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Abstract 

Understanding Hydrologic Processes and Correlations using Modeling and Machine 
Learning with Remote Sensing and In-Situ Wireless Sensor Network Data 

 
Germán Augusto Villalba Fernández de Castro, PhD 

 
University of Pittsburgh, 2019 

 
 

This work addresses three challenging issues about the overall applicability of hydrologic 

modelling. The first challenge is improving the collection of sub-surface data. Our approach uses 

a long-term deployment of wireless sensor network with environmental sensors.  This approach is 

cost-effective when compared with the use of data-loggers and more flexible as it allows real-time 

monitoring of environmental variables. The plot scale environmental data is collected from our 

own WSN, deployed in western Pennsylvania, currently composed by 104 nodes and over 240 

sensors including commercially available soil moisture, water potential and temperature sensors 

along with lab-made xylem sap flow sensors. 

The second challenge is improving the availability and accuracy of continuous streamflow 

time-series estimates. The hydrometric network is modelled as a sparse Gaussian graphical model 

where each site represents a node in a graph. The graph model will have an edge between two sites 

only when their streamflow time-series are conditionally dependent given the other sites.  A novel 

algorithm is presented, estimating a sparse graph by imposing sparsity to the precision (covariance 

inverse) matrix via the Graphical Lasso algorithm. The resulting graph is used for inference and a 

second algorithm determines which gauges can be removed with the least loss of information. The 

estimated streamflow time-series have better accuracy that other methods based on geographic 

proximity (least distance) or marginal correlation. 

The third challenge is estimating the soil-water characteristics from biased and noisy 

observations of soil moisture. A novel method is presented for the simultaneous estimation of soil 

moisture and soil-related parameters. The simulation of soil moisture is performed using the Noah 

and the VIC models. The simulated site is a well-documented testbed in the state of Oklahoma. 

The calibration of the soil-related parameters uses Machine Learning techniques such as clustering, 

regression and classification, and soil-water correlations, providing physical and statistical 

constrains in the parameter space. Thus, the search is made within a reduced parameter space 

which makes the parameter calibration approach more effective and realistic. The performance of 
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the calibration algorithm is assessed regarding the quality of the soil moisture estimations while 

keeping the parameters in a feasible range. 
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1.0 Introduction 

The accurate estimation of water and energy fluxes are very important for the optimal 

operation of water resources assets, water supply management, hydropower generation, 

forecasting of floods and droughts, estimation of agricultural yield, ecological flow assessment, 

navigation, the design of engineering structures such as highways and reservoirs, among many 

other applications. The methods for the estimation of water fluxes can be grouped into two broad 

categories:  physically-based hydrologic models and statistical methods. 

The physically-based hydrologic models simulate the water and energy fluxes on the land 

surface using as input an initial estate and meteorological forcing data measurements. The 

evolution of the simulated fluxes is driven by equations derived from physical principles. The 

Noah[1] and the VIC[2] are examples of modern land surface models that consider soil and 

vegetation related parameters. Those models allow the estimation of variables such as soil moisture 

content (SMC), soil temperature, snow coverage; in addition to surface run-off that can be used to 

estimate streamflow at the watershed outlet if a digital elevation model (DEM) is used along with 

the hydrologic model.  

The statistical methods used to be the main approach for estimating water fluxes before 

cheap computing was available. Its use declined during the 1990s and 2000s. The last decade or 

so has seen a renaissance of statistical methods due to data-driven approaches such as machine 

learning gradually becoming main stream. This shift is mainly due to the increase in computing 

power and the availability of massive data sets. 
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The ever-increasing availability of data in the form of remote sensing benefit both, the 

application of hydrological models and the statistical methods. Some relevant examples of remote 

sensing for environmental monitoring are the space-borne satellites for: MODIS[3], GPM[4] and 

SMAP[5], for spectroradiometer, precipitation, and soil moisture, respectively.  

Despite the improvement in data availability over time, both, the physically-based 

hydrologic models and the statistical methods often times do not have access to high quality, 

reliable, high resolution data for a given time and space domain for all the relevant variables. This 

is particularly true for sub-surface fluxes where the application of remote sensing is severely 

limited. This dissertation addresses the challenges of collecting data for sub-surface environmental 

variables such as soil moisture and soil temperature, improving parameterization of hydrological 

model simulations and improving the availability and accuracy of streamflow time series 

estimations. 

 The dissertation is composed by 5 chapters. Chapter 2 addresses the challenge of collecting 

sub-surface environmental data at the plot scale via the application of wireless sensor networks 

(WSNs). Chapter 3 addresses the challenge of inferring streamflow time series and the removal of 

gauges from a hydrometric network with the least loss of information using machine learning. 

Chapter 4 addresses the challenge of improving the estimation of soil moisture and soil related 

attributes for physically-based hydrologic models. Chapter 5 presents the summary and 

conclusions.  
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2.0 A Networked Sensor System for the Analysis of Plot-Scale Hydrology 

Most of the content in this chapter was previously published in the open access journal, 

Sensors, under the title “A networked sensor system for the analysis of plot-scale hydrology” [6].  

2.1 Introduction 

The sustainable condition of our freshwater resources partially depends on our 

understanding of the natural system in which it is cycled [7]. It has long been known that 

physically-based distributed hydrologic models require an understanding of the spatiotemporal 

variability of environmental data, which is difficult without an abundance of ground-based 

measurements for calibration and validation [8]. Soil moisture and transpiration play a 

fundamental role in the soil-atmosphere interactions and eco-hydrological processes. Moreover, 

the impacts of these and other hydrological parameters on regional hydrologic and climatologic 

conditions need permanent in situ measurements. Exploring the variability of soil moisture and 

transpiration at the plot scale and qualifying such measurements statistically can help improve 

estimates (including flux and storage components) of water budgets at the regional/watershed scale 

conditions need permanent in situ measurements. Exploring the variability of soil moisture and 

transpiration at the plot scale and qualifying such measurements statistically can help improve 

estimates (including flux and storage components) of water budgets at the regional/watershed scale 

[9]–[11]. 
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Ground-based measurements and monitoring of environmental variables have been 

impacted over the past decade by wireless sensor network (WSN) technology. Traditional data 

logging methods use cumbersome equipment that are expensive to operate, and inconvenient to 

maintain, leading to limited spatial coverage capabilities. Because of the high expense of sensors 

and data logging equipment, researchers are often forced to either forgo data loggers for high 

spatial density measurements with poor temporal resolutions (i.e., hand measurements) or obtain 

high temporal resolution at a limited number of strategically located data loggers. 

Small, inexpensive, wireless monitoring devices are pervading beyond networking and 

communications research fields. These devices are providing scalable, high resolution data at a 

declining cost [12], [13] and have found applications in a variety of environmental monitoring 

fields, including:  habitat monitoring [14]–[16], microclimate monitoring [17], [18], seismology 

[19], [20], understory sunlight studies [21], agriculture [22]–[30], ecology [31]–[34] and 

hydrology [35]–[39]. High-resolution sensor networks of plot-scale hydrology is a growing 

application for WSNs due, in part, to the increasing demand for calibrating and characterizing sub-

grid variability of airborne and space-borne measurements [40], [41].  

A long-term (over six years) WSN has been measuring edaphic (e.g., moisture, water 

potential and temperature) and arboreal (i.e., xylem sap flow) hydrological properties in a forested 

nature reserve at the Audubon Society of Western Pennsylvania (ASWP) [38]. The original 

motivation of the ASWP network was to determine the feasibility of using WSNs to continuously 

and reliably collect hydrological data under natural outdoor conditions. Following the successful 

deployment of the network, which has been running on TinyOS 2.1.2 [42] and CTP [43], comes a 

new stage of research, starting in 2015, aimed towards network expansion and improvement of 

data collection and processing. 
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The novelty of this WSN study includes: (1) a data acquisition board design and software 

driver for integrating digital environmental sensors into the wireless hardware platform; (2) an 

energy efficient and balanced routing protocol CTP + EER [44]; and (3) a heterogeneous over-the-

air mote-reprogramming tool. Furthermore, our WSN enables the study of the following: (1) 

assessment of the quality of the data collected from soil moisture, soil water potential and soil 

temperature sensors attached to WSN nodes using a specially designed sensor board; (2) retrieval 

of high quality sap flow measurements from our lab-made [45] Granier-style [46], [47] sap flow 

sensors; (3) the application of the collected data to: (a) estimate soil hydraulic properties; (b) 

calculate transpiration based on sap flow; and (c) explore spatiotemporal patterns of soil moisture 

and soil water potential; and (4) evaluation of the utility of WSNs for environmental monitoring 

applications. To the best of our knowledge, this is the first comprehensive study to address these 

important questions from a single network perspective. 

2.2 Materials and Methods 

2.2.1  Equipment 

Three types of external sensors were used throughout the study site. The first two are the 

MPS-1 and EC-5 sensors (Decagon Devices, Pullman, WA, USA) which provide measurements 

of matric water potential (WP) and volumetric soil moisture (SM) (Figure 2.1 a, b, respectively). 

The Decagon Devices MPS-2 digital sensor [48], which provides measurements of soil 

temperature in addition to WP, is also deployed within the network due to the discontinuation of 

the MPS-1 sensor. The third sensor is a pair of Granier-style thermal dissipation (constant heat) 
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sap flow sensor probes (Figure 2.1 c), which were made and calibrated following [45]. The sap 

flow probes are connected to the mote’s sensor board via a control circuit (Figure 2.1 d) to amplify 

and condition the thermocouple response voltage as shown in [49]. The sap flow control circuit is 

operated by a 12 V lead-acid battery to accommodate the additional power requirements of the 

thermal dissipation method. 

 

 

 

Figure 2.1 - Schematics of the environmental sensors deployed at the ASWP network  

(a) Decagon Devices MPS-1/MPS-2 soil water potential sensor; (b) Decagon Devices EC-5 soil moisture 

sensor; (c) thermometric sap flow sensor probes; and (d) sap flow sensor circuit 
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2.2.1.1 Initial Equipment (MICAz, IRIS, MDA300) 

The network was built on an existing investment in WSN hardware, manufactured by 

Crossbow Technology (now MEMSIC, Inc.), which includes the MPR2400 (MICAz) and 

XM2110 (IRIS) processor and radio boards (i.e., wireless motes) and the MDA300 sensor board. 

The wireless motes are powered using rechargeable nickel-metal hydride (NiMH) batteries (size 

AA and D). The batteries, after recharging, are sorted based on their rested voltages to avoid 

deploying partially charged or uncharged batteries (see Section 2.3.5.1 for details). The data 

collection software, including data sampling and packet routing, is developed based on the state-

of-the-art open-source WSN platform TinyOS [42]. 

2.2.1.2 Updated Equipment (TelosB Motes and Custom Sensor Board) 

Starting in 2015, the wireless motes have gradually been updated to the CM5000-SMA 

(TelosB) by Advanticsys (Madrid, Spain) with our specially designed sensor board for data 

acquisition, forming a heterogeneous WSN consisting of MICAz, IRIS and TelosB motes. TelosB 

motes incorporate the 2.4 GHz CC2420 transceiver and the MSP430 microcontroller with 10 KB 

of RAM and provide a 16-pin expansion interface to connect external sensors. For the sensors 

described above, an excitation voltage is required before a reading. In the standard method, 

general-purpose input/output (GPIO) pins are used as excitation pins and ADC pins are used to 

gather sensor readings; however, when powering sensors directly using GPIO pins, the excitation 

voltage is unstable and can change under different workloads and battery levels. Since analog 

sensor readings are proportional to the excitation voltage, the readings might be inconsistent even 

in the same environment. 
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To address this problem, a novel custom sensor board was designed for TelosB motes 

(Figure 2.2) using voltage regulators to provide a stable excitation voltage. In the literature, TelosB 

acquisition boards are usually designed for specific sensors, such as motion sensors [50]–[52], 

physiological sensors [52], and SM sensors [53]. In contrast, our design is a generic sensor board 

for the TelosB mote. Our sensor board has two distinguishing features. First, it has ADC channels 

for analog sensor output and a UART channel for digital sensor output. Second, it provides two 

levels of stable excitation voltage that enables different combinations of external sensors to be 

attached based on the application configuration, which is essential in heterogeneous networks, 

such as the ASWP network. 

The sensor board is attached to the TelosB mote’s 16-pin expansion, providing screw wire 

connectors, ADC channels, UART0 serial port, and two excitation voltages. Analog sensors, such 

as EC-5 and MPS-1, can be attached to ADC channels and powered through a 2.5 V excitation 

voltage, obtained by using a TLV70025 voltage regulator (Texas Instrument, Dallas, TX, USA). 

Digital sensors can be connected to the UART0 serial port, such as the MPS-2, which generates a 

byte stream representing ASCII characters as its sensor readings. The MPS-2 requires an excitation 

voltage between 3.6 V and 15.0 V. A 5 V voltage booster (U1V11F5, Pololu, Las Vegas, NV, 

USA) is included in the custom sensor board to provide a 5.0 V excitation voltage from the 3.6 V 

nominal battery supply to power the MPS-2 sensors. 
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Figure 2.2 - Custom sensor boards for TelosB motes 

 

 

2.2.1.3 Enclosures 

The wireless motes and all necessary electronics are housed inside water-tight 

polycarbonate high-impact enclosures, connected to an external omni-directional high-gain (4.9 

dBi) antenna, and are discretely hung from tree limbs, attached to PVC posts, or mounted to the 

sides of trees (Figure 2.3). Motes with sap flow sensors deployed during the 2015 and 2016 

growing seasons were powered by the sap flow control circuit’s power regulator; therefore, these 

motes did not require the AA or D rechargeable batteries. 
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Figure 2.3 - Examples of node types and their enclosures in the ASWP network  

(a) relay nodes hanging from a tree branch; (b) sap flow node mounted to the side of a tree; and (c) soil sensor 

node mounted to a PVC pipe 

 

 

2.2.2  Mote Application 

The motes application was developed in TinyOS 2.1.2 [42] with an adoption of the newly 

developed routing protocol CTP+EER [44]. TinyOS is the most widely used WSN operating 

system and is found in 60% of WSN deployments [54], [55]. Owing to its popularity, TinyOS has 

a larger community, better documentation, and well-tested drivers and protocols compared to other 

WSN operating system alternatives [48]. 
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CTP+EER is an efficient and balanced routing protocol that extends CTP [43]. CTP is the 

de facto standard collection routing protocol in TinyOS, in which each mote finds the best route 

to the sink (i.e., base station). Unfortunately, with this protocol, network data traffic tends to 

concentrate on a few specific motes that provide the best routes within the network. Thus, these 

motes experience heavy congestion and deplete their batteries faster than their neighbors. In 

contrast, CTP + EER, while maintaining the best primary route within the network, also allows 

motes to select suboptimal routes from a parent set; therefore, it can reduce the data traffic at the 

busiest motes and provide better overall energy efficiency and balance. CTP + EER has been 

evaluated though analytical modeling, simulations, and testbed experiments. Compared with CTP, 

CPT + EER achieves better packet reception ratio, load balance, and energy efficiency. Please see 

[44] (and the references herein) for more details. 

The wireless motes form a multi-hop collection network operating in asynchronous low-

power listening (LPL) [56]. The logical architecture of the application is presented in Figure 2.4. 

Each node uses CTP + EER to deliver two types of packets: data packets (DataSenderC) and 

summary packets (SumSenderC). Data packets are periodically sampled at a base interval of 30 

min (DataTimerC). Randomness is added to each mote to avoid bursty network traffic 

(RandTimerC). Summary packets enable efficient network diagnosis (NetStatsC) and are 

generated every two hours (SumTimerC), which includes the network statistics such as 

retransmission, dropped packets, and information about the routing control traffic. 
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Figure 2.4 - Mote application architecture 

 

 

The mote application was adjusted based on the sensor types attached to each individual 

mote. There are two types of nodes: relay nodes and sensor nodes. Relay nodes have no external 

sensors and are used at advantageous locations to improve communication throughout the network 

(e.g., hanging in trees as shown in Figure 2.3 a). Sensor nodes are nodes with external 

environmental sensors (e.g., SM, WP, soil temperature or sap flow). Sensor nodes also participate 

in network routing and packet forwarding in data collection. Relay nodes only have temperature 

and humidity sensors (Sht11C, Sensirion, Zürich, Switzerland) [57]. Sensor nodes have analog 

sensors attached that utilize the ADC channels. In addition, some sensor nodes with TelosB motes 

also have a digital sensor that communicates through the UART0 serial port (Msp430Uart0C). 

To facilitate the reprogramming of motes that are deployed in difficult-to-access 

enclosures, an over-the-air mobile mote-reprogramming tool was utilized such that direct access 

to the mote hardware was not necessary. While many over-the-air programming approaches have 

been proposed for WSNs, none of them apply to heterogeneous and low power WSNs [58], [59]. 

The novel mobile mote reprogramming tool, MobileDeluge [58] (see Section 2.3.5.4), was 

developed to overcome this limitation. 



 13 

2.2.3  Deployment 

The ASWP network was initially formed in 2010, which culminated in 2014 as a 52-node 

deployment located over five sites as described in [38]. The network has since doubled in size (i.e., 

104 nodes) due to a 36-node addition during the summer of 2015 and a 16-node addition during 

the summer of 2016. The study area now includes six sites, of which five are designated areas for 

environmental monitoring. Figure 2.5 shows the locations of the relay (yellow circles) and sensor 

(red and blue circles) nodes throughout the six sites of the deployment. The base station (white 

square) is located in an office window of the nature reserve building in site 1. 

During the initial four years of the network deployment, all sensor nodes consisted of one 

MPS-1 and two EC-5 sensors. A subset of these sensor nodes was also outfitted with a sap flow 

sensor and a control circuit (operated during the growing seasons). Since the summer of 2014, 

sensor nodes have been divided into two classes: soil sensor and sap flow sensor nodes. 

The soil sensor nodes include two EC-5 sensors and one MPS-2 sensor (replacing the MPS-

1). One of the two SM sensors is co-located with the WP sensor at a depth of 30 cm, separated by 

enough distance such that the measurements of one would not interfere with the other. In the same 

hole, the second EC-5 sensor is placed at a depth of 10 cm. Best efforts were made to avoid rocks 

and tree roots during sensor installation. Holes are drilled into the bottom of the sensor node 

enclosures to allow the sensor wires to be connected to the sensor board (Figure 2.3 c). 
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Figure 2.5 - Map of the six sites of the ASWP testbed (October 2016 configuration)  

Relay nodes are represented as yellow circles, sap flow nodes are represented as red circles (the three pink 

circles in site 2 are used in this analysis), soil sensor nodes are represented as dark blue circles, and the base 

station is represented as a white square. The data loggers used for validation (i.e., DL1 and DL2) are shown 

as light blue diamonds and their corresponding nodes as light blue circles. The four-digit node numbers 

referenced in the analysis are indicated in the zoomed region of site 2 

 

 

The sap flow sensor nodes are equipped with one set of sap flow probes connected to a sap 

flow control circuit. The sap flow node enclosure houses all the wireless and sensor electronics 

(Figure 2.3 b). Two holes are drilled through the back wall of the enclosure (i.e., side facing the 

tree), spaced approximately 10 cm apart for seating the sap flow probes into the tree. Before 

attaching the enclosures to the tree, a portion of the tree bark is stripped away to create a flat 

surface for the enclosure box and to increase the penetration depth of the probes into the tree’s 

active xylem. Enclosures are attached to the trees using wood screws with the two enclosure holes 

aligned parallel to the tree’s vertical growth axis. Once enclosures are attached to the tree, pilot 

holes for the sensor probes are drilled horizontally into the tree at the locations of the two enclosure 

holes and are given a prophylactic treatment of hydrogen peroxide. To aid in installation and 

removal while improving the thermal conductivity with the tree xylem, the probe needles are 
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coated with petroleum jelly. Once inserted into the tree, the probes are fixed inside the enclosure 

using a silicone adhesive, which also prevents water from entering the enclosure through the holes. 

As a means of validating the WSN soil sensor measurements, two Decagon Devices EM50 

data loggers were deployed during the summer of 2016 along the hill slope that stretches from the 

bottom of site 2 to the top of site 3 (i.e., light blue diamonds in Figure 2.5). Accompanying the 

data loggers are four additional nodes (i.e., light blue circles in Figure 2.5), two surrounding each 

data logger. The validation data loggers and nodes are located at approximately the midpoint of 

the hill (i.e., nodes 2282, 2292 and data logger DL2) and close to the lower part of the hill (i.e., 

nodes 2262, 2272 and data logger DL2) in site 2, respectively. Each validation node is connected 

to three soil sensors and each data logger is connected to five soil sensors in such a way that five 

out of the six node sensors are matched with a data logger sensor (i.e., the same location, sensor 

type and installation depth). The sensor type and installation depth are the same as the other soil 

sensor nodes in the network. 

2.2.4  Calibration of Soil Moisture Measurements 

The SM raw data is collected as a voltage (mV) from the EC-5 sensor attached to a sensor 

board via an ADC (analog-to-digital-converter). The raw data needs to be converted to SM using 

a conversion equation. Typically, the conversion equation is presented as a linear equation θ = c1 

* ADC + c0, where ADC is the raw voltage output (in mV) from the EC-5 sensor and c1 and c0 

are the slope and intercept of the fitted linear regression model, respectively. The standard 

coefficients for non-Decagon data loggers at an excitation of 2.5 V for mineral soils, are c1 = 

0.00119 and c0 = −0.401. 
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Estimates of SM based on the standard equation showed a bias towards drier conditions. 

To increase the accuracy of the estimation, the field data collected at the validation locations were 

calibrated by a linear regression using the ordinary least squares (OLS) method. The targets values 

are from the validation data logger and the input is the raw data (i.e., ADC in mV from EC-5 

sensor) from the validation nodes. The EC-5 sensors were calibrated using an intercept of −0.360 

and −0.367 for depths of 10 and 30 cm, respectively, and slopes of 0.0011 and 0.0012 for depths 

of 10 and 30 cm, respectively. The slope values were found to be similar to the standard value (i.e., 

0.00119), while the intercept values are lower in magnitude. 

2.2.5  Hydraulic Properties from Soil Moisture Measurements 

One of the benefits of in situ plot-scale hydrology studies is the ability to estimate the 

hydraulic properties that govern the region. These hydraulic properties are important in 

characterizing a region with estimates to pedotransfer function (PTF) parameters that are utilized 

by hydrologic models to predict soil water retention properties based on available soil survey data 

[60], [61]. In this work, two PTFs are examined. The first PTF is the Clapp-Hornberger equation, 

which is given by the following power curve [62]: 
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where ψ  is the hydraulic conductivity, sψ  is the hydraulic conductivity at saturation, and 

ss θθ /=  is the soil wetness, a ratio of the SM, θ , to the saturated SM, sθ  (i.e., total porosity). 
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The second PTF is the van Genuchten equation, given by the following expression [63]: 
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where rθ  is the residual SM, nm /11−= , and n  and α  are fitting parameters. Assuming, 

for simplicity, that rθ  is zero, the left-hand side of Equation (2.2) may be expressed in terms of s

, such that:  
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−

+= ||1 ψα , (2.3)   

Field measurements of θ  and ψ  are used for fitting values of sψ  and b  in Equation (2.1) 

and α  and n  in Equation (2.3). The value for sθ  was determined experimentally based on the 

following methodology. A soil core sample was taken at a depth of 10 cm and 30 cm at the two 

node locations surrounding the validation data loggers (Figure 2.5). The soil samples were 

weighted under field conditions and then dried in an oven at 100 °C for 48 h before being weighted 

again. The bulk density was calculated as the dry weight divided by the volume of the soil sample 

core. The porosity was calculated as one minus the bulk density divided by the particle density, 

which was assumed as 2.65 g·cm−3. 

2.2.6  Transpiration Calculations from Sap Flow Measurements 

In this study, the xylem sap flow (i.e., the velocity of the water being transported through 

the active sapwood of the tree) is calculated using an empirical equation based on daily temperature 

differences between a pair of heated and reference temperature probes [47], [64]: 

𝑄𝑄𝑠𝑠 = 0.000119 × �𝛥𝛥𝑇𝑇0−𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

�
1.231

, (2.4) 
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where T∆  is the temperature difference between the upper and lower probes (°C); 0T∆  is 

the maximum daily value of T∆  (i.e., zero sap flow) (°C); and sQ  is the sap flux density 

(m3·m−2·s−1). Calculated quantities of sQ  are converted to transpiration based on the following 

equation [65]–[68]: 
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where τ  is the rate of transpiration (m·s−1); sA  is the tree sapwood area (m2); and GA  is 

the ground area (m2). The ratio Gs AA /  depends on the study site and is indicative of the tree 

density and the predominant tree species. It has been shown that this ratio can be as low as 1 

m2·ha−1 [69] and reach values as high as 25 m2·ha−1 [67] or 40 m2·ha−1 [70]. Estimates of sA  may 

be determined empirically, such as by the following allometric equation [71]: 

1
0

B
s dBA ⋅= , (2.6) 

where d  is the measured tree diameter at breast height (cm) and 0B  and 1B  are species-

specific coefficients determined by regression techniques. 

