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ABSTRACT 

Abstract 

Functionally Graded Lattice Infill and Cooling Channel Design Optimization for Additive 

Manufacturing 

 

Lin Cheng, PhD 

 

University of Pittsburgh, 2019 

 

 

 

 

To realize the full potential of additive manufacturing (AM) techniques, a lattice structure 

design optimization methodology is proposed to design functionally graded lattice structures, in 

order to achieve optimal performance while satisfying manufacturing constraints.   

A lattice structure topology optimization (LSTO) method is first proposed and the 

framework includes three key steps: (1) Asymptotic homogenization (AH) is developed to 

calculate effective properties of 3D printed lattice materials, such as elastic modulus, yield 

strength, thermal conductivity and forced convection heat transfer coefficient; (2) Density-based 

topology optimization methodology is employed to compute the density distribution of lattice 

structures by using the material interpolation from AH procedure; (3) A reconstruction method is 

developed to transform an optimal density profile into variable-density lattice structure for 

practical fabrications. The proposed LSTO method is extensively studied for various problems 

ranging from, structural (minimum compliance problem and constraint stress problem), dynamic 

(natural frequency maximization), and heat and mass transfer. Validation of the LSTO method 

conducted on practical components is able to significantly improve the physical performance of 

the component with lightweight design.  

On the other hand, the LSTO method cannot handle functionally movable features 

optimization, e.g. cooling channels and bolt holes in components, which are non-designable and 

remains solid during optimization. To explore the potential benefits, the LSTO method is extended 



 v 

to the concurrent optimization of lattice infill and movable features optimization. A unified scheme 

for the combination of density-based topology optimization with level set topology optimization 

is thus proposed and derived. 

In addition to theory development, the LSTO method is further developed to solve a critical 

issue regarding build failures induced by residual stress inherent in the metal AM process. 

Specifically, a voxel-based methodology is proposed to efficiently generate Cartesian mesh for a 

solid part and its support structure. A build orientation optimization method and a LSTO-based 

support structure optimization method is developed to minimize the volume of sacrificial support 

structure under allowable stress constraint. Experiments have proved that the proposed framework 

can significantly reduce the residual stress, guarantee the manufacturability of the designs, and 

make it easy for trapped powder removal. 
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1.0 Introduction 

The primary goal of this work is to propose a design optimization method that can take 

advantage of the unique capability of AM techniques for novel structures with desirable 

performance, circumvent the manufacturing constraints, and address the severe issues of current 

metal AM techniques (i.e. residual stress induced build failure). The main focus of the design 

objective lies within the fields of solid mechanics (stiffness, yielding and natural frequency) and 

heat transfer (heat conduction and forced convection heat transfer). From the engineering 

application point of view, concurrent optimization for the evolution of functional features is also 

included and discussed in order to achieve better performance for the optimization design. The 

motivation, background, and research objective will be provided in this chapter.  

1.1 Additive Manufacturing 

Additive manufacturing (AM) holds the promise to be the next-generation manufacturing 

technique due to its unique capability to fabricate geometrically complex geometry, such as graded 

lattice materials. It has experienced significant growth in the past several decades from the rapid 

prototyping to industrial parts manufacturing for end-use purpose. As defined by ASTM [1], AM 

is a process to produce a component from the sliced CAD model by depositing material in a layer-

by-layer fashion. This differentiates it from traditional subtractive manufacturing techniques, such 

as milling, turning, and forging, which build a component by combining several different 

processes. Up to now, more than ten AM techniques have been developed, e.g. selective laser 
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melting (SLM), stereolithography (SLA), electron beam melting (EBM), selective laser sintering 

(SLS), fused deposition modeling (FDM), digital light processing (DLP), binder jetting, direct 

metal laser sintering (DMLS), continuous liquid interface production (CLIP), etc.  These 

techniques are compatible with a broad range of materials including plastic, such as ABS and PLA, 

and metals, such as stainless steel, and titanium alloys.  Several excellent works cover more details 

about AM technologies can be found in [2-4]. According to the form of feedstock materials 

utilized, AM techniques can be categorized into four broad groups [4]: (1) liquid, (2) 

filament/paste, (3) powder, and (4) solid sheet. Details about the categorization of different AM 

processes can be found in Table 1.1. 
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Table 1.1: Categories of AM Process [3] 

 

 

 

 

The unique feature of AM is to manufacture a component from CAD model in a layer-by-

layer fashion. Figure 1.1 schematically illustrates the layer-wise manufacturing process for metal 

powder-bed AM. A customized computer-aided design (CAD) model is being built by rastering of 

a laser or electron beam selectively over the powder bed. The powder in one layer is locally melted, 

when the laser/electron beam moves, the melted powder that is left behind cools down and a solid 

object is created according to the contour of the sliced CAD model. Once a layer is completed, the 

base plate used to hold the printed part is lowered and a new layer of powder is uniformly deposited 

by a scraper. Then the new layer is scanned and fused on the previous layer using the same way 
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until the entire part is built. The powder-bed metal AM is an effective technique of producing 

metal component, because it only melts material where needed, and thus unprocessed powder can 

be recycled for next build. In contrast to subtractive manufacturing, such as milling, turning, 

forging and computer numerical controlled (CNC) machines, powder-bed metal AM can build a 

component in single process while the others need dozens of subtractive processes. For complex 

assemblies, AM can build them in a unified design within a single process, which can considerably 

improve the performance of the component and at the same time reduce the entire cost and 

development period, which is able to accelerate the application of new design to the market. 
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Figure 1.1: Powder-bed Metal Additive Manufacturing [5] 

 

 

The first commercialized AM machine produced 3D Systems was a stereolithography (SL) 

system in 1987 [6]. It is a process to solidify the light-sensitive liquid polymer through the 

ultraviolet (UV) laser. The primary applications of AM are mainly for visual aids, presentation 

models, and rapid prototyping. Using AM processes, scientists, medical doctors, students, and 

market researchers can rapidly build and analyze their models in theoretical studies. Hence the 

requirements for the built parts primarily concern about the geometry from the conceptual point of 

view. End-use applications are limited due to relatively low quality, dimensional accuracy, and 
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surface roughness. As reported by Wohlers in 2011 [6], these applications occupy more than 40% 

of the market of AM. However, as the development of new manufacturing process, i.e. powder-

bed fusion, material extrusion, and binder jetting [7], and also the reducing cost of the controller, 

material price and the open source CAD software, the manufacturing quality has greatly increased 

and at the same time the manufacturing cost was significantly reduced. This allows AM to be more 

general use for both consumer market and industry manufacturing. In consumer market, a number 

of startup companies are creating and available for common applications [6], which results in a 

significant reduction of the price of the printer and materials. This greatly promotes the wide 

adoption of AM and development of general platforms, such as Grab CAD and Maker Movement. 

Some companies i.e. supply chain from Staples, Shapeways and Sculpteo, are beginning to provide 

printing and shipping services to customers. They allow customers to design and build products 

by themselves. This further reflects the development of the AM technologies. 

For industrial manufacturing, AM techniques not only accelerate the design lifecycle of 

product development through rapid prototyping, but also fabricate end-use components for 

practical applications. For example, the fuel nozzle in Figure 1.2 produced by powder-bed metal 

AM has passed the U.S. Federal Aviation Administration (FAA) and became the first 3D-printed 

part fly inside the commercial jet engines. The fuel nozzle was originally made up of 20 disparate 

parts and painstakingly brazed and weld together. However, using AM, it can be built in a single 

process and a single design, which can reduce 25% weight and be a remarkable five times stronger 

than conventional manufacturing process. As a critical part in the next generation LEAP engine, 

the design can help the company save more than $3 million per aircraft per year. This significant 

enhancement proves that AM has greatly influence the development of manufacturing industry, 

especially the aerospace sector. 
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Figure 1.2: Fuel Nozzle Manufactured EOS DMLS from Genetic Electronic Inc. 

 

 

Another important field of research for AM is the biomedical industry. The main drive for 

the biomedical field is to fabricate parts that typically cannot be economically realized using 

conventional manufacturing techniques. There are four high potential application areas for AM in 

biomedical field, which includ orthopedic implants, dental implants, tissue and organ implants, 

and prosthetics. According to some estimates from the industry, more than 80% of global implants 

will be built using AM in two decades [6]. For biomedical, AM solves the challenges that no 

human body is exactly the same as others, customized implants need to fit perfectly to each patient, 

in order to reduce patients’ pain and improve their life quality [8]. In general, AM can build the 

implant locally alongside the hospital, which can also help to accelerate the inventory cycle time 

and reduce the delivering costs [9]. Singare et al [10] have proved that AM can be efficiently used 

for implant fabrication with high-level accuracy. Winder et al [11] proposed a new method to 
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combine CT scan with AM to build patients’ skull in titanium plates. Excellent works covering the 

details of AM for biomedical engineering can be found in Refs. [9, 12, 13]. All these prominent 

applications have demonstrated that AM as a promising manufacturing technique has begun to 

change the manufacturing industry.  

1.1.1  Issues of Current Metal AM 

Although metal AM techniques have been gradually accepted to fabricate end-use 

components, one of the key issues preventing it from broad adoption is residual stress and 

distortion introduced in the powder melting and solidification processes [2-4]. Residual stress leads 

to undesirable cracks, delamination, and warpage during AM, which can stop the powder 

spreading process and result in failure of builds. This leads to a waste of material, energy, and 

time, but also requires extra efforts for designers to change the design. Figure 1.3(a) illustrates 

such issue, in which the cracked and deformed component stops the recoater blade and lead to a 

failed build. Another challenge is the large deformation generated by residual stress after the 

component is removed from the substrate. The deformation results in limited load resistance, 

dimensional inaccuracy, and reduction of fatigue performance of the component to more than 10 

times compared with conventional bulk material [5, 6]. As illustrated in Figure 1.3(b), an implant 

was successfully printed out in Ti6Al4V using laser powder-bed AM, but once it was cut from the 

build tray, the inherent residual stresses lead to undesirable deformation.  
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                                      (a)                                                                           (b) 

Figure 1.3: Residual Stress and Large Deformation of Metal AM: (a) Failed Build Due to Residual Stress 

During Manufacturing; (b) Implant is Deformed after Removal from the Build Chamber. 

 

 

On the other hand, support structures (e.g. the structures highlighted by white dash line in 

Figure 1.3) are required in metal AM to support overhangs of the component to ensure 

manufacturability. These support structures are fabricated simultaneously with the component to 

anchor the parts and dissipate heat to the build tray in order to prevent distortion/delamination 

caused by residual stress. There is a number of published works in the past in the area of support 

structure design for AM techniques. Allen et al [7] proposed the best directional formation for an 

object to obtain minimal support structure. Frank et al [8] developed an expert system tool to 

interact with users to select the best build orientation for better performance of the built component. 

Alexander et al [9] developed a method to optimize part orientation to minimize build cost. Xu et 

al [10] discussed the section of build orientation for four types of AM processes and proposed an 

orientation optimization with multiple criteria, such as building inaccuracy, manufacturing time 

and building cost. Lan et al [11] developed an algorithm for stereolithography apparatus to find a 

desirable fabrication orientation for a given design based on considerations of surface quality, 
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build time, and complexity of support structures. Masood et al [12] presented a generic 

mathematical algorithm to find the best orientation to achieve minimum volumetric error. For 

fused deposition process, Thrimurthulu et al. [13] applied genetic algorithm to determine an 

optimum part deposition orientation to enhance part surface finish and reduce build time. Recently, 

Mumtaz et al [14] developed a method for metal powder-bed AM processes to eliminate the need 

for supports. Strano et al [15] presented an approach to optimize part-built orientation and support 

cellular structure. Hussein et al [16] experimentally investigated influences of low-volume fraction 

lattice structures on the design of support structure for powder-bed direct metal laser sintering 

(DMLS) machine. Galigonano et al [17] applied Taguchi method to optimize support structure and 

conducted experiment to investigate the manufacturability of overhanging structures for SLM 

process. Most recently, Vaidya et al [18] developed an approach for minimizing support structures 

with space cellular infill combined with Dijkstra’s shortest path method to generate optimized 

support structure. Paul et al [19] proposed a voxel-based framework to generate support structure 

and developed a multi-objective method to minimize support volume, the cylindricity and flatness 

errors simultaneously. Following the work of Paul [19], Das et al [20, 21] proposed a method to 

minimize part errors in AM through the selection of build orientation for optimal support 

structures.  

However, most of these previous research efforts focused on geometric perspectives, and 

few works have been proposed to take residual stress into consideration for metal AM to ensure 

manufacturability. For simple geometry, the stress problem can be addressed by manually 

changing the build orientation by trail-and-error. For component with complex geometry, this 

empirical approach may not work, and more effective methodology needs to be developed to 

minimize residual stress. Nevertheless, there are several barriers preventing development of such 
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optimization method. First, due to the complexity of laser manufacturing process, it is time-

consuming to obtain residual stress and distortion distribution through detailed process simulation. 

In general, it takes tens of hours or days to complete process simulation of a simple component in 

general. This makes it impractical to find optimal orientation considering hundreds of iterations 

required by the optimization methods. Second, mesh generation for complex geometry and its 

support structure is computationally expensive and often error-prone when pure Cartesian grids 

are desired, or when the bulk component is rotated in the printing space to seek optimal orientation 

and the layerwise mesh along the building direction is required. Third, problems arise when the 

mesh generation and finite element analysis (FEA) is considered for support structure. The 

typically used support structure consists of straight rectangular solid walls or cellular structure [7, 

15, 16], which is self-support, lightweight and loose enough to be easily removed. However, from 

the simulation point of view, it is difficult to generate efficient mesh for these tiny structures, and 

thus leads to error estimation for residual stress in support structure where most cracks and 

delamination are observed. Due to these barriers, an efficient approach to ensure manufacturability 

of AM components through optimization of build orientation is difficult to achieve together with 

other objectives, such as surface finish [22], dimensional accuracy [7, 19], volume of support 

structure, [18-20] etc.  

Thus, one key goal of this work is to develop a robust computational framework to address 

the aforementioned problems by systematically optimizing the orientation of a component and 

design of support structure to reduce the maximum residual stress, and at the same time minimize 

volume of support structure to reduce manufacturing cost.  
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1.2 Topology Optimization 

Currently, the design methods for AM techniques are mainly developed for traditional 

manufacturing processes and thus focus on easing the complexity of the manufacturing procedure. 

To take advantage of the unique capability of AM, new design for manufacturing (DFM) methods 

need to be developed [14]. Topology optimization (TO) as an efficient approach has been 

extensively connected to AM due to its excellent performance to obtain exceptional properties 

under significant material reduction.  

The basic concept of topology optimization was introduced by Bends∅e and Kikuchi in 

1988[15], and further developed into three branches: Density-based TO, such as Solid Isotropic 

Material with Penalization (SIMP) [16, 17], Evolutionary Structural Optimization (ESO) [18] and 

Level set method (LSM) [19, 20]. To promote the development of topology optimization, a 

considerable number of the theoretical and computational works have been done on the issues like: 

appearance of gray-scale [21-23], checkerboard patterns [24, 25], problems of mesh 

independences[26, 27] and the application for geometrical non-linear problems [28]. These 

theoretical  studies also further exploit the potential of topology optimization for a variety of fields, 

such as frequency [29], heat transfer [30], fluid flow [31], etc. In this work, we will mainly focus 

on density-based TO method, its extension for concurrent optimization, as well as the application 

of TO method to address the critical issues of current metal AM techniques. Two fields will be 

specifically explored: One is the mechanics including minimum compliance, constraint stress and 

natural frequency, the other one is heat transfer including heat conduction. Following is a brief 

review of these problems. 
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1.2.1  Minimum Compliance 

Originally, the objective of TO method is to find the material distribution that minimizes 

the compliance of the structure subject to a volume fraction constraint. To achieve this goal, the 

objective function is formulated by means of the relative density defined for each element. The 

optimal distribution can be obtained through the iteratively adjustment of density variable in each 

element based on the sensitivity analysis. Following the work of Bends∅e and Kikuchi [15],  

Bends∅e [17] and others further proposed the Solid Isotropic Material with Penalization (SIMP) 

method, in which a power law was employed to simplify the homogenization in the optimization. 

The aim of power law in SIMP method is to provide a continuous material interpolation and 

improve the convergence of TO to 0-1 design. However, this leads to an issue named checkboard 

pattern when penalizing the design to black-and-white. To address this issue, a filter scheme was 

proposed to modify the design variable [28] or sensitivity [32] through the weighted average of 

the value of neighbors. However, the introduction of the filter leads to another problem known as 

grey transition regions between the lower density and higher density. This problem can be 

overcome by the so-called projection schemes proposed by Guest et al [33], Sigmund [23] and Xu 

et al [34], respectively. Note that the simple projection scheme cannot guarantee the convergence 

of the TO method. It is used to handle the grey area obtained from the filter scheme and ensure the 

discrete solutions [35]. All these mathematical techniques promote the development of density-

based TO and lay the foundation for various problems. 
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1.2.2  Stress Constraint 

Stress constrained optimization as one of the classical problems has been extensively 

studied in topology optimization because more challenges are encountered. First of all, singularity 

phenomenon was observed when the elemental density tends to zero in the optimization [36, 37]. 

This leads to a degenerate regions in the design domain [38]. To address this issue, several 

relaxation techniques are proposed to eliminate the degenerate region and remedy the singularity 

problem, e.g. the 𝜖-relaxation approach by Cheng and Guo [39]. Duysinx et al [38] and Bruggi et 

al [40] further develop this approach for continuum structure.  Second, the local nature of the stress 

constraints makes it rather computationally expensive when the constraints need to be satisfied at 

multiple points in each element. A solution to this difficulties is to replace the local stress 

constraints with a single continuous approximation, using aggregating function like p-norm or 

Kreisselmeier-Steinhauser (KS) function [38, 41, 42]. Another approach is to group the elements 

into multiple clusters and apply stress constraints for each cluster [43-45]. Third, since isotropic 

material properties are assumed, the yield criteria can work well when the density is equal to 0 or 

1. However, if intermediate density is considered during the optimization, the yield criteria may 

fail to represent real stress distribution. A number of different techniques have been proposed in 

order to solve this issue. Similar to the material interpolation for minimum compliance problem, 

Duysinx [38, 46] proposed a power law for the relationship between stress and the stress limit for 

the whole density range. Le et al [42] further revised the stress constraints and proposed a more 

general approach. This ensures the continuity of the stress criterion and thus the sensitivity of the 

stress constraints can be smoothly calculated.  
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1.2.3  Eigenfrequency  

Regarding vibration problem, Diaz and Kikuchi [47] first introduced TO for the 

maximization of the single eigenfrequency of plane disks. Ma et al [48, 49] proposed an objective 

function corresponding to multi-eigenfrequency optimization based on homogenization. Pedersen 

[50] pointed out the localized mode problem of SIMP method for vibration optimization and 

proposed a discontinuous material interpolation to solve the problem. Subsequently, Du et al [51, 

52], Niu [53], Huang [54], Zuo [55], and Xia [56] and their collaborators further proposed the 

framework of vibration structure optimization from single to multiple eigenfrequences and also 

the multiscale design using SIMP, ESO and LSM methods, respectively. However, most of these 

former research works focused on methodology development rather than design issues associated 

with manufacturing and practical applications. For the design of TO, it is difficult or impossible to 

manufacture the organic structure by traditional technologies. Even with current AM techniques, 

extra efforts, such as support structure and post-machining [57-59], are needed to ensure the 

manufacturability of the design. But these extra works may change the shape of original design or 

destroy the component when removing the support structure. For vibration design, the problem is 

even worse since even a little variation from the original design may lead to a remarkable change 

of the eigenfrequency. To address these issues, a novel material interpolation for lattice material 

will be proposed and experimental validation will be carried out to examine the accuracy of the 

optimization design. 
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1.2.4  Heat Transfer 

With regards to heat transfer optimization, TO method have been extensively developed 

for optimizing the thermal structure by considering conductive [60-67], convective [30, 68-71] 

and conjugate heat transfers [71-74]. Li et al [75] extended the algorithm of ESO to optimization 

problem subjected to steady heat conduction. Torquato et al [76] applied TO for the maximization 

of the simultaneous transport of heat and electricity in three-dimensional. Seung-Hyun Ha [67] 

and Seonho Cho proposed a topological shape optimization method for heat conduction using level 

set method. Gersborg-Hansen [61] and Bendose and Sigmund proposed SIMP method for the 

minimization of thermal resistance. Bruns [68] developed a framework using TO for the nonlinear 

steady-state heat transfer with convection-dominated problem. Iga et al [30] formulated a surrogate 

model to represent the heat convection in the optimization method. Matsumori et al [77] extended 

density-based method for the heat exchanger design considering the coupling of fluid and thermal 

interactions. Most recently, Yaji et al [72] further applied level set method for the optimization of 

coupled thermal-fluid problem based on two- and three-dimensional steady-state Navier-Stokes 

and energy equations. All these methods mainly focus on method development rather than 

practical applications, and thus most of the numerical examples are limited to two-dimensional 

problems.  

1.2.5  Issues of Topology Optimization for AM 

However, there are still some difficulties arising when directly employing topology 

optimization to design structures for AM techniques.  The pillow bracket illustrated in Figure 1.4 

is used as an example, where standard topology optimization is performed to minimize the 
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compliance of the design while constraining the overall volume fraction to a target value.  In the 

mechanical problem, the pillow bracket is subjected to loading acting downward on the hole on 

top of the bracket while the vertical displacement is fixed on the four bottom holes.  Hence 

essentially, the minimum compliance problem is to maximize the bending stiffness of the pillow 

bracket given a final overall volume fraction. Figure 1.4 (b) illustrates the result obtained by 

performing standard topology optimization of the pillow bracket by using the Albany package, a 

multi-physics analysis package based on the Trilinos framework developed at Sandia National Lab 

[78, 79]. First, notice that the optimized design changes the shape of the original design.  Since 

AM produces relatively rough surfaces and some deviations from the computer model, the original 

shape design produced by standard topology optimization makes it very difficult to post-machine 

the AM component [80, 81].  Second, the optimized structure would likely generate a significant 

number of overhang structures as shown in Figure 1.4(c).  These overhang structures generally 

need support structures added beneath them in order to prevent them from collapsing during an 

AM build.  Although support structures are useful, it is sometimes difficult to remove them without 

destroying the component.  Third, standard topology optimization algorithm solves the discrete 

0/1 (i.e. void/solid) design problem by converting the design variable (i.e. relative density) that 

varies continuously from 0 to 1.  As such, the relative densities obtained from topology 

optimization may contain a large number of intermediate relative densities (i.e. away from 0 and 

1) distributed over the design space.  For the pillow bracket design problem, the intermediate 

densities obtained can be observed as the light blue and yellow regions in Figure 1.4(b).  In 

practice, these intermediate densities are generally converted to 0 or 1 in some ad-hoc ways [16, 

82] in order to produce physically meaningful designs.  
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Figure 1.4: Standard Topology Optimization Design for a Pillow Bracket 

 

1.3 Research Objective  

Another goal of this research is to develop such a design methodology that can take 

advantage of the unique capability of AM technologies in the framework of TO method and also 

take the manufacturing constraints into account. Instead of merely focusing on the geometric 

perspective, the method in this work depends on the understanding of the AM-related constraints, 

properties of material manufactured by AM, and the disadvantages introduced in the powder-bed 

metal AM. One major limitation of AM is that support structure is required to be added beneath 

the overhangs to ensure the success of manufacturing. Support structure needs to be removed in a 

post-treatment process. For organic structure generated by TO method, it maybe even impossible 

to remove the support structure since the machining tool cannot reach tiny surface. Especially for 

closed structure from TO, support material and powder for metal AM even cannot be pulled out. 

To overcome these drawbacks of the existing TO method for AM, a homogenization-based 

TO method is proposed in this work to integrate open-cell lattice structure into the framework of 

TO. The intrinsic theory of the design methodology is motivated by microstructure and 
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constituents of the natural material. Figure 1.5 gives a cross-section of bamboo. It can be seen that 

bamboo is consisted of microstructure in the same pattern at microscale while variable density at 

macroscale. This inspires the research in this work to use spatially varying lattice structure to 

realize the results of TO.  

 

 

 

Figure 1.5: Microstructure and Constitutes of Bamboo[83] 

 

 

Figure 1.6 provides the flowchart of the proposed methodology in this work. As shown in 

the figure, a given component can be efficiently designed using the proposed LSTO method in 

four steps: Homogenization, optimization, reconstruction and validation. For lattice structure, the 

general scheme is to use full-scale simulation with explicit modeling of microstructural features to 

compute properties including elastic and plastic constants and thermal conductivity, etc.  However, 

the detailed simulation would be time-consuming and much computational expensive due to 

complex geometry of microstructures. Therefore, an efficient method needs to be employed to 

calculate the effective properties of lattice materials through the analysis of representative 
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elementary volume (RVE). As such, the analysis of lattice material can be replaced by the analysis 

of the material with equivalent properties obtained from RVE model. This can significantly reduce 

the computational cost and is suitable for LSTO method since the analysis needs to be carried out 

iteratively. In this proposal, the asymptotic homogenization (AH) method [84-86] is employed to 

conduct the analysis on the RVE to compute the effective properties. We mainly focus on the 

mechanical and thermal properties of lattice materials in this work.  

 

 

 

Figure 1.6: Flowchart of the LSTO Method 

 

 

Once the effective properties of lattice structure are obtained, the model is implemented 

into the framework density based TO method to replace the power law. Then the sensitivity 

analysis based on the material model is carried out and the optimization is conducted to obtain the 

optimal density profile. In the present dissertation, we have proved the proposed framework of 

LSTO method through the problems including minimum compliance, constrained stress and 

natural frequency. Both full scale simulations and experiments on the variable density lattice 
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structure have demonstrated the accuracy and efficiency of the proposed methodology. In practice, 

we have applied the LSTO method to design and build practical components for companies.  

LSTO framework has been proved to be accuracy and efficiency for both mechanical and 

thermal conduction design. In practice, lattice structure as a type of metal foam has great potential 

for heat transfer design. Same as the mechanical problem, the framework starts from 

homogenization of the properties of lattice structure.  

On the other hand, there exist some features, such as the bolt holes and cooling channels, 

which cannot be optimized and reconstructed with lattice structure. But the geometric parameters 

like the location and angle plays an important role in optimization processes. Especially when the 

boundary conditions are subjected to these features, the geometric parameters would considerably 

influence the density profile of the optimal design. Thus, a concurrent scheme coupled with the 

LSTO method is proposed in the present dissertation in order to simultaneously optimize the lattice 

infill and the geometric parameters of solid features. In Section 4.0, the concurrent LSTO method 

has been extensively studied on heat conduction problem. A good agreement is observed, which 

further valid the accuracy and efficiency of homogenization and the optimization. Specifically, the 

concept of immersed boundary (IB) method is introduced into the optimization to represent the 

conformal boundary conditions. The IB strategy is tested on different boundary conditions 

involving heat flux, heat generation and heat convection. A full-scale simulation on the final design 

is compared with homogenized results. Comparison shows great agreement for maximum 

temperature. In particular, we extend the design dependent concurrent LSTO method to cooling 

channels design, which show significant reduction for the maximum temperature of the structure. 

The research that has been done in this dissertation mainly focuses on mechanical and heat 

conduction designs. We would further apply the framework of LSTO method for multi-physics 
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problem such as thermomechanical design to mitigate the large deformation and warpage 

generated in the powder-bed metal AM. As mentioned in Section 1.1.1 , when the residual stress 

introduced by melting and solidification process in metal AM is large enough, the built 

components would deform and stop the recoater blade. This is a key factor that leads to build 

failure of metal AM.  To address this problem, we will introduce the LSTO method for support 

structure design.  Here the inherent strain method [87, 88] is used to efficiently perform 

thermomechanical analysis of the process for powder-bed metal AM at part scale, while LSTO 

method is employed to optimize the support structure design. The primary goal is to build a 

framework to efficiently design support structure for powder-bed metal AM to reduce the thermal 

deformation and increase the successful ratio of the building process. 

1.3.1  Outline 

The organization of this dissertation is constructed as follows. The homogenization of the 

lattice materials is introduced in Chapter 2.0 for different problems including effective elastic 

properties, plastic properties, heat conductivity and forced convection heat transfer coefficient. 

The mathematical formulation and numerical implementation for the homogenization method is 

detailed in this chapter. For validation purpose, experiments are conducted on the lattice materials 

manufactured by both plastic AM processes and powder-bed metal AM processes. The 

experimental measurement is compared with the prediction from both the homogenized model and 

full-scale simulation.  

Chapter 3.0 provides the proposed LSTO method for various problems ranging from 

structural design (minimum compliance problem and constrained stress problem), and dynamical 

design for maximization of natural frequency. Along with introduction of the underlying theory, 
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each of the design optimization methods is employed for practical applications.  The optimal 

designs of real components are manufactured by advanced AM techniques, and experiments are 

carried out to compare with prediction from both homogenization and full-scale simulation.  

In Chapter 4.0, the developed LSTO method is extended to combined optimization of 

movable feature evolution with the optimization functionally graded lattice structure infill. Two 

topics are covered containing in this chapter: 1) Concurrent optimization of the lattice structure 

infill with design-independent movable features; 2) Coupling design-dependent movable features 

with LSTO method. Several numerical examples for both practical applications and conceptual 

validations are studied to illustrate the efficiency of the proposed methodology. 

In Chapter 5.0, the methods used to systematically address the residual stress induced build 

failure are covered.  Specifically, a voxel-based methodology for efficiently identifying overhang 

features and generating Cartesian mesh is proposed.  There are two methods developed to solve 

the build failure problem.  One is the build orientation optimization, in which the influence of the 

microstructure of the lattice structure support on the optimal orientation optimization is discussed 

on part-scale problem. The other is the support structure optimization aiming to minimize overall 

weight of the support structure, and at the same time to constrain the maximum stress below the 

allowable stress (e.g. yield strength). Experiments are conducted on the part-scale problem to 

explore performance of the proposed methodology.   

Chapter 6.0 concludes with the main contributions of my doctoral work dissertation for the 

design of functionally graded lattice structure for current AM techniques. The potential future 

works based on the achievement in this dissertation are also provided in this chapter  
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2.0 Homogenization of Effective Properties for Lattice Structure 

In this chapter, the theory of asymptotic homogenization (AH) method will be introduced, 

including both the mathematical formulation and the numerical implementation. AH method is 

employed in this work to calculate the effective properties of lattice material through the analysis 

of RVE for a lattice unit. This chapter will mainly focus on the elasticity, yield strength, thermal 

conductivity, and forced convection heat transfer of lattice structure. Both full-scale simulations 

and experiments will be conducted to examine the accuracy of proposed homogenized model. 

2.1 Theory of Homogenization 

Materials constructed of a lattice structure can be considered as a type of composite-like 

material, and their mechanical properties can be calculated by analyzing the representative volume 

element (RVE) through AH approach. The fundamentals of the AH method can be found in the 

works of Benssousan [89, 90], Willis [91], Bakhvalov and Panasenko [92]. The underlying 

principle of the AH for lattice material is schematically presented in Figure 2.1. Consider a domain 

Ω𝛾  infilled with lattice structure, with a traction of 𝒕 imposed onto the traction boundary 𝛤𝑡 , a 

displacement of 𝑑 added to the boundary 𝛤𝑑, and a body force of 𝑓 uniformly distributed in the 

entire domain. By means of AH, the lattice unit is taken as the RVE to compute the effective 

properties, and a surrogate solid structure with equivalent properties is used to represent the 

original domain by a homogenized body Ω with prescribed external and traction boundaries [93].  
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Figure 2.1: Homogenization of Lattice Materials 

 

 

The AH method is based on perturbation theory and used to study the partial differential 

equations with rapidly oscillating coefficients [94]. It relies on the assumption that any field 

quantities, such as displacement, stress and strain, are determined by both the smoothed quantities 

at macroscale 𝑥, and periodic oscillation at microscale, 𝑦. The dimensions of these two scales are 

related by a scale factor 𝛽 as 𝑦 = 𝑥 𝛽⁄ . Based on AH method, the displacement can be expressed 

using a two-scale asymptotic expansion as:  

 𝑢𝛽(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + 𝛽𝑢1(𝑥, 𝑦) + 𝛽
2𝑢2(𝑥, 𝑦) + ⋯ (2.1) 

where 𝑢𝛽 is the exact value of the displacement field, 𝑢0  represents the smoothed global 

displacement while 𝑢𝑖(𝑖 = 1,…𝑛) denote the perturbation due to the microscopic heterogeneity.   

Substituting the asymptotic expansion in Eq. (2.1) into the strain-displacement equation 

and performing the standard mechanical analysis with periodic boundary conditions on a unit cell, 

one can obtain the effective elastic modulus of lattice structure as: 

 
𝐶𝑖̅𝑗𝑘𝑙 =

1

|𝑉𝑅𝑉𝐸|
∫ (𝐶𝑖𝑗𝑘𝑙 − 𝐶𝑖𝑗𝑝𝑞

𝜕𝜒𝑝
𝑘𝑙

𝜕𝑦𝑞
)𝑑𝑉𝑅𝑉𝐸

𝑉𝑅𝑉𝐸

 (2.2) 
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Where 𝑉𝑅𝑉𝐸 is the volume of the smallest representative lattice unit that can be repeated in the 

lattice structure, 𝐶𝑖̅𝑗𝑘𝑙 denotes the effective elasticity tensor at macroscopic, and 𝐶𝑖𝑗𝑘𝑙 represents 

the elasticity tensor of the constituents at microscale.  𝜒𝑝
𝑘𝑙 (𝑝, 𝑘, 𝑙 ∈ [1,2,3] for 3D and [1,2] for 

2D) is the characteristic displacement used to bridge the perturbed displacement in Eq. (2.1) and 

the macroscopic strain. It can be obtained by solving the following elasticity equation in a unit cell 

subjected to unit strain and periodic boundary conditions: 

 
∫ 𝐶𝑖𝑗𝑝𝑞

𝜕𝜒𝑝
𝑘𝑙

𝜕𝑦𝑞

𝜕𝑣𝑖
𝜕𝑦𝑗𝑉𝑅𝑉𝐸

𝑑𝑉𝑅𝑉𝐸 = ∫ 𝐶𝑖𝑗𝑘𝑙
𝜕𝑣𝑖
𝜕𝑦𝑗𝑉𝑅𝑉𝐸

𝑑𝑉𝑅𝑉𝐸 (2.3) 

where 𝑣𝑖 is the virtual displacement. Solving the above equation, the stress field at the macroscale 

can be formulated as: 

 𝜎𝑖𝑗 = (𝐶𝑖𝑗𝑘𝑙 − 𝐶𝑖𝑗𝑝𝑞
𝜕𝜒𝑝

𝑘𝑙

𝜕𝑦𝑞
)
𝜕𝑢0
𝜕𝑥𝑙

 (2.4) 

For practical implementation, finite element analysis (FEA) is used to numerically 

perform the homogenization for lattice unit, in which the elastic tensor and the averaging stress 

can be computed using: 

 𝐶𝑖̅𝑗𝑘𝑙 =
1

|𝑉𝑅𝑉𝐸|
∫ 𝐶𝑖𝑗𝑚𝑛𝑀𝑚𝑛𝑘𝑙𝑑𝑉𝑅𝑉𝐸
𝑉𝑅𝑉𝐸

 (2.5) 

and  

 𝜎𝑖𝑗 =
1

|𝑉𝑅𝑉𝐸|
∫ 𝐶𝑖𝑗𝑚𝑛𝑀𝑚𝑛𝑘𝑙𝑑𝑉𝑅𝑉𝐸
𝑉𝑅𝑉𝐸

𝜀𝑘̅𝑙 (2.6) 

respectively, where 𝜀𝑘̅𝑙 is the global strain at macroscale and 𝑀𝑚𝑛𝑘𝑙 is the local structural tensor 

and can be written as: 

 𝑀𝑖𝑗𝑘𝑙 =
1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) − 𝜀𝑖𝑗

∗𝑘𝑙 (2.7) 
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where 𝛿𝑖𝑗is the Kronecker delta, 𝜀𝑖𝑗
∗𝑘𝑙denotes the periodicity of the strain field. Further details of 

calculating 𝜀𝑖𝑗
∗𝑘𝑙 can be found in [94]. 

2.2 Numerical Homogenization for Lattice Structure 

To calculate the effective properties of lattice structures, finite element analysis (FEA) is 

used to discretize and solve the unit cell problem in Eq. (2.3), and calculate the relationship in Eq. 

(2.5) and (2.6). In this work, ANSYS v17.2 Mechanical APDL is used to build, mesh and solve 

the model. After finite element discretization, Eq. (2.3) can be expressed as 

 𝑲𝝌𝑘𝑙 = 𝒇𝑘𝑙 (2.8) 

where 𝝌𝑘𝑙  is the microscopic displacement, 𝒇𝑘𝑙  represents load vector, and 𝑲  is the global 

stiffness matrix. Based on Eq. (2.3),  𝑲 and 𝒇𝑘𝑙 are defined as 

 𝑲 =∑∫ 𝑩𝑒
𝑇𝑪𝑒𝑩𝑒𝑑𝑉𝑅𝑉𝐸

𝑉𝑅𝑉𝐸

𝑵

𝑒=1

 (2.9) 

and  

 𝒇𝑘𝑙 =∑∫ 𝑩𝑒
𝑇𝑪𝑒𝜺̅𝑘𝑙𝑑𝑉𝑅𝑉𝐸

𝑉𝑅𝑉𝐸

𝑵

𝑒=1

 (2.10) 

where 𝑩𝑒 represents the strain-displacement matrix, 𝑪𝑒 is the constitutive model, 𝜺̅𝑘𝑙is the  six unit 

strains and are chosen to be: 

 

𝜺̅11 = (1,0,0,0,0,0)𝑇 , 𝜺̅22 = (0,1,0,0,0,0)
𝑇 , 𝜺̅33 = (0,0,1,0,0,0)𝑇, 

𝜺̅12 = (0,0,0,1,0,0)𝑇, 𝜺̅23 = (0,0,0,0,1,0)𝑇 , 𝜺̅31 = (0,0,0,0,0,1)
𝑇 

(2.11) 

Substituting the unit strains given in Eq. (2.11) into Eq. (2.10) and then solving Eq. (2.8), 

one can obtain the fluctuating strain 𝜺∗, calculate the local structural tensor 𝑴 in Eq. (2.7), and 
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compute effective properties of lattice structure using Eq. (2.5). More details about the numerical 

homogenization is covered in several works of [93, 95, 96].  

To calculate the elastic constants of the cubic lattice structure, uniaxial tension and pure 

shear are applied to the normal and shear direction, respectively. As shown in Figure 2.2, the 

hexagonal element is used to mesh the cubic lattice unit while periodic boundary conditions for 

uniaxial tension and pure shear are applied to one direction of the cubic lattice unit. 

 

 

 

a) Mesh model              b) Uniaxial tension along x direction            c) Pure shear 

Figure 2.2: Periodic Boundary Conditions of the Cubic Lattice Unit 
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2.3 Elasticity 

2.3.1  Lattice Structure Printed by SLA 

A cellular structure is made up of an interconnected network of solid struts or plates which 

form the edges and faces of the cells [97, 98].  Compared with a solid part of the same volume, the 

mechanical properties of cellular solids depend directly on the shape and structure of cells.  Except 

for the detailed cell structure and constituent material, the most important structural characteristic 

of a cellular solid is its relative density, 𝜌𝑟 = 𝜌𝑐/𝜌
∗ (the ratio of the density of the cellular structure 

𝜌𝑐 and density of the solid material 𝜌∗). According to the Gibson-Ashby model[97, 98], the elastic 

modulus 𝐸, shear modulus 𝐺, and yield strength 𝜎𝑝𝑙  of cellular structures are functions of the 

relative density called “scaling laws”.  Take the elastic modulus E as an example, the scaling law 

follows the form 
𝐸𝑐

𝐸∗
= 𝑓(𝜌𝑟), where 𝐸∗is the elastic modulus of the constituent material and 𝑓(𝜌𝑟) 

is either a polynomial or power function of the relative density 𝜌𝑟. 
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Figure 2.3: A Cubic Cellular Structure and Its Unit Cell 

 

 

In this work, the cubic cellular structure shown in Figure 2.3 is used as the cellular unit for 

the LSTO method to optimize the components of interest.  In general, the mechanical behavior of 

a cellular structure is likely to be anisotropic rather than isotropic. According to Simone and 

Gibson [99], a scaling law for anisotropic cellular structures also exists.  In this work, the 

anisotropic constitutive law 𝝈 = 𝑪𝜺 is applied, where 𝝈, 𝑪 and 𝜺 are the stress, elastic matrix, and 

strain, respectively.  In matrix form in the Cartesian coordinates (x, y, z), these quantities can be 

written as:  

 𝝈 = [𝜎11 𝜎22 𝜎33 𝜎12 𝜎13 𝜎23]T (2.12) 

 𝜺 = [𝜀11 𝜀22 𝜀33 𝜀12 𝜀13 𝜀23]T (2.13) 
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
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





=

665646362616

565545352515

464544342414

363534332313

262524232212

161514131211

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

C   (2.14) 

For the scaling laws of cubic cellular structures, a polynomial function is used to fit the 

relationship between the elastic tensor and microstructure characterization parameters (MCPs).  In 

the case of one MCP, e.g. relative density, 𝜌𝑟(𝑥), the elastic matrix of cellular structures can be 

written as:  

 𝑪(𝝆𝑟) = 𝑪𝟎 + 𝑪𝟏𝝆𝑟 + 𝑪𝟐𝝆𝑟
2 +⋯           (2.15) 

where 𝑪𝑖(𝑖 = 0,1,2, … ) are the constant symmetric matrices to be determined.  For the anisotropic 

case, Eq.(2.15) gives the relationship of the mechanical properties and relative density.   

The cubic structure will be utilized as an example to illustrate the homogenization process.  

Considering the symmetry of the cubic structure, the relationship of the elastic tensors is: 𝐶11 =

𝐶22 = 𝐶33 ,  𝐶12 = 𝐶13 = 𝐶23 ,  𝐶44 = 𝐶55 = 𝐶66  and 𝐶14 = 𝐶15 = 𝐶16 = 𝐶24 = 𝐶25 = 𝐶26 =

𝐶34 = 𝐶35 = 𝐶36 = 0. Thus, the elastic matrix can be deduced to have the following form by 

symmetry:   

 

[
 
 
 
 
 
𝐶11
𝐶12
𝐶12
0
0
0

𝐶12
𝐶11
𝐶12
0
0
0

𝐶12
𝐶12
𝐶11
0
0
0

0
0
0
𝐶44
0
0

0
0
0
0
𝐶44
0

0
0
0
0
0
𝐶44]

 
 
 
 
 

 (2.16) 

We now illustrate how to obtain the elastic scaling laws for the different elastic constants 

for the cubic cellular structure.  Note that there are only three independent elastic constants C11, 

C12, and C44 for this structure.  The effective mechanical behavior of a periodic lattice structure 

can be obtained using the well-established computational homogenization method [100-103].  In 
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this method, instead of modeling the entire lattice structure that contains a large number of unit 

cells and requires substantial amount of computing power, only one-unit cell of the lattice structure 

is employed in the finite element analysis (FEA) to predict its effective behavior.  In order to obtain 

accurate result, it is of great importance to impose periodic boundary conditions (PBCs) on the 

unit cell model.  To obtain an elastic constant, the most compact stress-strain relationship is 

deduced for that constant; for example, 𝜎𝑥𝑦 = 𝐶44𝜀𝑥𝑦  for 𝐶44 .  Then a simulation is run by 

imposing the strain of interest (e.g. 𝜀𝑥𝑦) to deform the unit cell to obtain the corresponding stress 

(e.g. 𝜎𝑥𝑦) as shown in Figure 2.2, which allows for the prediction of 𝐶44.  Since the scaling law is 

a function of relative density as stated in Eq. (2.15), a number of unit cells with different relative 

densities will need to be simulated in order to do the fitting.  Figure 2.4 illustrates the different 

models of the cubic structure employed in the present study.    

