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Figure 1: Interactive Natural Language Processing allows domain experts without
machine learning experience to build models on their own, and also reduce or eliminate
the need for collecting prior annotations and training data.

Free-text allows clinicians to capture rich information about patients in narratives and

first-person stories. Care providers are likely to continue using free-text in Electronic Medical

Records (EMRs) for the foreseeable future due to convenience and utility offered. However,

this complicates information extraction tasks for big-data applications. Despite advances

in Natural Language Processing (NLP) techniques, building models on clinical text is often

expensive and time-consuming. Current approaches require a long collaboration between

clinicians and data-scientists. Clinicians provide annotations and training data, while data-

scientists build the models. With the current approaches, the domain experts - clinicians and

clinical researchers - do not have provisions to inspect these models or give direct feedback.

This forms a barrier to NLP adoption and limits its power and utility for real-world clinical

applications.
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Interactive learning systems may allow clinicians without machine learning experience

to build NLP models on their own. Interactive methods are particularly attractive for

clinical text due to the diversity of tasks that need customized training data. Interactivity

could enable end-users (clinicians) to review model outputs and provide feedback for model

revisions within a closed feedback loop (Figure 1). This approach may make it feasible

to extract understanding from unstructured text in patient records; classifying documents

against clinical concepts, summarizing records and other sophisticated NLP tasks while

reducing the need for prior annotations and training data upfront.

In my dissertation, I demonstrate this approach by building and evaluating prototype

systems for both clinical care and research applications. I built NLPReViz as an interactive

tool for clinicians to train and build binary NLP models on their own for retrospective

review of colonoscopy procedure notes. Next, I extended this effort to design an intelligent

signout tool to identify incidental findings in a clinical care setting. I followed a two-step

evaluation with clinicians as study participants: a usability evaluation to demonstrate the

feasibility and overall usefulness of the tool, followed by an empirical evaluation to evaluate

model correctness and utility. Lessons learned from the development and evaluation of these

prototypes will provide insight into the generalized design of interactive NLP systems for

wider clinical applications.
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1.0 INTRODUCTION

Electronic Medical Record (EMR) systems should emphasize ease of use and utility for clin-

icians for over considerations for data analysis. Free-text makes it convenient for recording

patient conditions and progress in narratives and first-person stories [1, 2]. As a result,

literature in clinical informatics suggests that a large portion of information in the EMRs,

which is relevant to research and clinical outcomes, is locked in free-text [3, 4]. The American

Medical Association’s call for design overhaul of Electronic Medical Records also includes re-

ducing cognitive burden due to information overload in their top eight priorities [5]. Within

EMRs, prior research identifies clinical notes in the electronic medical record [6, 7, 8] as one

of the culprits for this problem. While narratives and free-text allow physicians to easily

capture rich information [1, 2], they are difficult to analyze. Solving these problems become

even more important as we increasingly depend on a team of care providers responsible for a

patient’s well-being. Patient records are collaboratively created and reviewed by large teams

of physicians and nurses. These records can become bloated quickly and make it harder for

care providers to find relevant pieces of information [8]. The current documentation processes

may be responsible for producing more bloated records than what one would otherwise need

for each individual use case [9]. Wier and Nebeker [6] point out that there are multiple uses

cases for the same component of the record:

1. They are the main source of communication regarding the overall plan of care between

providers.

2. They are also used by coders for billing purposes.

3. Plus, they form the main source of information for legal and quality review.

The large and increasing volume of documentation results in a higher workload and also
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potential sources of error [10]. As a part of their study, Weir and Nebekar interviewed 88

providers across different settings about the documentation practices. Their results identified

difficulties in finding information and extracting meaningful data as significant problems:

“[clinicians] commented on the difficulty of sorting, sifting and locating relevant docu-
ments.”

“Most providers reported on the difficulty of extracting meaningful data from a large num-
ber of notes and confusing text.”

“...they expect relevant information to be displayed and non-relevant information to be
omitted.”

These results are reiterated in more recent studies, such as by Wright et al. [7]:

“custom-filtered displays, intended to provide quick access to frequently used information
for specific clinicians, fell short of their needs.”

And, also by Artis et al. [11], while discussing the use of the patient records for activities

such as preparing sign-out notes and conducting daily rounds:

“... [EHR system] does not automatically provide an effective visual display of data needed
for daily rounds”

NLP could help alleviate the problem of information load by identifying relevant and

important information while omitting other pieces depending on user needs. Using Natural

Language Processing (NLP) on clinical text require collaboration between clinicians (domain

experts) and data scientists (NLP experts). Clinicians who can understand medical jargon

and create training examples are usually not versed in informatics techniques to be able to

use NLP directly. Clinicians provide training data, while data scientists build and evaluate

appropriate models. As a result, despite recent advances in Natural Language Processing

(NLP) techniques, building models is often expensive and time-consuming [12] as it requires

expert construction of gold standard and training corpora [13]. These steps involved in

building NLP models do not generalize and must be repeated for every specific task or

application. Current tools also lack provisions for domain experts to inspect NLP outcomes

and make corrections that might improve these results. Due to these factors, Chapman et
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al. [14] have identified “lack of user-centered development as one of the barriers to NLP

adoption in the clinical domain.

EMRs have long been recognized as vital sources of information for decision support

systems, data-driven quality measures, and many other applications [15]. An intelligent

EMR system could learn from the users’ usage patterns and build predictive models for

identifying relevant pieces of data. This could not only improve clinical care but also further

clinical research faster. However, the extraction of information from unstructured clinical

notes presents many challenges due to their predominantly free-text nature [16]. The biggest

obstacle in building such systems that can learn using EMR data is the lack of labeled

training data [17]. There have been few efforts towards exploring “human-in-the-loop” and

interactive methods which reduce the need for labeled examples upfront and bring machine

learning closer to clinician end-users.

In this dissertation, I seek to evaluate whether interactive tools can bridge this gap

and make NLP more valuable for applications in both clinical care and research. To this

end, I design, implement and evaluate prototype tools for users with little or no machine

learning experience. I first demonstrate this approach with an example application in clinical

research. Building on this work, I then explore an example use-case of interactive NLP in

clinical care. Insights from building these prototypes can help us generalize our approach

for a wider range of NLP problems on clinical text. This would help us move closer towards

unlocking the full potential of analyzing free-text notes in the long run.

The following chapter (Chapter 2) lays out the goals of my dissertation as well as the

background work that influence my work. It lays out how interactive machine learning

can be used to address the barriers to NLP on clinical notes. In Chapter 3, I present a

detailed literature review of related work. I describe my work demonstrating the interactive

NLP approach for retrospective research on colonoscopy procedure notes in Chapter 4. It

presents NLPReViz: an interactive web-based tool to allow clinicians and clinical researchers

to build NLP models for binary concepts at the document level. Building upon this work,

I prototype an intelligent signout tool that can identify relevant portions of clinical text

in a patient’s electronic record (Chapter 5). This work further refines the NLP task from

making document level predictions to identifying relevant text spans within a document and

3



illustrates the interactive approach in a clinical care setting. I conclude this dissertation in

Chapter 6 with a discussion on the two prototype tools, their limitations and directions for

future work.

4



2.0 BACKGROUND AND GOALS

2.1 INTERACTIVE MACHINE LEARNING

Traditionally machine-learning is classified into supervised and unsupervised learning fam-

ilies. In supervised learning, training data, D, consists of N sets of feature vectors – each

with a desired label:

Training set D = {(xi, yi)}Ni=1

where, xi ∈ X is a d-dimensional feature vector and yi ∈ Y is the known label. The task is

to learn a function, f : X → Y , which can be used on unseen data.

In unsupervised learning, the data consists of the vectors xi but not the target label

yi. Common tasks under this category include clustering, density estimation, and pattern

discovery. A combination of these two classes is called semi-supervised learning, which has

a mixture of labeled and unlabeled data in the training set. The algorithm assigns labels for

missing data points using certain similarity measures.

Supervised machine learning has been the dominant form of learning. However, tradi-

tional supervised algorithms assume that the training data along with their corresponding

labels are readily available. They are not concerned about the process of obtaining the

target labels yis in the training dataset. Often, obtaining labeled data is one of the main

bottlenecks in applying these techniques in domain specific applications. Further, current

approaches do not provide easy mechanisms for the end-users to correct problems with the

models. In Natural Language Processing, models are often built by experts in linguistics

and/or machine learning, with limited or no scope for the end-users to provide input. Here

the domain experts, or the end-users, provide input to models as annotations for a large
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batch of training data. This approach can be expensive, inefficient and even infeasible in

many situations [17]. This includes many problems in the clinical domain such as building

models for analyzing EMR data.

“Human-in-the-loop” methods incorporate human input to guide the learning algo-

rithms [18]. Such methods be able to leverage capabilities of the domain experts through

user interaction [19]. Interactive Machine Learning (IML) is a subset of this class of algo-

rithms. It is defined as the process of building machine learning models iteratively through

end-user input. Some other IML definitions found in the literature in increasing order of

refinement are as follows:

“...interactive machine learning engages users [domain expert] in actually generating the

classifier themselves...” [20]

“...interactive machine-learning (IML) model that allows users to train, classify/view

and correct the classifications...” [21]

“...algorithms that can interact with both computational agents and human agents and

can optimize their learning behavior through these interactions.” [19]

“...a process that involves a tight interaction loop between a human and a machine

learner, where the learner iteratively takes input from the human, promptly incorporates that

input and then provides the human with output impacted by the results of the iteration...” [22]

A popular example of interactive learning is its application in teaching email clients about

spam vs. important email. Other examples found in the literature include bug triaging [23],

tailoring music and movie recommender systems [24] and even music composition [25]. Some

applications may allow users to passively teach the machine learning system while they

perform other tasks. On the other end of the spectrum, we have tools for users vested

solely in the task of building machine learning models. Such interactive machine learning

tools allow the users to review model outputs and make corrections by giving feedback for

building revised models. The users are then able to see and verify model changes. Some

early examples for this definition include applications in image segmentation [21], interactive

document clustering [26], and document retrieval [27].
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2.2 RELATIONSHIP WITH OTHER TYPES OF MACHINE LEARNING

Interactive machine learning builds on a variety of different styles of learning algorithms:

1. Active Learning: Active learning algorithms optimize for lowering the number of training

labels yi. Active learning-based systems ask ‘oracles’ (or human-experts) to provide

labels such that it can achieve higher accuracy with minimum number of queries [28].

This is useful in cases where collecting training labels is expensive and time-consuming.

I consider active learning to be a subset of interactive learning. While active learning

primarily focuses on asking users queries about what the model needs, interactive learning

is the user-centered approach for it.

2. Reinforcement Learning: In this class of learning, we still want to learn f : X → Y but

we see samples of xi but no target output yi. Instead of yi, we get a feedback from a

critic about the “goodness” (reward) of the predicted output. The goal of the learner

is to optimize for the reward function by selecting outputs that get best scores from

the critics [29]. The critic can be a human or any other agent. There need not be a

human-in-the-loop for a reinforcement learning algorithm.

3. Online Algorithms: Online learning (or sequential learning) algorithms are used when

training data is available in sequential order, say due to the nature of the problem or

memory constraints, as opposed to a batch learning technique where all of the training

data is available at once. The algorithm must adapt to the continuous stream of data

made available to it. Formulating the learning problem to handle this situation forms

the core of algorithm design under this class. A commonly found example would be the

online gradient descent method for linear regression [30]. This can be summarized as

follows: Suppose we want to learn the parameters w for f(x) = w0 + w1x1 + . . . wdxd.

We update the weights when we receive the ith training example by taking the gradient

of the defined error function, with α as the learning rate: wnew ← w−α×∆wErrori(w).

An Interactive machine learning system can include all or some of these learning techniques.

Figure 2 shows a Venn diagram representing my understanding of the relationship between

them. The common property between all the interactive machine learning methods is the
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tight interaction loop between the human and the learning algorithm.

2.3 REVIEW, FEEDBACK, AND RETRAIN

Jü et al. [31] detail a unified process for visual interactive labeling for model building

(Figure 3). From a user’s perspective it can be broken into three steps (see Mental Model in

Figure 3):

1. review the model outputs,

2. provide feedback using the labeling interface, and

3. retrain to build revised models and verify changes.

This feedback loop allows them to refine models with every iteration. Thus, Interactive

machine learning systems require effective displays for presenting outputs, eliciting user

feedback, and showing model revisions. Interactive learning systems use overviews, filters,

navigation support, and other information visualization techniques extensively to support

these steps [32, 33, 34, 21]. These are described in more details in Chapter 3.

From the prior work in interactive machine learning, we observe that designing interfaces

of each step of the interaction loop forms the critical part of the system development. We

need novel user interfaces and interaction design to address these challenges. Specifically, we

need to support the review, feedback and the retrain steps of the interactive learning cycle

(Figure 3).

2.4 INTERACTIVE NLP AND CLINICAL TEXT

Interactive methods are particularly appealing in addressing the challenges inherent in de-

veloping NLP applications, which are further exacerbated by differences across institutions

and clinical sub-domains. In the traditional approach, models are built by NLP experts in

linguistics and machine learning while subject matter domain experts (clinicians, lawyers,

8



Figure 2: Relationship between supervised, interactive machine learning, and human-
in-the-loop algorithms.
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Data

Pre-processing and
feature extraction

Result / Revision
Visualization

Annotation Interface

Feedback
Interpretation

RevisionsRevisionsRevisions

Domain Expert

Mental ModelConceptual Model

Learning Model

Review

Feedback

Retrain

Initial
Model

Figure 3: The Conceptual Model illustrates a simplified view of the visual interactive
labeling (VIAL) process as described Bernard et al. [31]. Note that ‘learning model’
refers to the supervised machine learning algorithm used in the system. In this dis-
sertation, I focus on the visual interface components from the VIAL process. Mental
Model: From a user’s perspective it can be broken into three steps: 1) review the
model outputs, 2) provide feedback using the labeling interface and 3) retrain to build
revised models and verify changes. These steps are also indicated in the same color
in the conceptual model.
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etc.) who are often the end-users must construct training data through laborious annotation

of sample texts. This approach is expensive and inefficient, particularly when language sub-

tleties necessitate multiple iterations through the annotation cycle (as is often the case). For

clinical applications, it quickly becomes infeasible to customize models for every specific task

and application. Thus, we need user-centered tools that can address the needs of clinicians

and clinical researchers, in order to make NLP more useful on clinical text. Interactive NLP

tools that provide end-users with the ability to easily label data, refine models and review

the results of those changes have the potential to lower the costs associated with the cus-

tomization, and therefore to increase the value of NLP on clinical reports. There is scope to

build interactive NLP for tasks such as classification, information extraction, summarization,

named-entity recognition and relationships, question-answering, and so on (Figure 4).