In a 2010 sap flow study at the ASWP site [72], 22 trees were surveyed to identify their 

species, take measurements of d , and estimate sA from three core samples taken at breast height. 

Based on the results of that study, only the silver maple (Acer saccharinum) trees, predominantly 

in site 2, produced measurable sap flow quantities. 

In 2016, another survey was conducted to estimate Gs AA /  for the silver maples in site 2. 

Figure 2.6 shows the surveyed area in site 2 for the Gs AA /  ratio estimation (approximately 1300 

m2) where three sap flow nodes (2014, 2084 and 2134) are located (pink circles in Figure 2.5). To 
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establish the boundary of the surveyed area, first, a preliminary perimeter was defined using trees 

located around the sap flow nodes. Then, this perimeter was displaced 5.33 m, which is the 

approximate mean distance between neighboring trees. The area of influence for each sap flow 

node was established using the Thiessen polygons criterion (i.e., the colored regions in Figure 2.6). 

These regions were used to calculate one Gs AA /  ratio for each node according to the number and 

diameter of trees within their area of influence. The diameters at breast height of 25 trees, including 

the three trees with sap flow sensors, were measured and the sapwood areas, calculated using 

Equation (2.6), are compared with the measurements made in 2010. 

 

 

 

Figure 2.6 - Field survey area within site 2 for the determination of a representative AS/AG ratio 
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2.2.7  Geostatistical Analysis of Soil Moisture and Soil Water Potential: Spatiotemporal 

Trends 

SM and WP are important variables in the water cycle within climate systems. Thus, the 

quantitative estimation of these parameters is fundamental for application fields such as weather 

forecast, hydrology and watershed management [73]. SM, for instance, usually shows strong 

spatial variability due to physical and geographic characteristics of the environment (e.g., 

topography, soil type, vegetation coverage) [74], [75]. Surface interpolation methods such as 

Kriging are widely used to assess the spatial characteristics of hydrologic variables [73], [76]–

[81]. 

The Ordinary Kriging (OK) interpolation method is the most widely used geostatistical 

interpolation technique and is acknowledged as the standard approach for surface interpolation 

[41], [71], [76], [82]–[87]. OK assumes that the distance or direction between sample points 

reflects a spatial correlation that can be used to explain variation in the surface. The spatial 

dependence is expressed by a semi-variogram. This method is appropriate when it is known that 

there is a spatially correlated distance or directional bias in the data, as is with SM and WP. The 

OK estimation equation is given by the following: 

∑
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λ , (2.7) 

where )( isZ  is the measured value at the i-th location, λi is an unknown weight for the 

measured value at the i-th location, )( isZ  is the predicted value at the prediction location S0, and n 

is the number of measured values. The weight, λi, depends on a fitted model to the measured points, 

the distance to the prediction location, and the spatial relationships among the measured values 

around the prediction location. In this study, an OK interpolation method with a spherical semi-
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variogram model is used to estimate the spatiotemporal trends of SM and WP, since this model 

has been found to satisfactorily represent the spatial dependence in previous studies [73], [76], 

[82], [88]–[90]. The root mean square error (RMSE) is used to assess the performance of the 

selected interpolation method. 

2.3 Results and Discussion 

2.3.1  Data Quality Assessment of WSN Sensors 

The data quality assessment of the WSN soil sensors was performed at the validation 

locations in site 2 where data logger measurements were accompanied by sensor node 

measurements at the same time and location. Only the validation results at the midpoint location 

of site 2 are presented here. 

Figure 2.7 shows the comparison results of soil temperature, T (Figure 2.7 a), WP, (Figure 

2.7 b), and SM, (Figure 2.7 c), for the time period between 29 July and 23 August 2016 for the 

data logger DL2 and the nodes 2282 and 2292 at two depths near the midpoint of the hill in site 2. 

The soil temperature measurements (based on the MPS-2) from the WSN peak slightly higher than 

the data logger measurements (light lines in Figure 2.7 a) and are indistinguishable at the validation 

location at the bottom of the hill (not shown). The WP measurements (also based on the MPS-2) 

are slightly lower at both depths from the WSN compared to the data logger (Figure 2.7 b). The 

SM measurements (based on the EC-5) are nearly indistinguishable between the WSN nodes and 

the data logger. 
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Figure 2.7 - Comparison of soil temperature, matric water potential, and volumetric soil moisture 

  (a) soil temperature, T in Celsius degrees; (b) matric water potential (WP),  ψ  in kPa; and (c) volumetric 

soil moisture (SM),  θ  in m3·m−3 data collected by a data logger (DL2) and wireless nodes (2282 and 2292) 

from the ASWP network between 29 July and 23 August 2016. The variable at a depth of 10 cm is shown in 

dark red for the data logger and light red for the nodes. The variable at a depth of 30 cm is shown in dark 

blue for the data logger and in light blue for the nodes 

 

 

2.3.2  Hydraulic Properties Estimation 

Figure 2.8 shows the empirical relationship between the SM, θ , and the absolute value of 

the WP, in kPa, |ψ | at a depth of 10 cm and 30 cm for the location close to the middle of the hill 

(i.e., nodes 2282, 2292 and data logger DL2) in site 2. The fitted equations lead to similar results 

for both equations. At a depth of 10 cm the fitted parameter for the Clapp and Hornberger equation 

are: sψ  = 0.658 kPa and b = 4.49; For the van Genuchten equation: n = 1.215 and α  = 1.808. The 

porosity value sθ  = 0.31 was calculated from a soil core taken in the same location. For the depth 
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of 30 cm, the parameters for the Clapp and Hornberger equation are sψ  = 0.521 kPa and b = 5.87; 

For the van Genuchten equation: n = 1.154 and α  = 3.51. The porosity value sθ  = 0.42 was 

calculated from a soil core taken in the same location. Table 2.1 summarizes these results, 

including the location close to the lower part of the hill (i.e., Node 2262, 2272 and Data logger 

DL1). The fitted equations were evaluated using the Nash-Sutcliffe efficiency (NSE) [91]. 

 

 

 

Table 2.1 Soil parameter calibration results for the Clapp and Hornberger, and Van Genuchten PTFs 

Location Depth (cm) sθ  b sψ  (kPa) 
NSE (Clapp-
Hornberger) 

n α  
NSE (Van 

Genuchten) 
DL1 10 0.32 9.63 0.045 0.914 1.093 62.34 0.929 
DL1 30 0.44 10.69 0.00066 0.800 1.081 10814.0 0.821 
DL2 10 0.31 4.49 0.658 0.921 1.215 1.808 0.922 
DL2 30 0.42 5.87 0.521 0.801 1.154 3.51 0.812 
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Figure 2.8 - Estimation of the soil hydraulic parameters from data  

at the location close to the middle of the hill in site 2 (i.e., Nodes 2282 and 2292, and data logger DL2). 

Wetness, s, in blue; Estimated wetness from measured matric water potential (WP) using the Clapp and 

Hornberger, and van Genuchten equations, in green and red, respectively. (a) Comparison of the wetness, s, 

time series, at a depth of 10 cm; (b) Same as part a, for a depth of 30 cm; (c) Relationship between the soil 

wetness, s, and the absolute value of the WP, in kPa, |ψ | at a depth of 10 cm. The fitted Clapp and 

Hornberger equation is shown in green and the fitted van Genuchten equation in red; (d) Same as part c, for 

a depth of 30 cm 
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2.3.3  Sap Flow Data and Transpiration Estimation 

2.3.3.1 Sap Flow Time Series 

Figure 2.9 shows the results of the sap flow collected by one WSN node (i.e., node 2084) 

the week between 20 and 27 July 2016. Figure 2.9a shows the raw voltage measurements between 

0 and 1000 mV from the sap flow probes collected by the same node; however, measurement noise 

produced raw voltage readings as high as 1500 mV (not shown). 

To perform an accurate estimation of the voltages for each probe, a robust weighted local 

regression [92] is used. The robust weighted local regression smooths the raw data and it is not 

affected by a relatively small number of outliers. The smoothed results are shown as red and blue 

lines in Figure 2.9a for the heater probe (HP) and the temperature probe (TP), respectively. Figure 

2.9b shows the temperature conversions from the smoothed raw measurements based on the 

individual calibrations for the HP and TP in red and blue, respectively. The difference in 

temperature between the HP and TP (i.e., TPHPΔT −= ) in Celsius degrees is shown in Figure 

2.9b, in magenta. Finally, Figure 2.9c shows the resulting sap velocity based on Equation (2.4). 
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Figure 2.9 - Sap flow results for node 2084 between 20 and 27 July 2016  

(a) Raw voltages (i.e., ADC in mV) from the HP (red scatter plot) and TP (blue scatter plot) between 0 and 

1000, and smoothed plot for the HP and TP in red and blue, respectively; (b) Filtered and smoothed 

temperatures for the HP (red) and TP (blue) from the raw voltages ADC0 and ADC1 respectively, difference 

in temperature (HP-TP) in Celsius degrees (magenta); (c) Sap flow time series (mm/h) 
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2.3.3.2 Transpiration Estimates from Sap Flow Measurements 

Table 2.2 shows a comparison between the sA  estimates of monitored silver maple trees in 

site 2 (Figure 2.5 for locations) and modeled sapwood area, sÂ , based on Equation (2.6), for which 

the same values of d  were used from the field survey. The coefficients 0B  and 1B  were selected 

according to the tree species [67]. It is observed that the values of sÂ  are similar to the field 

estimates (RMSE = 78.6 cm2); therefore, Equation (2.6) was used to calculate the sapwood area 

of the trees located inside the 1300 m2 survey area. 

Table 2.3 shows the results for the GS AA /  ratios for the three sap flow nodes based on 

their regions of interest within the survey area (Figure 2.6). 

Figure 2.10 shows the transpiration (τ ) calculations using Equation (2.5) for the sap flow 

measurements from nodes 2014, 2084 and 2134 based on a mean-weighted GS AA /  ratio of 12.06 

m2·ha−1 from Table 2.3. The selected time period (i.e., from July to October) represents the time 

of year when, on average, most of the evapotranspiration occurs around the study site [93]. Figure 

2.10a shows τ , in mm/h, every 10 min, which corresponds to the sap flow sensor’s sampling 

interval. The peaks in Figure 2.10a represent a time close to noon on each day. Despite having few 

noticeable high peaks, τ  is mostly within the range 0.2–0.4 mm/h. 

 

 

 

 

 



 28 

Table 2.2 Comparison of silver maple (Acer saccharinum) sapwood area from [72] measurements and 

Equation (2.6) estimations in site 2 of the ASWP network 

Node d  (cm) a SA  (%) b totalA  (cm2) c SÂ  (cm2) d SÂ  (cm2) e 

2045 34 77.4 839 650 700 
2055 30.7 70 682 478 601 
2065 31.5 76.7 719 552 633 
2095 41.2 81.7 1250 1020 954 
2115 24.3 83.1 415 345 394 

a based on hand measurements made in 2010; b based on the average of three core samples taken in 2010; c 
assumes 0.64 cm bark thickness; d based on the estimated percentage of sapwood area times the total trunk 

cross-sectional area; e based on the regression equation of [61] where 0B  = 2.052 and 1B  = 1.654 

 
 
 

Table 2.3 AS/AG calculations based on the field survey within the three survey regions in site 2 of the ASWP 

Survey Regions ∑ SÂ  (m2) a GA  (ha) b GS AA /  (m2/ha) 

2134 0.375 0.0292 12.87 
2084 0.38 0.0391 9.73 
2014 0.784 0.0593 13.23 

a sum of sÂ  values within each survey region, based on hand measurements taken at a height of 1.37 m in 

2016 and Equation (2.6), where 0B  = 2.052 and 1B  = 1.654 [61]; b based on Thiessen polygon areas (Figure 

2.6). 

 
 
 

 

Figure 2.10 - Transpiration (τ ) calculations in the ASWP site based on the measurements  

in nodes 2014, 2034 and 2134, from 11 July 2016 (7/11/16) to 11 October 2016 (10/11/16). (a) Transpiration 

rates in mm/h based on a 10-min interval; (b) Transpiration rates in mm/day based on a 24-h interval 
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Integrating the hourly τ  rates in Figure 2.10a to monthly totals yields 40.8 mm from 11 to 

31 July, 55.2 mm from 1 to 31 August, 65.4 mm from 1 to 30 September, and, 30.7 mm from 1 to 

11 October. According to the NRCC, the monthly average potential evapotranspiration (PET) 

estimates for the greater Pittsburgh area are 110.7 mm for July, 96.3 mm for August, 66.3 mm for 

September and 39.12 for October. Considering the average values from NRCC as a reference, 

these results suggest that there could be an overestimation of the τ  during September and October, 

since monthly τ  calculated for September is very close to the estimated average PET (i.e., 65.4 

mm compared to 66.3 mm) and the monthly τ  calculated for 11 days of October (i.e., 30.7 mm) 

are projected to be higher than the estimated average PET (i.e., 39.12 mm). Besides two noticeable 

peaks in τ  during these two months (i.e., 7 September and 10 October in Figure 2.10a), the 

remaining values are consistently higher than in the previous months (i.e., July and August). This 

suggests that for these two months, the τ  rates were higher than average and there is not an 

overestimation of the transpiration. However, since the GS AA /  ratio is a major factor controlling

τ rates, an extension of the survey area can be considered for a better estimation. 

Figure 2.10b shows the daily τ  values, which is consistent with previous studies that have 

similar geographic and climatic characteristics to the ASWP site [66], [67], [94], [95]. The 

maximum, minimum and average values of daily τ during the specified period of time are 4.49 

mm, 0.44 mm and 2.01 mm, respectively. 
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2.3.4  Exploration of Soil Moisture and Soil Water Potential: Spatiotemporal Trends 

Determining and explaining the temporal and spatial hydrological patterns is one of the 

major challenges in the hydrological sciences, since the factors that control these patterns behave 

in a nonlinear way [35]. In this study, a spatial analysis was performed in order to show the 

variability of SM and WP. 

Figure 2.11 shows the time series of mean SM and its standard deviation at two depths (10 

and 30 cm) for sites 2 and 6. The mean and standard deviation were calculated using hourly time 

series for each node in sites 2 and 6. Site 6 is characterized by a steep hill slope, while the slope is 

moderate for site 2. Figure 2.11 a and b show that the mean SM at both depths in site 2 is generally 

higher than that at site 6. The SM is especially higher at 30 cm (Figure 2.11b). Figure 2.11c and d 

show the standard deviation at sites 2 and 6, at 10 and 30 cm, respectively. It is shown that site 2 

has a higher standard deviation than site 6, especially at 10 cm. 

Figure 2.11 illustrates that, due to the presence of significant heterogeneity within a small 

spatial scale (e.g., the two sites are only a few meters away from each other), individual 

measurements (e.g., SM in this case) from the nearby locations can be quite different. To capture 

the variability of SM within a small spatial scale would require many sensors within an area of 

study. The traditional approach of connecting one or a limited number of sensors to a single data 

logger is not practical as it would require a large number of data loggers that would make the 

installation and maintenance cost prohibitive. In contrast, the WSN approach, together with the 

network protocol used here, makes such applications feasible as the cost is relatively low and data 

processing is centralized and simplified. 
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Figure 2.11 - Comparison of the mean and standard deviation of volumetric soil moisture (SM)  

θ  in m3·m−3 at sites 2 and 6 in red and blue, respectively, in the ASWP WSN testbed between 10 July and 10 

October 2016. (a) Mean SM at a depth of 10 cm; (b) Mean SM at a depth of 30 cm; (c) Standard deviation of 

the SM at a depth of 10 cm; (d) Standard deviation of the SM at a depth of 30 cm 
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SM and WP surfaces (1-m cell size) were generated to illustrate the average spatial and 

temporal variability of these two parameters. The surfaces were built using the OK method. Along 

with the interpolated surface, elevation contours were generated from a 2-m resolution LIDAR 

raster, in order to complement the surface analysis by providing elevation input. The interpolation 

boundary was defined based on the area extent (approximately 15,000 m2) where the nodes are 

located. The highest and lowest elevations within the site are 365 and 346 m above mean sea level 

(m.a.m.s.l.), respectively. 

Figure 2.12 shows the average-seasonal SM (at 10 and 30 cm) and WP (at 30 cm) surfaces 

from 2010 to 2016. Overall, it is noticed that the higher SM area is located in the lower part (at 

346 m.a.m.s.l.), within a flatter region near a pond. Also, it is observed that SM, regardless of the 

elevation, is more homogeneous during winter than in the other seasons, which might be caused 

by snow accumulation and melting over the winter. This is more evident in the average winter SM 

at 10 cm (Figure 2.12a1), since the shallow soil is more influenced by the varying climatic 

conditions than the deeper soil [96]. 
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Figure 2.12 - Interpolated surfaces (Kriging method) showing the average seasonal variation in volumetric 

soil moisture (SM) and soil water potential (WP) 

based on data retrieved from 2010 to 2016. (a) winter average (December–February): (a1) SM at 10 cm; (a2) 

SM at 30 cm; (a3) WP at 30 cm; (b) spring average (March–May): (b1) SM at 10 cm; (b2) SM at 30 cm; (b3) 

WP at 30 cm; (c) summer average (June–August): (c1) SM at 10 cm; (c2) SM at 30 cm; (c3) WP at 30 cm; (d) 

fall average (September–November): (d1) SM at 10 cm; (d2) SM at 30 cm; (d3) WP at 30 cm. SM is expressed 

in m3·m−3. WP is expressed in kPa. The elevation contours are expressed in m. The dots represent the nodes 

from which the data was retrieved 
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Another noticeable fact is that the average variation in SM is higher at 10 cm than at 30 

cm, suggesting that the longer travel time to deeper soil reduces the spatial variability of SM. SM 

is lower during the summer than in the other seasons, which is consistent with the recorded daily 

rainfall data at the Pittsburgh Airport Meteorological Station [97] for the 2010–2016 period, where 

there is a dry period between the end of the spring and summer months (i.e., May–September). 

Finally, based on the SM surfaces from summer and fall (Figure 2.12 c1, c2, d1, d2), there seems 

to exist a water pathway (darker color in the surface) from the highest elevation to the lower part 

of the area, located at the right side of the SM surface. This pathway might be explained by the 

natural surface and subsurface water movement towards the creek located to the south of the study 

area which, in turn, drains into the pond (immediately downstream of the region with higher SM). 

Topography showed stronger influence on SM during the winter. Regarding WP, the interpolated 

surfaces show a variable behavior from one season to another, but WP is mostly higher in the 

regions with higher elevations, even though there are some lower regions with higher WP. 
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Figure 2.13 - Interpolated surfaces (Kriging method) showing a comparison between the average fall  

(September–November) SM and WP of 2010 and 2016, and average SM and WP on 11 August 2016 

(08/11/2016) (a) SM at 10 cm (fall 2010); (b) SM at 30 cm (fall 2010); (c) WP at 30 cm (fall 2010); (d) SM at 10 

cm (fall 2016); (e) SM at 30 cm (fall 2016); (f) WP at 30 cm (fall 2016); (g) SM at 10 cm (11 August 2016); (h) 

SM at 30 cm (11 August 2016); (i) WP at 30 cm (11 August 2016). SM is expressed in m3·m−3. WP is expressed 

in kPa. The elevation contours are expressed in m. The dots represent the nodes from which the data was 

retrieved 
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Figure 2.13 illustrates the improvement achieved by the network expansion. In highly 

complex and heterogeneous environments, the amount and quality of data is proportional to the 

amount of extractable knowledge [98]. SM and WP interpolated surfaces were created for the 

average fall conditions in 2010 and 2016. Additional surfaces were generated for the average of 

11 August 2016, which is the day with the highest recorded alive nodes (102 nodes, including the 

relays). In general, these surfaces show similar patterns for each corresponding variable (i.e., SM 

at 10 cm and 30 cm and WP at 30 cm). However, the 2016 network size, with less scattering in the 

node locations, provides better estimations than the 2010 network size. It is observed that the 

patterns for fall 2016 and 11 August 2016 are more similar to each other than the patterns for fall 

2010 (see Figure 2.13). This indicates that the higher node density in 2016 provides more detailed 

insights of the temporal and spatial variability of SM and WP. Overall, the analysis has shown the 

applicability of WSNs for short- and long-term hydrological patterns characterization at the 

catchment scale, for steep-forested environments. 

In addition, Table 2.4 shows the RMSE obtained from the OK interpolation for the 

scenarios presented in Figure 2.12 and Figure 2.13. The RMSE has the same units as the analyzed 

variable (i.e., SM or WP). The number of nodes from which the data was extracted, along with the 

maximum and minimum SM and WP values are also included. In terms of the SM, it is observed 

that RMSE is lower at 30 cm than at 10 cm, which is consistent with what has been shown before 

(i.e., that the SM is much more variable in the near-surface soil than in the deeper soil). In the case 

of the different average seasonal conditions, even with a different density of nodes within the site, 

the RMSE did not experience a significant change, thus showing the robustness of the OK 

interpolation method. 
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Table 2.4 RMSE of the interpolated surfaces 

Interpolated Surface Winter 
2010–2016 

Spring 
2010–2016 

Summer 
2010–2016 

Fall 2010–
2016 

Fall 
2010 

Fall 
2016 

8/11/2016 

SM (m3·m−3) 
at 10 cm 

# Nodes 38 55 71 72 24 72 74 

Max SM 0.57 0.41 0.33 0.53 0.19 0.5 0.29 

Min SM 0.18 0.12 0.07 0.04 0.11 0.05 0.006 

RMSE 0.061 0.062 0.061 0.063 0.059 0.026 0.031 

SM (m3·m−3) 
at 30 cm 

# Nodes 38 57 72 72 23 72 74 

Max SM 0.32 0.3 0.28 0.29 0.19 0.39 0.14 

Min SM 0.2 0.13 0.05 0.06 0.03 0.04 0.03 

RMSE 0.03 0.048 0.052 0.051 0.058 0.057 0.024 

WP (kPa) at 
30 cm 

# Nodes 37 51 59 57 24 69 74 

Max WP −10 −8 −22 −13 −19 −25 −38 

Min WP −17 −31 −99 −59 −418 −207 −472 

RMSE 2.12 4.94 17.46 6.01 41.91 17.88 26.53 

 

 

 

The lowest RMSE in SM, for both depths, obtained for 11 August 2016, suggests that a 

shorter period of time and a higher density of nodes reduce the uncertainty of the SM estimation. 

The estimated RMSE in the WP surfaces showed more variability than in the case of SM, mostly 

due to larger differences in the WP ranges for the analyzed conditions. However, if considering 

the error as a percentage of the range, the 11 August 2016 and fall 2016 average scenarios have 

the lowest percentages, 0.061% and 0.098%, respectively. In summary, geostatistical tools such as 

the OK interpolation constitute an important complement to WSNs for environmental monitoring 

purposes, especially when it is intent to estimate the spatiotemporal behavior of hydrological 

parameters. 
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2.3.5  WSN Challenges and Utility in Hydrology 

There are several challenges faced in outdoor environmental monitoring WSN 

deployments, including power management, node maintenance, network scaling, heterogeneous 

deployment, and overall network cost [99]. 

2.3.5.1 Power Management 

It is of critical importance to maintain a constant power supply to the WSN nodes to ensure 

data collection and communication within the network. By far, the most common maintenance 

task is the replacement of batteries. Rechargeable nickel-metal hydride (NiMH) AA batteries were 

selected for powering the wireless motes as an environmentally friendly and cost-conscience 

means of maintaining the frequent battery changes of the network. Other alternatives such as the 

use of lithium-ion polymer battery (LiPo) were discarded due to budget constraints and the existing 

investment on a large number of AA (NiMH) batteries and chargers. Previous studies that analyzed 

the power efficiency of WSN motes using AA (NiMH) batteries showed that the expected 

autonomy of individual nodes is between 48 days [100] and 58 days [38]. More information about 

the energy profile for WSN nodes is available in [101]. The use of solar panels has been 

considered, but, with the dense forestation surrounding the majority of the network, it did not 

appear to have a sufficient return on investment; although, it might be suitable for other locations 

with more exposure to direct sunlight or during the winter months following tree leaf senescence. 