 

 

 

Figure 2.4: Cubic Cellular Structures with Different Relative Densities 

 

 

Figure 2.5 illustrates the elastic constants versus relative density obtained from simulations 

and the fitted scaling laws for the cubic structure.  Because the elastic scaling laws fitted will be 

used to perform topology optimization, it is required that they go to unity when 𝜌𝑟 = 1 and go to 
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zero when 𝜌𝑟 = 1 .  After some attempts of using different orders of polynomials to fit the 

simulation data for 15 different common cellular structures, we find that a quartic polynomial 

without the 3rd order term gives the best combination between accuracy and compactness of the 

scaling law. The 3rd order term in the quartic polynomial is excluded from quartic polynomial 

because it may cause the scaling law to become non-monotonic, which may lead to non-optimal 

result when performing topology optimization.  The current form of scaling law is believed to be 

more robust than the quadratic polynomial employed in our previous work in 2D [104]. 

 

 

      
Figure 2.5: Elastic Scaling Law of Cubic Cellular Structures Versus Relative Density 
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For the cubic structure, the scaling laws for the three independent material constants 

obtained after fitting to the finite element simulation data are found to be:  

 𝐶11/𝐶11
∗ = 0.4729𝜌𝑟

4 + 0.2266𝜌𝑟
2 + 0.3003𝜌𝑟            (2.17) 

 𝐶12/𝐶12
∗ = 0.8776𝜌𝑟

4 + 0.0505𝜌𝑟
2 + 0.0713𝜌𝑟            (2.18) 

 𝐶44/𝐶44
∗ = 0.4727𝜌𝑟

4 + 0.5294𝜌𝑟
2           (2.19) 

In order to validate the simulation results, compression testing is conducted on some cubic 

cellular structure specimens fabricated by a 3D printer (Stratasys Connex 260 Objet) using a 

photopolymer called VeroWhite.  The compression test specimen consists of five cubic structure 

unit cells with lattice constant of 5 mm (see Figure 2.6 for one of the specimens) and the [100] 

direction oriented along the compression direction.  Hence, the elastic modulus along the [100] 

direction, E100, of the cubic structure is obtained directly from the compression test.  The testing is 

conducted on a load frame (MTS 880) for five different densities and three specimens are tested 

for each density.   

 

 

 



 35 

 

Figure 2.6: Specimens Used to Validate the Elastic Scaling Law 

 

 

In order to directly compare to experimental results, the elastic modulus in the [100] 

direction of the unit cell is obtained from the fitted scaling laws from the different elastic constants 

through the following relationship: 

 
1

𝐸100
=

𝐶11 + 𝐶12

𝐶11
2 + 𝐶11𝐶12 − 2𝐶12

2  (2.20) 

 

Figure 2.7 illustrates the excellent match between the experimental and the simulation 

results for the cubic structure.   
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Figure 2.7: Comparison of Elastic Modulus Values Predicted by Finite Element Analysis and those Obtained 

from Experiments 

 

2.3.2  Lattice Structure Printed by EOS M290 in Metals 

Figure 2.8 illustrates the homogenized model of cubic lattice structure with respect to 

relative density for lattice structure manufactured by metal AM. The normalized three elastic 

constants (𝐶11, 𝐶12 and 𝐶44) are equal to one (zero) as relative density reaches one (zero). Due to 

the symmetry of the cubic lattice structure, elastic constant 𝐶𝑖𝑖 and 𝐶𝑖𝑗  (𝑖, 𝑗 = 1,2,3) are equal in 

yx, and z direction and 𝐶11 =
𝜎11

𝜀11
, 𝐶12 =

𝜎22

𝜀11
 . On the other hand, the shear constant is also equal 

in any two directions and 𝐶44 =
𝜎12

2𝜀12
. For two-dimensional lattice structure, piecewise function 

composed of linear and cubic polynomial interpolation is used to fit the constitutive law, which 

has been proved by Arabnejad [93] and Wang [105]. However, for 3D structure, it is found that 
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quartic polynomial without 3rd order and constant term is more accurate for the representation of 

lattice material [106], which is employed in this work.   

 

 

 

Figure 2.8: Effective Elastic Constants as a Function of Relative Density of the Lattice Structure 

Manufactured by Metal AM 

 

2.3.2.1 Validation by Experiments for Metal Lattice Structure 

Validation of the homogenized model is conducted on the samples printed by EOS DMLS 

with Ti6Al4V, whose Young’s modulus is 110 GPa and Poisson’s ratio is 0.3. Based on the AH 

method, the periodic lattice unit should be as small as possible [107]. However, from the 

manufacturability point of view, the manufacturable unit size is determined by the resolution of 

the machine. Hence, the manufactured lattice structure can be neither too small nor too large 

considering the print quality. Similar to my another work [108] for AlSi10Mg, a benchmark is 

designed and printed out in Ti6Al4V using EOS DMLS to quantify the appropriate size for lattice 
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structure design, refer to Figure 2.9. Based on the observation on the benchmark in Figure 2.9 (b), 

it is found that the minimum ligament diameter that can be printed out with clear shape is 0.5 mm, 

the maximum overhang that can be printed out is 4.25 mm. This means that the design of the lattice 

structure should satisfy both the maximum overhang constraint and the minimum resolution (i.e. 

0.5 mm) to ensure manufacturability of the lattices.  Note that the benchmark test also eliminates 

the weak ligaments that possibly have critical defects in the ligament.  This is because the recoater 

blade of the AM machine would inevitably come into contact with the top of the build, and the 

weak ligaments would be swiped away.  The effects of other defects (micro-voids) on mechanical 

properties have been captured when the elastic constants are calibrated by tensile testing results on 

bulk samples.  These defects are typically isolated micro-voids that has less than 0.01% volume 

fraction in DMLS-processed materials, and thus their effects on static mechanical properties are 

expected to be minimal.  

 

 

 

                                         (a)                                                                       (b) 

Figure 2.9: Benchmark Study for the Overhang and Ligament Size. (a) CAD Model of the Benchmark for 

Ti6Al4V (b) Photo of the Printed-out Benchmark in Ti6Al4V by Using EOS DMLS.  
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Figure 2.10 illustrates the geometry and AM realization of the tensile samples, in which 

ASTM E8 standard has been used for sample size selection. The length of the sample is 8 in, with 

a neck width of 0.5 in and thickness of 0.25 in. As discussed in Refs [109, 110], the scale effect 

may lead to inaccuracy for the prediction from AH method when there are only a few lattice layers 

in the test samples. To guarantee the periodicity assumption in AH method and manufacturability 

discussed in the previous paragraph, the size of the unit cell is set to be 0.125 in or 3.175 mm, in 

which two layers at the thickness direction and 25 layers along the tensile direction. As mentioned 

in the work [111], when the layer is larger than 5 along the loading direction, the homogenization 

results agrees well with that from full-scale simulation. Thus, the unit size selection for the 

dogbone here is sufficient for validation. Good Agreement (see Fig. 9) between the experiment 

and the prediction from AH method also proves this point of view. For the tensile testing, samples 

of four different densities (𝜌 = 0.4, 0.5, 0.6, 0.7) and three specimens for each density are tested 

on MTS880 load frame. 
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(a) 

 

(b) 

Figure 2.10: Specimens Printed by EOS DMLS with Ti6Al4V for Tensile Tests. (a) CAD and Dimension of 

the Samples; (b) Printed Samples and the Tensile Test.  

 

 

Figure 2.11 presents the comparison of the experimental results and homogenized model 

for cubic lattice structure. The solid line denotes the homogenized model of cubic lattice structure 

computed from Eq. (2.15). The red dots are the experimental results while the blue dots are two 

known points (𝜌 = 0, 1). As demonstrated in the figure, the homogenized model agrees well with 

the experimental results, which implies that the homogenization in Eq. (2.15) and Figure 2.11 is 

reasonably accurate for the representation of lattice structure printed by EOS DMLS with 

Ti6Al4V. We will use this model for the optimization of lattice structure design. 
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Figure 2.11: Comparison of the Effective Elastic Constants by the Homogenized Model and Experiments. 

 

 

2.4 Yield Strength 

Although homogenized model can be efficiently used for the representation of elastic 

performance, when the yield criterion is taken into account the obtained stress would apparently 

cause problem. This is because the local nature of stress constraints, meaning that the detailed 

stresses at microscale in the lattice structure is much different from the macroscopic stresses 

calculated by homogenized model. As shown in the Figure 2.12, a constant pressure of 30 MPa 

along the vertical direction is subjected to the lattice unit and the corresponding homogenized 
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model at microscale, the bottom surfaces of two models are fixed while the a periodic boundary 

conditions are subjected to the other four side-surfaces. It can be seen that the stress distribution 

of homogenized model is much uniform while the stress of detailed simulation for lattice structure 

is remarkably anisotropic, in which the maximum stress is about 9.0214 times larger than the 

homogenized model. This means that if the stress of homogenized model as constraints is used for 

topology optimization, the optimized structure would be much weaker than predicted value. 

 

 

 

                                  (a)                                                                      (b) 

Figure 2.12: Comparison of Stress Distribution Between Detailed Simulation and Homogenization for RVE. 

(a) Results of Detailed Simulation; (b) Results of Homogenization.  

 

 

To ensure the consistency of the yield criterion for lattice structure, it is necessary to 

establish a model to reflect yield strength of microstructure on microscopic level using 

macroscopic stresses calculated by homogenized model. The model should not only maintain the 

local nature of the stress in RVE, but also computational cheap as well. A multiscale failure model 
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is herein proposed to capture the effective yield strength of lattice structure with predefined relative 

density 𝜌 in terms of macroscopic stress.  

At macroscale, considering the anisotropic properties of lattice material, the modified 

Hill’s yield criterion [112] is employed to describe the yield behavior of lattice structure. As 

illustrated in Fig. 5, cubic lattice structure is a type of orthotropic material, which has three 

mutually perpendicular planes of symmetry. Thus, the modified Hill’s yield criterion with respect 

to the principal axes of anisotropy (𝑦1, 𝑦2, 𝑦3) has the following forms: 

 𝜙(𝝈̅) ≡ 𝜎𝑑
2 + 𝐺𝜎𝑚

2 − 1 = 0 (2.21) 

where 𝜎𝑑 and 𝜎𝑚 represents applied macroscopic stress, and mean principal stress on macroscopic 

level, respectively, which can be formulated by macroscopic stress as 

 𝜎𝑑
2 ≡ 𝐴(𝜎11 − 𝜎22)

2 + 𝐵(𝜎22 − 𝜎33)
2 + 𝐶(𝜎33 − 𝜎11)

2 + 2𝐷𝜎12
2 + 2𝐸𝜎23

2 + 2𝐹𝜎13
2   (2.22) 

and 

 𝜎𝑚 =
1

3
(𝜎11 + 𝜎22 + 𝜎33) (2.23) 

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and 𝐺 are material constants used to characterize the anisotropy of lattice 

structure. 𝜎𝑖𝑗(𝑖, 𝑗 = 1,2,3) represent the effective stress obtained via homogenized model. Using 

matrix notation, the Hill’s yield criterion could be expressed as 

 𝜙(𝝈̅) ≡ 𝝈̅𝑇𝕄𝝈̅ − 1 = 0 (2.24) 

where 𝕄 represents an orthotropic fourth-order symmetric tensor satisfying both the minor and 

major symmetries, 𝝈̅  denotes the macroscopic stress tensor. In Cartesian coordinate 

system (𝑥1, 𝑥2, 𝑥3), 𝕄 can be expressed as 
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 𝕄 =

[
 
 
 
 
 
𝐴 + 𝐶 + 1 9⁄ 𝐺
1 9⁄ 𝐺 − 𝐴
1 9⁄ 𝐺 − 𝐶

0
0
0

1 9⁄ 𝐺 − 𝐴
𝐴 + 𝐵 + 1 9⁄ 𝐺
1 9⁄ 𝐺 − 𝐵

0
0
0

1 9⁄ 𝐺 − 𝐶
1 9⁄ 𝐺 − 𝐵

𝐵 + 𝐶 + 1 9⁄ 𝐺
0
0
0

0
0
0
2𝑁
0
0

0
0
0
0
2𝑀
0

0
0
0
0
0
2𝐿]
 
 
 
 
 

 (2.25) 

 

According to the symmetry of cubic lattice structure, the total number of the material 

constants can be reduced to two independent constants, i.e. 𝐴 = 𝐵 = 𝐶 = 𝐾  and  2𝐷 = 2𝐸 =

2𝐹 = 𝑄. The yield criterion in Eq. (2.24) can be simplified to 

 

𝜙(𝝈) ≡ 𝐾[(𝜎11 − 𝜎22)
2 + (𝜎22 − 𝜎33)

2 + (𝜎33 − 𝜎11)
2]

+ 𝑄[𝜎12
2 + 𝜎23

2 + 𝜎13
2 ] + 𝐺𝜎𝑚

2 − 1 = 0 

(2.26) 

And 𝕄 becomes 

 𝕄 =

[
 
 
 
 
 
2𝐾 + 1 9⁄ 𝐺
1 9⁄ 𝐺 − 𝐾
1 9⁄ 𝐺 − 𝐾

0
0
0

1 9⁄ 𝐺 − 𝐾
2𝐾 + 1 9⁄ 𝐺
1 9⁄ 𝐺 − 𝐾

0
0
0

1 9⁄ 𝐺 − 𝐾
1 9⁄ 𝐺 − 𝐾
2𝐾 + 1 9⁄ 𝐺

0
0
0

0
0
0
𝑄
0
0

0
0
0
0
𝑄
0

0
0
0
0
0
𝑄]
 
 
 
 
 

 (2.27) 

At microscale, the solid material consisting of lattice structure is assumed to be an 

isotropic, elastic-perfectly plastic solid of Young’s modulus 𝐸∗ , Poisson’s ratio 𝜈∗ and yield 

strength 𝜎𝑦
∗. It is note that the buckling of lattice structure is ignored in the calculation of yield 

strength at microscale. For validation purpose, the solid material of lattice structure is assumed to 

be VeroWhitePlus printed out by Objet Connex 260, with E∗ = 1745 MPa, ν∗ = 0.3 and σ𝑦
∗ =

65 MPa. The FEA calculation of the yield strength for RVE is based on 𝐽2  flow theory. The 

macroscopic yield strength of lattice structure are calculated at the peak of the curve of 

macroscopic stress versus strain. The yielding model of lattice structure can be obtained at different 
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relative densities through the uniaxial, shear and hydrostatic loadings under periodic boundary 

conditions, as shown in Figure 2.13.  

 

 

 

 

Figure 2.13: Yield Simulation for Cubic Lattice Structure on RVE. (a) Uniaxial Loading, (b) Pure Shear 

Loading and (c) Hydrostatic Loading. 

 

 

FEA analysis on ten relative densities are performed to obtain the macroscopic yields, and 

a fourth order polynomial without the constant term are employed to achieve the curve fitting for 

the three-independent yield strengths in terms of relative density as follows: 

 𝜎𝑘𝑘
𝑌 ≡

𝜎11
𝑌

σy∗
=
𝜎22
𝑌

σy∗
=
𝜎33
𝑌

σy∗
= 𝑏1𝜌 + 𝑏2𝜌

2 + 𝑏3𝜌
3 + 𝑏4𝜌

4 (2.28) 

 𝜎𝑖𝑗
𝑌 ≡

√3𝜎12
𝑌

σy∗
=
√3𝜎23

𝑌

σy∗
=
√3𝜎13

𝑌

σy∗
= 𝑐1𝜌 + 𝑐2𝜌

2 + 𝑐3𝜌
3 + 𝑐4𝜌

4 (2.29) 

and 

 𝜎𝑚
𝑌 ≡

𝜎𝑚
𝑌

σy∗
= 𝑑1𝜌 + 𝑑2𝜌

2 + 𝑑3𝜌
3 + 𝑑4𝜌

4 (2.30) 
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where 𝜎𝑖𝑗
𝑌  (𝑖, 𝑗 = 1,2,3) represent the macroscopic yield strength and 𝜎𝑚

𝑌  denotes the hydrostatic 

yield strength of cubic lattice structure, 𝑏𝑘, 𝑐𝑘 and 𝑑𝑘 (𝑘 = 1,2,3,4) are the constants used for the 

curve fitting. 𝜎𝑘𝑘
𝑌 , 𝜎𝑖𝑗

𝑌  and 𝜎𝑚
𝑌  are used to represent the normalized uniaxial strength, shear strength 

and the hydrostatic strength, respectively. 

Figure 2.14 illustrates curve fitting of the three-normalized yield strength of cubic lattice 

structure. It is seen the normalized yield strengths are also monotonic function within the whole 

range of relative density, which implies when density tends to zero, the material constants tends to 

be infinite, while when density tends to one, the material constants converge to one. From physical 

point of view, it is reasonable since the effective yield strengths are singly determined by the 

relative density and the relationship is monotonic. 
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Figure 2.14: Material Constants of Macroscopic Yields for Cubic Lattice Structure in Terms of Relative 

Density. 
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Substituting Eq. (2.28)-(2.30)into the Eq. (2.26), and solving for the material constants 𝐾, 

𝑄 and 𝐺, the function of the three material constants can be expressed in terms of relative density 

as: 

 𝐾(𝜌) =
1

2(𝜎̅11
𝑌 )2

−
𝐺(𝜌)

18
 (2.31) 

 

 𝑄(𝜌) =
1

(𝜎̅12
𝑌 )2

 (2.32) 

and   

 𝐺(𝜌) =
1

(𝜎𝑚𝑌 )2
 (2.33) 

Without losing the generality, the material constants are normalized by the yield strength 

of solid material, and the normalized material constants can be formulated as: 

 
𝐾(𝜌)

𝐾∗
=

1

2(𝜎𝑘𝑘
𝑌 + 𝜂)2

−
𝐺(𝜌)

18𝐺∗(𝜎𝑘𝑘
𝑌 + 𝜂)2

 (2.34) 

 

 
𝑄(𝜌)

𝑄∗
=

1

(𝜎𝑖𝑗
𝑌 + 𝜂)

2 (2.35) 

and   

 
𝐺(𝜌)

𝐺∗
=

1

(𝜎𝑚
𝑌 + 𝜂)2

 (2.36) 

where 𝐾∗, 𝑄∗ and 𝐺∗ represent the material constants of solid material, 𝜂 is a smaller positive 

number to avoid the singularity when relative density is equal to zero.  

Again, to examine accuracy of the proposed plastic model, yield strength of the uniaxial 

direction obtained from compression tests are used to compare with the prediction from the model 
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in Eq. (2.34)-(2.36). The yield strength along the [100] can be calculated by means of the material 

constants as: 

 
𝜎100
𝑌 (𝜌) =

1

√2𝐾(𝜌) +
1
9𝐺(𝜌)

 
(2.37) 

Figure 2.15 illustrates the comparison. As can be seen, yield strength of cubic lattice 

structure along [100] direction at different relative densities are in a good agreement with the 

estimation from Eq. (2.43). It means that the modified Hill’s model can provide reasonably 

accurate description for the yield performance of cubic lattice structure.  

 

 

 

Figure 2.15: Experimental Verification of the Plastic Scaling Law 
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Based on homogenized model in Eq. (2.6), the macroscopic stress can be calculated by 

 𝝈̅ = 𝑪̅𝜺̅ (2.38) 

The substitution of Eq. (2.44) into Eq. (2.24), one can obtain 

 𝜙(𝜺̅) = 𝜺̅𝑇𝑪̅𝑻𝕄𝑪̅𝜺̅ − 1 (2.39) 

The modified Hill’s yield criterion can be expressed as macroscopic strain-based 

formulation as  

 𝜙(𝜺̅) = 𝜺̅𝑇ℝ𝜺̅ − 1 = (𝜎𝐻)2 − 1 (2.40) 

where  

 𝜎𝐻 = (𝜺̅𝑇ℝ𝜺̅)
1
2 (2.41) 

where  ℝ  represents tensor used to describe yield performance of lattice structure under 

macroscopic strain, and ℝ = 𝑪̅𝑻𝕄𝑪̅. Since 𝑪̅ and 𝕄 are function of relative density, ℝ is the 

function of relative density.  

Instead of penalizing the stress in the standard TO, the sensitivity analysis of stress 

constraint in this work is based on real material properties (e.g. 𝑪̅, 𝕄 and ℝ). This is one of most 

different aspects in this work from the former studies [38, 40, 42, 43, 45]. 𝜎𝐻 is the modified Hill’s 

stress used to estimate the yielding of the structure. 𝜎𝐻 ≥ 1 means that the structure has yielded, 

otherwise the structure is safe under the prescribed loading.  
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2.5 Thermal Conductivity 

The governing equation for Fourier’s heat conduction law can be written as: 

 {
𝐾∇2𝑢(𝒙) + 𝑓 = 0
𝑞(𝒙) = −𝐾∇𝑢(𝒙)

 (2.42) 

where 𝑞 is the heat flux, 𝐾 denotes the effective thermal conductivity and 𝑓 represents the internal 

heat generation in the design domain. Substituting the derivatives of the temperature field in Eq. 

(2.1) with respect to 𝑥 into the governing equation of Eq. (2.42). Following similar procedure of 

homogenization in elasticity[94], one can obtain the effective thermal conductivity as: 

 𝐾̅𝑖𝑗 =
1

|𝑉𝑅𝑉𝐸|
∫ 𝐾𝑖𝑘𝑀𝑘𝑗𝑑𝑉𝑅𝑉𝐸
𝑉𝑅𝑉𝐸

 (2.43) 

where 𝐾̅𝑖𝑗  (𝑖, 𝑗 = 1,2,3)  denotes the effective thermal conductivity, 𝑉𝑅𝑉𝐸  indicates the RVE 

volume and 𝑀𝑘𝑗 represents the local structure tensor which is defined as follows: 

 𝑢,𝑖 = 𝑀𝑖𝑗𝑢̅,𝑗 (2.44) 

The local structure tensor 𝑀𝑖𝑗 is used to relate the average temperature gradient 𝑢̅,𝑗and the 

local temperature gradient 𝑢,𝑖. As illustrated in Figure 2.16, cubic lattice structure saturated with 

air is taken as the objective structure.  
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Figure 2.16: Cubic Lattice Unit Saturated with Fluid Phase. 

 

 

Numerical homogenization is employed to obtain the effective thermal conductivity of the 

lattice. For the homogenization analysis, only one lattice unit is analyzed, since the periodic 

assumption gives the same results of any number of cells. Figure 2.17 gives the mesh model and 

boundary conditions of the cubic lattice unit. ANSYS v17.0 was used to conduct the finite element 

analysis for the model. 
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Figure 2.17: FEA Model of the Cubic Lattice Unit 

 

 

Based on the homogenization theory, the effective thermal conductivity of lattice material 

is expressed as a function of relative density 𝜌.  In order to ensure smooth convergence of the 

optimization procedure, a monotonic function is needed to fit to the FEA results.  Hence a fourth-

order polynomial without third-order and zero-order (constant) terms is used to fit the relationship 

[106]. 

 𝐾̅𝑟(𝜌) = 𝑎1𝜌 + 𝑎2𝜌
2 + 𝑎4𝜌

4 (2.45) 

where 𝐾̅𝑟 denotes the normalized effective conductivity (𝐾̅𝑟 = 𝐾̅ 𝐾𝑠⁄  , 𝐾̅ and 𝐾𝑠 are the effective 

conductivity and the conductivity of solid material, respectively). The coefficients 𝑎𝑖(𝑖 = 1,2,4) 

are the constants used to fit the polynomial. Figure 2.18 illustrates the effective conductivity 

obtained via numerical homogenization. It can be seen the fitted curve is monotonic in the entire 

range of the relative density.  
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Figure 2.18: Normalized Effective Thermal Conductivity of Cubic Lattice Material as a Function of Relative 

Density. 
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3.0 Lattice Structure Topology Optimization (LSTO) 

In this chapter, the framework of lattice structure topology optimization will be introduced 

including both the workflow and the reconstruction for the proposed LSTO methodology. 

Following the basic theory of the LSTO method, the extensions of LSTO for various problems 

including minimum compliance, constraint stress, natural frequency, and forced convection heat 

transfer are explored. Several numerical examples for each problem are designed using the 

proposed framework and experiments on the 3D printed lattice structure designs are conducted to 

demonstrate the efficiency and accuracy of the proposed framework.  

3.1 Theory of LSTO Method 

3.1.1  Design Methodology 

The proposed design methodology for cellular structured components is illustrated in the 

flowchart shown in Figure 3.1 and each step is detailed in the follows. 

 

 



 55 

 

Figure 3.1: Flowchart of the Lattice Structure Design Optimization Methodology. 

 

 

(i) Initialization:  The design component with the given boundary conditions and the 

corresponding mechanical model are specified in preparation for the cellular structure design, 

optimization, and reconstruction processes.  The material, cellular structure type, and the printing 

technique are initialized as the input parameters for homogenization and optimization.  

(ii) Homogenization, Optimization, Reconstruction, and Validation: 

In the cellular structure optimization reconstruction section, four steps are implemented to 

redesign the specific component with variable-density cellular structures. 

a) Homogenization:  The material type, cellular type, and AM techniques are 

determined as input parameters for the material model function to calculate the material 

table required for the cellular topology optimization process.  The material table holds the 

mechanical properties of the cellular structures with the specific material types and 
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orientations. The material table is also used as the material model for the finite element 

analysis (FEA) in the design validation and assessment. 

b) Optimization:  Once the homogenized material model is obtained from step (a), 

the geometry optimization of the cellular structures can be cast into the revised topology 

optimization algorithm of the equivalent continuous solid model.  The optimized density 

distribution is then obtained after conducting the optimization calculation, which is used 

as the input parameters of the cellular structure reconstruction.  

c) Reconstruction:  For the given component, the cellular structure reconstruction 

software would identify the boundaries of the parts and automatically generate the variable-

density mesh according to the optimal density distribution. As illustrated in Figure 3.2, 

pillow bracket is reconstructed with variable-density cubic cellular structures. 

 

 

                            

Figure 3.2: Reconstruction of the Variable-Density Cellular Structure in the Pillow Bracket. 

 

 

d) Validation:  In order to further validate reconstructed part, both numerical 

simulation and experiments are conducted to validate the optimized design.   
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(iii) Finalization:  In addition to the FEA and experiments, the optimization algorithm, 

design criteria, and cellular reconstruction algorithm all need to be assessed and reevaluated.  Some 

necessary adjustments and modification should be made to the optimal design until the design 

requirements are satisfied.  For example, the regions where loads are being applied should be kept 

as solid instead of converting into cellular structure to maintain good structural integrity.  This was 

done around the bolt holes of the pillow bracket design shown in Figure 3.2.  As another example, 

it may be desirable to insert a skin layer to cover certain regions of the design, sometimes to cover 

up the truncated ligaments in the lattice, while sometimes for aesthetic purpose. A successful 

model obtained from the above three steps does not mean that the cellular structured component 

is qualified for AM production.  After the solid component is discretized with the specific cellular 

structures, there may be many sharp corners that exist in the internal parts which will cause stress 

concentrations.  Fillets are required to avoid these stress concentrations and a surface skin may 

need to be added to cover the cellular structures depending on the components specific utilization.  

The specific AM processing conditions and limitations such as large overhangs and unsupported 

geometries need to be considered and adjusted in the designed cellular structure component[113].  

After the CAD model is finalized, the reconstructed cellular structure component can be 

manufactured using the proper AM process and applied to industry.  

3.1.2  Reconstruction 

Having obtained the optimal density distribution over the part geometry, the next step in 

the design process is to reconstruct the CAD model of the cellular structured component for AM.  

In the reconstruction, a periodic lattice of the given cellular structure is generated to span the design 

space.  The lattice constant should be chosen to ensure that the resulting cellular structure is 
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manufacturable using the AM process of interest.  Next, each individual ligament in the lattice is 

reconstructed according to the relevant optimized relative densities, followed by a union operation 

over all the generated ligaments to obtain the final variable-density structure.  Note that each 

individual ligament is modeled as a tapered cylinder with rounded ends, the radius of each end is 

determined according to the optimized relative density at that end (Figure 3.3 illustrates the way 

to obtain the variable density cellular structure).  This is achieved by using the relationship between 

the radius of ligament and relative density for the given cellular structure.  To obtain this 

relationship, the radius of ligament is varied at small regular intervals to generate different unit 

cells of the given structure, from which the corresponding relative densities can be computed using 

a CAD program.  As an example, the normalized radius (i.e. ratio of radius of ligament and lattice 

constant) versus relative density of the cubic lattice structure is shown in Figure 3.3.  Since the 

data shows a quite non-linear relationship in the low-density range and high-density range, three 

cubic spline functions are employed to fit the data in the low, medium, and high density ranges for 

the cubic lattice structure:   

 

 

Figure 3.3: Procedure to Generate Variable Density Cellular Structure 
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 (3.1) 

 

where R is the radius of ligament, el is the lattice constant, and 
r is the relative density.  Based 

on our experience, up to three cubic spline functions is needed to fit the data for the entire range 

of relative density in order to obtain an accurate fit.  In the reconstruction of the variable-density 

cellular structure, the function obtained is employed to determine the radius of the tapered 

ligament from the optimized relative density at each lattice point.  Figure 3.4 shows the process 

of reconstructing the variable-density cubic cellular structure for the minimum compliance 3-

point bending beam.   

 

 

 

Figure 3.4: Fitted Function of Relative Radius Versus Relative Density.  
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As illustrated in Figure 3.4, the relationship between the ratio of the vertex radius versus 

ligament length and relative density is a smooth spline, which ranges from 0 to 0.942 for the cubic 

structure. The green circles are simulation data obtained by computing the relative density of the 

joint with respect to the radius in the CAD program. Taking the reconstruction of MBB problem 

as an example shown in Figure 3.5, an optimal density distribution is smoothly transformed into a 

variable density lattice infill. 

 

 

Figure 3.5: Reconstruction of the Variable-Density Cubic Cellular Structure for the Optimized 3-Point 

Bending Beam. 

 

 

3.2 Minimum Compliance Problem 

3.2.1  Problem Statement 

In this section, we illustrate how the elastic scaling law will be utilized to obtain the 

minimum compliance cellular structure for a mechanical component.  Since the effective 
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mechanical properties can be represented as a function of relative density of a given cellular 

structure through the scaling law, the relative density is the design variable in our optimization 

problem.  Typically, the underlying mechanical equilibrium problem is solved by the finite element 

method.  Hence the design domain   is discretized by N  finite elements, where each element e 

will be assigned a relative density 𝜌𝑟 ∈ [0,1].  Employing the relative density vector 𝝆𝑟, the global 

stiffness matrix for the discretized problem can be rewritten as 𝐊(𝝆𝑟).  Let the external loading 

denoted by the vector 𝒇 and the displacement vector by 𝐮, the discretized equilibrium equation can 

be written as: 

 𝐊(𝝆𝑟)𝐮 = 𝐟 (3.2) 

Hence the minimum compliance problem takes the following mathematical form: 
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where 𝑪(𝝆𝑟) is the objective function, 𝐮𝒆  the elemental displacement vector, 𝐤𝑒  the elemental 

stiffness matrix, and 𝑣𝑒the element volume for element e, while 𝑉 is the total designed volume.  

As can be seen, there are four constraints in this minimum compliance problem.  The first 

constraint is the equilibrium equation.  The second constraint is the elastic scaling law as discussed 

in Chapter 2.0.  The third constraint is that the total design volume is constrained to 𝑉, whose value 

should be equal to or less than the volume of the design space.  The fourth constraint requires that 
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the relative density is bounded by the minimum and maximum relative density 𝜌𝑚𝑖𝑛 and 𝜌𝑚𝑎𝑥, 

respectively.   

3.2.2  Numerical Examples 

The optimization problem stated in Eq. (3.3) is almost identical to the standard minimum 

compliance problem (i.e. 0/1 design), but the physical meaning they carry are quite different.  In 

the standard problem, the second constraint is a fictitious elastic scaling law that is employed to 

drive the design variable to zero (void) or unity (solid) during the optimization process.  Standard 

techniques such as the Solid Isotropic Material with Penalization (SIMP) approach have no real 

physical meaning in standard topology optimization.  In contrast, in the proposed approach for 

cellular structure design, the second constraint in Eq. (3.3) utilizes the elastic scaling law that 

represents the real mechanical property of the underlying cellular structure as a function of relative 

density.  Hence, a major advantage of the proposed approach is that all the intermediate densities 

obtained from the optimization can be realized into cellular structures with the corresponding 

densities.  It is not possible to achieve this in standard topology optimization.  

Due to their similarity, standard topology optimization algorithms can be easily adopted to 

solve the current minimum compliance problem posed in Eq. (3.3).  In this work, the non-gradient-

based Proportional Topology Optimization (PTO) method is employed to solve the problem [114].  

Interested readers should refer to that work for further details.   

In order to demonstrate the effectiveness of the proposed method, the classic three-point 

bending beam design problem is solved. Figure 3.6 shows the basic dimensions of the beam model 

with size 120 x 15 x 15 mm3.  In the FEA model, a vertical displacement is applied onto the middle 
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of the upper face of the beam.  The displacements are fixed at the supports located at the left bottom 

face of the beam and at the right bottom face as indicated in the figure.  

 

 

 

Figure 3.6: Dimension of the 3-point Bending Beam. 

 

 

As illustrated in Figure 3.7, the finite element mesh of the 3-point bending beam consists 

of 55,594 ten-node hexahedron elements with an average element size of 0.8 mm and total number 

of nodes of 62,000.  More elements are distributed in the area where the boundary constrains are 

applied and at the supports to ensure the accuracy of the FEA. The values employed for the various 

material parameters are as follows:  E=2100 Mpa for Young’s modulus and υ=0.3 for Poisson’s 

ratio, which are the properties of the material that we will be printing in.  The scaling law of the 

cubic cellular structure used for topology optimization is given in Eqns. (3.2) and (3.3). The initial 

relative density for all the elements is set to 0.5 in the beginning of the optimization.  The 

convergence criterion is when the change in total compliance is less than 0.0001.  
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Figure 3.7: Finite Element Mesh of the 3-Point Bending Beam. 

 

 

Figure 3.8 gives the stiffness of the beam model versus the number of iterations.  As 

illustrated in the figure, the total compliance of the beam model converges to the optimal density 

distribution after 28 iterations.  As illustrated in Figure 3.8, the stiffness of the structure increases 

from 106.8 N/mm to 239.4 N/mm, which represents an increase of 124.3%.  This result proves 

that the structure becomes stiffer than before.  

 

   

Figure 3.8: Convergence History of the Beam Stiffness in the Optimization   
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The evolution of the relative density distribution in the beam during the optimization is 

shown in Figure 3.9. In the figure, red color indicates the larger relative density while blue color 

indicates lower relative density.   

 

 

                      

Figure 3.9: Density Distribution in the Beam at Different Iterations in the Optimization  

3.2.2.1 Verification  

In order to validate the proposed design method, both full scale simulation and experiments 

are conducted on the 3-point bending beam before and after minimum compliance optimization 

with the overall volume fraction constrained to 50% of the original beam.  Note that the un-

optimized beam has a uniform cubic structure of 50% relative density.   To be consistent with the 

3-point bending experiment, support structures are added to the bottom surface of the beams as 

shown in Figure 3.10(a).   
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a) Cellular structured model of s uniform and non-uniform beam (volume fraction=0.5)  

             

b) Mesh model of s cellular structured uniform and non-uniform beam (mesh type: 

triangular)  

Figure 3.10: The Mesh Model of the Uniform 3-Points Bending Beam. 

3.2.2.2 Simulation 

To conduct the full scale FEA, the uniform and optimized cellular structured beam is 

meshed with 570,713 tetrahedral elements (1,041,711 nodes) and 533,262 elements (956,692 

nodes), respectively.  The material properties employed are identical to those used in the 

optimization, where E=2100 Mpa and υ=0.3.  The beam is assumed to be pinned supported at the 

bottom.  Displacement is applied in the middle of the upper beam surface at an increment of 1 mm, 

and the reaction force is recorded so that the force-displacement curve obtained can be compared 

directly with experiment.     
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3.2.2.3 Experiment 

For the 3-point bending experiment, five specimens of each of the uniform and optimized 

non-uniform beams are printed in VeroWhite using an Objet260 Connex (Stratasys Inc.) as shown 

in Figure 3.11(a,b).  The comparison between the CAD models and the printed beams is illustrated 

in Figure 3.11.  

 

 

                         

a) Uniform cellular beam CAD model printed by Objet260 

 

b) Optimized cellular beam CAD model printed by Objet260 

Figure 3.11: Comparison Between the CAD Models of the Reconstructed Beams and the Printed Beams by 

Objet260. 

 

 

The experiment on the 3D-printed beams is conducted on a 3-point bending fixture on a 

load frame (MTS880 system).  The beams are loaded at rate of 0.2mm/s until failure.  After the 

beam is fractured, the pressure head automatically retracts to the original position.  The 
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displacements and the corresponding loads are recorded by the data acquisition system that is part 

of the loading system.  Figure 3.12 shows a snapshot of the experimental apparatus during the 

testing of the uniform and optimized non-uniform cellular structured beams.  

 

 

 

Figure 3.12: Experiment setup of the 3-point Bending Test. 

 

 

3.2.2.4 Results 

Figure 3.13 illustrates the simulation and experimental load-displacement curves for the 

uniform and optimized non-uniform beams, respectively. Table 3.1 tabulates the tangent stiffness 

in the linear elastic region obtained from full scale simulation, homogenized model, and 

experiment.  From Table 3.1, it can be seen that the predicted stiffness values from the 

homogenized model is close to those obtained from both the full-scale simulation and experiment 

for both cases.  The homogenized and full-scale simulation results are especially close for the 
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uniform beam (1.65% difference), but not as close in the case of non-uniform beam (10.7% 

difference).  This observation alone would suggest that the homogenized model is not as predictive 

for variable-density cellular structures.  However, the simulation results using the homogenized 

model are actually closer to the experiment results than the full-scale simulation are for both 

beams.  Hence, the homogenized model should be reasonably accurate for modeling variable-

density cellular structures.  It is likely that the finite element mesh of the cellular structure beams 

in the full-scale simulation is not accurate due to the geometric complexity of the structure, 

resulting in its worse performance than the homogenized model, especially for the non-uniform 

beam.   

 

 

 

Figure 3.13: Comparison Between the Simulation and Experiment of the 3-Point Bending Beam for the 

Uniform Beam and Optimized Non-Uniform Beam. 
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Table 3.1: Linear Tangent Stiffness Values Obtained from Full Scale Simulation, Homogenized Model, and 

Experiment. 

Test structure Full scale simulation Homogenized model Experiment 

Uniform beam 108.46 N/mm 106.67 N/mm 96.34 N/mm 

Non-uniform beam 216.05 N/mm 239.24 N/mm 247.01 N/mm 

 

 

Next we compare the experimental results between the uniform beam and optimized non-

uniform beam, where the load-displacement curves are shown in Figure 3.14 and the initial tangent 

stiffness and strength are tabulated in Table 3.2.  Recall that both beams are designed to have the 

same weight (i.e. 50% volume fraction of the original solid beam).  Note that the non-uniform 

beam is much stiffer than the uniform beam (i.e. 156.5% increase) as it should be since the former 

is optimized for minimum compliance.  Besides, the strength of the non-uniform beam is also 

115.2% higher than the uniform beam.  These results show the effectiveness of the proposed 

homogenization-based design method. 
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Figure 3.14: Comparison of the 3-Point Bending Tests Between the Uniform Cellular Beam and a Non-

Uniform Cellular Beam.   

 

 

Table 3.2: Comparison of Mechanical Properties of the Uniform and Optimized Beams.  

Property Uniform beam 

Optimized non-uniform 

beam 

Enhancement 

(%) 

Average stiffness (N/mm) 96.34 247.1 156.5% 

Average strength (N) 302.3 650.7 115.2% 
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3.2.3  Practical Application 

Further application of the LSTO method is carried out through the design of the pillow 

bracket (Figure 3.15), which is a conventional component in industry.  The design optimization 

process for the pillow bracket is shown in Figure 3.15: (a) Homogenization of the cubic cellular 

structure, (b) topology optimization for the pillow bracket using the specific scaling law, (c) 

reconstruction of the variable-density cubic cellular structure, and (d) validation by both simulation 

and experiment.   

The pillow bracket is designed for flexural loading and Figure 3.16 shows the experimental 

apparatus used to conduct the experiment.  The experiment apparatus consists of two main parts.  

The first part is the lower plate used to fix the pillow bracket in place using four bolts and eight 

nuts as shown in Figure 3.16.  The other part is the upper plate, which is connected to the pillow 

bracket through a pin that is inserted through the hole of the plate between the ears of the bracket.  

In the experimental setup, the distance from the bottom part to the upper plate is equal to the 

distance to the two ears of the pillow bracket to avoid the flexural deformation of the pin as much 

as possible.  During the experiment, both the upper and lower plates are fixed to the load frame 

(MTS 880), and hence by moving the upper plate downward, a vertical downward force is applied 

onto the ears of the pillow bracket through the pin.   
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Figure 3.15: Procedure to Optimize Design of the Pillow Bracket.  

 

 

   

Figure 3.16: Experimental Setup for the Pillow Bracket. 

 

 

The bracket specimens used for the bending test are printed by the same 3D printer and 

material as before.  Figure 3.17 shows the specimens of the pillow bracket with uniform and the 

optimized variable-density structures, respectively.  The two parts are designed for the same 

volume fraction of 50% of the original fully dense bracket.  For both bracket designs, a thin skin 

layer is employed to cover the curved surfaces, where the broken ligaments are formed from the 

non-conformity between the bracket shape and the underlying lattice structure.  As a result, the 

final volume fraction of the uniform and non-uniform brackets becomes 54% of the original fully 

dense bracket.  In the compression testing, four specimens for both the uniform and non-uniform 
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bracket designs are printed using the same process parameters and build orientations to ensure that 

they are produced under the same conditions.  The print direction of the pillow bracket is along its 

upright position.  

 

 

 

Figure 3.17: 3D Printed Pillow Bracket Designs  

 

 

Figure 3.18 shows the experimental results of the compression test for the uniform and 

optimized non-uniform pillow brackets, while Table 3.3 tabulates the initial tangent stiffness and 

strength values of the two designs.  Note that the optimized non-uniform beam is much stiffer than 

the uniform beam (i.e. 119.7% increase) as it should be since the former is optimized for minimum 

compliance.  Besides, the strength of the non-uniform beam increases by 75.4% over the uniform 

beam.  Through this comparison, it is obvious that the LSTO method is a powerful tool to reduce 

the weight of the component while enhancing its stiffness and strength.   
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Figure 3.18: Loading Curves for the Uniform and Optimized Non-Uniform Cellular Structured Pillow 

Brackets. 

 

 

Table 3.3: Comparison of Mechanical Properties of the Uniform and Optimized Brackets. 

Property Uniform Optimized non-uniform Enhancement (%) 

Average stiffness (N/mm) 740.45 1626.9 119.7% 

Average strength (N) 2497.2 4379.1 75.4% 
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3.2.4  Summary 

In this work, a homogenization-based topology optimization method is proposed to 

optimize the design of variable-density cellular structure efficiently.  Through this research, the 

following conclusions can be drawn:  

• The proposed method effectively resolves the issues of intermediate densities and 

overhang structure seen in designs produced by standard topology optimization for 

additive manufacturing. 

• Both numerical simulation and experiments demonstrate the accuracy of the elastic 

scaling law that takes the form of a quartic polynomial without the third order term. 

• Mechanical properties of the component designed by the proposed method can be 

enhanced significantly after optimization; e.g. stiffness increases by more than 

100% and strength increases by more than 75%.  