Interactive NLP on Clinical Text

Classification Information
Extraction &

Summarization

Named Entity
Recognition

Relations,
Time Series

Natural Language
Understanding,

Question Answering etc.
Problem / Task

Clinical
Applications

Example

For retrospective
research, quality
measures, patient
cohort identification

Sign-out notes,
discharge summaries,
case presentations,
rounding reports,
identifying important
information for
communication

Mapping text to
biomedical ontologies,
extracting relevant
terms for disease,
procedures, medication
orders etc.

NLPReViz
(Chapter 4)

Intelligent
Signouts

(Chapter 5)

Interactive Medical
Word Sense

Disambiguation
(Wang et al., 2018)

Finding relations
between entities (both
within and across
documents), exploring
how they evolve over
time etc.

...

file:///Users/trivedigaurav/data/Projects/LEMR/defense/dissertat...

1 of 1 6/23/19, 3:09 PM

Figure 4: Adopting interactive methods for different NLP problems on clinical text.

2.4.1 Applications in Clinical Care and Research

Biomedical activities may be categorized into research or clinical care/practice [35, 36].

Interactive Natural Language Processing has promise in both improving clinical care and

further clinical research faster. My dissertation explores the use of end-to-end interactive
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Table 1: NLPReViz (Chapter 4) and Intelligent Signouts (Chapter 5) describe two
prototypes demonstrating Interactive Natural Language Processing on Clinical Text.
Together they cover two different example use-cases and applications in clinical care
and research.

NLPReViz Intelligent Signout

Scenario Retrospective research Clinical care

End-Users Clinical researchers vested solely

in the task of building models

Clinicians engaged in patient care

who are building NLP models as

a background task, in addition to

their primary task (eg. creating

signouts)

Specific

Task
Binary classification of docu-

ments

Binary classification of sentences

to highlight text spans that make

a document relevant

Application Review of colonoscopy procedure

notes for extracting quality met-

rics

Sign-out note preparation sum-

marizing important information

Variables Different model for each concept

(metric) such as biopsy, informed-

consent, etc.

Models to identify sentences for

different sections of the signout

note.
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NLP for clinical applications and demonstrates its uses with an example application each in

clinical research and care.

2.4.1.1 Clinical Research In Chapter 4, I demonstrate interactive NLP through the

task of document classification in my work on NLPReViz for classifying colonoscopy reports.

NLPReviz is a prototype tool for helping clinicians build models for binary classification of

clinical documents. It implements the interactive learning cycle described above (review,

feedback, and retrain). It serves as an example of how clinicians, without any prior machine

learning experience, could train their own models for retrospective research.

2.4.1.2 Clinical Care In Chapter 5 presents an interactive system for identifying sen-

tences or phrases within a note. This task is particularly relevant for the construction of

summaries, which are often manually curated by clinicians for a variety of clinical tasks.

Examples include writing discharge summaries, preparing for rounding, and seeing new con-

sults. These manually curated summaries help clinicians better manage a patient’s growing

record. By building tools that integrate NLP, and more generally machine learning, into

clinical workflows, we can address the problem of lack of upfront labeled training data and

providing end-users with the ability to customize models. Interactive approaches also sup-

port the evolution of guidelines and associated models over time.

Table 1 presents a comparison between NLPReViz (retrospective review of colonoscopy pro-

cedure notes for quality metrics) and the new prototype (intelligent signout tool). They serve

as example tasks where interactive NLP can be adopted for analyzing clinical text, together

covering both clinical care and research applications. Together they cover a larger space

for interactive NLP applications on clinical text. My goal is to use these demonstrations to

understand the design of interactive NLP tools for users with no machine learning experi-

ence. This would help us generalize our approach for a wider range of analytics problems

on clinical text and help address the barriers to NLP in the clinical domain. By building

interactive NLP tools that focus on clinicians as end-users, we are able to more fully realize

the true potential of using NLP for real-world clinical applications.
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3.0 RELATED WORK

3.1 INTERACTIVE MACHINE LEARNING

In their papers, Amershi et al. [22, 34] and Kulesza et al. [37] have discussed the approaches

used for interactively obtaining annotations from the users in great detail. Together they

describe the design techniques in interactive machine learning and how they differ from the

traditional systems. The traditional supervised learning approaches often hide the complex-

ities of machine learning algorithms from its end-users. Amershi et al. have used prior work

as case studies and focused on how human annotators can be asked to provide inputs. They

describe how IML systems find motivation in the need for “developing novel feedback tech-

niques for interactively incorporating domain expert knowledge” in model building. Prior

work in IML focuses on the study of end-users to build better user interfaces to support

model building. The paper also talks about the desired and undesired characteristics for de-

signing user interactions within IML systems. Further, it describes novel interfaces or IML

that can leverage domain experts’ inputs in an efficient manner. These include supporting

better data selection, such as in CueFlik [38], which sorts the unlabeled examples accord-

ing to best and worst prediction scores for one class to help users better train the systems.

Other ideas involve variations of active learning where the system intermittently queries the

users about the learning problem [39], novel ways to solicit user feedback [40], allowing users

to decide trade-offs – such as between precision and recall in a classification problem [41].

Table 2 describes these prior works and summarizes the design innovations to support the

different steps of the interactive learning loop. Both [22] and [42] provide a good survey of

prior work done in Interactive Machine Learning. Relevant to my dissertation work, I have

summarized the discussion in these papers as the following two research questions:
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1. How can interfaces make the annotation process more efficient?

Human annotators prefer giving rich feedback instead of merely acting as passive oracles.

Simple active learning approaches involve asking a series of questions to human oracles

and can thus be annoying and frustrating for them [39]. An interactive learning system

should not only try to maximize the information gain from new labels but also allow users

to illustrate the concept to be learned as efficiently as possible. In order to achieve this

goal, we need to consider not only what inputs the users are capable of providing to the

system but also how they’d be willing to do so. For example, Amershi et al. also point

out that human annotators prefer more natural ways of teaching instead of providing

simple ‘yes-no’ labels [43, 44]. Current practices can be improved by designing human-

centered methods of providing feedback. These should be implemented to optimize for

efficiency in terms of required time and effort from the users. Amershi et al. remark that

the users will only provide feedback when they perceive the benefits of producing model

revisions outweigh the costs involved.

2. How can interactive tools help end-users understand the impact of their feedback towards

building models?

A motivating goal for interactive systems is to allow domain experts lacking experience

in machine learning to build models on their own. Often making ‘black box’ systems

explainable helps the annotators provide better feedback using visual interface. This is

demonstrated by Kulesza et al. [37] in their work on personalizing interactive machine

learning for NLP models, through a combination of corpus overviews and explanatory

debugging tools capable of explaining reasons for predictions to the end user. This enables

users to offer better labels to help improve the performance of the system [45]. Another

design pattern useful for interactive learning in prior work is to treat modeling as an

iterative process. This allows users to work with models and their revisions. Many of

the systems also offer ideas to help the users understand changes between revisions and

allow rollbacks.

In Table 2, I summarize innovations described in prior work in interactive machine learning to
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address these requirements. These are broken down into the individual steps of the interactive

machine learning cycle. I group these innovations by the three steps, as not all of the systems

described in the prior work devote equal attention to them. In the following sections, I will

narrow down further on the work done in interactive natural language processing leading

towards the identification of gaps and opportunities that motivate my work.

Table 2: Example design innovations to support interactive learning in prior work.
They are grouped the three steps of the learning cycle: Review, Feedback, and Retrain.

Step Task / Paper Description

Review Text

Classification

EluciDebug

[37, 46]

Supports end-user debugging by allowing users to visu-

alize feature weights in a Naive Bayes model.
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Image Retrieval

(Binary

Classification)

CueFlik [38]

Overview Based

Selection [47]

Show only the best and the worst matching examples

with the current model. This enabled users to train

better than presenting with all of the data showing a

ranked list of examples.

[47] further extends this to show an overview repre-

sentation of multiple image clusters. They are grouped

based on similarity in image concepts they represent.

Feedback Text

Classification

NLPReViz [48]

Designed three different kinds of feedback mechanisms:

a) assign labels for the whole document, b) highlight

text spans as evidence or rationales, and c) using the

WordTree, which is useful for providing feedback on sev-

eral documents together in an efficient manner.
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Shape

Classification

(application in

Human-Robot

Interaction)

Teaching

Simon [39]

Cakmak et al. observed that when the inputs were initi-

ated by users, it resulted in learning as fast as the fully

active learning approach. Fully active learning approach

involved the system asking a continuous stream of ques-

tions to the user. Interactions triggered by the users

followed by intermittent active-learning style questions

were rated better by human teachers than continuous

queries.
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Movie

Recommender

System

Movie Tuner

[24]

Users may specify levels of emphasis on specific tags

(similar to features in a machine learning formulation).

For example, users could specify whether they wanted

less violent and more of a cult film, where violent and

cult film are tags describing the movies.

Retrain Multi-class

Classification

ManiMatrix [41]

Allows users to decide trade-offs – such as between pre-

cision and recall in a classification problem. Users can

increase or decrease the different types of errors using

the interface.
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Ensemble

Learning

Ensemble

Matrix [49]

Visualizes the confusion matrices to help users under-

stand the relative merits of individual learners. Users

can then specify weights in the linear combination of

learners to build an ensemble model.

Text

Classification

NLPReViz [48]

The interface lists any potential inconsistencies and con-

flicts in the user-provided feedback. After retraining, it

highlights documents with changes in variable assign-

ments due to model revisions.

3.2 INTERACTIVE NATURAL LANGUAGE PROCESSING

Table 3 provides a summary of tools for building NLP models interactively. It includes ap-

plications across different domains. Within the biomedical informatics domain, there have

been efforts to make machine learning on clinical notes interactive. Some examples include

work done on interactive medical word sense disambiguation [50] to allow users to specify

indicative words of a sense and highlight supporting evidence. The paper demonstrated

that the interactive approach outperforms traditional labels using only active learning and

requires much less labeling effort. Similarly, RapTAT demonstrated how interactive annota-

20



tion can be used to reduce the time required to create an annotated corpus by learning to

pre-annotate documents [51, 52]. Other efforts are towards helping users define the param-

eters and configurations of the different components of the NLP pipeline. D’Avolio et al.

[53] describe a prototype system called ARC that combines several existing tools such for

creating text annotations (Knowtator [54]), and for deriving NLP features (cTAKES [55]),

using a common user interface that can be used to configure the machine learning algorithms

and export their results. More recently, CLAMP toolkit [56] was developed keeping this goal

in mind, for example. Most of these tools provide graphical user interfaces (GUIs) to be used

by data scientists or NLP experts but do not address the challenges in designing end-to-end

interactive systems with clinician end-users. My dissertation work complements these efforts

by focusing not only customizing individual components of the NLP pipeline but address-

ing the design of different components required for building closed loop interactive machine

learning systems for clinical text.

I have split Table 3 into two parts: the first part describes tools that support different

parts of a data scientists’ workflow. The latter group consists of tools for end-users with

little to no machine learning experience. For this group, I also present an explanation for

their coverage of individual steps in the cycle.
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Table 3: Some examples of interactive systems for Natural Language Processing. They
are sorted by the NLP tasks they are designed to perform. It is split into two parts: the
first part describes tools that support different parts of a data scientists’ workflow.
The latter group consists of tools for end-users with little to no machine learning
experience.

1. Toolkits for use by data-scientists

Task /

Publication

Description

Toolkit

LightSIDE [57]

GUI support for machine-learning and feature-extraction sim-

ilar to Weka [58], but specifically designed for text classifica-

tion pipelines. Intended to be used as a researchers’ work-

bench. Provides support for selecting algorithms, tuning pa-

rameters and viewing evaluation metrics.
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Toolkit

CLAMP [56]

Graphical interface for building customized NLP pipeline in-

cluding annotation, modeling, and processing. CLAMP’s

components can tackle several commonly used NLP tasks

such as: a) sentence-boundary detection, tokenization, part-

of-speech tagger, section header identification, word-sense dis-

ambiguation, and others. These components can be selected

and added to an NLP pipeline using a drag and drop inter-

face. It provides an annotation interface for specific modules

such as Named-Entity Recognition for building CRF models.
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Information

extraction &

Named Entity

Recognition

Automated

Retrieval Console

(ARC) [53]

ARC combines several existing tools such as Knowtator [54]

for creating text annotations and cTAKES [55] for deriving

NLP features. This common user interface also provides sup-

port for the users to configure parameters of machine learning

algorithms for rapid development of NLP models.

Information

Extraction &

Pattern Matching

Canary [12]

Graphical interface for information extraction using rule-

based NLP with user-defined grammars and lexicons. Canary

provides GUIs for different steps of the pipeline, such as text

normalization, phrase structure rules, etc. However, it does

require the help of an expert who can understand these steps

for developing a model.

24



2. End-user focused tools for users with little to no machine learning experience

Task /

Publication

Description

Clustering

Apolo [26]

Review: Apolo shows citations of an article clustered into

different groups. Each citation is assigned to a color-

coded cluster with color saturation representing belonging-

ness. Some articles can be marked as exemplars for a specific

cluster. Users can manually inspect articles.

Feedback: Allows clusters to be manually added and re-

moved. Users may also specify exemplar articles to form the

basis for the clusters for improving the models.

The tool offers an example of how interactive NLP system

may be used for building document clusters. It also presents

the idea of using exemplars for receiving user feedback along

with other innovations in the visual exploration of the clusters

predicted by the machine learning algorithm.
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Classification

Visual Classifier

Training [27]

Review: Presents an interactive visualization that projects

the document into a 2D plot along with the decision boundary.

Users can explore the word cloud of individual documents.

Feedback: Uses both active learning based as well as user-

steered workflows for receiving new document labels. The in-

terface presents a visualization of most uncertain documents.

Retrain: Visualizes estimated feedback impact, training

progress, model weights, etc. It also shows a bar-chart visu-

alization of features weights that undergo most change upon

model revisions.

Although the tool may be used by those without machine

learning experience, it is still inclined towards data-scientists.

For applications in the clinical domain, we will also need to

consider the design requirements of clinical tasks in hand and

the objectives for which models are being built for.
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Classification

EluciDebug [37]

Review: Similar to NLPReViz [48] and allows users to review

binary classification models. It highlights the top features

in the document and shows visualization of different feature

weights across multiple views.

Feedback: User-feedback includes providing new labels for

whole documents, as well as adding or removing features from

the learning model. Alternatively, the users are also able to

alter the feature weights in the model. The focus of the tool is

to enable end-users to debug the models but lacks capabilities

of making the feedback in more usable and efficient manners.