Despite the benefits of rechargeable batteries, some drawbacks exist. Following a recharge, 

the NiMH batteries may have a significantly higher voltage (e.g., 1.4 V). This leads to 

circumstances where the combined voltage of three NiMH batteries (i.e., 4.2 V) is significantly 

greater than the recommended safe operating voltage for the wireless motes (i.e., 3.3 V). Also, 
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issues with irregular charging voltages were found in the NiMH batteries, which were sorted based 

on the recommended screening process described in [38]. In order to maximize the life span of 

each relay node for each battery cycle, it is recommended using D batteries that have a capacity of 

about 10,000 mAh or more. 

Over the span of the project, two sorting strategies were used for the batteries: full and 

partial sorting. In the full sorting strategy, before a maintenance event, all recharged batteries are 

sorted by their standing voltage from low to high. Replacement batteries are then chosen as 

consecutive groups of three from the sorted group. In the partial sorting strategy, batteries are 

grouped based their standing voltage into bins (e.g., 1.25–1.30 V). Replacement batteries for a 

single mote are then taken from the same bin. In this method, only voltage bins with an adequate 

number of batteries are used, which often leads to unused batteries in bins with only one or two 

batteries. In this regard, the full sorting strategy is slightly better; however, it is more time 

consuming. As indicated in Figure 16 of [38], node battery life throughout the network improved 

following the adoption of a battery sorting strategy. 

Another method for improving the battery life of wireless motes is to reduce its number of 

transmissions. This is due to the high-energy costs of transmitting wireless data [100], [102]. 

During the first years of this project, each node had a sampling rate of 15 min. This was a trade-

off between the desired sub-hourly temporal resolution of the environmental data, the expected 

battery life for each power cycle of the motes’ batteries, and the poor packet reception rate of the 

network, which was around 50% during the first years of deployment. With recent versions of the 

WSN protocol, the packet reception rate has significantly improved to over 90% [38]. In addition, 

the new WSN protocol allows for the customization of network parameters for individual nodes 

according to their intended use. In order to reduce power consumption, the sampling rate of relay 
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nodes (and some sensor nodes) was lengthened to 30 min. At the same time, to address 

measurement noise, the sampling rate for the sap flow nodes was shortened to 10 min. The 

increased sampling rate of the sap flow nodes was not a concern for battery life, as these nodes are 

powered by the 12 V lead-acid battery. 

2.3.5.2 Node Maintenance 

The maintenance of the data collection equipment depends on knowing the status of each 

individual node or data logger. However, the data loggers used in this study are not available on-

line and therefore it is not possible to monitor the data collected with them in real time. In addition, 

in order to collect the data, the researcher needs to commute to the location where the data logger 

is located. There are some disadvantages with this approach. First, if a wire is loose, then data from 

one or several sensors attached to the data logger is lost. Second, if the batteries are depleted, then 

the data logger stops working. Third, there is no way to be aware of those issues until the data is 

downloaded and examined. Lastly, downloading the data from a data logger is time consuming 

and does not scale to the case of several locations because every location has to be downloaded 

independently. Also, the data for a single data logger generates a number of separate files (i.e., one 

at each location and time of downloading) that require further processing before analysis—as is 

the case for the Decagon Devices EM50 data logger used in this study. On the other hand, the data 

collected from our WSN is stored directly and automatically in a relational database that is 

available through a web-based integrated network and data management system for heterogeneous 

WSN site called INDAMS [103] for online monitoring. 
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One way to reduce the need for node maintenance is by using enclosures of high quality, 

even though they tend to be more expensive, their associated costs pays off in the long run as they 

are more resistant to environmental damage, less prone to water intrusion, easier to open and close, 

and, therefore, easier to maintain. In addition, high quality enclosures keep the sensing and 

communication equipment, and the batteries safer. 

2.3.5.3 Network Routing and Scaling 

In multi-hop large-scale WSN networking, the routing protocol plays an essential role for 

reliably collecting sensor data in real time. While WSN deployments appear promising due to the 

limitations of traditional data logging methods [104], the WSN scalability has proven to be a 

bottleneck in early studies. An increased network size introduces more data traffic, collisions and 

congestion in the network, resulting in network performance degradation. To mitigate this 

problem, starting from the summer of 2014, the ASWP network has adopted CTP + EER routing, 

which significantly reduces the workload of motes along efficient routes and thus extends the WSN 

lifetime. 

During the network expansion, from 52 nodes in 2014, to 88 nodes in 2015, and finally to 

104 nodes in 2016, the network performance has not been noticeably influenced while operating 

CTP + EER. The packet reception rate (PRR) of the network remains above 96%. The average 

packet path length is 3.95 hops during the 52-node network, 4.76 hops during the 88-node network, 

and 4.73 hops during the 104-node network. In the summer of 2015, both the width and length of 

the WSN deployment was expanded, which caused the increase of the average path length. In the 

summer of 2016, the major network change was its density, which caused a slight reduction in the 

average path length and PRR. This result demonstrates that with the proper routing protocol, the 

network is able to maintain high levels of performance over various deployment scales. 
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2.3.5.4 Heterogeneous Mote Reprogramming 

The ASWP WSN deployment consists of three different mote platforms as well as multiple 

application versions (corresponding to various external sensors attached to individual motes). As 

an exploratory and evolving WSN deployment, the network application needs to be updated 

frequently to test new protocols and parameter configurations. Over-the-air reprogramming 

approaches become a natural choice since manually reprogramming the motes is cumbersome. The 

heterogeneous nature of the developed WSN with motes operating in LPL makes the existing 

reprogramming tools infeasible [58], [59]. 

Our developed MobileDeluge [58] is a novel hand-held mobile over-the-air mote 

reprogramming tool for outdoor WSN deployments (Figure 2.14). MobileDeluge builds a new 

control layer on top of Deluge [105]. It enables and disables Deluge services on demand, allowing 

for the selection of a subset of motes as targets when initiating a reprograming task. It then disables 

LPL in the targets for fast dissemination of the new application image, which usually consists of 

thousands of packets. The targets are also configured in a different radio channel to avoid 

interference with the rest of the network. MobileDeluge currently works with the motes within a 

one-hop range to avoid forwarding a bulk code image over intermediate nodes for mote energy 

conservation. Please see [58] (and the references herein) for more details. 
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Figure 2.14 - MobileDeluge, a hand-held mobile mote reprogramming tool 

 

 

MobileDeluge has significantly reduced the time and labor required to update the 

application in the outdoor WSN testbed. The manual reprogramming procedure would consist of 

getting the enclosure from the tree, opening the box, attaching the mote to the laptop and uploading 

the new application. For example, it usually takes a few days to reprogram the whole ASWP 

testbed (i.e., 104 motes). With MobileDeluge, in contrast, the reprogramming can be finished 

within one afternoon. 

2.3.5.5 Network Costs 

The 52-node MICAz and IRIS network at the end of 2014 had a cost of $31,500 for the 

wireless motes, gateway, sensors, and other peripherals [38]. The CM5000-SMA (TelosB) mote 

includes built-in humidity and temperature sensors and does not require the use of an acquisition 

board for relay nodes as opposed to the MICAz or IRIS motes that use the MDA300 acquisition 
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board ($179). Therefore, the adoption of the TelosB motes has significantly reduced the cost of 

relay nodes, from $330 (in the MICAz network) to $164, despite the TelosB ($110) being slightly 

more expensive than the MICAz or IRIS motes (both models about $99 each). These savings are 

also found for the soil sensor nodes (from $664 to $480), mainly due to the deployment of our 

inexpensive ($13) designed sensor boards (with 5 V voltage booster) instead of the MDA300, 

despite the increased cost for the MPS-2 (compared to the MPS-1) sensor. A new sap flow box 

design, which replaced the MDA300 by our sensor board ($9) without the 5 V voltage booster and 

does not require the use of AA or D batteries, has further contributed to the cost savings (from 

$464 to $257). The cost of the expanded 104-node (27 MICAz, 32 IRIS and 45 TelosB motes) 

network is approximately $50,000. Table 2.5 shows the distribution of sensors for each type of 

node. 

 

 

Table 2.5 Distribution of nodes by type of application 

App Type Number 
Relays 27 

Soil Moisture Water Potential (EC-5 × 2, MPS-1 × 1) 31 
Soil Moisture Water Potential (EC-5 × 2, MPS-2 × 1) 36 

Sap Flow 10 
 

 

For the sake of comparison, a Decagon Devices EM50 data logger costs about $476 and is 

roughly equivalent to our WSN soil sensor node ($177 without the sensors) in terms of its 

capability to host external sensors. 
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2.3.6  Lessons Learned with Sap Flow 

Low-cost wireless sap flow monitoring is a challenge for environmental research. The 

delicate nature of the thermal dissipation sap flow sensor, not often surviving more than a single 

season, and the price of the commercial sap flow sensor, which is too high for large deployments 

with tight budgets, lead researchers to building their own sensors. While cost effective [45], there 

are challenges to manufacturing working sensors, which require a good deal of patience and careful 

attention to detail. Once manufactured, sensors should undergo calibration to account for slight 

variations in workmanship and care must be taken during transport and installation, during which 

time the heating filament can be easily damaged. The cost effectiveness of these self-made sensors 

outreaches the drawbacks of their tedious manufacturing and delicate installation. 

There is also the issue regarding the integration of sap flow sensors into WSNs. Early WSN 

sap flow studies were based on experimental hardware burdened with power limitations and 

software development issues [34], [106]. These days, good wireless implementations are becoming 

more and more ubiquitous and more seamless in terms of user experience. 

2.4 Conclusions 

The environmental data collected with the WSN nodes were found to be similar to the data 

collected from the Decagon Devices Em50 data logger in terms of quality. However, the WSN 

nodes overcome some important limitations of traditional data loggers at a significantly lower cost. 

For instance, the data readings from the WSN nodes are automatically collected and stored in a 

relational database system, therefore all the environmental data are saved in a unified and 
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integrated repository, eliminating the need to manually download data at each location. In addition, 

the status of individual nodes is available in a web-based integrated network and data management 

system developed for heterogeneous WSN site called INDAMS. 

This study has shown an effective application of WSNs to determine and explain 

spatiotemporal hydrological patterns. A specially designed sensor board provides stable excitation 

voltage for analog and digital sensors at only approximately 6% of the cost of the MDA300 

acquisition board. MPS-2 sampling synchronization issues on sensor motes were solved with our 

driver software developed in TinyOS. Our exploratory study demonstrates how the innovative 

WSN routing protocol CTP + EER and the over-the-air reprogramming tool MobileDeluge can 

overcome the challenges of heterogeneous and large-scale multi-hop WSN for outdoor 

environmental morning. In particular, this study has presented the first of its kind comprehensive 

data analyses for the WSN monitored hydrological variables including soil temperature, WP, SM 

and sap flow. Two PTF parameters that are utilized by hydrologic models to predict soil water 

retention properties (i.e., the Clapp-Hornberger equation and the van Genuchten equation) were 

estimated with the retrieved SM and WP data with a high goodness-of-fit (i.e., NSE greater than 

0.80). The improved installation design of the sap flow sensors allowed for the retrieval of high-

quality data, which later were filtered using a robust weighted local regression to smooth the data 

without being affected by the outliers. At the same time, these sap flow data were used to estimate 

transpiration rates, which were highly consistent with previous studies in sites with similar 

geographic and climatic characteristics. The estimation was also consistent with the local measured 

data (meteorological stations). Moreover, a spatial analysis was performed to show the variability 

of SM and WP, which showed the applicability of WSNs for short- and long-term hydrological 

patterns characterization in a catchment scale in steep-forested environments. 
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It has also been shown that “out of site” procedures, such as sensor calibration 

methodologies and adequate data processing, provided a fundamental added value to the field 

work. Finally, despite the tremendous challenges posed by outdoor WSN deployments, including 

power management, node maintenance, routing scale, heterogeneous deployment, and overall 

network cost, the wireless sensor network approach (e.g., protocols, sensors, deployment tool, and 

acquisition) presented in this study has proved to be an effective (in terms of the data quantity and 

quality) and low-cost alternative for environmental monitoring. This helps pave the way to larger 

scale outdoor WSN developments in the future in order to ultimately study and answer the 

fundamental science questions for quantifying sub-grid heterogeneity and in understanding 

hydrologic parameters. 

Future work should also consider continuing exploring materials and methods to lower the 

cost of the network without reducing the data quality and other complementary strategies such as 

the optimization of battery usage. 
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3.0 Estimation of Daily Streamflow from Multiple Donor Catchments with the Graphical 

Lasso 

Most of the materials contained in this chapter are based on the manuscript submitted to 

the journal of Water Resources Research, under the title of “Estimation of daily streamflow from 

multiple donor catchments with the Graphical Lasso” by German A. Villalba, Xu Liang, and Yao 

Liang. The manuscript is currently under revision. 

3.1 Introduction 

Continuous daily streamflow time series are important for a wide variety of applications in 

hydrology and water resources. Such applications include water supply management, hydropower 

development, flood and drought control, forecasting of agricultural yield, ecological flow 

assessment, navigation, rainfall runoff model calibration, design of engineering structures such as 

highways and reservoirs, and many others  [107]–[111]. However, continuous streamflow data are 

not available oftentimes due to either no existing streamflow gauges or data gaps in the recorded 

time series at gauged stations [112]. Also, data gaps of different time periods exist at different 

gauge locations within a large river basin [113]. Furthermore, there is an increasing decline in the 

hydrometric network density worldwide [114], [115]. For example, the U.S. Geological Survey 

(USGS) is discontinuing operations of some streamflow stations nationwide due to budget cuts 

[116] which has been a serious concern [117]–[120]. Therefore, it is critical to develop an effective 
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and general method to fill in data gaps, extend data records of those that have been or will be shut 

down, and even estimate data for ungauged locations.  

The estimation of continuous daily streamflow time series techniques at ungauged or 

poorly gauged locations can be classified into two broad categories: (1) hydrologic model–

dependent methods and (2) hydrologic model–independent methods [111]. The latter methods are 

also called statistical methods [121] or hydrostatistical methods [110]. Work related to the first 

category is abundant, but it  is relatively limited for the second category (e.g. [110], [111], [122]), 

especially during the 1990s and 2000s. With an increase of various data types and computing 

power over the last couple of decades it is now possible to re-visit the challenging issues using 

data-driven approaches such as Machine Learning [123], [124], which also belongs to the second 

category of hydrostatistical methods.  Farmer and Vogel [110] summarized the general procedure 

of the second category as a three-step process. Step 1, selection of one or multiple donor gauges 

based on some measure of hydrologic similarity. Step 2, estimation of the streamflow statistics, 

such as the mean and standard deviation, at the target location. Step 3, transference of the 

streamflow time series from the donor gauge(s) to the target site (e.g., partially gauged/incomplete 

or ungauged).  

The accuracy of inferred daily streamflow estimations based on Step 3 is conditioned on 

the accuracy of a proper selection of the donor gauge(s) in Step 1. This selection is typically based 

on an assessment of the hydrologic similarity between the target and the donor gauge(s) and 

whether a single or multiple donor gauges are used. A number of approaches have been used so 

far with different levels of complexity, data requirements and accuracies (e.g. [107], [110], [114], 

[125]–[129]). 
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The approach of selecting the nearest gauge as the donor is a convenient and widely used 

method due to its simplicity and minimum data requirements (e.g., [110], [130]–[132]), For 

example, the work of Farmer and Vogel [110] adopted this simple distance-based method in the 

donor selection procedure (Step 1) in their study, where a number of methods using different 

streamflow statistics in Step 2 and Step 3 were investigated and compared.  Archfield & Vogel 

[107] developed a procedure called Map correlation method that uses time series from several 

streamflow gauges in the study area to create a correlation map based on a kriging method and 

then uses that map to estimate the correlation between a given ungauged location and nearby 

gauges. They concluded that (1) the distance-based approach does not provide a consistent 

selection criterion; (2) the most correlated gauge is not always the closest one by distance; and (3) 

the accuracy based on the most correlated gauge outperforms the one based on the distance in most 

cases. The correlation-based approach is generally better than the distance-based approach because 

the streamflow data is more effectively used in the correlation-based approach, and the marginal 

independence between any pair of gauges can be easily determined [133]. Here, the  pair-wise 

correlation between two gauges is used to evaluate their marginal independence. That is, the two 

gauges are assumed to be independent if their pair-wise correlation is below a given threshold. For 

example, Halverson & Fleming [129] set a correlation threshold of 0.7 in identifying whether two 

gauges in question are independent or not.  

Although using a single donor gauge to estimate streamflow time series has been a 

dominant approach [134], Smakhtin et al. [125], [126] proposed to use more than one donor gauge 

from nearby gauges to improve the streamflow estimations for ungauged basins. Zhang and Chiew 

[127] and Arsenault and Brissette [135] also concluded that the estimation from multiple donor 

gauges is more accurate in general than that from a single donor gauge case. In these studies, 
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multiple donor gauges were investigated based on methods such as the degree of similarity of flow 

regimes between the donor and destination gauges, spatial proximity, physical similarity, simple 

arithmetic mean, inverse distance weighting, combinations of some of them, and an assignment of 

a fixed number of donor gauges. The challenges of these approaches include: (1) how to measure 

the similarity; (2) how to systematically determine which gauges should be the donor gauges; and 

(3) how many donor gauges each individual target gauge should have.   

In addition to Archfield & Vogel [107], other previous work, (e.g. [134], [136], [137]) also 

showed that geostatistical methods such as kriging that uses multiple donor gauges, are an effective 

alternative. The kriging method is an spatial interpolation technique that estimates values at target 

locations as a linear weighted combination of the observations from different locations. The 

weights are assigned based on a variogram model which is usually fitted based on the variance 

between observations as a function of the distance between locations. The kriging method 

overcomes problems in terms of selecting the number of donor gauges and the individual donor 

gauges since all of them are used in a linear combination fashion. The kriging method is useful in 

transferring information from gauged to ungauged locations [138]. However, the accuracy of its 

estimation depends on the density and quality of the measurements of the gauged sites. Virdee & 

Kottegoda [139], noticed that a major problem with kriging is the lack of data with the needed 

density. 

For a commonly encountered situation in which the density of streamflow network is 

sparse, kriging is not a good candidate. From the aforementioned various methods other than 

kriging, it appears that the correlation-based single donor method (i.e., pair-wise marginal 

independence approach) is less subjective and provides more consistent results while the multi-

donor methods lead to better results with subjective selection process on the donor gauges. 



 52 

Therefore, it is critical to develop a method that is less subjective in selecting a set of multi-donor 

gauges for each target location (i.e., Step 1). In this study, we present a novel method which draws 

on the strengths of existing methods but overcomes their weaknesses. More especially, we present 

an approach that can explicitly and effectively consider the correlation structure of the entire gauge 

network rather than the pair-wise correlation between two gauges at a time. The correlation-based 

single donor method only considers the pair-wise correlation between two gauges in which the 

marginal independence assumption is applied. It is basically a local approach which does not take 

advantage of the dependence structure of the daily streamflow distribution, based on conditional 

independence conditions, given by the underlying streamflow network.  This is because the 

conditional independencies among gauges in the streamflow network are typically not apparent in 

the correlation matrix but in its inverse matrix, i.e., the precision matrix [133]. Thus, the existing 

correlation-based methods on multi-donor selection process are not effective and subjective. In 

this study, we use the precision matrix to extract dependence structure of the gauge network based 

on the concept of conditional independence conditions. We then use such identified dependence 

information to select donor gauges (Step 1). Since the donor gauges are selected based on the 

dependence structure of the entire gauge network, our method can be considered as a global 

approach as opposed to the existing local approach where only pair-wise correlations between 

gauges in the network are considered. Our method is generic and flexible, and it would be more 

effective since it can extract implicit information (i.e., conditional independence structure of the 

underlying streamflow network) using a sparse precision matrix instead of the correlation matrix 

that is commonly used. With this new method, we can infer daily streamflow for active gauges 

with data gaps and extend data for inactive gauges which are defined as those that are no longer 

collecting data but collected the data in the past (i.e., data extension).  In addition, with this new 
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method of filling in data gaps and extending data records, we can estimate daily streamflow at 

ungauged sites or improve the estimation of daily streamflow at ungauged sites based on the 

kriging method. Furthermore, a new algorithm based on the conditional independence concept is 

presented to remove gauges from an existing streamflow network with the least loss of 

information. 

The remainder of this chapter is organized as follows. Section 3.2 describes widely used 

approaches to transfer streamflow from a single donor to a target basin. Section 3.3 presents our 

new approach to systematically identify multiple donors based on the precision matrix and a new 

framework to infer daily streamflow time series based on the selected set of donor gauges. In 

addition, a new and general method to remove streamflow gauges from the existing hydrometric 

network with the least loss of information is presented in this section. Section 3.4 provides a brief 

description related to a study region over the Ohio River basin to evaluate the new approach 

presented in Section 3.3.  Section 3.5 presents the results and discussions. Finally, Section 3.6 

provides a summary of the main findings from this work. 

3.2 Common Approaches for Transferring Streamflow at Ungauged Basins 

This section briefly describes some common approaches used to transfer streamflow from 

a single donor to a target gauge (Step 2 and Step 3), assuming the single gauge is already identified 

by a method from Step 1. Let Qj and Qi represent the streamflow from a target and a donor gauge, 

respectively, and assume that the estimated streamflow time series at the target location (Q�j) is 

obtained by transferring the streamflow time series from a single donor gauged catchment by a 

scaling function such that  Q�j is an approximation of Qj (e.g. [107], [110]). 
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3.2.1  Drainage Area Ratio 

The drainage area ratio (DAR) is a simple scaling procedure that only requires the areas 

from the target and donor catchments along with the streamflow time series from the donor gauge:  

 
Q�j =

Aj

Ai
Qi 

(3.1) 

The DAR method represented by equation (3.1) assumes that the discharge per unit area is 

the same between the target Qj and donor Qi catchments at the same time step. Aj and Ai are the 

areas of the target and donor catchments, respectively. Unless the climate and hydrologic regimes 

at the target and donor sites are similar and the area is the only dominant factor affecting the 

streamflow, this assumption is unlikely to hold, because a number of factors can significantly 

change the scaling relationship in equation (3.1), such as, orographic effects where the site at a 

different elevation is likely to receive a different amount of rainfall and thus a different amount of 

runoff per unit area, a site on the windward side of the mountain versus the site in the rain shadow 

side where the rainfall characteristics are dramatically different, differences in slope, soil type, 

land cover and land use which can affect the conditions of runoff generation, leading to differences 

in the basin’s response to rainfall, and differences in temperature that affect the evapotranspiration 

losses and runoff per unit area.  

3.2.2  Scaling by the Mean (SM) 

Scaling by the mean (SM), also called Standardization by the mean streamflow [110], is a 

method that requires the mean streamflow from the target and donor gauges in addition to the 

streamflow time series from the donor gauge:  
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 Q�j =
𝜇𝜇𝑗𝑗
𝜇𝜇𝑖𝑖

Qi 
(3.2) 

The SM method represented by equation (3.2) assumes that the discharge scaled by the 

mean streamflow is the same between the target Qj and donor Qi catchments at the same time step. 

𝜇𝜇𝑗𝑗 and 𝜇𝜇𝑖𝑖 are the mean streamflow of the target and donor gauges, respectively.  

3.2.3  Scaling by the Mean and Standard Deviation (SMS) 

Scaling by the mean and standard deviation (SMS), also called standardization with mean 

and standard deviation [110], is a method that requires information of the mean and standard 

deviation from the streamflow for the target and donor gauges in addition to the streamflow time 

series from the donor catchment. This method was originally presented by Hirsch [140] and termed 

maintenance of variance extension (MOVE) and more recently reported by [107], [110] as:   

 Q�j =
𝜎𝜎𝑗𝑗
𝜎𝜎𝑖𝑖

(Qi  −  𝜇𝜇𝑖𝑖)  +  𝜇𝜇𝑗𝑗 
(3.3) 

The SMS method represented by equation (3.3) assumes that the discharge scaled by the 

mean and standard deviation from the streamflow is the same between the target Qj and donor Qi 

catchments at the same time step. 𝜇𝜇𝑗𝑗, 𝜇𝜇𝑖𝑖, 𝜎𝜎𝑗𝑗 and 𝜎𝜎𝑖𝑖 are the mean streamflow of the target and donor 

gauges and the standard deviation of the target and donor gauges, respectively.  