There are still several issues that need to be resolved to further improve the propose 

optimization method for additive manufacturing.  These issues include considering build 

orientation, anisotropic yield properties, and residual distortion in the optimization method.  These 

and other issues are under active investigation.   
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3.3 Stress Constrained Problem 

3.3.1  Stress Measure 

The prominent characterization of stress constraint for topology optimization is the local 

nature of the stress. From the continuum mechanics point of view, the ideal way to enforce the 

stress constraint is to do this at every material point, which is known as local constraint strategy 

[38]. However, this may lead to a very large number of constraints for most engineering problems. 

Considering the highly non-linear dependency of stress constraint, this results in a very 

complicated sensitivity analysis and thus high computational cost. To reduce the number of 

constraints, several numerical methods, such as global stress measure [42, 115] and cluster/block 

stress measure [42-44], are proposed to formulate and control the stress in the structural design. 

The global stress measure aggregates the large number of local constraints into a single function 

by means of the P-norm or the Kreisselmeier-Steinhauser (KS) function, and significantly reduce 

the computational expense. The block/cluster stress measure is employed to divide the stresses 

into several clusters/blocks and enforces the P-norm stress for each cluster/block, in order to reduce 

the computational cost of local constraint scheme and poor local control of the global constraint. 

To simplify the calculation, the P-norm global stress measure is employed in this work to 

implement the stress constraint due to its conservative nature. 

In the global stress measure, the original 𝑁 local constraints are formulated by a single 

maximum stress constraint as: 

 𝜎̅𝑚𝑎𝑥
𝐻 = max

𝑒=1⋯𝑁
(𝜎̅𝑒

𝐻) ≤ 1 (3.4) 
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where 𝜎̅𝑚𝑎𝑥
𝐻  is the maximum Hill’s stress in the design domain, 𝜎̅𝑒

𝐻 (𝑒 = 1,⋯𝑁) represents the 

modified Hill’s stress on element 𝑒, and 𝑁 denotes total number of elements in the design domain. 

Since the formulation in Eq. (3.4) is non-differentiable, a smooth P-norm function is alternatively 

used to approximate the global maximum stress measure, and the constraint yields: 

 𝜎𝑃𝑁 = (∑ (𝜎̅𝑒
𝐻)
𝑃𝑁

𝑒=1
)

1
𝑃
≤ 1 (3.5) 

where 𝑃  represents factor of P-norm used to control smoothness of the approximation, 𝜎𝑃𝑁 

denotes P-norm stress used to estimate yielding of the structure. When 𝑃 → 1, the P-norm stress 

measure is the average stress of the design domain; when 𝑃 → ∞, 𝜎𝑃𝑁 approaches to 𝜎̅𝑚𝑎𝑥
𝐻 . Note 

that the stress measure in Eq. (3.5) is a conservative measure as it overestimates the maximum 

local stress  

max
𝑒=1⋯𝑁

(𝜎̅𝑒
𝐻) ≤ (∑(𝜎̅𝑒

𝐻)
𝑃

𝑁

𝑒=1

)

1
𝑃

 

In practical implementation, 𝑃 can only be set as a limited value, since a large 𝑃 would 

lead to even higher non-linearity for the stress constraints [42]. Hence, the control of P-norm in 

Eq. (3.6) on the actual maximum local stress is lacking. To address this issue, the adaptively scaling 

constraint proposed in [42, 116, 117] is adapted to reformulate Eq. (3.5) as: 

 𝜎𝑃𝑁 ≤ 𝛾𝐼 (3.6) 

where 𝛾 is calculated iteratively, and 𝐼 (𝐼 ≥ 1) represents the iteration number. 

 𝛾𝐼 = 𝛽𝐼
(𝜎𝑃𝑁)

𝐼

(𝜎̅𝑚𝑎𝑥
𝐻 )

𝐼
 (3.7) 

where 𝛽𝐼 ∈ (0,1). As can be seen, when 𝛽𝐼 = 1, the inequality in Eq. (3.6) is equivalent to Eq. 

(3.4) and the optimization converges to the optimal solution. During the optimization, 𝛽𝐼 = 0.5, 
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when 𝛾𝐼 oscillates between two successive iterations, otherwise 𝛽𝐼 = 1. It is noted that Eq. (3.7) is 

a heuristic scheme to stabilize the convergence of the optimization. The expression of 𝛾 is non-

differentiable [42], and the sensitivity would not include the derivatives. 

3.3.2  Problem Formulation 

3.3.2.1 Problem Statement 

Using the global stress measure proposed in section 3 and the modified Hill’s stress in 

Section 2.4, the mass minimization optimization with stress-constraint can be formulated by the 

discretization form as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑚(𝝆) =∑𝜌𝑒𝑣𝑒

𝑁

𝑒=1

 (3.8) 

𝑤. 𝑟. 𝑡          𝜌𝑒  

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

{
 
 

 
 
𝑲𝒖 = 𝒇    

𝑪̅ = 𝑪̅(𝝆)
                                                     

𝜎𝑃𝑁 ≤ 𝛾𝐼                                                      

0 < 𝜌 ≤ 𝜌𝑒 ≤ 𝜌 ≤ 1,       𝑒 = 1, … , 𝑁    

 (3.9) 

where 𝑚(𝝆) is the objective function of the optimization problem, which represents the total mass 

of the structure. 𝝆 is the density vector saving the relative density of element in the design domain.  

𝑲, 𝒖 and 𝒇 in the equilibrium equation denote stiffness matrix, global displacement and prescribed 

external loads, respectively. 𝜌𝑒 is the relative density of element 𝑒 , while 𝑣𝑒 is its corresponding 

elemental volume. The design variable 𝜌𝑒 is limited by the upper bound 𝜌 and lower bound 𝜌. 𝑪̅ =

𝑪̅(𝝆) represents effective elastic model proposed in Section 2.3. The stress measure used in this 

work is the P-norm form formulated using Hill’s stress proposed in Section 2.4. 
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3.3.2.2 Sensitivity Analysis 

In this section, the sensitivity analysis of the optimization problem in Eq. (3.8) and Eq. 

(3.9) is derived. The Method of Moving Asymptotes (MMA) proposed by Svanberg [118] is 

employed to solve the optimization problem. The implementation of the MMA requires the first 

order derivatives of objective function and constraints, which are derived as follows.  

The sensitivity of the objective function, 𝑚(𝝆), is  

 
𝜕𝑚(𝝆)

𝜕𝜌𝑒
= 𝑣𝑒 (3.10) 

The stress constraints in Eq. (3.6) is employed, and its first order derivative to the relative 

density can be calculated using the following chain rule:  

 
𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
=∑

𝜕𝜎𝑃𝑁

𝜕𝜎̅𝑒
𝐻

𝜕𝜎̅𝑒
𝐻

𝜕𝜌𝑒

𝑁

𝑒=1
 (3.11) 

In Eq. (3.11), the first term 
𝜕𝜎𝑃𝑁

𝜕𝜎̅𝑒
𝐻  can be calculated as follows, 

 𝜕𝜎𝑃𝑁

𝜕𝜎̅𝑒
𝐻
= (∑ (𝜎̅𝑒

𝐻)
𝑃𝑁

𝑒=1
)
(
1
𝑃−1)

(𝜎̅𝑒
𝐻)
𝑃−1

 (3.12) 

while the term 
𝜕𝜎̅𝑒

𝐻

𝜕𝜌𝑒
 can be calculated from Eq. (3.3) as 

 𝜕𝜎̅𝑒
𝐻

𝜕𝜌𝑒
=
𝜕 [(𝜺̅𝑇ℝ𝜺̅)

1/2
]

𝜕𝜌𝑒
=
1

2
(𝜺̅𝑇ℝ𝜺̅)

−
1
2
𝜕(𝜺̅𝑇ℝ𝜺̅)

𝜕𝜌𝑒
=

1

2𝜎̅𝑒
𝐻 (2𝜺̅

𝑇ℝ
𝜕𝜺̅

𝜕𝜌𝑒
+ 𝜺̅𝑇

𝜕ℝ

𝜕𝜌𝑒
𝜺̅) (3.13) 

According to the strain-displacement formulation, the macroscopic strain tensor on 

element 𝑒 can be computed as 

 𝜺̅ = 𝑩𝒖 (3.14) 

where 𝑩 represents strain-displacement matrix and 𝒖 is the vector of displacements. Substituting 

Eq. (3.14)into second term in Eq. (3.13),the derivatives can be expressed as: 
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 2𝜺̅𝑇ℝ
𝜕𝜺̅

𝜕𝜌𝑒
= 2𝜺̅𝑇ℝ

𝜕(𝑩𝒖)

𝜕𝜌𝑒
= 2𝜺̅𝑇ℝ𝑩

𝜕𝒖

𝜕𝜌𝑒
 (3.15) 

 

 

  

Based on the equilibrium equation in Eq. (3.9), the derivatives of 
𝜕𝒖

𝜕𝜌𝑒
 can be computed as 

 
𝜕𝒖

𝜕𝜌𝑒
= 𝑲−1

𝜕𝒇

𝜕𝜌𝑒
−𝑲−1

𝜕𝑲

𝜕𝜌𝑒
𝒖 (3.16) 

For design-independent problem considering in this work, 
𝜕𝒇

𝜕𝜌𝑒
= 0 , we have 

𝜕𝒖

𝜕𝜌𝑒
=

−𝑲−1
𝜕𝑲

𝜕𝜌𝑒
𝒖. Substituting it into Eq. (3.15) and replacing 𝑲 with 𝑲 = 𝑩𝑇𝑪̅𝑩, Eq. (3.15) can be 

written as 

 2𝜺̅𝑇ℝ
𝜕𝜺̅

𝜕𝜌𝑒
= −2𝜺̅𝑇ℝ𝑩𝑲−1𝑩

𝜕𝑪̅

𝜕𝜌𝑒
𝜺̅ (3.17) 

Substituting Eq. (3.17) back into Eq. (3.13) yields: 

 
𝜕𝜎̅𝑒

𝐻

𝜕𝜌𝑒
= −

1

𝜎̅𝑒
𝐻
𝜺̅𝑇ℝ𝑩𝑲−1𝑩

𝜕𝑪̅

𝜕𝜌𝑒
𝜺̅ +

1

2𝜎̅𝑒
𝐻
𝜺̅𝑇
𝜕ℝ

𝜕𝜌𝑒
𝜺̅ (3.18) 

Substituting Eq. (3.12) and Eq. (3.18) into Eq. (3.11) yields:  

 

𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
= ∑ [(∑ (𝜎̅𝑒

𝐻)
𝑃𝑁

𝑒=1 )
(
1

𝑃
−1)

(𝜎̅𝑒
𝐻)
𝑃−1

(−
1

𝜎̅𝑒
𝐻 𝜺̅

𝑇ℝ𝑩𝑲−1𝑩
𝜕𝑪̅

𝜕𝜌𝑒
𝜺̅ +

1

2𝜎̅𝑒
𝐻 𝜺̅

𝑇 𝜕ℝ

𝜕𝜌𝑒
𝜺̅)]𝑁

𝑒=1   

= −∑ (∑ (𝜎𝑒
𝐻)𝑃𝑁

𝑒=1 )(
1

𝑃
−1)(𝜎̅𝑒

𝐻)𝑃−2𝜺̅𝑇ℝ𝑩𝑲−1𝑩
𝜕𝑪̅

𝜕𝜌𝑒
𝜺̅𝑁

𝑒=1 +

1

2
∑ (∑ (𝜎𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)𝑃−2𝜺̅𝑇
𝜕ℝ

𝜕𝜌𝑒
𝜺̅𝑁

𝑒=1   

(3.19) 

where 
𝜕ℝ

𝜕𝜌𝑒
 can be calculated from the definition, ℝ = 𝑪̅𝑻𝕄𝑪̅, as:  

 
𝜕ℝ

𝜕𝜌𝑒
=
𝜕𝑪̅

𝑇

𝜕𝜌𝑒
𝕄𝑪̅+ 𝑪̅

𝑇 𝜕𝕄

𝜕𝜌𝑒
𝑪̅ + 𝑪̅

𝑇
𝕄
𝜕𝑪̅

𝜕𝜌𝒆
= 2

𝜕𝑪̅
𝑇

𝜕𝜌𝑒
𝕄𝑪̅+ 𝑪̅

𝑇 𝜕𝕄

𝜕𝜌𝑒
𝑪̅ (3.20) 
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To calculate derivatives in Eq. (3.19), an adjoint variable 𝝁 is introduced and defined as: 

 𝝁𝑇 =∑(∑(𝜎̅𝑒
𝐻)
𝑃

𝑁

𝑒=1

)

(
1
𝑃−1)

(𝜎̅𝑒
𝐻)
𝑃−2

𝜺̅𝑇ℝ𝑩𝑲−1
𝑁

𝑒=1

 (3.21) 

 

𝝁 can be computed by solving the following adjoint equation:  

 𝑲𝝁 =∑(∑(𝜎̅𝑒
𝐻)𝑃

𝑁

𝑒=1

)

(
1
𝑃
−1)

(𝜎̅𝑒
𝐻)𝑃−2𝑩𝑇ℝ𝜺̅

𝑁

𝑒=1

 (3.22) 

Once 𝝁 is obtained from Eq. (3.21), the derivative of P-norm stress measure in Eq. (3.18) 

can be expressed as: 

 𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
= −𝜺̅𝝁

𝑇 𝜕𝑪̅

𝜕𝜌𝑒
𝜺̅ +

1

2
∑ (∑ (𝜎̅𝑒

𝐻)
𝑃𝑁

𝑒=1 )
(
1

𝑃
−1)

(𝜎̅𝑒
𝐻)
𝑃−2

𝜺̅𝑇 (2
𝜕𝑪̅

𝑇

𝜕𝜌𝑒
𝕄𝑪̅+ 𝑪̅

𝑇 𝜕𝕄

𝜕𝜌𝑒
𝑪̅) 𝜺̅𝑁

𝑒=1   (3.23) 

 

where 𝜺̅𝝁 represent the “strain” of adjoint variable 𝝁 and it can be calculated by 𝜺̅𝝁 = 𝑩𝝁. It can 

be seen from the derivative in Eq. (3.23), the sensitivity of the P-norm stress constraint is 

consisted of two parts: one is from the adjoint equation, the other is from the structure itself.  

 

3.3.3  Numerical Examples and Experimental Validation 

In this section, two three-dimensional (3D) examples are presented to examine efficiency 

and accuracy of the proposed homogenization based LSTO method for constrained stress problem. 

The objective of the optimization is to minimize the total mass of the structure under the constraint 

of allowable stress represented by modified Hill’s stress. The optimization method is implemented 
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in MATLAB R2015a, and the MMA method [118] is applied as the optimizer to solve the 

constrained stress problem. Considering the high non-linearity of the stress constraint, the move 

limit of MMA is narrowed to ensure the convergence of the optimization. The initial volume 

fraction of the structure in the two examples is set to 𝑽 = 0.9. The optimization terminates if the 

differences of the objective function among three successive iterations is smaller than 1 × 10−3, 

while the stress constraint is satisfied. It is assumed the lattice structured design is printed out by 

Objet Connex 260 in VeroWhitePlus, which has a Young’s modulus of 1,747 MPa, Poisson’s ratio 

of 0.3 and yield strength of 65 MPa.  

3.3.3.1 Three-dimensional L-bracket Design 

The first numerical example is the established L-bracket design problem, which is used 

here to examine the proposed framework for the structure with reentrant corner. Figure 3.19 

illustrates dimension and boundary conditions of the L-bracket. The cross section of L-bracket is 

15 × 15 mm2 with a side length of 45 mm. A mesh of 16,875 eight-node hexahedron elements is 

used to discretize the design domain and solve the FEA model. A load of 130 N is initially 

distributed over the two rows of elements as shown in the figure, and the relative densities of these 

elements are set to solid during the optimization. A fixed boundary condition is subjected to the 

upper surface of L-bracket. The lower and upper density limits of the lattice structure in the design 

domain is set to be 𝜌 = 0.15 and 𝜌̅ = 0.95, respectively. Note that the number of 𝑃 in P-norm is 

set to 11 in this case to get P-norm value closer to the maximum local stress and capture the stress 

concentration at reentrant corner.   

 

 



 84 

 

                                      (a)                                                                     (b) 

Figure 3.19: Boundary Conditions and Dimensions of an L-Bracket. (a) Dimension of L-Bracket and (b) 

Mesh of the L-Bracket for Static Analysis. 

 

 

The optimization results of the 3D L-bracket are presented in Figure 3.20, including density 

evolution and the evolution of the Hill’s stress. As shown in the figure, more materials are 

distributed on the vertical surface of bracket, while on the horizontal surface materials are removed 

to form a lower density area. This is different from results in the two-dimensional design, in which 

a curved boundary is generated along the reentrant corner to avoid the stress concentration. There 

are two reasons leading to the difference. First, the anisotropy of cubic lattice structure results in 

the materials tends to distribute along the vertical and horizontal directions, which can provide 

stronger load path comparing with shear direction. Second, for 3D L-bracket, the loading applied 

to the solid edge tends to transform from the bottom and side surfaces of the bracket and leads to 

higher density concentration. Another interesting phenomenon is that there are a great number of 

intermediate densities existing in the transformation between the high-density region and the low-
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density region. This implies that the stress based LSTO method tends to generate intermediate 

density to smooth the stress concentration. The evolution of Hill’s stress distribution also supports 

this observation. As the density is optimized along the surface of the structure, the stress 

concentration is gradually reduced and averaged in the whole design domain. 

 

 

 

Figure 3.20: Density and Hill’s Stress Evolution of the L-bracket Design: (a) Iteration 1, (b) Iteration 5, (c) 

Iteration 40 and (d) Iteration 105. 

 

 

Figure 3.21 illustrates convergence history of the P-norm stress, maximum Hill’s stress, 

and the objective function of the structure. As shown in Figure 3.21(a), using the adaptive 

constraint scheme for P-norm stress in Eq. (3.7), the maximum Hill’s stress converges from 1.11 

to 0.989 with the predefined limit of 1, while the P-norm stress converge to 1.55. This demonstrates 

that the proposed adaptive scheme can efficiently avoid the over-conservative global stress 
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measure and ensure approximation of the maximum stress to the predefined limit. It is also found 

the maximum stress oscillates remarkably in the first 20 iterations due to the existence of the 

reentrant corner. Simultaneously, the volume fraction of the structure is significantly reduced, and 

leads to the maximum stress first increases and then decreases. Finally, the volume fraction of the 

structure converges from 0.9 to 0.568 with a decrease of 36.89%. The volume fraction of the 

structure decreases from 0.9 to 0.568 after 105 iterations. It can be deduced that the optimization 

tends to remove material from the reentrant corner first, and then redistribute material to smoothly 

lower the maximum stress. As the iteration proceeds, the volume fraction increases to the 

convergent value, and the maximum stress converges to the predefined limit. 

 

 

 

(a)                                                                       (b) 

Figure 3.21: Convergence History of Objective Function and Hill’s Stress. (a) P-Norm Stress and Hill’s Stress 

(b) Mass of the Structure and Maximum Hill’s Stress. 

 

 

Figure 3.22 illustrates various reconstructed designs of L-bracket with lattice unit sizes of 

2, 2.5, and 3 mm. With decrease of the unit size, the density distribution of lattice structure tends 
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to converge to the density profile from optimization. Note that the unit size should be smaller than 

the size of the element used to discretize the design domain to ensure validity of the 

homogenization theory.  

 

 

 

Figure 3.22: Reconstruction of the L-Bracket with Variable Density Lattice Structure. (a) Density Profile, (b) 

Design with Ligament Length of 3 mm, (c) Design with Ligament Length of 2.5 mm And (d) Design with 

Ligament Length of 2 mm. 

 

 

3.3.3.2 Optimization of Three-point Bending Beam and Corresponding Experiments 

The second example is a three-point bending beam used to validate stress-based LSTO 

method experimentally, due to its simplicity and accuracy for experiment measurement. Figure 

3.23 illustrates the dimension and boundary conditions of the beam. The beam has a cross section 

of 15 × 15 mm2 with a length of 120 mm. A remote displacement is applied to lower surface of 

the beam with a distance of 9 mm from the two sides of the beam. A load of 600 N is applied to 
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the center of the upper surface along the – 𝑦 direction. The elements used for the loading boundary 

are set to be solid during the optimization. A mesh of 27,000 eight-node hexahedron elements is 

used to discretize design domain and solve FEA model. The lower and upper bounds of the relative 

density for design domain is set to be [0.2, 0.95]. The P-norm of the stress constraint is set to be 

10 in this case to get P-norm value closer to the maximum local stress. 

 

 

 
Figure 3.23: Dimension and Boundary Condition of 3-Point Bending Beam for Constrained-Stress Problem. 

 

 

The iterative history of the optimization including relative density profile and Hill’s stress 

profile are given in Figure 3.24 and Figure 3.25. As illustrated in the Figure 3.24, more materials 

are distributed on the position, where boundary conditions are applied, and higher density are 

concentrated along the loading paths between those boundaries. Differentiating from the result of 

the SIMP method, LSTO method tends to form structure based on anisotropy of material 
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properties, such as the cubic-like material distribution around the two support boundaries. The 

stress distributions in Fig. 18 prove this point of view. It can be seen that instead of transferring 

loading along connection of the boundaries, there exists a high stress band transferring loading in 

the vertical direction. Similar to the density distribution of L-bracket, there are a great number of 

intermediate densities existing between the high-density area and low-density area. The formation 

of these transformation area implies that the implementation of real material properties tends to 

form intermediate densities rather than 0-1 design. This is because the highly non-linearity of Hill’s 

stress tends to generate smooth density distribution to transfer the loads. 

 

 

 

 
Figure 3.24: Density Evolution of Three-point Bending Beam Design. 
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Figure 3.25: Hill’s Stress Evolution of Three-Point Bending Beam Design. 

 

 

The convergence history of the total volume and maximum stress is shown in Figure 3.26. 

As illustrated in the figure, the volume fraction of the structure converges from 0.9 to 0.562 after 

162 iterations, while the maximum Hill’s stress reduces from 1.28 to 0.999, as well as the P-norm 

stress from 1.68 to 1.44. In contrast to the optimization of L-bracket, the volume fraction of the 

three-point bending beam reduces smoothly and finally converges to the optimal design without 

oscillation, while the maximum Hill’s stress first reduces to a smaller value than the predefined 

limit and then converges to 1. This implies that for a structure without reentrant corners, the 

optimization tends to smoothly evolves to the optimal design, and the Hill’s stress gradually 

converges to the predefined limit.  
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Figure 3.26: Convergence of the Maximum Hill’s Stress and Overall Mass in the Optimization. 

 

 

To examine accuracy of the design, the optimal three-point bending beam is reconstructed 

with variable density lattice structure and printed out in the VeroWhitePlus material using the 

Objet Connex 260 printer. For comparison purpose, a uniform beam with the same volume fraction 

is designed and manufactured to explore performance of the optimized design. Figure 3.27 

illustrates the CAD models of the optimal design, uniform design, and their samples printed out 

for experiments. Three specimens of each design are printed out to lower the uncertainty of the 

experiments. 
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Figure 3.27: CAD Model and Printed Samples for Experiment. (a) CAD Model of Optimal Beam Infilled with 

Variable-Density Lattice Structure (b) Printed-out Optimal Beam (c) CAD Model of Uniform Beam (d) 

Printed-out Uniform Beam. 

 

 

The experiments on the beams are conducted on a 3-point bending fixture on a load frame 

of MTS 880 system. The beams are loaded at a rate of 0.1 mm/s until failure. Once the beams are 

fractured, the displacements and corresponding loads are recorded by a data acquisition system for 

analysis. The experimental results of the optimal beams are presented in Figure 3.28. The designed 

loading of 3-point test is plotted using the dot dash line in the figure, the stiffness from the 

homogenized model is represented by the dash line, and the experimental results of the three 

samples are presented by the solid line. It can be observed that the stiffness predicted by 

homogenized model agrees well with the experiments. For the stress constraints, the design loading 

is 600 N, which implies that yielding of the beams should begin around that loading. As illustrated 
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in the figure, the yield point of the three beams is around 600 N. This demonstrates that the 

proposed homogenized model and modified Hill’s yield criterion can be efficiently used for the 

variable-density lattice structure. Note that the macroscopic yield employed here is an 

approximation of the local yield of the structure. The primary purpose of this optimization scheme 

is to provide insight to the designer into the yield strength of the structure.  

 

 

 

 
Figure 3.28: Experimental Results of the Optimal Beams. 

 

 

The comparison of the experimental results between the optimal beam and uniform beam 

is illustrated in Figure 3.29, while the detailed mechanical properties from the experiments are 

tabulated in Table 3.4. As illustrated in the figure and table, the mean stiffness of the structure 
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increases from 96.34 N/mm to 258.3 N/m, which represents an increase of 168.1%. The mean 

yield loading of the optimal beam is 602.6 N, while the uniform beam is 150.8 N, which is an 

increase of 303.6%. This implies that the proposed methodology can significantly enhance yield 

performance of the structure with same volume fraction. The mean ultimate strength of the optimal 

beam is 926.9 N, while the mean value for uniform beam is 302.3 N, which represents an increase 

of 206.6%. For energy absorption, the increment is 173.6%, from 3.24 J to 1.184 J. These results 

show that the structure designed via the proposed optimization framework for lattice structure can 

achieve superior performance on mechanical properties, such as stiffness, yield loading, ultimate 

loading, and energy absorption, comparing with the uniform design. Especially considering the 

stress constraint, the proposed homogenized model coupled with modified Hill’s yielding criterion 

can provide reasonably accurate representation for the performance of graded lattice design.   

 
Figure 3.29: Comparison of the Testing for the Uniform Beam and Optimal Beam. 
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Table 3.4: Comparison of Mechanical Properties of Uniform Beam and Optimal Beam. 

Item Uniform beam Non-uniform beam Increment (%) 

Average stiffness (N/mm) 96.34 258.3 168.1% 

Average yield loading (N) 150.8 602.6 303.6% 

Average ultimate strength (N) 302.3 926.9 206.6% 

Average energy absorption (J) 1.184 3.240 173.6% 

 

3.3.4  Summary 

In this work, the authors proposed a framework for stress-based lattice structure topology 

optimization for additive manufacturing. Instead of using the SIMP material interpolation, 

asymptotic homogenization method is employed to efficiently obtained the effective elastic 

properties of lattice structure in terms of relative density, and a forth order polynomial is proposed 

for the curve fitting in whole density range. For the effective yield strength, the modified Hill’s 

yield criterion considering the hydrostatic loading is applied to estimate the plastic performance 

of lattice structure. The material constants in the Hill’s formulation are assumed to be the function 

of relative density. The uniaxial, pure shear and hydrostatic loading are applied to RVE of lattice 

structure to capture the three-independent yield strengths. A polynomial function is proposed to 

formulate normalized yield strength of the lattice structure with respect to relative density. 

Experimental validation for both the elastic and plastic properties demonstrate that the proposed 

constitutive models can accurately describe mechanical properties of lattice structure. In the 

optimization, the proposed material interpolation is used for the stress-based LSTO method. The 
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sensitivity analysis based on the proposed elastic and plastic model are derived for the 

optimization. Finally, two three-dimensional numerical examples are designed using the proposed 

stress based LSTO framework. The first example is the canonical L-bracket with a reentrant corner, 

which is used to investigate performance of methodology for structure with stress concentration. 

It can be observed that there are a great number of intermediate densities existing between the 

high-density area and low-density area. The material in the L-bracket tends to distribute according 

to the anisotropy of lattice structure. The second example is a three-point bending beam, which is 

designed for experimental validation. In the experiments, it is found that the yield loading of the 

optimal design falls within the yield band in the load-displacement curve. This implies that the 

proposed homogenized model and modified Hill’s yield criterion based on the assumption of 

periodicity can also be efficiently used for the description of graded lattice structure. Moreover, 

we also compare optimal design with the uniform design of the same volume fraction. It can be 

observed from the experiments that the stress-based lattice design can significantly enhance both 

the elastic and plastic properties of the structure. These results further demonstrate the 

effectiveness of the proposed methodology. 
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3.4 Natural Frequency Problem 

3.4.1  Governing Equation and Material Interpolation 

In this section, the governing equations of the harmonic oscillations and their discretization 

using finite element analysis with the material interpolation model of lattice structures are 

presented. 

Assume that a design domain Ω𝑟bounded by a boundary of 𝛤, the equation of vibratory 

motion of a generic structure can be expressed in a continuum form as [119, 120]: 

 𝜚𝑼,𝑡𝑡(𝒙, 𝑡) + 𝐷𝑼,𝑡(𝒙, 𝑡) + 𝐿𝑼(𝒙, 𝑡) = 𝑭(𝒙, 𝑡),     𝒙 ∈ Ω𝑟 , 𝑡 > 0  (3.24) 

where 𝑼(𝒙, 𝑡)  is the displacement of the domain Ω𝑟  at point 𝒙  and time 𝑡 .  𝐷(𝒙) denotes the 

viscous damping effect and 𝐿(𝒙) represents the linear partial differential operator, 𝜚(𝒙) denotes 

the physical density of the base material. 𝑭(𝒙, 𝑡) is the dynamic load. The subscribed comma in 

𝑼,𝑡𝑡 and 𝑼,𝑡 indicate the derivatives of displacement with respect to time.  

Considering the steady-state response, the time-dependent terms in Eq. (3.24) can be 

replaced by 𝑼(𝒙, 𝑡) = 𝝓(𝒙)𝑒𝑖𝜔𝑡 and 𝑭(𝒙, 𝑡) = 𝒇(𝒙)𝑒𝑖𝜔𝑡. The time dependency of the dynamic 

problem can thus be simplified to: 

 −𝜔2𝜚𝝓(𝒙) + 𝑖𝜔𝐷𝝓(𝒙) + 𝐿𝝓(𝒙) = 𝒇(𝒙),     𝒙 ∈ Ω𝑟  (3.25) 

where 𝝓(𝒙)  is the complex displacement, 𝒇(𝒙)  denotes the harmonic load, 𝜔  represents the 

vibration frequency, and 𝑖 is the imaginary unit, satisfying the formulation, 𝑖2 = −1. In this work, 

the aim is to optimize the first eigenfrequency of the structure without considering the damping 

term and external forces. Thus, the governing equation can be written as: 

 −𝜔2𝜚𝝓(𝒙) + 𝐿𝝓(𝒙) = 0,        𝒙 ∈ Ω𝑟 (3.26) 
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Multiplying the virtual displacement 𝝍(𝒙) on both sides of Eq. (3.26) and integrating it 

over the domain Ω𝑟, one can obtain the following weak form of the governing equation as: 

 ∫ 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝝓)𝜀𝑖𝑗(𝝍)𝑑Ω
Ω𝑟

= 𝜔2∫ 𝜚𝜙𝑖𝜓𝑖𝑑Ω
Ω𝑟

 (3.27) 

Appling the FEA scheme for the above equation, the state equation of the eigenfrequency 

can be expressed in a discretized form as: 

 𝐊𝝓 = 𝜔2𝐌𝝓 (3.28) 

where 𝐊 and 𝐌 denotes the global stiffness and mass matrix, respectively. The calculation of 

these two matrixes can be carried out by assembling the element matrix as: 

 𝐊 =∑ 𝒌𝑒
𝑒

=∑ ∫ 𝑩𝑇𝑪(𝜌𝑒)𝑩𝑑Ω
Ω𝑒𝒆

 (3.29) 

 𝐌 =∑ 𝒎𝑒
𝑒

=∑ ∫ 𝜌𝑒𝜚𝑵
𝑇𝑵𝑑Ω

Ω𝑒𝒆
 (3.30) 

where  𝒌𝑒 and 𝒎𝑒 represent the stiffness and mass matrix of 𝑒𝑡ℎ element, respectively. 𝑩 is the 

strain-displacement matrix and 𝑵 is the shape function matrix. Instead of using power law in 

SIMP method, the homogenized model,  𝑪(𝜌𝑒), proposed in section 2.3 is employed for the 

description of the constitutive model in terms of relative density. The real mass of the 𝑒𝑡ℎ  element 

can be calculated by the production of relative density 𝜌𝑒 and mass density 𝜚 of the isotropic base 

material. 

Note that the artificial localized mode is an important issue in the SIMP method and 

occurs when the relative density in a local region is small enough. The reason of the problem has 

been well documented and explained by Pedersen [50]. When the relative density tends to void, 

the extremely high ratio of the penalization model of mass over stiffness leads to the artificial 

localized modes. Therefore, some modification for the penalization function is proposed to 



 99 

eliminate the problem at low-density areas, referring to the works of [50, 52, 121]. For LSTO 

method, the quartic polynomial interpolation used in this work can be expressed as the following 

form: 

 𝑪(𝝆) = 𝒂𝝆4 + 𝒃𝝆2 + 𝒄𝝆 (3.31) 

where 𝒂, 𝒃 and 𝒄 are the constants vector used to fit the polynomial formulation for elastic 

modulus. Based on Eq. (3.31), the ratio of the mass over stiffness can be written as: 

 
𝝆

𝑪(𝝆)
=

1

𝒂𝝆3 + 𝒃𝝆1 + 𝒄
 (3.32) 

When the relative density approximates to zero, the ratio tends to be a constant 1 𝒄⁄ . As 

mentioned by [50, 52, 53], this can avoid the localized mode problem. Moreover, the purpose of 

the optimization is to infill the component with variable-density lattice structure rather than a 

black and white design black and white structure (0/1 design). For manufacturability, the lower 

bound of relative density in our problem is larger than zero, i.e. 𝜌 > 0.1. Therefore, the artificial 

localized modes are not a problem in the proposed methodology. 

3.4.2  Methodology of Lattice Structured Topology Optimization 

3.4.2.1 Optimization Formulation 

The problem of maximizing fundamental eigenfrequency of vibration elastic structures can 

be expressed as: 
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 max
𝜌1,⋯,𝜌𝑁𝑒

𝐽 = { min
𝑖=1,⋯,𝐼

{𝜆𝑖 = 𝜔𝑖
2}}         (3.33) 

 𝑠. 𝑡.  

{
 
 
 

 
 
 
𝑲𝜙𝑖 = 𝜔𝑖

2𝑴𝜙𝑖 ,                 𝑖 = 1,… , 𝐼

𝜙𝑖
𝑇𝑴𝜙𝑘 = 𝛿𝑖𝑘, 𝑖 ≥ 𝑘,   𝑘, 𝑖 = 1,… , 𝐼

𝑪 = 𝑪(𝝆)                                               

∑𝜌𝑗𝑣𝑗

𝑁𝑒

𝑗=1

≤ 𝑉∗,             𝑗 = 1,… ,𝑁𝑒

0 ≤ 𝜌𝐿 ≤ 𝜌𝑗 ≤ 𝜌𝑈 ≤ 1                      

 (3.34) 

where  𝐽 is the objective function and equal to the fundamental eigenvalue. 𝜔𝑖  and 𝜙𝑖  are the 

𝑖𝑡ℎeigenfrequency of the structure and the corresponding eigenvector, respectively. 𝑲 and 𝑴 are 

the global stiffness matrix and mass matrix, which are formulated in Eq. (3.29) and Eq.(3.30), 

respectively. 𝑪(𝝆) is the constitutive law of lattice structure obtained in Section 2.3. 𝝆 indicates 

the elemental density vector,  𝜌𝑗  and 𝑣𝑗  are the relative density and elemental volume of 𝑗𝑡ℎ 

element, and 𝑁𝑒  represents the total number of the elements in the design domain. 𝜌𝐿  and 𝜌𝑈 

denote the lower bound and upper bound of the relative density, which is restricted in the range of 

[0, 1]. The first equality formula is the governing equation while the second equality is the 

assumption of 𝑴 orthonormalization, where 𝛿𝑖𝑘 is the Kronecker delta. The third equality is the 

scaling law of lattice structure. The first inequality constrains the volume fraction of the admissible 

design domain to a predefined value, 𝑉∗ . In the optimization procedure, since the order of 

fundamental eigenfrequency can change, a number of 𝐼 candidate eigenfrequencies are taken into 

account in each iteration. 

3.4.2.2 Sensitivity Analysis 

Using the Lagrangian multiplier method, the optimization problem subject to the volume 

fraction constraint is of the following form: 
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 ℒ = 𝐽 + 𝛼 (∑𝜌𝑗𝑣𝑗

𝑁𝑒

𝑗=1

≤ 𝑉∗) (3.35) 

where 𝛼 denotes the Lagrangian multiplier of volume constraints. In the optimization process, the 

variable 𝛼 is fixed first and we solve the problem of Eq. (3.33)-(3.34) to obtain the design variable 

𝜌𝑗, then 𝛼 is updated and the termination criteria is checked. If the termination criteria are satisfied, 

the optimization result is obtained, otherwise, the iteration continues until the results converge. 

In the admissible design domain, the sensitivity of the 𝑖𝑡ℎ eigenvalue 𝜆𝑖 with respect to the 

𝑗𝑡ℎ design variable 𝜌𝑗 can be calculated as: 

 
𝜕𝐽

𝜕𝜌𝑗
=
𝜕𝜆𝑖
𝜕𝜌𝑗

= 𝜙𝑖
𝑇
(
𝜕𝑲

𝜕𝜌𝑗
− 𝜆𝑖

𝜕𝑴

𝜕𝜌𝑗
)𝜙𝒊 (3.36) 

where the derivatives of the stiffness matrix and the mass matrix can be computed explicitly from 

the material interpolation in Eq. (3.29) and Eq. (3.30) as: 

 
𝜕𝑲

𝜕𝜌𝑗
=∑(∫ 𝑩𝑇

𝜕𝑪(𝜌𝑗)

𝜕𝜌𝑗
𝑩𝑑Ω

Ω𝑗

)

𝑁𝑒

𝑗=1

 (3.37) 

 
𝜕𝑴

𝜕𝜌𝑗
=∑(∫ 𝜚𝑵𝑇𝑵𝑑Ω

Ω𝑗

)

𝑁𝑒

𝑗=1

 (3.38) 

 

However, as for repeated natural frequencies of adjacent orders, the sensitivity analysis 

with respect to the design variables cannot be derived straightforwardly, because the eigenvector 

associated with multiple natural frequencies of an identical value may not unique [122]. Assume 

that the eigenvalue problem in Eq. (3.34) yields a repeated frequency problem with 𝑁-fold multiple 

eigenvalues as: 
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 𝜆̃ = 𝜆𝑖 = 𝜔𝑖
2, 𝑖 = 1,… ,𝑁 (3.39) 

where 𝜆̃ represents the 𝑁-fold multiple eigenvalues, 𝑁  is the number of repeated first natural 

frequencies and 𝑁 > 1. Here, it assumes that 𝑁 ≤ 𝐼, the number of eigenfrequencies considered 

in the optimization problem.  

Following the work of Du [52], for the structure with multiple repeated eigenfrequencies, 

the sensitivity analysis of the topology optimization problem can be solved by means of a 

mathematical perturbation analysis of multiple eigenvalues and the corresponding eigenvectors 

shown in the following equation: 

 𝑑𝑒𝑡[𝒇𝑠𝑘
𝑇 ∆𝜌 − 𝛿𝑠𝑘∆𝜌] = 0,    𝑠, 𝑘 = 1,… ,𝑁 (3.40) 

where 𝛿𝑠𝑘 denotes the Kronecker delta while 𝒇𝑠𝑘 is the generalized gradient whose expression can 

be written as: 

 𝒇𝑠𝑘 = {𝝓𝑠
𝑇
(
𝜕𝑲

𝜕𝜌1
− 𝜆̃

𝜕𝑴

𝜕𝜌1
)𝝓𝑘, … ,𝝓𝑠

𝑇
(
𝜕𝑲

𝜕𝜌𝑁𝑒
− 𝜆̃

𝜕𝑴

𝜕𝜌𝑁𝑒
)𝝓𝑘}

𝑇

,   𝑠, 𝑘 = 1,… ,𝑁 (3.41) 

where 
𝜕𝑲

𝜕𝜌𝑗
 and 

𝜕𝑴

𝜕𝜌𝑗
 (𝑗 = 1,… ,𝑁𝑒) can be calculated from the Eq. (2.44) and Eq. (2.45).  

In the case of the N-multiplicity natural frequency, in order to assume a particular case, all 

the scalar products in Eq. (3.38), except the diagonal ones are 0, that is: 

 𝒇𝑠𝑘
𝑇 ∆𝜌 = 0, 𝑠 ≠ 𝑘,   𝑠, 𝑘 = 1,… ,𝑁 (3.42) 

 

In this special case, the increment ∆𝜆𝑖  of a natural eigenfrequency 𝜆𝑖 = 𝜔𝑖
2can then be 

determined: 

 ∆𝜆𝑖 = 𝒇𝑖𝑖
𝑇∆𝜌 (3.43) 
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Based on Eq. (3.39) , the item 𝒇𝑖𝑖 takes the following form: 

 𝒇𝑖𝑖 = {𝝓𝑖
𝑇
(
𝜕𝑲

𝜕𝜌1
− 𝜆̃

𝜕𝑴

𝜕𝜌1
)𝝓𝑖, … ,𝝓𝑖

𝑇
(
𝜕𝑲

𝜕𝜌𝑁𝑒
− 𝜆̃

𝜕𝑴

𝜕𝜌𝑁𝑒
)𝝓𝑖}

𝑇

, 𝑖 = 1,… ,𝑁 (3.44) 

Thus, if the optimum increments of density ∆𝜌 satisfy Eq. (3.40), the generalized gradient 

𝒇𝑖𝑖 has the same form with the case of a unique eigenfrequency.  

Given all the discussions above, the modified mathematical model of the maximization of 

first eigenfrequency problem through topology optimization can be formulated as: 

 max
𝛽,∆𝜌1,…,∆𝜌𝑁𝑒

{𝛽} (3.45) 

 𝑠. 𝑡.

{
 
 
 

 
 
 
𝛽 − [𝜆𝑖 + 𝒇𝑖𝑖∆𝜌] ≤ 0       𝑖𝑓  𝑖 = 𝐼 = 𝑁           

𝛽 − [𝜆𝑖 + ∆𝜆𝑖] ≤ 0                       𝑖 = 1,… ,𝑁   

𝑑𝑒𝑡[𝒇𝑠𝑘∆𝜌 − 𝛿𝑠𝑘∆𝜆] = 0,          𝑠, 𝑘 = 1, … , 𝑁

∑(𝜌𝑗 + ∆𝜌𝑗)𝑣𝑗

𝑁𝑒

𝑗=1

≤ 𝑉∗                                      

0 < 𝜌𝐿 ≤ 𝜌𝑗 + ∆𝜌𝑗 ≤ 𝜌𝑈 ,             𝑗 = 1,… ,𝑁𝑒

 (3.46) 

where β is the new objective function and ∆𝜌𝑗  are the practical variables to proceed the 

optimization process.  In the numerical implementation, after the multiplicity of the first natural 

eigenfrequency is determined, the model can be reformed into a corresponding case to implement 

the sensitivity analysis.   

3.4.3  Numerical Examples and Experimental Validation 

In this section, two numerical examples are presented to examine the accuracy of the 

homogenized model and the effectiveness of the LSTO method. The optimized design is 

reconstructed using variable-density lattice structure, and both full-scale simulations and 

experiments are conducted to validate the proposed methodology. The purpose of the optimization 
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is to maximize the first eigenfrequency of the structure under the constraint of volume fraction. 

The optimization terminates if the difference of the first eigenfrequency of the structure within two 

successive iterations is smaller than 1 × 10−3  while the constraint of the volume fraction is 

satisfied. If not specified, density limits of the lattice structure are defined as 𝜌𝐿 = 0.25 and 𝜌𝑈 =

0.9. It assumes the lattice structure is printed by the EOS M290 with Ti6Al4V, of which the 

Young’s modulus is 108 Gpa, the Poisson’s ratio is 0.3, and the physical density is 4430 kg/m3. 

It is also mentioned that numerical sub-optimization problem is solved by the Method of Moving 

Asymptotes (MMA) [123, 124] while the FEA is performed using ANSYS v17.2.  