Retrain: Uses explanatory debugging to encourage users to

correct the models by providing feedback in an iterative man-

ner. All these changes are tracked and can be easily reversed.

It also shows how the prediction confidence changes for indi-

vidual documents over successive model revisions.

Similar to [27], EluciDebug is primarily focused on the task

of model building and exploration. There is scope to design

requirements defined by the individual clinical tasks and mak-

ing the feedback mechanisms more efficient.

27



Topic Modeling

UTOPIAN [59]

Review: The system provides a simple visualization of topic

models using word clouds and shows keyword highlights in

full-text.

Feedback: Users can provide feedback by merging topics,

induce new topics by documents and keywords, and also split

existing topics. They may adjust the weights for topic key-

words as well. Feedback is supported by a semi-supervised

algorithm proposed by the authors in this work.

Retrain: The tool supports retraining, but does not provide

easy interfaces for users to understand changes between model

revisions, switch between different model versions, etc.
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Topic Modeling

Dissertation

Browser [60]

Review: Similar to UTOPIAN [59], but focuses on making

topic models ‘interpretable’ and ‘trustworthy’ using visualiza-

tion support. It implements richer interactions as compared

to UTOPIAN, for example, it provides support to compare

different models by visualizing the similarity between topics,

allows multiple zoom-levels to inspect the full-text data while

inspecting the models, etc.

Feedback: Recommends some ideas for feedback and retrain-

ing for future work, but does not implement them.

Translation

Human

Post-Editing [61]

Review: Allows manual correction of machine translated

text by humans. The results show that such an approach leads

to a reduced time as well as an improvement in the quality

of translations. Provides visualization support to draw users’

attention to individual words and phrases that need more at-

tention.

Feedback: Models are not revised based on human feed-

back. Only the corrections against individual translations are

retained.
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Many of these tools described in Table 3 only partially address the three steps of the

interactive learning and lack end-to-end implementation of the cycle. For example, tools

such as LightSIDE [57] and ARC [53] provide GUI supports for the users to tweak the

parameters to the learning model. Other tools designed for non-machine learning expert

users, focus only on specific interface components. For example, RapTAT [51, 52] provides

support for building annotated training sets but do not provide an interactive cycle. Human-

post editing for machine translation [61] and Dissertation Browser [60] help only with the

review and feedback steps. They suggest but do not implement or evaluate ideas for building

model revisions and retraining. Even the tools that cover the entire learning cycle, such as

Visual Classifier Training [27] and EluciDebug [37], are designed for very specific NLP tasks

and use-cases like document classification.
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4.0 NLPReViz: INTERACTIVE NLP FOR RETROSPECTIVE REVIEW

I first demonstrate the interactive NLP approach on clinical text for retrospective research.

I picked an example problem of classifying colonoscopy procedure notes to generate mea-

sures for a quality improvement program [62, 63]. In order to analyze these records with

the existing tools, researchers must either go through expensive NLP model building process

involving data-scientists or manually read through the records to extract the information of

interest. To address this problem, we built NLPReViz [48] – an interactive web-based tool

designed for allowing clinicians and clinical researchers to interactively build NLP models

(Figure 5). In this chapter, I describe the design, implementation, and evaluation of NL-

PReViz. This also serves as a reference framework for proceeding with the work in the next

chapter (Chapter 5).

Our user interface design complements the rationale based learning system that we

adopted to incorporate user feedback [64]. This approach allows domain experts without

machine learning experience to build models and give feedback to improve them iteratively.

To support this model, NLPReViz incorporates three different kinds of feedback mechanisms:

a) assigning labels for the whole document, b) selecting text spans indicative of a specific

value, or c) selecting phrases found across multiple documents using the WordTree [65]

as shown in Figure 7(a). The WordTree is useful for providing feedback on several docu-

ments together in an efficient manner as described detail in the following sections. We also

conducted user studies supporting the viability of our approach by demonstrating notable

improvements in performance metrics in a short time span, with minimal initial training.
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Figure 5: An interactive machine learning cycle begins with the review step, with
the output from the learning model displayed to the user. User feedback is used
by the system to improve upon the machine learning models by providing labels for
documents that were previously not part of the training set, or by correcting any
misclassified documents. After re-training, a new model is created, and the tool high-
lights show prediction changes along with providing guidance for resolving potentially
contradictory feedback items.

4.1 LEARNING MODEL

We use bag of words and Support Vector Machine classifiers (SVMs) with linear kernels to

predict binary classifications for concept variables extracted from documents. Our model

for incorporating user feedback adapts a framework proposed by Zaidan et al. [64], in which

domain experts supply not only the correct label but also a span of text that serves as a

rationale for their labeling decision. Rationales are turned into pseudo-examples providing

additional training data [64, 66]. Rationales have been shown to be effective for predict-

ing sentiments of movie reviews [66]. We adapted this approach for use on clinical text

by constructing one merged pseudo example per document from the annotations received.

Rationales are constructed from user interactions with the tool and are used to retrain the

SVM models.
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4.2 INTERFACE DESIGN

The design of our tool was informed by prior work on interactive learning systems [34, 22,

67]. These design requirements for it can be divided into three according to the interactive

learning cycle (Figure 3):

(i) Review displays support the interpretation of NLP results both within and across doc-

uments.

R1: Document displays highlight NLP results and, where possible, show evidence for the

results extracted from the text.

R2: Overview displays support comparison between documents and identification of fre-

quent words or phrases associated with NLP results.

(ii) Feedback mechanisms provide usable and efficient means of updating NLP models.

R3: Interaction tools support the selection of text as evidence for selected interpretations.

R4: Conflicting or inconsistent feedback should be identified and presented to the user

for appropriate resolution.

(iii) Re-train Results of model revisions should be apparent to users.

R5: Displays should help the users understand changes in predictions and other model

revisions.

Figures 6 and 7 show the different components of NLPReViz’s user interface. A video

demo can be found at vimeo.com/trivedigaurav/emr-demo. We built a prototype, eval-

uated it with a think-aloud study, and revised it based on the participants’ feedback [62].

Our tool is available for download along with source code and documentation at NLPReViz.

github.io.
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Figure 6: (a) The Grid view shows the extracted variables in columns and individual
documents in rows, providing an overview of NLP results. Below the grid, we have
statistics about the active variable with (b) the distribution of the classifications for
the selected variable and (c) the list of top indicators for that variable aggregated
across all the documents in the dataset. (d) Indicators from the active report are
shown on the right. (e) The document view shows the full-text of the patient reports
with the indicator terms highlighted. (f) Feedback can be sent using the yellow control
bar on the top, or by using a right-click context menu.

4.3 EVALUATION

Our evaluation addressed two key questions [48]: 1) can clinicians successfully use NLPReViz

to provide feedback for improving NLP models, and 2) can this feedback be effective with a

small set of initial training data?

4.3.1 Dataset

We used a reduced dataset of colonoscopy reports prepared by Harkema et al. [68] along

with their gold standard label set. Participants worked with two variables: ‘biopsy’ and

‘appendiceal-orifice’. A document was marked true for the biopsy variable if the report
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(a) The WordTree view provides the ability to search and explore word sequence patterns found across
the documents in the corpus, and to provide feedback that will be used to retrain NLP models. In
this example, we built the tree by searching for the word “biopsy” and then drilled down upon the
node “hot”. The WordTree now contains all the sentences in the dataset with the phrase “hot biopsy”,
allowing the user to get an idea of all the scenarios in which “hot biopsy” has been used. Hovering over
different nodes in the tree will highlight specific paths in the tree the selected term.

(b) The Re-Train view lists user-provided feedback, including any potential inconsistencies, and speci-
fies changes in variable assignments due to retraining. In the example above, the user has selected a text
span documenting “informed-consent” in a report. However, they also labeled the report incorrectly,
possibly in error. NLPReViz points this out as conflicting feedback.

Figure 7: Screenshots of the WordTree and Re-Train views.
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indicated that a sample of tissue was tested through a biopsy procedure. The appendiceal-

orifice variable indicates whether that region of the colon was reached and was explicitly

noted during the colonoscopy. Our dataset consisted of 453 documents, split into two parts:

two-thirds for a development set for conducting the user study, and one-third held out as a

test set for evaluating the system performance.

4.3.2 Participants

We identified a convenience sample of participants with MD degrees and knowledge of

colonoscopy procedures. Participants were given a $50 gift card for 90 minutes of participa-

tion via web conferencing. One participant (p9) experienced technical difficulties resulting

in shorter study time. To address the question of sensitivity to the size of the initial training

set, we used two splits to build initial training models. The first group of four participants

(p1-p4) started with models built on 10 annotated documents. Initial models for the second

group (p5-p8 and p9) were based on 30 annotated documents. The same 173 documents

were used in the test set for both groups.

4.3.3 Protocol

Each session began with a participant background questionnaire, followed by a 15-minute

walk-through of the interface and an introduction to the annotation guidelines used for

preparing our gold standard labels.] Participants were given up to one hour to annotate and

build models, roughly divided between the two variables. We reminded them to retrain at

regular intervals, particularly if they provided more than 10 consecutive feedback items with-

out retraining. After finishing both variables, participants completed the System Usability

Scale [69] and discussed reactions to the tool. We evaluated the performance of the models

on the test set using the harmonic mean of recall and precision – F1 score at each retraining

step. We calculated Cohen’s κ statistic [70] to measure the agreement of the complete set of

each participants feedback items with the gold standard labels. To compare user feedback

to a possibly optimal set of labels, we simulated feedback actions using gold standard labels.

10 random feedback items (without rationales) were added at each step, ranging from 10-280
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items. This was repeated 50 times to compute an average.

We used a reduced dataset of colonoscopy reports prepared by Harkema et al. [68] along

with their gold standard label set. Our dataset consisted of 453 documents, split into two

parts: two-thirds for a development set for conducting the user study, and one-third held out

as a test set for evaluating the system performance. Participants worked with two variables:

‘biopsy’ and ‘appendiceal-orifice’. Each session began with a participant background ques-

tionnaire, followed by a 15-minute walkthrough of the interface and an introduction to the

annotation guidelines used for preparing our gold standard labels. Participants were given

up to one hour to annotate and build models, roughly divided between the two variables.

After finishing both variables, participants completed the System Usability Scale [69] and

discussed reactions to the tool.

We evaluated the performance of the models on the test set using the harmonic mean of

recall and precision – F1 score at each retraining step. We calculated Cohens κ statistic to

measure the agreement of the complete set of each participant’s feedback items with the gold

standard labels. To compare user feedback to a possibly optimal set of labels, we simulated

feedback actions using gold standard labels. Random feedback items (without rationales)

were added at each step, ranging from 10-280 items. This was repeated 50 times to compute

an average.

4.4 RESULTS

Nine physicians participated in our study. The average SUS score was 70.56 out of 100. A

SUS score of 68 is considered as average usability [69]. The changes in F1 scores on the test

set (relative to gold-standard labels) for the nine participants are shown in Figure 8, along

with their Cohen’s κ scores indicating agreement of feedback with the gold-standard labels.

Scores are plotted against the cumulative number of records affected by user feedback actions

after each retraining step. Performance improved in 17 of 18 tasks, with improvements as

high as 29.90%.
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We found improvements in F1 scores across all users for the appendiceal-orifice, though

results were more mixed for biopsy. Examination of less successful efforts indicated that some

participants found the biopsy annotation guidelines to be challenging. These difficulties were

associated with the lower kappa scores (eg. p8, biopsy) between the user provided labels

and gold-standard labels. Favorable performance of models based on participant feedback,

relative to results of simulations using gold standard labels (right-half of Figure 8) suggests

that NLPReViz can be used to elicit feedback suitable for improving NLP models. The

differences in participants’ approach for annotation and retraining are summarized in Table 4.

Open-ended subjective feedback was generally positive toward the design of the tool.

Participants commented on the overall design: “The system’s functions were very well inte-

grated – I think it was very nice”, “It was very well thought out: the WordTree was beautiful

– the reds and the blue” and “I’d be happy to use the tool more often.” Others commented

about the learnability of the tool: “I thought it was very easy to use and straightforward”,

“The process was very easy with a little bit of guidance”, and “May need some initial training

- may be complex for somebody who hasn’t done [annotations] before.”. Comments regarding

desired additional functionality stressed the need for clearer indications of which documents

had been labeled, navigational shortcuts, classification of text spans as irrelevant to a given

classification, improvements to the retraining process, and other enhancements.

4.5 DISCUSSION

We developed a prototype tool for helping clinicians build models for binary concepts on their

own. NLPReViz combines interactive displays of NLP results with tools for finding patterns

of interest, reviewing text, and revising NLP models. Eliciting clinician feedback for review

and revision of NLP models requires a combination of views for displaying documents and

NLP results in context with means of providing feedback required to revise the models. Our

user study demonstrated successful use of the tool on small data set, raising the possibility

of constructing NLP models with minimal training. This initial success with small training
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Table 4: Activity Pattern: This table summarizes the activity patterns of the individual
participants. The p1 -p4 started with an initial model trained on 10 documents, while
p5 -p9 started with 30 documents.

Docs Total Unique Unseen Model Error Type of Feedback

Opened Feedback Feedback Feedback Count Count WordTree Span Label

p1 129 86 66 14 17 2 1 (19) 16 51

p2 117 125 112 1 12 6 4 (40) 24 61

p3 71 144 88 5 12 3 2 (16) 28 98

p4 94 162 93 4 12 1 6 (43) 26 106

p5 104 141 133 14 7 1 1 (18) 6 117

p6 170 301 230 29 6 2 3 (44) 58 181

p7 50 243 202 141 6 2 8 (190) 21 32

p8 54 63 55 0 6 1 0 (0) 23 40

p9 68 91 81 0 10 2 0 (0) 34 57

Combined
count of
documents
reviewed
for both
variables

Number of
feedback
items
provided

Unique
documents
labels
inferred from
feedback

Documents
labeled
without
viewing
them first
(when using
the
WordTree)

Number
of
training
itera-
tions

Conflicts
and
over-
rides in
provided
feedback

Feedback items provided using the
different feedback input mecha-
nisms: the WordTree view (along
with the documents affected),
highlighting spans or assigning a
label to the document
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Figure 8: Plots showing the variations in F1-Scores for the two variables as the partic-
ipants provided feedback. These results are shown for the test dataset only. Partici-
pants p1-p4 start with an initial training set of 10 documents, while p5 onward used
a model trained on 30 training documents. Differences in the spacing of the points in
each graph reflect differences in feedback rates across participants. Kappa scores next
to the participant ids indicate how well their feedback compared to the gold standard
labels.
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sets suggests the possibility of using our approach to develop annotation guidelines de novo,

perhaps with pre-annotation techniques similar to those used in RapTAT [51, 52].