3.2.4  Linear Regression  

The linear regression method between streamflow time series of target and donor gauges 

is rarely used as a transfer method of streamflow due to the lack of streamflow data for the target 

catchment. However, this information is available for the case of inactive gauges. The regression 
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method (REG) is a simple least squares linear regression (e.g., [141]) where the regression 

coefficients for the slope 𝛾𝛾𝑖𝑖𝑖𝑖 and the intercept 𝛾𝛾0𝑗𝑗 are estimated according to equation (3.4):  

 Q�j = 𝛾𝛾0𝑗𝑗 + 𝛾𝛾𝑖𝑖𝑖𝑖 ∙ Qi (3.4) 

3.3 New Approach of Selecting Multiple Donor Gauges Via Graphical Models 

This section presents a novel approach that describes how our new algorithms: (a) select a 

set of multiple donor gauges for each target location over a study area (Step 1) by using a  precision 

matrix obtained with a sparse graphical model, (b) estimate a matrix of regression coefficients that 

allow simultaneous inference of streamflow from the selected set of donor gauges to target gauges 

(Step 2) and, (c) perform the inference of the daily streamflow time series (Step 3).  Finally, 

subsection 3.3.7  shows a novel method to remove gauges from the hydrometric network with the 

least loss of information.  The streamflow inference is based on minimizing two main objectives: 

(1) the streamflow estimation error and (2) the model complexity. Here, model complexity refers 

to the number of donor gauges required to infer the streamflow at a given target location. Thus, 

the simplest model would be to select a single donor gauge while the most complex model would 

be to select all of the available gauges. We argue that there is a trade-off between the model 

complexity and the accuracy of the estimation, and that a complex model does not necessarily 

always result in more accurate estimated streamflow time series than a simpler model due to noises. 

This study aims at finding a suitable balance between the number of donor gauges and the accuracy 

to optimize these two objectives.  

The remaining of this section is structured as follows. The building blocks for the 

development of our approach are described in sub-sections 3.3.1 to 3.3.4 . Our first algorithm: 
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“Selection of Graph Model” (called SGM algorithm hereafter) which selects a sparse model with 

low validation error (i.e., determination of model complexity), is provided in sub-section 3.3.5 . 

The model complexity determined in sub-section 3.3.5  is then used to train a multiple linear 

regression model. The inference of daily streamflow given the graph selected by the SGM 

algorithm is described in sub-section 3.3.6 .  Finally, in sub-section 3.2.7, we present our second 

algorithm, “Removal of Streamflow Gauges” (called RG algorithm hereafter), for the removal of 

gauges with the least loss of information. The RG algorithm is developed based on the model 

complexity determined from sub-section 3.3.5  and the inferred results from sub-section 3.3.6 . 

3.3.1  Multiple Linear Regression (MLR) 

A simple multiple linear regression (MLR) approach is to extend the single linear 

regression of equation (3.4). That is, for a set of p available gauges with daily streamflow records 

over the study area, each location, j, is assumed as the target ungauged location, can be expressed 

by equation  (3.5) as follows,  while all the remaining gauges constitute the set of donor gauges:   

 
Q�j = 𝜂𝜂0𝑗𝑗 + � 𝜂𝜂𝑖𝑖𝑖𝑖 ∙ Qi

𝑝𝑝

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

 
(3.5) 

 

where the estimated streamflow time series Q�j at a target location, j, is computed by a linear 

combination of (p - 1) donor gauges, and 𝜂𝜂𝑖𝑖𝑖𝑖 and 𝜂𝜂0𝑗𝑗 represent the multiple regression coefficients 

(slopes and intercept). Notice that because the donor and target gauges must be different, the target 

location, j, must be different from the donor location, i, and that all the available donor gauges are 

used.  
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Since the probability distribution of streamflow is often well approximated by a log-normal 

distribution (e.g. [142]), equation (3.5) can be modified and expressed by equation (3.6) in which 

Yi follows a normal distribution and is related to Qj by a logarithmic transformation, where 𝛽𝛽𝑖𝑖𝑖𝑖 and 

𝛽𝛽0𝑗𝑗 represents the regression coefficients for the slope and the intercept, respectively, in the 

logarithmic space. To avoid numerical issues with the logarithm of zero-valued streamflow, 

Farmer [134] assigned a small constant value (e.g. 0.00003 m^3/s), smaller that any non-zero value 

in the data set, to the zero-valued streamflow when applying a logarithmic transformation to the 

streamflow time series. Here, a different approach is followed. A value of one is added to the daily 

streamflow time series before the logarithmic transformation is performed, as expressed by 

equation (3.7), due to the fact that zero-valued streamflow is mapped to zero in the log-transformed 

variable and the transformation is reversible without loss of precision. Nevertheless, the results of 

applying either the Farmer’s approach or the approach of equation (3.7) are almost identical as 

described in section 3.3.5.2.  

 
Y�j = 𝛽𝛽0𝑗𝑗 + � 𝛽𝛽𝑖𝑖𝑖𝑖 ∙ Yi

𝑝𝑝

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

 
(3.6) 

 

 Yi = 𝑙𝑙𝑙𝑙𝑙𝑙(Qi + 1) (3.7) 

For convenience and simplicity, the standard score (Z-score) is used to define a new 

variable Z, as expressed by equation (3.8) where 𝜇𝜇𝑦𝑦𝑖𝑖 and 𝜎𝜎𝑦𝑦𝑖𝑖 are the mean and standard deviation 

of Yi. Therefore, each vector Zi has a mean of zero and a standard deviation of one. Equation (3.9) 

represents a Z-score regression, where the intercept is zero and the regression coefficient 𝛼𝛼𝑖𝑖𝑖𝑖  is the 

correlation between the jth target  Zj and the ith donor gauge Zi (z-score of log-transformed) 

streamflow time series.  
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Zi =

Yi  −  𝜇𝜇𝑦𝑦𝑖𝑖
𝜎𝜎𝑦𝑦𝑖𝑖

 
(3.8) 

 

 
Z�j = � Zi ∙ 𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

 
(3.9) 

Note that equation (3.9) is valid for each of the p selected gauges. That is, the column 

vector Z�j is computed for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝. Equations (3.10) and (3.11) express equation (3.9) in a matrix 

form. 

 𝐙𝐙� = 𝐙𝐙 ∙ 𝐀𝐀 (3.10) 

 
𝐀𝐀 = �

0 𝛼𝛼12
𝛼𝛼21 0

⋯ 𝛼𝛼1𝑝𝑝
⋯ 𝛼𝛼2𝑝𝑝

⋯ ⋯
𝛼𝛼𝑝𝑝1 ⋯

0 ⋯
⋯ 0

� 

(3.11) 

The linear system defined by equation (3.10) assumes that the jth gauge is the target and 

that the remaining (p - 1) gauges are the donor gauges for each of the p gauges. Equation (3.11) 

shows the elements of a p by p matrix 𝐀𝐀 used in equation (3.10). The elements of matrix 𝐀𝐀 are the 

regression coefficients 𝛼𝛼𝑖𝑖𝑖𝑖 in equation (3.9) and the jth column represents the vector of regression 

coefficients required to estimate the column vector 𝐳𝐳�𝐢𝐢. Note that the diagonal elements of 𝐀𝐀 are 

zero. That is, 𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝: 𝛼𝛼𝑗𝑗𝑗𝑗 = 0. Therefore, 𝐙𝐙� is a matrix with the estimated 

streamflows computed from the observed streamflow 𝐙𝐙 that follows a standard normal distribution, 

and the squared matrix of regression coefficients 𝐀𝐀. 𝐙𝐙� and 𝐙𝐙 are n by p matrices where n is the 

number of daily streamflow records. Note that if the streamflow data do not follow the log-normal 

distribution as assumed here, one can easily transform the data into the log-normal distribution, 

and thus equations (3.6)-(3.11) are applicable. 
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3.3.2  Concept of Gaussian Models and MLR 

𝐙𝐙 is a multivariate normal distribution over p random variables with covariance matrix 𝚺𝚺 

and zero mean vector such that 𝐙𝐙 = �𝐳𝐳𝟏𝟏, … , 𝐳𝐳𝐩𝐩�, where the random variable 𝐳𝐳𝐣𝐣 represents the Z-

score of the logarithm of the streamflow data at the jth gauge, therefore it follows a normal 

distribution with zero mean and unitary standard deviation for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝.  𝐙𝐙 defines an undirected 

graphical model known as a Gaussian graphical model where the underlying graph G is defined 

by a set of vertices v and edges e such that the graph G = (v,e) represents (conditional) 

independence assumptions among the random variables. This conditional independence means 

that if there is not an edge on the graph G between the ith and jth location, then these two gauges 

are independent from each other given the remaining gauges. The existence of such conditional 

independence implies that for a given target location some of the donor gauges are redundant or 

not correlated to the target location and therefore, they can be removed from the set of donor 

gauges for the target location under consideration.  Equation (3.10) is a general relationship 

between each possible target and donor gauges. However, it does not explicitly show how to 

compute the matrix of regression coefficients 𝐀𝐀.  One simple way would be to use an approach 

from the previous subsection. That is, computing the elements of the matrix 𝐀𝐀, column by column, 

by means of MLR as shown in equation (3.9) for each of the p target locations. However, this 

approach assumes that all of the (p - 1) donor gauges are included in the regression for each target 

location. That is, it impliest of having a graph G where each vertex is connected to all of the 

remaining vertices. In other words, it means a complete graph with 𝑝𝑝
2− 𝑝𝑝
2

 edges. Therefore, this 

approach does not satisfy our second design objective which is to minimize the model complexity 

by reducing the number of donor gauges, equivalent to reducing the number of edges of the 
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underlying graph G. Furthermore, there are two problems with dense graphs. First, a more complex 

graph requires more training data to avoid overfitting. Second, only a single gauge or a small 

number of gauges could be removed from the hydrometric network because each gauge is 

estimated based on all the remaining gauges connected in the complex graph. Keeping a good 

balance between the complexity of the graph and the accuracy of an estimation is the goal of our 

new method. This is achieved by promoting sparsity while minimizing the estimation error.  

 

3.3.3  Relationship between MLR, the Covariance, and the Precision Matrices 

This subsection describes two methods to compute the regression coefficients of the matrix 

𝐀𝐀 represented by (3.11). The first method is based on the covariance matrix 𝚺𝚺 and the second one 

is based on the inverse of the covariance matrix which is called the precision matrix 𝚯𝚯 as expressed 

by equation (3.12) 

 𝚯𝚯 = 𝚺𝚺−1 (3.12) 

Since the true covariance (𝚺𝚺) or precision (𝚯𝚯) matrices are unknown, 𝐀𝐀 can only be estimated 

from the noisy p-dimensional observed data from 𝐙𝐙 which often follow a normal distribution. One 

method is based on an estimated covariance matrix, represented by W, and the other method is 

based on an estimated the precision matrix, represented by 𝚯𝚯� . Following Friedman et al. [143], the 

columns and rows of W can be permuted so that the target jth gauge is the last and then partition 

the matrices into four blocks composed by a square submatrix 𝐖𝐖𝟏𝟏𝟏𝟏 with (p - 1) columns (and 

rows), a column vector 𝐰𝐰𝟏𝟏𝟏𝟏 with (p - 1) elements, its transposed (row) vector 𝒘𝒘𝟏𝟏𝟏𝟏
𝑻𝑻  and a scalar 
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𝑤𝑤22. Similar partition scheme leads to the estimated precision matrix 𝚯𝚯�  to define the four blocks 

𝚯𝚯�𝟏𝟏𝟏𝟏, 𝛉𝛉�𝟏𝟏𝟏𝟏, 𝛉𝛉�𝟏𝟏𝟏𝟏𝑻𝑻  and 𝜃𝜃�22, respectively. 

The relationship between the estimated covariance W, the estimated precision 𝚯𝚯�  and the p 

by p identity matrix 𝐈𝐈 is represented by 𝐖𝐖 ∙ 𝚯𝚯� = 𝐈𝐈. The block-wise expansion of this equation, 

adapted from Friedman et al. [143], leads to equation (3.13) as follows:  

 
�
𝐖𝐖𝟏𝟏𝟏𝟏 𝐰𝐰𝟏𝟏𝟏𝟏
𝒘𝒘𝟏𝟏𝟏𝟏
𝑻𝑻 𝑤𝑤22

� �
𝚯𝚯�𝟏𝟏𝟏𝟏 𝛉𝛉�𝟏𝟏𝟏𝟏
𝛉𝛉�𝟏𝟏𝟏𝟏𝑻𝑻 𝜃𝜃�22

� = � 𝐈𝐈 𝟎𝟎
𝟎𝟎𝑇𝑇 1�  

(3.13) 

Equation (3.14) shows the column decomposition of the matrix 𝐀𝐀: 

 𝐀𝐀 = [𝛂𝛂𝟏𝟏 … 𝛂𝛂𝐣𝐣 … 𝛂𝛂𝐩𝐩] (3.14) 

There are several ways to compute the regression coefficients for each column of the matrix 

𝐀𝐀.  Equation (3.15) shows a method based on the estimation of the covariance matrix W and the 

partitioned matrices from equation (3.13). It computes 𝛂𝛂𝐣𝐣 (equation (3.14)) for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝 using  

𝐖𝐖𝟏𝟏𝟏𝟏 as the predictor matrix and 𝐰𝐰𝟏𝟏𝟏𝟏 as the response vector.  

 𝛂𝛂𝐣𝐣  =  𝐖𝐖𝟏𝟏𝟏𝟏
−1 ∙ 𝐰𝐰𝟏𝟏𝟏𝟏 (3.15) 

Alternatively, the regression coefficients can be computed from the estimation of the 

precision matrix 𝚯𝚯� . Equation (3.16) shows the results with the latter approach.  

 𝛂𝛂𝐣𝐣 = −
1
𝜃𝜃�22

𝛉𝛉�12 
(3.16) 

Equation (3.16) is derived by expanding the product from the first row and second column 

of Equation (3.13) such that 𝐖𝐖𝟏𝟏𝟏𝟏 ∙ 𝛉𝛉�𝟏𝟏𝟏𝟏 + 𝐰𝐰𝟏𝟏𝟏𝟏 ∙ 𝜃𝜃�22 = 𝟎𝟎. After some algebra manipulation, it can 

be obtained that 𝛉𝛉�𝟏𝟏𝟏𝟏 = −�𝐖𝐖𝟏𝟏𝟏𝟏
−𝟏𝟏 ∙ 𝐰𝐰𝟏𝟏𝟏𝟏� ∙ 𝜃𝜃�22. Substituting equation (3.15) into it leads to 𝛉𝛉�𝟏𝟏𝟏𝟏 =

−𝛂𝛂𝐣𝐣 ∙ 𝜃𝜃�22. Finally, equation (3.16) is derived by clearing for 𝛂𝛂𝐣𝐣. Equation (3.16) shows how the 

precision matrix 𝚯𝚯�  and the matrix of regression coefficients, 𝐀𝐀, are related to each other. The 
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elements of the matrix 𝐀𝐀 are computed as 𝛂𝛂𝐣𝐣 for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝. The vector of regression coefficients 

𝛂𝛂𝐣𝐣 for the jth column of 𝐀𝐀 is proportional to the vector 𝛉𝛉�12 of 𝚯𝚯� . The matrix 𝚯𝚯�  is closely related to 

the representation of the underlying graphical model G as the zero elements in 𝚯𝚯�  represent the 

missing edges in the graph G.  

Thus, graph G can be represented by an adjacency matrix defined by equation (3.17) below 

where 𝑔𝑔𝑖𝑖𝑖𝑖 and θ�𝑖𝑖𝑖𝑖 represent the element of the ith row and jth column of G and 𝚯𝚯� , respectively.  

 
𝐆𝐆 = �

𝑔𝑔𝑖𝑖𝑖𝑖 = 1 𝑖𝑖𝑖𝑖 |𝜃𝜃�𝑖𝑖𝑖𝑖| > 0
𝑔𝑔𝑖𝑖𝑖𝑖 = 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 
(3.17) 

Given that Z has a zero-mean vector, the calculation of the empirical covariance matrix S 

is simplified to equation (3.18) and the empirical precision matrix T, the inverse of matrix S, is 

defined by equation (3.19). 

 𝐒𝐒 =
1

𝑛𝑛 − 1
𝐙𝐙𝐓𝐓 ∙ 𝐙𝐙 

(3.18) 

 𝐓𝐓 = 𝐒𝐒−1 (3.19) 

Equation (3.20) shows how to calculate each column of the matrix A by replacing the 

estimated covariance matrix W in equation (3.15) with the empirical covariance matrix S, while 

equation (3.21) shows how to compute each column of matrix A by replacing 𝚯𝚯�  with T in equation 

(3.16).  

 𝛂𝛂𝐣𝐣 = 𝐒𝐒𝟏𝟏𝟏𝟏−1 ∙ 𝐬𝐬𝟏𝟏𝟏𝟏 (3.20) 

 𝛂𝛂𝐣𝐣 = −
1
𝑡𝑡22

𝐭𝐭𝟏𝟏𝟏𝟏 
(3.21) 

Even if T is calculated by inverting S, Equation (3.21) is more efficient than equation (3.20) 

because it does not require the inversion of any additional matrix when T is known. In this work 

we describe a way to avoid computing the empirical precision matrix T, but to compute a sparse 
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precision matrix instead. Using equation (3.21) is perhaps the fastest way to estimate the 

coefficients of the matrix A and, therefore, the inferred streamflow from equation (3.10). This 

approach represents the case where each gauge is inferred based on the (p – 1) remaining gauges 

through the MLR method. Thus, the apparent simplicity of the method is achieved at the expense 

of the model complexity.  

If G is sparse, however, then the conditional independence assumptions imply that the 

precision matrix should also be sparse. In practice, both the covariance matrix 𝚺𝚺 and the precision 

matrix  𝚯𝚯 are unknown and thus, they are approximated by the empirical covariance matrix S and 

empirical precision matrix T based on a finite number of noisy observations. But the empirical 

precision matrix T obtained is generally not sparse [144] due to the nature of the noisy data used 

to estimate T. Hence, the underlying graph G from the Gaussian graphical model is not sparse but 

a complete graph where each gauge depends (conditionally) on all of the remaining gauges in the 

hydrometric network. The MLR approach is thus often times associated with a complex model as 

MLR tries to use all of the predictor variables from a complete graph G. Since the objective is to 

select some, not all of the gauges in the network as the donor gauges to infer the streamflow values 

at the target location, it is appropriate to simply select the most relevant donor gauges to be 

included as the predictors. This is equivalent to making the graph G sparse. Therefore, our 

approach is to remove the least important edges from the graph G through a Gaussian graphical 

model by applying an algorithm known as the Graphical Lasso, through which we build a sparse 

graph while keeping a relatively low estimation error for the inferred streamflow values. 
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3.3.4  The Graphical Lasso 

The Graphical Lasso (Glasso) is an algorithm defined initially by Friedman et al. [143] 

which imposes sparsity to the precision matrix by tuning a parameter 𝜆𝜆.  This algorithm has been 

actively used, analyzed and improved by several authors [145]–[147].  Our work used the glasso 

Matlab package (glasso) and also a more recent efficient implementation called GLASSOFAST 

[148].  

The Glasso algorithm implements an efficient solution to the problem by maximizing the 

Gaussian log-likelihood according to the formulation given in equation (3.22), adapted from [143], 

where det and tr are the determinant and trace of a square matrix respectively,||𝚯𝚯�||1 is the 𝐿𝐿1 norm 

of estimated precision matrix 𝚯𝚯�  and 𝜆𝜆 is the 𝐿𝐿1 norm regularization parameter.  

 𝚯𝚯�Glasso ≡ 𝑎𝑎𝑎𝑎𝑎𝑎𝚯𝚯�𝑚𝑚𝑚𝑚𝑚𝑚�𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑑𝑑𝑑𝑑 𝚯𝚯�� − 𝑡𝑡𝑡𝑡�𝐒𝐒 ∙ 𝚯𝚯�� − 𝜆𝜆||𝚯𝚯�||1� (3.22) 

The Glasso algorithm requires that the probability distribution of the input data be 

relatively well described by a multivariate Gaussian distribution as is the case for the multivariate 

random variable Z. The inputs required by the Glasso algorithm are the empirical covariance 

matrix S and the regularization parameter  𝜆𝜆. The output from the Glasso algorithm is a sparse 

precision matrix estimate 𝚯𝚯�Glasso optimized by equation (3.22). Equation (3.23) shows the inputs 

and output of the Glasso algorithm. The estimation of the regression coefficients of matrix A for 

the inference of streamflow time series via the Glasso is achieved by applying equation (3.16) in 

which  𝚯𝚯�   is replaced by 𝚯𝚯�Glasso as shown in equation (3.24) below.  

 𝚯𝚯�Glasso = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐒𝐒, 𝜆𝜆)  (3.23) 

 𝛂𝛂𝐣𝐣 = −
1

𝜃𝜃�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺22
𝛉𝛉�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺12 

(3.24) 
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If the regularization parameter 𝜆𝜆 is equal to zero, the estimated precision matrix 𝚯𝚯�Glasso is 

equivalent to the empirical precision matrix T obtained by the (non-regularized) MLR approach 

with equation (3.19) and with the corresponding graph G is a complete graph. On the other hand, 

if the regularization parameter is very large, the underlying graph G would have zero edges. An 

algorithm (SGM) is presented in subsection 0 to select the 𝜆𝜆 parameter based on a multi-objective 

optimization procedure that minimizes the error metric and also the number of edges of the 

underlying sparse Gaussian Graphical Model. 

3.3.5  Graphical Model Selection 

Our approach in selecting a proper subset of donor gauges to be used for inferring each 

streamflow gauge (Step 1) is to apply the conditional independence assumptions encoded in the 

precision matrix. In other words, the idea of conditional independence is used to find a subset of 

donor gauges that are conditionally correlated to each target location. This proposed approach 

promotes sparsity on the precision matrix and, therefore, leads to an underlying graph G with fewer 

edges which is consistent with the parsimonious principle.  That is, a simpler model that explains 

well the observations should be preferred over more complex models. Under such a context, the 

parsimonious principle implies a selection of an underlying graphical model that is as sparse as 

possible while keeping the estimation error relatively low. Subsections 3.3.5.1 to 3.3.5.5 outline 

how to compute a sparse underlying graphical model G, and how to compute the validation 

estimation error for given values of the parameters 𝜆𝜆 and 𝜏𝜏. Finally, subsection 0 describes a novel 

algorithm called Selection of Graph Model (SGM), that uses several values of 𝜆𝜆 and 𝜏𝜏, for the 

estimation of the optimal underlying graph model G. 
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3.3.5.1 Imposition of Sparsity to the Underlying Graphical Model 

The sparsity is achieved by adjusting the regularization parameter 𝜆𝜆 for the Glasso 

algorithm in conjunction with a thresholding procedure that uses an additional parameter 𝜏𝜏 defined 

by equation (3.25) below, which is a modification of equation (3.17). 

 
𝐆𝐆 = �

𝑔𝑔𝑖𝑖𝑖𝑖 = 1 𝑖𝑖𝑖𝑖 |𝜃𝜃�𝑖𝑖𝑖𝑖| > 𝜏𝜏
𝑔𝑔𝑖𝑖𝑖𝑖 = 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 
(3.25) 

The thresholding procedure is required in addition to the 𝐿𝐿1 norm regularization because 

even though the 𝐿𝐿1 norm of the precision matrix decreases monotonically as 𝜆𝜆 increases, the 

number of edges in the graph G does not necessarily decrease monotonically. Therefore, a multi-

objective optimization is needed to minimize the mean error between the observed random variable 

Z and the inferred data matrix 𝐙𝐙� from equation (3.10), and the number of edges of the underlying 

graph G. In addition to equation (3.25) for sparsity, there exist some situations, due to the problem 

setup, where a particular edge from the ith to the jth gauge needs to be removed from the 

underlying graphical model by setting the element 𝑔𝑔𝑖𝑖𝑖𝑖 to zero. One example of such situation is 

when both the ith and the jth gauges are known to be donor basins, therefore none of them need to 

be inferred and the corresponding edge in the graphical model should be removed. A similar case 

applies when both gauges are known to be the target gauges, the edge between them should not 

exist, as one gauge cannot be infered using the other as a donor. In such cases, the Glasso procedure 

with an optional parameter, graph G, in equation (3.26) allows removal of some edges. If that 

graph G is ommitted, as in Equation (3.23), it assumes that all edges are available. Therefore 

Equation (3.23) is equivalent to Equation (3.26), if Graph G is a full graph. Equation (3.26) is also 

useful because it allows one to compute the sparse precision matrix estimate with a prescribed 

sparsity pattern. In addition, if the regularization parameter 𝜆𝜆 is equal to zero, then this equation is 
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equivalent to a MLR where each target gauge is estimated by the donor gauges that share an edge 

with it in the graph 𝐆𝐆.  

