach. I use Gibbs sample to iteratively update �𝑧𝑧𝑗𝑗𝑗𝑗�1≤𝑗𝑗≤𝐶𝐶𝑙𝑙,1≤𝑙𝑙≤𝐿𝐿 , 

�𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘)�1≤𝑖𝑖≤𝐺𝐺,1≤𝑙𝑙≤𝐿𝐿,1≤𝑘𝑘≤𝐾𝐾
. For a given pair of 𝑙𝑙  and 𝑗𝑗 , the conditional distribution for 𝑧𝑧𝑗𝑗𝑗𝑗  is a 

multinomial distribution, where  

𝑃𝑃�𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘� =
1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
∗ ��

𝛤𝛤�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘)�
𝛤𝛤�𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘)�

𝐺𝐺

𝑖𝑖=1

�
𝛤𝛤��𝛼𝛼∙𝑙𝑙(𝑘𝑘)��

𝛤𝛤�𝑇𝑇𝑗𝑗𝑗𝑗 + �𝛼𝛼∙𝑙𝑙(𝑘𝑘)��
. 

 

Where the normalization constant is: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = ���
𝛤𝛤(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘))

𝛤𝛤(𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘))

𝐺𝐺

𝑖𝑖=1

�
𝛤𝛤��𝛼𝛼∙𝑙𝑙(𝑘𝑘)��

𝛤𝛤�𝑇𝑇𝑗𝑗𝑗𝑗 + �𝛼𝛼∙𝑙𝑙(𝑘𝑘)��

𝐾𝐾

𝑘𝑘=1

. 
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I use random walk Metropolis within Gibbs to iteratively update 𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘). For a given triple of 𝑖𝑖, 𝑙𝑙 

and 𝑘𝑘, the conditional log likelihood for 𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘) is: 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃�𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘)�𝑥𝑥∙∙∙, 𝑧𝑧∙∙� ∝�𝐼𝐼�𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘� ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 ���
𝛤𝛤�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘)�

𝛤𝛤�𝛼𝛼𝑖𝑖𝑖𝑖(𝑘𝑘)�

𝐺𝐺

𝑖𝑖=1

�
𝛤𝛤��𝜶𝜶∙𝒍𝒍(𝒌𝒌)��

𝛤𝛤�𝑇𝑇𝑗𝑗𝑗𝑗 + �𝜶𝜶∙𝒍𝒍(𝒌𝒌)��
�

𝐶𝐶𝑙𝑙

𝑗𝑗=1

 

− 𝑙𝑙𝑙𝑙𝑙𝑙 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 −
(𝑙𝑙𝑙𝑙𝑙𝑙 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖)2

2𝜎𝜎𝑖𝑖𝑖𝑖2
. 

Similarly, I use random walk Metropolis within Gibbs to iteratively update 𝜎𝜎𝑖𝑖𝑖𝑖2 . For a given pair 

of 𝑖𝑖 and 𝑘𝑘, the conditional log likelihood for 𝜎𝜎𝑖𝑖𝑖𝑖2  is: 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝜎𝜎𝑖𝑖𝑖𝑖2 | … ) ∝��−
(𝑙𝑙𝑙𝑙𝑙𝑙 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖)2

2𝜎𝜎𝑖𝑖𝑖𝑖2
�

𝐿𝐿

𝑙𝑙=1

−
𝐿𝐿
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝑖𝑖𝑖𝑖2 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎𝑖𝑖𝑖𝑖2 ,𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) 

In random walk Metropolis algorithm, I adaptively select the step size of proposal distribution, to 

make sure that the acceptance rate is 20% ~ 30%. 
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B.2 Classification and Computational Acceleration 

To further improve the computational efficiency, I provide a supervised option in BAMM-SC. 