Our interface and interaction design for reviewing documents and models were well re-

ceived by the participants. They found it useful to review keyword-based features highlighted

in individual documents which could be quickly identified using our color scheme. However,

views displaying overall class distribution and dataset-level feature list remained little-used

parts of the interface. We think that this may be because they were less familiar with the

dataset being reviewed and didn’t have any prior baselines to compare them to. There may

also be further scope to better refine these displays. They were able to make use of all three

types of feedback mechanisms for revising models. Although they showed variations in indi-

vidual preference between them (Table 4), they also discovered an unexpected use case for

this view. In addition to giving feedback, the WordTree allowed users to get a sense of the

quality of their models. This was a consequence of the gradient colors, which showed how

the presence of individual keywords affects the classification of documents. User feedback

also suggested several possible improvements to our design. One particularly interesting idea

involved the need to indicate that a phrase was irrelevant to a classification of a document.

This would allow the user to remove non-informative but possibly misleading features for

model-building. This might have proven useful for the biopsy variable, where some partici-

pants may have been confused by the presence of the term “hot biopsy”, which indicated a

tool used to remove polyps and not a biopsy procedure. The retrain views allowed the users

to see changes in predictions after model revisions. However, it lacked sufficient mechanisms

for estimating model performance over time. More specifically, we did little to address the

problem of letting the users know when the model is good enough and the provided num-

ber of examples are sufficient for training. Table 5 summarizes this list of interface design

learnings including implemented features and improvements for future work.

Overall, the scope of this tool is limited to the use of bag-of-words as features for pre-

dicting binary concepts. A simple extension of the tool could support bigram, trigram and

n-gram models. NLPReViz deals with a relatively simple machine learning problem of classi-

fying documents. There is an opportunity to not only make predictions at a document-level
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Table 5: Summary of insights for the user interface design, grouped into the three
steps of the learning cycle.

Category Learning

Review 1. Color schemes representing document classes and confidence levels helped the
users easily interpret NLP results.

2. Users found it easy to inspect the full-text of the documents with the impor-
tant keywords highlighted. This worked well with the overview visualizations:
the grid view and the WordTree views. This is in accordance to the popular
visual information-seeking mantra of Overview, Zoom and Filter, and Details
on demand [71].

3. Users made little use of the overall dataset level statistics views including class
distributions and overall list of important keywords used by the model. We
hypothesize that this could be because of the fact that the participants were
less familiar with the dataset beforehand. This may be more important for
clinical care applications where the users may not be specifically interested in
exploring the model per se but are instead primarily focused on patient care.

Feedback 1. Participants were able to intuitively use the three kinds of feedback mecha-
nisms. Usage patterns differed between users. Some participants preferred the
WordTree to provide feedback as it helped them label the documents more
efficiently, others adopted more conservative ways to provide labels to reduce
errors.

2. Active learning approaches may be adopted to reduce the number of labels
needed from the users.

3. Another useful addition would be to address the difficulty in receiving evidence-
based feedback for negative examples, ie. allowing the users to provide missing
or absent evidence in a document, as a result of which it belongs to that class.
Additionally, they requested support for indicating that specific phrases were
irrelevant to a classification of a document. These can be used to reduce the
weights against individual features contained in them.

Re-Train 1. Perform auto-retraining in the background when a sufficient number of feedback
items have been provided, or by using other relevant heuristics. This would save
the users from the need to click on retrain and create a new model manually.

2. Users adopted ad-hoc methods, such as exploring the color spread of the
WordTree to judge model quality. Support for built-in mechanisms to vali-
date and generate model performance reports against a held-out test set could
be a useful addition. This could continuously monitor model revisions and help
the users understand their progress.
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but also within different parts of the document as well. In the next prototype, as discussed in

the following chapter, I build upon this work to train models for sentence-level predictions to

identify important parts of the note to be included in a summary document. This is a step be-

yond NLPReViz and extends its goal from making predictions at document-level to identify

relevant parts (or sentences) within a note. (Figure 9). Future enhancements might involve

extending the interaction techniques to support feedback for other types of NLP models-

such as extracting general concepts and relationships, summarization, question-answering,

and so on. This opens the possibility of applying these strategies to a broad range of NLP

problems (See Figure 4, in Chapter 1).

Figure 9: My new tool extends the learning task in NLPReViz (Chapter 4) from not
only classifying documents to also identifying relevant text spans within them.

Interactive Natural Language Processing has promise in both improving clinical care

and further clinical research faster (Section 2.4.1). NLPReViz served as an example of how

clinicians could train their own models for retrospective research. In the next Chapter, we

will see how interactive NLP can be useful in a clinical care environment, where I build

an interactive signout tool. To build this new tool, I will adopt the steps described in this

chapter and start by laying out the design requirements. This makes it easier to ideate the

design of the learning model and the interface components supporting the learning cycle. I

will also conduct similar evaluation studies to evaluate usability and correctness. Figure 8

shows an example of how we can evaluate model performance as clinicians provide more

input. All of these steps are discussed in the following chapter, where I described the design

and evaluation of this new prototype.
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5.0 INTELLIGENT SIGNOUTS: INTERACTIVE NLP IN CLINICAL

CARE: IDENTIFYING INCIDENTAL FINDINGS FROM TRAUMA

REPORTS

Free text clinical records are a key component of a patient’s electronic medical record (EMR)

that capture rich information about patients. Despite advances in natural language process-

ing (NLP) techniques, extracting relevant information from free-text clinical records remains

challenging and time-consuming [14]. Building user-centered tools that enable NLP to be

interactive has the potential to make NLP more useful for clinical applications. Interactive

tools that ease the construction, review and revision of NLP models can empower clinicians,

administrators, and patients who are the end-users. Interactive Natural Language Process-

ing has the potential to make NLP more useful in live clinical practice and also further

clinical research faster. In the previous chapter, we explored its application for retrospective

research on clinical notes. We need tools to ease the construction, review, and revision of

Natural Language Processing models for applications in clinical care as well.

In this chapter, I present the design, implementation, and evaluation of an interactive

NLP tool to help clinicians find relevant information in patient notes. This task is par-

ticularly relevant for the construction of summaries, which are often manually curated by

clinicians for a variety of clinical tasks, including writing discharge summaries, preparing

for rounding, and seeing new consults. To demonstrate the interactive learning approach

in a clinical care setting, we will use our prototype tool to help trauma physicians identify

incidental findings from radiology reports for preparing signout notes. Physicians and nurses

use signout notes to provide concise summaries used to facilitate transitions in care between

providers [72]. These signout notes summarize key observations and interpretations from a

patient’s medical record. Although electronic signout systems have been adopted in some
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healthcare organizations, construction of summaries is still a manual process. It is a repet-

itive task and carries a risk of errors and omissions. Interactive methods are particularly

appealing here as they allow clinicians to train and revise their own models. Individual

physicians and their teams have their own requirements and needs about how incidentals are

defined and what should go into a signout note (eg. trauma vs. oncology). The definition of

incidental findings is sensitive to the clinical context, e.g., the surgeon’s notion of incidental

findings in a trauma patient may be very different from an oncologists definition of incidental

findings in a cancer patient. Such differences also arise during other tasks such as preparing

history and physicals (H&Ps), consult notes, progress notes, and pre-rounding. This presents

a challenge to automated extraction approaches based on limited training data, making the

identification of incidental findings a task best served by models customized to the clini-

cal group and context. Collecting customized training corpora for data-scientists to build

models for different summarization tasks used by individual teams and institutions is not

scalable. Interactive methods offer a feasible method to build a variety of customized models

and address individual task needs. Overall, this prototype tool will serve as a demonstration

of the interactive NLP approach. Lessons learned from the development and evaluation of

this tool will provide insight into the generalized design of interactive NLP systems for wider

clinical applications.

This new prototype extends the learning problem in NLPReViz [48] for identifying rel-

evant text spans within a full-text patient note (See Table 1 in Chapter 2 for comparison).

This can be seen as a step beyond the previous classification task – where we are not only

classifying whether a document is important but are also interested in identifying relevant

portions within the important document as well (Figure 9). It can be modeled as a bi-

nary classification problem to predict whether a particular sentence is ‘important’ or ‘not

important’ to be included in the signout.

The interface components need a complete redesign yet fulfill the review, feedback and

retrain steps of the interactive learning cycle. This is due to the differences in usage scenarios

between the two applications. The users of NLPReViz were researchers who were vested

in the task of building NLP models. In comparison to Intelligent Signouts, clinicians are

primarily engaged in patient care and are building NLP models as a background task. In

45



Section 2.1, we discussed other examples of similar approaches for interactive learning for

bug triaging [23], tailoring music and movie recommender systems [24] and even music

composition [25].

Figure 10: System overview: Building iterative Learning Models for predicting impor-
tant and relevant information within clinical notes. Physicians 1) review highlights
predicted by the system, 2) and provide feedback on them. 3) Once these feedbacks
are used to re-train models, it completes an interactive learning cycle.

In this chapter, I present the design and implementation of a web-based tool interactive

NLP tool for preparing signout notes followed by a user study with physicians to evaluate

our prototype tool. Physicians may iteratively refine the NLP models by providing feedback

(Figure 10). By extending this effort, we may envision an intelligent signout note creation

system which can identify text and highlight them in the full-text report for inclusion in the

signout notes.

5.1 SIGNOUT NOTES

Physicians and nurses use signouts to handoff patients from one team to another. It is used

to transfer information about the patients under their care. Although traditionally this is

done through verbal signout protocols, more recently hospitals are supporting structured,

written signouts notes through custom-built applications [73, 74]. Written sign-out notes

shared between physician teams allow for smooth transitions in care between shifts [72] and

can serve as indicators of important and more relevant pieces of information in the patient’s
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medical record. Despite the introduction of electronic signout systems, the process of ab-

stracting and summarizing the full notes in the patients’ EMR is done manually. Wohlauer et

al. [73] conducted a study which revealed that residents spent 1-2 hours every day to gather

important data from multiple sources. Further, there is scope for introducing errors when

information is copied manually [11, 72, 75, 76]. When doing electronic sign-outs, physicians

prepare the full-text report (often using dictation) and then write up the corresponding sig-

nout note for the patient at a later time. They must also be updated as more reports are

filed in the EMR during a patient’s stay. Although preparing and updating signout notes

are time-consuming tasks, they are very useful to the team of physicians taking care of the

patients. This problem is suitable for using our interactive NLP approach, where physicians

could train NLP models to help them create signout notes, thereby addressing some of the

problems with them.

Signout notes vary in structure between different teams. A trauma team may have very

different guidelines about what should go into a signout as compared with say, clinicians in

surgical oncology. Moreover, different institutions may impose different requirements and

guidelines as well. These variations are tolerable as they are only used for internal commu-

nication. Figure 11 shows an example of a signout note from the University of Pittsburgh

Medical Center’s (UPMC) Trauma services. The note is divided often divided into different

categories as well containing information about Mechanism - abstracting information in a

Health and Physical Exam note, a To Do list, Injuries and Problems, Radiology and Inter-

vention - summarizing reports from the radiologists, and Incidentals among other sections.

At UPMC hospitals, physicians prepare signout notes using the Physician Sign-Out (PSO)

Application. This is developed by the Custom Application Group at Information Services

Division and resides outside of the patient’s electronic medical record. The application man-

ages and records signout for nearly 14,000 encounters every 3 months. These notes are also

sometimes used for morning rounds apart from handoffs between shifts.
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Signout

Mechanism

University of Pittsburgh Medical Center

Patient: **NAME[WWW, VVV] MRN:**ID-NUM FIN: **ID-NUM

Age: 37 years Sex: Female DOB:1/1/1901

Associated Diagnoses: None

Author: **NAME[UUU] MD, **NAME[TTT]

Basic Information

Demographics

Admitted: 6/10 10:05 Reason: LEVEL 1 MVC

LOS: 0.0 (Hospital Day: 0) Attending: **NAME[SSS] MD,
**NAME[RRR M](Emergency Medicine)

Team : PUH Black.

Visit Information : Patient seen on 6/10/2017.

History of Present Illness

Mechanism of injury motorvehicle crash. Location of injury head,
chest and abdomen.

Duration/Timing earlier today. Pain unknown. Injury unkwown. Prior
tx/modifying factors backboard, C-collar, airway intubated and
IVaccess.

Patient 35-40 yof flown from scene of MVA with ejection. Intubated
infield and hypotensive. Received push dose epi and 2LNs.
Recieved 2u blood uncrossed. SaO2 99(99-99)

Hemodynamics (Last 7 in past 36hours)

No data found in the last 36hours.

Vent Settings (Last 7 in past36 hours)

No data found in the last 36hours.

General : unresponsive.

Eye : 3m fixed bilaterally.

HENT : No obvvious head trauma,in c-collar.

Neck : in collar.

Respiratory : Breath sounds areequal, Symmetrical chest wall
expansion.

Cardiovascular : tachycardic.

Gastrointestinal : distended.

Lymphatics : Not examined.

Musculoskeletal : Not examined.

Neurologic : Glasgow ComaScale: Eye opening response ( No
response = 1 ),

Motor response ( No response = 1 ), Verbal response ( Mute = 1
),Total score 3

Psychiatric : Not examined.

Results Review

Fishbone Labs (ED Visit) - Noqualifying labs resulted.

35-40yof presents as level 1 trauma
form scene intubated. Unknown
history. Hypotensive received 2L Ns
and 2u prbc along with push dose epi.

NSGY cx SAH/SDH, spine f/u recs
facial trauma cx

6/10: exlap, pericardia
window, bilateral chest tubes

blunt chest trauma with multpile b/l rib
frxs, b/l ptx s/p ct SAH/SDH
Right temporal bone frx, clavarial
fracture
Multiple thoracic and lumbar frxs and
distraction injuries c7 sponious process
frx

CXR: left chest tube in place, multiple
right rib frxs

CTH:SAH/SDH, right temporal bone frx

CT Cspine:C7 spineous process frx.
right inferior occiput
fracture...

dilatation of pancreatic duct without
visualized mass, consider pancreatic
mass protocol MRI

To Do

Operative

Injuries and
Problems

RADS /
Intervention

Incidental

Diagnosis: Cause of injury, MVA(ICD10-CM V89.2XXA, Discharge).

35-40yof presents as level 1trauma form scene. Unknown history.
Hypotensive

received 2L Ns and 2u prbc along with push dose epi.

-admit trauma blue icu

-f/u labs

-emergent bilateral CTs placeedin bay along with right femoral introducer.

-Rapid infusing blood. To OR.