 𝚯𝚯�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜆𝜆,𝐺𝐺) = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐒𝐒𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, 𝜆𝜆,𝐆𝐆) (3.26) 

 

3.3.5.2 Preparation of Data Sets 

The normalized standard Gaussian (Z-score of log-transformed) daily streamflow data set, 

Z, is sorted in ascending order by the timestamp of each daily record and then divided into three 

disjoint sets of (approximately) the same size. The subsets are used, respectively, for training 

𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, validation 𝐙𝐙𝑣𝑣𝑣𝑣𝑣𝑣, and testing 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, respectively. 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is used for training the inference 

model, by computing the regression coefficients for the matrix A. 𝐙𝐙𝑣𝑣𝑣𝑣𝑣𝑣 is used for choosing the 𝜆𝜆 

and 𝜏𝜏 values that minimize the validation error and the number of edges of the underlying graph 

G, and 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is used for assessing the predictive capability of the streamflow inference algorithm 

through estimating the error based on the new data. The least recent two thirds of the daily 

streamflow records are randomly assigned to the training 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and validation 𝐙𝐙𝑣𝑣𝑣𝑣𝑣𝑣 data sets with 

a split ratio of 50%. The remaining one third of the data (most recent) is used as the test set 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.  

3.3.5.3 Estimation of Training Covariance and Sparse Precision Matrices 

The initial training precision matrix, 𝚯𝚯�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜆𝜆,𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), for a given value of the regularization 

parameter 𝜆𝜆, is computed by applying the Glasso algorithm of equation (3.23) using 𝐒𝐒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The 

training covariance matrix, 𝐒𝐒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, was estimated by applying equation (3.18) along with the 

training dataset 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.  Alternatively, the initial precision matrix can be computed by using 

equation (3.26) with G equals to the full graph, 𝑮𝑮𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇. The initial sparsity of the training precision 
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matrix, 𝚯𝚯�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜆𝜆,𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), is determined by the regularization parameter 𝜆𝜆. Additional sparsity is 

achieved by computing a sparse graph, 𝑮𝑮𝝉𝝉, where a thresholding procedure for a given value of 

the truncation parameter 𝝉𝝉, as defined in equation (3.25), is applied using the initial precision 

matrix. A new training precision matrix 𝚯𝚯�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝝀𝝀,𝑮𝑮𝝉𝝉), is then computed using equation (3.26) and 

the sparse graph 𝑮𝑮𝝉𝝉. This sparse precision matrix has a value of zero on all elements where the 

graph 𝑮𝑮𝝉𝝉 has missing edges. 

3.3.5.4 Estimation of Regression Coefficients and Streamflow Validation  

The training matrix of regression coefficients, 𝐀𝐀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, is computed by the matrix 

decomposition of the training sparse precision matrix, 𝚯𝚯�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝟑𝟑.𝝀𝝀,𝑮𝑮𝝉𝝉), using equation (3.24), for 1 ≤

𝑗𝑗 ≤ 𝑝𝑝, where j is the jth gauge.  

The standardized validation (Z-score of log-transformed) streamflow time series, 𝐙𝐙�𝑣𝑣𝑣𝑣𝑣𝑣, are 

estimated by using 𝐀𝐀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and the validation dataset, 𝐙𝐙𝑣𝑣𝑣𝑣𝑣𝑣, as expressed in equation (3.27) below: 

 𝐙𝐙�𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐙𝐙𝑣𝑣𝑣𝑣𝑣𝑣 ∙ 𝐀𝐀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 

(3.27) 

The estimated log-transformed validation streamflow data, 𝐘𝐘�𝑣𝑣𝑣𝑣𝑣𝑣, is calculated using 𝐙𝐙�𝑣𝑣𝑣𝑣𝑣𝑣 in 

equation (3.8) and is shown in equation (3.28) below, for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝, where j is the jth gauge, 𝜇𝜇𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗  

and 𝜎𝜎𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 , represents, respectively, the mean and standard deviation of the vector 𝐘𝐘�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗. 

 𝐘𝐘�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 = 𝐙𝐙�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 ∙ 𝜎𝜎𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 + 𝜇𝜇𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗  
(3.28) 

The estimated validation streamflow data, 𝐐𝐐�𝑣𝑣𝑣𝑣𝑣𝑣, is calculated by applying the exponential 

function to 𝐘𝐘�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗, as shown in equation (3.29), for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝, where j is the jth gauge: 
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 𝐐𝐐�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐘𝐘�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗� − 1 (3.29) 

 

3.3.5.5 Score Function and Validation Error 

Selection of the graphical model should maximize the quantity and the quality of the 

inferred daily streamflow time series. The goal is to estimate daily streamflow time series at the 

target gauges as accurate as possible so that these gauges can be potentially removed from the 

hydrometric network, with the least loss of information. The score function is designed to measure 

the accuracy of the inferred values at the target sites. Equation (3.30) defines a conditional 

goodness-of-fit metric that calculates the value of the coefficient of determination R2 between the 

observed and estimated jth daily streamflow time series for the validation data set, where  R𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗
2  is 

the coefficient of determination, i.e., the square value of the correlation coefficient R2, between 

the observed validation streamflow 𝐐𝐐𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 used for validation and the estimated streamflow 𝐐𝐐�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗, 

for 1 ≤ 𝑗𝑗 ≤ 𝑞𝑞, where j is an index representing the jth gauge and q is the number of inferred gauges. 

By default, all of the gauges are considered as potential target sites, where q is equal to p. The 

score is non-zero only if R𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗
2  is greater than an assigned threshold Γ, otherwise it is taken as zero. 

In this work the value of the threshold Γ was set to 0.7. Equation (3.31) defines the validation score 

and Equation (3.32) defines the validation error function used in our multi-objective optimization 

procedure.   

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 = �R𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗

2 = R2 �𝐐𝐐𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 ,𝐐𝐐�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗� 𝑖𝑖𝑖𝑖 R𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗
2 > Γ

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

(3.30) 
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗

𝑞𝑞

𝑗𝑗=1

, 𝑞𝑞 ≤ 𝑝𝑝 
(3.31) 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑞𝑞 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣

𝑞𝑞
 (3.32) 

While the number of edges of the underlying graph indicates its sparseness, the validation 

error of the graphical model, is selected in such a way that it will maximize the validation score. 

The value of this validation error ranges over [0, 1], and is scale independent. It decreases as the 

validation score increases.  

3.3.5.6 Selection of Graph Model Algorithm (SGM) 

An algorithm called Selection of Graph Model (SGM) is developed to obtain an optimal 

underlying graph. A graph determined bt the SGM algorithm is represented by 𝑮𝑮𝒔𝒔𝒔𝒔𝒔𝒔. The SGM 

algorithm implements a multi-objective optimization procedure where the optimization objectives 

include: (1) minimizing the error calculated by equation (3.32), and (2) minimizing the number of 

edges of the underlying graph. SGM generates a set of values for the regularization parameter 𝜆𝜆  

between a minimum value of 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and and a maximum value of 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚. For each regularization 

parameter value of 𝜆𝜆, the truncation parameter, 𝜏𝜏, in equation (3.25) is selected in such a way that 

the underlying graph has a given number of edges between a minimum, 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚, and a maximum, 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚, respectively. Given the multi-objective nature of the problem, a set of graphs corresponding 

to a set of non-dominated solutions on the Pareto front instead of a single solution is selected. 

Graph 𝑮𝑮𝒔𝒔𝒔𝒔𝒎𝒎 thus represents one of the graphs from the set.  A final graph(s) is (are) selected from 

the set of candidate solutions as the one (ones) that offers (offer) the desired trade-off between 

error and model complexity.  
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Algorithm 1 below briefly describes a code implementation the SGM algorithm. The 

parameter res is an integer number that represents the resolution of a sequence of sampling values 

to create a (1 x res) vector lamba_set with values between 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚. DonorSet and TargetSet 

are optional parameters that represent a set of identifiers of the gauges that are known to be donors 

or targets, respectively. The default values for DonorSet and TargetSet, in Algorithm 1, are empty 

sets. That is, any gauge can potentially be used as a Donor or Target gauge. If DonorSet or 

TargetSet are non-null sets, then the corresponding gauges are treated as donor gauges or target 

gauges, respectively. Therefore, computing the graph model 𝐆𝐆𝜏𝜏 (i.e., graph G constrained by 

parameter τ) from equation (3.25), implies removing all the edges between the ith and jth gauge 

when both, i and j, belong to DonorSet or both belong to TargetSet. The getSequence function 

generates the vector lamba_set.  A simple way to implement this function is by using a linear 

sequence. This algorithm is summarized below as Algorithm 1. 
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 Algorithm 1: Selection of Graph Model (SGM)  

STEP 0. Define the SGM inputs (assignment of default values) 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 0.01;  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 0.10; 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 10; 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝2− 𝑝𝑝
2

;   res = 30; Γ = 0.7  
DonorGroup:={}; TargetGroup:={} 
Retrieve training (𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and validation (𝐙𝐙𝑣𝑣𝑣𝑣𝑣𝑣) data sets;   

STEP 1. Compute the empirical covariance matrix using equation (3.18) from the training set:  
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐒𝐒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝐒𝐒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1

𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐓𝐓 ∙ 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 

STEP 2. Generate Multi-objective optimization sampling points: 
lambda_set = getSequence(minVal=𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚, res); 
for r=1 to res: 
𝜆𝜆𝑟𝑟= lambda_set[r]; 
Compute the initial precision matrix from 𝐒𝐒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 using equation (3.23): 
𝚯𝚯�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐒𝐒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝜆𝜆𝑟𝑟);  
for k= 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 to 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚: 

choose 𝜏𝜏𝑟𝑟,𝑘𝑘 to compute the underlying graph model with at most k edges using equation (3.25): 

𝐆𝐆𝑟𝑟,𝑘𝑘  = �
𝑔𝑔𝑟𝑟,𝑘𝑘𝑖𝑖𝑖𝑖 = 1 𝑖𝑖𝑖𝑖 |θ�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖| > 𝜏𝜏𝑟𝑟,𝑘𝑘

𝑔𝑔𝑟𝑟,𝑘𝑘𝑖𝑖𝑖𝑖 = 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
; 

Compute the sparse training precision matrix, using equation (3.26): 
𝚯𝚯�𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝐒𝐒𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, 𝜆𝜆𝑟𝑟 ,𝐆𝐆𝑟𝑟,𝑘𝑘�; 

Compute the training matrix of regression coefficients 𝐀𝐀𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘 from 𝚯𝚯�𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘, using 
equation (3.24), for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝: 

𝛂𝛂𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘j
= − 1

θ�𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘22

𝛉𝛉�𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘12
; 

Compute the inferred Z-score log-transformed validation streamflow from equation (3.27): 
𝐙𝐙�𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘 = 𝐙𝐙𝑣𝑣𝑣𝑣𝑣𝑣 ∙ 𝐀𝐀𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘; 
Compute the inferred log-transformed validation streamflow using equation (3.28) for 1 ≤

𝑗𝑗 ≤ 𝑝𝑝: 
𝐘𝐘�𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘𝑗𝑗

= 𝐙𝐙�𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘𝑗𝑗
∙ 𝜎𝜎𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 + 𝜇𝜇𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 ; 

Compute the inferred validation streamflow using equation (3.29) for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝: 

𝐐𝐐�𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘𝑗𝑗
= 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐘𝐘�𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘𝑗𝑗

� − 1; 

Calculate the validation score using equation (3.30) and equation (3.31) for 1 ≤ 𝑗𝑗 ≤ 𝑞𝑞: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘𝑗𝑗
= �R𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗

2 = R2 �𝐐𝐐𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗 ,𝐐𝐐�𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗� 𝑖𝑖𝑖𝑖 R𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗
2 > Γ

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘𝑗𝑗
𝑞𝑞
𝑗𝑗=1 , 𝑞𝑞 ≤ 𝑝𝑝;  

Calculate the validation error using equation: (3.32) 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘 =

𝑞𝑞−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘
𝑞𝑞

; 

store the sampling results: multi_objective_points = [k, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟,𝑘𝑘], 𝜆𝜆𝑟𝑟 and 𝐆𝐆𝑟𝑟,𝑘𝑘. 
STEP 3. Select the set of non-dominated solutions from multi_objective_points 
STEP 4. From the set of non-dominated solutions, select a sparse graph (as the output), 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠, with a suitable 

tradeoff between the number of edges and validation error and optionally the corresponding matrix of regression 
coefficients 𝑨𝑨𝑠𝑠𝑠𝑠𝑠𝑠. 
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3.3.6  Stream Flow Inference  

The inference task is greatly simplified once the underlying graph 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠 is identified by 

the SGM algorithm. This graph 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠 reveals conditional independence conditions between the 

streamflow gauges for the given hydrometric streamflow network. Therefore, the best set of donor 

gauges for each streamflow gauge is explicitly indicated by the graph 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠. Such a set includes 

only the donor gauges for which the target station depends on conditionally.  

3.3.6.1 Inference of Daily Streamflow Time Series with Graph (SGM)  

Let matrix 𝑨𝑨𝑠𝑠𝑠𝑠𝑠𝑠 represent the matrix A of equation (3.11) whose element 𝛼𝛼𝑖𝑖𝑖𝑖 (i.e., 

regression coefficient) is determined based on graph 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠. The Z-score of the log-transformed 

streamflow time series for the test set 𝐙𝐙�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, can then be estimated directly using the matrix 𝑨𝑨𝑠𝑠𝑠𝑠𝑠𝑠 

and the test dataset 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. Thus, equation (3.10), can be expressed as follows: 

 𝐙𝐙�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐙𝐙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝑨𝑨𝑠𝑠𝑠𝑠𝑠𝑠 (3.33) 

To obtain 𝐘𝐘�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 𝐙𝐙�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the mean 𝜇𝜇𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗  and standard deviation 𝜎𝜎𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗   for the test set 

are required, but they are unknown. One way to overcome this problem is to assume that the mean 

and standard deviation for the test set are the same as they are for the training set. Then, one can 

obtain  𝐘𝐘�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from which to obtain the original streamflow time series 𝐐𝐐�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 by applying the 

exponential-transform function.  Clearly, the assumption made here is not usually held. 

An alternative approach is to perform an ordinary least squares multiple linear regression 

to estimate a new set of regression coefficients of  𝛽𝛽𝑖𝑖𝑖𝑖   (slope) and 𝛽𝛽0𝑗𝑗 (intercept) over the log-

transformed streamflow time series for the training data set over 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝, using only the donors 

for the jth target site as expressed by equation (3.34), where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠, 𝑗𝑗). 
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𝐘𝐘�test𝑗𝑗 = 𝛽𝛽0𝑗𝑗 + � 𝛽𝛽𝑖𝑖𝑖𝑖 ∙ 𝐘𝐘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗))

𝑖𝑖=1

 
(3.34) 

The daily streamflow time series, 𝐐𝐐�test𝑗𝑗, is estimated by applying the exponential function 

to the log-transformed streamflow, 𝐘𝐘�test𝑗𝑗, for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝 , as shown in equation (3.35). 

 𝐐𝐐�test𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐘𝐘�test𝑗𝑗� − 1 (3.35) 

The third alternative is to directly apply MLR to the non-transformed streamflow time 

series avoiding the logarithmic transformation. Among these three approaches, results from 

equation (3.34) should be either more accurate or more stable as indicated by Farmer [134] who 

found that the logarithmic transformation of the streamflow is generally the most stable predictand.  

3.3.6.2 Inference of Daily Streamflow Time Series using Distance and Correlation 

Approaches 

To evaluate the performance of our new method based on graph 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠 in inferring daily 

streamflow time series, we compare our new method with two widely used methods, the distance-

based method (“Dist”) and correlation-based method (“Corr”). Two graphs, 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (distance-based) 

and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (correlation-based), are constructed. The 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 graph is built starting with an empty 

graph (i.e., none of the gauges in the study region are connected) and then adding edges (i.e., 

connecting gauges) between each target site and its nearest neighbor site. In this case, each target 

site has at least one donor site, expressed as 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,1, and the constructed graph structure is 

determined by the number of edges added and their relative locations in the gauge network. For 

the case of having at least two donor sites, edges between each target site and its nearest and second 

nearest neighbor sites are added in the graph and is expressed as 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,2. Graph 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,3 represents 

the case where each target gauge has at least 3 donor sites. The graph of 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is built in a similar 
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way to 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  except that the most correlated sites instead of the nearest sites are selected. For the 

case with one donor site, the built graph is represented by 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1. For the cases with two and three 

donor sites, the constructed graphs are represented by 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,2 and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,3, respectively. The graphs 

of 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 (i = 1, 2, and 3) are built in such a way to mimic the current practice in which 

a fixed and equal number of donors for each target site is used in both distance- and correlation-

based approaches. Notice however, that the underlying graphs are undirected. Thus, the number 

of edges in the graphs 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 might be different for the same number of donors (i.e. 

‘i”). In comparison, an uneven number of donors for each target site is automatically determined 

and used in our new method. For both the distance- and correlation-based methods, the daily 

streamflow time series are inferred following the same procedure described in section 3.3.6.1 for 

our new method (i.e., SGM). The only difference is replacing the graph 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠 by 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 or 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 

(i = 1, 2, and 3) in each case. 

3.3.6.3 Estimation of the Test Error 

The test error is computed in the same way as the validation error described in subsection 

3.3.5.5, but using the test set as follows: 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗 = �R𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗

2 = R2 �𝐐𝐐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗 ,𝐐𝐐�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗� 𝑖𝑖𝑖𝑖 R𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗
2 > Γ

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

(3.36) 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗

𝑞𝑞

𝑗𝑗=1

, 𝑞𝑞 ≤ 𝑝𝑝 
(3.37) 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑞𝑞 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑞𝑞
 (3.38) 
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3.3.6.4 Estimation of Inference Accuracy 

The accuracy of each of the inferred gauges associated with the graph from the SGM 

algorithm and with the graphs of 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 (i = 1, 2, and 3) is evaluated, is evaluated using 

the Nash–Sutcliffe efficiency coefficient (NSE) [91] with the testing data set. The NSE of the 

testing set (𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗) is computed between the observed (𝐐𝐐test𝑗𝑗)  and inferred (𝐐𝐐�test𝑗𝑗) streamflow 

time series for 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝 as shown in equation (3.39) below.  

 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗 = 𝑁𝑁𝑁𝑁𝑁𝑁 �𝐐𝐐test𝑗𝑗 ,𝐐𝐐�test𝑗𝑗� (3.39) 

3.3.7  Removal of Streamflow Gauges with the Least Loss of Information 

The removal of streamflow gauges (RG), is a straightforward procedure once the model 

selection and inference stages are completed. The RG algorithm is designed to remove the gauges 

that can be inferred by other gauges with the highest efficiency, i.e. with the highest NSE 

(𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗) in the testing set, 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗. RG removes a non-marked gauge with the highest NSE for 

the testing data set. Thus, RG removed a gauge in the network with the highest 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗 first, and 

then marks the removed gauge as a “target gauge” and each of its neighbors as a “donor gauge”.  

This process is repeated for the remaining available gauges in the network until all gauges are 

checked, with the exception of isolated gauges that should not be removed. Algorithm 2 below 

shows the details of the gauge removal process with the least loss of information. 
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Algorithm 2: Removal of Gauges (RG) Algorithm 
STEP 0. Define RG inputs: [𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1, …, 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑞𝑞], 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠 
STEP 1. Initialize the rank of removal: rank=0 
STEP 2. Mark all the gauges with at least one edge as available for removal. Isolated nodes 

are marked as not available for removal. 
STEP 3. Update the rank of removal (rank = rank + 1) 
STEP 4. Define the rth gauge as the one with the highest Nash–Sutcliffe model efficiency 

coefficient from the currently available gauge set. Assign the rth gauge to the current rank of 
removal. 

STEP 5. Mark the rth gauge and its neighbors on the underlying graph 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠 as unavailable 
for removal. 

STEP 6. Repeat from step 3 until there are no more available gauges for removal. 
 

 

 

Equation (3.40) and Equation (3.41) defines a new score for the graph, based on the NSE, 

but it only includes removable gauges with a NSE value higher than the threshold 𝚪𝚪. For this study 

the value for 𝚪𝚪 was set to 0.7. The constant maxRemRank represents the maximum number of 

gauges removable from the RG algorithm for a given graph.  The 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 is useful to 

assess the quality and quantity of the inference of daily streamflow time series for the removable 

gauges from a given graph model. The higher the 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 is, the better. 

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > Γ

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

(3.40) 

 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=1

 
(3.41) 
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3.4 Study Area and Data Sets 

Our new method is applied to the Ohio River basin due to its size, relevance and good 

quality of long-term historical daily streamflow data.  The Ohio River is, according to the 

discharge, the third largest river in the United States.  It is the largest tributary of the Mississippi 

River and accounts for more than 40% of the discharge of the Mississippi River [149]. The Ohio 

River is located between the 77° and 89° west longitude and between the 34° and 41° north latitude.  

Table 3.1 lists the National Weather Service Location Identifier (NWSLI) which is used in 

this work to index each gauge, along with the drainage area of the corresponding sub-basin, and 

the USGS station identifier of the 34 streamflow gauges. The naturalized daily streamflow data 

are taken from the United States Geological Survey (USGS)’s National Water Information System 

(NWIS: National Water Information System). This data set spans from January 1st, 1951 to 

December 31st, 1980 with a total of 10958 consecutive days (30 years) for all the 34 streamflow 

gauges. There are no missing streamflow records for any day or gauge over the selected study 

period. 

Following the procedure described in subsection 3.3.5.2, the dataset was separated into 3 

subsets. Data between 1951 and 1970 were used for the “training” and “validation”.  The training 

data set consists of 50% of the data randomly selected between 1951 and 1970.  The remaining 

data over the period of 1951 and 1970 consists of the validation set.  The data between 1961 and 

1970 was used as the “test” set. 
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Table 3.1  List of 34 Streamflow Gauges Over the Ohio River Basin 

# NWSLI USGS 
STAID 

Drainage 
Area 
(Km2) 

# NWSLI USGS 
STAID 

Drainage 
Area 
(Km2) 

1 ALDW2 3183500 3,533 18 GRYV2 3170000 777 
2 ALPI3 3275000 1,352 19 KINT1 3434500 1,764 
3 ATHO1 3159500 2,442 20 MROI3 3326500 1,766 
4 BAKI3 3364000 4,421 21 NHSO1 3118500 453 
5 BELW2 3051000 1,052 22 NWBI3 3360500 12,142 
6 BOOK2 3281500 1,870 23 PRGO1 3219500 1,469 
7 BSNK2 3301500 3,364 24 PSNW2 3069500 1,870 
8 BUCW2 3182500 1,399 25 SERI3 3365500 6,063 
9 CLAI2 3379500 2,929 26 SLMN6 3011020 4,165 

10 CLBK2 3307000 487 27 SNCP1 3032500 1,368 
11 CRWI3 3339500 1,318 28 STMI2 3345500 3,926 
12 CYCK2 3283500 938 29 STRO1 4185000 1,062 
13 CYNK2 3252500 1,608 30 UPPO1 4196500 772 
14 DBVO1 3230500 1,383 31 VERO1 4199500 679 
15 ELRP1 3010500 1,424 32 WTVO1 4193500 16,395 
16 FDYO1 4189000 896 33 WUNO1 3237500 1,002 
17 GAXV2 3164000 2,929 34 WYNI2 3380500 1,202 

 

 

3.5 Results and Discussion 

3.5.1  Inference on Streamflow 

The inferred daily streamflow time series based on the new method (i.e., graph 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠) and 

the distance- and correlation-based methods (i.e., graphs of 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 with i = 1, 2, and 3) 

are compared. For the latter two approaches, the three commonly used scenarios with 1, 2, and 3 

donors per target gauge are considered. For our new method, the SGM algorithm was run with the 
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default parameters defined in Algorithm 1. That is, 30 different values of the regularization 

parameter 𝜆𝜆 were used for graphs with edges between 10 (very sparse) and 561 (complete graph). 