Specifically, for very large-scale dataset, I use BAMM-SC to train a prediction model using a 

subset of cells from each individual and predict the clustering labels for the rest of cells. First, I 

randomly select a subset of cells from each individual and applied BAMM-SC on these selected 

cells. The estimate of 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖  is computed as the average after deletion of the first 100 (default) 

iterations as burn-in. I then predict the cell type labels for other cells with realization of parameters: 

𝛩𝛩� = (𝜶𝜶�∙𝟏𝟏∙, … ,𝜶𝜶�∙𝑳𝑳∙,𝝅𝝅�𝟏𝟏, … ,𝝅𝝅�𝑳𝑳). 

𝑃𝑃�𝑧𝑧𝑗𝑗𝑗𝑗 = 𝑘𝑘�𝒙𝒙𝒋𝒋𝒋𝒋,𝛩𝛩�� =
�∏

Γ�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼�𝑖𝑖𝑖𝑖𝑖𝑖�
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This approach can substantially reduce the computational cost for very large-scale datasets while 

maintaining the accuracy as shown in Figure 35 (Appendix B).  
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B.3 Single Cell Sequencing Library Construction 

10X Genomics Chromium system, which is a microfluidics platform based on Gel bead in 

EMulsion (GEM) technology, was used for generating real test datasets (Zheng et al., 2017). Cells 

mixed with reverse transcription reagents were loaded into the Chromium instrument. This 

instrument separated cells into mini-reaction "partitions" formed by oil micro-droplets, each 

containing a gel bead and a cell, known as GEMs. GEMs contain a gel bead, scaffold for an 

oligonucleotide that is composed of an oligo-dT section for priming reverse transcription, and 

barcodes for each cell and each transcript as described. GEM generation takes place in a multiple-

channel microfluidic chip that encapsulates single gel beads. Reverse transcription takes place 

inside each droplet. Approximately 1,000-fold excess of partitions compared to cells ensured low 

capture of duplicate cells. The reaction mixture/emulsion was removed from the Chromium 

instrument, and reverse transcription was performed. The emulsion was then broken using a 

recovery agent, and following Dynabead and SPRI clean up cDNAs were amplified by PCR 

(C1000, Bio-Rad). cDNAs were sheared (Covaris) into ~200 bp length. DNA fragment ends were 

repaired, A-tailed and adaptors ligated. The library was quantified using KAPA Universal Library 

Quantification Kit KK4824 and further characterized for cDNA length on a Bioanalyzer using a 

High Sensitivity DNA kit. All sequencing experiments were conducted using Illumina NextSeq 

500 in the Genomics Sequencing Core at the University of Pittsburgh.  

 

Data description 

Human PBMC dataset: Peripheral blood was obtained from healthy donors by venipuncture. 

Peripheral blood mononuclear cells (PBMC) were isolated from whole blood by density gradient 
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centrifugation using Ficoll-Hypaque. PBMC were then counted and re-suspended in phosphate 

buffered saline with 0.04% bovinue serum albumin, and were processed through the Chromium 

10X Controller according to the manufacturers’ instructions, targeting a recovery of ~2,000 cells. 

The following steps were all performed under the aforementioned protocol developed by 10X 

Genomics. 

 

Human skin dataset: Skin samples were obtained by performing 3 mm punch biopsies from the 

dorsal mid-forearm of healthy control subjects after informed consent under a protocol approved 

by the University of Pittsburgh Institutional Review Board. Skin for scRNA-seq was digested 

enzymatically (Miltenyi Biotec Whole Skin Dissociation Kit, human) for 2 hours and further 

dispersed using the Miltenyi gentleMACS Octo Dissociator. The resulting cell suspension was 

filtered through 70 micron cell strainers twice and re-suspended in PBS containing 0.04% BSA. 

Cells from biopsies were mixed with reverse transcription reagents then loaded into the Chromium 

instrument (10X Genomics). ~2,600-4,300 cells were loaded into the instrument to obtain data on 

~1,100-1,800 cells, anticipating a multiplet rate of ~1.2% of partitions. The following steps were 

all performed under the aforementioned protocol developed by 10X Genomics. 

 

Mouse lung dataset: Lung single cell suspension from naïve and infected C57BL/6 mice were 

subject to scRNA-seq library preparation protocol. Briefly, left lobs of both naïve and infected 

mice were removed and digested by Collagenase/DNase to obtain single cell suspension. 