3.4.3.1 Cantilever Beam 

As a verification of the proposed optimization algorithm, a simple canonical problem of a 

cantilever beam is considered first. Figure 3.30 illustrates the CAD model of the cantilever beam, 

as well as the meshed and the FEA model. The beam has a square cross section with a dimension 

of 15 mm × 15mm  and the length of the beam is  120 mm . A mesh of 38437 eight-node 

hexahedron elements is used to discretize the design domain and solve the modal analysis. The 

volume fraction of the structure is restricted to 𝑉∗ = 0.6. In the problem, one end of the beam is 

fixed while the other surfaces are free.  

 

 



 105 

 

(a)                                                                   (b) 

Figure 3.30: Model of a Cantilever Beam: (a) CAD Model and Boundary Condition; (b) Meshed Model.  

 

 

Figure 3.31 gives the optimization results of cantilever beam including optimal density 

distribution, optimized design and the iteration history of the first eigenfrequency. After the 

optimization, higher densities tend to concentrate near the fixed boundary while lower densities 

are distributed at the opposite direction. There are a number of intermediate densities between the 

higher density and lower density, shown as the yellow area. A section view of the optimal density 

distribution is given in Figure 3.31(b), where it is seen that more materials are distributed along 

the surface of the beam than at center region of the beam, which leads to a larger stiffness of the 

beam and thus the increase of the eigenfrequency. The first eigenfrequency of the structure 

increases from 671.5 Hz to 1281.3 Hz after 55 iterations, with an increment of 90.81%. This 

illustrates the efficiency of the proposed method for the maximization of the fundamental 

frequency.  
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 (c)                                                                     (d)  

Figure 3.31: Optimization Results: (a) Optimized Density Distribution of the Beam; (b) Section View of the 

Density Distribution at 𝒙 > 𝟎; (c) Optimized Design Using Variable-Density Lattice Structure; (d) Iteration 

History of the First Eigenfrequency. 

 

 

To examine the accuracy of the optimization, full-scale simulations for both the uniform 

and optimized beam infilled with lattice structure are carried out to compare with the homogenized 

results. The uniform beam is meshed using 197712 elements and the simulation results are given 

in Figure 3.32. The first eigen-frequency of the uniform beam is 676.4 Hz, which is 4.9 Hz or 

0.73% different from the homogenized result. For the optimized beam, a mesh of 506841 elements 
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is used to solve the modal analysis and the result is illustrated in Figure 3.33. The first 

eigenfrequency of the optimized beam is 1245.3 Hz and the difference from the homogenized 

model is 36.0 Hz or 2.81%. It can be seen that full-scale simulations are in good agreement with 

the homogenized results. This implies that the homogenization is reasonably accurate for the 

description of the design by LSTO method.    

 

 

    

                                                (a)                                                              (b) 

Figure 3.32: Full-scale Simulation for the Cantilever Beam with Uniform Lattice Structure (𝑽∗ = 𝟎. 𝟔). (a) 

CAD Model of the Uniform Beam; (b) First Mode of the Cantilever Beam, 𝝎𝟏 = 𝟔𝟕𝟔. 𝟒 𝐇𝐳. 
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                                               (a)                                                              (b) 

Figure 3.33: Full-scale Simulation for the Cantilever Beam with Optimized Lattice Structure (𝑽∗ = 𝟎. 𝟔): (a) 

CAD Model of the Non-Uniform Beam; (b) First Mode of the Optimized Beam, 𝝎𝟏 = 𝟏𝟐𝟒𝟓. 𝟑 𝐇𝐳. 

 

 

The original purpose of the methodology is to promote the optimized design with 

predictable properties for practical application using current AM techniques. To examine the 

performance of the design, both the uniform and optimized beam were printed for vibration tests. 

However, since the ideal fixed boundary conditions subjected to the cantilever beam are difficult 

to realize, a fixture with four bolt holes is added to the boundary end of the CAD models of the 

two beams, Figure 3.34. The photos of the printed-out beams are given in Figure 3.35, in which 

the fixture is merged with the beam and printed as a unified component.  
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                                               (a)                                                                     (b) 

Figure 3.34: CAD Model of the Cantilever Beams with the Fixture for Experiments: (a) Uniform Lattice 

Structured Beam; (b) Optimized Lattice Structured Beam. 

 

 

           

                                           (a)                                                                 (b) 

Figure 3.35: Beams Printed by EOS M290 with Ti6Al4V: (a) Uniform Lattice Structured Beam (b) Optimized 

Lattice Structured Beam. 

 

Although the fixture ensures the flexibility of the experiments, the mode of the structure is 

changed due to the variation of the CAD model. To demonstrate the optimized design, a full-scale 

simulation is conducted on the beams unified with the fixtures. Figure 3.36 illustrates the 

simulation results, in which the first eigenfrequency of the uniform beam is 631.8 Hz while the 
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value of optimized beam is 1094.3 Hz. This implies that the additional fixture leads to the decrease 

of the first eigenfrequency of the structure. 

 

       

                                      (a)                                                                (b) 

Figure 3.36: Full-Scale Simulation for the Beams with Fixture. (a) Uniform Beam, 𝝎𝟏 = 𝟔𝟑𝟏. 𝟖 𝐇𝐳 (b) 

Optimized Beam, 𝝎𝟏 = 𝟏𝟎𝟗𝟒. 𝟑 𝐇𝐳. 

 

 

The experiments used to measure the eigenfrequency of the printed beams for comparison 

with the full-scale simulation are given in Figure 3.37. For the stationary, two beams are mounted 

to a heavy part fixed on the ground by four M6 bolts.  An Agilent 35670A Dynamic Signal 

Analyzer is used to capture the modal data, and a modal hammer of PCB Impulse Hammer Model 

#086C02 is used for testing, of which the sensitivity is 54.0 mV/lbf. The accelerometer used for 

the experiments is the PCB 352C65_L with a sensitivity of 100 mV/g.  
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                                      (a)                                                                      (b) 

Figure 3.37: Vibration Tests for Two Beams. (a) Uniform Beam (b) Optimized Beam 

 

 

Figure 3.38 illustrates the experimental results of the testing and the results are tabulated 

in Table 3.5. It is seen that the first eigenfrequency of the uniform beam is 624.5 Hz with a 

difference of 1.16% from the simulation results. For the optimized beam, the first eigenfrequency 

is 1080.8 Hz with a difference of 1.23% from the simulation and an increase of 73.07% from the 

uniform design. This proves that the proposed methodology can significantly improve the first 

eigenfrequency of the structure, and the homogenized model can provide accurate estimation of 

the dynamic performance for printed components. Furthermore, through experiments and 

simulations, it is demonstrated the homogenization under periodicity assumption can be efficiently 

employed for the description of graded lattice structures. 
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Table 3.5: Results of the Cantilever Beam 

 

AH model 

(Hz) 

Simulation for the 

beam (Hz) 

Difference 

(%) 

Simulation for 

the beam with 

fixture (Hz) 

Experiments 

(Hz) 

Difference 

(%) 

Uniform 

beam 

671.5 676.4 0.73% 631.8 624.5 1.16% 

Optimized 

beam 

1281.3 1245.3 2.81% 1094.3 1080.8 1.23% 

Increment 

609.8 

(↑90.81%) 

568.9 (↑84.11%)  

462.5 

(↑73.20%) 

456.3 

(↑73.07%) 

 

 

 

 

 

                                     (a)                                                                         (b) 

Figure 3.38: Vibration Experiments for the Two Beams. (a) Uniform Beam; (b) Optimized Beam. 
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3.4.3.2 Dual Side Fixed Beam 

For the same beam, now fixed boundary conditions are applied to both ends of the beam, 

see Figure 3.39. The volume fraction of the structure is restricted to 𝑉∗ = 0.55.  

 

 

               

Figure 3.39: Model of a Dual-fixed Beam. 

 

 

The optimization results of the dual fixed beam are presented in Figure 3.40 including the 

optimal density distribution, lattice structured design and convergence history. It is seen that higher 

densities are located on the two-fixed boundary while lower densities are distributed near the 

central region of the beam.  A number of intermediate densities can be found between the 

transitional region between higher densities and lower densities. The first eigenfrequency increases 

from 3,699.9 Hz with volume fraction of 0.55, to a value of 5,121.7 Hz within 51 iterations, 
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representing an increase of 1,421.8 Hz or 38.42%. This demonstrates that the proposed framework 

can significantly increase the dynamical performance of the structure.  

 

 

 

       

                                           (a)                                                                           (b) 
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            (c) 

Figure 3.40: Optimization Results of the Dual-Fixed Beam: (a) Optimized Density Distribution; (b) 

Optimized Design Using Variable-Density Lattice Structure; (c) Convergence History of First 

Eigenfrequency. 
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Again, for the dual-fixed beam, both uniform design and variable-density design are 

reconstructed using cubic lattice structure and the CAD models are given in Figure 3.41(a) and 

Figure 3.41(b), respectively. As shown in reconstruction of the optimal beam, more material is 

distributed on the both sides of the beams. This leads to a stiffer structure at the fixed boundary 

and thus a higher eigenfrequency design compared with the uniform design of same volume 

fraction. Full-scale simulations are conducted on both the uniform and optimized design for dual-

fixed beam (see Table 3.6). As illustrated in Figure 3.41, the first eigenfrequency of the uniform 

beam is 3,730.9 Hz with a difference of 31.0 Hz or 0.84% from the homogenized model prediction. 

For the optimized beam, the first eigenfrequency is 5,208.6 Hz and the difference from the 

homogenization is 86.9 Hz or 1.70%. Compared with the uniform beam with same volume 

fraction, the first eigenfrequency increases 1,477.7 Hz or 39.61% after optimization using the 

proposed method. This demonstrates the homogenized model is accurate in describing the elastic 

properties of both uniform and non-uniform lattice structure generated by the LSTO method.  

 

 

Table 3.6: Simulation and Experimental Results of The Dual Fixed Beam 

 

Volume 

fraction 

AH model 

 (Hz) 

Simulation 

for the beam 

(Hz) 

Difference 

(%) 

Simulation for 

the beam with 

fixture (Hz) 

Experiments 

 (Hz) 

Difference 

(%) 

Uniform 

beam 

0.55 3,699.9 3,730.9 0.84% 3,501.4 3,504.6 0.091% 

Optimized 

beam 

0.55 5,121.7 5,208.6 1.70% 4,610.1 4,480.9 2.80% 

Increase  

1,421.8 

(↑38.42%) 

1,477.7  

(↑39.61%) 

 

1,108.7  

(↑31.66%) 

975.3 

(↑27.83%) 
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(a) 

     

(b) 

Figure 3.41: Full-scale Simulations for the Dual-Fixed Beam: (a) CAD Model of Uniform Beam and Vibration 

Mode of First Eigenfrequency 𝝎𝟏 = 𝟑, 𝟕𝟑𝟎. 𝟗 𝐇𝐳; (b) CAD Model of Optimized Beam and Vibration Mode of 

First Eigenfrequency 𝝎𝟏 = 𝟓, 𝟐𝟎𝟖. 𝟑 𝐇𝐳. 

 

 

The fixture used for cantilever beam is also added to the dual-fixed beams, see in Figure 

3.42. The printed beams are illustrated in Figure 3.43, while the corresponding simulation results 

are given in Figure 3.44. The first eigenfrequency of the uniform beam obtained by simulation is 

3,501.4 Hz and the optimal beam is 4,610.1 Hz. Compared with the result in Figure 3.41, the 

fixture leads to a higher decrease of first eigenfrequency of the optimized beams than the uniform 

one, 229.5 Hz lower for the uniform beam and 598.5 Hz lower for the optimized beams.  
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Figure 3.42: CAD Model of Dual-Fixed Beams after Assembling with the Fixtures Used for Experiments: (a) 

Uniform Beam and (b) Optimized Beam. 

 

 

            

                                     (a)                                                                         (b) 

Figure 3.43: Dual-fixed Beams Printed by EOS M290 with Ti6Al4V: (a) Uniform Beam and (b) Optimized 

Beam. 
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                                              (a)                                                                   (b) 

Figure 3.44: Full-scale Simulations for the Dual-Fixed Beams with the Fixtures: (a) Uniform Beam, 𝝎𝟏 =

𝟑, 𝟓𝟎𝟏. 𝟒 𝐇𝐳; (b) Optimized Beam, 𝝎𝟏 = 𝟒, 𝟔𝟏𝟎. 𝟏 𝐇𝐳. 

 

 

The experimental setup for the dual-fixed beams is shown in Figure 3.45, in which the 

beams were mounted to two huge metal bases fixed on the ground. The accelerometer, modal 

hammer and the signal analyzer were same as the former case. Figure 3.46 illustrates the 

experimental results of the testing and the key results are again tabulated in Table 3.6. The first 

eigenfrequency is 3,504.6 Hz for the uniform beam and 3.2 Hz or a 0.091% difference from the 

full-scale simulation. For the optimized beam, the first eigenfrequency is 4,480.9 Hz and the 

difference from the simulation is 129.2 Hz or 2.80%. Compared with the uniform beam with the 

same volume fraction, the structure designed by LSTO method represents an increase of 975.3 Hz 

or 27.83%. This further demonstrates that the structure designed by the proposed optimization 

method can achieve a significant increase of dynamical performance, and the homogenization 

approach proposed in section 2.3 can be efficiently used to represent the mechanical performance 

for both the uniform and graded lattice material.  
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                                         (a)                                                                                  (b) 

Figure 3.45: Experimental Setup for the Dual-fixed Beam: (a) Uniform Beam; (b) Optimized Beam. 

 

 

  

                                         (a)                                                                                (b) 

Figure 3.46: Experimental Results of the Dual-fixed Beams: (a) Uniform Beam, 𝝎𝟏 = 𝟑, 𝟓𝟎𝟒. 𝟔 𝐇𝐳; (b) 

Optimized Beam, 𝝎𝟏 = 𝟒, 𝟒𝟖𝟎. 𝟗 𝐇𝐳. 

 

3.4.3.3  Part-scale Validation 

In addition to the beam validation, this case aims to apply the optimization framework to a 

more complex test component. The CAD model and corresponding mesh of the test part are given 
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in Figure 3.47. Fixed boundary conditions are applied to the two bolt holes highlighted by red 

color in the figure. The dimension of the base plate is 80 × 20 × 12 mm3, while the protruding 

feature has the dimension of 36 × 20 × 12 mm3. The diameter of the three bolt holes is 8 mm and 

a chamfer of 5 mm is added to the two top corners of the protruding feature. A mesh of 53,044 

eight-node tetrahedral elements is used to discretize the design domain and solve the dynamic 

problem. The volume fraction of the design domain for the optimization is set to be 𝑉∗ = 0.5.  

 

 

 

Figure 3.47: Model of Test Component: (a) CAD Model and Boundary Conditions and (b) Mesh Model 

 

 

The optimization results of the test component including the optimal density distributions 

and the convergent history of the first eigenfrequency are illustrated in Figure 3.48. After 49 

iterations, the first eigenfrequency of the structure is improved from 2,865.8 Hz to 3,745.8 Hz, 

representing an increase of 30.71%. More material is distributed around the two bolt holes while 

less material is distributed at the center region of the base plate and region of the protruding feature. 

This leads to a stiffer structure around the fixed boundary conditions and thus a higher frequency 

is obtained. Note that for this part-scale problem, a larger fraction of intermediate densities is 
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generated in the optimization, refer to Figure 3.48 (a). The advantage of LSTO method makes it 

possible to realize this design with variable-density lattice infill without changing the original 

shape. For 0/1 design, the protruding feature may be removed after the optimization.  

 

 

 

Figure 3.48: Optimization Results for the Test Component: (a) Optimal Density Distribution and (b) 

Convergent History of First Eigenfrequency. 

 

 

For validation purpose, both the optimal design and uniform design of volume fraction 

equal to 0.5 are reconstructed using cubic lattice structure. A solid shell with thickness of 0.5mm 

is added to cover the broken ligaments at the chamfer and bolt holes, refer to Fig. 29(a) and (b). 

Full-scale simulations are carried out to examine the performance of the two designs, and the 

results are illustrated in Figure 3.49(c) and (d) and tabulated in Table 3.7. As can be seen, with the 

additional shell, the first eigenfrequency of the uniform design obtained from full-scale simulation 

is 3.29% larger than the prediction from AH model, while for the optimal design, the difference is 
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0.87%. This implies that addition of the solid shell leads to an increase of eigenfrequency for 

uniform design and a little decrease for the optimal design. On the other hand, based on the result 

from full-scale simulation, the first eigenfrequency of the test component increases by 753.1 Hz 

or 25.44% compared to the uniform design of the same volume fraction. This demonstrates that 

the proposed methodology can also be efficiently employed to improve natural frequency of a 

component by designing the variable-density lattice structure infills.  

 

 

 

Figure 3.49: Reconstruction of Lattice Infills and Full-scale Simulation for Uniform Design and Optimal 

Designs:  (a) CAD Model of Reconstructed Uniform Design (𝑽∗ = 𝟎. 𝟓), (b) CAD Model of Reconstructed 

Optimal Design (𝑽∗ = 𝟎. 𝟓), (c) Full-scale Simulation Of Uniform Part, 𝝎𝟏 = 𝟐, 𝟗𝟔𝟎 𝐇𝐳, And (d) Full-scale 

Simulation of Optimized Part,  𝝎𝟏 = 𝟑, 𝟕𝟏𝟑. 𝟏 𝐇𝐳. 

 

 



 123 

Table 3.7: Simulation Results of the Test Part 

 

Volume 

fraction 

AH model (Hz) 

Simulation for the 

test part with solid 

shell (Hz) 

Difference (%) 

Uniform design 0.5 2,865.8 2,960 3.29% 

Optimal design 0.5 3,745.8 3,713.1 0.87% 

Enhancement  30.71% 25.44%  

 

3.4.4  Summary 

This work proposed the LSTO method for maximization of the first eigenfrequency of the 

structure infilled with an optimized lattice structure. At the microscopic level, numerical AH 

approach is employed to calculate the effective elastic modulus of lattice structures manufactured 

by metal AM technologies. To examine the accuracy of the AH model, tensile tests are carried out 

on the printed samples to compare with the results predicted by the homogenized model, which 

shows great agreement with experimental results. At macroscale, the AH model is implemented 

into the framework of density-based topology optimization to optimize the relative density 

distribution of lattice structure. In particular, the repeated eigenfrequency and change of the order 

of the eigenfrequencies are taken into account to ensure the maximization of the fundamental 

eigenfrequency. Once the optimized density profile is obtained, variable-density lattice structure 

infill based on the profile is used to realize the graded lattice design. This can not only maintain 

the original shape of the component, but also ensure the precise conversion of the intermediate 

densities. Two 3D numerical examples are provided to demonstrate the accuracy and efficiency of 
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the proposed methodology for vibration structure optimization. The first example is a simple 

cantilever beam with square cross section. By means of LSTO, the first eigenfrequency of the 

beam is increased from 671.5 Hz to 1281.3 Hz with an increment of 90.81%. A full-scale 

simulation is conducted to compare with the homogenized result. It is found that the differences 

for both the uniform beam and the optimized beam are smaller than 3%. The two cantilever beams 

were also printed using the EOS M290 with Ti6Al4V for the experimental tests. Comparing with 

the simulation results, the first eigenfrequency of the uniform beam and optimized beam is in good 

agreement, and in either of the two cases the difference is less than 1.3%. Another example is a 

beam with fixed support boundary conditions on both ends. By means of LSTO, the first 

eigenfrequency increases from 3699.9 Hz to 5121.7 Hz with an improvement of 1421.8 Hz or 

38.42%. Both full-scale simulations and experiments are carried out on the uniform and optimized 

lattice structure design for comparison. Similar conclusions are made based on the comparison. 

Both of the two cases demonstrate that the LSTO method is accurate and efficient for the 

optimization of the first eigenfrequency of lattice structure design.  
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4.0 Concurrent Lattice Structure Topology Optimization Part 

 

In this chapter, the framework of concurrent LSTO method is proposed. Since the solid 

features, such as cooling channel and bolt holes cannot be realized by lattice structure, a 

methodology that optimizes the layout of the feature coupled with lattice structure is explored. The 

content in this chapter mainly focus on the representation of the movable feature with design-

independent boundary and with design-independent boundary conditions.  

4.1 Movable Feature Representation 

4.1.1  Implicit Level Set Representation of Functional Features 

Feature representation under the density-based framework is possible but the related 

sensitivity calculation is nontrivial. Instead, the level set method shows its advantage that both the 

parametric feature representation and sensitivity calculation can be straightforwardly conducted 

[125].   

Specifically, the level set function 𝜙(𝒙) describes an arbitrary design domain Ω as follows: 

 {

𝜙(𝒙) > 0    𝑓𝑜𝑟 𝒙 ∈ Ω\𝜕Ω  

𝜙(𝒙) < 0             𝑓𝑜𝑟 𝒙 ∉ Ω

𝜙(𝒙) = 0           𝑓𝑜𝑟 𝒙 ∈ 𝜕Ω

 (4.1) 
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where Ω indicates the material domain while 𝜕Ω represents the boundary. 𝒙  is the coordinate 

vector in Ω. 𝜙(𝒙) > 0, 𝜙(𝒙) < 0 and  𝜙(𝒙) = 0 represent the solid, void and interface areas, 

respectively. Note that, the smeared-out Heaviside function 𝐻(𝑥) and the Dirac delta function 

𝛿(𝑥)  are used in the numerical implementation to approximate the domain and boundary 

integrations, which is given as. 

 𝐻(𝑥) =

{
 

 
𝜖,                                                            𝑥 < −∆  

3(1 − 𝜖)

4
(
𝑥

∆
−
𝑥3

3∆3
) +

1 + 𝜖

2
,               − ∆≤ 𝑥 < ∆

1,                                                                𝑥 ≥ ∆

 (4.2) 

 𝛿(𝑥) =
𝑑

𝑑𝑥
𝐻(𝑥) = {

3(1 − 𝜖)

4∆
(1 −

𝑥2

∆2
),           |𝑥| ≤ ∆

0,                                      |𝑥| > ∆

 (4.3) 

In Eq. (4.2) and (4.3), ∆ is a tunable parameter defined to smooth the level set function 

projection. 𝜖 is a small positive number used to avoid singularity problem. During the concurrent 

optimization, the shape of the moving features is maintained while their geometric parameters 

(positions, angles, etc.) evolve in every step. Thus, the level set function used to represent the 

moving features can be further parameterized in terms of geometrically meaningful variables {𝑐𝑖} 

and denoted as 𝜙(𝒙, 𝒄(𝑡)), where 𝒙 is the spatial variable and 𝒄(𝑡) = {𝑐1(𝑡), 𝑐2(𝑡), … , 𝑐𝑁𝑐(𝑡)} is a 

set of geometric parameters. 

For more complex geometry, the R-functions are employed to construct the geometric 

shape by Boolean operation for the primitive features [126, 127]. Specifically, the basic R-

functions including conjunction ⋀ and disjunction ⋁ [126] are applied; refer to Eq.(4.4) and (4.5): 

 𝑓1⋀0𝑓2 ≡ 𝑓1 + 𝑓2 −√𝑓1
2 + 𝑓1

2  (4.4) 

 𝑓1⋁0𝑓2 ≡ 𝑓1 + 𝑓2 +√𝑓1
2 + 𝑓1

2 (4.5) 
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Note that 𝑓1⋀0𝑓2 is positive when both 𝑓1 and 𝑓2 are positive, and 𝑓1⋁0𝑓2 is positive if one 

of the functions 𝑓1  or 𝑓2  is positive. An example of a component constructed through the 

combination of level-set function and R-functions is given in fig. 9, including the composition of 

the operations, the level-set representation and the normalized level-set representation. It is seen 

that the new structure is constructed by four primitive level-set functions, which are expressed as 

follows: 

𝜙1(𝑥, 𝑦) = 𝑅1 −√(𝑥 − 𝑐1)2 + (𝑦 − 𝑐2)2; 

𝜙2(𝑥, 𝑦) = 𝑎 − |𝑥 − 𝑐3|; 𝜙3(𝑥, 𝑦) = 𝑏 − |𝑦 − 𝑐4|; 

𝜙4(𝑥, 𝑦) = 𝑅2 −√(𝑥 − 𝑐5)2 + (𝑦 − 𝑐6)2; 

𝜙5(𝑥, 𝑦) = 𝑅3 −√(𝑥 − 𝑐7)2 + (𝑦 − 𝑐8)2. 

where 𝜙𝑖(𝑖 = 1,2, … ,5) represents the level set function of the primitive features, 𝑅𝑗(𝑗 = 1,2,3) 

indicates the radius of the three circles, 𝑎 and 𝑏 denote the length and width of the rectangle, and 

𝑐𝑙 (𝑙 = 1,2, … ,8) are the geometric variables of the primitive features.  
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Figure 4.1: Representation of Complex Geometry Using Level Set Function and R-Function. (a) Construction 

of Complex Geometry by Primitive Features Through R-Functions (b) Level Set Function Constructed by R-

Functions, and (c) Implicit Representation after Heaviside Mapping. 

 

 

 

4.1.2  Immersed Boundary Representation  

The immerse boundary (IB) [128-130] method has been widely applied to solve fluid-

structure interaction problems numerically. The IB method allows the Eulerian fluid domain and 

Lagrangian solid domain to overlap by incorporating the effects of the overlap into the governing 

equations of each description.  Hence IB method does not need remeshing to solve fluid-structure 

interaction problems, as compared to methods using a single description.  In this work, the 
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underlying concept of IB method is used to implicitly represent a movable feature with conforming 

boundaries. 

 

 

 

                                          (a)                                                                            (b) 

Figure 4.2: (a) Parameterization of the IB Representation of the Movable Features, (b) Zoom View of The 

Vicinity of the Interface Where the Points are Divided Into Different Groups. 

 

 

As shown in Figure 4.2, the design domain is divided into three groups: Grid points lying 

within the movable features Ω𝑚, grid points on the boundary Ω𝑏, grid points within the lattice 

structure domain Ω𝑙 . For the surface boundary given in Eq. (4.3), the boundary integral is 

performed on the domain Ω𝑏, which is a band between the two dashed lines in Figure 4.2(b). For 

volume boundary in (4.2), the boundary integral is performed on the domain consisting of Ω𝑏 and 
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Ω𝑚. To mathematically impose these integrals, the Heaviside function and Dirac delta function 

are employed for surface boundary and volume boundary, respectively, which are given as:  

 ∫ 𝐺(𝑥)𝛿(𝜙(𝑥))|∇𝜙(𝑥)|𝑑Ω
 Ω𝑏

 (4.6) 

And 

 ∫ 𝐺(𝑥)𝐻(𝜙(𝑥))𝑑Ω
 Ω𝑏+Ω𝑚

 (4.7) 

where 𝐺(𝑥) represents a given function for the integration, i.e. heat flux or heat convection for 

surface boundary and internal heat generation for volume boundary. 𝐻(𝜙(𝑥))  and 𝛿(𝜙(𝑥)) 

denote the Heaviside function and Dirac delta function, respectively, and 𝜙(𝑥) is the level set 

function used to mathematically describe boundary of the movable features, Thus, the integration 

in Eq. (4.6) and Eq. (4.7) can be written as: 

 𝑙(𝑡) = ∫ 𝑓(𝒙, 𝑡)𝑑𝑆
𝜕Ω𝑓(𝑡)

= ∫ 𝑓𝛿(𝜙)|∇𝜙|𝑑Ω
Ω

 (4.8) 

 𝑣(𝑡) = ∫ 𝐹(𝒙, 𝑡)𝑑𝑉
Ω𝐹(𝑡)

= ∫ 𝐹𝐻(𝜙)𝑑Ω
Ω

 (4.9) 

where Ω𝑓(t) = {𝒙|𝜙(𝑥, 𝑡) > 0, 𝒙 ∈ Ω} represent the domain of the moving features. 𝑡 indicates 

a pseudo time used to update level set function.  

Using the operation of R-functions for feature representation , the level set function can 

be further parameterized in terms of geometrically meaningful variables {𝑐𝑖} (e.g. position and 

angle), and denoted as 𝜙(𝒙, 𝒄(𝑡)) , where 𝒙  is the spatial variable and 𝒄(𝑡) =

{𝑐1(𝑡), 𝑐2(𝑡), … , 𝑐𝑁𝑐(𝑡)} is a set of the geometric parameters. Hence, Eq. (4.8) and Eq. (4.9) can 

be further expressed as: 
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 𝑙(𝑡) = ∫ 𝑓𝛿(𝜙(𝒙, 𝒄(𝑡)))|∇𝜙|𝑑𝑉
Ω

 (4.10) 

 𝑣(𝑡) = ∫ 𝐹𝐻(𝜙(𝒙, 𝒄(𝑡))𝑑𝑉
Ω

 (4.11) 

For the purpose of illustration, boundaries represented by Eq. (4.10) and (4.11) are verified 

by the following two examples.  

Figure 4.3 gives the first example, a block with a hole in the center. Temperature of 𝑇0 =

10℃ is assigned to the outer surface of the block while a heat flux of 𝑞0 = 1 W/mm2 is applied 

on the internal surface of the hole. A Dirac delta function shown in Figure 4.3(b) is substituted 

into Eq. (4.10) and is employed to implicitly attribute heat flux in a fixed mesh. The obtained 

results from both direct numerical simulation (DNS) and the IB method are given in Figure 4.4. It 

is seen that the results obtained by the IB method is in good agreement with the results of DNS. 

However, the number of elements used in the IB method is just 20,000, which is only 23.89% of 

that used in DNS, while the size of the element of the IB model is two times that in the DNS. It 

shows that the IB method can be efficiently used for surface boundary representation. Note that 

the hole in the IB method is treated as a feature consisting of weak material, of which the thermal 

conductivity is 0.0001 W/(m ∙ K).  
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                                               (a)                                                                (b) 

Figure 4.3: Verification Problem #1 for the Proposed IB Method: (a) Geometry with Boundary Conditions 

and (b) Diract Delta Function Used for Boundary Mapping. 
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(a) 

 

(b) 

Figure 4.4: Comparison between IB Method and DNS for the Verification Problem: (a) DNS Results 

Including the Mesh (83,700 Hexagonal Elements), Heat Flux Distribution, and Temperature Distribution; (b) 

IB Results Including the Mesh (20,000 Hexagonal Elements), Heat Flux Distribution and Temperature 

Distribution. 

 

 

The second example is to examine the efficiency of IB method for volume boundary 

representation in Eq. (4.11). Figure 4.5 provides the geometry with boundary conditions and the 

Heaviside function used for the volume representation. As shown in Figure 4.6, the results 

obtained by IB method shows good agreement with DNS; however, the mesh used for IB method 

can significantly reduce the computational cost compared with the detailed simulation. 
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                                                 (a)                                                                    (b) 

Figure 4.5: Verification Problem #2 for the Proposed IB Method: (a) Geometry with Boundary Conditions 

and (b) Heaviside Function Used for The Boundary Mapping. 
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(a) 

 

(b) 

Figure 4.6: Comparison between IB Method and DNS for the Verification Problem: (A) DNS Results 

Including the Mesh (171887 Hexagonal Elements), Heat Flux Distribution, and Temperature Distribution; 

(B) IB Results Including the Mesh (20,000 Hexagonal Elements), Heat Flux Distribution and Temperature 

Distribution. 
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4.2 Concurrent Optimization for Design-independent Feature for Heat Conduction 

4.2.1  Material Interpolation 

The surrogate model developed in Section 2.5 is employed to represent the effective 

thermal conductivity of the lattice material. Accordingly, the element-wise thermal conductivity 

tensor and volume fraction are analytically expressed in Eq. (4.12). Different from the 0/1 SIMP 

interpolation, the adopted surrogate model allows continuous density variation:  

 {
𝑫𝑒
𝑙 = 𝑫(𝜌𝑒)
𝑣𝑒 = 𝜌𝑒𝑣0

 (4.12) 

where 𝑫𝑒
𝑙  denotes the thermal conductivity tensor of an arbitrary element  𝑒, where the tensor 

components are all functions of the relative density 𝜌𝑒. 𝑣𝑒 indicates the volume fraction of element 

𝑒, which is a linear combination of the full volume 𝑣0 and relative density 𝜌𝑒.  

Regarding the elements around the feature areas, the material properties and volume 

fraction can be expressed as follows: 

 {
𝑫𝑒
𝑓
= 𝐻(𝜙(𝒙, 𝒄(𝑡))𝑫

𝑣𝑒 = 𝐻(𝜙(𝒙, 𝒄(𝑡))𝑣0
 (4.13) 

where 𝑫𝑒
𝑓
denotes the effective conductivity of the element 𝑒, and 𝑫 is the conductivity tensor of 

a full solid element. 𝐻(𝜙(𝒙, 𝒄(𝑡)) indicates the Heaviside projection, in which 𝒄(𝑡) denotes the 

vector of the geometric variables including position and orientation. In the case that multiple 

features are involved that are potentially composed of different material types, the material 

interpolation model in Eq. (4.13) can be further extended as follows: 
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{
 
 

 
 
𝑫𝑒
𝑐 =∑𝐻(𝜙𝑘(𝒙, 𝒄(𝑡))𝑫𝑘

𝑁𝑐

𝑘=1

𝑣𝑒 =∑𝐻(𝜙𝑘(𝒙, 𝒄(𝑡))𝑣0

𝑁𝑐

𝑘=1

 (4.14) 

where 𝑁𝑐 represents the total number of features, 𝜙𝑘(𝒙, 𝒄(𝑡)) denotes the level set function of the 

𝑘𝑡ℎ feature and its corresponding material properties are represented by 𝑫𝑘. Based on Eq. (4.12) 

and Eq. (4.14), The unified material model considering both the lattice domain and the multiple 

functional features can be constructed as:  

 {
𝑫𝑒 = (1 − 𝜁)𝑫(𝜌𝑒) + 𝜁𝑫𝑘
𝑣𝑒 = (1 − 𝜁)𝜌𝑒𝑣0 + 𝜁𝑣0

 (4.15) 

where 𝜁 is the interpolation weight of movable feature areas as specified below:  

 𝜁 = 𝐻(⋁𝜙𝑘(𝒙, 𝒄(𝑡)

𝑁𝑐

𝑘=1

) (4.16) 

This represents a combination of level-set function of movable features, which implies that 

the value of level-set function is converted into 0-1 binary value. 𝜁 = 0 indicates that the point is 

in the lattice structure domain and thus the material interpolation from homogenization is being 

used; when 𝜁 = 1 , it means that the point in the movable features domain and the material 

interpolation in Eq. (4.14) is being employed. Thus, the material interpolation for multi-component 

system can be written as Eq. (4.15). 
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4.2.2  Problem Statement 

4.2.2.1 Governing Equation 

In this work, steady-state heat conduction problems are considered. Suppose a design 

domain Ω  bounded by a closed surface 𝛤  which is dominated by heat conduction. Then the 

temperature field 𝑇 is governed by the following heat equation in steady state as: 

 −∇ ∙ (𝒌∇𝑇) = 𝑔 (4.17) 

where 𝑔 denotes the internal heat generation in Ω. Using the virtual temperature field 𝑇̃, Eq. (4.17) 

can be transformed in the weak form as: 

 ∫ ∇𝑇̃𝒌∇𝑇𝑑Ω
Ω

−∫ 𝑇̃𝒌
Γ

𝜕𝑇

𝜕𝑛
𝑑Γ − ∫ 𝑇̃𝑔𝑑Ω = 0

Ω

 (4.18) 

In the present work, the boundaries on the surface of 𝛤  are composed of Dirichlet 

boundary Γ𝑇 and Neumann boundary Γ𝑞 as follows:  

 Γ = Γ𝑇 + Γ𝑞 (4.19) 

Defining the following bilinear and linear form 

 𝑎(𝑇, 𝑇̃) = ∫ ∇𝑇̃𝒌∇𝑇𝑑Ω
Ω

 (4.20) 

 𝐿(𝑇̃) = ∫ 𝑞𝑇̃𝑑Γ + ∫ 𝑔𝑇̃𝑑Ω
ΩΓ

 (4.21) 

where 𝑞 is the heat flux on the boundary of Γ. Thus, the equilibrium equation can be rewritten as 

 𝑎(𝑇, 𝑇̃) = 𝐿(𝑇̃)   (4.22) 
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4.2.2.2 Optimization Formulation 

The purpose of the optimization is to find optimal distribution of the lattice together with 

the optimal geometric parameters of the functional features simultaneously. The objective of the 

optimization is to minimize the thermal potential energy of the structure under volume constraints. 

The general formulation of the problem using finite element (FE) discretization can be expressed 

as follows: 

 Minimum: 𝐽(𝜌, 𝒄(𝑡)) =
1

2
𝑻𝑇𝑲𝒄𝑻 (4.23) 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      𝑲𝑻 = 𝒒 + 𝑮 +𝑯 (4.24) 

 𝑉(𝜌) ≤ 𝑉∗ (4.25) 

 𝑉𝑙(𝜙((𝒙, 𝒄(𝑡))) = −∑(𝜁𝑣𝑒)

𝑁

𝑒=1

+𝑉𝑐 ≤ 0 (4.26) 

 𝜌 ≤ 𝜌𝑒 ≤ 𝜌 (4.27) 

where 𝑲 is the heat conduction matrix; 𝒒, 𝑮 and 𝑯 denote the heat flux vector, internal heat 

generation vector, and heat transfer vector after FE discretization, respectively. 𝜌𝑒 is the relative 

density of the 𝑒𝑡ℎ element. 𝜌 and 𝜌 are the lower and upper bound of the elemental density. The 

first constraint in Eq. (4.24) denotes the equilibrium equation used to calculate the temperature 

field of the design domain. The second constraint in Eq. (4.25) implies that the allowable volume 

fraction is limited to 𝑉∗. Following the work of [131], the third inequality constraint in Eq. (4.26) 

is used to avoid overlap of multi component design, in which 𝑉𝑐 denotes the total volume of the 

movable features. The global conductivity matrix and the heat transfer matrix can be calculated by 

assembling the elemental matrix, as given below: 
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 𝑲 =∑𝒌𝑒
Ω

=∑∫ 𝑩𝑒
𝑇𝑫𝑒𝑩𝑒𝑑Ω

Ω𝑒𝑒

 (4.28) 

where 𝒌𝑒  is the elemental conduction matrix of element 𝑒 , 𝑫𝑒  represents the corresponding 

material model proposed in Section 2.5. 𝑩𝑒 indicates the gradient of the shape function in FEM 

and Ω𝑒 is the elemental domain. 

4.2.2.3 Sensitivity Analysis 

In this section, the solution process of the concurrent optimization is described. Note that, 

the density variables and the position variables are separately treated, where the former plus the 

volume constraint are solved with the OC method and the latter plus the non-overlap constraint 

are addressed through the Lagrange multiplier method. In this way, movement of the features will 

slightly perturb convergence of the lattice density field but would not damage the overall 

convergence, which can be concluded from the later demonstrated convergence curves. 

In the lattice domain, the sensitivity of the objective function with respect to the relative 

density can be computed as: 

 
𝜕𝐽

𝜕𝜌𝑒
= −

1

2
𝑻𝑒
𝑇
𝜕𝒌𝑒
𝜕𝜌𝑒

𝑻𝑒 (4.29) 

Substitution of Eq. (4.12) into 
𝜕𝒌𝑒

𝜕𝜌𝑒
, one can obtain:  

 

𝜕𝒌𝑒
𝜕𝜌𝑒

= ∫ 𝑩𝑒
𝑇
𝜕𝑫𝑒
𝜕𝜌𝑒

𝑩𝑒𝑑Ω
Ω𝑒

 

                     = (1 − 𝜁) ∫ 𝑩𝑒
𝑇 𝜕𝑫(𝜌)

𝜕𝜌𝑖
𝑩𝑒𝑑ΩΩ𝑒

 

(4.30) 
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The sensitivity of the volume fraction 𝑉 with respect to the element density can be 

calculated as: 

 
𝜕𝑉

𝜕𝜌𝑒
= (1 − 𝜁)𝑣𝑒 (4.31) 

With all the sensitivity results obtained above, the lattice densities can be solved with the 

optimality criteria (OC) method, which has been widely applied for the single volume constraint 

problem [132, 133]. Following the work of [133], an update of the relative density in the lattice 

structure domain can be expressed as 

 𝜌𝑒
𝑛𝑒𝑤 = {

max(𝜌, 𝜌𝑒 −𝑚)             if 𝜌𝑒𝐵𝑒
𝛾
≤ max (𝜌, 𝜌𝑒 −𝑚)

min(𝜌, 𝜌𝑒 +𝑚)             if 𝜌𝑒𝐵𝑒
𝛾
≥ min (𝜌, 𝜌𝑒 −𝑚)

𝜌𝑒𝐵𝑒
𝛾
                                         otherwise

 (4.32) 

where 𝑚 = 0.15 represent a positive move-limit and 𝛾 = 0.5 is a damping coefficient. The term 

𝐵𝑖 is defined as 

 𝐵𝑒 = −

𝜕𝐽
𝜕𝜌𝑒

𝜆
𝜕𝑉
𝜕𝜌𝑒

 (4.33) 

Given the feature parameters, the Lagrangian can be constructed as: 

 𝐿 = 𝐽(𝒄(𝑡)) + 𝜂 (−∑(𝜁𝑣𝑒)

𝑁

𝑒=1

+ 𝑉𝑐) (4.34) 

where 𝜂 is the Lagrange multiplier for the non-overlap constraint.  

The sensitivity of the objective function with respect to the pseudo time can be calculated 

as: 

 
𝜕𝐽

𝜕𝑡
= 𝑻𝑇𝑲

𝜕𝑻

𝜕𝑡
+
1

2
𝑻𝑇
𝜕𝑲

𝜕𝑡
𝑻 (4.35) 
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Calculating the derivatives of the geometric variables on both sides of the equilibrium 

equation, we have 

 
𝜕𝑲

𝜕𝑡
𝑻 + 𝑲

𝜕𝑻

𝜕𝑡
=
𝜕(𝒒 + 𝑮 +𝑯)

𝜕𝑡
 (4.36) 

Thus, one can obtain 
𝜕𝑻

𝜕𝑡
 as 

 
𝜕𝑻

𝜕𝑡
= 𝑲−1

𝜕(𝒒 + 𝑮 +𝑯)

𝜕𝑡
+ 𝑲−1

𝜕𝑲

𝜕𝑡
𝑻 (4.37) 

By substituting Eq. (4.37) into Eq. (4.35), we can obtain the sensitivity for the geometric 

variables as: 

 
𝜕𝐽

𝜕𝑡
= 𝑻𝑇

𝜕(𝒒 + 𝑮 + 𝑯)

𝜕𝑡
−
1

2
𝑻𝑇
𝜕𝑲

𝜕𝑡
𝑻 (4.38) 

In this work, the design-independent boundary condition is considered, and hence the 

sensitivity of functional features can be further rewritten as:  

 
𝜕𝐽

𝜕𝑡
= −

1

2
𝑻𝑇
𝜕𝑲

𝜕𝑡
𝑻 (4.39) 

Using Eq. (4.13), the derivation of 
𝜕𝑲

𝜕𝑡
 can be calculated as: 

 

𝜕𝑲

𝜕𝑡
= ∑ ∑ (∑ ∫ 𝑩𝑒

𝑇 (−
𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙
𝜕𝑐𝑗

𝜕𝑡
∙ 𝑫(𝜌𝑒) +Ω𝑒Ω

𝑀𝑘
𝑗=1

𝑁𝑐
𝑘=1

                                                           
𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙
𝜕𝑐𝑗

𝜕𝑡
∙ 𝑫𝒌)𝑩𝑒𝑑Ω)  

(4.40) 

where 𝑀𝑘 is the number of geometric variable for the 𝑘𝑡ℎ movable feature and 𝑐𝑗 represents the 

𝑗𝑡ℎ geometric variable of the 𝑘𝑡ℎ movable feature. 