Thus, the number of sampling points is ((561 - (10+1)) *30) = 16560 (based on Step 2 of Algorithm 

1).  

The SGM algorithm selected 74 out of 16560 (0.45%) distinct graphs with different 

number of edges as the candidate solutions according to the multi-objective optimization 

procedure that minimizes both of the the validation error and the number of edges. Figure 3.1 (a) 

shows results with trade-offs between the number of edges and the validation error, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣, 

defined by equation (3.32). The black dots represent the dominated solutions in the multiple-

optimization space. The three red dots of the non-dominated solutions represent the graphs of 

SMG(25), SGM(47) and SGM(65) with 25, 47 and 65 edges, respectively. The remaining non-

dominated solutions (i.e., solutions along the Pareto front) are represented by the green dots. Figure 

3.1 (b) shows the comparison of the test error (Equation (3.38)) associated with the graphs 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠, 

of SMG(25), SGM(47) and SGM(65), and graphs of 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 (distance-based) and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 

(correlation-based) with i = 1, 2, and 3. More specifically,  for the distance-based case, 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,1 = 

Dist(24), 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,2 = Dist(43), and 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,3 = Dist(65) with 24, 43, and 65 edges in each corresponding 

graph. For the correlation-based case, 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1 = Corr(24), 𝑮𝑮𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟,2 = Corr(47), and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,3 = 

Corr(68) with 24, 47, and 68 edges in each corresponding graph as well. 

The shape of the pareto front (i.e. green and red dots) in Figure 3.1 (a) shows a large 

validation error when the graphs are very sparse. But the error decreases quickly as the number of 

edges increases until about 44 edges at which point, the error curve flattens with diminished change 

in the validation error up to about 93 edges where a significant decrease in the validation error 

occurs. Then, the error becomes flat again until about 158. The error then decreases gradually until 
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about 211 edges where there is other significant decrease in the validation error and then the error 

becomes close to a constant even with the increase in the number of edges. For this study region, 

it appears that a good trade-off between the sparsity and validation error is about having 44 or 45 

edges, where the error is almost as low as the graph with 92 edges. Also, the error decreases 

dramatically at the beginning where an addition of a few more edges can significantly reduce the 

error. But for a graph with its number of edges starting around 45, an increase in the number of 

edges only reduces the error a little bit. When the number of edges increases to about 92 or more, 

the improvement in error reduction becomes almost unnoticeable. Figure 1(a) shows that the 

relationship between the error and the number of edges has a L-like-shape in which the error 

approaches almost a constant when the graph reaches an edge number around 93. The few 

“sudden” discontinuities in Figure 1(a) are due to the nature of the error function which includes 

conditional terms above/below a threshold that might affect the total validation error once the 

threshold has been reached. The full graph with 561 edges is not in the set of non-dominated 

solutions, which means that using all of the gauges available in the network to infer the streamflow 

for the target site gives worse results than many of the sparser graphs. This is likely related to the 

noisy correlation calculated due to the large noises involved in the data. In fact, Figure 1 (a) shows 

that using graphs with more than 222 edges is unlikely to reduce the validation error anymore. 

This result clearly shows that it is not the more complex the better. 

The three graphs SMG(25), SGM(47) and SGM(65), represented by the three red points in 

Figure 3.1 (a), were selected from a set of non-dominated solutions that, in terms of the number of 

edges, approximately match the three graphs associated with 1-, 2-, and 3-nearest donors, Dist(24), 

Dist(43) and Dist(65) and the three graphs associated with 1-, 2-, and 3-most correlated donors, 

Corr(24), Corr(47) and Dist(68). These three graphs of SMG(25), SGM(47) and SGM(65) are 
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selected so that it makes a fair comparison among the three methods as they all have a similar 

graph complexity. Errors associated with these three different levels of sparsity are represented in 

Figure 3.1 (b), by the three red, green, and magenta bars for the graphs of 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠, 𝑮𝑮𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, and 𝑮𝑮𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

respectively. Figure 3.1 (b) shows that the test error (equation (3.38)) is the lowest for the inferred 

daily streamflow time series using the 𝑮𝑮𝑠𝑠𝑠𝑠𝑠𝑠 graphs from the SGM algorithm, and it is the worst 

for the inferred streamflow based on the distance-based approach. The inferred results for the 

correlation-based approach are between the two.  

To test the statistical significance of these results shown in Figure 3.1 (b), the procedures 

described to infer the streamflow time series are repeated 30 times with random selection of the 

records for the training and validation sets (keeping the tests date set fixed). Running 6 single tailed 

t-tests using a significance level of 0.05, and a null hypothesis that the mean test error for the SGM 

graphs is equal to the Dist or Corr graphs (for the cases of 1-, 2-, and 3-donors, respectively), the 

null hypothesis was rejected on all cases (p-value < 0.0001), and the alternative hypothesis was 

accepted. That is, the mean test error with the test data set for SGM(25) is significantly lower than 

the mean error for Dist(24) and Corr(24); the mean error for SGM(47) is significantly lower than 

that for Dist(43) and Corr(47); and that the mean error for SGM(65) is significantly lower than 

that for Dist(65) and Corr(68). In other words, the results obtained using our new method of the 

SGM algorithm are significantly better than the results of using either the least distance-based or 

the maximum correlation-based approaches. 

Figure 3.2 shows how each of the individual graphs look like using the SGM, least distance 

(Dist), and maximum correlation (Corr) approaches. For the latter two approaches, the three 

commonly used scenarios with 1, 2, and 3 donors per target site are illustrated. The graphs for a 

single donor are Dist(24) and Corr(24) with their equivalent counterpart of SGM(25) from the 
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SGM algorithm. For two donors they are Dist(43) and Corr(47), and their counterpart of SGM(47). 

Finally, for three donors they are Dist(65) and Corr(68), and their counterpart of SGM(65). The 

graphs in Figure 3.2 with green edges are for the distance-based approach (Dist), magenta edges 

for the correlation-based approach (Corr) and red edges for the SGM approach.  It can be seen that 

the graphs associated with each of the three approaches are not the same although some features 

in their graphic structures are similar. From Figure 3.1 (b) and the hypothesis testing results, it is 

clear that the new SGM method is the best of the three. This is because our new method with the 

SGM algorithm accounts for the dependence structure in the entire streamflow network based on 

the concept of conditional independence conditions and employs the Glasso method to effectively 

extract such dependence structure through making the precision matrix sparse. Our results 

demonstrate that a good use of the conditional independence structure of the underlying 

streamflow network (i.e., use sparse precision matrix) is important and it outperforms the widely 

used correlation-based method (i.e., Corr) method which only directly uses the local correlation 

information. Comparing to the distance-based method, the correlation-based method is superior 

which is consistent with other results reported in the literature 
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Figure 3.1 - Result of Running the SGM Algorithm with the Ohio River Basin Dataset 

The training set is composed by a random selection of daily streamflow records between 1951 and 1970, while 

the validation set is composed by the remaining 50% for the same time span. The test data set is composed by 

the most recent 10 years of data (i.e. 1971-1980).  (a) Validation error from the multi-objective optimization 

procedure of the SGM algorithm, between the observed and inferred daily streamflow time series vs the 

number of edges in the underlying graph (representing conditional independence assumptions between sites). 

The black dots represent sub-optimal (dominated) solutions. The Green dots represent the set of non-

dominated (optimal) solutions. The red dots represent the graphs SGM(25), SGM(47) and SGM(65) with 25, 

47 and 65 edges, respectively, chosen from the set of non-dominated solutions. (b) Comparison of the test 

error, between the SGM algorithm and the selection of donor gauges with the least distance (Dist) and 

maximum correlation (Corr) approaches, for 1, 2 and 3 donor sites. From left to right, comparison for one 

donor sites, the SGM(25) was selected to match the sparsity of Dist(24) and Corr(24). For two donor sites, 

graph SGM(47) was chosen to match Dist(43) and Corr(47). In the same way, SGM(65) is matched with 

Dist(65) and Corr(68) 
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Figure 3.2 - Comparison of the generated graphs 

 using the least distance (Dist) on left, the maximum correlation (Corr) on center column and the Selection of 

Graphical Model algorithm (SGM) on right, for 1 (on top), 2 (on middle row) and 3 (on bottom) donor sites, 

respectively. The graphs for “Dist” are built by adding 1, 2 or 3 edge(s) from each site to the site(s) with the 

least distance for 1, 2 and 3 donor sites, respectively. The graphs for “Corr” are built by adding 1, 2 or 3 

edge(s) from each site to the site(s) with the highest correlation for 1, 2 and 3 donor sites, respectively. The 

number of edges for the “Dist” and “Corr” approaches is fixed depending on the number of donor sites used 

to build it, as opposed to the graphs from the SGM algorithm, where the number of edges can be selected 

from the set of non-dominated solutions. The SGM graphs are then selected to approximately match the 

sparsity for the “Dist” and “Corr” graphs for 1, 2 and 3 donor sites, respectively. (a) Least distance graph 

with a single donor site, Dist(24) with 24 edges. (b) Maximum correlation graph with a single donor site, 

Corr(24) with 24 edges. (c) Selection of graphical model algorithm graph, SGM(25), with 25 edges. (d) Least 

distance graph with two donor sites, Dist(43) with 43 edges. (e) Maximum correlation graph with two donor 

sites, Corr(47) with 47 edges. (f) Selection of graphical model algorithm graph, SGM(47) with 47 edges. (g) 

Least distance graph with three donor sites, Dist(65) with 65 edges. (h) Maximum correlation graph with 

three donor sites, Corr(68) with 68 edges. (i) Selection of graphical model algorithm graph, SGM(65) with 65 

edges 
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3.5.2  Removal of Gauges with the Least Loss of Information  

The objective here is to remove several gauges from the gauge network with the least loss 

of information. To do so, the graphs for a single donor: Dist(24), Corr(24), and SGM(25),  for two 

donors: Dist(43), Corr(47), and SGM(47),  and three donors: Dist(65), Corr(68) and SGM(65), are 

used for the sake of comparison among the least distance (Dist), Correlation (Corr), and SGM 

approaches. Each of the 9 graphs, shown in Figure 3.2, are selected as the input for the Removal 

of Gauges (RG) algorithm described in section 3.3.7 .The output of this algorithm shows that 

although there are 8 – 16 gauges  that can potentially be removed, only about 7 – 8 gauges among 

them can be inferred with an NSE higher than 0.7.  

Figure 3.3 shows the comparison of inferred daily streamflow inference results for the 

removable sites estimated by the RG algorithm, using the graphs shown in Figure 3.2 as inputs. 

Location of each gauge in Figure 3.3 is the same as that in Figure 3.2. Figure 3.3 highlights the 

removable gauges in a color-coded circle, indicating its relevant rank in terms of being adequately 

estimated by other gauges after being removed. The inference accuracy for each removed gauge 

is measured by an NSE value higher than or equal to 0.9 is depicted in blue; an NSE between 0.8 

and 0.9 is depicted in green; between 0.7 and 0.8 in yellow; between 0.6 and 0.7 in orange; and 

below 0.6 in red. 

Figure 3.4 (a) shows that the graph score for the single donor case is higher for the SGM 

graph than for the other two approaches. For the case with two donors, the SGM graph significantly 

outperforms the other two methods. The case for three donors is less clear, as there is a tie between 

the Corr and the SGM method, after reviewing the results, it was found that the chosen threshold 

(Γ = 0.7) is the culprit. For the three donors case, SGM(65) allows the removal of 11 gauges, but 

only 9 with an NSE greater than 0.6 and only 7 with a NSE greater than 0.7. On the other hand, 
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Corr(68) allows the removal of only 8 gauges, and 7 of them with an NSE greater than 0.7. Because 

the graph score only takes into account the gauges with an NSE higher than Γ, in this case the two 

additional gauges with NSE=0.65 were ignored, making the bar plot in Figure 3.4 (a) look like the 

same for the 3 donor gauge case, while in fact they are different as the SGM(65) graph allows for 

a removal of two additional gauges with just a slightly lower NSE value than the prescribed 

threshold. These two gauges are highlighted in orange in Figure 3.3 (i). Figure 3.4 (b) shows that 

the mean graph score is higher for the SGM method than those for the other two approaches, with 

the Corr method in second place and the Dist method in third. Figure 3.4 (c) shows a related but 

slightly different measure to that of Figure 3.4 (a), in assessing the quality and quantity of the 

inference results for the streamflow time series estimated by the three methods of SGM, Dist and 

Corr. In Figure 3.4 (c) the mean is taken from the 8 removable gauges with the highest NSE for 

each of the donor scenarios. The SGM has a higher mean among the top 8 removable gauges, for 

1, 2 or 3 donors, than the other two approaches. Figure 3.4 (d) summarizes the results shown in 

Figure 3.4 (c). Clearly, the mean NSE for the top 8 removable gauges is higher for the SGM 

method than those for the other two methods.   
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Figure 3.3 - Comparison of the observed and inferred daily streamflow time series 

in the test set (records between 1971 and 1980), for removable gauges estimated by the Removal of Gauges 

(RG) algorithm using the graphs shown on Figure 3.2 as input. Least distance (Dist) on the left, the maximum 

correlation (Corr) in the middle and the Selection of Graphical Model algorithm (SGM) on the right, for 

donor sites of 1 (on the top), 2 (in the middle row) and 3 (at the bottom), respectively. Note that for the SDM 

case, the number of donor sites are not fixed but automatically determined. The target sites chosen by the RG 

algorithm are highlighted in blue for Nash Sutcliffe efficiency (NSE) greater than or equal to 0.9, in green for 

NSE between 0.8 and 0.9, in yellow for NSE between 0.7 and 0.6, in orange for NSE between 0.6 and 0.7, and 

in red for NSE < 0.6. The graph score is the sum of the NSE for the subset of the inferred target sites with 

NSE > 0.7. The meaning of each plot is: (a) Least distance graph of Dist(24) for a single donor site with 24 

edges and a score of 5.7. (b) Maximum correlation graph of Corr(24) for a single donor site with 24 edges and 

a score of 6.4. (c) SGM graph of SGM(25) with 25 edges whose sparsity is similar to the single donor case of 

graphs Dist(24) and Corr(24). It has a score of 6.6. (d) Least distance graph of Dist(43) for two donor sites 

with 43 edges and a score of 5.85. (e) Maximum correlation graph of Corr(47) for two donor sites with 47 

edges and a score of 5.79. (f) SGM graph of SGM(47) with 47 edges and a score of 6.68. (g) Least distance 

graph of Dist(65) for three donor sites with 65 edges and a score of 5.01. (h) Maximum correlation graph of 

Corr(68) for three donor sites with 68 edges and a score of 5.87. (i) SGM graph of SGM(65) , with 65 edges 

and a score of 5.87. 
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Figure 3.4 - Comparison of the inference accuracy on the removable gauges with the RG algorithm 

applied to graphs corresponding to the SGM, the least distance criterion (Dist) and the maximum correlation 

(Corr) methods. The meaning of each plot is: (a) Graph score (Equation (3.41)) for each of the individual 

graphs for the testing data set.  (b) The mean graph score of the 1, 2 and 3 donors for each method  based on 

values shown in (a). (c) Mean NSE of the 8 removable gauges with the highest NSE.  (d) The mean NAE of the 

1, 2 and 3 donors for each method based on values shown in (c). 

 

 

 

 

 



 91 

In general, correlation-based approach (Corr) is more accurate than the distance-based 

approach (Dist). But the former requires more and better data to stablish the correlations. From the 

correlation perspective, the SGM method is more similar to the Corr approach than to the Dist 

approach which only depends on the geographical location of the sites.  However, there is a 

fundamental difference between the SGM method and the Corr method.  The widely used Corr 

method uses the marginal correlation to determine the edges between the sites. As a consequence, 

sites that have a decent correlation with other sites will end up with a relatively large number of 

edges associated with them.  But some of these edges are redundant. On the other hand, the new 

SGM method takes advantage of the conditional correlation condition between sites as oppose to 

the marginal correlation used by the Corr approach. Therefore, the SGM method reduces the 

amount of redundant edges between sites and only connects a subset of these sites. In addition, the 

SGM method uses the precision matrix instead of the correlation matrix which makes it easier to 

extract the dependence structure among the sites within the entire network. These good 

characteristics associated with the SGM method, in turn, depict a simpler and more accurate 

dependence structure of the underlying gauge network for the study region. In practice, this simpler 

and better gauge network increases the number of sites that can be inferred without a significant 

loss in accuracy. That is the graph from the SGM method can distribute the “correlated flow” in a 

more efficient way so that when a site becomes a target, the neighbors for that site become donors. 

If the donors have high correlations, all of these sites are unavailable for removal because they are 

needed for the inference of the target site. Our results in Figure 3.4 have shown indeed that the 

accuracy of the inferred streamflow time series is improved and that the number of potentially 

removable sites is also increased compared to the Corr approach.   
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One clear example of the difference between the marginal (Corr) and the conditional 

(SGM) correlation methods is given by the relationship identified between the sites ALPI3, 

BAKI3, NWBI3 and SERI3 shown in Figure 3.3 (e) and (f). BAKI3 with a catchment area of 4421 

Km2 is a sub-basin of SERI3 with a catchment area of 6063 Km2 along the main channel. 

Therefore, the catchment area of BAKI3 accounts for 73% of the catchment area of SERI3 and the 

correlation between them is the highest among the sites considered in the study area. The edge 

between them is present in all of the 9 graphs shown in Figure 3.3. The sites BAKI3 and SERI3 

are also highly correlated to the sites ALPI3 and NWBI3. Figure 3.3 (e) shows the graph for 

Corr(47), with 5 edges: NWBI3-BAKI3, NWBI3-SERI3, BAKI3-SERI3, ALPI3-BAKI3 and 

ALPI3-SERI3. Figure 3.3 (f) shows the graph for SGM(47) with only 3 edges which are the same 

as shown in Corr(47), but having the following two edges, NWBI3-BAKI3 and ALPI3-SERI3, 

dropped. It is safe for SGM(47) to drop these two edges as NWBI3 is conditionally independent 

to BAKI3 given SERI3, and  ALPI3 is conditionally independent of SERI3 given BAKI3. Figure 

3.4 (a) and (c) show that the graph with the best trade-off, among the 9 graphs shown in Figure 

3.3, between model complexity and accuracy is SGM(47). 

Figure 3.5 shows the detailed comparison between the observed and inferred daily 

streamflow time series based on the testing set for the eight streamflow gauges with the highest 

NSE, when SGM(47), shown in Figure 3.3 (f), is chosen as the underlying graphical model.   
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Figure 3.5 - Scatter plots between the observed and inferred daily streamflow time series 

over the test period of 1971-1980 (i.e., test data set). Each plot represents one of the eight gauges with the 

highest NSE values among the removable gauges shown in Figure 3.3. The RG algorithm is used in 

combination with the SGM(47) graph to identify the gauges to be removed. The MLR with Equations (3.34) 

and (3.35) is used to infer the daily streamflow shown in the plots. The root mean squared error (RMSE) and 

the NSE are shown for each gauge over the inferred period of 10 years. At the top of each plot, the name of 

the removed gauge is indicated on the left side of the divide line ”|”, and the names of gauges used to infer the 

streamflow of the removed gauge are indicated on the right side of the divide line ”|”.   
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For each of the 34 gauges, their corresponding watersheds were delineated using a 

Geographical Information System (GIS) to facilitate our understanding of the identified 

connections and isolated gauges based on the SGM method. Figure 3.6 (a) shows the elevation 

(NED: National Elevation Dataset), (b) slope (derived from elevation data), (c) soil type (Hybrid 

STATSGO/FAO Soil Texture) and (d) land cover (MRLC: Multi-Resolution Land Characteristics 

Consortium) along with the selected non-dominated graph SGM(25) obtained with a GIS tool and 

the corresponding cited data sets.  

Using SGM(25), two sites are isolated. NHSO1 and WUNO1. Isolated sites should be 

maintained as much as possible to avoid loss of important regional information. Less sparse 

graphs, such as SGM(47) and SGM(65), can still have some marginal benefit from having some 

edges to those sites. NHSO1 has a significantly different land use comparing to other watersheds 

in the study region. For NHSO1, more than 50% of its drainage area is developed while others 

have less than 20% as developed. Thus, the hydrological response of this watershed to precipitation 

events is very different from other watersheds.  In the case of WUNO1, its isolation in SGM(25) 

appears to be related to a combination of its geographic location, different land use from its 

neighboring watersheds, and its proximity to the main channel of the Ohio River. This last factor 

seems to be a natural separator of it. There are no edges crossing the Ohio River on the selected 

sparse graph, SMG(25) with 25 edges, shown in Figure 3.2 (c).  

In general, the factors that impact the connections (i.e., conditional correlations) between 

gauges are complex and it is the integrated effect (e.g., the streamflow in this case) that determines 

the (conditional) correlations between the gauges. The first-order factors that contribute to the 

generation of streamflow in the study area seem to be the elevation, the slope and the catchment 

area. There is a relatively high correlation between the specific discharge (i.e. streamflow divided 
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by the catchment area) and the elevation (0.79), and between the specific discharge and the slope 

(0.76). The land cover also plays an important role, as the edges in SGM(25) are usually between 

sites with the same land cover class as shown in Figure 3.6 (d). 

Results here have demonstrated again that it can be difficult to just use relatively simple 

and explicit functions to relate streamflow to different factors such as land cover, slope, soil type, 

drainage size in identifying their connections for complicated situations like this study case. Such 

a point has also been illustrated in the literature (e.g., [108]).  On the other hand, these factors can 

sometimes help us understand why certain links exist while others do not. For example, the land 

cover types, elevation, and slopes appear to play more important roles than the soil type in this 

study region. It is worth pointing out that gauges are sometimes connected even if the correlations 

between them are not very high. They are connected simply because there are no other available 

gauges nearby with acceptably higher (conditional) correlations. In summary, the chosen graph 

SGM(25) does not have any edges crossing the Ohio River; there exist two gauges isolated from 

the rest, those gauges are geographically far from other gauges and one of them has a significantly 

different land use category distribution with more than 50% of its area being developed. Most of 

the area of the Ohio River basin belongs to the same soil type category and therefore, the soil type 

does not appear to contribute to the identification of the hydrologic similarity between sub-basins 

in this study case. On the other hand, most of the edges on the selected underlying graph SGM(25) 

are between watersheds with the same land use category. These results suggest that in the Ohio 

River basin, the land use is an important factor for the hydrologic similarity among the sub-basins. 
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Figure 3.6 - Spatial distributions of the elevation, slope, soil type, and land cover over the study region with 

graph SGM(25) 

(a) Elevation map showing a cluster of 4 categories indicated by a filled circle of cyan, green, yellow and red 

respectively. These different colors represent, respectively, “very low”, “low”, “high” and “very high” 

elevations based on the mean elevation of their corresponding watersheds. (b) Slope map showing a cluster of 

4 categories indicated by a filled circle of blue, green, yellow and red respectively. The colors represent, 

respectively, “very low”, “low”, “high” and “very high” slope based on the mean slope of their corresponding 

watersheds. (c) Soil type map showing a cluster of 2 categories indicated by a filled circle of dark yellow and 

light yellow, respectively. These two colors represent, respectively, the “silt loam” and “loam” soil types. (d) 

Land cover map showing a cluster of 4 categories indicated by a filled circle of pink, green, yellow and brown, 

respectively. These different colors represent, respectively, the “developed, open space”, “deciduous forest”, 

“pasture/hay” and “cultivated crops” land cover types 
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3.6 Conclusions 

In this study, we proposed a novel method, Selection of Graphical Model (SGM) algorithm, 

to select the set of multiple donor gauges for each inactive gauge (i.e., target gauge) to extend/infer 

its daily streamflow time series. This method generates a series of graphs that represent the set of 

potential donors for each site. The graphs generated by the SGM algorithm allow more accurate 

estimation of daily streamflow time series than other commonly used approaches based on the 

distance between sites (Dist) and the marginal correlation (Corr) between the streamflow time 

series. The main idea of our new method is to take advantage of the conditional independence 

structure encoded by an undirected graphical model known as Gaussian Graphical model, 

represented by the precision (i.e., covariance inverse) matrix. The SGM method selects multiple 

donor gauges by imposing sparsity to the precision matrix via the Graphical Lasso algorithm. The 

two parameters, the L1 norm regularization and a truncation threshold, in the SGM algorithm are 

determined by a multi-objective optimization procedure that minimizes both, the number of edges 

of the underlying graph and the error in the validation set to achieve a balance between the sparsity 

and connectivity/complexity for each graph.  The resulting graphs from the non-dominated 

solution encode the set of donor gauges that are then used for the inference of the daily streamflow 

for each target gauge. We have illustrated in this study that for the gauge network composing of 

34 daily streamflow gauges in the Ohio River basin, the graph with 47 edges selected based on our 

SGM algorithm has a good trade-off/balance between network sparsity and the estimation error. 