Mononuclear cells after filtration with a 40M cell strainer were separated into mini-reaction 

"partitions" or GEMs formed by oil micro-droplets, each containing a gel bead and a cell, by the 

Chromium instrument (10X Genomics). The reaction mixture/emulsion with captured and 
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barcoded mRNAs were removed from the Chromium instrument followed by reverse transcription. 

The cDNA samples were fragmented and amplified using the Nextera XT kit (Illumina). The 

following steps were all performed under aforementioned the protocol developed by 10X 

Genomics.  

 

 

 

 

 

 

 

 

 

 



99 

B.4 Additional Figures  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. The t-SNE projection of cells from 3 mouse samples (colored by different sample labels) (A) and the boxplot of UMI counts for gene Ftl1 in T 

cells and B cells, separately (B) 
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Figure 26. The Boxplots of ARI for ten clustering methods across 100 simulations, investigating how different number of clusters (A), sequencing depth 

(B) and cell-type-specific heterogeneities (C) affect clustering results 
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26B 26C 



101 

 
 
 

 
 
 

Figure 27. The t-SNE projection of PBMCs from 5 human samples illustrating different cell subtypes, with 
each cell is colored by their classification based on specific gene markers 
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Figure 28. The t-SNE projection of cells from PBMC dataset, colored by different clustering assignments 

 
The t-SNE projection of cells from human PBMC dataset, colored by the MNN + K-means clustering (A), MNN + 
TSCAN (B), MNN + SC3 (C), MNN + Seurat (D), CCA + K-means (E), CCA + TSCAN (F), CCA + SC3 (G), CCA 
+ Seurat (H) and DIMM-SC (I) clustering assignment. All clustering labels are from the result with the highest ARI 
among 10 times analysis. 
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Figure 29. The t-SNE projection of lung mononuclear cells from 4 mouse samples illustrating different cell 
subtypes, with each cell is colored by their classification based on specific gene markers 
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Figure 30. The t-SNE projection of cells from mouse lung dataset, colored by different clustering assignments 
 
The t-SNE projection of cells from mouse lung dataset, colored by the MNN + K-means clustering (A), MNN + 
TSCAN (B), MNN + SC3 (C), MNN + Seurat (D), CCA + K-means (E), CCA + TSCAN (F), CCA + SC3 (G), CCA 
+ Seurat (H) and DIMM-SC (I) clustering assignment. All clustering labels are from the result with the highest ARI 
among 10 times analysis. 
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Figure 31. Bar plots of proportions of cell types for each individual in mouse lung dataset 
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Figure 32. The t-SNE projection of cells from human skin dataset, colored by different types of PBMCs based 

on the biological knowledge of cell-type-specific gene markers 
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Figure 33. The t-SNE projection of cells from human skin dataset, colored by different clustering assignments 
 
The t-SNE projection of cells from human skin dataset, colored by the MNN + K-means clustering (A), MNN + 
TSCAN (B), MNN + SC3 (C), MNN + Seurat (D), CCA + K-means (E), CCA + TSCAN (F), CCA + SC3 (G), CCA 
+ Seurat (H) and DIMM-SC (I) clustering assignment. All clustering labels are from the result with the highest ARI 
among 10 times analysis.  
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Figure 34. Bar plot of cell proportions from flow cytometry and different clustering methods in individual 3 from the human PBMC dataset 

 
All clustering assignments are from the result with the highest ARI among 10 times analysis. 
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Figure 35. The bar plot of computational time for BAMM-SC in simulated dataset 
 
The bar plot of computational time for BAMM-SC in simulated dataset with different number of cells in each 
individual (A), different number of individuals (B), different number of clusters (C), and the bar plot of computational 
time of different clustering methods in simulated dataset (D). In (D), we set the number of single cells in each 
individual as 4,000, the number of individuals as 10, and the number of clusters as 4, to benchmark the computational 
cost of different methods. To be noted, K-means clustering itself is very fast, the process of batch effect correction 
and calculating dimension reduction representations takes most of the computational time. 
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Figure 36. The dot plots of AIC and BIC for the final clustering results in the simulated dataset 
 