The substitution of Eq. (4.40) into Eq. (4.39), the sensitivity of the objective function to 

the pseudo-time is  



 143 

 

𝜕𝐽

𝜕𝑡
= ∑ ∑ (∑

1

2
𝑻𝑒
𝑇 ∫ 𝑩𝑒

𝑇 (
𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙
𝜕𝑐𝑗

𝜕𝑡
∙ 𝑫(𝜌𝑒) −Ω𝑒Ω

𝑀𝑘
𝑗=1

𝑁𝑐
𝑘=1

                                                             
𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙
𝜕𝑐𝑗

𝜕𝑡
∙ 𝑫𝒌)𝑩𝑒𝑑Ω𝑻𝑒)  

(4.41) 

For the non-overlap constraint, the sensitivity of the constraint with respect to the 

geometric parameters is  

 
𝜕𝑉𝑙

𝜕𝑡
= ∑ (

𝜕𝜁

𝜕𝑡
𝑣𝑒) = −∑ ∑ (∑ (

𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙
𝜕𝑐𝑗

𝜕𝑡
∙ 𝑣𝑒)

𝑁
𝑒=1 )

𝑀𝑘
𝑗=1

𝑁𝑐
𝑘=1

𝑁
𝑒=1       (4.42) 

Thus, the sensitivity of the Lagrangian expression in Eq. (4.34) with respect to the pseudo 

time is 

 

𝜕𝐿

𝜕𝑡
=

𝜕𝐽

𝜕𝑡
+ 𝜂

𝜕𝑉𝑙

𝜕𝑡
=                                           

∑ ∑ (∑
1

2
𝑻𝑒
𝑇 ∫ 𝑩𝑒

𝑇 (
𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙ 𝑫(𝜌𝑒) −

𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙

Ω𝑒Ω
𝑀𝑘
𝑗=1

𝑁𝑐
𝑘=1

𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙ 𝑫𝒌)𝑩𝑒𝑑Ω𝑻𝑒 −𝜂∑ (

𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙ 𝑣𝑒)

𝑁
𝑒=1 )

𝜕𝑐𝑗

𝜕𝑡
       

(4.43) 

A decent direction of the objective function can therefore be found[125] by 

 

𝜕𝑐𝑗

𝜕𝑡
= ∑

1

2
𝑻𝑒
𝑇 ∫ 𝑩𝑒

𝑇 (−
𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙ 𝑫(𝜌𝑒) +

𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙

Ω𝑒Ω

                                                  𝑫𝒌)𝑩𝑒𝑑Ω𝑻𝑒 +𝜂∑ (
𝜕𝜁

𝜕𝜙𝑘(𝒙,𝒄(𝑡))
∙
𝜕𝜙𝑘(𝒙,𝒄(𝑡))

𝜕𝑐𝑗
∙ 𝑣𝑒)

𝑁
𝑒=1        

(4.44) 

The Lagrange multiplier method is employed to solve the problem, which can be expressed 

as follows: 

 𝑐𝑗
(𝑡+1) = 𝑐𝑗

(𝑡) + Δ𝑡 (
𝜕𝑐𝑗

𝜕𝑡
)
(𝑡)

       (4.45) 

 𝜂(𝑡+1) = 𝜂(𝑡) + 𝛽𝑡(−∑ (𝜁𝑣𝑖)
𝑁
𝑖=1 + 𝑉𝑐)

(𝑡)       (4.46) 

where Δ𝑡 and 𝛽𝑡 are positive to control the update of the geometric parameter and the Lagrange 

multiplier, respectively. 
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4.2.2.4 Numerical Implementation 

The flowchart of the optimization is given in Figure 4.7. At the beginning, homogenized 

model of thermal conductivity obtained in Section 2.5 is implemented in the FEM program. In the 

second step, the equilibrium equation is calculated to obtain the temperature distribution and its 

corresponding gradient. In the third step, the objective of the optimization and the volume 

constraint are computed. If the stop criteria are satisfied, the optimization terminates, and optimal 

result is obtained. If not, the sensitivity of objective for both lattice density and geometric 

parameters are calculated. In the concurrent optimization, the optimality criteria (OC) [132, 134] 

method given in Eq. (4.32)-(4.33)is employed to evolve the lattice density, while the geometric 

parameters of functional features are updated by the Lagrange multiplier method proposed in 

Eqs.(4.45)-(4.46). A Boolean operation is performed in the internal iteration of OC to combine the 

movable feature with lattice structure to guarantee the volume constraint. Once the optimization 

in OC is completed, the program will go to the next iteration until the stop criterion is satisfied. 
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Figure 4.7: Flowchart of the Concurrent Optimization Process. 

 

4.2.3  Convergence Study of AH Method 

Once the optimal material distribution is obtained through the proposed concurrent LSTO 

approach, a reconstruction program is developed to realize the final design for manufacturing. As 

introduced earlier, AH method is employed, which means that the RVE units should be 

periodically distributed and the size of the RVE unit should be small [107]. On the other hand, 

from the manufacturability point of view, the minimum size of the lattice units that can be 

produced using AM processes is determined by the resolution of the machines. Therefore, both 
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aspects should be considered in reconstruction to ensure accuracy of the AH representation and 

manufacturability of the part.  

First, we numerically examine the size effect of the lattice structure on accuracy of the 

homogenization model. A simple cube example is studied as shown in Figure 4.8(a). It has a size 

of 30 × 30 × 30 mm3  and its top and bottom surfaces are attached with two solid plates of 0.5 

mm thickness each. The temperature is 22℃ at the top surface, a heat flux of 0.1 W/mm2  is 

applied to the bottom surface, and all other surfaces are perfectly insulated. The base material is 

AlSi10Mg with a thermal conductivity of 110 W/m ∙ ℃, and the volume fraction of the cube is set 

to be 𝑉 = 0.4. Accordingly, the homogenized thermal conductivity is 26.15 W/m ∙ ℃, and the 

simulation result with homogenization is illustrated in Figure 4.8 (b), where the temperature at the 

bottom surface is about 138.1 ℃. 

 

 

                             

                                           (a)                                                             (b) 

Figure 4.8: FEA Model of the Cubic for Examination of Homogenization. (a) FEA Model of the Cube and (b) 

Temperature Profile of the Cube with Volume Fraction of 0.4. 
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For comparison purpose, the unit sizes of 2mm, 3mm, 5mm, 6mm, 10mm, 15mm and 30 

mm are used to fill the part and the corresponding full-scale FEAs are carried out to compare with 

the accuracy of the homogenization model; see Figure 4.9. The temperature profile of the bottom 

surface gradually approaches the homogenization result with the decrease in unit cell size, as 

presented in Figure 4.10. Especially when the cell number is larger than five in the heat transfer 

direction, the difference between homogenization and full-scale simulation becomes less than 2%. 

 

 

  

                   (a)                                 (b)                                  (c)                                   (d) 

     

                        (e)                                  (f)                                   (g)                                   (h) 

Figure 4.9: Temperature Profile of Lattice Infill Design with Various Cell Size. (a) Homogenized Model, (b) 

𝒍𝟎 = 𝟑𝟎 𝐦𝐦 (c) 𝒍𝟎 = 𝟏𝟓 𝐦𝐦 (d) 𝒍𝟎 = 𝟏𝟎 𝐦𝐦 (e) 𝒍𝟎 = 𝟔 𝐦𝐦 (f) 𝒍𝟎 = 𝟓 𝐦𝐦 (g) 𝒍𝟎 = 𝟑 𝐦𝐦 (h) 𝒍𝟎 = 𝟐 𝐦𝐦. 
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Figure 4.10: Maximum Temperature and Average Temperature Associated with Cell Number along One 

Direction 

 

 

From the manufacturability point of view, the unit cell size can neither be too small nor too 

large.  This is because below a certain value, the printing quality will drastically decrease and 

beyond some value, the unit cells cannot be self-supported. To quantify the design constraints, a 

test part is designed and printed out using the laser powder-bed metal AM process. Figure 4.11 

demonstrates both the CAD model and the print-out in AlSi10Mg. By analyzing the print-out, it is 

found that the minimum ligament diameter that can be printed out with regularity is 0.5 mm and 

the corresponding maximum overhang length is 3.5 mm. Therefore, the minimum unit size is set 

to 3.5 mm in length and the related lower bound of relative density is 𝜌 = 0.15.  
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In summary, the lattice unit size and the relative density range have been properly 

determined to maximize the accuracy of the AH model and at the same time, address the 

manufacturability issue.       

 

 

 

                                        (a)                                                                          (b) 

Figure 4.11: Benchmark Study for the Overhang and Ligament Size. (a) CAD Model of the Benchmark (b) 

Photo of the Printed Sample in Ti64 Using EOS DMLS. 

 

 

Once the proper lattice unit size is determined, the procedure of reconstructing the CAD 

model is illustrated in Figure 4.12. The key steps include converting the density distribution into 

the radius distribution at the joints, and then connect the joints through a linear loft of the radii to 

avoid discontinuity along the ligaments. The reconstruction process has been experimentally 

validated for different AM processes and more details about the reconstruction process can be 

found in [106, 135, 136]. 
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Figure 4.12: Reconstruction Procedure to Obtain the End-usable Component 

 

4.2.4  Numerical Examples and Validation 

In this section, several numerical examples are provided to demonstrate accuracy of the 

homogenized model and effectiveness of the proposed concurrent optimization method. The 

optimization problem is to minimize the potential thermal energy of the structure under the volume 

fraction constraint. Note that a sensitivity filter technique [137] is applied to in the LSTO to avoid 

the checkboard problem. If not specified, the volume fraction of the structure is set to be 𝑉∗ = 0.5. 

The optimization terminates when the relative difference of the objective functions between two 



 151 

successive iterations is smaller than 1 × 10−5 and when the volume constraint is satisfied when 

the relative difference between successive iterations is less than 1 × 10−4.  A thermal conductivity 

value of 110 W/m ∙ ℃ will be employed in the simulation; this value corresponds to the thermal 

conductivity of aluminum alloy AlSi10Mg samples printed by the EOS DMLS M290 system.   

Case 1:  LSTO without Functional Feature 

The first test case of a plate with a heat source and constant temperature boundary 

conditions is designed to verify accuracy of the homogenized model and investigate the affect the 

density bounds on the final design. As illustrated in Figure 4.13, two different temperatures are 

imposed on the four corners of the plate, while a heat flux of 1 W/mm2 is uniformly applied on 

the surface of the rectangular hole located in the middle of the plate. A structured mesh consisting 

48,246 eight-node hexagonal element is used to discretize the design domain.  

 

 

 

                                   (a)                                      (b)                                       (c) 

Figure 4.13: FEA Model of the Plate. (a) Boundary Conditions, (b) Structured Mesh Model and (c) 

Temperature Distribution of the Solid Plate. 
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To verify the proposed homogenized model for graded lattice design, the model in Figure 

4.13 is optimized using LSTO method without embedded features. The density range of the infilled 

lattice is set to be 𝜌 = 0.2 and  𝜌 = 0.92 . The optimization results are given in Figure 4.14, 

including the density distribution, temperature distribution and convergence history. During the 

optimization, the material tends to concentrate on the bands that connect the heat flux boundary 

and corner temperature boundaries, in order to promote the heat transfer of the heat source. As 

illustrated in the iteration history, the objective function converges to 1.756 × 108 W ∙ K after 36 

iterations, while the maximum temperature decreases from 170.68 ℃ to 100.56 ℃ (i.e. 41.08% 

reduction).   
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                           (a) Iteration 1             (b) Iteration 4               (c) Iteration 36 

 

                              (d) Iteration 1           (e) Iteration 4               (f) Iteration 36 
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Figure 4.14: Optimization Result of Case 1. (a)-(c) Snapshot of Relative Density Distribution at Different 

Iteration Number. (d)-(f) Snapshot of Temperature Distribution at Different Iteration Number. (g) 

Convergence of Objective Function and Maximum Temperature.  
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Next, the optimized density distribution in Figure 4.14(c) is used to reconstruct the plate 

with variable-density lattice structure, where the result is shown in Figure 4.15(a). A full-scale 

simulation on the lattice design is conducted to verify the proposed homogenization. The detailed 

optimal design is discretized using 838,858 elements and simulated using FEA in order to compare 

with the temperature field obtained by homogenization. As shown in Figure 4.14(f) and Figure 

4.15 (b), the temperature profiles from the two models are in good agreements with each other.  

For instance, the maximum temperature obtained by homogenization is 100.56 ℃, while the value 

of full-scale simulation is 101.01 ℃, and hence the difference is about 0.45%. This test case 

demonstrates that the homogenized model is reasonably accurate for modeling variable-density 

lattice structure.  

 

 

                  

                                       (a)                                                         (b) 

Figure 4.15: Variable-density Lattice Structure Design for Case 1. (a) CAD Model of Graded Lattice Infill (b) 

Temperature Field of the Full-scale Simulation. 
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To explore the effect of the density range on the final design, given the same volume fraction 

(𝑉∗ = 0.5), three different density ranges are studied: (1) [0.1 0.9], (2) [0.1 0.8] and (3) [0.2 0.8], 

and the optimization results are demonstrated in Figure 4.16 and Table 4.1. As illustrated, the 

decrease of lower bound results in a reduction of objective function and maximum temperature, 

while the decrease of the upper bound leads to an increase of these values. The reason lies in that, 

either decreasing the lower limit and increasing the upper limit effectively expands the design space. 

Note that the volume fraction should be larger than the lower bound of the density range, because 

when the volume fraction is smaller than the lower bound, the volume constraint cannot be satisfied 

and thus convergence cannot be obtained.  

 

 

Table 4.1: Optimization Result of the Problem for Case 1 with Various Density Range 

 

𝑉∗ = 0.5 

𝜌 ∈ [0.1, 0.9] 

𝑉∗ = 0.5 

𝜌 ∈ [0.1, 0.8] 

𝑉∗ = 0.5 

𝜌 ∈ [0.2, 0.8] 

Objective function (W ∙ K) 1.714 × 108 1.967 × 108 2.038 × 108 

Maximum Temperature from 

homogenization  (℃) 
97.95 107.14 109.8 

Maximum Temperature from 

simulation (℃) 
98.7 107.3 110.1 
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                           (a)                                                 (b)                                                (c) 

 

                       (d)                                                 (e)                                               (f) 

Figure 4.16: Optimization Result of the Design with Various Density Range. (a) Optimal Density Distribution 

for 𝝆 ∈ [𝟎. 𝟏, 𝟎. 𝟗] (b) Optimal Density Distribution for 𝝆 ∈ [𝟎. 𝟏, 𝟎. 𝟖] (c) Optimal Density Distribution for 

𝝆 ∈ [𝟎. 𝟐, 𝟎. 𝟖]; (d) Temperature Profile for 𝝆 ∈ [𝟎. 𝟏, 𝟎. 𝟗], (e) Temperature Profile for 𝝆 ∈ [𝟎. 𝟏, 𝟎. 𝟖] and (f) 

Temperature Profile for 𝝆 ∈ [𝟎. 𝟐, 𝟎. 𝟖]. 

 

 

A full-scale simulation is conducted on the variable-density lattice structure designs for the 

three different density ranges. The temperature distributions are illustrated in Figure 4.17, which 

agree well with the homogenization model result. It implies that the proposed homogenization 

model can be effectively used to analyze the graded lattice structure, which therefore can 

significantly reduce the computational cost compared with the detailed simulation. For instance, 

the element number used for these three full-scale simulations are all more than 500,000, which is 

ten times larger than the homogenization model.  
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Figure 4.17: Full Scale Simulation for Problem of Case 1. (a) Temperature Distribution of 𝝆 ∈ [𝟎. 𝟏, 𝟎. 𝟗] (b) 

Temperature Distribution of 𝝆 ∈ [𝟎. 𝟏, 𝟎. 𝟖] (c) Temperature Distribution of 𝝆 ∈ [𝟎. 𝟐, 𝟎. 𝟖]. 

 

 

Case 2. Concurrent LSTO with Non-overlap Constraints  

The second test case is used to verify the non-overlap constraint proposed in Eq. (4.26) for 

multi-component design. The model and boundary conditions are identical to case 1, except that a 

solid cylinder and a solid rectangle are initially placed within the base plate and allowed to move 

around. As illustrated in Figure 4.18, the two features are initially placed at the same positions 

with coordinates (𝑥 = 2 mm, 𝑦 = −6 mm) and the initial angle of the cube is set to  𝜃 = 0°. 

Assuming that the two movable features are composed of copper alloy with thermal conductivity 

of 399 W/m ∙ K, which is about 3.5 times larger than the base material, AlSi10Mg. The diameter 

of the cylinder is 3 mm and the side length of the cube is 3 mm. The cylinder is at the center of the 

rectangle. The density range of base plate is set to be 𝜌 = 0.2 and 𝜌 = 0.9, respectively.  
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                               (a)                                                                             (b) 

Figure 4.18: CAD Model for the Problem in Case 2. (a) Cylinder and Cub are Initially Placed in the Base 

Plate (b) Coordinate and Dimension of the Cylinder and Cub. 

 

 

For comparison purpose, an optimization without considering the non-overlap constraint 

is first performed. The optimization results including the density evolution and temperature history 

are presented in Figure 4.19. It can be seen that the solid cylinder tends to move together with the 

rectangle during the optimization. This is because the material of the two features are the same to 

each other. In the result, the two features are positioned inside a high-density band. Figure 4.20 

illustrates the convergence history of the objective function, maximum temperature, and the 

evolution of coordinates of the two features. After 50 iterations, the objective function converges 

from 3.618 × 108 W ∙ K to 1.772 × 108 W ∙ K, a 51% decrease, and the maximum temperature 

decreases from 170.13 ℃ to 100.95 ℃. The rectangle is finally positioned at (𝑥 = 3.59 mm, 𝑦 =

−3.78 mm, 𝜃 = −0.14 rad) and the cylinder finally moves to(𝑥 = 3.3 mm, 𝑦 = −1.84 mm). 
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                            (a)                                   (b)                         (c)                              (d) 

 

                            (e)                                  (f)                            (g)                           (h) 

Figure 4.19: Optimization Results of Case 2 without Non-overlap Constraint. (a)-(d) Optimal Density 

Distribution of Iteration (0), (5), (20) and (50); (e)-(f) Temperature Distribution of Iteration (0), (5), (20) and 

(50). 
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                                           (a)                                                                    (b) 

Figure 4.20: Convergence History of Case 2 without Non-overlap Constraint. (a) Objective Function and 

Maximum Temperature (b) Position Coordinate of Two Features. 
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The optimization result with non-overlap constraint is presented in Figure 4.21. It can be 

found that the rectangle moves towards the left side of the high-density area, while the cylinder 

ends up at the right side of the high-density area. Different from the results without non-overlap 

constraint, the two features are separated from each other and moves towards the nearest high-

density band. As illustrated in Figure 4.22(a), the objective function converges to 1.733 × 108 W ∙

K  with a decrease of 52.1% and the maximum temperature is decreased from 170.13 ℃ 

to  99.53 ℃ . In the final design, the cylinder moves to the right side with a coordinate of 

(𝑥 = 2.45 mm, 𝑦 = −1.78 mm) , while the rectangle is positioned at (𝑥 = −4.30 mm, 𝑦 =

−1.30 mm, 𝜃 = 0.47 rad). The rectangle and the cylinder are separated from each other, which 

demonstrates the efficiency of the proposed non-overlap constraint. In Figure 4.21(d), there exists 

a hole area around the solid cylinder, because the thermal conductivity of the cylinder is much 

larger than the base material and the temperature gradient at that area is very small. 
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                (a)                                      (b)                               (c)                               (d) 

  

                 (e)                                      (f)                               (g)                               (h) 

Figure 4.21: Optimization Results of Case 2 Under Non-overlap Constraint. (a)-(d) Optimal Density 

Distribution of Iteration (0), (5), (20) and (46); (e)-(f) Temperature Distribution of Iteration (0), (5), (20) and 

(46). 
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                                         (a)                                                                          (b) 

Figure 4.22: Convergence History of Case 2 under Non-overlap Constraint. (a) Objective Function and 

Maximum Temperature (b) Position Coordinate of Two Features. 

 

To examine the performance of the two designs for case 2, full scale simulations are 

conducted to compare with the prediction from homogenization. As illustrated in Figure 4.23, the 

maximum temperature of the design under non-overlap constraint is 100.41 ℃ while the design 

without the non-overlap design is 101.52 ℃. This is because the overlap of the two features leads 

to a decrease of the volume of the embedded features and thus an increase of the maximum 

temperature. Comparing with the prediction from homogenization, the difference of the maximum 

temperature for the overlap design is 0.54 ℃, while for the non-overlap design is 0.88 ℃.  These 

results further prove that the proposed homogenized model can be efficiently used to optimize 

graded lattice structure embedded with movable features.  
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                                  (a)                                                                (b) 

Figure 4.23: Full Scale Simulation of Case 2. (a) Design without Non-overlap Constraint; (b) Design under 

Non-overlap Constraint. 

 

 

 

Case 3. Concurrent LSTO Method with Different Initial Position 

In the third case, a solid cylinder is randomly placed in the base plate and different starting 

positions will be investigated to explore the initial guess dependency issue. Figure 4.24 shows the 

CAD model and initial positions to be explored. Due to the symmetry of the design domain, the 

cylinder is only randomly placed at the right side of the host plate. The boundary conditions and 

material property of the host lattice structure are the same as case 1. The radius of the cylinders is 

1.5 mm and its material is AlSi10Mg. The density range of the lattice structure at base plate is set 

to be 𝜌 = 0.2 and 𝜌 = 0.9, respectively. The volume fraction of the design domain including the 

movable feature is set to be 𝑉∗ = 0.5. 
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                                            (a)                                                                 (b) 

Figure 4.24: CAD Model and Initial Position of the Cylinder for the Problem of Case 3. (a) CAD Model and 

(b) Five Random Positions of the Cylinder. 

 

 

The optimization results are presented in Figure 4.25. As illustrated in the figure, these five 

cylinders move towards to the nearest high-density area and end up with merging into the high-

density band. This implies that the concurrent optimization is a type of local optimal design, in 

which the movable features tend to be positioned locally rather than globally. The detailed 

optimization results are tabulated in Table 4.2. It is found that, for the given problem, due to the 

difference of the initial positions, there are some but small differences of the objective function 

and maximum temperature. For cylinder #2, both the objective function and the maximum 

temperature is the lowest. This is because the solid cylinder is nearest to the heat source. Cylinder 

#5 shows the worst performance since it is farthest from the heat source. This implies that the 

initial position plays an important role in the performance of the final design. 
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                     (a)                         (b)                        (c)                            (d)                        (e) 

Figure 4.25: Optimization Results of Problem for Case 3. (a) Initial State, Optimal Density Distribution of #1 

(b) Initial State, Optimal Density Distribution of #2 (c) Initial State, Optimal Density Distribution of #3 (d) 

Initial State, Optimal Density Distribution of #4 (e) Initial State, Optimal Density Distribution of #5. 
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Table 4.2: Optimization Results of Problem for Case 3 

 #1 #2 #3 #4 #5 

Initial position (mm) (6,10) (8,5) (6,0) (6,-6) (2,-8) 

Final position (mm) (5.75, 9.58) (3.45, 6.62) (4.23, -0.46) (7.91, -4.42) (6.45, -4.54) 

Objective function 

(W ∙ K) 

1.80 × 108 1.79 × 108 1.80 × 108 1.80 × 108 1.80 × 108 

Maximum 

temperature from 

homogenization (℃) 

101.1 100.9 101.2 101.2 101.3 

Maximum 

temperature from 

detailed simulation 

(℃) 

101.4 101.2 101.4 101.4 101.5 

 

 

The detailed simulation for the lattice structure design is given in Figure 4.26. It can be 

seen that the maximum temperature of different schemes is in good agreement with the prediction 

from the homogenized model. This proves that the homogenized model is reasonably accurate for 

the description of graded lattice structure with embedded solid component. 
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       (a)                         (b)                           (c)                           (d)                              (e) 

Figure 4.26: Full-scale Simulation for Case 3. (a)-(e) Temperature Profile of Cylinder #1 to #5. 

 

 

Case 4. LSTO Includes Multi Features with Multiphase Materials  

In the third case, using the same base plate, we consider multi features consisting of 

multiphase materials. As illustrated in Figure 4.27, there are three different features initially 

placing in the design domain: a cross, a cylinder and a rectangular. The cross filled with AlSi10Mg 

is initially placed at (𝑥 = −10 mm, 𝑦 = 4 mm , 𝜃 = 0°) . The stainless steel cylinder having 

thermal conductivity of 23 W/(m ∙ K)  is initially placed at (𝑥 = 2 mm, 𝑦 = −7 mm) . The 

coppers rectangular is initially placed at (𝑥 = 4 mm, 𝑦 = −7 mm, 𝜃 = 0°). In addition to position 

of the features, the orientation angle of the cross and rectangular is also taken into account in the 

concurrent optimization, and the parametric representations of these two features are formulated 

through the combination of R-functions with level-set function. In this case, the upper bound and 

lower bound of the density in the base plate are set to 𝜌 = 0.2 and 𝜌 = 0.9. 
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                                                  (a)                                                     (b) 

Figure 4.27: Model of the Optimization for the Plate with Multi Features (a) CAD Model of the Plate and 

Features (b) Initial Position and Angle of the Features 

 

 

Figure 4.28(a)-(f) provides the intermediate and final results of the optimization iterations, 

including the density distribution and the corresponding temperature field. After optimization, the 

three solid features tend to move towards the higher density path, however, the final position and 

angle are different due to their different thermal conductivities. The aluminum cross finally moves 

into the high-density band of the base plate since the material is the same as the base plate. The 

stainless-steel cylinder moves to the interface of the high and low-density regions, since the 

thermal conductivity of stainless steel is between the upper and lower bound of the density range. 

The copper rectangle orients its longitudinal axis and migrates toward the heat source along the 

high-density band, while the band narrows around the rectangle due to its very high conductivity. 

Figure 4.28(e) illustrates the iteration history of the objective function and maximum temperature 

obtained from the homogenized model. The objective function converges to 1.75 × 108 (W ∙ K) 

after 43 iterations, while the maximum temperature reduces from 169.68℃ to100.72℃. The 

objective function decreases by 51.52%, while the maximum temperature drops by 40.61%.  
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                      (a) Iteration 1                  (b) Iteration 10                       (c) Iteration 43 

 

                      (d) Iteration 1                        (e) Iteration 10                      (f) Iteration 43 
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Figure 4.28: Optimization Results of Case 3. (a)-(c) Iteration History of Relative Density Distribution. (d)-(f) 

Iteration History of Temperature Distribution. (g) Convergence of Objective Function and Maximum 

Temperature 
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For comparison purpose, we conduct the optimization for the same model without evolving 

the three embedded features. The optimization results are provided in Figure 4.29 including density 

distribution of lattice structure, temperature distribution and the convergence history of objective 

function and maximum temperature of the design domain. As shown in the figure, the objective 

function converges to 1.79 × 108 (W ∙ K) after 40 iterations, while the maximum temperature is 

reduced to 102.51 ℃. Compared with the results of concurrent design, the objective function is 

2.3% larger, while the maximum temperature is 1.8 ℃  higher. This demonstrates that the 

concurrent optimization scheme can further enhance the performance of the optimal design. 

 

 

 

(a)                                            (b)                                                       (c) 

Figure 4.29: Optimization Results of Case 3 Without Evolving the Geometric Parameters of the Features. (a) 

Optimal Density Distribution (b) Temperature Distribution (c) Convergence of Objective Function and 

Maximum Temperature 

 

 

Again, full-scale detailed FEA is conducted on the optimal design after the reconstruction 

with variable density lattice structure. The temperature field of the simulation is given in Figure 

4.30. As shown, the temperature profile shows good agreement with the homogenized model for 
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both the movable design and non-movable design. For the concurrent design, the difference of the 

maximum temperature is about 0.37 ℃ or 0.367%. For the non-movable design, the difference of 

the maximum temperature is about  1.01 ℃  or 0.985%. This demonstrates that the proposed 

methodology is also efficient and accurate for optimization with multi features and multiphase 

materials.  

 

 

 

                                    (a)                                                                        (b) 

Figure 4.30: Temperature Distribution of Full-Scale Simulation for Case 4. (a) Movable Design (b) Non-

Movable Design 

 

 

Case 5. LSTO with Movable Features in 3D Setting  

In this case, we focus on optimization of lattice density and layout of movable functional 

feature in a three-dimensional (3D) setting. Figure 4.31 presents the base model, including the 

boundary conditions and mesh for FEA. Four temperatures are imposed on the four corners of the 

upper surface of the block, while a heat flux of  0.5 W/mm2 is applied to a small region on the 
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bottom surface. A mesh of 99,530 eight-node hexahedral elements is used to discretize the design 

domain. The dimension of the block is 60×60×60 mm3 and the area of the heat flux is 20×20 

mm2. The lower and upper density bounds of lattice structure in the block are 𝜌 = 0.2 and 𝜌 = 0.9  

The material employed for the base block is AlSi10Mg.  

 

                        (a)                                                           (b)                                       (c) 

Figure 4.31: Finite Element Model of the Block. (a) and (b) Boundary Conditions of the Model. (c) Mesh 

Model for FEA 

 

 

Two solid AlSi10Mg spheres of different radii are initially placed within the block. As 

illustrated in Figure 4.32, the original position of the two spheres are: Sphere #1 is at (x,y,z)=(0,-

10,30) mm and Sphere #2 is placed at (0,10,30) mm.   
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                                                 (a)                                                                    (b)       

Figure 4.32: Initial State of the Functional Features (a) Three-Dimensional View of the Two Spheres (b) 

Initial Position and Radius of the Two Features 

 

 

The optimized results are presented in Figure 4.33, including the density distribution of 

different iterations, the corresponding temperature distribution, as well as the convergence history 

of objective function and maximum temperature. As illustrated in the figure, more materials are 

distributed along the bands directly connecting the heat source and temperature boundaries to 

promote the thermal diffusion and reduce the thermal potential energy of the structure. It can also 

be seen that the two spheres move from the initial position to closer to the heat source of the model. 

This leads to a reduction of total thermal energy of the structure from 2.357 × 108 W ∙ K  to 

1.068 × 108 W ∙ K, which is a 54.69% reduction, while the maximum temperature reduces from 

364.9℃ to 167.5℃. The final positions of Sphere #1 and #2 are (-1.78, -9.81, 19.10) mm and (-

5.07, 13.65, 14.85) mm, respectively.  It is reasonable because the solid spheres move toward the 

heat source and into the area with high density.  
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(a) Iteration 1                           (b) Iteration 10                       (c) Iteration 31 

 

(d) Iteration 1                           (e) Iteration 10                          (f) Iteration 31 
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Figure 4.33: Optimized Solution of Case 4. (a)-(c) Iteration History of Relative Density Distribution. (d)-(f) 

Iteration History of Temperature Distribution. (g) Convergence of Objective Function and Maximum 

Temperature 
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To check the accuracy of the optimization result, a full-scale detailed FEA of the final 

design infilled with variable density lattice structure is conducted. As illustrated in Figure 4.34, 

the maximum temperature of direct numerical simulation is 166.82℃, and the difference with the 

homogenized model is 0.68℃ or 0.41%. This very good agreement of the maximum temperature 

further demonstrates accuracy of homogenized model and effectiveness of the proposed method.  

 

 

                

                                                    (a)                                                               (b) 

Figure 4.34: Verification of the Optimization Result by Full Scale Simulation. (a) Section View of the CAD 

Model. (b) Temperature Field of Corresponding Design. 

 

 

To verify manufacturability of the designs without inserting additional support structure, 

the optimal design shown in Figure 4.35is printed by two different AM technologies.  Specifically, 

the plastic sample was printed by Objet260 Connex (Stratasys. Inc) in VeroWhite, while the metal 

one was printed by EOS M290 DMLS in TiAl6V4, see Figure 4.35. Since the lattice structure is 

self-support for the small cell, the variable density design can be printed out without any extra 

efforts. It demonstrates that the proposed concurrent optimization can be applied for practical 

application directly.  
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Figure 4.35: Illustration of the Manufacturability of the Optimal Design Printed by Both Plastic and Metal 

Additive Manufacturing 

 

4.2.5  Summary 

This work has presented a novel method to concurrently optimize the density distribution 

of the lattice infill and the layout of functional features. To ensure continuous material 

interpolation, asymptotic homogenization is employed to obtain the effective thermal conductivity 

of lattice structure in terms of the relative density. The homogenized model is embedded into the 

framework of density-based TO to replace the conventional fictitious material interpolation in 

SIMP method, in order to obtain the design with predictable properties. Regarding the functional 

features, the parametric level-set functions together with R-functions are employed to implicitly 

represent the geometric shape. The technique not only provides implicitly mathematical 

representation of the features, but also flexibly integrates with LSTO approach for multi-feature 

optimization. All the 3D numerical experiments including single features, multi features, and multi 

features composed of multiphase materials show good agreement with the results obtained by full 
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scale detailed finite element simulation for lattice infill design. In particular, the optimized design 

in the last case is printed out by both plastic 3D printer and metal 3D printer without adding support 

structure. This further demonstrates the great potential of the proposed methodology for practical 

application using current AM technique.  Currently, this work focuses on the evolution of features 

on which there are no boundary conditions impose. In the future, we plan to extend the proposed 

methodology to features attached with boundary conditions, and the problem will become the 

combination of free form optimization with design-dependent feature evolution.  

4.3 Concurrent Optimization for Design-dependent Feature for Heat Conduction 

4.3.1  Problem Formulation 

4.3.1.1 Problem Statement 

The purpose of the optimization is to simultaneously find the optimal structure of the lattice 

layout and optimize geometric parameters of the features attributed with boundary conditions. The 

objective function is minimizing the total thermal potential energy [30] of the structure under the 

prescribed volume constraints. The general formulation of the problem are written as follows: 

 

 Minimum: 𝐽 = 𝐿(𝑇̃) −
1

2
𝑎(𝑇, 𝑇̃)       (4.47) 

 Subject to: 𝑎(𝑇, 𝑇̃) = 𝐿(𝑇̃)       (4.48) 

 ∫ 𝑣𝑒𝑑ΩΩ
≤ 𝑉∗       (4.49) 
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where ∫ 𝑣𝑒𝑑ΩΩ
 is the volume of the structure with 𝑣𝑒 is given in Eq. (4.12), while 𝑎(𝑇, 𝑇̃) and 

𝐿(𝑇̃) are given in Eq. (4.20) and Eq. (4.21), respectively.  

Finite element method (FEM) is employed to discretize and solve the thermal problem. 

The discretized form of the problem can be mathematically expressed as: 

 Minimum: 𝐽(𝜌, 𝒄(𝑡)) = 𝑻𝑇(𝒒 + 𝑮 + 𝑯) −
1

2
𝑻𝑇(𝑲𝒄 +𝑲𝒉)𝑻       (4.50) 

 Subject to: (𝑲𝒄 +𝑲𝒉)𝑻 = 𝒒 + 𝑮 +𝑯       (4.51) 

 𝑉(𝜌) = ∑ ((1 − 𝜁)𝜌𝑖𝑣𝑖 + 𝜁𝑣𝑖)
𝑁
𝑖=1 ≤ 𝑉∗       (4.52) 

𝜌 ≤ 𝜌𝑖 ≤ 𝜌       (4.53) 

where 𝑲𝒄 and 𝑲𝒉 are the thermal conductivity matrix and heat convection matrix, respectively. 𝒒, 

𝑮 and 𝑯 indicate the heat flux vector, internal heat generation vector, and heat transfer vector after 

discretization. 𝜌𝑖 is the relative density of the 𝑖𝑡ℎ element. 𝜌 and 𝜌 are the lower and upper bound 

of the relative density for the element in lattice domain. The first equality denotes the equilibrium 

equation used to calculate the temperature field. The first inequality implies that the allowable total 

material volume fraction is limited to 𝑉∗. The global conductivity matrix and the heat transfer 

matrix can be calculated by assembling the element matrix, as given below: 

 𝑲𝒄 = ∑ 𝒌𝑒
𝑐

𝑒 = ∑ ∫ 𝑩𝑒
𝑇𝑫𝑒

𝑐𝑩𝑒𝑑ΩΩ𝑒
𝑒        (4.54) 

 𝑲ℎ = ∑ 𝒌𝑒
ℎ

𝑒 = ∑ ∫ ℎ𝑒𝑵
𝑇𝑵𝑑Γ

Γ𝑒
𝑒        (4.55) 

where 𝒌𝑒
𝑐  and 𝒌𝑒

ℎ are the conductivity matrix and convection matrix of element 𝑒, 𝑫𝑒
𝑐  represents 

the material model and ℎ𝑒 is the heat-transfer or convection coefficient. 𝑵 represents the shape 

function and 𝑩𝑒  indicates the gradient of the shape functions in FEM and Ω𝑒  is the element 

domain. 
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4.3.1.2 Sensitivity Analysis 

In the concurrent optimization, there exist the lattice structure domain and movable feature 

domain.  Since the surface/volume boundary conditions are attached on these features, sensitivity 

analysis of the moving boundaries described in Eq. (4.10) and Eq. (4.11) plays an important role 

in the evolution of the features. To promote the implementation of sensitivity, the shape derivatives 

of two types of boundaries are given within the level set framework, while the lattice design 

variables are calculated in the density-based methodology.  

(a) Sensitivity of Surface Integral 

Considering the integral of surface boundary conditions given in Eq. (4.10): 

𝑙(𝑡) = ∫ 𝑓𝛿(𝜙(𝒙, 𝒄(𝑡)))|∇𝜙|𝑑𝑉
Ω

 

The derivative of the surface integral with respect to geometric variables yields:  

 
𝜕𝑙

𝜕𝑡
= ∫ (

𝜕𝑓

𝜕𝑡
)𝛿(𝜙)|∇𝜙|𝑑𝑉

Ω
+ ∫ [𝑓𝛿(𝜙)′ (

𝜕𝜙

𝜕𝒄

𝜕𝒄

𝜕𝑡
) |∇𝜙| + 𝑓𝛿(𝜙)

∇𝜙∙∇(
𝜕𝜙

𝜕𝒄

𝜕𝒄

𝜕𝑡
)

|∇𝜙|
] 𝑑𝑉

Ω
       (4.56) 

which can be further simplified by considering the fact that 𝒏 = −∇𝜙/|∇𝜙| and ∇ ∙ 𝒏 = 𝛾 (where 

𝛾 is the curvature of the structural boundary curve). The derivatives of the surface integral have 

been given in [138] and listed here: 

 
𝜕𝑙

𝜕𝑡
= ∫ (

𝜕𝑓

𝜕𝑡
)𝛿(𝜙)|∇𝜙|𝑑𝑉

Ω
− ∫ 𝛿(𝜙)𝛾𝑓 (

𝜕𝜙

𝜕𝒄

𝜕𝒄

𝜕𝑡
)𝑑𝑉

Ω
− ∫ 𝛿(𝜙) (

𝜕𝜙

𝜕𝒄

𝜕𝒄

𝜕𝑡
)𝒏 ∙ ∇𝑓𝑑𝑉

Ω
        (4.57) 

Since in the present work the surface boundary condition 𝑓 maintains a constant during the 

optimization and 
𝜕𝑓

𝜕𝑡
= 0 and ∇𝑓 = 0, the derivatives in Eq. (4.57) can be simplified as: 

 
𝜕𝑙

𝜕𝑡
= −∫ 𝑓𝛿(𝜙)𝛾 (

𝜕𝜙

𝜕𝒄

𝜕𝒄

𝜕𝑡
)𝑑𝑉

Ω
        (4.58) 
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(b) Sensitivity of Volume Integral 

For the derivative of the volume integral given in Eq. (4.11), 

𝑣(𝑡) = ∫ 𝐹𝐻(𝜙(𝒙, 𝒄(𝑡))𝑑𝑉
Ω

 

It follows the similar process that 

 
𝜕𝑣

𝜕𝑡
= ∫ (

𝜕𝐹

𝜕𝑡
)𝐻(𝜙)𝑑𝑉

Ω
+ ∫ 𝐹𝛿(𝜙)|∇𝜙| (

𝜕𝜙

𝜕𝒄

𝜕𝒄

𝜕𝑡
) 𝑑𝑉

Ω
        (4.59) 

By similar work in Eq. (4.57), we have 

 
𝜕𝑣

𝜕𝑡
= ∫ 𝐹𝛿(𝜙)|∇𝜙| (

𝜕𝜙

𝜕𝒄

𝜕𝒄

𝜕𝑡
)𝑑𝑉

Ω
        (4.60) 

(c) Sensitivity of Objective Function  

The sensitivity of lattice domain is described in this section. Using the Lagrange multiplier 

method, the Lagrangian of the problem in this article can be written as: 

 𝐿 = 𝐽(𝜌, 𝒄(𝑡)) + 𝜆(∑ ((1 − 𝜁)𝜌𝑖𝑣𝑖 + 𝜁𝑣𝑖)
𝑁
𝑖=1 − 𝑉∗)        (4.61) 

where 𝜆 represents the Lagrange multiplier for the volume constraint.  