With our RG algorithm, a set of gauges can be removed from the hydrometric network with the 

least loss of information. In this study (e.g. Figure 3.3 and Figure 3.4), we have demonstrated that 

8 out of 34 (25%) gauges can potentially be removed (NSE >= 0.75), and that from them, a group 

of 6 (18%) gauges can be inferred with relatively high accuracy (NSE >= 0.8).  In addition, due to 
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the multi-objective nature of our proposed SGM algorithm, multiple graphs with different sparsity 

levels, can be identified for inferring daily streamflow that outperform the commonly used 

methods such as the least distance (Dist) approach and the maximum correlation (Corr) approach 

(see Figure 3.1 (b), Figure 3.3, and Figure 3.4). Depending on the number of gauges needed for 

removal, a balance between the inference accuracy and the gauge removal numbers can be 

achieved. In general, the sparser the graphs are, the more gauges one can remove. On the other 

hand, our study also demonstrates that the complete graph (i.e., with 561 edges) is not included in 

the set of non-dominated solutions, indicating that having more donor gauges does not necessarily 

achieve optimum results due to significantly more noises (inconsistency) introduced by the data 

and the inclusion of redundant edges. Therefore, not only can a suitable sparse graph achieve better 

inferring results through finding the most essential correlations, but also it is more practical 

because it requires a small but most relevant number of donor gauges in inferring the streamflow 

for the inactive gauges and a fewer observations to establish the relationship through the data 

training process. Furthermore, a graph with a fewer edges can reduce overfitting. Our method has 

two limitations. First, it requires a historical record of 2 to 5 years to characterize the relationships 

between the target and donor gauges. Second, the probability distribution of the daily streamflow 

should be approximated well by a log-normal distribution so that the log-transformed variable 

distributes normally.  This second limitation, however, can be easily overcome through a common 

distribution transformation method if the log-normal assumption does not hold. In this study, the 

inference stage was performed with an ordinary least squares MLR approach due to its simplicity, 

although other approaches can also be used once a set of donor gauges is identified.  

The most computationally expensive part of our new method is the SGM algorithm, as it 

relies on calling the Graphical Lasso method multiple times to find the optimal combination of the 
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regularization and truncation parameters. However, this complexity can be abstracted by calling 

efficient routines such as the glasso Matlab package (glasso) and also the GLASSOFAST [148] 

package which is a faster and more recent implementation of the Graphical Lasso algorithm. In 

addition, in this work, we performed a thoroughly search for the regularization parameter between 

0 and 1, but it was determined that the best range was between 0.01 and 0.1, and that using just 10 

values was almost as good as using 30 values in between. Also, we performed an almost exhaustive 

search for the truncation parameter to go from a very sparse graph with only 10 edges to a full 

graph with 561 edges (for a graph of 34 nodes), but we demonstrated that sparse graphs, under 65 

edges, achieve better overall results, allowing the accurate inference of multiple sites with 

relatively high accuracy (NSE >= 0.8).  

In this work, only contemporaneous daily streamflow records are considered. The methods 

explained here can be adapted to include lagged records for a finite set of days. However, for the 

sake of simplicity such approach was not followed. Related work [134], [136] found only marginal 

improvements when considering streamflow travel times into geostatistical analysis. 
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4.0 Estimation of Soil Type and Related Soil Parameters for Land Surface Models based on 

Soil Moisture Observations 

The content in this chapter is based on a manuscript draft to be submitted to a hydrological 

journal under the title of “Estimation of Soil Type and Related Soil Parameters for Land Surface 

Models based on Soil Moisture Observations” by German A. Villalba, Xu Liang, and Yao Liang.  

4.1 Introduction 

Accurate estimation of soil moisture content (SMC) is very important in hydrological 

studies.  For example, SMC, typically estimated by a land surface model, plays an important role 

in hydrologic forecasts. However, estimation of SMC is a challenging problem because there are 

a large number of factors affecting it, such as uncertainties associated with the model structure, 

forcing data, initial states and model parameters. Model parameters generally include those related 

to soil properties (called soil parameters hereafter), vegetation properties, and model structures. 

Therefore, there can be a large number of combinations of the values of these model parameters 

that can lead to the same or similar model simulated SMC given other conditions the same, making 

it very difficult to determine the appropriate model parameter values through model calibration 

technique. On top of it, there are also errors in observed data. To make things worse, there are 

many places where the observations are very scarce or even non-existent, which makes the 

calibration approach even harder to be applied. For situations where calibration is possible, model 

parameters can be estimated through the calibration process.  
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There are different techniques of automatic calibration used to calibrate the model 

parameters that have been developed by  numerous researchers in the last decades [150]–[153]. 

Most of those methods rely on statistics of the time series of model simulated SMC and the 

observed SMC to perform Bayesian inference. Those methods have proved to be very useful in 

providing proper SMC estimates but the resulting set of model parameter values may not be 

necessarily physically meaningful, especially their combinations are not consistent with their 

physical meanings. This is the well-known equifinality problem. Indeed, obtaining consistent and 

physically meaningful parameters [154] is still a challenging task. To mitigate the problem, one 

widely acceptable approach is to reduce the number of model parameters to be calibrated. The soil 

parameters are typically considered as the ones that can be first removed from the calibration list 

(e.g., soil parameters included in the Noah model) since they are at least related to the different 

soil types. But the challenge is that information of the soil type map is typically obtained from 

compiled data sets such as the Hybrid STATSGO/FAO (30-second for CONUS /5-minute 

elsewhere) Soil Texture (top soil) dataset and it involves large uncertainties or errors due to limited 

measurements or ground surveys. Therefore, their corresponding soil parameters (e.g., Noah 

model) usually have to be calibrated due to the large uncertainties involved. The main purpose of 

this work is thus to explore a possibility of developing a physically based new method (inverse 

modeling) to more adequately estimate the spatial distribution of the soil types (i.e., the soil type 

map) based on observed soil moisture data and also to estimate a consistent set of soil parameters 

associated with these identified soil types.  

In this chapter, we describe a novel approach to achieve this goal based on the assumption 

that the soil can be modeled according to the United States Department of Agriculture (USDA) 

soil texture triangle and therefore any soil can be described by a bi-dimensional model with the 
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sand and clay content as the two independent variables. The soil parameters associated with a 

specific soil type can then be obtained by performing a set of pedotransfer functions given 

information of the percentage sand and clay content for each soil type. The Noah land surface 

model [1], [155]–[158] (Noah LSM) was chosen to illustrate the new method and its relevant 

process in estimating the relevant soil parameters. In addition, the VIC model [2] was chosen to 

facilitate generating hypothetical observations to partially account for the effects of model 

structure uncertainties on the new method due to the significant model structure difference between 

VIC and Noah. A site in the state of Oklahoma was selected and all the forcing data were gathered. 

A series of experiments were performed to assess the efficiency of the new method. The test is 

based on a reference soil type map with which a time series of SMC is generated. This SMC is 

called “ground truth” and is used as an observed SMC time series. Our test is to see if the new 

method presented in this chapter is able to recover the reference soil type map using the generated 

SMC time series (i.e., ground truth). Once the soil type map is inferred, the relevant soil parameters 

can be then derived based on a set of pedotransfer functions presented in this chapter. Our results 

are encouraging as the new method is able to infer the soil types that are close to the original soil 

type map in most cases based on the observed SMC (i.e., generated ground truth). 

4.2 New Methods 

This section describes a new approach to identify soil types and then to estimate relevant 

soil parameters for each identified soil type to improve the simulation accuracy of soil moisture 

content using land surface models. The estimated soil parameters are intended to be physically-

based, as opposed to randomly generated. The Noah LSM was selected as an example to illustrate 
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the idea, but the idea would work for other physically-based LSMs in a similar way as well. The 

new method can be summarized as a series of six steps: (1) Based on a few assumed potentially 

possible soil types/textures (called candidate soil types) for each modeling cell (as one does not 

know which soil type is more appropriate at this point), using pedotranfer functions to generate 

corresponding soil parameter data-sets. (2) Using the soil parameters from (1) to concurrently run 

a LSM over a study area to simulate the SMC time series. Thus, for each modeling cell, there are 

a few simulated SMC time series, each corresponding to a soil type candidate. (3) Calculating 

correlations between the SMC time-series obtained from (2) and the observed SMC time series for 

each modeling cell. Candidate soil type with the highest correlation is then selected as the proper 

soil type and its associated soil parameter values are selected as the proper parameter values for 

the individual modeling cell under consideration. Repeat this step for each model cell until the soil 

types of all of the modeling cells in the study area identified. (4) Computing the mean of the 

observed SMC time-series for each modeling cell. (5) Applying a clustering algorithm known as 

K-means to group the individual modeling cells based on the mean of observed SMC from (4) in 

such a way that the modeling cells with similar observed mean SMC are assigned to the same 

cluster. (6) Matching each of the resulting clusters into a dominant soil type with which a majority 

of the individual cells within the cluster are associated.  For the individual cells whose original soil 

types identified in step (3) are not consistent with the dominant soil types, their original soil types 

are then adjusted to the dominant soil types and their corresponding soil parameter values are thus 

adjusted as well.  These six steps are explained with details in sub-sections 4.2.1 , 4.2.2  and 4.3, 

respectively. 
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4.2.1  Estimation of Soil Parameter Data-Sets 

This sub-section describes our approach to estimate consistent sets of soil parameters 

required for the simulation of soil moisture content in most of the LSMs using the Noah model as 

an example. Sub-section 4.2.1.1 provides context of some of the most relevant soil properties and 

the underlying motivation for our soil generation approach. Sub-section 4.2.1.2 describes a 

common approach to set soil parameters based on the soil type only. Sub-sections 4.2.1.3 and 

4.2.1.4 show two approaches that are useful to generate soil parameters based on the percentage 

of sand and the percentage of clay, as opposed to just the soil type.   

4.2.1.1 Background on Soil Parameter Estimation  

A common representation of the soil-water relationship in most LSMs, are the Clapp and 

Hornberger equations [159] represented by Equation (4.1) and Equation (4.2).  
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where K is the hydraulic conductivity, 𝐾𝐾𝑠𝑠 is the hydraulic conductivity at saturation, 𝜃𝜃𝑠𝑠 is the soil 

moisture content at saturation (total porosity), β is a curve fitting parameter and 𝜃𝜃 is the soil 

moisture content (volumetric water content). The matric potential 𝜓𝜓 is a function of the saturated 

matric potential 𝜓𝜓𝑠𝑠 and the soil moisture content 𝜃𝜃. 
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4.2.1.2 Soil Type Lookup Table Approach to Estimate Soil Parameters 

A common approach to specify/assign soil values to the soil parameters for LSMs is by 

retrieving a soil type map for the study area, and then use a lookup table to get a predefined set of 

soil values for each of the corresponding soil parameters related to a specific soil type. This 

approach is useful and simple. However,  the parameter lookup table approach only provides 

sufficient accuracy to the case where the soil parameters happen to be at their  “averaged values” 

for each soil type [154]. Thus, it is not an adequate method in determining the values of the soil 

parameters if their values are quite different from the averaged values [160]. Therefore, the 

associated soil parameter values so obtained might lead to a poor simulation of SMC, even if the 

initial soil type is correctly identified. Besides, the initial soil type can be wrong as well. Under 

such a situation, it becomes even more complicated as to what should be the adequate soil type 

and its related soil parameter values representing each modeling cell of the study area that can lead 

to a proper simulation of SMC. 

4.2.1.3 Global Approach to Estimate Soil Parameters 

This sub-section shows the development of a set of pedotransfer functions, hereinafter 

referred to as the “Global approach”. The purpose is to describe a suitable method to estimate 

continuous values of soil parameters relevant to LSMs. This method is based on existing literature 

and it is the basis for a new approach explained in sub-section 4.2.1.4. Usually good estimates or 

direct measurements of the main soil properties are not available and therefore we need to rely on 

indirect methods to estimate them. Such functions that map the data we have into the data we need 

are sometimes called pedotransfer functions. These functions are usually based on empirical 

relationships that are only valid for the conditions where they were developed. This work was 

inspired by the relationships found by Cosby et al [161] where 1448 soil samples were taken 
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throughout several states of the United States of America. These samples came from the work of 

[162] and [163] and were analyzed in the laboratory to determine their soil types according to the 

grain sizes and particle distributions. The samples were then grouped according to their soil types. 

The mean and standard deviation for each soil type were computed. Finally, a set of linear 

regressions were performed to find relationships between the sand and clay content vs related soil 

parameter values. For more detailed information readers are referred to Cosby et al [161]. The 

same relationships were re-created in this work. However, we have changed the units to the 

International System of Units (SI) to match the units typically used by LSMs. Therefore, the 

specific values of the regression coefficients for unitless parameters are the same but are different 

otherwise to the values reported by Cosby et al. [161]. 

 Cosby et al [161] found that the fitting parameter β from Equation (4.1) and Equation (4.2) 

is related to the percentage of clay (%clay) by a linear relationship. In a similar way, the saturated 

soil moisture content 𝜃𝜃𝑠𝑠, the logarithm of the suction at saturation 𝜓𝜓𝑠𝑠, and the logarithm of the 

hydraulic conductivity at saturation 𝐾𝐾𝑠𝑠, are related to the percentage of sand (%sand) as shown on 

equations (4.3), (4.4), (4.5), and (4.6).  

 𝛽𝛽 = 𝑎𝑎0 + 𝑎𝑎1 ∙ %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑎𝑎0 = 2.9107 𝑎𝑎1 = 0.1599 (4.3) 

 𝜃𝜃𝑠𝑠 = 𝑏𝑏0 + 𝑏𝑏1 ∙ %𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑏𝑏0 = 0.4889 𝑏𝑏1 = −0.001259 (4.4) 

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜓𝜓𝑠𝑠) = 𝑐𝑐0 + 𝑐𝑐1 ∙ %𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑐𝑐0 = −0.1179 𝑐𝑐1 = −0.01317 (4.5) 

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐾𝐾𝑠𝑠) = 𝑑𝑑0 + 𝑑𝑑1 ∙ %𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑑𝑑0 = −6.036 𝑑𝑑1 = 0.1531 (4.6) 
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Figure 4.1. Regression equations to estimate the soil type related parameters using the sand and clay  

percentages as predictors:  (a)  Fitting parameter 𝜷𝜷 as function of %clay; (b) Saturation soil moisture content 

(porosity) 𝜽𝜽𝒔𝒔 as a function of %sand.; (c) Logarithm of the suction at saturation 𝝍𝝍𝒔𝒔 as a function of %sand; 

and  (d) Logarithm of the saturated hydraulic conductivity 𝑲𝑲𝒔𝒔 as a function of %sand. 
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Chen and Dudhia [157] used the four parameters 𝛽𝛽, 𝜃𝜃𝑠𝑠, 𝜓𝜓𝑠𝑠 and 𝐾𝐾𝑠𝑠 from Cosby et al. [161] 

and defined equations to estimate two additional soil properties, the reference soil moisture content 

(field capacity) 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟, and the soil moisture content at wilting point, 𝜃𝜃𝑤𝑤, for each soil type. The 

corresponding equations are shown in equation (4.7) and equation (4.8) below.  
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(4.8) 

The saturation soil diffusivity 𝑊𝑊𝑠𝑠, as defined in the Noah-LSM source code [164], is 

represented by equation (4.9): 

 
𝑊𝑊𝑠𝑠 =

𝛽𝛽 ∗ 𝜓𝜓𝑠𝑠 ∗ 𝐾𝐾𝑠𝑠
𝜃𝜃𝑠𝑠

 
(4.9) 

In this work, we have assumed the dry soil moisture threshold 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑, to be equal to the 

wilting point soil moisture 𝜃𝜃𝑤𝑤, as defined in equation (4.10). 

 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜃𝜃𝑤𝑤 (4.10) 

Finally, the soil quartz content, QTZ, as defined in Peters-Lidard et al [165], is computed 

by a linear regression expressed in equation (4.11) below using the percentage of sand (%sand) as 

a predictor: 

 𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑒𝑒0 + 𝑒𝑒1 ∙ %𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑒𝑒0 = 0.03782 𝑒𝑒1 = 0.009521 (4.11) 
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Figure 4.2. Regression for the Quartz Content, QTZ 

 

 

 

Equations (4.3) to (4.11) describe some of the most important and commonly used soil 

parameters related to a soil type in LSMs as a function of the soil texture (i.e. %sand and/or %clay). 

Therefore, it is possible to assign values to the soil type related soil parameters for a given soil 

type based on information of the %sand and/or %clay that is close to or at the centroid of each 

given soil type as shown in Table 4.1 below.  
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Table 4.1 – Estimated mean soil parameters or properties for each given soil type class.  

The %sand and %clay given in the table represent the centroid location in the US Departement of 

Agriculture (USDA) soil map for each soil type and they are highlighted in blue. The soil properties of 𝜷𝜷, 𝜽𝜽𝒔𝒔, 

𝝍𝝍𝒔𝒔 and 𝑲𝑲𝒔𝒔 (highlighted in green) were adapted from Cosby et al. [161], except for the “Silt” soil type class 

which was not available in Cosby et al. [161] and is assumed here to tske the same values as the “Silty Loam” 

soil type class. The parameters 𝜽𝜽𝒓𝒓𝒓𝒓𝒓𝒓 and 𝜽𝜽𝒘𝒘 (highlighted in yellow) were estimated using equations (4.7) and 

(4.8) from Chen & Dudhia [157]. The properties of 𝑾𝑾𝒔𝒔 and 𝜽𝜽𝒅𝒅𝒅𝒅𝒅𝒅 (highlighted in orange) were estimated using 

equations (4.9) and (4.10). The property QTZ, was taken from Peters-Lidard et al. [165]. 

 

 

 

 

4.2.1.4 Local Approach to Generate Soil Parameters 

The previous sub-section described the “Global approach” used to estimate soil parameter 

values based on soil texture. However, that method has a limitation, it is based on a single 

predictor, either the %sand or the %clay for most of the soil parameters. One possible way to 

overcome this limitation is to use a multiple linear regression model. But Cosby et al. [161] 

reported that the second predictor is not very important in improving the accuracy of the estimated 

soil parameter values. This sub-section describes a new approach, hereinafter referred to as the 

“Local approach”, to estimate the soil parameter values using information from the soil type. One 
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important consideration is that the centroid for each of the soil types was associated to the mean 

values from the multiple soil samples. Therefore, it contains valuable information we want to use 

in obtaining the soil property estimates. The “Local approach” is an extension of the “Global 

approach”, where instead of having a single equation to estimate a given soil property based on 

either the %sand or the %clay for most of them, a set of related equations is defined based on the 

soil type. The purpose is to better capture the variability of the soil properties as a function of both 

of %sand and %clay. Thus, instead of using a multiple linear regression approach, a single 

predictor regression model is used. However, instead of using the global intercept of the regression 

equations (4.3) to (4.11), a new local intercept is computed in such a way that the regression 

equation evaluated at the centroid of both, the percentage of sand (%sand) and the percentage of 

clay (%clay)  passes through the centroid of the soil related parameter for each soil type class. That 

is, the new method uses the same formulations as those expressed in equations (4.3) to (4.11), but 

the local intercept value changes according to the soil type, i.e., each soil type has a different 

equation to estimate each soil property, where the only difference is the value of the regression 

intercept. The slope is kept the same as those used in equations (4.3) to (4.11). This approach is 

useful for the estimations of the soil parameters. The process to estimate soil-related parameters 

using this novel approach can be summarized by the following four steps:  

(1) Estimate the soil type class given the percentage of sand (%sand) and the percentage of 

clay (%clay).  

(2) Retrieve the soil type related parameter at the centroid of the soil type class from (1) 

(e.g. using Table 4.1).  

(3) Compute the local intercept for each soil related parameter by subtracting the slope of 

the corresponding regression equation (from (4.3) to (4.11)) multiplied by either the %sand at the 
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centroid or the %clay at the centroid (%clay for 𝛽𝛽, %sand for the remaining soil related 

parameters), from the value of the soil related parameter at the centroid for the soil type class from 

(1).  

(4) Estimate the soil related parameters using the formulations given by equations (4.3) to 

(4.11), but replacing the global intercept by the local intercept from (3).  

4.2.2  Soil Moisture Content Simulation through Land Surface Models 

The SMC was simulated using a tool, hereinafter referred to as “Noah-2D-SP”, that was 

developed by our research group. Noah-2D-SP  is a software that wraps the Noah LSM, which is 

a “1-D column model” [166], allowing the calculation of a grid of cells (2D) while specifying 

multiple custom soil parameter (SP) data-sets. The required inputs are: forcing data, model 

parameters and initial conditions. Some of the most relevant inputs for LSMs are summarized in 

Table 4.2. These inputs may contain large uncertainties.  
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Table 4.2 – Summary of the relevant  inputs for LSMs used for the simulations 

The initial conditions need to specify the “State” variables. The “Forcing” data is required for each day.  

Type LSM 
Variable Description Units 

State ALBEDO Surface Albedo (unitless) 

State CH Exchange coefficient for heat and moisture m*s^-1 

State CM Exchange coefficient for momentum m*s^-1 

State CMC Canopy moisture content m 

State SH2O Volumetric fraction of liquid soil moisture content  m^3/m^3 

State SMC Volumetric fraction of total soil moisture content  m^3/m^3 

State SNEQV Liquid water-equivalent snow depth m 

State SNOWH Actual snow depth m 

State STC Soil temperature K 

State T1 Effective skin temperature K 

Forcing LWDN Longwave downward radiation W/m^2 

Forcing PRCP Precipitation rate Kg/(m^2*s) 

Forcing Q2 Mixing ratio at height ZLVL above ground Kg/Kg 

Forcing SFCPRS Pressure at height ZLVL above ground Pa 

Forcing SFCSPD Wind speed at height ZLVL above ground m/s 

Forcing SFCTMP Air temperature K 

Forcing SOLDN Solar downward radiation W/m^2 

Soil Parameters 
𝛽𝛽 

Curve fitting parameter for the Clapp & Hornberger 
equation (unitless) 

Soil Parameters 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 
Dry soil moisture threshold at which direct evaporation 
from top soil layer ends m^3/m^3 

Soil Parameters 𝜃𝜃𝑠𝑠 Soil moisture content at saturation (total porosity) m^3/m^3 

Soil Parameters 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 
Reference soil moisture (field capacity), where 
transpiration begins to stress m^3/m^3 

Soil Parameters 𝜓𝜓𝑠𝑠 Saturation suction  m 

Soil Parameters 𝐾𝐾𝑠𝑠 Hydraulic conductivity at saturation m/s 

Soil Parameters 𝑊𝑊𝑠𝑠 Saturation soil diffusivity m^2/s 

Soil Parameters 𝜃𝜃𝑤𝑤 Wilting point soil moisture m^3/m^3 

Soil Parameters QTZ Soil quartz content (unitless) 
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The forcing data include longwave downward radiation, precipitation rate, mixing ratio, 

pressure, wind speed, air temperature and solar downward radiation. In this study, the soil 

parameters are estimated using the “Local approach” from sub-section 4.2.1.4. and a soil type 

texture map for the study area. Finally, the estimation of the initial conditions is performed by 

assigning an initial value for each of the state variables. In particular, the initial conditions for the 

SMC related variables, follows the typical initialization procedure [166]. That is, each cell is 

initialized with a value of 30% of the porosity (𝜃𝜃𝑠𝑠 from Table 4.1) for the cell’s specified soil type. 

Then the Noah model is run repeatedly over the same year using the corresponding forcing data, 

until the state variables such as the SMC reach equilibrium. More details on how to set the initial 

conditions are provided in sub-section 4.3.3 . Sub-section 4.3.2  shows how to set the soil 

parameters. 

4.3 Estimating Soil Type and Soil Parameters based on SMC Observations 

This section illustrates our new approach to estimate optimized soil types and their related 

soil parameters based on given SMC observations.  Because of limited availability of observed 

soil data and their corresponding SMC time series, we apply our new method to a set of 

hypothetically generated SMC time series based on given soil types and their associated soil 

parameters for a study area. In this way, we can test if our new method is able to identify the given 

soil types with their associated soil parameters based on the given SMC time series. The selected 

study area is bounded by Latitude 34.75° to 35° N and Longitude 97.9375° to 98.1875° W which 

is in the state of Oklahoma within the Little Washita watershed as described in [167], [168]. This 

area has been the subject of numerous studies due to its intensive field campaigns of collecting 
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various data including soil moisture. For this work a resolution of 1/128 degrees (approximately 

780 m) is used which corresponds to 32 by 32 modeling cells. 