CTH: SAH/SDH, right temporalbone frx

CT Cspine:C7 spineous processfrx. right inferior occiput fracture

CTCAP:right scpular frx, R2-9anterolateral rib frx, R 4-10 posterior rib frx,

R 3-7 lateral rib frx, L 1-3, 5-10 posterior, L 1-5 anterolateral, Ltiny

retrosternal hematoma, pulm contusion, trace R and mild L ptx

CT TLS: T1, T2 spinous processfrx, T1-T5 TP frx, distraction T4-T5, T10

distraction with vert body frx, T8 vert body frx, L2 TP frx

CT Maxeface: parietal bilateralclavarial frx into right temproal bone frx to

right petrous canal. Diastasis of right lamboid suture

CTA Neck: neg

CTA Head: minor distorition ofright ICA in petrous w/o discreat flap or

pseudoaneurysm

file:///Users/trivedigaurav/data/Projects/LEMR/proposal/pittetd/...

1 of 1 4/12/18, 3:44 PM

Figure 11: Example of a signout note compared with a history and physical examination
(H&P) note. Signout notes often summarize information from H&P, Progress notes,
Radiology reports and also Operative notes. Incidentals is one of the main sections of
this note.
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Figure 12: Example of radiology note with incidental findings highlighted. The patient
was admitted into trauma after a fall from a step stool. The CT scan reveals massive
volume ascites and cirrhotic changes as incidental findings. These findings are also
repeated in the ‘Impression’ section. This is one of the 6 radiology reports for this
patient.
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5.1.1 Identifying Incidental findings for preparing signouts

Within signout notes, I focused on the ‘incidentals’ section for my studies to define tractable

user-study tasks and build gold-standard datasets. The modern care of trauma patients

relies on extensive use of whole-body computed tomography (CT) imaging for assessment

of injuries [77]. While the CT imaging is invaluable in demonstrating the extent of the

injuries, additional incidental findings are often uncovered such as occult masses, lesions,

and anatomic anomalies, that are unrelated to the trauma [78]. For example, CT imaging in

a person who had a fall may reveal a nodule that is unrelated to the injuries caused by the fall

(see Figure 12). Incidental findings range from an insignificant renal cyst to a serious lung

nodule. [79]. The members of the trauma team are responsible for interpreting the radiology

reports, identifying and assessing the incidental findings, and conveying this information to

the patient and other physicians. However, in a busy trauma center, this task can tax the

team that is responsible for evaluating and treating the more pressing acute injuries [76]. A

tool that can automatically identify and highlight relevant incidental findings would be an

invaluable aid to the trauma team.

The current workflow for preparing the signout notes at the Trauma Services at UPMC

is a manual process. It requires physicians to navigate between two different software sys-

tems. First, they go through the full-text notes from the patient’s EMR (Cerner), synthesize

them and then switch to the Physician Sign-Out application to fill in different sections of a

templated signout note. This process is repeated and the signout note is revised whenever

a new (full-text) note is added to the patient’s EMR. Typically, resident physicians in the

trauma team that include surgery, internal medicine and radiology residents are responsible

for writing the signout notes. ‘Incidentals’ is one of the seven main sections in a signout

note at UPMC Trauma service. I conducted preliminary meetings with the PSO Appli-

cation developers to understand the underlying data format and structure of these notes

in the dataset we received. I also completed an informal shadowing session in the trauma

ICU to observe physicians doing signout. These sessions were conducted not with the goal

of collecting formal data for research but serve as an initial validation of the problem and

requirements. I used these sessions to gather initial insights and informal feedback towards
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developing the ideas in this work.

Restricting the scope of the problem to incidentals allows me to run evaluations with

a reasonable amount of annotation effort towards creating a gold-standard set. This also

helps me demonstrate the interactive learning approach with clear goals for the user studies

participants, who may otherwise not be familiar with the complete guidelines for preparing

an entire signout note at UPMC Trauma Services. Besides this, the problem of documenting

incidentals is also interesting to the medical community as the existing system requires sig-

nificant manual effort and poses risks of errors and omissions [75, 76]. Drawing comparisons

with NLPReViz, this is similar to restricting the user study to two variables in [48] so that

participants could devote a reasonable amount of time to train models.

There is little prior work in informatics research that use NLP models to help physicians

in creating signouts. Yetisgen et al. [80] demonstrated the use of NLP and supervised ma-

chine learning for identifying critical recommendation sentences in radiology reports. They

follow an extractive summarization approach and define their problem as a binary classi-

fication of sentences to extract critical findings. They start by building a corpus of 800

manually annotated radiology reports in order to train their learning models. In their work,

they achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification ac-

curacy (with 5-fold cross-validation) in identifying the critical recommendation sentences in

radiology reports [80]. Zech et al. also present more recent work on identifying findings from

radiology reports demonstrates a similar pipeline and explores linear classification models

[81]. It also notes that simple bag-of-words (unigram) methods performed competitively with

other sophisticated methods tried in identifying findings. Yetisgen et al. also conducted a

follow-up study to build a large annotated training corpus [82]. They noted that because

manual annotation is a time-consuming and labor-intensive process, they could annotate

only a small portion of their corpus. They recommend an interactive approach for creating

such annotated corpora in their work. To the best of my knowledge, no prior work seeks

to address the problem of collecting training data to build such models. The traditional

machine approach would be to create annotated sets of training data in batches and is prone

to the issues discussed earlier in Chapter 2. Using the interactive learning approach, we are

able to build a continuously learning intelligent system which can revise NLP models as it
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learns from physicians’ use over time (Figure 13).

Full Notes (H&P, OP,
RAD, PGN etc.) Physician Sign-out

Full Text Summary

Label
important
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:

✓
✗
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file:///Users/trivedigaurav/data/Projects/LEMR/proposal/pittetd/...

1 of 1 3/6/18, 10:11 PM

Figure 13: Intelligent Signout Tool that learns from physicians’ use over time.

5.1.2 Modeling as an information extraction task

The problem of identifying relevant or important parts of a clinical report may also be also

defined as an extractive text summarization task. In NLP literature, summaries are typically

divided into extractive and abstractive summarization [83]. Extractive summaries contain

material taken directly from the original documents, while abstracts synthesize a material

that may not be present in the original form. Another classification for summarization is

based upon how the summarization output is presented: Indicative summaries highlight

important pieces in the original text, and Informative summaries are designed to replace the

original text. In my work, I restrict my scope on extractive and indicative summarization,

which is suitable for the problem of identifying sentences to help physicians prepare signout

notes.

Extractive summarizers identify the most important sentences in a document or a group

of documents. In their survey of text summarization techniques, Nenkova and McKeown
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[84] identify that most extractive summarizers perform three tasks:

1. Derive intermediate representation: First, we derive some intermediate representation of

the text to be summarized. We can use topic representation techniques such as frequency,

TF-IDF, topic word and so on for this purpose. We can also generate additional features

for machine learning by transforming each sentence as a list of indicators – sentence

length, the presence of certain phrases, etc.

2. Score sentences: Next, each sentence is assigned a score indicating its importance. In

machine learning methods, the score of each sentence is determined by the weights for

different indicators defined in the intermediate representation.

3. Select summary sentences: Finally, we select the best combination of sentences for the

summary. This can be done in different ways, selecting n-best scores, iterative greedy

procedures, a global selection of a group of sentences among others.

Machine learning methods for extractive summarization use a representation of the text

that can be used to score the sentences. When using supervised methods, this task can be

framed as a binary classification problem – each sentence can either belong to a summary or

non-summary class. The classification function scores each sentence based on the intermedi-

ate representation as inputs. Some common features as discussed above include the position

of the sentence in the document, sentence length, similarity with title or headings, presences

of cue phrases, the presence of named entities, etc. The task of the classifier is to estimate

a probability score that a sentence will be in the summary, given the features present in it

[85]:

P (s ∈ S|F1, F2, ..., Fk)

Most existing supervised learning algorithms are applicable for this task. However, we need

an annotated datasets for training them. Interactive Machine Learning Systems are appeal-

ing for building models for such NLP tasks, which require expert constructed training data

and examples. Using traditional approaches, the models are built by experts in linguistics

and/or machine learning, which restricts the end-users to tweak them. There has been some
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prior work on summarizing clinical text using interactive tools with partial end-user involve-

ment. However, an end-to-end interactive learning approach for text summarization would

involve building revised models based on user feedback. There has been little work done

towards solving the barriers to NLP which is in collecting relevant training data for building

these models.

5.2 OBJECTIVES

5.2.1 Design and implement a prototype interactive tool

In this section, I present the design requirements for building an intelligent signout tool to

be used by trauma care team for identifying incidental findings. We consider identifying

incidentals as an example use-case for interactive NLP systems in clinical care. I built on my

previous work on NLPReViz to address the challenge of integrating interactive NLP into the

clinical workflow. The tool consists of 1) a user interface that enables users review, provide

feedback and understand changes to the NLP model, and 2) a learning pipeline that builds,

applies and updates an NLP model for identifying incidental findings.

5.2.1.1 User Interface The proposed tool is targeted towards clinicians who are pri-

marily engaged in the care of individual patients. The task of identifying incidentals is a

background task as they read the patient notes. In comparison, the users of NLPReViz were

primarily interested in building NLP models in Chapter 4. Thus, the interface components

need to be redesigned to fulfill the review, feedback and retrain steps of the interactive learn-

ing cycle (Table 1). Moreover, NLPReViz focused on making predictions at a document-level

for clinical research. In this project, we aim to describe an example use-case scenario in clin-

ical care for identifying sentences or phrases within a note or a document. Further, the users

of NLPReViz were solely vested on the task of building the models, while in the new tool

model-building moves to the background as the clinicians work in preparing signout notes

(See Table 1). The design requirements for the new tool overlap with those discussed in the
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literature review of interactive machine learning in Section 2.1, and also NLPReViz. Using

the ideas described in these prior works as suggestions for design, I present a shortlist some

of the design ideas that are applicable to the new tool.

Design Requirements

The user interface should have functionality to help physicians in selecting relevant training

examples and in providing labels appropriate for updating the NLP model. The interface

should display predictions from the model and allow physicians to give feedback that will

be used to revise the model. Visualization and interaction components should support

these steps within the interactive learning cycle. These requirements are further itemized as

follows:

(i) Review

R1: The user interface should highlight sentences as predicted by the NLP model to be

relevant and, where possible, help users understand why a sentence was predicted to

describe an incidental finding.

R2: The interface should help users to quickly navigate between documents as well as

predictions.

(ii) Feedback

R3: Users should be able to select sentences that should have been highlighted and were

missed by the NLP model. Similarly, they should be able to remove incorrect high-

lights.

R4: The user interface should help minimize user actions and time required for providing

feedback.

(iii) Re-train

R5: Feedback provided by users should be displayed as a list of additions and deletions

to help users understand changes between model revisions.

5.2.1.2 Learning Pipeline Requirements Our system needs a learning pipeline for

making predictions about a clinical note. This involves pre-processing step including breaking

55



up of patient notes into meaningful chunks, such as reports, sections, and sentences. Machine

learning-based methods for sectionizing clinical notes include using models such as Bayesian

Scoring [86] and Hidden Markov Models [87], etc. Simpler approaches include both rule-

based and statistical models for sentence boundary detection.

Next, we need a feature extraction step which feed into a classification model, such

as [80]. The learning problem may be modeled as a binary classification task of predicting

whether text elements (sections or sentences) discuss relevant incidental findings or not.

Figure 14 shows an example text processing pipeline (non-interactive) to identify critical

recommendation sentences in radiology reports using a similar learning model used in [80].

They also experimented with other linguistic features such as whether the span included

a modal verb, temporal phrase, etc. The results from Yetisgen et al. [80] and Zech et

al. [81] (See Section 5.1.1), suggest that a similar model may be good enough for my

Intelligent Signouts tool as well. In these projects, simple bag-of-words methods performed

competitively with other sophisticated methods for classifying relevant sentences in radiology

reports.

The learning problem can thus be modeled as a binary classification task of predicting

whether a particular sentence is ‘important’ or ‘not important’ to be discussed in the signout.

This can be seen as a step beyond the classification task seen in NLPReViz, where we are

not only classifying whether a document is important but are also interested in identifying

relevant portions within the important document as well. The system will incorporate user

feedback to improve the learning model by processing the user input to make revisions. A

simple implementation would be to use the ‘rationale’ based SVM models to build these

revisions as in NLPReViz [64]. This would complete an interactive learning model that

can be used for prediction useful elements from the full-text reports for preparing signout

notes. More sophisticated classification approaches such as learning from only positive and

unlabeled data [88], and more recent neural network-based approaches, such as [89, 90, 91],

is beyond the scope of this work. The simpler pipelines providing competitive performance

can be quickly implemented for demonstrated our interactive approach. Future work may

extend these methods to reflect state-of-the-art NLP methods.
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Figure 14: Example of a classification pipeline to identify relevant sentences used by
Yetisgen et al. [80]
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5.2.2 Hypotheses

We hypothesize that our tool will enable physicians to build useful NLP models for identifying

incidental findings in radiology reports within a closed feedback loop, with no support from

NLP experts. We may further split this into two sub-hypotheses for usability and correctness:

H1: The interactive tool will be used by physicians successfully to identify incidental findings

with little or no support from NLP experts.

Design of interactive learning systems require that we adopt a human-centered approach

for collecting training data and building models. Simple active learning approaches that

involve asking a series of questions to human oracles” can be annoying and frustrating,

as noted in Section 2.1. The focus in IML is in building tools that align the process of

providing feedback with user needs. Thus, we test whether the proposed tool is usable

by end-users, i.e., physicians. for the task of identifying incidental findings.

H2: The interactive tool will decrease time and effort for physicians for identifying incidental

findings. Interactive machine learning systems are designed to support an iterative learn-

ing cycle instead of asking the users to work in long batches seen in traditional methods.

But these models need to be evaluated for correctness and usefulness. This allows us to

demonstrate the value of building the models interactively and justify the costs involved

in doing so. In my work, I aim to evaluate both the time and effort as well as how

the interactive cycle could help building useful models that can be revised to reach high

levels of accuracy. We compare our IML approach to a simpler interface lacking IML,

using measurements of time and effort (in terms of number of user actions) to evaluate

how the interactive cycle could facilitate construction of highly-accurate models.
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5.3 METHODS AND MATERIALS

We followed a three-step sequence for design, implementation, and evaluation for our tool.

We began by discovering and defining the design requirements for the system. The system

comprises of a) the learning model that makes the predictions and makes sense of user

feedback to revise the models and b) the visualization and interaction methods to support

this feedback loop. For building the prototype, we followed an iterative process starting with

design mock-ups, followed by implementation and revision phases. Both the learning model

and interface components were tested for bugs and issues that may otherwise interfere with

the evaluation. We also created a labeled gold standard dataset for running our evaluation

studies. These steps are described in detail in the following sections.