In the lattice domain, the sensitivity of the objective function with respect to the relative 

density can be computed as: 

 
𝜕𝐽

𝜕𝜌𝑖
= −

1

2
𝑻𝑇

𝜕𝑲𝒄

𝜕𝜌𝑖
𝑻        (4.62) 

Substituting Eq. (4.15) into 
𝜕𝑲𝒄

𝜕𝜌𝑖
, one can obtain: 

 

𝜕𝑲𝒄
𝜕𝜌𝑖

= 𝑩𝑒
𝑇
𝜕𝑫𝑒

𝑐

𝜕𝜌𝑖
𝑩𝑒𝑣𝑒 

         = 𝑩𝑒
𝑇 𝜕𝑫(𝜌)

𝜕𝜌𝑖
𝑩𝑒𝑣𝑒        

(4.63) 

where 𝑣𝑒  is the volume of element 𝑒.  
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The sensitivity of the volume fraction 𝑉 with respect to the element density can be 

calculated as: 

 
𝜕𝑉

𝜕𝜌𝑖
= 𝑣𝑖        (4.64) 

In the movable feature domain, the sensitivity of the objective function with respect to the 

geometric features can be expressed as:  

 
𝜕𝐽

𝜕𝑡
= 𝑻𝑇(𝑲𝒄 +𝑲𝒉)

𝜕𝑻

𝜕𝑡
+
1

2
𝑻𝑇

𝜕(𝑲𝒄+𝑲𝒉)

𝜕𝑡
𝑻        (4.65) 

Calculating the derivatives of the geometric variables in both sides of the equilibrium 

equation, we have 

 
𝜕(𝑲𝒄+𝑲𝒉)

𝜕𝑡
𝑻 + (𝑲𝒄 +𝑲𝒉)

𝜕𝑻

𝜕𝑡
=

𝜕(𝒒+𝑮+𝑯)

𝜕𝑡
        (4.66) 

Thus, one can further write 
𝜕𝑻

𝜕𝑡
 as: 

 
𝜕𝑻

𝜕𝑡
= (𝑲𝒄 +𝑲𝒉)

−1 𝜕(𝒒+𝑮+𝑯)

𝜕𝑡
− (𝑲𝒄 +𝑲𝒉)

−1 𝜕(𝑲𝒄+𝑲𝒉)

𝜕𝑡
𝑻        (4.67) 

Via substitution of Eq. (4.67) into Eq. (4.65), we can obtain the sensitivity for the geometric 

variables as: 

 
𝜕𝐽

𝜕𝑡
= 𝑻𝑇

𝜕(𝒒+𝑮+𝑯)

𝜕𝑡
−
1

2
𝑻𝑇

𝜕(𝑲𝒄+𝑲𝒉)

𝜕𝑡
𝑻        (4.68) 

where the derivatives of the design-dependent boundary with respect to geometric variables are 

specified as follows: 

 

 
𝜕𝒒

𝜕𝑡
= −𝑵𝑇𝑞0𝛿𝑘

𝑞(𝜙𝑘
𝑞)𝛾 (

𝜕𝜙𝑘
𝑞

𝜕𝒄𝑘
𝑞

𝜕𝒄𝑘
𝑞

𝜕𝑡
) 𝑣𝑒         (4.69) 

        
𝜕𝑮

𝜕𝑡
= 𝑵𝑇𝑔0𝛿𝑘

𝑔
(𝜙𝑘

𝑔
)|∇𝜙𝑘

𝑔
| (
𝜕𝜙𝑘

𝑔

𝜕𝒄
𝑘
𝑔

𝜕𝒄𝑘
𝑔

𝜕𝑡
) 𝑣𝑒        (4.70) 

         
𝜕𝑯

𝜕𝑡
= −𝑵𝑇ℎ0𝑇𝑎𝑚𝛿𝑘

ℎ(𝜙𝑘
ℎ)𝛾 (

𝜕𝜙𝑘
ℎ

𝜕𝒄𝑘
ℎ

𝜕𝒄𝑘
ℎ

𝜕𝑡
) 𝑣𝑒         (4.71) 
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where 𝛿𝑘
𝑞
, 𝛿𝑘

𝑔
 and 𝛿𝑘

ℎ indicate the Diract delta functions used for the representation of the heat flux 

boundary, internal heat generation, and heat convection boundary, respectively. 𝑞0 and 𝑔0 are the 

heat flux rate and internal heat generation rate applied on the movable features, while ℎ and 𝑇𝑎𝑚 

represent the heat convection coefficient and ambient temperature subjected to the moving heat 

convection boundary.   𝜙𝑘  with different upper subscript (𝑞, 𝑔, ℎ ) represents the 𝑘𝑡ℎ  level set 

function attached with heat flux, heat generation and heat convection boundary conditions, and 𝒄𝑘 

is the corresponding parametric variable. Using the Eq. (4.54) and Eq. (4.55), the derivation of 

 
𝜕(𝑲𝒄+𝑲𝒉)

𝜕𝑡
 can be calculated as: 

 
𝜕(𝑲𝒄+𝑲𝒉)

𝜕𝑡
= 𝑩𝑒

𝑇 (
𝜕𝐻𝑘(𝜙𝑘)

𝜕𝜙𝑘
∙
𝜕𝜙𝑘

𝜕𝒄𝑘
∙
𝜕𝒄𝑘

𝜕𝑡
∙ 𝐷𝑘)𝑩𝑒𝑣𝑒 − 𝛿𝑘

ℎ(𝜙)𝛾 (
𝜕𝜙𝑘

ℎ

𝜕𝒄𝑘
ℎ

𝜕𝒄𝑘
ℎ

𝜕𝑡
) ∙ ℎ𝑣𝑒𝑵

𝑇𝑵        (4.72) 

Following Eq. (4.58) to Eq. (4.60), the sensitivities of the objective function in terms of the 

parametric variables can be expressed as: 

 
𝜕𝐽

𝜕𝑡
= ∑

𝜕𝐽𝑒

𝜕𝑡Ω𝑒∈Ω         (4.73) 

where  

𝜕𝐽𝑒
𝜕𝑡

= −𝑻𝑒
𝑇𝑵𝑇𝑞0𝛿𝑘

𝑞(𝜙𝑘
𝑞)𝛾 (

𝜕𝜙𝑘
𝑞

𝜕𝒄𝑘
𝑞

𝜕𝒄𝑘
𝑞

𝜕𝑡
) 𝑣𝑒 + 𝑻𝑒

𝑇𝑵𝑇𝑔0𝛿𝑘
𝑔
(𝜙𝑘

𝑔
)|∇𝜙𝑘

𝑔
| (
𝜕𝜙𝑘

𝑔

𝜕𝒄𝑘
𝑔

𝜕𝒄𝑘
𝑔

𝜕𝑡
) 𝑣𝑒

− 𝑻𝑒
𝑇𝑵𝑇ℎ0𝑇𝑎𝑚𝛿𝑘

ℎ(𝜙𝑘
ℎ)𝛾 (

𝜕𝜙𝑘
ℎ

𝜕𝒄𝑘
ℎ

𝜕𝒄𝑘
ℎ

𝜕𝑡
) 𝑣𝑒 −

1

2
𝑻𝑒
𝑇𝑩𝑒

𝑇 (𝛿𝑘
ℎ(𝜙𝑘

ℎ)
𝜕𝜙𝑘
𝜕𝒄𝑘

𝜕𝒄𝑘
𝜕𝑡

𝐷𝑘)𝑩𝑒𝑻𝑒

+
1

2
𝑻𝑒
𝑇𝑵𝑇𝛿𝑘

ℎ(𝜙𝑘
ℎ)𝛾

𝜕𝜙𝑘
ℎ

𝜕𝒄𝑘
ℎ

𝜕𝒄𝑘
ℎ

𝜕𝑡
ℎ0𝑵𝑻𝑒 

To ensure the objective function to evolve along a decent direction iteratively, the motion 

of the conforming boundaries can be given in different conditions as: 

𝜕𝒄𝑘
𝑞

𝜕𝑡
= ∑ [𝑻𝑒

𝑇𝑵𝑇𝑞0𝛿𝑘
𝑞(𝜙𝑘

𝑞)𝛾
𝜕𝜙𝑘

𝑞

𝜕𝒄𝑘
𝑞 +

1

2
𝑻𝑒
𝑇𝑩𝑒

𝑇 (𝛿𝑘
ℎ(𝜙𝑘

ℎ)
𝜕𝜙𝑘
𝜕𝒄𝑘

𝐷𝑘)𝑩𝑒𝑻𝑒] 𝑣𝑒
Ω𝑒∈Ω
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𝜕𝒄𝑘
𝑔

𝜕𝑡
= ∑ [−𝑻𝑒

𝑇𝑵𝑇𝑔0𝛿𝑘
𝑔
(𝜙𝑘

𝑔
)|∇𝜙𝑘

𝑔
|
𝜕𝜙𝑘

𝑔

𝜕𝒄𝑘
𝑔 +

1

2
𝑻𝑒
𝑇𝑩𝑒

𝑇 (𝛿𝑘
ℎ(𝜙𝑘

ℎ)
𝜕𝜙𝑘
𝜕𝒄𝑘

𝐷𝑘)𝑩𝑒𝑻𝑒] 𝑣𝑒
Ω𝑒∈Ω

 

𝜕𝒄𝑘
ℎ

𝜕𝑡
= ∑ [𝑻𝑒

𝑇𝑵𝑇ℎ0𝛿𝑘
ℎ(𝜙𝑘

ℎ)𝛾
𝜕𝜙𝑘

ℎ

𝜕𝒄𝑘
ℎ 𝑇𝑎𝑚 +

1

2
𝑻𝑒
𝑇𝑩𝑒

𝑇 (𝛿𝑘
ℎ(𝜙𝑘

ℎ)
𝜕𝜙𝑘
𝜕𝒄𝑘

𝐷𝑘)𝑩𝑒𝑻𝑒
Ω𝑒∈Ω

−
1

2
𝑻𝑒
𝑇𝑵𝑇𝛿𝑘

ℎ(𝜙𝑘
ℎ)𝛾

𝜕𝜙𝑘
ℎ

𝜕𝒄𝑘
ℎ ℎ0𝑵𝑻𝑒] 𝑣𝑒 

The flowchart of the optimization is given in Figure 4.36. In the beginning, the 

homogenized model of thermal conductivity obtained in Section 2.5 is implemented into the FEM 

program. In the second step, the equilibrium equation is solved to obtain the temperature field and 

temperature gradient. In the third step, the objective function of the optimization and the volume 

constraint are computed. If the convergence criteria is satisfied, the optimization terminates and 

the optimal result is obtained. Otherwise, the sensitivity of the problem will continue. In the 

concurrent optimization, the optimality criteria (OC) method is employed to evolve the lattice 

density, while the upwind scheme is used to update the geometric parameters of the movable 

features through the level set scheme.  
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Figure 4.36: Flowchart of the Concurrent Optimization Process 

 

4.3.2  Numerical Examples and Validation 

To demonstrate the effectiveness of the proposed optimization method, several numerical 

examples are presented and discussed in this section. Unless otherwise specified, the volume 
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fraction restriction is set to be 𝑉∗ = 0.5. The optimization terminates if the relative difference of 

the objective function between two successive iterations is smaller than 1 × 10−4 , while the 

volume fraction constraint is satisfied at the same time. It is assumed that the properties of an 

aluminum alloy AlSi10Mg printed by the EOS DMLS system are used in all the following 

simulations; specifically, thermal conductivity is set to  110 W/m ∙ ℃ . The FEA in all the 

following examples have been performed in ANSYS V17.2.  

4.3.2.1 Variable-density LSTO with a Single-type Design-dependent Boundary  

In the first example, one type of the following three design-dependent surface/volumetric 

conditions is considered in each optimization:  1) heat flux and 2) heat generation. The IB method 

described in Section 4.1.2  is used to implicitly impose these conditions. As shown in Figure 4.37, 

the design domain has a dimension of 60×60×12 mm3, while four void features including two 

blocks and two cylinders are initially placed inside the design domain to make the thermal load 

path assymetric. All the undefined surfaces are considered adiabatic. The design domain is 

discretized with a mesh of 84,180 eight-node elements. The density range of the lattice cells is set 

to be 𝜌 = 0.2 and 𝜌 = 0.9.  
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Figure 4.37: CAD Model for the First Three Examples. (a) Dimension of the Plate at the Top View; (b) CAD 

Model of the Plate with Thickness of 12 mm; (c) Mesh Model of the Plate. 

 

 

4.3.2.2 Heat Flux Boundary Condition 

As illustrated in Figure 4.38, a solid cylinder is positioned inside the base plate and a 

uniform heat flux of 𝑞 = 0.5W/mm2 is imposed on the surface of the solid cylinder. In addition, 

the four corners of the plate have fixed temperatures in different magnitudes. The intial position 

of the cylinder is (x=0, y=2) mm and its radius is 𝑅 = 3 mm. The optimization problem is to 

minimize the thermal potential energy of the structure by finding the optimal position of the 

cylinder and the optimal lattice density distribution simultaneously. 
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Figure 4.38: Optimization Problem Involving a Movable Cylinder with Heat Flux Boundary Condition. 

 

 

Figure 4.39 presents the optimization results, including the lattice density distribution and 

the corresponding temperature field. It can be seen that the solid cylinder moves towards the lower 

left corner of the plate, since the temperatures at the lower corners are smaller than those of the 

upper corners, and the top left cylinder void can provide better thermal condution path than the top 

right block void. The results also show that the lattice density distribution depends strongly on the 

position of the cylinder to form the effective thermal conduction path. Figure 4.40 gives the 

convergence history of the objective function and the maximum temperature, as well as the 

position of the cylinder. The objective function of the concurrent design decreases from 

1.8 × 108 W ∙ K to 8.3 × 107 W ∙ K (53.7% decrease), while the maximum temperate is reduced 

from 204.2℃  to 97.3℃  (52.4% decrease). The cylinder moves to the final position of (𝑥 =

−9.7, 𝑦 = −13.5) mm. 
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(a)                                                (b)                                              (c) 

 

(d)                                                (e)                                              (f) 

Figure 4.39: Optimization Result with Moveing Heat Flux Boundary. (a)-(c) Relative Density Distribution at 

Iteration 1, 10 and 58, and (d)-(f) Corresponding Temperature Distribution. 
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                                              (a)                                                                                   (b) 

Figure 4.40: Convergence History of the Optimization: (a) Optimal History of the Objective Function and 

Maximum Temperature of the Design Domain and (b) Position of the Movable Boundary. 

 

 

For comparison, an alternative problem is studied in which the cylinder position is fixed 

instead. Figure 4.41 gives the optimization result, where the lattice materials nearly evenly 

distribute along the four paths between the corners and the cylinder. Figure 4.41(c) presents the 

convergence history of the objective function and the maximum temperature. The objective 

function decreases from  1.8 × 108 W ∙ K to 9.5 × 107 W ∙ K (47.6% decrease) and the maximum 

temperature reduces from 204.2 ℃  to 108.9 ℃  (46.7% decrease). Compared to the results 

obtained from the concurrent optimization, the objective function value is 6.11% higher, while the 

maximum temperature is 11.5 ℃ larger. It implies that the concurrent method can effectively 

improve the result optimality compared to the LSTO alone.  
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                   (a)                                                        (b)                                                        (c) 

Figure 4.41: Optimization Result with Moveing Heat Flux Boundary.(a) Optimal Density Distribution; (b) 

Temperature Distribution (c) Convergence History. 

 

 

To verify the accuracy of the homogenized FEA model and IB method, we conduct full 

scale simulation of the optimized models obtained from both the concurrent optimization and the 

LSTO. Figure 4.42 illustrates the temperature field of the full-scale simulation. The maximum 

temperature of the concurrently optimized model obtained through full scale simulation is 97.0℃, 

which is 0.31% smaller than that obtained from homogenization model combined with the IB 

method. The difference in maximum temperature of the LSTO model between full scale simulation 

and homogenized model is about 0.5%. The small error proves the accuracy of the IB method and 

the homogenized FEA model.  
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                              (a)                                                                             (b) 

Figure 4.42: Full Scale Simulation for the Concurrent Design and Fixed Design: (a) Concurrent Design; (b) 

Fixed Design.  

 

 

One important aspect of concurrent optimization is the dependency of initial conditions. 

To examine this dependency, a numerical experiment is performed to investigate the influence of 

the initial position of the movable feature on the final design. Figure 4.43 illustrates the CAD 

model of the experiment. The boundary conditions and material property of the base plate are the 

same. The cylinder applied heat flux surface condition is initially placed at four different positions: 

#1 (x=2, y=-10) mm, #2 (x=-5, y=12) mm, #3 (x=-11, y=-2) mm, and #4 (x=11, y=3) mm. Other 

basic settings, such as relative density bond and volume fraction of the structure, remain the same.   
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Figure 4.43: Optimization Problem Involving Solid Cylinder with Different Initial Positions. 

 

 

The optimization results of this example are presented in Figure 4.44, including the initial 

density profile, optimal density profile and the temperature distribution of the final design. As 

illustrated in the figure, when the cylinder is randomly distributed in the base plate, it tends to 

move towards the nearest corner of the plate. The density distribution of the background lattice 

structure depends strongly on the final position of the cylinder, in which the high-density paths are 

formed to efficiently conduct the heat from the heat source to the lower temperature corner.  More 

details about the optimization results are tabulated in Table 4.3. It can be seen that the #1 cylinder 

shows best performance compared with the other three cases. The reason is that the cylinder is 

positioned at the lower right corner, where temperature is smaller than the two upper corners, while 

the cylindrically void feature allow better heat conduction. The #4 cylinder exhibits the worst 

performance, because the temperature of the nearest corner is higher than the bottom two corners. 

The other two cases show similar evolution, in which the cylinder moves to the nearest corner and 

high-density path is generated for efficient heat conduction. Based on the investigation above, it 

is found that the optimization results have strong dependency on initial conditions. This implies 
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that the movable features tend to be positioned at a local optimal position and the density 

distribution of the base plate is determined by the cylinder location. 

 

 

 

                                     (a)                                (b)                              (c)                             (d) 

Figure 4.44: Optimization Result of Moving Heat Flux with Different Initial Positions. (a) #1 Cylinder (b) #2 

Cylinder (c) #3 Cylinder and (d) #4 Cylinder. 
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Table 4.3: Comparison of the Optimization Results for Cylinder Subjected to Heat Flux with Different Initial 

Positions. 

 #1 #2 #3 #4 

Initial position (mm) (2,-10) (-5,12) (-11,-2) (11,3) 

Final position (mm) (12.1,-15.8) (-14.6,14.6) (-13.4,-12.9) (15.7,10.4) 

Objective function 

change (W ∙ K) 

1.68 × 108~ 

7.74 × 107 

(↓53.9%) 

1.68 × 108~ 

7.76 × 107 

(↓53.8%) 

1.70 × 108~ 

7.96 × 107 

(↓53.2%) 

1.67 × 108 

~7.88 × 107 

(↓52.8%) 

Maximum 

Temperature change 

from homogenization 

(℃) 

197.8℃~92.8

℃ 

(↓53.1%) 

199.0℃~95.5℃ 

(↓52.0%) 

199.7℃~96.2

℃ 

(↓52.0%) 

197.7℃~96.9

℃ 

(↓51.0%) 

Maximum temperature 

from simulation (℃) 

93.8℃ 94.7℃ 96.7℃ 97.9℃ 

 

 

 

Full scale simulations are carried out to examine the accuracy of the homogenized model. 

Figure 4.45 illustrates the temperature distribution while the maximum temperatures are tabulated 

in table 1. Comparing with the prediction from homogenization, the variation of the maximum 

temperature between full scale simulation and homogenized model is much smaller (i.e. around 

1%). This demonstrates that homogenization can be efficiently used for the representation of 

variable density lattice structure including movable feature.   
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               (a)                                     (b)                                      (c)                                    (d) 

Figure 4.45: Full Scale Simulation for Different Initial Positions of the Cylinder with Heat Flux. (a) Cylinder 

#1, (b) Cylinder #2 (c) Cylinder #3 and (c) Cylinder #4. 

 

 

4.3.2.3 Heat Generation Problem 

The second example considers the movable feature with heat generation volume condition. 

As demonstrated in Figure 4.46, a cross feature is placed at the center of the base plate, and a heat 

generation rate of 0.2 W/mm3 is imposed on it. The cross feature has the initial position of (𝑥 =

0 , 𝑦 = 0 ) mm and , 𝜃 = 0 rad , and it has the design freedom of planar movement and roration. 

Hence there are three geometric design variables for the cross, which include 𝑥 coordinate, 𝑦 

coordinate, and angle 𝜃 of the cross.  The other aspects of the problem setup are the same as the 

previous example.  

 

 



 196 

 

Figure 4.46: Optimization Problem Involving a Cross with Heat Generation Boundary Condition. 

 

 

Figure 4.47 presents some intermediate results and the final design. The trajectory of the 

cross feature is similar to the last example. The cross moves towards the lower left corner and 

rotates to allow the heat to efficiently conduct to the four corners. The difference is that the high-

density path connecting the upper right corner is not as thick as the other three paths, as the cross 

is the farthest away from it. Figure 4.48 shows the convergence history of the objective function, 

maximum temperature, and position of the cross feature. The final position of the cross is (𝑥 =

−5.6, 𝑦 = −10.7) mm and 𝜃 = 0.34 rad. The objective function reduces from 2.8 × 108 W ∙ K 

to 1.2 × 108 W ∙ K (56.9% decrease) and the maximum temperature decreases from 246.1 ℃ to 

119.0 ℃ (51.6% decrease).   
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                          (a)                                              (b)                                            (c) 

 

                          (d)                                              (e)                                            (f) 

Figure 4.47: Optimization Result with Moving Heat Generation: (a)-(c) Density Distribution of the Design 

Domain at Iteration 1, 10 and 73; (d)-(f) Corresponding Temperature Distribution of the Design Domain. 
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                                           (a)                                                                               (b) 

Figure 4.48: Convergence History of the Optimization: (a) Optimal History of the Objective Function and 

Maximum Temperature of the Design Domain and (b) Position of the Movable Boundary. 

 

 

An optimization process with the fixed cross position is conducted and the corresponding 

result is given in Figure 4.49. Differences can be clearly identified that materials are more evenly 

distributed along the four conduction paths while the two connecting the two bottom corners are 

slightly thicker because of the lower tempature at the bottom corners. As illustrated in Figure 

4.49(c), the objective function converges from 2.8 × 108 W ∙ K  to 1.4 × 108 W ∙ K  (50.8% 

decrease) and the maximum temperature reduces from 246.1 ℃ to 131.0 ℃ (46.7% decrease). 

Comparing with the fixed design, the concurrent optimization result is 6.1% better in thermal 

potential energy, while the highest temperature drops 11.9 ℃. This demonstrates the significant 

advantage of the proposed concurrent strategy.  
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                      (a)                                                     (b)                                                        (c) 

Figure 4.49: Optimization Result with Fixed Heat Generation Boundary: (a) Optimal Density Distribution; 

(b) Temperature Distribution And (c) Convergence History. 

 

 

Again, full scale simulation is performed to verify the accuracy of the homogenization-

based simulation. Figure 4.50 shows the full-scale simulation results of both the concurrent design 

and the design with fixed cross feature position. It can be seen that the highest temperature agrees 

well in both cases and there are only small differences of 1.2% for the concurrent design and 0.25% 

for the fixed design.   
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                              (a)                                                                  (b) 

Figure 4.50: Full-scale Simulation for the Concurrent Design and Fixed Design:  (a) Concurrent Design and 

(b) Fixed Design. 

 

 

4.3.2.4 Cooling Channel Design Example 

In this case, the proposed methodology is employed to optimize the lattice density 

distribution and at the same time, find the optimal layout of the cooling channels in a three-

dimensional setting. Figure 4.51 presents the CAD model, boundary conditions and initial layout 

of the cooling channels. As illustrated in the figure, the cooling channels are initially placed in two 

parallel next to the key-hole shaped heat source at the center of the design domain (shown red in 

color). A constant heat flux of 0.5 W/mm2  is applied to the surface of the heat source. A 

temperature of 22 ℃  is applied to the six surfaces of the rectangle domain. A constant heat 

convective rate of 1 W/mm2 is applied to the cooling channel surface and the coolant temperature 

is assumed to be 10 ℃. Note that the temperature of the coolant will increase as the fluid flow 

passes through the channels due to the heat from the cooling target. In this work, to simplify the 
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calculation of the cooling processes, we assume the coolant temperature is a constant along the 

channels. For more accurate prediction, heat transfer in the channels will need to be taken into 

account. The vertical channel segments illustrated in Figure 4.51 are numbered from 1 to 4 as 

shown in the right panel of the figure. In the optimization, a constraint of distance from the 

channels to surface of the heat source is used to prevent the cooling channels from moving out of 

the design domain. Considering practical application, the inlet and outlet channel segments are 

free to translate and rotate but the angles between adjacent segments are maintained, in order to 

ensure the flow can be easily pumped into and out of the channel.   

 

 

 

Figure 4.51: Optimization Problem Involving Cooling Channels with Heat Convection Boundary. 

 

 

Due to the geometric symmetry, only half of the design domain is considered in the 

numerical analysis. The heat flux and temperature boundary conditions are explicitly applied to 
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the finite element model, while the heat convection boundary condition is implicitly applied to the 

cooling channel surfaces using the IB method. Figure 4.52 illustrates the mesh information and 

boundary conditions of the model. A 103,923 tetrahedral 10-node element mesh is employed in 

the simulation to solve the temperature field.     

 

 

 

Figure 4.52: Model of Cooling Channel Problem for Optimization: (a) Mesh Model Including 103923 Ten-

Node Tetrahedral Elements; (b) Explicit Boundary Condition for the Design Domain Including the Heat Flux 

at the Inner Surface and The Temperature at the Outer Surface. 

 

 

Figure 4.53 provides the optimization results including the lattice density distribution, the 

temperature field and the convergence history. As shown in the figure, the material distribution 

exhibits the expected trend that high densities appear near the heat source, while lower densities 

are at the areas far from the heat source. This effectively enhances the structural heat transfer 

effect. The evolution of the temperature field further proves this conclusion, i.e., the temperature 
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field of the final design is more uniform and evidently lower than that at the first iteration. As can 

be seen from the convergence history, the objective function of the structure decreases from 

1.0 × 109 W ∙ K  to 2.2 × 108 W ∙ K  (78.0%decrease) after 41 iterations, while the maximum 

temperature decreases from 184.1 ℃ to 50.9 ℃ (72.4% decrease).  
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                      (a)                                                     (b)                                                        (c) 

 

                      (d)                                                     (e)                                                        (f) 

 

(g) 

Figure 4.53: Optimization Result of Cooling Channel Problem. (a)-(c) Density Distribution of the Design 

Domain at Iteration (1), (3) and (41); (d)-(f) Corresponding Temperature Distribution at Iteration (1), (3) and 

(41); (g) Convergence History.  
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The detailed convergence history is given in Figure 4.54 showing the evolution of the 

cooling channel positions. Here the cross-sectional view from the top is provided. In this view, the 

solid lines represent the cooling channels near the upper surface, and the dash line indicates the 

cooling channels near the bottom. Figure 4.54 (a)-(f) illustrates the layout of the cooling channels 

at different iterations. The exact positions of each pipe are presented in the last figure. It can be 

seen that the cooling channels move towards the heat source and distributed conformally to the 

contour of the heat flux boundary. This leads to a type of conformal cooling arrangement and 

promotes the heat transfer between the heat source and the cooling channels.  
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                              (a)                                         (b)                                         (c) 

 

                               (d)                                         (e)                                        (f) 

 

(g) 

Figure 4.54: Position of Cooling Channels at Different Iterations: (a)-(c) Is the Position at Iteration 1, 3 and 

41; (d)-(f) Is the Corresponding Position in 3D; (g) Convergence History of the Y Coordinate of the Vertical 

Cooling Channels. 
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For the purpose of comparison, the optimization with fixed cooling channels is carried out. 

Figure 4.55 represents the corresponding optimization results. It is seen that the objective function 

converges to 4.1 × 108 W ∙ K while the maximum temperature decreases to 75.5 ℃. Compared 

with the concurrent design, the objective function is 1.8 times larger while the maximum 

temperature is 25.4 ℃ higher in the fixed cooling channel optimization. This indicates that the 

concurrent scheme for the cooling system design is much more efficient than employing only 

LSTO.   

 

 

 

                      (a)                                                     (b)                                                        (c) 

Figure 4.55: Optimization Results of the Structure Fixed Cooling Channels: (a) Optimal Density Distribution 

of the Structure; (b) Temperature Field of the Structure and (c) Iteration History of the Objective Function 

and Maximum Temperature of the Design Domain.  

 

 

For the purpose of examination, full scale simulations are carried out for the concurrent 

LSTO design, fixed LSTO design, and also the total solid design. The number of elements used in 

the full scale FEA is 1,145,509 for the concurrent LSTO design, 1,177,279 for the fixed LSTO 
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design, and 375,087 for the full solid design, respectively, all of which are much larger that used 

in the optimization itself (103,923 elements), which is based on the homogenized model with the 

IB method. Figure 4.56 presents the temperature fields of the simulations using the same legend. 

As illustrated in the figure, the maximum temperature obtained via concurrent optimization is 

much smaller than the other two, i.e., 25.6 ℃ lower than the fixed LSTO design and 22.8 ℃ lower 

than the pure solid design. This proves that the proposed concurrent methodology can significantly 

enhance the thermal performance and reduce the maximum temperature of the structure with less 

material usage. Table 4.4 tabulates volume fraction of the structure, the maximum temperature 

obtained by full scale simulation and homogenization, and also the number of elements used in the 

simulation. Note that the maximum temperature obtained from the homogenized model is only 

1.4 ℃ lower than the full scale simulation for concurrent LSTO and 2.4 ℃ lower than full scale 

simulation for fixed LSTO. Such a small difference further demonstrates the accuracy of the 

homogenized model for variable-density lattice structure, and also shows that the IB method can 

be efficiently used to formulate the moving features with design-dependent boundary.  

 

 

 

(a)                                                     (b)                                                        (c) 

Figure 4.56: Temperature Field of Full-scale Simulation for: (a) Concurrent Optimization; (b) LSTO Result 

with Fixed Cooling Channel Layout; (c) Solid Design without Optimization. 
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Table 4.4: Comparison of Maximum Temperature of Three Designs. 

Design 

Concurrent LSTO 

design   

Fixed LSTO design Full solid design 

Numerber of element 

used for simulation 

1,145,509  1,177,279 375,087 

Overall volume fraction 0.5 0.5 1.0 

Maximum temperature 

from simulation (℃) 

52.286 77.858 75.858 

Maximum temperature 

from homogenization 

(℃) 

50.86 75.46 - 

 

 

To demonstrate the manufacturability of the design, we printed out the cooling channel 

design using metal additive manufacturing by EOS M290 DMLS system in Ti6Al4V. As shown 

in Figure 4.57, the optimized design can be printed without support structure for both the variable 

density lattice layout and the cooling channels.  

 

 



 210 

            

Figure 4.57: Photos of the Optimal Cooling Channel Design Printed out in Ti6Al4V Using the EOS M290 

DMLS System. 

 

 

4.3.3  Summary 

A novel methodology is proposed to optimize the density distribution of the lattice infill 

and the position of the movable features with design-dependent boundary conditions 

simultaneously. Asymptotic homogenization is employed to obtain the effective thermal 

conductivity of the lattice structure in terms of relative density within the whole density range. 

Specficially, the R-functions are used to represent the movable features and optimization based on 

the level set method is embedded into the lattice topology optimization procedure, leading to a 

concurrent optimization framework. Moreover, an IB method is proposed to implicitly represent 

the boundary conditions for both surface and volume boundary and detailed simulations are 

provided to demonstrate the efficiency of the method. Several numerical examples were studied 

to validate the proposed optimization framework. By comparing with the LSTO method, it is found 
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that the concurrent optimization method can significantly improve the performance of the 

structure. Full scale simulation on the variable density lattice structure design is carried out and 

the comparison with homogenized model implies that the proposed method using IB method and 

AH method can provide accurate result. In particular, we further applied the proposed algorithm 

to design the cooling channel, which significantly decreases the maximum termperature of the 

structure, even compared with fully solid design. This implies that the proposed methodology can 

efficiently applied for the optimal design with enhanced performance.  

In this work, we mainly focus on the thermal conductivity of lattice structure with movable 

features. Actually, lattice structure has great potential for heat transfer, such as natural convection 

and force convection. Our next step work will try to exploit this potential and intend to promote 

the variable density lattice structure for the design with superior thermal performance. 
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5.0 Support Structure Design for Residual Stress Induced Build Failure 

5.1 Introduction 

After several decades, powder-bed metal additive manufacturing (AM) has been among 

the most popular AM techniques to fabricate functional end-use component for various 

applications, such as aerospace, biomedical implant, mold manufacturing, etc. However, a serious 

weakness that prevents it from broad application is the residual stress inherent in the melting and 

solidification process [139-141]. In powder-bed AM, the material in the build is melted and cooled 

several times, and stress is accumulated due to inconsistent level of heating [142]. The residual 

stress leads to severe problem because it can cause warpage, cracks, and delamination during 

processing, which may block the recoater blade and result in build failure. Figure 5.1(a) illustrates 

such example of a failed build.  The powder spreading is stopped as the built part delaminates from 

the building tray and deforms so significantly that it stops the powder recoater blade from moving.  

Such a build failure is very common in practice, which leads to a waste of manufacturing time and 

material consumption.  

Another challenge of the residual stress is the large deformation after the part is removed 

from the build tray. Sometimes the part may not exhibit deformation during the printing processes, 

however, once it is cut from the substrate, residual stress is relaxed and deforms the component. 

This results in limited load resistance, dimensional inaccuracy, and reduction of the fatigue 

performance compared with the conventional bulk material [143, 144]. As illustrated in Figure 

5.1(b), an implant manufactured using Direct Metal Laser Sintering (DMLS) in Ti6Al4V shows 

undesirable deformation after removal from the build tray. For component with overhang or 
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protruding features, refer to Fig. 1(c), the problem is even more challenging since residual stress 

tends to cause distortion and leads to severe warpage and damage at those areas.  

 

 

 

Figure 5.1: Residual Stress and Large Deformation of Metal AM: (a) Bulk Block with Support Structure 

Before Cutting From the Building Chamber; (b) Implant with Support Structure after Removal from the 

Chamber; (c) Component with Protruding Feature Deformed During the Manufacturing. 

 

 

The aim of this work is to experimentally explore the feasibility of a support structure 

optimization framework for part-scale applications, in order to address the residual stress 

introduced build failure and guarantee the manufacturability. Instead of conducting detailed 

thermomechanical analysis, a modified inherent strain method [88, 145] is employed to calculate 

residual stress and simplify the computationally expensive process into a single-step structural 

analysis. This significantly reduces the computational cost from hours to minutes or seconds and 

makes it possible to use physics-based optimization for support structure design to reduce 
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maximum residual stress. The simulation is based on the hypothesis that the component is 

completely manufactured without residual stresses release due to cracks growth and delamination. 

With the progress of the layer-wised manufacturing [146, 147], more stresses accumulate in the 

component and thus the maximum residual stress obtained from the as-built component is larger 

than any intermediate states. This ensures the effectiveness of the optimization for the general 

build failure illustrated in Figure 5.1. To circumvent the error-prone mesh generation process, 

voxel-based mesh generation [148-150]is employed to discretize the domain of built part and 

support structure while a fictitious domain method (i.e. finite cell method) is employed to 

implement inherent strain method for residual stress calculation. In addition, a build orientation 

optimization method coupled with the LSTO method [108, 111, 135, 151]is used to minimize 

volume of support structure and maximum residual stress, in order to systematically address the 

residual stress induced build failure.  

The remaining content of this Chapter is organized as follows. In Section 5.2, a voxel-

based Cartesian mesh generation for a part and its support structures are introduced. Section 5.3 

give a brief introduction about the inherent strain method for fast process modeling of residual 

stresses distribution. Section 5.4 covers the build orientation optimization for support volume 

minimization and maximum residual stress reduction. Section 5.5 describes the support structure 

optimization by using the LSTO method.  

5.2 Voxel-Based Cartesian Mesh Generation for Parts and Support Structures 

One key step of minimization for support volume and simulation-based orientation 

optimization is the mesh generation. Especially when the bulk component is randomly rotated in 
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the manufacturing space, the method that can rapidly generate mesh for both the component and 

its support structure along build direction is necessary. In general, conformal mesh is employed in 

finite element analysis (FEA) to provide accurate description. This is easy to achieve for 

component with simple geometry, while for structures of highly complex geometry (i.e. aerospace 

component for metal AM shown in Figure 5.2), severe problems are encountered for conformal 

mesh generation [152]. It is because the translation from computer-aided design (CAD) model to 

finite element (FE) discretization is extremely computational expensive, and the generation of the 

conformal mesh is hardly automated and error-prone, which normally requires extra effort for trial-

and-error by the users [153]. On the other hand, the generation of support structure for complex 

geometry based on CAD model is also time-consuming, due to the construction of support 

structure using thin wall features [150, 154] or lattice structures [155-157]. The mesh generation 

for these support structure can also lead to high computational cost, making it impractical to 

minimize residual stress and at the same time to minimize support volume for build orientation 

optimization. To circumvent these problems, a voxel-based methodology is employed and 

improved to automatically generate layerwise Cartesian mesh and support structure along the build 

direction, see the results in Figure 5.2(c). Note that uniform voxel-based mesh is generated in this 

work, which may lead to large number of elements for FEA. To ensure the efficiency of the 

analysis, the selection of element size is based on the convergence study of h-version finite cell 

method (FCM) in [158].   
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                                      (a)                                                 (b)                                            (c) 

Figure 5.2: Component for Aerospace: (a) CAD Model; (b) STL File; (c) Voxel-Based Mesh and Support 

Generation. 

 

 

The voxel-based support generation was first proposed by Paul et al. [148] to minimize 

support volume and reduce form errors in the AM process. Das et al. [149] further extended this 

approach to minimize support structure volume and support contact area, and at the same time, 

maximize support structure removal to satisfy all the GD&T callouts. The voxel-based approach 

converts Stereolithography (STL) file into voxel discretization using ray tracing methods [159, 

160], and add support voxel based on the overhang facets detection. Although the facet overhang 

detection in Ref. [149] can reduce the support volume compared with the method in [148], it may 

lead to underestimation of the volume in the overhang structures that need to be supported. An 

overhang benchmark is designed to illustrate the performance of these two previous methods. As 

illustrated in Figure 5.3, there are four different overhang structures in the benchmark. 
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• Case 1. A horizontal overhang facet connected with two facets that satisfy the overhang angle. 

Support structure only needs to add under the horizontal facets. 

• Case 2. A concave feature consisted of two facets that satisfy the overhang angle (i.e. 45° along 

the build direction) requirement. No support structure is needed for this feature. 

• Case 3. A convex feature consisted of two facets that satisfies the overhang requirement but 

needs support structure added along the overhang edge. 

• Case 4. A convex feature consisted of four facets that satisfies the overhang requirement but 

needs support structure added to the protruding point overhang. 

 

 

 

 

                            (a)                                                                   (b) 

Figure 5.3: Benchmark of the Overhang for Voxel-Based Detection, (a) Angled Bottom View; (b) Home View. 

 

 

Using the method in [148], the overhang detections for the benchmark are highlighted in 

Figure 5.4(a) while the voxel-based support generation is illustrated in Figure 5.4(b). As can be 

seen, this method tends to support all the undercut discussed in Cases 1-4 and leads to an 
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overestimation for the support structure calculation, making it difficult to remove support structure 

for metal AM.  

 

 

 

                                              (a)                                                                  (b) 

Figure 5.4: Overhang Detection in [148] and Its Voxel-Based Support Generation for Benchmark: (a) 

Overhang Detection; (b) Voxel-Based Support Generation and Mesh Generation. 

 

 

The overhang detection, voxel-based support generation according to the work of [149] are 

illustrated in Figure 5.5. As shown in the figure, when only the facet overhangs are detected, 

support structure described in Cases 2, 3 and 4 is removed from the support voxel compared with 

the result in Figure 5.4(b). For edge overhang and point overhang discussed in Cases 3 and 4, the 

support generated by this method is obviously an underestimation, because the floating structures 

in those two cases can lead to failure of an AM build.  
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                                         (a)                                                                          (b) 

Figure 5.5: Overhang Detection in [149] and Its Voxel-Based Support Generation for Benchmark. (a) 

Overhang Detection; (b) Voxel-Based Support Generation and Mesh Generation. 

 

 

To address the issues of overhang detection in those previous voxel-based methods [148, 

149], similar to the work of [155], the overhangs are divided into three categories: Facet overhang, 

edge overhang and point overhang, whose definition are given below:  

➢ Facet overhang is a downward triangular facet in STL file which included angle 𝜃(𝒏𝑖
𝑓
, 𝒏𝑝) 

of its normal 𝒏𝑖
𝑓
 to the printing direction 𝒏𝑝 is not less than a threshold value, 𝜋 − 𝜃𝑓, where 

𝜃𝑓 denotes the smallest angle of a facet that can be printed without support structure. Figure 

5.6 (a) illustrates the definition of the included angle of facet about the printing direction 𝒏𝑝, 

the corresponding 2D description is shown in Figure 5.6(b). It can be seen when 𝜃(𝒏𝑖
𝑓
, 𝒏𝑝) is 

larger than the threshold value 𝜋 − 𝜃𝑓 (i.e. 
3

4
𝜋), the included angle 𝛾 between the facet and the 

horizontal surface (i.e. the black dash line in Figure 5.6 (b)) is smaller than a critical value 𝜃𝑓 

(i.e. 𝜃𝑓 =
𝜋

4
), which can lead to collapse of the manufacturing. Then, the facet 𝑖 is labeled as a 
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facet overhang and saved in set of 𝑂𝑓. Otherwise, the facet is grouped into self-supporting 

facets, which can be printed out without support structure. 

 

 

 

 

 

Figure 5.6: Definition of Included Angle of Facet about the Printing Direction: (a) Included Angle of Normal 

Of 𝒊𝒕𝒉 Facet and Printing Direction, (b) 2D Description of Included Angle for Facet 𝒊. 

 

 

➢ Edge overhang is a downward convex edges that do not belong to the facet overhang and at 

the same time the included angle between the normal of an edge 𝒏𝑗
𝑒  and the printing 

direction 𝒏𝑝 is not less than a critical angle 𝜋 − 𝜃𝑒 , where 𝜃𝑒 is the threshold angle of edges 

that can be printed without support structures. Figure 5.7(a) illustrates the definition of the 

normal of edge 𝑗, which is the addition of normal 𝒏𝑗1
𝑓

 and normal 𝒏𝑗2
𝑓

, where 𝒏𝑗1
𝑓

 and 𝒏𝑗2
𝑓

 are 

the normal of two facets (𝑗1 and 𝑗2) that are connected by edge 𝑗. As shown in Figure 5.7 (b), 

similar to the definition of facet overhang, when the included angle of edge normal 𝒏𝑗
𝑒 and 
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printing direction 𝒏𝑝 is larger than the threshold value, 𝜋 − 𝜃𝑒 , the edge is labeled as an edge 

that needs to be further analyzed for edge overhang; otherwise, the edge is safe for printing 

without support structures. 

 

 

Figure 5.7: Definition of the Edge Normal: (a) Included Angle of Normal of 𝒋𝒕𝒉 Edge and Printing Direction; 

(b) 2D Description of Included Angle for Edge 𝒋. 

 

In the work of [155], the definition of the edge normal is the average of the normal of 

its two incident facets. However, it is found that this definition may include some edges that 

satisfy the manufacturing requirement. As discussed in the four cases of benchmark, although 

the included angle of the edges in Case 2 and Case 3 are same, Case 2 does not need support 

structure while Case 3 requires support structure. To address this issue, an additional 

variable 𝛼𝑗 for edge 𝑗 is introduced and a constraint is added to distinguish edges in Case 2 and 

Case 3. The definition of introduced angle 𝛼𝑗 is given in Figure 5.8 and can be calculated using 

𝛼𝑗 = 𝜃(𝒏𝑗1
𝑓
, 𝒏𝑗2

𝑗1
), where 𝒏𝑗1

𝑓
 represents normal of facet 𝑗1 for edge 𝑗, 𝒏𝑗2

𝑗1
 is a vector which tail 

is the point of facet 𝑗1 that is not on edge 𝑗 and the head is the remaining point of facet 𝑗2, refer 
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to Figure 5.8 (a). It can be seen when 𝛼𝑗 ≥
𝜋

2
, the edge is a convex structure, while when 𝛼𝑗 <

𝜋

2
, the edge is a concave structure. Thus, the additional constraint of 𝛼𝑗 ≥

𝜋

2
 is added to ensure 

only the downward convex edge is identified in the edge overhang detection.  

 

 

 

Figure 5.8: Edge with the Same Normal but Different Support Requirement: (a) Downward Concave Edge 

without Requirement of Support Structure (b) Downward Convex Edge Needs to be Supported. 

 

 

➢ Point overhang is a point on the downward facet that is lower than its neighbor points and at 

the same time belongs neither to the facet overhang group nor to the edge overhang.  

Once the overhang facets, edges and points are detected based on the three schemes, the 

ray tracing method [159, 160] is employed to generation voxels for the bulk component and its 

support structures. By using the new detection methodology, the overhang detection and voxel-

based support and mesh generation are given in Figure 5.9(a) and (b), respectively. It can be seen 

both the downward convex edge overhang and point overhang are identified and the corresponding 
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support voxel is added in the voxel design. Comparing with the previous method, the new 

methodology can provide more accurate support volume calculation and voxel mesh generation 

for the analysis. 

 

 

       

                                             (a)                                                                   (b) 

Figure 5.9: New Overhang Detection and Voxel-Based Support Generation for Benchmark: (a) Overhang 

Detection; (b) Voxel-Based Support and Mesh Generation. 

 

 

It is noted that the software code for overhang detection and voxel mesh generation for 

both solid part and support structures is developed and implemented in MATLAB 2016a. There 

are three main functions for the implementation. First, a function is developed to read STL file and 

detect overhang faces, edges and points based on the norms of triangle facets of a given STL file. 