4.3.1  Forcing Data 

The forcing data from 1 January/1997 to 31 December/1997 was retrieved from the 0.125 

Degree Hourly Primary Forcing Data for NLDAS-2 [169] which include hourly precipitation total 

[kg/m^2], longwave radiation [w/m^2], shortwave radiation [w/m^2], surface pressure [pa], 2-m 

above ground specific humidity [kg/kg], 2-m above ground temperature [k], 10-m above ground 

zonal wind speed [m/s], and 10-m above ground meridional wind speed [m/s]. All of the data were 

aggregated to a daily time-step and resampled to match the 32 by 32 modeling grids for the study 

area.  

4.3.2  Soil Parameter Estimations and Generation of Ground truth SMC 

4.3.2.1 Soil Parameter Estimations 

The soil parameter values associated with the Noah model (i.e., %sand, %clay, BB, 

MAXSMC, SATPSI, SATDK, REFSMC, WLTSMC, SATDW, DRYSMC and QTZ) for each 

modeling cell in the study area are estimated using the Local approach described in sub-section 

4.2.1.4 based on a prescribed soil type map. In this example, the soil type map obtained from the 

Hybrid STATSGO/FAO (30-second for CONUS /5-minute elsewhere) Soil Texture (top soil) 

dataset is assumed to be the true soil type map and is shown in Figure 4.3a for the study area.  
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4.3.2.2 Generation of Ground truth SMC Time Series  

The observed SMC time series called ground truth is generated due to the limitation of 

available soil moisture time series.  This ground truth SMC is generated by a combination of 

adding random noises and a utilization of two very different models, the VIC and Noah models, 

to make the generated ground truth SMC more complex than that by any single model alone. Since 

the model structures between VIC and Noah are very different, VIC is used to partially account 

for the uncertainties associated with model structures, because in reality, no model can simulate 

soil moisture time series identical to the observed soil moisture in the real world. There is always 

inconsistency between observed and model simulated SMC which is partially contributed by the 

model structures as no model at present can fully describe all the processes involved in the real 

world. The detailed steps of generating the ground truth SMC time series are summarized as 

follows: 

(1) Add randomly generated gaussian noises with zero mean and a dynamically estimated 

standard deviation to the precipitation data time series to increase the uncertainties between 

the generated ground truth SMC and the SMC simulated by the Noah model. The standard 

deviation of the generated noise is computed one time-step at a time. For each time-step, the 

standard deviation of the added gaussian noise is estimated as 30% of the standard deviation 

of the spatial precipitation distribution.    

(2)  Estimate the soil parameters related to the given soil type map (i.e., Figure 4.3a). For the 

Noah model, the soil parameters (i.e., BB, MAXSMC, SATPSI, SATDK, REFSMC, 

WLTSMC, SATDW, DRYSMC and QTZ) were estimated based on the local approach 

described in subsection 4.2.1.4. Values of percentage of sand (%sand) and percentage of clay 

(%clay) used in the pedotransfer functions in subsection 4.2.1.4 are randomly generated 
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within a range suitable for the given soil type so that there are some variations in the soil 

parameter values for the same given soil type. In other words, the generated soil parameters 

are not constrained to a single value for the soil type class. Thus, two cells with the same soil 

type are likely to have similar but different soil parameter values. For the VIC model, the 

soil parameters were kept similar to the values as their counterparts in the Noah model when 

feasible, otherwise, VIC’s default values were used.  

(3) Estimate other model parameters. For parameters other than the soil parameters involved in 

both the Noah and VIC models, such as vegetation and model structure related parameters, 

their respective default values were used based on the given vegetation and other available 

information for the study area.  

(4) Initialize each model’s state variables in the same way as they are normally done. For 

example, for the Noah model, the initial conditions for soil moisture follow the initialization 

procedure of [166]. That is, each cell is initialized with a value of 30% of the MAXSMC 

from Table 4.1 according to the given soil type (i.e., Figure 4.3a) for that cell. The required 

initial conditions for the Noah LSM are given in Table 4.2 and their values were set as: 

ALBEDO = 0.699, CH = 0.024, CM = 0.04, CMC = 0.0, SNEQV = 0.0, SNOWH = 0.0, 

STC_0 = STC_1 = STC_2 = STC_3 = 273, T1 = 273. For the VIC model, their soil moisture 

values at different soil layers were set at equivalent values as the ones set for the Noah model. 

The other state variables in VIC were initialized in a similar way as those in the Noah model.   

(5) Run the Noah and VIC models, respectively, over the one year forcing data from January 

1st, 1997 to December 31st, 1997 repeatedly until both reached their equilibrium states. In 

this study, both models reached their equilibrium states after running for about 5 cycles of 

the one year forcing data from 1997 with their own initialization processes.  
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(6) Create the ground truth SMC time series. The one-year SMC time series at equilibrium from 

both the Noah and VIC model simulations based on the above steps are combined to form 

one SMC time series. Each of the models contribute 50% to the combined time series. To 

make the problem closer to the real world and the testing case scenario more challenging 

and complex for the proposed new method, additional randomly generated noises were 

added to the combined SMC time series. The added noise is gaussian with zero mean and 

with a standard deviation of 30% the standard deviation of the porosity reported by Cosby 

et al [161]. Thus, the standard deviation of the added noise is 30% of 0.061, that is 0.0183. 

This final one-year SMC time series with noises added is used as the assumed ground truth 

and served as the observed SMC time series corresponding to the given soil type map shown 

in Figure 4.3a. The ground truth SMC time series and the observed SMC time series are used 

interchangeably throughout this chapter.  

 

 

 

Figure 4.3. Spatial distributions of the soil types and vegetation types for the study area with 32 by 32  

modeling cells : ( a) Assumed true soil type distribution extracted from the Hybrid STATSGO/FAO (30-

second for CONUS /5-minute elsewhere) Soil Texture (top soil); and (b) True spatial distribution of the 

vegetation types for the study area.  
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4.3.3  Generation of Soil Moisture for the Noah Model 

The Noah model is used to illustrate the new method. The soil parameters (i.e., BB, 

MAXSMC, SATPSI, SATDK, REFSMC, WLTSMC, SATDW, DRYSMC and QTZ) of the Noah 

model were estimated in the same way as described in step (2) under the subsection 4.3.2.1. The 

only difference is that in this case, the values of percentage of sand (%sand) and percentage of clay 

(%clay) corresponding to the centroids of a given soil type defined in the USDA Soil Map are used 

in the pedotransfer functions described in sub-section 4.2.1.4 for simplicity. Additional soil texture 

values (i.e., %sand and %clay) can be used to improve accuracy in identifying the soil types at 

expense of more computational resources. Since the true soil type is assumed as unknown, we can 

simply assume that each of the 12 soil types is a possible candidate at each modeling cell. If one 

has more knowledge on the potentially possible soil type candidates, a fewer candidates of the soil 

types can be assumed for each modeling cell. In this study, we simply assume that all 12 soil types 

are possible candidates for each modeling cell. Thus, the soil parameter values corresponding to 

each of the 12 soil types have to be estimated based on the local approach described in sub-section 

4.2.1.4 and the centroid location for obtaining the %sand and %clay information. After obtaining 

the soil parameter values for all of the 12 different soil types for each modeling cell, the Noah 

model was run 12 times per modeling cell for the entire study area using the forcing data. No 

random noises were added to the forcing precipitation time series in these Noah model simulations. 

These Noah simulation runs are called “calibration” simulations hereafter.  
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4.3.4  Optimized Estimation of Soil Type and its Associated Parameters 

For clarity, we call the process of finding the appropriate spatial distribution of soil types 

and their related soil parameters given observed SMC time series a calibration process.   The 

selection of a proper soil type and its related parameters is performed by computing the 

determination coefficient (𝑹𝑹𝟐𝟐) between the observed SMC time series (i.e., ground truth) and the 

Noah generated SMC time series (also called members hereafter) from subsection 4.3.3 for each 

of the 12 soil types for each modeling cell. Then the member with the highest 𝑹𝑹𝟐𝟐 is selected as the 

estimated proper soil type for the cell and its related soil parameters are selected as the soil 

parameters for that given cell.  

4.4 Results 

Figure 4.4a shows that the root zone SMC from the Noah model simulations varies over a 

relatively large range among the 12 different soil types in the one year under equilibrium state. 

Figure 4.4b shows that most of the soil types have a relatively similar temporal patterns in standard 

deviation with an exception of the “Loamy Sand” soil type (light blue series). Figure 4.4a and 

Figure 4.4c show that the “Sand” (yellow) and “Loamy Sand” soil types are significantly dryer 

than other soil type classes.  Figure 4.4d shows that, as expected, the “Clay” soil type is the wettest 

among the 12 soil types. Figure 4.4 also shows that the root zone SMC is likely to be clustered 

into approximately four distinguishable groups. Figure 4.5 shows that there are probably four 

groups according to the simulated root zone SMC averaged over the year for each cell as well. One 

group is sand (Figure 4.5a). One group is loamy sand (Figure 4.5b). The third group is the green-
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colored ones which include sandy loam (Figure 4.5c), loam (Figure 4.5f), sandy clay loam (Figure 

4.5g), and sandy clay (Figure 4.5j).  The fourth group is the blue-colored ones which include silty 

loam (Figure 4.5d), silt (Figure 4.5e), silty clay loam (Figure 4.5h), clay loam (Figure 4.5i), silty 

clay  (Figure 4.5k), and light clay (Figure 4.5l).  

 

 

 
 

Figure 4.4. Time series of root zone SMC, spatially aggregated for each member of the calibrationsimulations,  

one time series for each soil type class: (a) Mean Root Zone SMC; (b) Standard Deviation of the Root Zone 

SMC; (c) Minimum value for the Root Zone SMC; and (d) Maximum value for the Root Zone SMC. 
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Figure 4.5. Spatial distributions of the root zone SMC averaged over the one year Noah model simulation for  

each of the 12 soil types: (a) 1. Sand; (b) 2. Loamy sand; (c) 3. Sandy loam; (d) 4. Silty loam; (e) 5. Silt; (f) 6. 

Loam; (g) 7. Sandy clay loam; (h) 8. Silty clay loam; (i) 9. Clay loam; (j) 10. Sandy clay; (k) 11. Silty clay  ( l) 

12. Light clay. 

 

 

4.4.1  Spatial Distribution of the SMC and Inference of Soil Types 

Figure 4.6a shows the spatial distribution of the temporal mean of the observed SMC (i.e., 

ground truth). Figure 4.6b shows the mean of the K groups resulting from clustering with the K-

means algorithm when K=3, using as input the spatial distribution of the temporal mean of the 

observed SMC shown in Figure 4.6a. Figure 4.6c shows the resulting clusters identified. The 

cluster with the lowest, intermediate and highest observed SMC mean is shown in red, green and 

blue, respectively. Figure 4.6d shows the resulting soil type distribution, estimated for each 

individual modeling cell, by selecting the SMC time series associated to a particular soil type class 
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with the highest correlation between the observed and simulated SMC time series. Figure 4.6e 

shows the resulting soil type distribution by clustering the observed mean SMC shown in Figure 

4.6a. Figure 4.6e was derived by inputting the mean observed SMC (i.e., Figure 4.6a) to the K-

means clustering algorithm with 3 groups (K=3), and using the soil types identified on each 

individual cell for each cluster to select the majority class. The majority class is then used to 

reassign the soil types for the cells that do not match the majority soil type class. Figure 4.6f shows 

the spatial distribution of the assumed true soil types for comparison with the groups from the 

clustering results of Figure 4.6e. The reason that Figure 4.6e has only three clusters is because K-

means was run with only 3 groups, while Figure 4.6f has four soil types. In this case using 4 groups 

(K=4) for the clustering algorithm does not produce reliable patterns because two soil types, class 

4 “Silty Loam” and class 6 “Loam”, have similar mean SMC and also because of the various 

random noises added to the precipitation and later to the combined model simulated soil moisture 

time series (i.e., from both Noah and VIC), and the combination of two different models. The 

aggregated effect is that only 3 clusters can reliably be identified from the mean SMC shown in 

Figure 4.6a and Figure 4.6b (i.e. red, light blue, dark blue).    
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Figure 4.6. Spatial Distribution of Soil Moisture and Inference of Soil Types over the Study Area 

 (a) temporal mean of the observed SMC (i.e., ground truth), (b) temporal mean of the K groups from the 

observed SMC, (c) resulting clusters based on the observed mean SMC shown in Figure 4.6a, (d) resulting soil 

types from comparing individual cells without conducting Kmeans clustering (%67.5 success rate), (e) final 

results after assigning clusters to soil types using 3 soil types (88.5% success rate) and (f) assumed spatial 

distribution of the true soil types. 
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4.4.2  Comparison of Estimated Soil Parameters 

In this sub-section, we perform an assessment of the accuracy and efficiency of our new 

“local” approach to estimate soil related parameters from observed SMC time series. This 

assessment is based on a comparison with a commonly used approach for the calibration of 

hydrological models. 

We selected a stochastic modelling approach for the sake of comparison with our new 

method for identifying soil types and soil parameters for LSMs. The calibration approach for this 

“common” method is summarized by the following steps: 

(1) Select the number of members (concurrent simulations) and generations (number of 

cycles) 

(2) Assign a valid range to each soil parameter. 

(3) Scale the valid range of each soil parameter to a range between 0 and 1. 

(4) Randomly initialize the normalized soil parameters (i.e. in the range 0 to 1). 

(5) Scale the parameters back to its natural valid range. 

(6) Run the LSMs to obtain the SMC time series. 

(7) Use an error or objective function to assess if a new parameter set performs better than 

previous calibration simulations. In this study we used the Nash–Sutcliffe model 

efficiency coefficient between the observed and simulated SMC. 

(8) Merge the historical soil parameters with the best performance (low error / high score, 

etc) according to the objective function from (7) with the most recently generated soil 

parameter sets.  

(9) Discard the one half with the poorest performance and save/store the one half with the 

best performance. 
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(10) Generate new sets of soil parameters (in the range 0 to 1), one for each member. 

(11) Repeat from step (5) until the number of generations is complete. 

 

The commonly used method is based on an iterative approach. On the other hand, our new 

local approach is based on a “single shot” simulation, that is, only 1 generation is required and the 

number of member is given by the number of potential soil types considered, here we selected 12 

soil type candidates, thus, we use 12 member for the simulations for our local approach.   

Figure 4.7 shows the comparison of the results using the “common” approach vs our new 

“local” approach: (a), (b) and (c), shows the logarithm of the hydraulic conductivity at saturation 

(i.e. log10(SATDK)) for the commonly used approach (common), our new local approach (local) 

and the assumed ground truth (truth), respectively. The RMSE from our local approach (0.134) 

accounts for only 35% percent of the RMSE with the common approach (0.380). Also, the 

hydraulic conductivity distribution pattern is better described by our local approach.  (d), (e) and 

(f), shows the logarithm of the saturation soil diffusivity (i.e. log10(SATDW)) for the commonly 

used approach (common), our new local approach (local) and the assumed ground truth (truth), 

respectively. The RMSE from our local approach (0.154) accounts for only 41% percent of the 

RMSE with the common approach (0.372). Also, the pattern of the distribution of the saturation 

soil diffusivity is better described by our local approach.  (g), (h) and (i), shows the porosity (i.e. 

MAXSMC) for the commonly used approach (common), our new local approach (local) and the 

assumed ground truth (truth), respectively. The RMSE from our local approach (0.0264) accounts 

for only 63.7% percent of the RMSE with the common approach (0.0414). Also, the pattern of the 

distribution of the porosity is better described by our local approach. (j), (k) and (l), shows the 

curve fitting parameter for the Clapp & Hornberger equation (i.e. BB) for the commonly used 
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approach (common), our new local approach (local) and the assumed ground truth (truth), 

respectively. The RMSE from our local approach (1.17) accounts for only 35.5% percent of the 

RMSE with the common approach (3.29). Also, the pattern of the distribution of the curve fitting 

parameter is better described by our local approach. 
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Figure 4.7. Soil related Parameters Calibration Comparison  

between a commonly used approach and our new clustering based local approach. Logarithmic distribution 

of the hydraulic conductivity at saturation for (a) the “common” approach (RMSE=0.338)  (b) the “local” 

approach (RMSE=0.134), and (c) the ground truth, respectively. Logarithmic distribution of the saturation 

soil diffusivity for (d) the “common” approach (RMSE=0.372)  (e) the “local” approach (RMSE=0.154), and 

(f) the ground truth, respectively. Distribution of the soil porosity for (g) the “common” approach 

(RMSE=0.0414)  (h) the “local” approach (RMSE=0.0264), and (i) the ground truth, respectively. 

Distribution of the BB curve fitting parameter for the Clapp & Hornberger equation for (j) the “common” 

approach (RMSE=3.29)  (k) the “local” approach (RMSE=1.17), and (l) the ground truth, respectively. 
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4.5 Summary and Conclusions 

The experiments performed in this study suggest that it is possible to systematically retrieve 

meaningful and consistent soil types and soil type related parameters from the SMC observations 

(synthetically generated data in this case study). Our procedure can be extended to real observed 

soil moisture data although there are some challenges to gather and retrieve long term (e.g., one 

year or longer) root zone SMC time series over large spatial domains. In this work we presented a 

synthetically generated SMC time series (called ground truth) which consist of the model 

simulated SMC time series from two distinct land surface models with very different model 

structures (i.e. 50% from Noah simulation and 50% with VIC simulation). In addition, 

uncertainties (random noises) were added to the precipitation forcing data and to the combined 

simulated SMC time series as well. The soil parameters used for the ground truth simulations were 

obtained by random selection of the percentages of sand and clay within each of the corresponding 

given soil type class and the associated soil parameters were then computed using the pedotransfer 

functions described in subsection 4.2.1.4. The inferred soil type classes based on the new method 

had a success rate of 87.9% which is quite encouraging given the large uncertainties included in 

the ground truth SMC time-series to ensure a low correlation between the ground truth SMC time 

series and the Noah model SMC simulations for each of the 12 soil type classes. The assumed true 

soil type map has 4 distinct classes but only 3 types are retrieved with high confidence. The soil 

types between classes 4 (silty loam) and 6 (loam) are difficult to distinguish because their 

simulated SMC time series are similar to each other as indicated in Figure 4.5. Using the VIC and 

model Noah models instead of the Noah model alone to generate the ground truth (i.e., assumed 

observed SMC time series) is to introduce structure uncertainties as evidenced for the sand soil 

type, for example, in which the VIC model behaves very differently from that of the Noah model.  
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Adding uncertainties to the forcing data and then to the simulated SMC time series as well is an 

additional effort to make the final assumed observed SMC time series (used as ground truth) to be 

quite different from that of the Noah model simulations, making the problem of identifying the 

appropriate soil type classes for the study area using the assumed SMC observations more 

challenging. Our results show that the new method presented in this chapter is quite effective. 

Thus, the new method can be used to more adequately identify spatial distributions of the soil type 

classes for a study area which is very much needed for conducting adequate LSM simulations.  For 

situations where the correlations are too low to distinguish one soil type from the other, it is 

suggested that some statistics of the SMC time series, such as the mean or median are used as the 

moisture index in the identification process.  For example, “sand” is the driest soil type and it can 

be assigned to a cluster with the least mean SMC value. The procedure can be used for other soil 

classes if needed, although in some cases there might be a mismatch if the mean SMC is not distinct 

enough. For example, between soil class 4 (silty loam) and soil class 6 (loam).  

In this study we presented a heuristic algorithm to match a cluster of a soil type, based on 

the correlation between the observed and the simulated SMC time-series. The correlation can be 

used to match a cluster to a soil type. In spite of the very different SMC time series created as the 

ground truth in this study, the new method presented in here was able to retrieve most of the soil 

types correctly (88.5 success rate). In addition, the general patterns of the soil-related parameters 

are better captured by our clustering-based local method and the RMSE are usually a fraction of 

the error from a commonly used approach such as the one described here for comparison purposes. 

Our calibration method allows automated estimation of soil types and soil-related parameters using 

only the observed SMC as input. This method is also more efficient as it requires only a limited 
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number of members, one for each soil type candidate and it only requires a single generation (i.e. 

single concurrent simulations).   
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5.0 Conclusions 

This dissertation addressed three challenging issues for the overall reduction of uncertainty 

in hydrological modeling. First, the collection of sub-surface data at the plot-scale on real-time for 

environmental monitoring was performed by a long-term wireless sensor network in south-western 

Pennsylvania. This deployment is a cost-effective solution alternative to the more traditional use 

of data-loggers while allowing a large amount of environmental data collection. The lab-made sap 

flow sensors are significantly cheaper than industrial-grade ones, although the manufacturing 

process of the thermal probes and the circuitry needs to be done with care. The sap flow lab-made 

sensors need to be labeled and calibrated before the installation on the field. The data gathered by 

the WSN includes soil moisture content, water potential and soil temperature at multiple soil 

depths, in addition to xylem sap flow.  

Second, the accuracy and availability of continuous streamflow time-series estimates was 

improved by a novel algorithm that uses daily streamflow data from a hydrometric network 

modeled as a graph where each site represents a node and the missing edges represent conditional 

independence assumptions between a given pair of sites given all the remaining sites. This 

approach takes advantage of the natural parsimony that arises from such a model, in such a way 

that a sparse graph is obtained by imposing sparsity to the Gaussian graphical model representation 

of the hydrometric network.   The sparsity is achieved by selecting a representation of the Gaussian 

graphical model in terms of the precision (covariance inverse) matrix. This representation has the 

advantage that uses the conditional correlation, as oppose to the marginal correlation making it 

easier to interpret as the edges can be used to determine the optimal set of donor gauges for any 

target site. The optimal graph is found by a multi-objective optimization procedure using a 
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Machine Learning method, known as the Graphical Lasso to estimate a sparse precision matrix, 

along with a method to select an L-1 norm regularization parameter and a truncation operator. 

Once the optimal graph is known, a second novel greedy algorithm is introduced to estimate the 

gauges that can be removed from the hydrometric network with the least loss of information. This 

is particularly important given the budget cuts that challenge the appropriate time and space 

coverage of the measurements performed by agencies world-wide, such as the U.S. Geological 

Survey (USGS) in the United States of America. The inferred streamflow data was shown to be 

more accurate in terms of Nash-Suschife model efficiency and the coefficient of determination, 

R2, between the observations and the inferred daily streamflow time-series, than other commonly 

used approached based on geographic proximity or marginal correlation. In general, the correlation 

approach is generally better in terms of accuracy, as compared with the geographical proximity 

criterion, but it requires additional data that might not be available. The conditional correlation is 

preferable over the marginal correlation, especially in the presence of multiple variables with high 

inter-correlation, as it reduces to the minimum the number of redundant predictors.  

Third, a novel method for the simultaneous estimation of soil moisture content and soil-

related parameters was presented based on dimensional reduction of the soil-parameter space by 

mapping it to a two-dimensional plane represented by the USGA soil-texture triangle. That is, any 

point on the triangle can be represented as a linear combination of sand and clay, those coordinates 

determine the soil texture class and also, by using the described pedotransfer functions, they can 

be mapped to a specific soil parameter value. This parameterization was actively used to generate 

synthetic simulations by running two distinct hydrologic land surface models, the Noah LSM and 

the VIC model. It was shown that a weighted average of the soil moisture output for those two 

models along with perturbations to the forcing data and observed soil moisture can create more 
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realistic soil moisture time series observations than any single model alone. This procedure was 

used to match the simulated SMC from the Noah LSM for each soil type. Then a clustering 

algorithm known as K-means was used to group the cells for the mean or median from the observed 

SMC. Finally, we proposed two heuristic algorithms to match the generated cluster to soil types, 

one based on correlation for individual cells and the other based on a moisture index. Depending 

on the correlation between the simulated and observed data, one heuristic outperforms the other. 

In general, it was observed that before calibration, the correlation between the simulated and the 

observed SMC is relatively low, therefore the moisture index heuristic is chosen unless the 

correlations are relatively high. Once the soil type is chosen, the last step is to generate additional 

samples within the selected soil types and choose the ones that improve the soil moisture time 

series for individual cells, but they are constrained to a particular soil type previously inferred.  
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