5.3.1 Dataset

We obtained a 3-month long snapshot of de-identified Physician Signout dataset from UPMC

Presbyterian’s Trauma Service. It consists of both the signout notes along with correspond-

ing full-text notes (History and Physical, Progress Notes, Operative Notes, and Radiology

Reports). This dataset was obtained using IRB PRO17030447. It comprises of 75,946 sig-

nout notes (including revisions) and 192,347 full-text notes in the EMR. The average length

of the full-text reports is 6,000 characters each with a patient having an average of 18 notes

(1 to 431, median = 10), as compared to 1,000 characters in a signout note. Thus, signout

notes are nearly 108 times shorter than the full-text notes for a patient on average.

To create an annotated dataset, two trauma physicians annotated 4,181 radiology re-

ports (686 encounters, 6.09±4.18 reports per encounter following a power-law distribution)

for incidental findings using a custom annotation tool. Annotators focused on two types of

incidental findings that are recommended for follow-up: lesions suspected to be malignant

and arterial aneurysms meeting specified size and location criteria. Table 6 provides detailed

annotation guidelines that were used by the physicians. An initial pilot set of 128 radiol-

ogy reports was annotated by the two physicians independently, and the inter-annotator

agreement (IAA) measured using Cohen’s Kappa statistic [70] was 0.73. After review and
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deliberation, the annotation guidelines were revised, and a second pilot set of 144 radiology

reports was annotated. This resulted in a revised IAA of 0.83. Each of the remaining 4,053

reports was annotated by a single physician using the revised annotation scheme.

We sampled a subset of encounters from this annotated dataset for our evaluation user

study as described later in Section 5.3.5. We restricted the sample to only those encounters

with at least one or more incidentals findings. Further, we considered only those encounters

which had between 3-7 reports per case. This allowed us to avoid outliers with large numbers

of reports to allow for a reasonably consistent review time duration per encounter. Annota-

tors (same physicians) reviewed this smaller sample of 694 reports (130 encounters; 5.36±1.3

reports per encounter; mostly CT and X-ray reports, with a small number of other modali-

ties such as ultrasound, magnetic resonance imaging, fluoroscopy, etc.) again to remove any

inconsistencies in labeled gold standard against the annotation guidelines (Table 6). This

sample with revised annotations was used in the user study.

5.3.2 Learning Pipeline

We extracted individual sentences using spaCy (a Python NLP library: https://spacy.io [92]).

A sentence was labeled positive if a phrase in it or the entire sentence was selected by the

annotators. Sections were extracted after applying regular expressions to identify section

headings. Similarly, a section was marked positive if it contained one or more sentences with

incidental findings. Table 7 shows the distribution of incidentals over these levels.

We used a simple NLP pipeline using a bag-of-words feature-set along with a classifier

using support vector machines with a linear kernel. Earlier results suggest that this approach

performed competitively with other sophisticated methods for classifying relevant sentences

in radiology reports [80, 81]. We used the ‘rationale model’ proposed by Zaidan et al. [64]

for implementing interactive machine learning with user feedback. Specifically, when the

user identified a span of text as an incidental finding, we constructed similar synthetic

text as additional training data. Using a simple classification model allowed us to focus

the discussion in this paper on the design of the overall system. We performed a detailed

exploration into classifier modeling techniques for identifying incidental findings is out of the
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Table 6: Annotation guidelines: Adapted from Sperry et al. [76]. Any lesion of ma-
lignant potential and any arterial aneurysm that is greater than a specified size was
annotated.

Lesions

Brain Any solid lesion

Thyroid Any lesion

Bone Any osteolytic or os-

teoblastic lesion, not

age-related

Breast Any solid lesion

Lung Any lesion

Liver Any heterogeneous

lesion

Kidney Any heterogeneous

lesion

Adrenal Any lesion

Pancreas Any lesion

Ovary Any heterogeneous

lesion

Bladder Any lesion

Prostate Any lesion

Intraperitoneal/

Retroperitoneal

Any free lesion

Aneurysms

Thoracic aorta ≥ 5cm

Abdominal

aorta

≥ 4cm

External iliac

artery

≥ 3cm

Common

femoral artery

≥ 2cm

Popliteal artery ≥ 1cm
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Table 7: Prevalence of incidental findings in the data sampled from the anno-

tated dataset. Positives denote the raw count of sentences, sections, or reports

containing one or more incidental findings.

Total Positives Prevalence

Reports 694 164 23.63%

Sections 6046 302 5%

Sentences 20,738 369 1.78%

scope of this dissertation, but is discussed in another manuscript [93].

5.3.3 Interface Design

Tables 2 and 3 list several ideas used in prior work in interactive machine learning for

addressing the design requirements described above. These tools are described in detail

in Chapter 1, demonstrate the following design suggestions that may be relevant for the

prototype tool:

(i) Review: Most tools such as EluciDebug [37], UTOPIAN [59] and NLPReViz [48]

provide good examples for interface views to display NLP classification results using

both in-place highlights and statistics views showing feature weights. CueFlik [38, 47]

and Apolo [26] provide examples of views to help the users visualize examples from each

classification. Other approaches demonstrated in these works is the use of data-set level

visualizations such as word-clouds to visualize documents in each class.

Visual Classifier Training [27] presents an interactive view of the classifier that helps

the users interpret the decision boundary and prediction confidence. This view may not

be very relevant for our work as the users are not solely vested in the task of building

NLP models. In NLPReViz, we made use of color saturation and mouseover text to

convey the confidence levels to the users. Users also had an option to sort the documents
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based on confidence levels and spend more effort on low-confidence predictions.

Overall, CueT [23] shows an example of how interactive machine learning may be

built as a background task to support the user’s primary objective, i.e. triage bugs. It

demonstrates how the review step can be designed without disrupting the primary task

that the users are engaged in (which is finding key sentences, in the proposed prototype)

and have interactive machine learning augment it. While doing so, we would also need

to support navigation and views for review following the information-seeking mantra of

Overview, Zoom and Filter, and Details on demand [71].

(ii) Feedback: NLPReViz [48] explores three different ways for the users to provide feed-

back: 1) document-level labels, 2) feedback using rationales, and 3) WordTree view. It

demonstrates how the feedback step can be made more efficient using the WordTree view.

It was useful for browsing through several patients together at once. It visualizes com-

mon phrase structures across different notes which is relevant for retrospective research.

However, in the prototype tool, although the system learns from all the patients’ records,

users are interested in browsing one patient at a time for preparing a signout note. Thus,

such views may not be very useful for the initial prototype.

EluciDebug [37], Movie Tuner [24] and Visual Classifier Training [27] implement

views for the users to manipulate feature weights at both document and dataset levels.

Some of the techniques to provide feedback features from individual example from the

report currently being reviews would be useful for the prototype tool.

Teaching Simon [39] notes that teacher-triggered feedback, as opposed to a continuous

stream of questions from the system resulted in better satisfaction from the users while

learning as fast as active learning approaches. Similarly, Interactive medical word sense

disambiguation [50] and others also suggested that an interactive approach where the

users can provide richer feedback [43] outperformed traditional active learning methods

with limited scope for users to provide input. Thus, rationale-based approaches used in

NLPReViz are suitable for adoption in the new problem as well.

NLPReViz provides examples of views for resolving conflicts and errors. Otherwise,

prior work pays little attention to the problem of users introducing annotation errors

during feedback.
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(iii) Retrain: Tools such as UTOPIAN [59] support views for showing revisions between

model iterations. In NLPReViz, users were able to see changes to the model based on

their feedback as the tool indicated which documents switched labels. EluciDebug [37]

and Visual Classifier Training [27] also visualize changes in feature weights at a dataset

level as the models are revised. The dataset level views may be a lower priority for the

new prototype due to the same reasons as discussed before.

NLPReViz allowed the users to view annotation progress with a progress bar de-

scribing the number of examples labeled. But we did little to address the problem of

letting the users know when the model is good enough. A visualization of model per-

formance metric over time could help address this need. This could be done based on

how the model performs on a held-out set and/or the set of training examples already

reviewed and labeled manually. Another feature demonstrated in EluciDebug [37] and

UTOPIAN [59] to allow users revert changes and switch between model revisions.

Some other enhancements could include helping users tune the parameters of learning

model, such as in ManiMatrix [41] to decide model tradeoffs, or expose more of the steps

involved in the learning model, such as those seen in toolkits providing GUI support to

data-scientists [57, 56, 12].

Many of these features may be considered as incremental enhancements to the prototype.

Based on the ideas discussed above, I present a list of prioritized features to be implemented

for evaluating the interactive learning approach in Table 8. They cover different visual

interface views and interactions for the three components of the interactive learning cycle:
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Table 8: List of prioritized solutions to address the design requirements of the signout
tool. They are grouped the three steps of the learning cycle: review, feedback &
retrain.

Step Requirement Description

Review R1: Visual

displays should

highlight

important

sentences as

predicted by the

NLP model and,

where possible,

help the users

understand why

an incidental

was predicted.

A simple way of marking important sentences would be

through the use of color, such as using yellow highlights.

A lighter shade represented lower confidence, while high

confidence predictions were marked by a darker back-

ground color. Font size could also be used here. Confi-

dence percentages may also be shown upon mouse over.

We may use feature highlighting to show important fea-

tures that lead to the prediction of relevant sentences.

Users may also choose to reveal features for non-relevant

sentences helping the, understand why they were not

highlighted.
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R2: Interaction

components

should help

users quickly

navigate

between

documents as

well as

predictions.

A design mockup for navigating between notes in

chronological order marking those that contain high-

lights is shown below. Clicking on specific date events

scrolls to that note.

For long notes, we could also make use of a page map

showing positions of the highlights on the page along

with the current view position of the note. This would

allow users to quickly jump to interesting sections.
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To help navigate between notes, we could also use a sug-

gestions box (shown on the right, in the following image)

containing phrases from the full-text report identified to

be included in the signout note. It also allows the users

to quickly navigate between different suggestions made

by the system.
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Feedback R3: Users

should be able

to select

sentences that

must be

highlighted and

were missed by

the NLP model.

Similarly, they

should be able

to remove

non-useful

highlights.

Physicians could provide feedback by selecting and de-

selecting important portions for text as explicit feedback

for the learning system. This can be part of their regular

workflow while preparing signout notes. The interface

could also help them categorize these highlights into dif-

ferent sections in a signout note. Navigation views, such

as a suggestion box may also be used to quickly confirm

or remove feedback. Different affordances may be im-

plemented to cater to this need using mouseover, clicks,

etc.
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R4: Users

should be able

to select

sentences that

must be

highlighted and

were missed by

the NLP model.

Similarly, they

should be able

to remove

non-useful

highlights.

Simple verification checks may be performed to avoid

conflicting feedback. This may be because the users

made an error in one of the annotation steps. These

prompts could reduce the noise in the training data and

help improve better models. Ideas similar to NLPReViz

could be adopted for resolving potential inconsistencies

in user feedback (See Figure 7(b) in Chapter 4).

Retrain R5: Additions

and deletions to

the list of

incidentals

should be

displayed to

help users

understand

changes between

model revisions.

A possible design showing a diff of the signout note revi-

sions as the model evolves. This is similar to the output

shown by ‘diff’ -viewing tools showing additions, dele-

tions, and modifications between revisions of text files.
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A view showing a log of feedback items could help keep

track of user actions with options to undo them could

be useful in managing model revisions.

A progress bar showing the status of the number of doc-

uments manually annotated could help users interpret

overall progress. Another useful addition could be a

visualization of model performance metrics over time

against a held-out set. This set could be taken from a

gold-standard set or from a set of examples previously

reviewed and labeled manually.

Figures 15 and 16 show the user-interface of our prototype. A video demo can be found

at http://vimeo.com/trivedigaurav/incidentals. The following sections describe the

components of the interactive feedback loop in more detail.

5.3.3.1 Review The tool presents all the radiology reports from a single patient en-

counter, in a continuous scrolling view. A timeline view on the top indicates the number of

reports associated with the encounter and provides shortcuts to individual reports. Reports

are broken into individual sections and sentences, which are marked by yellow highlights

when predicted to contain incidental findings (Figure 15 1). The mini-view on the right

displays an overview of the full encounter (Figure 15 2) and helps the user navigate quickly

between the reports by serving as an alternate scroll bar. Varying saturation levels to draw

attention to predicted incidental findings: reports with predicted incidental findings are

lightly colored in yellow, followed by a darker background for sections which contains the

highlighted sentence. Incidental findings are also listed in the suggestions box on the right

along with a short excerpt (Figure 15 4). The user can click on these excerpts to scroll to

the appropriate position in the full text report.

A list of terms relevant for identifying incidental findings, including terms such as nodule,

aneurysm, incidental, etc. is shown in Figure 15 3. These terms are highlighted in pink in

the main document and in the mini-view. Users have an option to add or remove their own
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terms.

5.3.3.2 Feedback To revise models, users right-click on selected text spans to launch a

feedback menu enabling addition, removal, or confirmation of predicted incidental findings

(Figure 16(a)). The system automatically segments the reports into sections and sentences.

These can be inspected by taking the mouse cursor over them. Individual sections or sen-

tences can be selected through a single right-click (no span selection required, Figure 16(b)).

The user also has an option to specify incidental findings at the sentence, section, report, or

encounter levels individually. A checked box indicates the presence of an incidental finding.

Hierarchical rules are automatically applied as the user provides feedback: if the sentence is

marked as an incidental then all the upper levels are also checked. A similar user action is

needed to remove incorrectly predicted findings as well. The appropriate interpretation of

a feedback action is inferred from the context. For example, if the only predicted sentence

is removed from a section, then both the sentence as well as the section containing it are

un-highlighted. Text items against which feedback is provided are bolded and underlined

(Figure 15 (a) & (b)). If a user reads through a report and makes no change to predicted

incidentals findings (Figure 15 (c)), the initial labels are assumed to be correct and added

as implicit feedback.