Second, a function of ray tracing method is developed to covert the STL file to voxel 

representation, in which the voxels corresponding to the detected overhang features are labeled 

(e.g. the yellow voxels in Figure 5.9) for support generation. Third, based on the labeled voxels, a 

function is developed to generate support voxels and combine with part voxels obtained from 

previous function to form Cartesian mesh for FCM analysis. 
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5.3 Voxel-Based Fast Process Modeling for Calculation of Maximum Stress 

5.3.1  Mechanical Properties of Lattice Structure: Elasticity and Plasticity 

In this work, lattice structure is used as the support material to dissipate heat and provide 

strength to anchor the bulk component to the substrate. Comparing with the block shell support 

structure widely used for metal AM, refer to Figure 5.10(a), the prominent characterization of 

lattice structure is its open-cell and self-support nature. This makes it an ideal material for support 

structure, since it can be printed out without support structure and also allows the trapped powder 

to be easily removed. Although lattice structure is an efficient material for support structure, it is 

computationally expensive to explicitly perform full-scale simulation to model the microstructural 

feature of lattice structure for metal AM. The major challenge is the mesh generation and 

considerably computational cost for detailed simulation on the microstructure of lattice materials.  

 

 

 

                                                 (a)                                                             (b) 

Figure 5.10: Structure for Support Structure: (a) Block Shell Support Structure; (b) Lattice Structure. 
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To avoid time-consuming computation for lattice structure, asymptotic homogenization 

(AH) [94, 161] method is employed to compute the effective elastic properties of lattice structure, 

while a multiscale model [162] is proposed to capture the anisotropy. By performing analysis on 

representative volume element (RVE) of lattice structure, a homogenized model is developed to 

treat lattice material as continuum material with equivalent properties. This simplifies the analysis 

concerning microstructural feature of lattice structure to analysis based on the homogenized model. 

Thus, full-scale simulation on lattice structure is circumvented by utilizing equivalent properties 

obtained from homogenized model to the elements in the support design domain. This makes it 

possible to conduct optimization to iteratively find the optimal orientation to minimize maximum 

residual stress. Appendix A details the AH method used to compute both effective elastic 

properties and yield strength of lattice material based on the analysis on RVE model. Detailed 

information on the AH method can be found in Refs. [94, 151, 162]. 

In this work, to study the influence of microstructure of lattice materials on residual stress 

of the AM component, three different types of lattice structure are studied. As shown in Figure 

5.11, the three lattice structures are cubic, cross, and diagonal. The major difference of these three 

lattice structures is that the “cross” lattice added crossing ligaments to the faces of the “cubic” 

lattice, while the “diagonal” lattice adds crossing ligaments to the diagonals of the “cubic” lattice. 

We would like to investigate the influence of the distribution of ligaments on the stress distribution.  

Figure 5.11 (d) illustrates support structure design for the overhang benchmark mentioned in 

Section 2 using cubic lattice structure.  
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                                 (a)                                        (b)                                    (c) 

 

(d) 

Figure 5.11: Lattice Structure Used for Support Design: (a) Cubic, (b) Cross, (c) Diagonal, and (d) Support 

Structure Design for Overhang Benchmark. 

 

 

5.3.2  Inherent Strain Method for Fast Prediction Of Residual Stress 

Powder-bed metal AM is a process to selectively melt metal powder in a layer-by-layer 

fashion according to the contour of the sliced CAD model. Once one layer of powder is melted 

and solidified, a fresh layer of powder is spread by a roller while the melting and solidification 

process is repeated until the entire part is successfully manufactured. Although metal AM 

technique has the ability to fabricate parts with complex geometry, residual stress induced failure 
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is a severe issue for this advanced technology. As explained in [139, 142, 163], two mechanisms 

introduce residual stresses into the build component at mesoscale, refer to Figure 5.12. At first, 

when a single layer of powder is rapidly scanned by the laser beam, a transient heat is input on the 

upper surface and leads to a steep temperature gradient. The heated layer tends to be freely 

expanded. However, due to the restriction of the surrounding area, an elastic compressive strain is 

introduced on the top surface. When the yield strength of the material is reached, plastic 

compression will occur on the top layer, as shown in Figure 5.12 (a). Second, in the cooling process 

of the molten top layer, the heated layer tends to shrinkage due to thermal contraction. Owing to 

the inhibition of the underlying material, the shrinkage is prevented, and a tensile stress is 

introduced on the top of the added layer, refer to Figure 5.12 (b). In the entire manufacturing 

process, each layer may experience several heating and cooling cycles at inconsistent level, which 

leads to the accumulation of the residual stresses, and thus the undesirable large deformation, 

cracks, delamination, etc.  

 

 

 

Figure 5.12: Two Mechanisms of Residual Stresses Generation at Mesoscale 
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However, it is challenging to perform iterative optimization for residual stress 

minimization due to the expensive computational cost for both mesh generation and simulation for 

full-scale thermomechanical process. For the former challenge, voxel-based Cartesian mesh 

generation proposed in Section 2 is used to circumvent the mesh generation issue. While for the 

second challenge, the most accurate way for residual stress estimation is to perform detailed 

simulation where the powder melting, and solidification process is modeled in detail based on the 

printing strategy. It has been proved that such high-fidelity analysis can provide accurate 

prediction for temperature history and deformation field [164-168]. Nevertheless, this type of 

simulation takes tens of hours for even a small-scale build and makes it impractical for part-scale 

problem. To make the proposed optimization method practical, the inherent strain method is 

employed in this work to efficiently simulate residual stress inherent in the DMLS process. There 

have been a number of published works regarding the development of this method for AM.  Keller 

et al [169] developed a multi-scale approach to extract inherent strain tensor components and 

implemented the inherent strain method by pure mechanical simulation. Good agreement was 

observed between computed distortion and experimental measure in their work. Li et al [163] 

developed a multi-scale finite element model for fast prediction of distortion of parts manufactured 

by selective laser melting (SLM) process; however, no details were given on how to extract the 

inherent strain tensor in this work. Recently, Bugatti et al [170] developed a finite element AM 

simulation based on the inherent strain method and discussed the limitations and strengths of 

inherent strain method for prediction of residual deformation in metal AM through experiments. 

As illustrated in this work, the difference for the prediction of residual distortion between the 

calibrated inherent strain method and experimental measure is less than 100 μm. Liang et al [88, 

171] proposed a modified inherent strain method for laser engineered net shaping (LENS) and 
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conducted experiments to validate the predicted residual distortion. Based on Liang et al [88, 171], 

a maximum of 10% error for the predicted residual distortion is observed. Setien et al [87] 

presented an empirical methodology to determine inherent strains and validated it using the twin-

cantilever beam made in Ti6Al4V alloy. Bilal et al [145] experimentally showed that residual 

stresses predicted by inherent strain method agree well with the value measured by contour 

method. Marvin et al [172] applied X-ray diffraction to measure the residual stress for a small test 

samples and compared with the prediction from inherent strain method. It is found that the inherent 

strain method provides reliable prediction of residual stresses.    

Although the inherent strain method has been employed to simulate residual stress and 

distortion of AM components, there are two major limitations of the existing methodology. First, 

the prominent feature of the inherent strain method is its replacement of the complex 

thermomechanical process by a pure mechanical analysis. This simplification results in lack of 

detailed information regarding thermomechanical history of the printing process. Second, the 

inherent strain method is based on the assumption of continuum description for powders in the 

simulation. This neglects the powder distribution and makes it impractical to simulate morphology 

of melting pool, evolution of microstructure, as well as the local defects (e.g. less-fusion, porosity, 

spatter, denudation, keyholing) for an AM part. However, the goal of this work is to develop an 

optimization method for build orientation to address the residual stress induced build failure at 

part-scale level. Hence, the limitations of inherent strain method at microscale are neglected, while 

the unique capability of inherent strain method for efficiently simulating residual stress for larger 

model is utilized to perform build orientation optimization. For detailed theory and validation for 

the inherent strain method, readers are referred to Refs. [88, 145, 172]. With regard to 

implementation of the proposed method, the fictitious domain method [173-175] (i.e. finite cell 
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method (FCM)) is applied to perform inherent strain method and compute residual stresses. The 

FCM method belongs to the fictitious domain method/immersed boundary method (IBM) and 

proposed by Parvizian et al [158] to avoid error-prone conformal mesh generation. It has been 

successfully applied to solve various problems, such as non-linear analysis [153], transport 

problem in porous media [176], biomechanical analysis [177, 178], etc.  

5.4 Build Orientation Optimization 

 

Build orientation plays an important role in residual stresses accumulation, since it 

determines the support structure generation and thus the distribution of stress and strain introduced 

by the manufacturing process. Consider the dogbone shown in Figure 5.13(a) as an example. The 

dogbone is built in three different directions (i.e. 0°, 45° and 90° by y-axis, refer to Figure 5.13 

(b-d)) with support structures added to support overhanging structures, which are detected by the 

method proposed in Section 5.2. It can be observed that the support structures vary a lot among 

the three build orientations. This illustrates that as the build orientation is changed, the 

manufactured volume, especially the support structure volume, is changed. To examine the 

influences of the build orientation, fast process simulation by using the inherent strain method [88, 

145, 170, 179] is performed to calculate the residual stress distributions for the three build 

orientations. Figure 5.13 (e-g) show the three residual stress distributions. As can be seen, the 

maximum normalized residual stress by Hill’s stress measure of the horizontal orientation in 

Figure 5.13 (e) is 2.30, the maximum value of orientation 45° in Figure 5.13 (f) is 1.62, and the 

maximum value of orientation 90° in Figure 5.13 (g) is 1.14, in which the vertical orientation in 
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Figure 5.13 (g) exhibits the smallest maximum residual stress comparing with another two build 

orientations. This demonstrates that build orientation has significant influence on the residual 

stress distribution. Hence, it is possible to address the residual stress induced failure through 

optimization for the build orientation. 

 

 

 

Figure 5.13: Influence of Build Orientation on a Generic Dogbone. (a) CAD Model of a Dogbone (b) Mesh of 

the Dogbone is Oriented 𝟎° by Y-Axis (c) Mesh of the Dogbone is Oriented 𝟒𝟓° By Y-Axis (d) Mesh of The 

Dogbone is Oriented 𝟗𝟎° by Y-Axis; (e) Normalized Residual Stress Distribution of 𝟎° Orientation (f) 

Normalized Residual Stress Distribution of 𝟒𝟓° Orientation (g) Normalized Residual Stress Distribution of 

𝟗𝟎° Orientation. 
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5.4.1  Optimization Model for Minimizing Support Structure Volume and Residual Stress 

In the Sections 5.2 and 5.3.2 , the methodology for calculating support structure volume 

and residual stress have been explained. Open-cell lattice structure is used as the support structure 

to anchor the solid component to build tray. When the volume fraction of the support structure is 

set to a constant value (e.g. 𝑉 = 0.3) to ensure manufacturability, both the volume of support 

structure and stress distribution are assumed to be solely determined by the build orientation. This 

makes it possible to minimize the volume of support structure while reducing maximum residual 

stress simultaneously. However, these two objectives may conflict with each other. A build 

orientation optimized for support volume may lead to a reduction of support volume but result in 

an increase of maximum residual stress. To address the conflict between these two objectives, a 

multi-objective optimization model is proposed here to optimize the build orientation in order to 

minimize the maximum residual stress along with the total volume of the support structure by a 

weighting function.  Hence the maximum stress and the volume of support structure are combined 

using a linear function to form a single weighted aggregate optimization. The definition is given 

as follows: 

𝐹(𝜃, 𝜙) = 𝑤𝜆𝑉𝑠(𝜃, 𝜙) + (1 − 𝑤)𝜎𝑚𝑎𝑥
𝐻 (𝜃, 𝜙) (5.1) 

𝑠. 𝑡.   𝐊𝐔 = 𝐅𝑖𝑛 

−𝜋 ≤ 𝜃 < 𝜋 

−𝜋 ≤ 𝜙 < 𝜋 

(5.2) 

where 𝜃 and 𝜙 are the angles by which the part is rotated about 𝑥 and 𝑦 axis, respectively, and 

𝐹(𝜃, 𝜙)  represents the combined objective function; 𝑉𝑠  is the volume of support structure 

calculated from support voxel; 𝜎𝑚𝑎𝑥
𝐻  denotes the normalized maximum residual stress in the 
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domain including both the support structure and bulk component. 𝑤 is the weighting value used 

to provide the flexibility to vary the contribution of the different objectives to the combined 

objective function. 𝜆 represents the scaling factor used to ensure that the support volume is within 

the same order of magnitude as the maximum stress. The two inequalities in Eq. (5.2) impose the 

constraints of the rotation angle about the x and y axes. Note that z axis is assumed to be the 

printing direction.   

Since the explicit mathematical model between the objective function in Eq. (5.1) and 

design variables are difficult to obtain, the heuristic optimization method named particle swarm 

optimization (PSO) [180] is employed to find the optimal solution. For multi-objective 

optimization problem, due to the conflict among competitive objectives, there exists more than 

one optimal solutions, which are referred as Pareto Optimal solutions [181]. The solutions within 

the Pareto Optimal solutions are considered equally optimal. Particularly in this work, the solutions 

with minimum height are selected as the optimal design since the manufacturing time is 

determined by the height of the part. The lower the part, the less the time it takes to print. 

5.4.2  Numerical Examples and Experimental Validation 

For validation purpose, a realistic industrial component is used to investigate the 

performance of the proposed orientation optimization framework. The aims of the investigation 

include studying the effects of: 1) three overhang strategies on the minimum support volume 

calculation, 2) different types of lattice structures on the minimization of maximum residual stress, 

and 3) multiple objective optimization on the final design. To examine the performance of the 

optimal design for stress minimization, the designed component is printed out by the EOS M290 
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DMLS system in Ti6Al4V and compared with the non-optimal design and default design provided 

by the Magics software widely used for inserting supports into a build prior to printing.  

The material properties of Ti6Al4V is used in the analysis include Young’s modulus (𝐸 =

110 GPa ), Poisson’s ratio (𝜈 = 0.3 ), and yield strength (𝜎𝑦
∗ = 1,060 MPa ). Without losing 

generality, the stresses illustrated below are normalized by the material’s yield strength. When the 

local normalized stress is larger than 1, the material is undergoing plastic deformation; when the 

stress is smaller than 1, the stress state is elastic. The new overhang detection algorithm proposed 

in Section 2 is applied to compute the support volume. The inherent strain method, coupled with 

homogenized model of the lattice structure (introduced in Section 3), is employed to compute 

residual stress of the support domain and bulk component domain very efficiently. To ensure 

manufacturability of the support design, the volume fraction of the support structure is set to be 

𝑉 = 0.3, and the lowest point of the component to the build tray is 7 mm for the purpose of 

component post-removal. Particle swarm optimization (PSO) method is applied to solve the 

optimization problem in Eq. (1-2) [180]. The optimization is terminated when the change of the 

objective function within five successive iterations is smaller than 1 × 10−3 while the minimum 

iteration number constraint (i.e. 10 iterations at least) is satisfied. The FCM method for executing 

the inherent strain method and multi-objective PSO method are implemented using MATLAB 

2016a. Generation of the lattice structure support is conducted by an in-house software code based 

on the application programming interface (API) of Autodesk Inventor Professional 2018. The 

computer with configuration of 7-core Intel(R) Xeon(R) CPU E5-2687 v3 @ 3.10 GHz is used for 

the mesh generation, FCM analysis, and optimization. Without specific notation, the 

computational cost discussed in the following section is calculated in this computer.  
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5.4.2.1 Minimization of the Support Volume Based on the Proposed Overhang Detection 

In this case, a realistic industrial component is taken as the objective to compare with the 

three overhang detection methods described in Section 5.2. Figure 5.14 illustrates the CAD model 

and STL file of the bearing bracket used for the investigation. As shown in the figure, the bracket 

has two major features: One is the cylinder, which has an inner diameter of 18 mm and external 

diameter of 30 mm; the other is the base plate including two bolt holes used to fix the whole 

structure, whose dimension is 48 × 36 × 8 mm3. The two features are connected by a rib structure 

with a constant thickness of 8 mm. Due to its complexity, it is difficult to empirically determine 

the optimal orientation of the component to minimize support volume and maximum residual stress 

simultaneously. This case mainly focuses on the minimization of support volume and 𝑤 in Eq. 

(5.1) is equal to 1. Hence, the optimization problem becomes a single support volume optimization 

for finding the optimal build orientation. Considering the symmetry of the component along the 

𝑥 − 𝑧 plane, the ranges of the rotation of the part are 𝜃 ∈ [−𝜋, 𝜋] and 𝜙 ∈ [0, 𝜋], respectively. In 

the optimization, 32 points are being uniformly distributed in the design domain as the initial 

particles for the PSO method. The three overhang detection schemes introduced in Section 5.2 are 

employed here for comparison purpose.  
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                                                  (a)                                                                 (b) 

Figure 5.14: Bearing Bracket for Investigation of the Optimization Framework. (a) CAD Model (b) STL File. 

 

 

Figure 5.15 illustrates the initial state of the particles for the PSO method, the convergence 

history of the best position and the optimal support design with the build tray. The black dots given 

in the contour plot of Figure 5.15 (a) and the surface plot of Figure 5.15 (b) are the orientations of 

the particles. As shown in Figure 5.15 (a) and (b), there exists many local optima in the searching 

space according to the initial particles. By moving these particles using the PSO method, the 

objective function goes from 4.511 × 104 mm3 to a converged value of 4.132 × 104 mm3, or a 

decrease of 8.4%. The optimal orientation of minimum support volume is given in Figure 5.15 (d), 

in which the orientation is (𝜃, 𝜑) = (𝜋,
𝜋

2
) .  
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                                       (a)                                                                                  (b) 

 

                                              (c)                                                                             (d) 

Figure 5.15: Result of Support Volume Minimization Using the Method in [148]. (a) Contour Plot of the 

Support Volume at Initial State (b) Surface Plot of the Support Volume at Initial State (c) Convergence 

History of Best Objective Function at Each Iteration (d) Optimal Support Design. 
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The results based on the facet overhang detection proposed in [149] are shown in Figure 

5.16 including contour plot and surface plot of initial state of the support volume. For comparison 

purpose, the initial orientations of the particles are identical to the previous one. As can be seen, 

due to the change of the overhang detection, the initial distribution of the support volume in Figure 

5.16(a) and (b) is different from the previous one. After 40 iterations, the support volume is 

reduced to zero and the orientation coordinates are (𝜃, 𝜙)=(0.7192, 2.7842).  As shown in Figure 

5.16 (d), since at the optimal orientation, no facet overhang is detected, and the bulk component is 

suspended on the build tray, which is not feasible.  This shows that the single facet overhang 

detection strategy cannot guarantee successful support generation.  
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                                          (a)                                                                            (b) 

 

                                            (c)                                                                   (d) 

Figure 5.16: Result of Support Volume Minimization Using the Method in [149]. (a) Contour Plot of the 

Support Volume at Initial State (b) Surface Plot of the Support Volume at Initial State (c) Convergence 

History of Best Objective Function at each Iteration (d) Optimal Support Design. 
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The optimization result using the overhang detection proposed in this work is given in 

Figure 5.17. Comparing with the other two methods, the initial contour plot and surface plot are 

similar to the results shown in Figure 5.16(a), but the optimal result is much different due to the 

detection of edge and point overhang. The minimum support volume of the particles converges 

from 2.104 × 104 mm3  to 6.988 × 103 mm3  , or a decrease of 66.8%, and the optimal 

orientation is (𝜃, 𝜙) = (−2.356,  3.130) . The optimal orientation obtained by the proposed 

methodology is different from the previous methods. 
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                                               (a)                                                                             (b) 

 

                                               (c)                                                                      (d) 

Figure 5.17: Result of Support Volume Minimization Using the New Method. (a) Contour Plot of the Support 

Volume at Initial State (b) Surface Plot of the Support Volume at Initial State (c) Convergence History of 

Best Objective Function at each Iteration (d) Optimal Support Design. 
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The mesh generation was performed on the computer with 7-core CPU. The computation 

cost of voxel mesh generation, overhang detection and volume calculation for the bearing bracket 

using the in-house MATLAB code was 0.5644 seconds per orientation, which equates to 24.08 

mins in total for 80 iterations shown in Fig. 18. For comparison purpose, the bearing bracket was 

meshed by body fit mesh of the same element size (e.g. 1 mm) and the same number of computer 

cores using ANSYS v18.2. The computation cost was 6 s and so is 11 times longer than the 

proposed voxel mesh generation. This implies that the proposed voxel-based support structure 

detection and mesh generation is much faster than the body-fit mesh method and makes it desirable 

for support volume calculation and mesh generation for iterative optimization. 

5.4.2.2 Study of the Design with Different Lattice Structure 

In this sub-section, the single objective of minimizing maximum residual stress is 

performed based on different types of lattice structures given in Figure 5.10. The bearing bracket 

used in the previous case is utilized to compare the influence of microstructure of lattice structure 

on the optimal orientation for minimization of maximum stress. Note that the volume fraction of 

lattice structure is set to be 𝑉∗ = 0.3 to ensure manufacturability. In the optimization, there are 18 

particles uniformly distributed in the design domain (i.e. 6 points for 𝜃 ∈ [−𝜋, 𝜋], and 3 points for 

𝜙 ∈ [0, 𝜋]). The goal of the optimization is to minimize the maximum residual stress through the 

adjustment of build orientation on the build tray. For comparison purpose, the stress distributions 

of bearing bracket with the support structure consisting of the three lattice structures at default 

position are illustrated in Figure 5.18(a-c). It can be seen that although the stress distributions are 

different, the larger stresses are mainly distributed at the bottom surface of support structure along 

the build tray, where most cracks are typically formed in the AM process. The maximum 

normalized residual stresses for three lattice structures are much higher than the yield strength of 
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unity (i.e. 1.71, 1.85 and 2.02, respectively). This can lead to severe delamination and warpage 

during the printing process.  

 

 

 

Figure 5.18: Normalized Stress Distribution of Bearing Bracket with Support Structure Consisting of 

Different Lattice Structure. (a) Cubic Lattice Structure,𝝈̅𝒎𝒂𝒙
𝑯 = 𝟏. 𝟕𝟏, (b) Diagonal Lattice Structure, 𝝈̅𝒎𝒂𝒙

𝑯 =

𝟏. 𝟖𝟓 (c) Cross Lattice Structure, 𝝈̅𝒎𝒂𝒙
𝑯 = 𝟐. 𝟎𝟐. 

 

 

To examine the efficiency of the inherent strain method, the three designs with lattice 

structure as their support, as well as the design with default support structure provided by the 

Magics software are printed out for deformation observation. Figure 5.19 illustrates the CAD 

models of the four designs. It is noted that the design of support structure from the Magics software 

is the default setting with a volume fraction of 0.4.  
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Figure 5.19: CAD Model of the Bearing Bracket with Support Structures for Printing Test: (a) Design of 

Cubic Lattice Support Structure (b) Design of Diagonal Lattice Support Structure (c) Design of Cross Lattice 

Support Structure (d) Design of Shell Wall Support Structure From Magic Software. 

 

 

For validation purpose, the four designs in Fig. 20 were printed out and the samples are 

illustrated in Fig. 21. As shown in the figure, although the bearing brackets were “successfully” 

manufactured using powder-bed metal AM, cracks and large deformation are observed and 

highlighted by red box. Compared with the default support structure design from the Magics 

software, the designs with lattice structure support exhibit better performance for the deformation 

control. For instance, the support from the Magics software detaches from the build tray and has 
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severe cracks and delamination for the manufactured part, see Figure 5.20(b), while the design 

with lattice structure support shows relatively small deformation. On the other hand, although 

lattice support structure can significantly reduce the deformation of the part, warpages are 

observed at the bottom surface of the bracket around the corners of the horizontal plate. It is 

consistent with the stress distribution in Figure 5.18, where the maximum stress emerges near the 

corners of the bottom surface. This demonstrates that the proposed fast process modeling 

framework can provide good guidance to possible build failure for the laser powder-bed AM 

process.  

 

 

 

Figure 5.20: Printed Samples in Default Orientation with Different Support Structures: (a) Side View of the 

Bearing Bracket with Cubic Lattice Support Structure, (b) Side View of the Bearing Bracket with Shell Wall 

Support Structure, (c) Side View of the Bearing Bracket with Cross Lattice Support Structure (d) Side View 

of the Bearing Bracket with Diagonal Lattice Support Structure, (e) Front View of the Printed Bearing 

Bracket. Note that Cracks are Highlighted by Red Box in Figure (a-d). 
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The following task is to apply the proposed method to find an optimal orientation for the 

bearing bracket based on different lattice structure supports. The first test is the cubic lattice 

structure, whose geometry is given in Figure 5.10 (a). The material properties obtained from the 

homogenized model for elasticity and multiscale model for plasticity are applied to the support 

voxels in the analysis to calculate the maximum residual stress. The initial distribution of the 

maximum residual stress is plotted in Figure 5.21(a) and Figure 5.21 (b), respectively. It can be 

observed that the distribution is much difference from the support volume distribution given in 

Figure 5.17(a). This implies that there is a trade-off between support volume minimization and 

maximum residual stress minimization. Figure 5.21 (c) presents the convergence history of the 

optimization. The minimum value of the maximum normalized stress converges from 1.56 to 1.06 

after 54 iterations with a reduction of 32.1%, while the bearing bracket is orientated at (𝜃,𝜙)=(-

2.359, 0.08). The corresponding support volume in this orientation is 1.0212 × 104 mm4, which 

is 3.224 × 103 mm4 larger than the result of support volume optimization. The voxel-based mesh 

and the normalized stress distribution of the optimal design are given Figure 5.21 (d) and (e), 

respectively, while the realization of the support structure using cubic lattice structure is provided 

in Figure 5.21 (f) including the bottom view of the support. Compared with the optimal support 

volume in Figure 5.17(d), the cylindrical feature is rotated to the downward direction of the 

building direction and the part deviates a little along the build direction (i.e. 𝜑 = 0.08). The bottom 

view also illustrates this observation. Another interesting observation is that the optimization tends 

to orient the part with edge overhangs. This implies that edge overhang for cubic lattice structure 

may have smaller residual stress.  
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                        (a)                                                          (b)                                                    (c)  

 

                       (d)                                      (e)                                             (f)  

Figure 5.21: Orientation Optimization of Maximum Residual Stress Minimization for Bearing Bracket with 

Cubic Lattice Structure Support: (a) Contour Plot of the Initially Maximum Normalized Stress Distribution; 

(b) Surface Plot of the Initially Maximum Normalized Stress Distribution; (c) Convergence History of the 

Objective Function; (d) And (e) Optimal Orientation and the Corresponding Normalized Stress Distribution; 

(f) Optimal Orientation Design Reconstructed by Cubic Lattice Structure. 

 

 

The second test lattice structure is the diagonal lattice structure, whose geometry is given 

in Figure 5.10(b). The optimization results for support structure consisting of diagonal lattice 

structure are illustrated in Figure 5.22. Due to the change of the lattice geometry, the initially 
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maximum residual stress distribution in Figure 5.22 (a) and (b) is different from the case of cubic 

lattice structure in Figure 5.22 (a) and (b), but the regions are much similar. The convergence 

history of the best objective function in each iteration is shown in Figure 5.22 (c). After 50 

iterations, the best maximum normalized residual stress is reduced from 1.24 to 0.93, which is 

below the yield strength and a reduction of 25% after optimization. The bearing bracket is oriented 

in the direction (𝜃, 𝜙)=(-2.343, 0.004) and the support volume is 3.288 × 104 mm3. Due to the 

existence of the internal ligaments in the diagonal lattice structure, the optimal orientation and 

support volume are different from cubic lattice structure. The voxel-based mesh, normalized stress 

distribution and reconstruction for support structure design by diagonal lattice structure are given 

in Figure 5.22 (d-f), respectively. From the bottom view of reconstruction, the part is more 

straightforward compared with the cubic design (i.e. 𝜑 = 0.004). 
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                             (a)                                                      (b)                                                 (c) 

       

                           (d)                                      (e)                                              (f) 

Figure 5.22: Orientation Optimization of Maximum Residual Stress Minimization for Bearing Bracket with 

Diagonal Lattice Structure Support: (a) Contour Plot of the Initially Maximum Normalized Stress 

Distribution; (b) Surface Plot of the Initially Maximum Normalized Stress Distribution; (c) Convergence 

History of the Objective Function; (d) and (e) Optimal Orientation and the Corresponding Normalized Stress 

Distribution; (f) Optimal Orientation Design Reconstructed by Diagonal Lattice Structure. 

 

 

Again, the stress optimization is conducted on the build with support structure consisted of 

the cross-lattice structure. Compared with cubic lattice structure, twelve ligaments are added to the 

six faces of the cubic lattice structure, refer to Figure 5.10(c). The optimization results are 
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illustrated in Figure 5.23. The objective function converges from 1.48 to 1.16 after 37 iterations 

and the bracket is oriented in the direction (𝜃, 𝜙)=(2.348, 0). The support volume at the optimal 

orientation is 3.007 × 104 mm3. For comparison purpose, the optimization results of the three 

lattice structures are tabulated in Table 5.1. Based on the comparison, it can be concluded that the 

geometry of the lattice structure has a significant influence on the stress optimization, in which the 

diagonal lattice structure exhibits the best performance among the three lattice structures. By 

rotating the component, the maximum residual stress can be considerably reduced, but cannot 

guarantee the magnitude of the maximum stress is less than the yield strength. Moreover, the 

computational cost per orientation and the total cost are also tabulated in Table 5.1. It can be 

observed that the simulation time per orientation is 20.9 s while the total optimization cost varies 

with the change of lattice structure. Differentiating from the support volume minimization, stress 

analysis is much more time-consuming than the volume calculation due to the process of FCM 

analysis for residual stresses. The general computation cost of build orientation for bearing bracket 

is 3-5 hours using the in-house code. The computation cost should be acceptable to practicing 

designers and operators as typical complex parts take days to build by powder-bed process.  To 

further accelerate the optimization, potential improvement can be achieved in the future by 

implementing the proposed method using a GPU-based platform. 
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                              (a)                                               (b)                                                   (c) 

 

                         (d)                                      (e)                                             (f) 

Figure 5.23: Orientation Optimization of Maximum Residual Stress Minimization for Bearing Bracket with 

Cross Lattice Structure Support. (a) Contour Plot of the Initially Maximum Stress Distribution; (b) Surface 

Plot of the Initially Maximum Stress Distribution; (c) Convergence History of the Objective Function; (d) and 

(e) Optimal Orientation and the Corresponding Normalized Stress Distribution; (f) Optimal Orientation 

Design Reconstructed by Cross Lattice Structure. 
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Table 5.1: Comparison of the Optimization Results of the Three Lattice Structure Types 

 Cubic Diagonal Cross 

Initially smallest maximum normalized 

stress 

1.56 1.24 1.48 

Optimized maximum normalized stress 1.06 0.93 1.16 

Optimal orientation (𝜙,𝜑) (-2.359, 0.08) (-2.343, 0.004) (2.348, 0) 

Support volume of optimal orientation 

(mm3) 

1.0212 × 104 3.288 × 104 3.007 × 104 

Total Iteration 54 50 37 

Average computational cost per orientation 

(seconds) 

20.9 

Total computational cost (hours) 5.62 5.21 3.85 

 

 

 

To examine the performance of the proposed methodology, the three designs shown in 

Figure 5.21(f), Figure 5.22(f) and Figure 5.23(f) are printed out in Ti6Al4V using the EOS DMLS 

system. Compared with the samples shown in Figure 5.20, it can be observed in Figure 5.24 that 

all the three designs are successfully printed out without obvious deformation. This implies that 

although the maximum residual stress is larger than yield strength for cubic and cross lattice 

supports, the components can still be printed out successfully without obvious cracks. The photos 

also prove that the overhang detection and support structure generation are efficient for a given 

component.  
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Figure 5.24: Photos of the printed-out bearing bracket with support structure consisted of three lattice 

structures. 

 

 

5.4.2.3 Study of Multi-objective Optimization 

In the previous two sections, a single objective function was developed to find a build 

orientation to minimize support volume or maximum residual stress. Minimizing both the support 

volume and maximum residual stress simultaneously may be more important for practical 
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applications, since support structure as a sacrificial structure is removed after the manufacturing. 

To compare with the previous results, the same bearing bracket is employed, and different weight 

factor, such as 0, 0.2, 0.4, 0.6, 0.8 and 1.0, in Eq. (5.1) is investigated. Note that diagonal lattice 

structure is used as the support material due to its good performance for stress minimization, and 

the volume fraction is set to be 0.3. There are eighteen particles initially distributed in the design 

domain. The PSO method [180] is employed to conduct the optimization to minimize the two 

objectives together.  

The convergence history of the simultaneous optimization of support volume and 

maximum residual stress for different weight factors are illustrated in Figure 5.25. Table 5.2 

tabulates the corresponding optimal values of the objectives and design variables. Both of the two 

objectives oscillate remarkably in the first 30 iterations and then converge to the optimal results. 

By comparing the two objectives with respect to a weight factor, it can be observed that as the 

weight factor is increased from 0 to 1, the maximum normalized residual stress increases from 

0.9334 to 1.31, while the minimum support volume decreases from 3.29 × 104mm3  to 

6.83 × 103 mm3 . Especially, when  𝑤 = 0.4 and 𝑤 = 0.6, the support volume is on the same 

order as the minimum value, while the maximum residual stress is in the safe zone (i.e. less than 

yield strength). This implies that it is possible to orient a given component with prescribed lattice 

support to minimize the support volume, and at the same time ensure its manufacturability by 

minimizing the maximum residual stress below the material’s yield strength.  
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                                             (a)                                                                                 (b) 

Figure 5.25: Multi-Objective Optimization Results for Bearing Bracket by Considering both the Minimum Of 

Support Volume and the Maximum Residual Stress with Different Weight Factors. (a) Results of Support 

Volume; (b) Result of Maximum Normalized Residual Stress. 

 

 

Table 5.2: Comparison of the Optimal Results for Different Weight Factors 

 𝑤 = 0 𝑤 = 0.2 𝑤 = 0.4 𝑤 = 0.6 𝑤 = 0.8 𝑤 = 1.0 

Optimal support 

volume (mm3) 

3.29 × 104 1.03 × 104 7.51 × 103 7.70 × 103 8.45 × 103 6.83 × 103 

Maximum 

normalized 

residual stress 

0.9334 0.9504 0.9546 0.9450 1.11 1.31 

Optimal 

Orientation 

𝜃

= −2.343 

𝜑 = 0.004 

𝜃 = −2.352 

𝜑 = 0.151 

𝜃 = −2.372 

𝜑 = 0.187 

𝜃 = 0.771, 

𝜑 = 2.954 

𝜃 = −2.365 

𝜑 = 2.975 

𝜃 = −2.356 

𝜑 = 3.130 
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Figure 5.26 illustrates the build orientation of the bearing bracket after optimization using 

different weight factors. As the weight factor is increased from 0 to 1, and the weight of the stress 

objective becomes less important, the cylindrical feature is gradually rotated upward to achieve 

the minimum support volume. It is also proved that the orientation of the component plays an 

important role in the build of the component, especially the manufacturability for metal AM 

components. Figure 5.27 illustrates the normalized stress distribution with respect to the six build 

orientations shown in Figure 5.26. It can be observed that, when 𝑤 ≤ 0.6 , the maximum 

normalized residual stress of the four optimal orientations is at the same level (e.g. 0.93~0.95), 

while for 𝑤 > 0.6, the maximum normalized stress is larger than the yield strength (e.g. 1.1~1.3) 

and larger stresses are mainly distributed in the support structures under the edge overhang.   

 

 

 

Figure 5.26: Optimal Results for Bear Bracket with Different Weight Factor. (a) Voxel-Based Design for  

𝒘 = 𝟎; (b) Voxel-Based Design for 𝒘 = 𝟎. 𝟐; (c) Voxel-Based Design for 𝒘 = 𝟎. 𝟒; (d) Voxel-Based Design for 

𝒘 = 𝟎. 𝟔; (e) Voxel-Based Design for 𝒘 = 𝟎. 𝟖; (f) Voxel-Based Design for 𝒘 = 𝟏. 𝟎. 
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Figure 5.27: Normalized Residual Stress Results for Bear Bracket with Different Weight Factor. (a) Voxel-

Based Design for 𝒘 = 𝟎; (b) Voxel-Based Design for 𝒘 = 𝟎. 𝟐; (c) Voxel-Based Design for 𝒘 = 𝟎. 𝟒; (d) 

Voxel-Based Design for 𝒘 = 𝟎. 𝟔; (e) Voxel-Based Design for 𝒘 = 𝟎. 𝟖; (f) Voxel-Based Design for 𝒘 = 𝟏. 𝟎. 

 

5.4.3  Summary 

In this work, a novel multi-objective optimization framework is proposed to automatically 

determine the optimal build orientation for complex components to minimize the support volume 

and maximum residual stress. First, a voxel-based methodology is employed to generate efficient 

Cartesian mesh for both bulk component and its support structure for FEA. Differentiating from 

previous works, a new overhang categorization scheme is developed to divide overhang voxels 

into three groups:  Facet overhang, edge overhang, and point overhang. A benchmark is designed 

to illustrate the efficiency of the new voxel-based support generation method. Instead of using the 

default support structure from the Magics software, cubic lattice structures, such as simple cubic 

lattice structure, diagonal lattice structure and cross lattice structure, are used to investigate the 

influence of the lattice structure type on the orientation optimization. Due to its self-supporting 

and open-cell nature, lattice structure is an ideal structure for support structure design. The AH 

method and a multiscale model are employed to compute both the effective elastic and plastic 
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properties. This avoids expensive computational cost to implementation of lattice structure for 

FEA. Second, the inherent strain method is used to efficiently perform analysis to compute the 

residual stress for the component printed by powder-bed metal AM. To avoid the mesh generation 

in the optimization iterations, the voxel-based Cartesian mesh is used to discretize the design 

domain of a given component and solve the problem. The fictitious domain method (i.e. finite cell 

method) is used to conduct the analysis. Finally, a multi-objective optimization framework is 

proposed to find the optimal build orientation for a component with minimum support volume 

and/or maximum residual stress. Several numerical examples are studied to examine the 

performance of the optimization. First, we compare the new method with previous methods for 

support volume minimization. Second, the single objective of minimizing the maximum residual 

stress is performed for the realistic component with three different types of lattice structures. It is 

found that the geometry of lattice structure plays an important role in the optimal orientation for 

stress minimization. The diagonal lattice structure exhibits the best performance among the lattices 

that also include simple cubic lattice structure and cross lattice structure. In particular, the three 

designs are successfully printed out, which further demonstrate the efficiency of the proposed 

method. Third, multi-objective optimization for support volume and weight is conducted to the 

same component. It is observed that it is possible to achieve minimization of support volume while 

limiting the maximum residual stress under yield strength by selecting appropriate lattice structure. 
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5.5 Support Structure Optimization 

5.5.1  Problem Formulation  

The mathematical problem of optimizing the design of support structure for metal AM is 

described below. As shown in Figure 5.28, suppose an AM part were to be built on a build tray 

with support structure underneath the long overhang. The entire domain can be divided into three 

sub domains: Build tray Ω𝑡, support structure Ω𝑠, and bulk component Ω𝑐. The bulk component is 

anchored onto the build tray by support structure. The goal of the optimization is to design the 

material distribution in support structure domain  Ω𝑠  to prevent residual stress induced build 

failure. Support structure has been widely used in metal AM techniques to provide mechanical 

fixture and heat dissipation to ensure manufacturability and is removed as sacrificial materials 

once AM builds are completed.  Hence a reasonable objective for support design optimization is 

to minimize the overall mass of sacrificial support structure while constraining the maximum stress 

in domain Ω𝑠 and  Ω𝑐 under the allowable stress.  Note that the mass of the support domain will 

not completely vanish after optimization using the proposed objective.  This is because the support 

domain connects the bulk component a build tray, and the bulk component is subjected to body 

loading of inherent strains, which remain unchanged during optimization.  Hence the material 

distribution would tend to decrease from very high density near the bulk component toward lower 

density away from it.  To reduce computation time in this optimization problem, we only consider 

the residual stress distribution after the entire part is done printing.  The optimization is performed 

to iteratively update the density distribution in the support domain Ω𝑠 until the stress constraint in 

domain Ω𝑠 + Ω𝑐 is satisfied.  
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Figure 5.28: Domain of an AM Build 

 

 

Based on the above discussion, the optimization problem for support structure design can 

be expressed mathematically as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑚(𝝆) =∑𝜌𝑒𝑣𝑒

𝑁

𝑒=1

 (5.3) 

𝑤. 𝑟. 𝑡          𝜌𝑒 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

{
 
 

 
 𝐊𝐔 = 𝐅

𝑖𝑛    
𝑪̅ = 𝑪̅(𝝆)   

                                  

𝜎𝑚𝑎𝑥
𝐻 (𝝆) ≤ 1,                               

𝜌 ≤ 𝜌𝑒 ≤ 𝜌,       𝑒 = 1,… ,𝑁    

 (5.4) 

where 𝑚(𝝆) is the objective function of the optimization problem and represents the total mass of 

the support structure. 𝐊, 𝐔  and 𝐅𝑖𝑛 in the equilibrium equation denote the stiffness matrix, global 

displacement and prescribed loading, respectively. 𝜌𝑒 is the relative density of element 𝑒, and 𝑣𝑒 

is the corresponding elemental volume. The design variable 𝜌𝑒 is limited by the upper bound 𝜌 
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and lower bound 𝜌.  𝑪̅ = 𝑪̅(𝝆) represents elastic model of the support structure. 𝜎𝑚𝑎𝑥
𝐻  denotes the 

maximum stress of the entire domain, and 𝑁 is the number of elements in the support domain. It 

is noted that the stress measure in this work is modified Hill’s criterion [182]. Without losing the 

generality, the stress illustrated below is normalized by material’s yield strength, which means that 

when the value of stress is larger than 1, plastic deformation occurs in the material while when the 

stress is smaller than 1, the stress state is elastic. To solve the optimization problem in Eq. (5.3)-

(5.4), the P-norm stress [43, 44, 183, 184] is applied for the maximum residual stress constrain, 

the sensitivity analysis is performed for both objective function and its constrains, and the Method 

of Moving Asymptotes (MMA) [118, 123] is employed to obtain the optimal design. 