The dot plots of AIC and BIC for the final clustering results in the simulated dataset, where the true number of clusters 
is 4 and the number of individuals is 10. Blue dots and red dots denote values of BIC and AIC, respectively. Black 
dots denote ARIs. 
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Figure 37. The Boxplots of ARI for ten clustering methods across 100 simulations when number of clusters is 

mis-specified using simulated data (A) and data generated from Splatter (B) 
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Figure 38. The t-SNE projection of cells from mouse lung dataset 
 
The t-SNE projection of cells from mouse lung dataset without batch effect correction, colored by different sample IDs (A) and BAMM-SC clustering assignment 
(B), the t-SNE projection of cells after CCA batch effect correction, colored by different sample IDs (C) and the clustering assignment (based on the result of 
BAMM-SC in (B)) (D), and the t-SNE projection of cells in cluster 4 (based on the result of BAMM-SC in (B)) with CCA correction (E). 
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Appendix C (for BREM-SC) 
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C.1 Details of Gibbs Sample 

I propose a general Bayesian framework for estimation. I use Gibbs sample to iteratively update 

𝑧𝑧𝑗𝑗, 𝛼𝛼𝑖𝑖(𝑘𝑘)
(1) , 𝛼𝛼𝑑𝑑(𝑘𝑘)

(2)  and 𝑏𝑏𝑗𝑗. Specifically, I will use random walk Metropolis within Gibbs to iteratively 

update 𝑏𝑏𝑗𝑗, 𝛼𝛼𝑖𝑖(𝑘𝑘)
(1)  and 𝛼𝛼𝑑𝑑(𝑘𝑘)

(2) .  

For a given cell 𝑗𝑗, the conditional distribution for 𝑧𝑧𝑗𝑗 is a Multinomial distribution, where 

𝑃𝑃�𝑧𝑧𝑗𝑗 = 𝑘𝑘� =
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(𝟐𝟐)𝑏𝑏𝑗𝑗|)
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where the normalization constant is: 
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For a given gene 𝑖𝑖 and cell type 𝑘𝑘, the conditional log likelihood for  𝛼𝛼𝑖𝑖(𝑘𝑘)
(1)  is  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝛼𝛼𝑖𝑖(𝑘𝑘)
(1) �… � ∝ ∑ 𝐼𝐼(𝑧𝑧𝑗𝑗 = 𝑘𝑘)log {𝐶𝐶

𝑗𝑗=1 �
Γ�𝑥𝑥𝑖𝑖𝑗𝑗

(1)+𝛼𝛼𝑖𝑖(𝑘𝑘)
(1) 𝑏𝑏𝑗𝑗�

Γ�𝛼𝛼𝑖𝑖(𝑘𝑘)
(1) 𝑏𝑏𝑗𝑗�

�
Γ(|𝜶𝜶(𝒌𝒌)

(𝟏𝟏)𝑏𝑏𝑗𝑗|)

Γ(𝑇𝑇𝑗𝑗
(1)+|𝜶𝜶(𝒌𝒌)

(𝟏𝟏)𝑏𝑏𝑗𝑗|)
}. 

Similarly, for a given ADT marker 𝑑𝑑 and cell type 𝑘𝑘, the conditional log likelihood for 𝛼𝛼𝑑𝑑(𝑘𝑘)
(2)  is 
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For a given cell 𝑗𝑗, we can have the conditional log likelihood for 𝑏𝑏𝑗𝑗: 
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C.2 Additional Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39. Boxplot of ARI for five clustering methods across 100 simulations, investigating how number of 
clusters affect clustering results 
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Figure 40. Scatter plot of cells illustrating how to get the approximated truth in 10X human PBMC dataset 
 
 
 
 
 
 
 
 
 
 



118 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

Figure 41. Scatter plot of cells illustrating how to get the approximated truth for in-house human PBMC 
dataset 
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