5.3.3.3 Retrain A list of all current feedback is provided on the bottom panel of the

right sidebar (Figure 15 5), which shows a short excerpt from each selected text span. If

a user removes highlighted incidental findings, these are also listed in the sidebar and are

denoted by a strike through. Clicking on these items in the feedback list scrolls the full-text

note to appropriate location. The ‘x’-button allows the users to undo feedback actions and

remove them from the feedback list. Switching to different patient encounter triggers model

retraining. Once the retraining is complete, the new predictions are highlighted. The refresh

button can also be used to manually re-train and refresh predictions.
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Figure 15: 1) A de-identified radiology report of CT imaging in a patient with trauma.
It revealed a nodule as an incidental finding that is highlighted in yellow by the pro-
totype tool (a & c). The users are able to add incidentals missed by the prototype
(bolded in a) and also remove incorrectly highlighted findings (b). 2) The tool shows
an overview of the patient case in a miniaturized view of all the records with high-
lights marking regions of interest (d). In the right sidebar, the tool allows the users
to define search terms to be highlighted in pink 3) These can be seen as rules which
can help attract user attention to potentially important parts of the case. 4) Shows
the list of predictions made by the system. Clicking on a blurb item scrolls the report
view to relevant prediction into view. 5) Shows a log of feedback items and changes
recorded by the user.
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(a) Contextual menu after highlighting a text span

(b) Shortcut menu to provide feedback on the entire sentence

Figure 16: (a) Users can add feedback by highlighting a span of text and triggering the
contextual menu with a right click. (b) To add or remove an entire sentence, report or
encounter (patient-case), the contextual menu can also be launched without manually
selecting any text spans.
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5.3.4 Implementation and Deployment

The prototype system is implemented as a client-server architecture. The user interface is

built using AngularJS (angularjs.org) framework. The learning pipeline is implemented

as Falcon (a web API framework for Python; falconframework.org) web app in python.

Pre-processing steps such as sentence segmentation were performed using spaCy (a Python

NLP library; spacy.io [92]). We used MongoDB (a NoSQL database; mongodb.com) to

store pre-processed text along full-text reports. This architecture allowed us to perform

quick re-training on the fly without any delays that were noticeable to the users. Sup-

port vector machine models were built using scikit-learn (a machine learning library for

Python; scikit-learn.org [94]). A list of other packages and dependencies is avail-

able along with our tool’s source code at github.com/trivedigaurav/lemr-vis-web and

github.com/trivedigaurav/lemr-nlp-server.

5.3.5 Evaluation

Interactive Machine Learning systems require an evaluation from two different perspec-

tives [95, 42]: model performance and system usability. Thus, we divided the evaluation

into two parts by mapping them to the two sub-hypotheses discussed in Section 5.2 (H1:

asking questions about usability and H2: measuring the efficiency and correctness of the

models). We recruited physicians with experience in reading radiology notes and identifying

incidental findings, to participate in our study. Using Friedman’s study type definitions [96]

this evaluation falls under the ‘Lab Study’ setting. Our study protocol was approved by the

University of Pittsburgh’s Institutional Review Board (PRO18070517). The results from

this study are discussed in Section 5.4.

We recruited 15 participants with a degree in medicine and training in critical care,

internal medicine, or radiology. They were given a $50 gift card as compensation for partic-

ipating in the study over web-conferencing. Before each study session, we collected general

background information about the participants, their clinical experience and their knowledge

of using NLP tools. We went over the annotation guidelines and allowed the participants

to seek any clarifications. The participants were free to ask questions about the guidelines
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throughout the study. After a short walkthrough of the prototype, they did a trial run of

the tool before they reviewed actual cases.

The participants were then asked to review radiology reports from the de-identified

dataset described above and identify incidental findings. We interleaved the encounter pre-

sentation in control and intervention conditions. In the intervention condition, we enabled

all predictive features of the prototype about the incidentals. However, for the control case,

while the user feedback was saved to revise models, the users were not shown any predictions

to simulate the existing practice for documenting incidentals. The participants to free to

review as many patients they could in the stipulated time span. We logged time spent on

each patient case along with their interactions with the tool.

After 60 minutes of reviewing notes, we presented the participants with a post-study

questionnaire. It included questions about the issues faced by them and prompts to encourage

their feedback on individual design components of prototypes.

5.3.5.1 Usability evaluation The goal of the usability evaluation is to demonstrate

overall usability and usefulness of the tool. We performed a System Usability Scale (SUS)

[69] based evaluation along with think-aloud sessions and semi-structured interviews. SUS

offers a quick and reliable measure for overall usability. It asks 10 questions with 5-point

Likert Scale responses ranging from ‘Strongly Agree’ to ‘Strongly Disagree’. The responses

to these questions are used to compute a SUS score between 0 to 100. We also recorded

subjective feedback about individual components of the prototype to gather feedback about

subsequent versions of such a tool.

5.3.5.2 Evaluating correctness We evaluated efficiency and model accuracy through

a combination of intrinsic and extrinsic approaches:

1. Intrinsic Evaluation: A comparison of how our system predicts important information

with human-annotated test data (130 encounters, 694 reports). We used F1, Precision

and Recall as our evaluation metrics for the intrinsic evaluation. The models were boot-

strapped by training an initial model on a set of 6 patient encounters. 2/3 of the dataset

was used for review during the study and 1/3 of the cases were held out for testing.
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The distributions of positive incidentals were similar for test and development tests at

all three levels. The same test and train split was used for all participants to allow

comparison of final results.

2. Extrinsic Evaluation: We measured the time spent per patient case, as well as the

total number of user-actions in the control and intervention conditions. We split half of

the encounters in the development set into control and intervention conditions for each

participant. We shuffled these lists of encounters between each run of the study. Since

each participant was presented the control and intervention condition in an interleaved

manner, we obtained paired samples for each participant. The first encounter from each

of the conditions was ignored for timings calculations to minimize learning effects. We

observed that most users were able to clarify any questions or concerns about the interface

after the initial trial run and the two patient cases during the actual study.

5.4 RESULTS

5.4.1 Quantitative Analysis

Table 9 gives a summary description of our participants. We computed an average SUS score

of 78.67 out of 100. A SUS score of 68 is considered an average usability performance [97].

Table 9: Participants: Description of user study participants. An average SUS (System
Usability Scale) score [69] of 78.67 was observed using post-study questionnaires.

Position Years in

position

Area Role Experience

with NLP?

SUS

Score
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p1 Physician <5 yrs Pediatric

Emergency

Medicine

Clinician No 72.5

p2 Resident <5 yrs General

Surgery

Clinician,

Researcher

No; Involved

in a past

project

80

p3 Resident <5 yrs Radiology Clinician No; But

familiar

87.5

p4 Resident <5 yrs Radiology Clinician No 62.5

p5 Resident <5 yrs Neuro-

radiology

Clinician,

Researcher

No 77.5

p6 Resident <5 yrs Radiology Clinician No 85

p7 Resident <5 yrs Internal

Medicine

Clinician No 92.5

p8 Doctoral

Fellow

<5 yrs Biomedical

Informatics

Researcher No 95

p9 Asst.

Professor

<5 yrs Internal

Medicine

Clinician No 67.5

p10 Resident 5-10 yrs General

Surgery

Clinician No 75

p11 Resident 5-10 yrs Critical

Care

Clinician No 70

p12 Research

Staff

<5 yrs Biomedical

Informatics

Clinician,

Researcher

No 77.5

p13 Senior

Research

Scientist

10+ yrs Biomedical

Informatics

Researcher No 80

77



p14 Asst.

Professor

10+ yrs Internal

Medicine

Clinician No 87.5

p15 Resident <5 yrs General

Surgery

Clinician No 70

The participants reviewed between 12 to 37 cases (mean=29.33). The changes in F1

scores on the test dataset (relative to the gold-standard labels) at each revision are shown

in Figures 17-19. Comparing the F1 scores from the against the initial bootstrapped model

to the final models built by participants in the hour-long session, we observed an increase

from 0.31 to 0.70–0.79 (mean=0.75) for reports, 0.32 to 0.57–0.73 (mean=0.68) for sections

and from 0.22 to 0.50–0.68 (mean=0.60) for sentences. Table 10 shows a Precision, Recall

and F1 comparisons between initial and final models.

Agreement of feedback labels relative to the gold-standard labels ranged from Cohen’s κ

of 0.76–0.95 for reports, 0.84–0.96 for sections, and 0.74–0.91 for sentences.

We observed statistically significant lower time in intervention encounter as compared to

the control (mean time: 134.38 vs. 148.44 seconds, Wilcoxon: Z = 10, p < 0.005). Average

time per each patient case is shown in Figure 20 for each participant.

While comparing the total number of feedback actions, we observed statistically signifi-

cant lower feedback counts in intervention condition (average counts: 42 vs. 55.07, Wilcoxon:

Z = 13.5, p < 0.05). See Figure 21.

We found no statistical differences between final F1 scores or agreement with gold stan-

dard labels between control and intervention conditions at any level (Figure 22).

5.4.2 Qualitative Analysis

Open-ended subjective feedback was mainly positive for our tool and recorded no major

usability problems: “intuitive and easy to use after initial training”. Overall the idea for
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Figure 17: Reports: Change in F1 scores over time at the report level. The colored
points represent individual participants. The grey band marks the average score and
tapers off in thickness to represent the number of participants completing that revision
during the study.
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Figure 18: Sections: Change in F1 scores over time at the section level. The colored
points represent individual participants. The grey band marks the average score and
tapers off in thickness to represent the number of participants completing that revision
during the study.
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Figure 19: Sentences: Change in F1 scores over time at the sentence level. The colored
points represent individual participants. The grey band marks the average score and
tapers off in thickness to represent the number of participants completing that revision
during the study.
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Table 10: Final scores: Comparison of Precision (P), Recall (R) and F1 scores between
initial and final model revisions for all 15 participants. Cohen’s Kappa (κ) measures
the agreement between feedback provided by the participants and the gold standard
labels. The initial model was trained on the same 6 patient cases to bootstrap the
learning cycle.

Reports Sections Sentences

P R F1 κ P R F1 κ P R F1 κ

Initial 0.90 0.19 0.31 0.86 0.20 0.32 0.84 0.13 0.22

p1 0.70 0.79 0.74 0.76 0.76 0.68 0.72 0.83 0.76 0.62 0.68 0.74

p2 0.77 0.81 0.79 0.81 0.80 0.64 0.71 0.85 0.78 0.48 0.60 0.75

p3 0.81 0.74 0.77 0.84 0.80 0.55 0.65 0.87 0.76 0.43 0.55 0.80

p4 0.81 0.74 0.77 0.95 0.82 0.63 0.71 0.94 0.79 0.48 0.60 0.87

p5 0.70 0.75 0.73 0.89 0.75 0.62 0.68 0.90 0.75 0.54 0.63 0.79

p6 0.79 0.79 0.79 0.92 0.81 0.61 0.70 0.96 0.82 0.52 0.64 0.88

p7 0.83 0.64 0.72 0.93 0.77 0.45 0.57 0.87 0.84 0.36 0.50 0.84

p8 0.90 0.68 0.77 0.92 0.86 0.48 0.62 0.91 0.83 0.42 0.56 0.85

p9 0.80 0.62 0.70 0.89 0.84 0.58 0.68 0.94 0.81 0.42 0.55 0.86

p10 0.75 0.77 0.76 0.91 0.80 0.64 0.71 0.91 0.79 0.48 0.60 0.82

p11 0.75 0.72 0.73 0.91 0.77 0.61 0.68 0.93 0.78 0.48 0.59 0.83

p12 0.72 0.68 0.70 0.90 0.74 0.68 0.71 0.90 0.77 0.55 0.64 0.75

p13 0.82 0.68 0.74 0.87 0.83 0.58 0.68 0.85 0.88 0.45 0.60 0.76

p14 0.67 0.75 0.71 0.84 0.81 0.66 0.73 0.90 0.81 0.48 0.60 0.81

p15 0.79 0.72 0.75 0.92 0.73 0.57 0.64 0.95 0.88 0.48 0.62 0.91

Mean 0.77 0.73 0.75 0.88 0.79 0.60 0.68 0.90 0.80 0.48 0.60 0.82

SD ±.06 ±.06 ±.03 ±.05 ±.04 ±.07 ±.04 ±.04 ±0.04 ±.06 ±.04 ±.05
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Figure 20: Average time spent in seconds between control and intervention conditions.
The dots represent individual samples. We observed a statistically significant lower
time in intervention vs control conditions (mean time: 134.38 vs. 148.44 seconds,
Wilcoxon: Z = 10, p < 0.005). One participant spent much longer time per patient case
than others and can be seen as an outlier in both the conditions.
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Figure 21: Average feedback counts between control and intervention conditions. The
dots represent individual samples. We observed statistically significant counts in the
intervention vs. control conditions (average counts: 42 vs. 55.07, Wilcoxon: Z = 13.5,
p < 0.05)
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Figure 22: We found no statistical differences between final F1 scores or agreement
with gold standard labels between control and intervention conditions at any level.
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highlighting incidental findings was well received:

“In my personal practice, I have missed out on incidental findings [on occasion] ... if we
are able to highlight them, it would be very helpful.”

“It’s useful to verify that I didn’t miss anything.”

5.4.2.1 Review Participants appreciated the report view which provided easy access

to all the related scans, “In the system that I use [at work], you have to open each report

individually rather than having to see them at once and scroll through them easily.”

All participants found it useful to be able to define search terms that were highlighted

in pink (Figure 15 3). While we provided the functionality to add and remove custom terms

most participants did not make use of that feature.

Participants praised the highlighting components of the tool as well, “I liked the high-

lighting a lot... When it was already highlighted, my response to confirming that was an

incidental was faster”. Highlighting on reports, sections and sentences in increasing satura-

tion levels was also found to be useful: “I knew I was heading towards a highlighted page...

made me focus more.”, [it signaled] “...that there is something going on.”

Most users didn’t pay attention to the mini-patient view but acknowledged that it would

be useful in real-world use cases. But a small group of users used it extensively: “Made it

easy to see where incidentals have been found”, “Helped me understand which page of the

record I am at”

5.4.2.2 Feedback Users found the mechanism for providing feedback straightforward

(Figure 16). Right click and highlight (Figure 16(a)) was useful when sentence boundary

detection had issues: “There were some examples when I did want the whole sentence to be

highlighted.”

All but one participant gave feedback only at the sentence level even though the tool

allowed them to provide feedback at the report and section levels as well.

User perception of the feedback list on the bottom right was mixed (Figure 15 5). While

some participants made extensive use to undo feedback actions, others didn’t pay enough

attention since it did not occupy a prominent location on the screen. One participant
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suggested that this could be combined in a single box along with system suggested incidentals

(Figure 15 3), while another insisted that they occupy separate views: “This was helpful

because sometimes I noticed that I highlighted too much, so I could go back and fix it.”

5.4.2.3 Retrain Most participants agreed that while shortcuts to click on incidental

blurbs and jump to those findings in the text would be useful in a real-world scenario, they

did not use that feature during the study. Several participants remarked that they didn’t

get a chance to explore every component of the user interface as they were mainly focused

on the study task of reviewing notes.

“I picked up more speed towards the end”

“If I regularly used this tool then it may be even more useful in skimming through the text
– saves a lot of time”

5.4.2.4 Future Directions Table 11 summarizes the list of design improvements sug-

gested by the participants. Participants also had suggestions for the tool beyond the inci-

dentals use case.

“We scan through a lot of reports and notes, so it would be very to help to identify important
findings from the rest of the noise, ... [such a tool] could potentially help us streamline a
lot of our workflow.”