5.5.2  Sensitivity Analysis 

The optimization problem for designing support structure proposed in Eq. (5.3)-(5.4) is 

solved by the Method of Moving Asymptotes (MMA) proposed by Svanberg [124], in which the 

first order derivative of the objective function and constraints are required. The following gives 

the sensitivity analysis of objective function and stress constraints. The first derivative of the 

objective function is 

𝜕𝑚(𝝆)

𝜕𝜌𝑒
= 𝑣𝑒  (5.5) 

The first order derivative of stress constraint to relative density in Eq. (5.4) is 

𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
=∑

𝜕𝜎𝑃𝑁

𝜕𝜎𝑒𝐻
𝜕𝜎𝑒

𝐻

𝜕𝜌𝑒

𝑁

𝑒=1
 (5.6) 

The first term in the right-hand side of Eq. (5.6) can be calculated based on the P-norm 

proposed in [183] as: 
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𝜕𝜎𝑃𝑁

𝜕𝜎𝑒𝐻
= (∑ (𝜎𝑒

𝐻)𝑃
𝑁

𝑒=1
)
(
1
𝑃
−1)

(𝜎𝑒
𝐻)(𝑃−1) (5.7) 

The second derivative in the right-hand side of Eq. (5.6) can be calculated as: 

𝜕𝜎̅𝑒
𝐻

𝜕𝜌𝑒
=

𝜕{[(𝜺̅−𝜖𝜺𝑖𝑛)
𝑇
ℝ(𝜺̅−𝜖𝜺𝑖𝑛)]

1
2
}

𝜕𝜌𝑒
=

1

2
[(𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
ℝ(𝜺̅ − 𝜖𝜺𝑖𝑛)]

−
1

2 𝜕[(𝜺̅−𝜖𝜺
𝑖𝑛)

𝑇
ℝ(𝜺̅−𝜖𝜺𝑖𝑛)]

𝜕𝜌𝑒
  

=
1

2𝜎̅𝑒
𝐻 (2(𝜺̅ − 𝜖𝜺

𝑖𝑛)
𝑇
ℝ
𝜕(𝜺̅−𝜖𝜺𝑖𝑛)

𝜕𝜌𝑒
+ (𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇 𝜕ℝ

𝜕𝜌𝑒
(𝜺̅ − 𝜖𝜺𝑖𝑛))  

(5.8) 

where ℝ is the tensor used to formulate yield strength of lattice structure by using the constitutive 

model and the yield strength tensor, which can be formulated as ℝ = 𝑪̅𝑻𝕄𝑪̅ and 𝕄 represents the 

plastic constants matrix, and 𝑪̅  denotes the constitutive model. More details about these two 

matrixes refer to [162]. Since the macroscopic strain 𝜺̅ can be expressed as 𝜺̅ = 𝑩𝐔, where 𝑩 

denotes the strain-displacement matrix while 𝐔 is the displacement vector. Thus, the first term in 

Eq. (A8) can be expressed as: 

2(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ
𝜕(𝜺̅ − 𝜖𝜺𝑖𝑛)

𝜕𝜌𝑒
= 2(𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
ℝ(

𝜕(𝑩𝑼)

𝜕𝜌𝑒
−
𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛) 

= 2(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ(𝑩

𝜕𝑼

𝜕𝜌𝑒
−
𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛) 

(5.9) 

 

While the second term can be expressed as: 

(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇 𝜕ℝ

𝜕𝜌𝑒
(𝜺̅ − 𝜖𝜺𝑖𝑛) = (𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛)  (5.10) 

Substituting Eq. (5.9) and Eq. (5.10) into Eq. (5.8) yields 
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𝜕𝜎̅𝑒
𝐻

𝜕𝜌𝑒
=

1

2𝜎̅𝑒
𝐻 (2(𝜺̅ − 𝜖𝜺

𝑖𝑛)
𝑇
ℝ(𝑩

𝜕𝑼

𝜕𝜌𝑒
−

𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛) + (𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+

𝑪̅𝑻
𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛))  

(5.11) 

Substituting Eq. (5.7) and Eq. (5.11) into Eq. (5.6), the sensitivity of the P-norm stress 

can be computed as: 

𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
= ∑ {(∑ (𝜎𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−1) [
1

2𝜎̅𝑒
𝐻 (2(𝜺̅ − 𝜖𝜺

𝑖𝑛)
𝑇
ℝ(𝑩

𝜕𝐔

𝜕𝜌𝑒
−𝑁

𝑒=1

𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛) + (𝜺̅ − 𝜖𝜺𝑖𝑛)

𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛))]}  

= ∑ [(∑ (𝜎𝑒
𝐻)𝑃𝑁

𝑒=1 )(
1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ(𝑩

𝜕𝐔

𝜕𝜌𝑒
−

𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛)]𝑁

𝑒=1   

+
1

2
∑ [(∑ (𝜎𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+ 𝑪̅𝑻

𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ −𝑁

𝑒=1

𝜖𝜺𝑖𝑛)]  

(5.12) 

Based on the equilibrium equation, the derivative of 
𝜕𝐔

𝜕𝜌𝑒
 can be calculated using the 

equilibrium equation as: 

𝜕𝐔

𝜕𝜌𝑒
= 𝐊−1

𝜕𝐅𝑖𝑛

𝜕𝜌𝑒
−𝐊−1

𝜕𝐊

𝜕𝜌𝑒
𝐔  (5.13) 

Substituting Eq. (5.13) into the first term of Eq. (5.12), one can obtain 

      
𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
= ∑ [(∑ (𝜎̅𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ(𝑩𝐊−1 (

𝜕𝐅𝑖𝑛

𝜕𝜌𝑒
−𝑁

𝑒=1

𝜕𝐊

𝜕𝜌𝑒
𝐔) −

𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛)] +

1

2
∑ [(∑ (𝜎𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+𝑁

𝑒=1

𝑪̅𝑻
𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛)]   

(5.14) 
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An adjoint variable 𝝀  is introduced to solve the sensitivity of the first term, and its 

definition is  

𝝀𝑻 = ∑ (∑ (𝜎𝑒
𝐻)𝑃𝑁

𝑒=1 )(
1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
ℝ𝑩𝐊−1𝑁

𝑒=1   (5.15) 

The adjoint variable 𝝀 can thus be computed by solving the following adjoint equation 

𝐊𝝀 = ∑ (∑ (𝜎̅𝑒
𝐻)𝑃𝑁

𝑒=1 )(
1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)ℝ𝑩(𝜺̅ − 𝜖𝜺𝑖𝑛)𝑁
𝑒=1   (5.16) 

Once the adjoint variable is obtained, the sensitivity of the P-norm stress constraint in Eq. 

(5.14) yields 

𝜕𝜎𝑃𝑁

𝜕𝜌𝑒
= 𝝀𝑻 (

𝜕𝐅𝑖𝑛

𝜕𝜌𝑒
−

𝜕𝐊

𝜕𝜌𝑒
𝐔) − ∑ [(∑ (𝜎𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ −𝑁
𝑒=1

𝜖𝜺𝑖𝑛)
𝑇
ℝ

𝜕𝜖

𝜕𝜌𝑒
𝜺𝑖𝑛] +

1

2
∑ [(∑ (𝜎̅𝑒

𝐻)𝑃𝑁
𝑒=1 )(

1

𝑃
−1)(𝜎̅𝑒

𝐻)(𝑃−2)(𝜺̅ − 𝜖𝜺𝑖𝑛)
𝑇
(2𝑪̅𝑻𝕄

𝜕𝑪̅

𝜕𝜌𝑒
+𝑁

𝑒=1

𝑪̅𝑻
𝜕𝕄

𝜕𝜌𝑒
𝑪̅) (𝜺̅ − 𝜖𝜺𝑖𝑛)]  

(5.17) 

The sensitivities in Eqs. (5.5) and (5.17) are implemented in the MMA method and are 

used for the lattice structure topology optimization for support structure design. 

5.5.3  Lattice Structure Topology Optimization for Support Structure Design 

Another barrier concerning the support design optimization problem stated in Eqs. (5.3)-

(5.4) is that designs obtained by conventional topology optimization (TO) may include a large 

number of long overhangs and closed-void structures [185], which lead to manufacturability issues 

and trapped powders. To address these issues, graded lattice structure topology optimization 

(LSTO) is employed to design the support structure instead of conventional TO.  The key feature 

of lattice structure is its self-supporting and open-celled nature when the bridge span and strut size 
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are chosen appropriately for the AM process and material of interest. This makes lattice structure 

ideal for support structure design, since it can be printed out without support structure while the 

trapped powder can be easily removed. The LSTO method utilizes homogenized model to gain 

efficiency and has been applied to determine the layout of graded lattice structure for various 

problems, such as minimum compliance [135, 186], natural frequency [136], and heat conduction 

[108, 187].  In this work, the LSTO method with the objective of mass minimization under 

maximum stress constraint is employed for support structure design. As shown in Figure 5.29, for 

a given component shown in Figure 5.29(a), an overhang detection method [148, 149] is first 

applied to obtain support structure domain Ω𝑠  for optimization. Instead of infilling support 

structure domain with block shell support, variable-density lattice structure (see Figure 5.29(b)) 

obtained from LSTO is used to provide mechanical fixture, dissipate heat, as well as guarantee the 

manufacturability. The details of the constrained stress optimization algorithm under the LSTO 

framework can be found in Ref. [182, 188] for interested readers. With regard the overhang 

detection, this work categorizes overhang features into three groups: facet overhang, edge 

overhang and point overhang, to ensure accuracy of formation for support structure domain. For 

instance, in Figure 5.29 (d), the overhang edges on the bottom surface of the oriented component 

are automatically detected, and the corresponding lattice structure supports are generated after 

optimization. 
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Figure 5.29: Support Structure Design by the LSTO Method: (a) Component, (b) Component with Bulk 

Support, and (c) Component with Optimized Variable-Density Lattice Structure Support, (d) Bottom View of 

the Optimized Support Structure for the Component. 

 

 

5.5.4  Finite Cell Method for Modified Inherent Strain Method 

The unique feature of AM technology is its ability to manufacture geometrically complex 

components naturally with no additional tooling required. Nevertheless, mesh generation for such 

complex component and its support structure and build tray is computationally expensive and often 

error-prone.  To simplify the mesh generation for complex geometry, the finite cell method (FCM) 

is employed to perform inherent strain-based analysis to obtain residual stress distribution for an 

AM build. The FCM, as a type of fictitious domain method, was first proposed by Parvizian et al. 

[158] in 2007.  The underlying principle of FCM [158, 177, 189] is to immerse the material domain 

of interest into a larger one, and a favorable Cartesian grid can thus be generated to avoid time-



 267 

consuming and error-prone mesh generation. It has been successfully applied to solve a wide-range 

of problems, such as non-linear analysis [153], transport problem in porous media [176], 

biomechanical analysis [177, 178], etc.  

 

 

 

Figure 5.30: The Domain 𝛀 in Powder-Bed AM is Embedded in a Voxel-Based Domain 𝛀𝒆: (a) Domain of 

Printed Component, Which is the Combination by Three Subdomains: Bulk Component Domain 𝛀𝒄, Support 

Structure Domain 𝛀𝒔, and Build Tray Domain 𝛀𝒕; (b) Fictitious Domain, and (c) Embedding Domain 𝛀𝒆. 

 

 

In the context of inherent strain analysis of an AM build, the domain of the build shown in 

Figure 5.30 is embedded into a larger domain based on FCM, and its boundary conditions are 

depicted in Figure 5.30(c). The domain of computation Ω is the combination of three subdomains: 

Bulk component domain Ω𝑐 , support structure domain Ω𝑠 , and build tray domain Ω𝑡 , and Ω =

 Ω𝑐 + Ω𝑠 + Ω𝑡. The physical domain Ω is embedded in a fictitious domain Ω𝑒 with the boundary 

of 𝜕Ω𝑒 . The embedded boundary of Ω within Ω𝑒  can be described as Γ = 𝜕Ω(𝜕Ω ∩ 𝜕Ω𝑒). For 

metal AM process, the bottom of build tray is fixed in place, and hence, the Dirichlet boundary 
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𝒖̅ = 0 in domain Ω is directly extended to the embedded domain Ω𝑒 . In the implementation, 

elements in the fictitious domain Ω𝑒\Ω is treated as a virtual material, whose elastic constants are 

set to small values to ensure robustness of the calculation, while for elements within the component 

domain Ω𝑐 and support structure domain, inherent strain vector is assigned as a body force in the 

analysis. It is noted that voxelization method proposed in Ref. [148] is employed to discretize the 

domains and generate the desired Cartesian mesh for FCM analysis.  

Once the optimization based on FCM method is finished and the relative density is 

obtained, lattice reconstruction is performed to convert the density profile obtained from 

optimization into graded lattice structures. Figure 5.31 illustrates the reconstruction process for the 

support structure design. As can be seen in Figure 5.31 (b), for a given component, the voxel-based 

mesh is used to discretize the part and its support structure. The optimization problem proposed in 

Eqs. (5.3)-(5.4) is solved by the method of moving asymptotes (MMA) [118] in order to optimize 

the relative density distribution in the support domain, refer to Figure 5.31 (c). After optimization, 

the relative density of the support structure is converted into variable-density lattice structure and 

combined with the solid component, which is then realized by AM.  
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Figure 5.31: Reconstruction Process for a Practical Component. (a) Component for AM (b) Voxel-Based 

Mesh for FCM Analysis (c) Optimal Density Profile of Support Domain (d) CAD Model of Component and 

Optimal Lattice Support. 

 

5.5.5  Numerical Example and Experimental Validation 

The material of interest in this work is Ti6Al4V, which has a Young’s modulus of 110 

GPa, Poisson’s ratio of 0.3, and yield strength of 1160 MPa. As mentioned in Section 2.4, residual 

stresses described in the following work is normalized by yield strength in order to make it generic 

for different materials. The inherent strain vector of Ti6Al4V used in this work is (-0.012, -0.012, 

0.01), which is extracted by an inhouse code of multiscale modeling for powder-bed metal AM 

following the works of  [87, 88, 169, 190]. Cubic lattice structure, as shown in Figure 5.31, is used 

as the support material to anchor the solid component to the build tray. The homogenized elastic 

and yield models for the cubic lattice structure obtained in [191] are used to effectively describe 

its properties as a function of relative density in the support domain Ω𝑠. The relative density range 

of the support structure is set to be 𝜌 = 0.2 and 𝜌̅ = 0.95. The optimization is stopped when the 

change of volume fraction of the support structure within three successive iterations is smaller than 
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10−3 , while the stress constraint is satisfied. The voxel-based finite element analysis is 

implemented using Matlab R2016a.  

5.5.5.1 Double Cantilever Beam Example 

The first example is a classical double cantilever beam widely used as a benchmark to 

examine the accuracy of metal AM process simulation. Here, the model is applied to investigate 

the performance of the proposed method for support structure optimization. The CAD model and 

voxel-based mesh for the double cantilever beam are illustrated in Figure 5.32. The design domain 

for the support structure is below the overhanging beams. As illustrated in the figure, the dimension 

of the double cantilever beam is 80 × 40 × 20 𝑚𝑚3. The support domain for the double cantilever 

beam is two blocks of 36 × 32 × 15 𝑚𝑚3. The aim of the optimization is to minimize support 

volume and at the same time restrict the maximum residual stress in the domain Ω𝑠 + Ω𝑐 under 

the allowable stress. A mesh of element size of 1 mm or of 49,600 eight-node hexahedra elements 

is applied to discretize the entire domain and solve the optimization problem. As illustrated in 

Figure 5.32(b), the voxels of yellow color are for the support domain, blue ones for the solid 

component, and red for the substrate. Note that in the simulation of residual stresses, a fixed 

boundary condition is subjected to the bottom of the substrate while inherent strain is assigned on 

the both solid component and support structure. The thickness of the substrate is set to be 8 mm in 

the simulation to ensure the deformation of the bottom of the printed part and its support structure. 

For simplicity, only the results in the domains of support structure Ω𝑠 and the bulk component 

domain Ω𝑐 are shown in the following work. The relative density of each element in the support 

domain is initially set to 0.9, while the elements in component domain and substrate domain remain 

solid (𝜌 = 1) during the optimization.  
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Figure 5.32: CAD Model and Mesh Model of Double Cantilever Beam Used for Validation. (a) CAD Model of 

the Beam (b) Voxel-Based Mesh Model. 

 

 

The optimization results are presented in Figure 5.33 including the optimal density 

distribution, stress distribution, and also the convergence history of the objective function and 

maximum residual stress. As can be seen in Figure 5.33(c), the volume fraction of the support 

domain changes from 0.9 to 0.412 after 53 iterations (a 54.2% decrease), while the normalized 

maximum residual stress is decreased from 1.1 to 0.99, where unity indicates yielding. For the 

optimization results, the higher densities are mainly distributed around the upper corners of the 

beam, while lower densities are found far away from the center pillar. A number of intermediate 

densities (i.e. the yellow color area) exist in support domain between the high-density region and 

low-density region. The corresponding stress after the optimization is given in Figure 5.33 (b). It 

can be observed that most of the stresses within the support domain are smaller than 0.8. The larger 

stresses are distributed at the bottom surface of the center pillar, where the relative densities remain 

solid during optimization. The maximum stress of the domain Ω𝑠 + Ω𝑐  are smaller than yield 

strength, which theoretically ensures manufacturability of the build.  
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(c) 

Figure 5.33: Optimization Results of the Double Cantilever Beam: (a) Optimal Density Distribution (b) 

Optimal Stress Distribution (c) Convergence History. 

 

 

For comparison purpose, the simulation is performed on uniform lattice structure of the 

same volume fraction or 0.412. The results are presented in Figure 5.34. Compared with the 

optimal design, the maximum stress of the uniform design is 1.09, which is larger than yield 
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strength. The largest stresses are observed at the four bottom corners of the beam and the bottom 

surface of the center pillar.  

 

 

 

            

Figure 5.34: Simulation Result of the Design with Uniform Lattice Structure: (a) Density Distribution (b) 

Stress Distribution. 

 

 

To quantify performance of the optimal design, the double cantilever beams with four 

different support structures are designed and printed out for deformation measurement and 

comparison. Figure 5.35 illustrates the four different designs: i) Block shell support from 

Materialize Magics software (widely used in metal AM), ii) optimal variable-density lattice 

structure support, iii) uniform lattice structure support, and iv) tooth support. The volume fraction 

of the block shell support is 0.45, while the volume fraction of tooth support is 0.5.  
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Figure 5.35: Four Different Support Structure Designs for Double Cantilever Beam for Comparison Purpose: 

(a) Shell Support From Magic Software (b) Optimally Variable-Density Lattice Structure Support (c) 

Uniform Lattice Structure Support, and (d) Tooth Support. 

 

 

The four designs were printed out in Ti6Al4V on the same substrate and the photos are 

shown in Figure 5.36. Due to cracking between support structure and build tray of the block shell 

style support, the beam is warped upward, which stops the powder recoater blade and results in a 

failed build. This demonstrates that the residual stress inherent in the manufacturing process can 

lead to severe issue. One failed component can ruin the whole build and cause significant loss in 

time and costs. The failure not only lengths production of the component (i.e. designer needs to 

redesign the part), but also leads to a waste of material and time.  
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Figure 5.36: Failed Samples of the Double Cantilever Beams Printed out for Validation: (a) Failed 

Manufacturing due to Large Deformation Formed by Cracks Between Shell Supports from Magic Software 

And Build Tray. (b) and (c) Side View of the Cracks for the First Design. 

 

 

To avoid build failure, the block shell support design was removed from the build and the 

remaining three beams were printed together in Ti6Al4V by the EOS DMLS. As shown in Figure 

5.37, although cracks are observed for the tooth support design, the build for the three beams were 

successful. Compared to the block shell support and tooth support, both the uniform lattice 

structure design and optimal lattice structure design were manufactured without observed 

cracking. This implies that the open-cell lattice structure can relieve residual stress effectively and 

can be used for support structure design for metal AM.  
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Figure 5.37: Second Build For Samples of the Double Cantilever Beam Printed out by EOS DMLA in 

Ti6Al4V: (a) Photos of the Three Printed out Beams for Validation; (b) Photo of the Beam with Teeth 

Support (c) Photo of the Beam with Optimal Lattice Structure Support (d) Photo of the Beam with Uniform 

Lattice Structure Support. 

 

 

In order to validate the effectiveness of the proposed method, one cantilever beam on either 

side was created by separating each from the support structure using a wire-cut EDM machine.  

The beams deflected upward as a result of stress relief from the cutting. A 3D scanning device 

Faro Laser ScanArm V3 (FARO Technologies) with an accuracy of 0.065 mm was employed to 

experimentally measure the deformation. Following scanning, the Geomagic software was used to 
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process the data from the scan.  The experimental apparatus, machined beams, and experimental 

results are shown in Figure 5.38, respectively.  The optimized beam exhibits the smallest 

deformation compared to the other two designs. The maximum deformation of the beam with the 

optimized support is 0.45 mm, while the other two structures have deflections larger than 1 mm. 

This demonstrates that the proposed method can significantly reduce the residual stresses inherent 

in the AM process.  The method not only ensures manufacturability of the design (i.e. comparing 

with the block style support in Figure 5.35), but also considerably enhances the quality of the bulk 

component (i.e. smaller deformation).  

 

 

 

Figure 5.38: Experimental Measurement for the Distortion of the Beams after Cut by Electronic Beam 

Machining (EBM): (a) 3D Laser Scanning Device Faro Laser Scanarm V3 Made by FARO Technologies (b) 

Photos of Three Beams after Cut by EBM (c) Deformation Obtained by 3D Scanning. 
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To further examine the performance of the optimized design, full-scale simulations by 

inherent strain method are performed on the three designs shown in Figure 5.38. The 

commercialized software Simufact from MSC Inc is employed to simulate the residual distortion 

and residual stresses for comparison purpose. As shown in Figure 5.39, a substrate of dimension 

250 × 250 × 30 𝑚𝑚3 is added under beneath the beams while a fixed boundary condition is 

subjected to the bottom surface of the substrate. A voxel-based mesh of element size of 0.4 mm is 

applied to discretize the three beams, refer to Figure 5.39 (b). 

 

 

 

Figure 5.39: CAD Model and Mesh for Full-scale Simulation: (a) Distribution of the Beams on the Substrate 

(b) Voxel Mesh for the Full-scale Simulation. 
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The simulation results including residual distortions and residual stresses before cutting 

and after cutting are illustrated in Figure 5.40. It can be observed from Figure 5.40 that larger 

distortion mainly concentrates on the bottom boundary edge of the beams. The optimal design 

exhibits smallest deformation (i.e. the maximum distortion is 𝑢𝑚𝑎𝑥 = 0.26 mm) while teeth 

support design shows largest distortion (i.e. the maximum distortion is 𝑢𝑚𝑎𝑥 = 0.54 mm). This is 

consistent with the observation in Figure 5.38 (d). The residual stress distributions before cutting 

are given in Figure 5.40 (b). As can be seen, both the uniform lattice structure support design and 

optimal lattice structure support design show relative smaller residual stresses than the teeth 

support design, in which high stresses distribute at the bottom corners of the teeth supports. The 

cracks grow from these corners and leads to delamination in the manufactured beam, refer to 

Figure 5.38. Moreover, the employment of lattice structure for support design results in the 

dispersion of the stress concentration. This avoids the local accumulation of the residual stresses 

and thus prevents the growth of cracks.    
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Figure 5.40: Full-scale Simulation Results of the Beams Before Cutting: (a) Displacement Distribution of the 

Three Beams (b) Residual Stress Distribution of the Beams. 

 

The simulation results after cutting are presented in Figure 5.41 including both the 

displacement distribution and residual stress distribution. For comparison purpose, the legend of 

the total displacement in Figure 5.41(a) is same as the experiment measurement. Limited by the 

Simufact Additive 4.0, only one side of the double cantilever beam is separated from the support 

structure. Compared to experiment measurement shown in Figure 5.38(c), the displacement 

obtained from full-scale simulation is a little larger. For instance, the maximum displacement of 

the optimal design is 0.67 mm, or 0.22 mm larger than the experimental measurement. The uniform 

lattice structure design is 1.26 mm while the teeth support design is 1.67 mm. The ratio relation 

among the maximum distortions for the three beams are similar to the experimental measurement. 

The residual stress distribution of the three designs are shown in Figure 5.41. It can be found that 

the residual stresses in the beam are significantly reduced after stresses are released from support 

structure.  
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Figure 5.41: Full-scale Simulation Results of the Beams after Cutting: (a) Displacement Distribution; (b) 

Residual Stress Distribution 

5.5.5.2 Hip Implant Example  

The second case is a typical hip implant used for bone replacement.  The CAD model and 

dimension of the hip implant is shown in Figure 5.39(a). The envelope box of the implant is 

120 × 35 × 16 mm3. There are several bolt holes along the length of the implant used to fix the 

implant to human bone. The hip implant with the block style support structure was printed using 

the EOS M290 DMLS system in Ti6Al4V. However, as shown in Figure 5.39(c) and (d), cracks 

and delamination from the build tray occurred during the AM process due to residual stress within 

the support structure and solid component.  The cracking and delamination occurred certainly 

caused larger deformation of the build than otherwise, but they were not severe enough to cause a 

build failure.  Another issue observed from this build is that the block shell style support structure 

trapped most of the powders since it is a closed-cell lattice structure. The trapped powders are 

difficult to remove post-build and lead to almost 100% waste of material in the support domain.  
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On the other hand, for open-celled lattice structure, the trapped powder can be easily removed and 

recycled for the next build, which results in much material and cost savings.  

 

 

 

Figure 5.42: CAD Model of Implant and Its Manufacturing in Ti6Al4V by EOS DMLS with Shell Support: 

(a) CAD Model, (b) Printed Implant after Cutting off from Build Tray, (c) Left View of Implant Before 

Cutting from the Substrate, and (d) Front View of Implant before Cutting from Build Tray.  

 

 

In this case, the proposed methodology is employed to optimize the support structure for 

the hip implant to ensure a successful build. In particular, we will use the optimization algorithm 

for the implant built in three different orientations, since different build orientations may lead to 

less support region and thus less effort for post-machining. As shown in Figure 5.43, the implant 

is rotated about the y-axis by angles of 0°, 45°, and 90°, respectively, and is voxelized for both the 

part and its relevant support generated by the overhang detection proposed in Section 5.2. A 

uniform voxel-based mesh consisting of element size of 1 mm is employed to discretize the entire 
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domain including solid component, support structure and build tray. The thickness of the build 

tray here is same as the former case and the value is 8 mm while the width and length of the base 

plate are determined by the bounding box of the part. The numbers of eight-node hexahedral 

elements used for the simulations are 97329 for orientation of 0°, 93778 for 45°, and 75607 for 

90°, respectively, refer to Figure 5.43 (c), (f) and (i). In the simulation for residual stresses, the 

bottom surface of the base plate is fixed, and the inherent strains are assigned to both the support 

structure domain Ω𝑠 and bulk component domain Ω𝑐. The highlighted region in Figure 5.43 (a), 

(d) and (g) are the detected overhangs, while the yellow voxels in Figure 5.43 (b), (e) and (h) are 

the corresponding detected voxels. The support volumes of these three orientations are computed 

by summing the number of support voxel to be:  1.602 × 104 mm3 , 1.064 × 104 mm3 and 

2.523 × 104 mm3, respectively. It can be seen when the implant is rotated by an angle of 45°, the 

support volume is decreased by 5.38 × 103 mm3  or 33.6% of the 0°  angle case and by 

1.459 × 104 mm3 or 57.62% of the 90° case. This is because for angle 45°, the major detected 

overhangs are edge overhangs, and most of the facets at that angle satisfy the critical overhang 

requirement (i.e. the included angle by building direction is larger than 45°). This implies that the 

build orientation plays an important role in the design of support structure. Note that the figures of 

results in the following content only contain the distribution (i.e. residual stress distribution and 

relative density distribution) in domain Ω𝑠 + Ω𝑐 for simplicity. 
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Figure 5.43: Hip Implant of Different Orientations: (a-c) STL File, Voxelized Part and Cartesian Mesh for 

Implant Rotated by Angle of 𝟎°; (d-f) STL File, Voxelized Part and Cartesian Mesh for Implant Rotated by 

Angle of 𝟒𝟓°; (g-i) STL File, Voxelized Part and Cartesian Mesh for Implant Rotated by Angle of 𝟗𝟎°.  

 

 

Table 5.3: Initial State of the Optimization 

 Orientation 0° Orientation 45° Orientation 90° 

Support volume ( mm3) 1.602 × 104 1.064 × 104 2.523 × 104 

Maximum residual 

stress 

3.1 2.42 2.12 

 

 

 

The orientation of the component can also influence the stress distribution, especially the 

location of the stress concentration and maximum residual stress. As shown in Figure 5.44, when 
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the volume fraction of the support structure is set to 0.9, the large stresses mainly distribute at the 

interface between support structure and substrate, e.g., at the lower left and right corners of the 

three designs. These are the areas where cracking initiate and grow. Table 1.1 tabulates the support 

volume and maximum residual stress for the three cases. It can be seen that the part with no rotation 

(angle of 0°) has the largest maximum stress, while the case with rotation angle of 90o case has the 

smallest value. This indicates that the orientation also has great influence on the stress distribution 

and magnitude of the maximum stress. The aim of this example is to explore the performance of 

the proposed methodology for the implant with different orientations.  

 

 

 

Figure 5.44: Stress Distribution of Hip Implant with Volume Fraction of 0.9: (a) Oriented by Angle of 𝟎°, (b) 

Oriented by Angle of 𝟒𝟓° and (c) Oriented by Angle of 𝟗𝟎°. 

 

 

The optimization results including the stress profile, and relative density profile are given 

in Figure 5.45. Table 5.4 tabulates the corresponding optimization results. For the 0° angle case, 

the volume fraction of the support structure converges from 0.9 to 0.41 after 60 iterations, and the 

maximum residual stress is decreased to 0.82 from 3.1.  For the 45° angle case, the volume fraction 

of the support structure is reduced to 0.36, and the maximum residual stress is decreased to 0.91 

after 73 iterations. In 64 iterations, the volume fraction for the final case of 90o angle converges to 
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0.46, and the maximum stress is decreased to 0.81. The maximum residual stresses in these three 

cases are optimized to below the yield strength and thus satisfy the imposed constraints after 

optimization. 

 

 

 

Figure 5.45: Optimization Results of the Three Orientations for Hip Implant: (a-c) Stress Distribution of the 

Implant Rotated by Angle of 𝟎°, 𝟒𝟓° and 𝟗𝟎°; (d-f) Optimal Density Distribution of the Implant Rotated by 

Angle of 𝟎°, 𝟒𝟓° and 𝟗𝟎°.  

 

 

Table 5.4: Optimization Results of Hip Implant Oriented by Different Degrees 

 Orientation 0° Orientation 45° Orientation 90° 

Volume fraction 0.41 0.36 0.46 

Maximum residual stress 0.82 0.91 0.81 
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The optimized densities shown in Figure 5.45(d-f) are used to reconstruct the 

corresponding variable-density lattice structures as illustrated in Figure 5.46 in two different 

views. The contact areas between the component surface and support structure vary significantly 

as the implant is rotated at various angles. The angle of 45° exhibits the smallest contact area, 

which is consistent with the support volume calculated given in Table 5.3. The contact areas 

influence the cost of post-machining. Thus, among these three support designs, the orientation of 

45° may require lower cost for post-machining. 

 

 

 

Figure 5.46: Reconstruction of the Optimal Support Structure Design Using Variable-Density Lattice 

Structure (a-c) Home-View of the Implant Rotated by Angle of 𝟎°, 𝟒𝟓°and 𝟗𝟎°; (d-f) Bottom View Three 

Support Structure Designs. 

 

 

For validation purpose, the three support structure designs for hip implant are printed out 

in Ti6Al4V and the photos are shown in Figure 5.47. Compared with the un-optimized design 

shown in Figure 5.42, the designs are successfully printed without obvious cracks. This 

demonstrates the effectiveness of the proposed methodology in reducing the residual stresses in an 
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AM build.  It also implies that the optimization framework can be efficiently employed for 

components with predefined orientations.  

 

 

 

Figure 5.47: Photos of the (a) Printed Implants at Three Different Orientations with Optimized Graded 

Lattice Supports, (b) Implant Rotated by Angle of 𝟎° with Its Optimized Support, (c) Implant Rotated by 

Angle of 𝟒𝟓° with Its Optimized Support, and (d) Implant Rotated by Angle Of 𝟗𝟎° with Its Optimized 

Support.  Note that There is No Obvious Cracking in All the Designs.  

 

 



 289 

5.5.6  Summary 

The aim of this work is to experimentally examine the feasibility of part-scale optimization 

framework for support structure design, in order to address residual stress induced build failure in 

metal AM. The inherent strain method is employed to efficiently predict residual stress introduced 

by the powder melting and solidification process. The complex thermomechanical process, which 

normally requires very high computational cost, is simplified into a single-step static equilibrium 

analysis. This makes it possible to conduct optimization to iteratively solve the design problem 

involving residual stress. For the support structure, lattice structure is used as the support material 

due to its self-supporting and open-celled nature. The graded lattice structure topology 

optimization framework is proposed to iteratively minimize the sacrificial support structure under 

the maximum residual stress constraint. Several numerical examples are investigated to examine 

the performance of the optimization method. In the first example, the classical double cantilever 

beam structure is used to experimentally investigate the optimal design by comparing with a 

typical support design, tooth support design, and uniform lattice support design (same volume 

fraction as optimal design). By measuring the deformation after the beams are created by cutting, 

it is found that the optimal design can ensure the manufacturability of the design and also 

significantly reduce the residual stress (i.e. maximum deformation is reduced from 1.5 mm and 

1.1 mm to 0.45 mm). The second example presents is a hip implant which also suffers from residual 

stress induced cracking. In that case, three different orientations are studied using the proposed 

optimization method and are printed out for validation. Although it is found that the orientation of 

the component has a significant influence on both the stress and support volume, the proposed 

methodology can optimize the design of support structure. Though visual inspection, the three 

designs for the implants are manufactured successfully without observed cracking. This further 
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demonstrates the methodology can be effectively used to design industrial components for 

practical applications.  

Note that although the proposed methodology can ensure manufacturability of AM builds, 

the removability of the lattice structure support by post-machining has not been considered and 

will be investigated in our future work.  Further studies could be performed to add other constraints 

to the optimization algorithm by considering area of the surface that is not accessible by post-

machining. Another alternative to remove support structure is by using dissolvable support [183, 

192], which is a self-terminating chemical process that dissolves a thin surface layer.  Hence, if 

the struts or walls in the lattice support are made thin enough, the support structure can be dissolved 

using this chemical process without any post-machining.  These topics will be investigated in 

future in order to completely solve the build failure and post support removal for the powder-bed 

fusion process. 
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6.0 Conclusions 

6.1 Main Contributions 

The research in this dissertation mainly focuses on the development of design methodology 

to leverage the potential of AM techniques for high-value applications. The aim is to extend 

conventionally topology optimization to design functionally graded lattice structures and apply the 

proposed framework to address one of the most severe problems of current powder-bed metal AM, 

e.g. residual stress induced build failure. The major contributions can be summarized as follows: 

(1) A homogenization-based lattice structure topology optimization method is 

developed to design functionally graded lattice structures for additive manufacturing. 

Conventional density-based topology optimization method aims to generate black-and-white 

designs through an artificial penalization to drive elemental densities to void or solid. Although 

such a method is efficient for various problems, the applicability for practical applications is still 

limited since the design is too organic to manufacture. Even by using additive manufacturing, extra 

efforts (e.g. support structure) needs to be added to guarantee the manufacturability. To address 

this issue and inspired by natural materials, the homogenization model for lattice material 

manufactured is introduced into the framework of topology optimization to replace the artificial 

penalization function, in order to design graded lattice structure with prescribed properties. Due to 

its self-support nature and an open-cell structure, the lattice structure is able to be produced by AM 

techniques without extra efforts and is thus an ideal structure for the AM process.  The specific 

contributions are as follows:  
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a) The lattice structure topology optimization (LSTO) method is proposed for 

minimum compliance problem. To circumvent full-scale modeling for lattice materials in the 

optimization, a homogenized model is proposed to capture the effective elastic properties of lattice 

structures through a scaling law as a function of relative density. The representation of lattice 

material is described by a solid material with equivalent properties. Hence, the computationally 

expensive cost for the microstructure of the lattice structure is significantly reduced for an iterative 

optimization. The accuracy of the proposed homogenization is validated through experiments on 

the lattice material manufactured by various AM techniques. It is proved that the proposed 

homogenized model is in excellent agreement with the experimental validation. Once the 

homogenized model is proved, the scaling law is used as a material property in the topology 

optimization for the minimum compliance problem to compute the optimal density distribution for 

the part being optimized. Finally, a reconstruction methodology based on the application program 

interface of CAD software is developed to convert the density distribution from optimization into 

functionally graded lattice structures. It has been experimentally proved that the proposed LSTO 

approach can significantly increase the stiffness of the structure compared with the same weight 

uniform lattice structure design. 

b) The LSTO method is developed for constraint stress problem. Although the 

proposed LSTO method is efficient for the minimum compliance issue, the stress concentration at 

the corners of the lattice structure may lead to undesirable failure. In order to ensure that the 

designed graded lattice structures work in a safe zone, an optimization problem of minimizing the 

overall weight of the structure under allowable stress constraint is proposed. Specifically, a 

multiscale yielding criterion is proposed to capture the yield strength of lattice materials via 

macroscopic stresses. At the macroscale, a modified Hill’s yield criterion by considering 



 293 

hydrostatic pressure is proposed to depict anisotropic yield strength of the lattice structure. While 

at the microscale, the yield strength of the lattice structure is treated based on the materials of 

interest for manufacturing. By performing a homogenized analysis on a representative volume 

element (RVE) model, multiscale yield strength of lattice structure with respect to relative density 

is obtained. Experimental validation for the proposed yield strength model is conducted on the 

lattice material manufactured by AM techniques. Excellent agreement between the yielding model 

and the experiments proves that the proposed multiscale process is efficient for the description of 

lattice materials. The developed multiscale yield strength model and the effective elastic model is 

substituted into the framework of the LSTO method and used for practical applications. By 

conducting experiments on the practical design, the predicted yield performance of the component 

agrees well with the experimental measurement. This demonstrated that the proposed multiscale 

yield model of the LSTO method can be efficiently used for functionally graded lattice structure 

design under stress constraint. 

c) A natural frequency optimization method based on the LSTO framework is 

proposed to separate the repeated natural frequencies and maximize the first eigenfrequency 

under volume fraction constraint. The aim is to prevent failure resulted from the resonance of 

the component by infilling the solid component with a functionally graded lattice structure. 

Asymptotic homogenization (AH) method is employed to calculate the effective mechanical 

properties of lattice structure manufactured by metal AM (e.g. EOS direct metal laser sintering 

(DMLS) process). The validated AH model is implemented into the proposed natural frequency 

optimization method for practical designs. Both full-scale simulations and experimental studies on 

the designed beams have demonstrated that the proposed natural frequency optimization method 
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can significantly increase the eigenfrequency of the component. This indicates the robustness of 

the developed LSTO method for the dynamic problem. 

(2) Concurrent optimization framework development for lattice structure infill 

coupled with design-independent/design-dependent movable features. Although the LSTO 

method is extensively studied for a various problem, movable features that are non-designable are 

difficult to represent by lattice structures. The aim of this work is to integrate the optimization of 

movable features with design-dependent/design-independent boundary conditions with the 

proposed LSTO method. This type of problem has practical applications, such as conformal 

cooling channel design. To promote the development of such a method, the commonly used 

concept of level set representation is introduced into the LSTO framework. First, a level-set based 

immersed boundary method is introduced to formulate the geometry of the non-designable features 

in an implicit manner. Second, a combined material interpolation is proposed to integrate the 

property of movable features into the LSTO method. Third, a concurrent optimization framework 

is proposed to optimize the lattice infill and the layout of the movable features. A full-scale 

simulation conducted on numerical examples has proved that the proposed method can achieve 

better performance than non-movable design. Especially for the cooling channel design 

optimization, the concurrent design can further decrease the maximum temperature of the design 

domain 30% more than the total solid design.     

(3) Metal additive manufacturing promises to be the next-generation manufacturing 

technique due to its excellent performance in fabricating geometrically complex structure. 

However, one of the most severe problems of residual stress induced build failure prevents this 

technique from broad application. The aim of this work is to develop a framework to systematically 
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address the build failure induced by residual stress accumulated in laser melting and solidification 

process. The contribution of this research can be summarized in the following three aspects. 

(a) A voxel-based support structure detection and mesh generation method is 

proposed to automatically generate Cartesian mesh for both part and its support structure. 

One of the toughest issues for overcoming the build failure problem is efficient support structure 

detection and mesh generation. A voxel-based method is proposed to effectively detect the 

overhang features for a given component of any build orientation and movement. Specifically, the 

overhang features of an AM part are categorized into three groups, overhang facets, overhang 

edge, and overhang point. Based on the categorization, a ray tracing method is proposed to label 

the voxels corresponding to the overhang features in the voxelized part. The voxels on support 

structure region are thus generated according to the labeled overhang voxels. Comparing with the 

existing methods for support structure generation, the proposed voxel-based method is neither 

overestimation nor underestimation for the detection of the support structure region.  Once the 

voxel-based mesh is obtained, it is used for rapidly simulation for residual stress computation.  

(b) A particle-swarm based method is developed for the optimization build 

orientation of the component. The build orientation plays an important role in residual stress 

distribution, building time and support structure volume. Generally, the engineer avoids the build 

failure of an AM part based on their experience for the build orientation of an AM part. However, 

this may not work for a complex component. A multi-objective optimization including both the 

maximum residual stress and support structure volume is considered in this research. There are 

two design variables. One is the orientation of the part along the x-axis, the other is the orientation 

along the y-axis. By optimizing the two design variables, the optimization aims to find the optimal 

build orientation with the minimum residual stress and support volume, in order to guarantee the 
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manufacturability of the design and at the meantime reduce the sacrificial support structure. 

Particularly, four different support structures including three open-cell lattice supports and one 

block style support are studied. Part-scale experiments have proved that the proposed method can 

significantly reduce the residual stress with the open-cell lattice support. The microstructure of the 

lattice support structure has unignorably influences on the optimal build orientation.  

 (c) A support structure topology optimization based on the LSTO method is 

developed to minimize the overall volume of the support structure under the maximum 

residual stress constraint. Although the build orientation optimization method can decrease the 

residual stress in the metal AM process, it is not able to guarantee that the maximum residual stress 

is under the allowable stress (e.g. yield strength). Hence, the design is still possible to fail in 

manufacturing. As mentioned in the build orientation optimization, the microstructure of the 

support structure can affect the residual stress distribution. The aim of this research is to optimize 

the microstructure distribution of the support structure, in order to completely constrain the 

maximum residual stress below the yield strength. For this purpose, the fast simulation method 

called inherent strain method is employed in the optimization while a design dependent LSTO 

method with stress constraint is proposed. By optimizing the density distribution of the support 

region, the proposed approach can remove as much 60% material from the support structure 

region, and at the same time minimize the maximum residual stress below the yield strength. 

Experiments have proved that the developed method is able to control the residual stress in an AM 

part and guarantee the manufacturability of the design for part-scale problem. 
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6.2 Future Works 

Although the proposed LSTO method has been extensively studied in this dissertation for 

various problems ranging from static structural, dynamic, heat transfer, concurrent design with 

design-dependent movable features, and have been successfully applied for residual stress control 

for metal AM process, there is still a lot of room to further study this method. The potential future 

works based on the research in this dissertation are summarized as follows. 

(1) Multiscale and multilateral optimization by using the LSTO method for additive 

manufacturing. Natural materials normally consist of multi-layer of hierarchical structures and 

multi-materials for specific functional purpose. A direct extension of the proposed method is the 

multiscale optimization to mimic natural materials. To develop such a method, a multiscale 

homogenization theory needs to be first developed to capture the effective properties of structure 

from different length scale. The influence of the size effect should be considered when the smallest 

scale approximates to the nanoscale. For multi-material optimization, a material model that can 

smoothly switch the materials in the optimization according to the sensitivity analysis must be 

developed. Computational cost may be a major bottleneck that will constrain the development of 

such a method. Thus, advanced program in the framework of GPU should be developed to 

accelerate the analysis of multiscale modeling for the optimization.  

 (2) Multiphysics optimization by using the LSTO method. Most of the practical 

component is normally designed to work in multiphysics environment and undertake 

multipurpose applications. The development of multiphysicsoptimization has significant value 

from both academic and engineering perspectives. However, it is not straightforward to extend the 

existing LSTO method to multiphysical optimization. One major obstacle needs to be 

circumvented is an efficient homogenized model for the description of multiphysics properties of 
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lattice materials. Since the LSTO method tends to design variable-density lattice structure, there 

is no clear boundaries for the treatment of different physics. The open-cell nature of lattice 

structures may promote the interaction of multiphysics process. This may lead to invalid of the 

homogenized model obtained from single physics. To address this issue, the effect of interaction 

from multiphysics should be considered in the homogenization and optimization.  

(3) Extend support structure optimization to ultimate strength and dissolvable design. 

Although the combination of the build orientation optimization and support structure optimization 

is efficient to address the residual stress induced build failure, a new problem is introduced for the 

design. One of the important issues is the removal of the support structure. The proposed method 

tends to generate very dense lattice structure at the contact region between the support structure 

and solid component. This dense structure is difficult to remove in the post-process when the 

component is complex. To address this issue, two directions may be investigated: 1) Combine the 

build orientation and support optimization together to prevent the generation of support structure 

at the regions that are difficult to clean in the post-process; 2) design dissolvable support structures 

that are easy to remove by using the chemical process, such as a thin surface layer support 

structure. Another potential direction for this topic is to extend the yield strength constraint to 

ultimate strength. This will help to further reduce the sacrificial support structure and promote the 

development of dissolvable support. 
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