Depending on the situation, the clinicians are looking for specific types of problems:

“If I see bruising... I may go back and see what the radiologist noted about injuries.”

Besides incidentals, interactive NLP could be used to build models for other kinds of

findings such as injuries, effusions and clinically relevant things that may have an impact

on a patient’s care and treatment. Participants also pointed out use-cases in radiology.

For example, such as a system may be used to remind radiologist about missed incidentals

when they dictate a report. Based on the findings listed in the report, the system could

auto-suggest relevant findings to mentioned in impression including a recommendation for

a follow-up based on the current guidelines. Other suggestions stemmed from use-cases in
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Table 11: List of design recommendations for improving the system from the user
study.

Category Recommendation

Review 1. Allow users to define their custom color schemes for highlights.

2. Include negation rules for keyword search. For example, differentiate be-
tween: ‘mass’ and ‘no mass’ [98].

3. Enable top feature highlighting as explanations for the predictions.

4. Distinguish between different kinds of sections in the reports (eg. Impres-
sion and Findings vs. other sections). Allows users to quickly jump to
specific sections.

Feedback 1. All but one participant gave feedback only at the sentence level even though
the tool allowed them to provide feedback at report and section levels as
well. Feedbacks may be provided with a single right click instead of trigger-
ing a contextual menu first. Options for other levels may then be provided
with a pop-up menu over these highlighted feedback items.

2. Display intelligent blurbs in the feedback list that drew attention to the
main findings or keywords (e.g. ‘mass’ or ‘nodule’ ) instead of just the
leading part of the sentence.

Re-Train 1. Allow some free-form comments along with the feedback marking inciden-
tals. Not only this can serve as a helpful annotation for the other members
of the team, the learning pipeline may also use that as an additional input
to improve models.

2. Some of the pre-defined search keywords (in pink) raised a lot of false-
positives (eg. ‘note’ ). An automated mechanism to suggest addition and
removal of these terms may be useful.

reading pathology reports, blood reports, labs, etc. Another participant while acknowledging

the benefits of AI to support clinical workflow also added a caveat about potential bias due

to automation:

“Clinical notes have a lot of text and are hard to read and having something that highlights
a finding – everything that saves time is helping me do the job better. Although I wouldn’t
want to miss something if it is not highlighted by the too.”
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5.5 DISCUSSION

In this work, we demonstrated how our interactive learning framework defined in Chapter 4

can be used in a clinical care setting. We developed a prototype tool to help clinicians identify

incidental findings from trauma scans. This can be seen as a step beyond the document

classification task in NLPReViz. Here, we are also interested in identifying relevant portions

within a document as well. Our prototype combines interactive displays of NLP results with

tools for reviewing text and revising models.

Our user study demonstrated successful use of the prototype by our intended users as

they built NLP models bootstrapped from a small number of initial examples. Our users were

clinicians with little or no experience with building machine learning models. We observed

an average increase in F1 score from 0.31 to 0.75 for reports, 0.32 to 0.68 for sections, and

from 0.22 to 0.60 for sentences (Table 10) over the 60 minutes long study. Specifically,

we observed large improvements in our recall scores between the initial and final models.

We recorded an average increase of 0.19 to .72±.05 for reports, .20 to .60±.07 for sections,

and .13 to .48±.06 for sentences. Precision and recall scores were balanced for reports, but

sections and sentence had lower recall scores. This may be due to heavily skewed training

data (Table 7). From our extrinsic evaluation, we found that tool helped significantly reduce

the time spent for reviewing patient cases (134.30 vs. 148.44 seconds in intervention and

control respectively) while maintaining the overall quality of labels measured against our

gold-standard. This was because the participants needed less time identifying and marking

incidentals in the intervention condition where the tool had already highlighted them. We

also measured a very good usability performance with an overall SUS score of 78.67. This is

considerably above an average usability score of 68.

Subjective feedback about our user interface was also very positive. We compiled a

list of participant feedback from the study for future design revisions. The users suggested

some extensions to our work and how such a tool may be applied to support other clini-

cal workflows in Table 11. We also observed that the restricted duration of the study and

focus on the study tasks prevented participants to attend to all features of the prototype

exhaustively. Participants comments that for features such as ‘search-term highlights’ and
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the ‘mini-patient view,’ they found little time to explore. Future exploration may involve

designing study tasks that tease out how individual components affect usability. Users re-

lied almost exclusively on feedback given at the sentence level. This is not surprising, as

most incidental findings are succinctly described in a single sentence. We expected that the

main application of section and report level highlighting would be for the identification of

false positives. While the tool automatically highlighted segmented sentences for providing

feedback, participants also sometimes manually highlighted parts of sentences instead when

sentence boundary detection faltered. Deeper investigation into usage patterns and resulting

models might provide some insight into which factors influenced user actions, and how they

might be resolved in future redesigns. For the retrain step, we did not address the problem

of measuring model performance over time. Future work may explore visualization of perfor-

mance metrics against a held-out set and examples already reviewed and labeled manually

by the users.

Physicians spend a large proportion of their time searching notes and reports to learn

relevant information about patients. Although our work focused on the use of incidental

findings as an example use case, the problem of identifying important or relevant information

from free-text reports may be generalized for many similar applications including preparing

discharge summaries, formulating reports for rounding, and authoring consultation notes.

Several of these applications were suggested by the study participants. Once of the direct

extension of this current prototype would involve predicting sentences for all sections of the

complete signout note. This would involve keeping track of multiple model-types for each

section in the note. The users would then be highlight and mark sentences to be referenced

in these different sections. A mock-up of such an interface is shown in Table 8 (Feedback).

One of the limitations of our study is the lack of access to the real EMR systems for

comparison. Although the clinicians appreciated our cleaner design, the interface was de-

signed solely for the user-study task and not as a general purpose EMR. We simulated the

existing workflow in traditional EMRs by hiding NLP predictions in the control condition.

We also found that the user study defined a slightly artificial task as the clinicians reviewed

many patients at once. In a real-world scenario, clinicians may review notes for many dif-

ferent objectives together at once and not for a singular task such as identifying incidentals.
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Although many users supported the need for such a tool from their prior experience with

missing out on incidentals while reading scans.

We also used simpler machine learning pipelines as a trade-off for faster speed and eas-

ier implementation vs. classification performance, in order to demonstrate our interactive

approach. Future work may involve an exploration of more recent modeling approaches

for classifying incidentals (such as in [93]). For example, we may design mechanisms for

handling noisy labels, and consider soft-labels based on user expertise. Other unaddressed

issues include easier management of user models, including allowing version rollbacks and

keeping track of model performance. A progress bar showing the status of the number of

documents manually annotated could help users interpret overall progress. Another useful

addition could be a visualization of model performance metrics over time using a held-out

set and/or the set of training examples. The examples could be taken from a gold-standard

set or from the set of examples previously reviewed and labeled manually.

Our user study supports the viability of adopting interactive NLP tools in clinical care

settings. We used incidentals as an example use-case in our work, but the problem of

identifying important or relevant information from free-text reports can be generalized for

many practical applications. The incidentals problem also demonstrates the need for highly

customized NLP models depending on different clinical settings: specialty, team, accepted

guidelines, etc. and objectives. The guidelines for labels may also evolve over time which

makes it challenging to maintain models centrally. This further bolsters the argument in

favor of introducing interactive learning that allows the consumers of the NLP models to

review and revise models. We are also addressing the problem of lack of upfront labeled

training data by building tools that integrate machine learning into a clinician’s workflow.

By building interactive NLP tools that focus on the clinicians as end-users, we may be able

to realize the true potential of using NLP for real-world clinical applications.
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6.0 CONCLUSION

Advances in machine learning have resulted in a renewed interest in the use of artificial

intelligence in medicine and healthcare. This can be seen by the recent surge in the number

of peer-reviewed studies as well as the rising number of FDA approvals for AI applications in

medicine [99]. This has the potential for remarkable improvements in clinicians’ workflow and

productivity, and also patient outcomes. A majority of these applications deal with clinical

image interpretation tasks in a variety of biomedical application in radiology, pathology,

dermatology, etc. While free-text notes contain rich information about a patient, real-world

applications of NLP on them remain few and far between. Despite advances in Natural

Language Processing (NLP) techniques, extraction of relevant information from free-text

clinical notes in Electronic Medical records is often expensive and time-consuming [14].

Traditional approaches in NLP involve the construction of models based on expert-annotated

corpora. These methods require extensive input from domain experts who have limited

opportunity to review and provide feedback on the resulting models. Interactive Natural

Language Processing holds promise in addressing this gap, towards improving clinical care

as well as furthering clinical research faster (Section 2.4.1).

In my dissertation, I demonstrated the successful use of interactive NLP prototypes by

clinicians for two example applications. I explore ideas from interactive machine learning

(Section 2.1) by designing interface components to support review, feedback and retrain steps

of an interactive NLP cycle. These systems allowed clinicians to build useful models with

little or no initial training. In Chapter 4, NLPReViz served as an example of how clinicians

could train their own models for retrospective research. We conducted user-studies with

clinicians to evaluate our system and gather feedback for future re-design of similar systems.

Next, I extended this approach for its application in a clinical care environment (Chapter 5).
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We built an intelligent signout tool to help clinicians identify incidental findings. Similar to

NLPReViz, we conducted a user-study to evaluate our tool. Apart from measuring model

performance and usability scores, we included extrinsic evaluation metrics such as measuring

task completion times, number of user actions needed, etc. Such evaluations support our

hypothesis of using AI to augment clinical workflows. NLPReViz was designed for clinical

researchers as target users, who are vested in the task of building global NLP models. In

comparison, the users of the Intelligent Signouts tools are clinicians primarily engaged in care

of individual patients and are building (local) NLP models. Together they serve as example

tasks where interactive NLP can be adopted for analyzing clinical text, covering both clinical

care and research applications. A real-world application may adapt a combination of ideas

from both these example use-cases. These applications have different design requirements–

for example, an intelligent application could support clinical workflows (‘Intelligent Signout’-

like use case), but also allow periodic inspection of the NLP models by senior team members

or administrators (NLPReViz-like use case).

Further, while NLPReViz deals with the task of binary classification at the document

level, Intelligent Signouts extends the learning problem for identifying relevant text spans

within a full-text patient note. This can be seen as a step beyond a simple classification

task – where we are not only classifying whether a document is important but are also

interested in identifying relevant portions within the important document as well. Future

applications of interactive NLP may tackle harder NLP tasks such as named-entity recogni-

tion, identifying relations, time-series analysis, natural language understanding and building

question answering systems (Figure 4). These initial prototypes described in this dissertation

help us understand the design of interactive NLP tools for such wider clinical applications.

In both prototypes, we used simple machine learning pipelines for faster speed and easier

implementations to demonstrate our interactive approach.

For evaluation of both the prototype tools, we did not integrate our approach with real

EMR systems. For the incidentals problem, for example, we disabled the NLP predictions

in the control condition of our prototype to simulate the traditional workflow for identifying

incidentals. While we received very positive feedback for our tools and some participants even

commented on how they preferred using these prototypes over the existing EMRs, our tools
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dealt with very specific user-study tasks. Integration with the EMR is a significantly more

challenging problem. Considering the incidentals problem again as an example, physicians

may review note notes for many different objectives at once in the real world, and not for

singular tasks such as identifying incidentals. When we move from ‘lab’ user studies to

‘field’ or ‘problem impact’ studies [96], we require deeper explorations, such as long term

case studies, that can influence design decisions.

Future work in NLP modeling may involve an exploration of more competitive classifica-

tion performance as well as using better feature representation methods, such as our work on

modeling incidentals [93]). Future explorations can include models for incorporating semi-

supervised learning, positive and unlabeled classes (eg. identified vs. missed incidentals, and

specifying “irrelevant” spans in NLPReViz), building collaborative models for a team, using

soft-labels based on user-experience, handling noisy labels, and active learning.

Building models interactively requires establishing guidelines about how humans and

AI algorithms should interact and collaborate [100, 101]. These principles will require a

systematic study of prototype systems for specific applications and target users. This will

lead to more opportunities for future research at all three steps of the interactive learning

cycle:

1. Review

(i) Make black-box models explainable and interpretable. We have some initial work in

clinical informatics for making machine learning on EMR data more interpretable [91,

90], however, there is scope for Introducing transparency in modeling allows the

users to have confidence in them. Other open problems include defining measures of

confidence, transparency etc.

(ii) Safety is another critical area for research. One of the issues studied in great details

is the problem of alert fatigue [102, 103]. One may need to make choices between

easily dismissible highlights vs. critical alerts, for example, for building interactive

systems. Next, we also need to look into minimizing automation bias and preventing

clinicians from becoming complacent due to automation.
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2. Feedback

(i) Allow richer feedback and combine data from multiple modalities. In my dissertation,

I focused only on the free-text component of the EMR. Future work may delve

in combining multiple modalities such as text plus images, and building combined

models. This would require an exploration into novel ways of presenting data and

providing feedback.

(ii) Models that can be built in collaboration by a team. This would require designing

systems that can manage user roles, modeling expertise and also manage conflicts.

(iii) Care practices may be constantly updated and revised. As a result, interactive

learning systems should able to handle evolving guidelines over a period of time for

the same concept.

(iv) Implement better active learning strategies for minimizing feedback costs [28].

3. Re-train

(i) Another unsolved problem is in estimating model performance in the absence of a

labeled gold standard in many real-world tasks. In both of the proposed tools, we

did little to address the problem of letting the users know when the model is good

enough. This could be done based on how the models perform against a held-out

set and/or examples already reviewed and labeled manually.

(ii) Explain model changes (live re-training vs. overnight updates) and performance

metrics. Visualization of model performance metric over time could help address

this need.

(iii) Build continuously learning systems. Allow users to revert changes and switch be-

tween model revisions [37, 59].

In this dissertation, I presented two example applications with clinicians as end-users.

While some of these principles may be extended for general Human-AI collaborations tasks

(such the use of NLPReViz to classify legal text [104]), other applications will require a

narrower focus on the target users– clinicians, researchers, and also patients in identifying

and supporting these AI collaborations. The history of Biomedical Informatics deals with the

conversion of medical knowledge into a computable form. Newer machine learning techniques
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have reinvigorated this possibility in continuously learning, intelligent EMR systems. The

biggest obstacle in building such systems that can learn from EMR data is the lack of training

labels. “Human-in-the-loop” and interactive methods reduce the need for labeled examples

upfront and bring machine learning closer to end-users who consume these models. With

the continuously learning interactive learning approaches as well as advances in unsupervised

machine learning, not only we have the potential to support end-users of these models, but

also contribute completely new insights to medical knowledge [105].
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